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A B S T R A C T

When investing in cyber security resources, information security managers have to follow effective decision-
making strategies. We refer to this as the cyber security investment challenge.In this paper, we consider
three possible decision support methodologies for security managers to tackle this challenge. We consider
methods based on game theory, combinatorial optimisation, and a hybrid of the two. Our modelling starts
by building a framework where we can investigate the effectiveness of a cyber security control regarding
the protection of different assets seen as targets in presence of commodity threats. As game theory captures
the interaction between the endogenous organisation’s and attackers’ decisions, we consider a 2-person
control game between the security manager who has to choose among different implementation levels of a
cyber security control, and a commodity attacker who chooses among different targets to attack. The pure
game theoretical methodology consists of a large game including all controls and all threats. In the hybrid
methodology the game solutions of individual control-games along with their direct costs (e.g. financial) are
combined with a Knapsack algorithm to derive an optimal investment strategy. The combinatorial optimi-
sation technique consists of a multi-objective multiple choice Knapsack based strategy. To compare these
approaches we built a decision support tool and a case study regarding current government guidelines. The
endeavour of this work is to highlight the weaknesses and strengths of different investment methodologies
for cyber security, the benefit of their interaction, and the impact that indirect costs have on cyber security
investment. Going a step further in validating our work, we have shown that our decision support tool pro-
vides the same advice with the one advocated by the UK government with regard to the requirements for
basic technical protection from cyber attacks in SMEs.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the biggest issues facing organisations today is how they
are able to defend themselves from potential cyber attacks. The range
and scope of these unknown attacks create the need for organisations
to prioritise the manner in which they defend themselves. With this
each organisation needs to consider the threats that they are most
at risk from and act in such a way so as to reduce the vulnerability
across as many relevant vulnerabilities as possible. This is a par-
ticularly difficult task that many Chief Information Security Officers
(CISOs) are not confident in achieving while in a report published
by Deloitte and NASCIO [1], 75.5% of CISOs cited lack of sufficient
budget as a top challenge. It is this perceived lack of sufficient fund-
ing that this work wishes to address. As approximately 72% of cyber
breaches occur at Small-Medium Enterprises (SMEs) [2], we have
decided to investigate cyber security investment decisions for SMEs.
In addition to SMEs being attractive targets for cyber attackers, from

our work with local SMEs we have identified that they are heav-
ily restricted with the available funding for cyber security, generally
working with a fixed budget with little to no additional funding being
made available for cyber security purposes. It is generally perceived
that this budget is insufficient for them to cover all of the vulnera-
bilities that their system may have. In this way organisations have to
make trade-offs with regard to how they defend their systems.

When an organisation is making decisions regarding the defence
of their network, they generally have to consider two critical fac-
tors; the cost of implementing a particular defence and the impact
that defence has on the business. The first of these has been dis-
cussed, stating that a company can only implement defences that are
within their limited budget, considered the Direct Cost of the defence.
However we question whether the apparently most optimal defence,
based solely on direct costs, is the correct choice for an organisa-
tion. The reason behind this lies with the second criteria, such that
the manner in which a defence is implemented will likely have some
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effect on either the operation of the system or the users of the sys-
tem. These effects may cause a reduction in the speed that tasks can
be performed by users or by a weakening of the defence caused by
users circumventing the controls in order to more easily perform
their required tasks. We consider that these factors create additional
indirect costs for implementing a given defence. These two factors are
at the core of our work into the decision support of how to use the
limited financial budget available to best protect against cyber attacks.

The approach taken in this work is to model attackers using
commodity cyber threats against SMEs, where the attacker is using
commonly available attack vectors against known defendable vul-
nerabilities. While this doesn’t negate the possibility of zero-day
vulnerabilities, it removes the expectation that it is in the best inter-
est of either player to invest heavily in order to either find a new
vulnerability or be able to protect against these unknown vulnera-
bilities. The same approach has been taken by the UK government to
provide cyber security advice to SMEs [3] and published in a report
called “Cyber Essentials Scheme: Requirements for basic technical
protection from cyber attacks”.

The seminal work of Anderson [4] considers the traps that
defenders may fall into in finding bugs and protecting their systems,
where it only needs to be a single unseen vulnerability that exposes
the whole of a network. Important to the modelling is the concept
that the defenders have to attempt to defend everywhere. This is due
to the fact that attackers can strike anywhere they wish. We can
highlight this observation by assuming that the defence provided by
optimal budget allocations can only be considered as strong as the
defence of the weakest target, as defined in [5]. This is because the
weakest target is at most risk from an attacker who can potentially
attack anywhere. Our approach is quite different to Anderson’s as
we focus on developing cyber security decision support tools to assist
security managers on how to spend a cyber security budget in terms
of different controls acquisition and implementation.

In a nutshell, this work proposes a two stage model designed to
aid security managers with decisions regarding the optimal alloca-
tion of a cyber security budget. We analyse the two stages of the
model by first presenting an overview of the environment from
which we define the problem of cyber security investment, identify-
ing a unique manner for reasoning about the targets that a potential
attacker has, and the defences associated with those targets. This
is done by considering the physical location of a data asset, which
needs to be protected, as well as the degree to which a particular
defence, herein referred to as a control, is implemented.

We use the above environment to formulate Control Games,
which analyse how well each given control performs at different
degrees of implementation (i.e. levels). We compute the Nash Equi-
librium condition in Control Games, and we motivate the trade-offs
required with the indirect costs. The Nash Equilibrium of a control-
game dictates the most efficient manner, in which, a control should
be implemented. The solution to each control-game alone is insuf-
ficient in dictating the optimal allocation of an organisation’s cyber
security budget. So to identify the best way to allocate a budget, we
formalise the problem as a multi-objective multiple choice Knapsack
problem. We motivate the use of this methodology by comparing the
two-stage model to two alternative methods. Firstly, we model the
scenario as a one shot game that aims to optimise the defence includ-
ing direct costs, and secondly a Knapsack problem that considers only
pure strategies for each control level including indirect costs. In both
cases we highlight where our proposed method is able to outperform
alternative methods.

This paper significantly extends the results initially presented
in [6]. Its additional contributions include: enriching the mathemat-
ical notation to represent more coherent game information; provid-
ing a more in-depth mathematical analysis of Control Games’ equi-
libria; comparing the previously proposed, in [6], method of invest-
ment, which was based on both Control games and multi-objective

Table 1
Comparative analysis of major works that investigate allocation of a cyber security
budget after conducting cyber security risk assessment.

Paper Game th. Optimis. Real world data Sec. controls sel.

