
I . IN TRODUC TION

Industrial control systems (ICSs) are a significant class
of cyber–physical systems (CPSs) that are increasingly

employed in the control and management of critical

infrastructure around the world, from transport systems

to water management systems and from the manufactur-

ing floor to smartgrids. They constitute typical hybrid
 systems and their control process models are adopted

to several other application domains, especially health

systems and the emerging Industrial Internet of Things
(IIoT). Importantly, from the computational point of
view, ICSs constitute special purpose computing systems

with different characteristics from typical information

technology (IT) systems, in terms of purpose, ownership,
interfaces, functional and nonfunctional requirements,

etc. ICSs are considered a different form of computation
from IT system and as such are referred to as operational
technology (OT) systems [1]. As special purpose systems,
ICSs (OT systems) are embedded, cyber–physical systems
with restricted functionality, typically, to the application

domain targeted by the system.
A typical ICS is shown in Fig. 1. In this typical con-

figuration, measurements of a process’ data are collected
by the sensors and delivered to the programmable logic

controllers/remote terminal units (PLCs/RTUs) through
a network, while commands from PLCs/RTUs travel back
through the network to actuators. PLCs/RTUs typically
implement simple operations and control sensors and

actuators, while they are managed and coordinated by the

hierarchically higher layer supervisory control and data

acquisition (SCADA) system, which implements a con-

trol application or plant.
The reliability and security of ICSs is of major impor-

tance considering the effects of their compromise or

 failure. A failed ICS can cause serious damage beyond the
ICS itself, for example, through release of toxic chemi-

cals. An attack on the power grid may have major sec-

ondary effects, disabling transportation, medical systems,

and pipelines. The ability to cause such effects through

ABSTRACT | In this paper, we introduce a design methodology

to develop reliable and secure industrial control systems

(ICSs) based on the behavior of their computational resources
(i.e., process/application) and underlying physical resources

(e.g., the controlled plant). The methodology has three

independent, but complementary, components that employ

novel approaches and techniques in the design of reliable and

secure ICSs. First, we introduce reliable-and-secure-by-design

development of secure industrial control applications through

stepwise sound refinement of an executable specification,

employing deductive synthesis to enforce functional and

nonfunctional (e.g., security and safety) properties of ICS

applications. Second, we present a runtime security monitor at

the middleware level of ICSs that protects ICS operation in the

field through comparison of the application execution and the

application specification execution in real time; the runtime

security monitor can be synthesized from the executable

specification. Finally, based on the specification, we perform

a vulnerability analysis for false data injection (FDI) attacks,

which leads to ICS application designs that are resilient

to this type of attacks. We demonstrate the methodology

through its application to a basic and typical ICS example

application, describing all the tools used and ARMET, the

middleware monitor that constitutes the core component of

the methodology.

KEYWORDS |  Computational  attacks;  cyber�physical  systems 

(CPSs); efficient; false data injection (FDI) attacks; industrial

control systems (ICSs); reliable-and-secure-by-design; resilient;

runtime monitoring

(Corresponding author: Muhammad Taimoor Khan.)
M. T. Khan is with the Institute of Informatics Systems, Alpen-Adria University,
9020 Klagenfurt, Austria (e-mail: muhammad.khan@aau.at).
D. Serpanos is with the Industrial Systems Institute/ATHENA RC, GR-26504 Patras,
Greece, and also with the ECE Department, University of Patras, GR-26504 Patras,
Greece (e-mail: serpanos@ece.upatras.gr).
H. Shrobe is with the MIT Computer Science and Artificial Intelligence Laboratory
(MIT CSAIL), Cambridge, MA 02139 USA (e-mail: hes@csail.mit.edu).

ARMET: Behavior-Based
Secure and Resilient
Industrial Control Systems
By Mu h a M M a d Ta iMoor Kh a n, diMi T r ios ser pa nos, a nd howa r d shrobe

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/222830609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cyber means alone was first demonstrated in the well-known
Aurora experiment where a pure cyber attack successfully
destroyed a diesel generator [2]; Stuxnet [3] and the recent
Ukrainian smartgrid attack [4] as well as several additional
less known incidents have demonstrated the potential of

cyber attacks to inflict serious societal damage. Finally, ICSs
may be compromised to serve as elements of a Botnet as the

recent Mirai attack indicates [5].
To address reliability and security in ICSs, one needs to

take into account the characteristics of OT technology that
differentiates ICSs from typical IT systems, because this
influences the security methods and solutions that are appro-

priate for ICSs. ICSs typically have real-time requirements,
often hard ones, whose violation may have significant, or
even catastrophic, results. It is important to note that func-