[13,15,18] x � x x
[10,11] x � � �
[12] x � x �
[17] � x x x
[19] � � x x
Our article � � � �

Knapsack optimisation, to (i) a pure multi-objective Knapsack opti-
misation, and (ii) a Full Game approach, where we consider all
possible controls, levels, and targets under a single very large game;
implementing a large scale case study using real world data from
various reputable sources; and drawing thorough insights regard-
ing the effectiveness of our cyber security investment method and
highlighting how it is in line with [3].

The remainder of this paper is organised as follows. Section 2
summarises the most important related work at the intersection of
cyber security investments and selection of security controls. It also
highlights how our approach is different. In Section 3, we introduce
the model components, which facilitate the risk assessment prior to
selection of security controls and investment. Section 4 uses these
components to build a game model and analyse a toy 2 × 2 game
example with a single control with two implementation levels and
two targets. This aims to provide a feel for these games and what
elements determine the equilibria. In Section 5 we introduce the
Control Subgames to support the analysis of games larger than 2×
2. In Section 6, we present three different cyber security investment
approaches, which we have simulated by using a novel decision sup-
port tools developed for the purposes of this paper. In Section 7 we
develop a real world case study based on the SANS Critical Security
Controls and CWE Top Software Vulnerabilities. This case study has
been used to compare our findings to the set of guidelines that the
UK government has published in [3].

2. Related work

Our work has been partially inspired by a recent contribution
within the field of physical security [7], where the authors address
the problem of finding an optimal defensive coverage. The latter is
defined as the one maximising the worst-case payoff over the tar-
gets in the potential attack set. One of the main ideas of this work
we adopt here is that the more we defend the less rewards the attacker
receives.

As the purpose of cyber security investments methodologies is to
lead to the selection of a set of cyber security controls that maximise
the benefit of an organisation with respect to some available budget,
we find papers that investigate this optimal selection [8–12] as the
most relevant to our work. In this section, we summarise the most
prominent works that investigate allocation of a cyber security bud-
get after conducting cyber security risk assessment. Their differences
are briefly also summarised in Table 1.

One of the initial works studying the way to model investment
in cyber security is published by Gordon and Loeb [13]. The authors
consider the optimum level of investment given different levels of
information security level. The authors propose a model in which
for any given vulnerability there are different levels of informa-
tion security that can be implemented, where a higher level of
information security will cause the expected loss to that particular
vulnerability to drop. This is modelled as a function of the security
level’s responsiveness to an increasing vulnerability in reducing loss.
In our model, here, we consider a single value for a vulnerability,
and then for each control there are a number of levels of implemen-
tation, which represent the information security levels proposed by
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Gordon and Loeb. The main message of this work is that to max-
imise the expected benefit from information security investment, an
organisation should spend only a small fraction of the expected loss
due to a security breach.

Inspired by [14], Lee et al. apply the profit-at-risk and opera-
tional risk modelling approaches to propose a model that facilitates
optimal customer information security investments by providing
undertaking trade-off analysis between risk and return [15]. The
authors define a minimum information security protection level
that must be achieved in order for investments in a customer pri-
vacy protection to be effective. Rakes et al. [10] extended previous
mathematical models [16] to develop an integer programming
model that optimises the selection of a subset of security controls to
mitigate certain threat level profiles. Authors assessed their model
under expected and worst-case threat levels towards deriving
tradeoffs for optimal security planning between these two threat
levels. They also demonstrated budget-dependent risk curves giv-
ing emphasis in showing how perturbed budget levels affect the
aforesaid tradeoffs. In a similar vein, Viduto et al. [11] formulate a
multi-objective optimisation problem to select security controls in
a cost-effective manner taking into account both financial cost and
security risk. Inspired by [10], Sawik [12] applies two popular in
financial engineering (e.g. in portofolio management) measures of
risk: value-at-risk and conditional value-at-risk.

In [17], Nagurney et al. propose a supply chain network game
theoretic model in which retailers may be subject to a cyberat-
tack and seek to maximise their expected profits by selecting their
optimal product transactions and cybersecurity levels. A success-
ful attack likelihood depends not only on the security level of the
retailer per se, but also on that of the other retailers. Authors also
show how cyber security investment cost functions vary according
to consumers’ preferences for the product, which, in turn, depends
on both the demand and the security level. Srinidhi et al. [18] pro-
pose an optimisation model to reason about the allocation of cyber
security resources to assets that have inherent strength against
cyber attack and security-enhancing assets (i.e. security controls).
They also investigate the role of cyber insurance in mitigating the
effects of breach costs as well as the incentives that both managers
and investors in spending upon cyber security products given that
the first (i.e. managers) are more concerned with potential finan-
cial losses while the second (i.e. investors) are reluctant to spend
more in strengthening the firm’s security due to spreading their risks
by investing in different firms. Lastly, Cavusoglu et al. [19] com-
pare a decision-theoretic approach to game-theoretic approaches for
investment in cyber security. Authors neither use real world data to
undertake their risk assessment nor do they investigate the optimal
selection of security controls.

3. Model definition

In this section we use game theory to model the interactions
between two players; the Defender (D) and the Attacker (A). The
Defender might be the cyber security manager in an SME, and her
overall objective is to defend the organisation’s assets from cyber
theft, mitigate any potential business disruption, and maintain the
organisation’s reputation. On the other hand, A is a cyber hacker who
tries to subvert the system to her own end, by launching commodity
cyber attacks against the organisation D is working for. Commod-
ity cyber attacks are based on capabilities and techniques that are
available on the internet, where the attack tool can be purchased
therefore the adversaries do not develop the attack themselves, and
they can only configure the tool for their own use.

In our model, D has an available cyber security budget B, and she
wants to invest in implementing cyber security controls to protect
the organisation’s data assets against commodity attacks. Each control
can be implemented at a different level. Note that the higher the level

the greater the degree to which the control is implemented. After its
implementation, each control brings some security benefits to the
system, but it is also associated with indirect and direct costs. The
challenge D has to address is how to decide upon implementation
of the different cyber security controls against commodity attacks,
given a limited budget B, and other preferences the organisation has
in terms of risks and indirect costs. Our work is based on quantita-
tive risk assessment prior to deciding upon spending a cyber security
budget. Alpcan [20] (p. 134) discusses the importance of studying the
quantitative aspects of risk assessment with regard to cyber secu-
rity in order to better inform decisions makers. In the following we
discuss the different components of the model, and we define appro-
priate terminology and notations, which are consistent throughout
this article.

We define the depth of a data asset as the location of this asset
within the organisation’s structure following the rule: the higher the
depth is, the more confidential data the asset holds. In other words, a
depth determines the importance of the data asset that the organ-
isation loses if a commodity attack (herein referred to as attack) is
successful. In this paper, we specify that data assets that are located
at the same are depth worth the same value to D’s firm.

We denote the set of cyber security targets within an organisation
by T := {ti}, the set of vulnerabilities threatened by commod-
ity attacks by V := {vz}, and the set of depths by D := {dx}. A
cyber security target is defined as a (vulnerability, depth) pair; for-
mally ti := (vz, dx). This abstracts any data asset, located at dx, that
an attack threatens to compromise by exploiting vz. We specify that
data assets located at the same depth and having the same vulner-
abilities are abstracted by the same target. Each target is associated
with an impact value which expresses the level of damage incurred
to D’s organisation when A succeeds in their attack against that tar-
get. The different impact factors can be data loss, business disruption,
and reputation damage. Each impact factor depends on the depth dx

that the attack targets. Furthermore, there is a threat value for each
target. This can account, for instance, for the frequency of attacks
launched against that target. Each software weakness (we use the
terms weakness and vulnerability interchangeably) has some factors
that can determine an overall score. Let I : T → Z+ be the random
variable which takes targets ti to the impact value that the compro-
mise of ti will have to the organisation, and let T : T → Z+, be the
random variable which takes target ti ∈ T to its threat value. Aligned
with the definition of target, I(ti) depends on the depth dx, and T(ti)
depends on the vulnerability vz.

A cyber security control is the defensive mechanism that D can put
in place to alleviate the risk from one or more attacks by reducing
the probability of these attacks successfully exploiting vulnerabili-
ties. D chooses to implement a control at a certain level for their
organisation. We define the set of implementation levels of a con-
trol as L:={lk}. The higher the level the greater the degree to which
the control is implemented1 . An implementation level l has a degree
of vulnerability mitigation on each target. This is determined by the
efficacy, in terms of cyber defence, of l on this target. For a pair (l, t),
which represents the level of implementation of a particular control,
we define the random variable E : L × T → [0, 1), which takes a
pair of (l,t) to the efficacy value of l on t. Here, we have postulated
that E(l, t) �= 1 due to the existence of 0-day vulnerabilities that A
has the potential to exploit. Assume D implements a control at l that
has efficacy E(l, t) on t. We define the cyber security loss random vari-
able S(l, t) = I(t)T(t)[1 − E(l, t)]. This is the expected damage (e.g.
losing some data asset) that D suffers when t is attacked and a con-
trol has implemented at level l. This definition of loss is in line with
the well-known formula, risk = expected damage (I(t)) × probability
of occurrence (T(t)) [21].

1 Note that we abuse notation by setting lk = l, ti = t, vz = v, and dx = d.
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While the implementation of a cyber security control strength-
ens the defence of D’s organisation, it is associated with two types of
costs namely; indirect and direct. Examples of indirect cost are Sys-
tem Performance Cost, Morale Cost, and Re-training Cost. For a level
l we express its indirect cost by the random variable C : L → Z+.
From the above we can derive the overall loss of D’s organisation.
This is equivalent to the sum of the security damages inflicted by A
and the indirect cost for implementing a control at a certain level.
Formally, when D implements a control at some level i then the
expected loss of their organisation is derived by

∑
tS(l, t) − C(l). The

implementation of a control, at some level, has a direct cost, which
refers to the budget the organisation must spend to this implemen-
tation. For instance, we can split such direct cost into two categories,
the Capital Cost and Labour Cost. We express the direct cost of an
implementation level l by the random variable C : L → Z+ that
takes implementation levels to the monetary cost of the control
implementation.

4. Cyber security control games

In this article we formulate two-player non-cooperative static
games, called Control Games. The players in a Control Game are the
Defender (D), which represents any cyber security decision-maker,
and A, which represents any cyber hacker who uses commodity
attacks. The former defends their organisation’s data assets by min-
imising expected cyber security losses with respect to some indirect
costs, while A aims at benefiting from compromising these assets. D
is choosing how to implement a cyber security control (i.e. at which
level) and A decides which target to attack to exploit its vulnerability
at a certain depth. Since we consider a simultaneous game, A does
not know the control implementation strategy and D does not know
the attack strategy. We refer to our games as Control Games because
the basis of our formulation is that D has one control at her disposal.

First, we formulate zero-sum Control Games. These represent
scenarios where A aims at causing the maximum possible damage
to D. We believe that if we consider a non-zero sum game then a
specific threat model must be defined as well. Such a model could
consider, for instance, some cost for A when undertaking an attack.
However cost in terms of cyber attacks is tightly coupled with the
adversary’s profile. A consideration of a specific threat model would
also have some influence on the way A sees the different targets as
she is after specific goals based on her motivation (i.e, cyber crime,
hacktivism, cyber espionage). In this case, different A profiles could
have been investigated. In our work here, we have not investigated
such profiles and our work is limited to a generic assumption that
A is taking advantage of commodity attacks that she can purchase
from online sources. In other word, we have assumed a set of
attack methods that A can choose from but we have not postulated
anything about their motivations.

For a given cyber security control, D can choose to implement
the control at level l ∈ L and therefore her pure strategy set coin-
cides with L. A selects a vulnerability to exploit at a certain depth.
Formally, A chooses t = 〈v, d〉 ∈ T . Thus the pure strategy set of A
coincides with T . Given that the pure strategy sets of the players are
L and T then D has m pure strategies and A has n, correspondingly.
We denote by G := 〈A,E〉 an m × n bi-matrix cyber security game
where D (i.e. row player) has a payoff matrix A ∈ Rm×n and the pay-
off matrix of A (i.e. the column player) is denoted by E ∈ Rm×n. D
chooses as one of her pure strategies one of the rows of the payoff bi-
matrix 〈A,E〉 := [(alt , elt)]l,t . For any pair of strategies (l, t), D and A

Table 2
Game matrix.

t t′

l S(l, t) − C(l), −S(l, t) + C(l) S(l, t′) − C(l), −S(l, t′) + C(l)
l′ S(l′ , t) − C(l′), −S(l′ , t) + C(l′) S(l′ , t′) − C(l′), −S(l′ , t′) + C(l′)

have payoff values equivalent to alt and elt, given by alt := S(l, t)−C(l)
and elt := −S(l, t) + C(l). Table 2 is the game matrix presenting
player’s payoffs for the different pure strategy profiles.

A player’s mixed strategy is a distribution over the set of their
pure strategies. The representation of D’s mixed strategy space is
a finite probability distribution over the set of the different control
implementation levels {l1, . . . , lm}. For A, the representation of their
mixed strategy space is a probability distribution over the different
targets {t1, . . . , tn}. In this paper we are interested in how different
control implementation levels are combined in a proportional man-
ner to give an implementation plan for this control. We call this
a cyber security plan. This allows us to examine advanced ways of
mitigating vulnerabilities.

We occasionally refer to the implementation of a control at a cer-
tain level as a cyber security process. We can then define the cyber
security plan as the probability distribution over different cyber secu-
rity processes. When investing in cyber security we will be looking
into the direct cost of each cyber security plan which is derived as
a combination of the different costs of the cyber security processes
that comprise this plan.