tional and nonfunctional requirements of ICSs, and CPSs

in general, are different from the requirements of typical

IT systems and, thus, need to be carefully considered in the
design and development of security and safety solutions. In
fact, requirements for ICSs involve domains for cyber and

physical resources that have discrete and continuous opera-

tions based on linear and nonlinear constraints with strict

time bounds.
Until recently, security of the ICS infrastructure has not

been a significant requirement although safety and depend-

ability have been quite strong requirements. The reason is
that ICSs and networks have been typically considered as

vulnerable mainly to failures and not to attackers who tar-

get them on purpose. So, methodologies for dependability
and safety have been developed assuming stochastic mod-

els of failures of components and subsystems. Although
these methodologies have served control processes well

until recently, the growth of cyber attacks and the inter-

est of strong actors to damage critical infrastructure lead

to the need of developing new methods that protect ICSs

and networks against purposeful cyber attacks. The first
efforts in this direction have been to harden systems and

interconnections, adding security methods and moderniz-

ing systems that have been in the field, unprotected for long
periods. Operating systems are being increasingly adopted,
mostly specialized real-time operating systems (RTOSs)
or variations of workstation operating systems such as

Windows and Linux, providing access control mechanisms.
Intrusion detection mechanisms for the systems them-

selves or for the networks are becoming common, but most

of them are adopting tools and methods from the IT envi-
ronment, i.e., malware detection and intrusion detection
methods and tools that have been developed for general IT
environments [6], [7]. Importantly, little effort has been
made to include in the security methods the processes/

applications that get implemented by the ICSs, although

the requirements on the ICSs are placed by them for both

functional and nonfunctional ones. Recently, the OT char-

acteristics and differentiators from classical IT systems have
been introduced in the efforts to develop effective security

and safety solutions, especially for defensing against false

data injection (FDI) attacks, which constitute a special class
of attacks that has been emerging against CPSs. In these
attacks, attackers do not compromise the computational

systems or their networks, but introduce false data at points

of measurements, i.e., at sensors, introducing false data to
the sensors, who, in turn, send them to control centers and

lead them to wrong actions [8], [9].
We introduce a design methodology for developing

reliable and secure ICSs based on the process (applica-

tion) behavior rather than the classical intrusion detection

mechanisms. We define as “behavior” of an ICS process,
in terms of software engineering, the set of functional and

nonfunctional (e.g., security, performance) characteristics
of both the cyber and the physical resources of the process.
Typically, the cyber resources have a discrete behavior,
while the physical resources have a continuous one. The
complexity of modeling such a process increases when

functional and nonfunctional characteristics are a mix of

discrete and continuous ones. We manage the modeling
 complexity by describing the “behavior” of an ICS process

Fig. 1. Overview of ICS design.

Fig. 2. Gravity-draining water tank�an example scenario.

with an executable specification based on an abstract data
type (in Coq). We derive reliable and secure implemen-

tations of the ICS process by stepwise refinement of the
specification applying deductive synthesis (in Coq); each
refinement formally preserves the behavioral semantics.
Furthermore, we assure that the derived implementation is
reliable in respect to characteristics of functional behavior

and is secure and efficient conforming to characteristics of
nonfunctional behavior. Importantly, the proof obtained
through deductive synthesis assures that only the derived

implementation is reliable and secure and not the execu-

tion of the implementation. Thus, from the given execut-
able specification, we generate a runtime monitor that
assures that the behavior of the implementation execution

is also reliable, secure and efficient at runtime by check-

ing consistency between the specification produced predic-

tions and the runtime execution produced observations.
The monitor is bound to detect any arising inconsistency
under the assumption that the execution of the specifica-

tion is always correct, i.e., that it cannot be attacked; this
can be achieved by executing the specification in a strongly
protected environment, such as SGX (Intel) or Trust Zone
(ARM). Hence, the runtime monitor detects any compu-

tational attack but may not be able to detect FDI attacks.
Therefore, we synthesize the executable specification after
vulnerability analysis that identifies potential FDI attacks
through the application of an SMT solver for nonlinear, real
functions. Based on the results of the solver, we either syn-

thesise the specification so that the implementation is not
vulnerable to false data attacks, or consider the values of the

identified FDI attacks as attack vectors to be monitored and
detected at runtime.