We define D’s mixed strategy as the probability distribution V =
[01, . . . ,0m]. This expresses a cyber security plan, where 0k is the
probability of implementing the control at lk. A cyber security plan
can be realised as advice to D on how to implement a cyber secu-
rity control by combining different implementation levels. Although
this assumption complicates our analysis at the same time it allows
us to reason about equilibria of the control game therefore providing
a more effective strategy for D. We claim that our model is flexi-
ble thus allowing D to interpret mixed strategies in different ways
to satisfy their requirements. A mixed strategy of A is a probabil-
ity distribution over the different targets and it is denoted by H =
[h1, . . . , hn], where hi is the probability of the adversary attacking ti.
When both players choose a pure strategy randomly according to the
probability distributions determined by V and H, the expected pay-
offs to D and A are JD(V,H) :=

∑n
i=1

∑m
k=1 0k aik hi, and JA(V,H) :=∑n

i=1
∑m

k=1 0k eik hi.
For the remainder of this section, we analyse a specific Control

Game. We assume that for a specific target t, D has only two possible
levels at her disposal namely l, and l′ (e.g. performing penetration
testing rarely during a year or often), to implement a control. We
define DS(t) := S(l′, t) − S(l, t) and DC := C(l′) − C(l). DS(t) is the
reduction in damage when l′ is chosen, and DC is the extra indirect
cost of l′ over l.

Lemma 1. When the reduction in damage achieved by l′ over l is higher
than the extra indirect cost that l′ introduces, D chooses l′.

Proof. If the reduction in damage achieved by l′ over l is higher than
the extra indirect cost that l′ then DS(t) >DC. This can be broken
down as, S(l′, t)−S(l, t) > C(l′)−C(l) ⇐⇒ S(l′, t)−C(l′) > S(l, t)−C(l) ⇐⇒
al′t > alt. Therefore, the D is incentivised to pick l′ as it has a higher
utility. �
Lemma 2. If S(l, t) > S(l, t′) then Attacker attacks target t.

Proof. For a specific control implementation l and two targets t, t′,
A’s best response can be found by comparing elt, elt′ . If elt > elt′ ⇐⇒
S(l, t) − C(l) > S(l, t′) − C(l) ⇐⇒ S(l, t) > S(l, t′), A prefers to attack tar-
get t. Specifically we define this property as DS(l) := S(l, t′) − S(l, t).
Therefore, if S(l, t) > S(l, t′) ⇐⇒ S(l, t′) − S(l, t) < 0 ⇐⇒ DS(l) < 0, A
chooses t. �

Since we are investigating a two-person zero-sum game with
finite number of actions for both players, and according to Nash [22]
it admits at least a Nash Equilibrium (NE) in mixed strategies.
Saddle-points correspond to Nash equilibria as discussed in [20].
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The following result, from [23], establishes the existence of a sad-
dle (equilibrium) solution in the games we examine and summarises
their properties.

The investigated cyber security game admits a sad-
dle point in mixed strategies, (V*,H*), with the properties
V∗ = arg max

V
min
H

JU(V,H),H∗ = arg max
H

min
V

JA(V,H).

Corollary 3. Regardless of the Attacker’s strategy, the Nash Defender
guarantees a minimum performance, that is an upper limit of expected
damage.

Proof. The minimax theorem states that for zero sum games
NE, maxmin and minimax solutions coincide. Therefore V*=
arg minVmaxH JA(V,H). �

Since in this work we consider zero sum games, two criticisms are
possible:

Remark 1. The gain of the Attacker is not, in general, equal to the
loss of the defender.

Remark 2. The Attacker’s payoff is not related to the defender
indirect costs.

We address both Remarks by noticing that a significant class of
realistic cyber security games can be mathematically reduced to zero
sums games. Remark 1 is addressed by the following lemma.

Lemma 4. The equilibrium (V*,H*) in our zero sum cyber security game
G remains the same in the negative affine transformation of this game in
which the Attacker’s gain does not equal the Defender’s loss.

Proof. We claim that a model of the A where his payoffs are a neg-
ative affine transformation of the D loss is a reasonable model. For
example by selling stolen data on the black market for only one tenth
of the data’s value.

A negative affine transformation of the Defender’s A matrix is
defined as y A + x, where y is a negative scalar, and x is a con-
stant matrix of the same dimension asA. Therefore, in addition to the
cyber security game G = (A, −A), we intuitively define the negative
affinity of this game as G− = (A,y A + x).

Suppose V*,H* are the equilibrium strategies in G. First, it is easy
to see that V* is the Defender’s equilibrium strategy in both G and
G− due to the Defender’s game matrix remaining the same. For-
mally, V A H∗ ≤ V∗ A H∗. Similarly, we prove that H* is Attacker’s
equilibrium strategy in both games. We have that V∗ (−A) H ≤
V∗ (−A) H∗ ⇒ V∗ A H ≥ V∗ A H∗ ⇒ V∗ (y A + x)H ≤
V∗ (y A + x)H∗. This means that equilibria are the same in both
G, G−. �

Lemma 5. A game Ĝ where the Defender’s indirect cost C is a positive
affine transformation of the direct cost S, has the same maxmin solution
with G.

Proof. According to the Lemma we have that in ĜD’s payoff is given
by S− (j S−l) = S(1−j)−l, where j, l are positive scalars. Assume
that at the equilibrium of ĜD’s best response is V∗. Then we have
V [S (1 − j) − l] H∗ ≤ V∗ [S (1 − j) − l] H∗ ⇒ V (S − j S − l) H∗ ≤
V∗ (S −j S −l) H∗ ⇒ V (S −l) H∗ ≤ V∗ (S −l) H∗ l=C⇒ V (S − C) H∗ ≤
V∗ (S − C) H∗ ⇒ V A H∗ ≤ V∗ A H∗. Therefore G, Ĝ have the same
equilibria, and from Corollary 3 these are also maxmin solutions. �

Fig. 1. Game tree for the control game with 2 implementation levels and two targets.

To illustrate the game approach let’s consider a toy example con-
sisting of a 2-level, and 2-target control games, where D and A
make their decisions simultaneously, or, equivalently, independently
of each other. The information sets associated with the the control
game, investigated in this section, depicted in Fig. 1; a dashed curve
encircling the A nodes has been drawn. This indicates that A cannot
distinguish between these two points. In other words, A has to arrive
at a decision without knowing what D has actually chosen.

Due to the game being zero-sum, we have kept only the payoffs
of D at the game tree. We also defined the mixed strategy of D as
the probability distribution [0, 1 − 0], where 0 is the probability of
implementing the control at level l. A’s mixed strategy is denoted
by [h, 1 − h], where A chooses to attack t with probability h. Table 3
summarizes all possible best responses of the control game for the
different conditions discussed in this section.

In a two target, two level control sub-game, it is possible to define
the probabilities that each player plays in a particular mixed strategy.

Lemma 6. The Nash equilibrium for a control sub-game for the D ’s,
given by 0*∈ [0, 1] is 0∗ = DS(l′)

DS(l′)−DS(l) .

Proof. The D wants to make the A indifferent to which target they
should attack. This is given by equalising the expected payoff of the
A, thus A(t)=0* elt +(1−0*) el ′t and A(t ′)=0* elt′ +(1−0*) el ′t ′ ,
giving

0∗ elt + (1 − 0∗) el′t = 0∗ elt′ + (1 − 0∗) el′t′ . (1)

We can substitute terms such that Eq. (1) can be written in terms
of elt, hence el′t = elt − DS(t) + DC, elt ′ = elt − DS(l), and el ′t ′ =
elt−DS(t)+DC−DS(l′). By substituting the above equations into Eq. (1)
we get 0∗ elt+(1−0∗) (elt−DS(t)+DC) = 0∗ (elt−DS(l))+(1−0∗)(elt−
DS(t) + DC − DS(l′)) ⇒ DS(l′) = 0∗(DS(l′) − DS(l)) ⇒ 0∗ = DS(l′)

DS(l′)−DS(l) .
�

Lemma 7. The Nash strategy of the A in a control sub-game, is given
by h∗ = DS(t)−DC+DS(l′)−DS(l)

DS(l′)−DS(l) .

Table 3
Nash equilibria for the different conditions.

DS(t′) > DC DS(t′) < DC

DS(t) > DC DS(l′) > 0 (l′ , t) DS(l′) < 0 (0l′ , (1 − h)t)
DS(l′) < 0 (l′ , t′) DS(l) > 0 ((1 − 0)l, ht′)

DS(t) < DC DS(l) < 0 ((1 − 0)l′ , (1 − h)t′) DS(l) > 0 (l, t)
DS(l′) > 0 (0l, ht) DS(l) < 0 (l, t′)
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Proof. At the equilibrium, the A wants to make the D indifferent
to which target they should attack. By equalising the expected payoff
of the D we have that D(l)=h* alt +(1−h*) alt′ must equal D(l ′)=
h* al ′t +(1−h*) al ′t ′ . Therefore h* alt +(1−h*) alt ′ =h* al′t +(1−h*)
al ′t ′ . We can substitute terms such that the above equation can be
written in terms of alt, al′t = alt + DS(t) − DC, alt′ = alt + DS(l), and
al′t′ = alt + DS(t) − DC + DS(l′), and by substituting these equations
into the former we get h∗ alt + (1 −h∗) (alt +DS(l)) = h∗(alt +DS(t) −
DC) + (1 − h∗) (alt + DS(t) − DC + DS(l′)) ⇒ alt + DS(l) − h∗ DS(l) =
alt +DS(t) −DC +DS(l′) − h∗ DS(l′) ⇒ h∗ = DS(t)−DC+DS(l′)−DS(l)

DS(l′)−DS(l) . �

5. Cyber security control subgames

When looking into investing in cyber security one might face the
challenge of not having a necessary financial budget to implement
the equilibria of a cyber security Control Game. To tackle this chal-
lenge we define cyber security Control Subgames, which constitute a
Control Game by gradually increasing the available implementation
levels of the control. In this way, we can derive a number of equi-
libria that can satisfy a wider range of financial capacity. A Control
Subgame Gjk is a game where (i) D’s pure strategies correspond to
consecutive implementation levels of the control j starting always
from 0 (i.e. fictitious control-game) and including all levels up to k

and, (ii) A’s pure strategies are the different targets akin to pairs of
vulnerabilities and depths.

We represent D’s mixed strategy, in Gjk, as the probability distri-
bution Q jk = [qj0, . . . , qjk]. This expresses a cybersecurity plan, where
qjl is the probability of implementing cj at level l in Gjk. A mixed strat-
egy of A is defined as a probability distribution over the different
targets, in Gjk, and it is denoted by Hjk = [hj1, . . . , hjn], where hji is
the probability of the adversary attacking ti when D has only cj in
their possession. D’s aim in a Control Subgame is to choose the Nash
cybersecurity plan Q �

jk = [q�
j0 , . . . , q�

jk ]. This consists of k cybersecu-
rity processes chosen probabilistically as determined by the NE of
Gjk.

To illustrate this we take for example a security control enti-
tled Vulnerability Scanning and Automated Patching, and we assume
5 different implementation levels i.e. {0, 1, 2, 3, 4} where level 4 cor-
responds to real-time scanning while level 2 to regular scanning. We
say that a mixed strategy [0, 0, 0.7, 0, 0.3] determines a cyber security
plan that dictates the following: 0.3 
→ real-time scanning for the
30% of the most important devices; 0.7 
→ regular scanning for the
remaining 70% of devices. This mixed strategy can be realised more
as an advice to a security manager on how to undertake different
control implementations rather than a rigorous set of instructions
related only to a time factor. We claim that our model is flexible thus
allowing the defender to interpret mixed strategies in different ways
to satisfy their requirements.

6. Cyber security investment

The analysis performed in Section 4 has considered a single-
control, two-targets, two-levels game. When having c cyber security
controls, our plan for cyber investment is to solve c Control Games
by splitting each of them up to a set of m − 1 Control Subgames
with n targets and up to k implementation levels for each control,
where k ∈ {1, m}. For a Control Game the Control Subgame equilibria
constitute the Control Game solution.

Given the Control Subgame equilibria we then use a Knapsack
algorithm to provide the general investment solution. The equilibria
provide us with information regarding the way in which each secu-
rity control is best implemented, so as to maximise the benefit of the
control with regard to both the A’s strategy, and the indirect costs of
the organisation.

It is easy to see that, Control Subgames (and consequently Con-
trol Games) look only at vulnerabilities that are directly relevant
to the control being implemented. The cyber security investment
problem expands to represent all of an organisation’s vulnerabilities
and select the best cyber security controls based on the outcomes
of the Control Games. With regard to an implementation of cyber
security processes based on the Control Subgame solutions, it is
important to understand what a Control Game solution represents
in the process of making those decisions. In particular this is about
what a mixed strategy means in terms of control implementation.

We motivate the concept of a mixed strategy as a method for try-
ing to define where in the system it is most effective to implement
the control. Based on our interpretation of the structure of a network,
this will generally involve protecting devices at the highest depth
with the strictest controls where possible, then assigning lower lev-
els of controls to devices and users that operate at depths with less
sensitive data. This is performed by creating a logical ordering of the
most important devices, based on the perceived risk of the device or
the user, as part of a risk assessment methodology. While there may
be a logical ordering across an organisation for all controls, it often
might make more sense to order users and devices specifically for
each control based on vulnerability.