Our threat model includes both computational attacks

and FDI attacks. As computational, we consider all attacks
that lead to the active alteration (injection, deletion, or
replacement) of application code and/or system code, or

of variable values (data or control) that lead to the incor-

rect execution of the application code on the ICSs; such
attacks include viruses, worms, etc. As FDI attacks, we con-

sider the ones that input (insert) into the ICSs values that

are different from the intended ones, i.e., sensor measure-

ments that have been tampered with, for example, between

the environment and sensors, sensors and PLC/RTUs, etc.
Importantly, our approach leads to systems that defend

against the attacks, both computational and data ones, of

our threat model because the attacks constitute violations of

the security requirements.
In this paper, we demonstrate our approach to secure

and safe ICSs by describing the design methodology using

a simple example of a control application for a water tank.
We describe the methods and the tools that we use as parts

of the methodology, focusing on ARMET, the real-time
security monitor that constitutes our main research con-

tribution. Although our work is currently progressing the
three components of the methodology separately, i.e., the

secure-by-design application development, the real-time

security monitor, and the vulnerability analysis, our ongo-

ing work focuses on the integration of the three components

in a unified environment that will enable synthesis of the
application code, the real-time monitor, and the FDI attack
monitor automatically.

The paper is organized as follows. Section II presents our
threat model. Section III introduces an approach to develop
reliable and secure ICS applications by design. Section IV
demonstrates our approach for runtime security monitor-

ing, including a proof for system defense against known and

unknown computational attacks. Section V presents our
approach for vulnerability analysis of FDI attacks in ICSs.
We demonstrate each of the aforementioned approaches

with the help of an example of a water tank, as the con-

trolled plant, in each corresponding section. In Section VI,
we present prior art for each component of our approach

separately.

II . THR E AT MODEL

A program for an ICS, e.g., a typical controller (PLC) pro-

gram or a supervisory (SCADA) program, is composed of
instructions (also known as source code) operating on some

external-input data values. Based on this view, we consider
a threat model that includes computational attacks for

instructions as well as FDI attacks for external-input values.
The program implementation P , its execution P E , or the pro-

gram external-input values are considered to have a threat,

when some insider or external adversary (e.g., user or other
program) with legitimate or illegitimate access attempts to

affect their behavior.
In a computational attack, on one hand, the adver-

sary attempts to modify the behavior of the program by:

1) modifying the instructions or internal-data values of the
implementation or execution of P ; 2) exploiting any vul-
nerability or a bug in them; or 3) injecting an additional
code (e.g., command) into P or P E . On the other hand, the
adversary may attempt to affect the nonfunctional behav-

ior of P E by running some other program, for instance,

running a malware that may affect the performance of P E .
Note that P refers to the program of the application imple-

mentation and not the program of the specification imple-

mentation. The latter always runs correctly as discussed in
Section I.

In an FDI attack , the adversary attempts to change
external data values that are input for computation at the

controller by attacking sensors or the network between

sensors and the computing system. However, as the values
belong to data-type “real,” therefore, small variation in the
values may not violate the system constraints and thus goes

undetected leading to some advanced persistent threat.
The specification of functional and nonfunctional behav-

ior of a program allows us to detect computational threats

by comparing the behavior of P or P E with the specified

behavior. Such specification also enables identification of
legal data values that lead to FDI attacks by the application
of the nonlinear verification method.

III . R ELI A BLE-A ND -SECU R E-BY-
DESIGN A PPLIC ATIONS

Developing reliable and secure ICS applications by design
through derivation of the application implementation from

a given declarative specification formally assures that the
application meets its requirements on one hand and is free

from various classes of vulnerabilities and attacks (e.g., FDI,
cross-site scripting) on the other hand. Furthermore, runtime
monitoring of such an application based on the declarative

specification assures that the application execution is reli-
able and secure at runtime. However, formally deriving such
reliable and secure implementations for ICS applications is

challenging because it involves reasoning about both dis-

crete and continuous system behavioral models.
Most of the existing approaches have focused on either

deriving reliable or secure implementations of ICS applica-

tions. Many of these approaches only allow modeling of timed
security properties or security policies of ICS applications,

and then deriving application implementations that assure

enforcing the security properties and policies at runtime

[10]–[13]. Quite a few have attempted to derive reliable ICS
application implementations, for instance, Soulat [14] derives
correct implementation of schedulers of hybrid systems.