6.1. Full Game representation

A Full Game representation considers the method of solving the
investment problem by creating a strategic game containing the set
of feasible choices available to both players. D’s pure strategies are
comprised of an implementation level for each of the controls, and
A’s pure strategies consist of each target in the set of all possible tar-
gets. One of the considerations that needs to be made is with regards
to the budget. A pure game-theoretic solution for the cyber invest-
ment problem would require modelling n targets, m control levels
and c controls. A naive choice would be to consider c × m×n games.
However it is not clear how to force these game solutions to satisfy
budget constraints.

A game model satisfying budget constraints could be built using
the idea of “schedules” [24], i.e. a pure strategy is a tuple of c × m
bits where each bit represents the implementation of a control at a
particular level, and 1 stands for “implemented” and 0 for “not imple-
mented”. The budget requirement can be easily imposed on such
tuples, for example by only considering tuples whose costs do not
exceed the budget. The problem with this is that, in principle, there
could be an exponential number of pure strategies, in the order of
2(c×m). Also it would be non-trivial to choose appropriate payoffs for
such tuples. In this case, we restrict the combination of controls in
the payoff matrix to only those that can be purchased based on the
maximum amount of budget.

6.2. Hybrid method

The Hybrid method avoids the problems of the Full Game method
by considering the particular game solutions of each Control Game
(and consequently the game solutions of all Control Subgames that
comprise this Control Game) as part of an overall combinatorial opti-
misation problem which we will solve using 0–1 Multiple Choice,
Multi-Objective Knapsack. The choice of this type of Knapsack is
motivated as follows: “0–1” because each level of implementation
of a control is implemented or not implemented; “Multiple Choice”
because only one solution for each control (the optimal one) ought
to be chosen; and “Multi-Objective” because each target represents
an optimisation objective.

For convenience, we denote the Control Subgame solution by the
maximum level of implementation available. For instance, for cj and
the solution of Control Subgame Gjk is denoted by Q ∗

jk. Let us assume
that for control j the equilibria of all Control Subgames are given by
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the set {Q ∗
j0, . . . , Q ∗

jm}. For each control there exists a unique Control
Subgame solution Q j0, which dictates that control j should not be
used.

We define an optimal solution to the Knapsack problem as X =
{Q ∗

jk}, ∀ j ∈ {1, . . . , c}, ∀ k ∈ {1, . . . , m}. A solution X takes exactly
one solution (i.e. equilibrium or cyber security plan) for each con-
trol as a policy for implementation. To represent the cyber security
investment problem, we need to expand the definitions for both
expected damage S and effectiveness E to incorporate the Control
Subgame solutions. Hence, we expand S such that S(Q jk, t), which
is the expected damage on target t given the implementation of
Q jk. Likewise, we expand the definition of the effectiveness of the
implemented solution on a given target as E(Q jk, t). Additionally, we
consider C(Q jk) as the direct cost of implementing Q jk.

If we represent the solution X by the bitvector �z, we can then rep-
resent the 0–1 Multiple Choice, Multi-Objective Knapsack Problem
as:

max
�z

min
ti

⎧⎨
⎩

⎧⎨
⎩1 −

c∑
j=1

m∑
k=0

E(Q jk, ti) zjk

⎫⎬
⎭ I(ti) T(ti)

⎫⎬
⎭

s.t.
c∑

j=1

m∑
k=0

C(Q jk), zjk ≤ B

m∑
k=0

zjk = 1, zjk ∈ {0, 1}, ∀j = 1, . . . , c.

where B is the available cyber security budget, and zjk = 1 when
Q∗

jk ∈ X. In addition, we consider a tie-break condition in which if
multiple solutions are viable, in terms of maximising the minimum,
according to the above function we will select the solution with the
lowest cost. This ensures that an organisation is not advised to spend
more on security than would produce the same net effect.

6.3. Pure Knapsack representation

A Pure Knapsack representation considers the method of solving
the investment problem given that D only considers the implemen-
tation of “whole” controls. This is to say that the solutions supplied
to the Knapsack solver are representative of pure strategies solu-
tions to the Control Subgames. To do this in a fair manner, we need
to include the indirect costs of each cyber security plan (i.e. Control
Subgame solution) into the calculation of benefit from each target.
This is because the Hybrid representation has taken into account the
impact of the indirect costs in the Control Subgames. We first extend
the definition of indirect cost to incorporate Control Subgame solu-
tions. Thus, we expand C such that C(Q jk), which is the indirect cost
of Q jk.Thereafter,we can extend the representation of the Knapsack
problem to include the indirect costs as follows:

max
�z

min
ti

⎧⎨
⎩

⎧⎨
⎩1 −

c∑
j=1

m∑
k=0

E(Q jk, ti) zjk

⎫⎬
⎭ I(ti)T(ti) −

c∑
j=1

m∑
k=0

C(Q jk)zjk

⎫⎬
⎭

s.t.
c∑

j=1

m∑
k=0

C(Q jk), zjk ≤ B

m∑
k=0

zjk = 1, zjk ∈ {0, 1}, ∀j = 1, . . . , c.

6.4. Comparison of methods

To compare the Full Game, Hybrid and Pure Knapsack methods of
decision support, we have developed a small case study that repre-
sents a small defence decision making problem that might be seen

Fig. 2. Comparison of Full Game, Hybrid and Pure Knapsack Methods of Decision
Support.

by system administrators. The problem creates an example with 7
controls and 13 vulnerabilities, created using a mapping from the
SANS Critical Security Controls [25] combined with the CWE Top
25 Software Vulnerabilities [26]. The case study presented in this
work considers a network separated into three different depths (i.e.
Demilitarized Zone, Intranet, and Private Subnet). For this example,
we consider the levels available to D to consist of the quick win
processes provided by SANS.

In comparing the damage at the weakest target provided by the
Full Game and Hybrid method to the Knapsack representation, we
can see in Fig. 2 that, in general, the Full Game representation will
provide a better defence to the weakest target for low budget levels.
This is due to the Full Game representation being able to combine
all controls in a more flexible manner than either the Hybrid or
Pure Knapsack, because the Full Game representation has no draw-
backs to the implementation of the best controls in the most optimal
configuration, which is still a restriction on the two methods that
implement the 0–1 restriction of the Knapsack. Additionally, the
Hybrid is occasionally able to offer a better solution than the Pure
Knapsack, because the mixed strategies allow for certain control
combinations to be used at a lower budget.

Each of the methods eventually reach a similar stable value,
where although there is still damage expected from attacks against
the system, the additional cost to the performance of the system and
users do not outweigh the benefit of implementing the additional
control. This is owing to the impact that the indirect cost has on the
decision-making process, where the cost is added to the damage to
create the utility.