Based on Fiat [15], we introduce a different approach
that employs deductive synthesis to develop reliable-and-

secure-by-design ICS applications through interactively

stepwise refinement of declarative specifications, where
description of both cyber and physical resources of ICSs are

first class models on one hand and nonfunctional proper-

ties (i.e., security, performance) are modeled integral to
functional properties on the other hand. In this approach,
the user starts with an initial nondeterministic program/

specification with obscure nonfunctional characteristics, for
example, security and efficiency. Then, the specification is
synthesized through stepwise refinements; each refinement
replaces some statements in the specification with other at
least equally deterministic statements such that no extra

behavior is introduced that is beyond that of the replaced

statements on one hand, and none of the security properties

are violated on the other hand, as depicted in Fig. 3. Finally,

the specification is refined into a fully deterministic imple-

mentation that is not only correct with respect to its specifi-

cation but is also obviously secure and efficient, respecting
security constraints and employing efficient representations
and algorithms, respectively. In detail, first the initial pro-

gram is realized by its high-level declarative specification of
its functionality and security. Then, through an iteration of
semantically preserved optimizations, an efficient and cor-

rect executable implementation is generated that also con-

forms specified security constraints. The optimizations can
be modified through sound refinements to meet nonfunc-

tional requirements, e.g., security and performance.
In the reliable-and-secure-by-construction approach,

we use the Coq proof assistant to encode an abstract-data-

type-based declarative specification of an ICS behavior that
includes both functional and nonfunctional properties as its

first class elements. The encoding is based on abstraction
relation as specified by Hoare [16]. Then, we employ deduc-

tive synthesis of the specification through sound refine-

ments. Importantly, all refinement steps are encoded in
the proof assistant and thus provide high assurance of reli-

able resulting implementation that is correct, secure, and

efficient. Every refinement corresponds to an optimization
script that resolves nondeterminism of the program in a

(functional and nonfunctional) behavior-preserving way as

shown in Fig. 3.

A. Example

Based on the water tank example (see Fig. 2), we dem-

onstrate our approach in a familiar notation, i.e., Java-like
syntax as shown in Listing 1.

For our example specification (Listing 1), in each
clock tick, either the pump FILLs the water tank, or does
NOTHING. The water tank is continuously DRAINing as
enumerated by “Action” [see L(ine).1]. The specification
says that the water tank is initially empty (see L.4). When a
user issues a command to fill the water tank up to a certain
level, if the command (i.e., reading) is in the range of sensor
accuracy (see L.7), then we either accept the value or any

Fig. 3. Deductive program synthesis through sound refinements. Listing 1. Water tank specification.

value (see L.8). At each time stamp (see L.10), the water
tank is either in

• FILLing state, i.e., the pump is pumping in the water
such that water tank does not overflow (see L.13-14)
and the water tank attains a new water level (see

L.19); or
• DRAINing state, i.e., the water is draining at a con-

stant GRAVITY_RATE assuring that the tank 1) does
not underflow (see L.15–16) and 2) attains a new
water level (see L.20).

Based on design decisions and synthesising the speci-

fication (Listing 1), we derive the Java implementation
(Listing 2).

Analogous to specification description, water tank
implementation (Listing 2) says that initially water tank is
empty (see l.4). We accept any value from a user command
(see L.7). At each time stamp, we

• FILL the water tank to attain new height of the water
(see L.14), if the tank does not overflow (see L.11-13); or

• DRAIN the water tank to attain new height of the
water (see L.17), if the tank does not underflow (see
L.16); or

• do NOTHING (see L.20), if all the water has been
drained.

Although deductive synthesis produces a correct-and-
secure-by-construction controller, this by itself is inad-

equate. The proof is constructed under the assumption that
the operating system and runtime environment in which

the controller executes are correct. These assumptions are
not generally correct; the runtime libraries supporting C
(and other language) code are known to contain vulner-

abilities and these vulnerabilities can be exploited to change

the code that executes in the controller. Furthermore, FDI
attacks (i.e., corrupting the sensor data before it reaches the
controller) can cause the control algorithm to issue com-

mands that will have disastrous effects, even if the control-

ler is unmodified (for example, corrupting the water level

sensor data to be lower than it should be will result in the

controller issuing a “FILL” command when it should not).
Thus, while it is certainly an advantage to have constructed
a provably correct and secure controller, one must also

actively monitor the runtime behavior of the system to guar-

antee that the controller continues to behave correctly.

I V. RU N TIME SEC U R IT Y MONITOR

The workflow of our runtime security monitor (RSM)
is shown in Fig. 4. The RSM requires both the specifica-

tion (AppSpec) and implementation (AppImpl) of an ICS
application for monitoring [17]. Since the specification and
implementation of the application operate at different levels

of abstraction, the “Wrapper” wraps the implementation in
order to share the observed data of interest with the RSM

in a way that is comparable to the executable specification
of the application. During monitoring, the RSM checks for
the consistency of the runtime behavior (observations gen-

erated by the “Wrapper”) of the application and the appli-
cation’s expected behavior (predictions generated by the
“AppSpec”). The RSM raises an alarm if an inconsistency is
detected. To support the real-time constraints of ICSs, the
alarm can be used by AWDRAT [18], which may first sus-

pend the execution and later resume the execution in a safe

state, after diagnosis.
In detail, the “AppSpec” allows us to model the behavior

of cyber and physical resources of ICSs as first class models
through description of

• the normal behavior (“good behavior”) of the (cyber
and physical) resources by decomposing their behav-

ior into various submodules, by encoding precondi-

tion and postconditions and invariant(s) for each

submodule;
• the flow and control model of values as data-flow and

control-flow links connecting the submodules;
• the exceptional behavior of the resources, known

attacks, and suspected attack plans to rigorously

characterize the misbehavior (“bad behavior”) of a
module/submodule.