In the case where there are no indirect costs to implementing
each control there is no trade-off to achieve a higher defence. This
means that providing that an appropriate budget is available, the
best defence will be purchased by all methods. In this case the
solutions to the Control Subgames, in the Hybrid method, become
the same as the pure strategies used in the Pure Knapsack and the
resulting optimal solutions are the same.

We have found in terms of complexity of solutions provided, that
the Pure Knapsack has solutions that can be followed intuitively as
they only ever consider a single level of implementation. We can also
see that the Hybrid method often uses pure strategies as in many
cases the outcomes of the Control Subgames lead to a single strat-
egy at many levels. However, we find that there is an additional
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Table 4
Case study vulnerability type distribution.

Vulnerability type No. Vulnerability type No.

Software errors: data interaction 8 Software errors: resource management 8
Software errors: defence flaws 6 Social engineering: targeted 3
Social engineering: untargeted 4 Network vulnerabilities: direct 3
Network vulnerabilities: indirect 4 – –

level of complexity in the comprehension of the strategies that are
produced by the Full Game. Such complexity can potentially lead to
strategies that cannot easily be followed by a user to gain the most
from the solution. In these cases, there is a risk that the solutions
are not followed correctly and with security. This could lead to a
potentially weaker defence over a seemingly weaker, but more easily
interpreted solution.

In addition to the comparison above, we tested the example case
presented by Rakes et. al. [10] to ensure that the optimisation algo-
rithms used for solving the Hybrid and Knapsack problem were
acting correctly. The study could be rebuilt using a reduced set of val-
ues from our model, which included the removal of indirect costs and
the assumption of only one level of implementation for each control.
In this example, we are able to obtain the same optimal set of coun-
termeasures as the authors present in their work with a higher than
95% success rate on tested cases.

While we have seen that the Full Game representation of the
problem is the most optimal on a small scale, the practicalities of
operating such a system on a larger scale is not possible. The next
section details a more realistic case study consisting of 27 different
controls acting on 36 different attacks, which is not feasibly solved
by a Full Game representation. The challenge behind the Full Game
representation of such a large case study, is that with multiple levels
the number of pure strategies is of the magnitude 1015; however, this
is not a challenge that is faced by the Hybrid representation, which
does not need to represent each pure strategy to calculate a solution,
only up to the maximum number of levels in a Control Subgame.

7. Case study

We have further used the ideas presented to develop a decision
support tool that is capable of working on more realistic scenarios.
The role of this tool is to be able to offer realistic actionable advice
to organisations. The following represents a case study based on the
design of a typical SME network, with the data used in the represen-
tation of the attacks, controls and costs for this case study available
online [27].

7.1. Case study composition

The attacks have been built from a subset of the CVE [28] and
CWE, which a conventional networked system would be expected
to face, as well as a number of social engineering based attacks. The
distribution of attacks amongst certain kinds can be seen in Table 4.
The factors that are associated with the CWSS have been used to for-
mulate the basis of the values for the vulnerabilities. There are two
differences between the CWSS scoring system and the one used for
this study. The first is the isolation of threat factors, since we are
interested in the ability of an organisation to be able to identify their
own concerns regarding the impact of a successful attack.

While a number of factors have been removed, a number of
additional factors have been included to better differentiate differ-
ent attacks. This has also provided a more generic insight into the
decision making process of the attacker. Critically this involves the
identification, availability and ease of the attacks for them to per-
form. This is done to indicate a partial reduction in risk of certain
attacks, while making those that are easier to perform more enticing

for the attacker. These are designed in such a way as to work not only
with the attacker decision making in the Control Subgames, but also
affect the designation of the potential weakest target in the optimi-
sation. This aids in shifting some risk to the requirement of attacker
capability.

The controls used in this case study are a set of actionable con-
trols that a system administrator can implement to improve the
security of their network. The controls have been derived from the
SANS Top 20 critical security controls, separating the overarching
control advice, to better reflect a single point of investment. The con-
trols cover a variety of types of defensive strategy, the distribution of
which can be seen in Table 5.

The CVSS and CWSS both contain details regarding the efficiency
of controls for protecting against a particular vulnerability. This
internal definition of control effectiveness against each attack does
not support our model for optimal defence spending. As such the
effectiveness was redesigned to identify which controls can mitigate
which vulnerabilities, spread the efficiency amongst the viable levels,
and interpret the viability of the control over the life of the solution,
based either on complexity or frequency.

Each organisation is likely to have different configurations of sys-
tems and sizes and this makes defining the costs, in terms of a direct
financial value, difficult. An over specialised budget requirement
would make using the tool infeasible in the real world. To remedy
this we have normalised the direct costs of the control, such that the
implementation of a number of controls operating at a conventional
level from the advice has a cost of 1; an example of this is weekly
patching.

The indirect costs are considered to be the importance that the
organisation places on the day-to-day performance of the system, as
well as the ability and willingness of staff to comply with any addi-
tional security policies. To do this, we define the indirect cost as an
expected level of additional disruption caused in one of three cate-
gories: System Performance, any reduction in the speed and capability
of the system to perform the related business tasks; User Morale, the
impact of the control on the behaviour of the system users; and Re-
Training, the additional requirements for users of the system to be
able to use the new control.

7.2. Experimental comparison

The UK has published a set of guidelines that organisations, simi-
lar to the one in the case study, should comply with in order to reduce
the risk of damage from cyber attacks [3]. The document called
Cyber Essentials suggests a number of basic controls that organisa-
tions should implement to protect themselves from cyber attacks.
The controls considered by Cyber Essentials are the use of firewalls
and gateways, user access control, secure configuration, malware
protection and patch management.

Table 5
Case study control type distribution.

Control type No. Control type No.

Security software 4 Network security tools 7
System configuration 8 Administration tools 2
Policy development 4 Education and training 2
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To perform this comparison, we have set a number of budget
points in our control data, which represent different levels of invest-
ment. The first test case presents the scenario which accounts for the
lowest price that allows for the implementation of Cyber Essentials at
the lowest level. The second budget value allows for each of the con-
trols from Cyber Essentials to be implemented at the highest level,
while the final budget considers the availability of a higher level of
investment beyond the advice offered by Cyber Essentials.

We are interested in investigating if controls in positions, 2, 4, 5,
7, 9, 20 and 23 are recommended, as they relate to those suggested
by Cyber Essentials. Both controls 5 and 7 relate to the implementa-
tion of firewalls, where control 5 is for network firewalls and control
7 relates to web application firewalls. Likewise controls 20 and 23
relate to User Access Controls, with User Access Controls represent-
ing the access policies concerning the network and devices in control
20 and Account Management Control tools for users implemented in
control 23.

7.3. Results

The following section describes the results obtained from calcu-
lating the optimal defence strategy for the case study outlined. The
results shown here are obtained using an implementation of the
hybrid model solved using a genetic algorithm.

The lowest budget shown in Table 6 chooses to implement four
out of the five controls outlined in Cyber Essentials, with two of the
controls being preferred at a higher level than the implementation
of an additional control. The optimal solution suggests implementing
Patch Management and Network Firewalls at level two, with Anti-
Malware and Secure Configurations both suggested at the most basic
level. Under this limited budget, it is not suggested to have either
Web Application Firewalls or User Access Controls, over the higher
levels of other controls. In addition to the Cyber Essentials controls,
the optimal solution suggests the implementation of an Incident
Response Policy, which covers predominantly social engineering
targets, with some minimal effect, but has a small cost.

When the budget is increased to 8, we see that the initial four con-
trols in Cyber Essentials represented in the previous optimal solution
are still represented, but with three controls recommended at a
higher level. The optimal solution is to perform Patch Management
at the highest level, such that it should be performed on demand. In
this context it means that patches should be checked on a daily basis
and implemented as soon as possible.

This budget brings in Account Management Control as a rec-
ommendation, which represents the last of the controls recom-
mended by Cyber Essentials. The implementation recommends a
strict account management control system, limiting the potential use
of accounts, which reduces the risk of attacks being able to escalate
privileges or access sensitive files with hijacked low level accounts.
Additionally, we see the introduction of Web Application Firewalls in
addition to the Network Firewalls that were suggested before, with
a strict level of implementation. Since more of the vulnerabilities are
covered to a higher level, the impact of the relatively cheap Inci-
dent Report Handling control has been removed as its addition has
too minimal an impact to justify the cost. The controls outside of
Cyber Essentials that are now considered are Automated Inventory
Scanning and Management and basic Intrusion Detection Systems.

Table 6
Case study results.

Budget Solution

3 [0, 2, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
8 [1, 5, 0, 4, 2, 0, 3, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
16a [4, 5, 0, 4, 1, 3, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0]
16b [2, 5, 0, 3, 2, 2, 3, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 1, 4, 0, 2, 0, 3, 1, 0, 0, 1]

For a budget of 16, given by the solution 16a in Table 6, the solu-
tion differs from the previous budgets only in a few aspects. In terms
of Cyber Essentials the optimal solution recommends implementing
Network Firewalls at a lower level, however the solution still main-
tains the strict implementation of Web Application Firewalls. The
other controls proposed by Cyber Essentials that had been recom-
mended remain implemented at the same level as with a budget of
8. Inventory Management tools, are now implemented at a higher
level than previously seen, moving from yearly inventory logging to
weekly. The optimal solution now recommends the use of Intrusion
Prevention Systems instead of Intrusion Detection Systems, which
operate to cover more vulnerabilities than Network Firewalls, but
were more costly to implement, making them less viable at lower
budgets. Another additional control suggested at this budget level is
the inclusion of yearly User Education and Training, which is used to
improve a number of social engineering based attacks.

7.4. Discussion

The results from the experimentation show with some consis-
tency that the controls associated with Cyber Essentials are appro-
priate defensive measures for this kind of network. At low budgets,
the system recommends implementing a number of controls that
are suggested by Cyber Essentials, but not all of them, preferring
to offer a more stable configuration of these controls over adding
additional controls. At a higher budget, we see that the remaining
controls are considered, with them being used beyond a basic level
of implementation.

In all the cases presented the implementation of a rigorous Patch-
ing policy is recommended where possible, as well as the presence
of some Anti-malware, Firewalls and Secure Configuration. The main
thing that can be observed from the data is that a combination of
all of these four controls covers each of the vulnerabilities in the
case study to some degree. This means that by increasing the level
of any of these controls, there is guaranteed to be some observable
reduction in damage on the system.

To follow this, one of the observations made throughout the
experimentations the impact that the indirect costs have on the deci-
sion to implement certain security controls. The crucial component,
is that as has been noted, a set of four controls are able to cover all
the vulnerabilities to some level of efficiency; this means that the
implementation of an additional control will only serve to reduce
the impact of a vulnerability by a fraction of its maximum efficiency,
while the costs for that control remain the same. As such there is a
diminishing return on each control that you add to the system, which
means that after certain values, it makes it more costly to the organ-
isation to implement the control against the additional risk that they
might mitigate.

Having seen how important the indirect costs are to calculating
the optimality of the advice given, we have looked at the impact of a
reduction in indirect costs. For this we have taken the highest budget
level, which in the previous example was not using the whole of the
budget due to indirect costs and have reduced the impact of indirect
costs to 0.1 of their previous values.

The suggested implementation of controls, given by the solution
16b in Table 6, changes the optimal strategy to introduce a series of
new controls in addition to those seen previously. Even with a lower
importance on indirect costs, we see that the optimal solution still
recommends the implementation of the Cyber Essentials controls
suggested in the initial tests.

Additional government advice suggest the use of Whitelisting,
which is not seen in the initial solutions. While whitelisting of both
applications (control 19) and websites (control 21) are able to pre-
vent a number of cyber attacks by preventing access, they have a
high negative impact on the daily operations of the organisation.
This results in a high indirect cost, which reflects their exclusion
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in the previous optimal solutions. However, with relaxed indirect
costs, the negative impact now no longer outweighed by the bene-
fit, which now represents their inclusion in the optimal solution. The
same advice recommends penetration testing if possible if you are
expecting to be at risk of more long term attacks, this control is also
recommended in the solution with revised indirect costs.

8. Conclusions

In this paper we have presented an analysis of a hybrid game-
theoretic and optimisation approach to the allocation of an SME’s
cyber security budget. For this purpose, we have compared three
different approaches to allocating this budget by using a decision
support tool. In terms of understanding the solutions, we have found
that with a relatively small case study the results can be interpreted
in a relatively simple manner. However, we are concerned that for
a larger case study the Full Game representation would create solu-
tions that are too complex to be interpreted in an accurate manner
so that they could result in a weaker defence. This work also high-
lights the impact, which the indirect costs have on the problem of
cyber security budget allocation. Considering the downside that the
implementation of a control may have on the organisation is impor-
tant, since it can better capture the decision-making process required
for investment. The results presented in this paper demonstrate how
those indirect costs are able to influence the optimal decision in
cyber security budget allocation. We aim to use the work presented
in this paper to inform models of attacks against a system. These
games model the interactions between an attacker and defender at
the point of attack, and during an ongoing attack. To do this we will
consider multi-stage games which represent the stages of an attack
and recovery in a system. In addition, we aim to investigate cyber
security investments by following a multidisciplinary approach that
combines economic, behavioural, societal and engineering insights.
Our end goal is to achieve increased societal resilience to cyber
security risks through more efficient and effective institutional and
incentives structures. Last but not least, in future work we aim to
investigate how cyber insurance [2] can influence cyber security
investment decisions.
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