Listing 2. Water tank code.

Fig. 4. Runtime security monitor (RSM).

Based on the model (AppSpec) of the application
implementation (AppImpl), the RSM runs the AppSpec
and AppImpl in parallel and checks their consistency by
comparing predictions (generated from the model, i.e.,
“AppSpec”) and runtime observations (produced by the
implementation, i.e., “AppImpl”). The level of granularity
at which the monitoring application operates determines

the performance–diagnosis tradeoff. Coarse-grained moni-
toring lessens the execution overhead, but limits the result-

ing diagnostic information. On the other hand, fine-grained
monitoring incurs higher computational overhead, but is

able to produce quick and thorough diagnoses.
The novelty of the RSM arises from the specification

language (its elements, e.g., attack plans, formalism, and
encoding cyber and physical resources as first class models
based on their both functional and nonfunctional proper-

ties) of the application it monitors, whose high level domains

are shown in Fig. 5. In principle, our specification language
allows to describe 1) discrete behavior of cyber–physical
ICS resources; and 2) continuous behavior of physical ICS
resources side by side as first class specifications. Monadic
second-order logic and event-calculus-based rich formalism

of the specification language enables us to describe system
behavior at various levels of abstraction, with higher degree

of modularity. Semantically, such logical formalism-based
executable specification language can be directly compiled
into a machine code, and is thus, inherently efficient for
our runtime behavioral comparison. In detail, the formal-
ism of our specification translates into a finite automaton
that recognizes only the words that satisfy the specification
[19]. “AppSpec” is an active model of normal behavior [18]
and consists of a decomposition into submodules as well as

in precondition and postconditions and invariant(s) for each

submodule. Furthermore, data-flow and control-flow links
connect the submodules, specifying the intended control

and flow of values. The preconditions and postconditions
and invariant(s) are first-order statements about the set of
data values (that flow into and out of the submodules) and
arbitrary constraints, respectively. Optionally, the model
can also specify suspected/known undesired behavior of

a resource and associated potential attack plans, allowing

diagnostic reasoning to characterize the component’s mis-

behavior. In principle, attack plans are hypothetical attacks
based on rules that describe different ways of compromising

a component by specifying “bad” behavior of the systems.
The monitor exploits the attack plans at runtime to detect
any such misbehavior, thus making the monitor more robust.
For an example attack plan for our controller, see Listing 3.

Based on the assumption that the specification runs
safely, our security monitor is sound and complete, i.e., there
are no false alarms or undetected computational attacks by

the monitor. Specifically, we have proved the soundness and
completeness of our monitor for some specific constructs,
as shown in [17] and [20] to show that our proof method
works, in principle.

A. Example

In order to demonstrate our approach, we have defined
a specification language that allows to describe the behavior
of a simple PID controller (see Listing 4) that manages the
level of a water tank through a pump. We have also imple-

mented a working prototype for our security monitor and

have applied it to monitor the PID controller. As a start-
ing point, we have modeled the cyber resources (i.e., PID
controller) and physical resources (i.e., feed-water subsys-

tem) of a typical ICS. In detail, the application specifica-

tion (“AppSpec”) includes a cyber model that specifies the

Fig. 5. Top level syntactic domains.

Listing 3. Example specification of code-attack.

Listing 4. Example specification of controller-step.

computations performed by the PID controller, and a physi-
cal model that specifies physical characteristics and dynam-

ics of the water tank subsystem as shown in Fig. 2. The lat-
ter is employed to detect computational and FDI attacks, by
observing the systematic deviation of the sensor’s behavior
from the state of the physical plant, as predicted by the

model. Moreover, based on “AppSpec,” bugs in the imple-

mentation (AppImpl) can also be detected.
The focus of our prototype development of RSM is to

detect “computational” attacks, where an attacker success-

fully alters the operation or parameter values of the PID
controller implementation (AppImpl). For demonstration,
we have modeled the PID controller with four parameters:
the set point, and three weighting factors Kp, Ki and Kd. It
performs the following steps (see :components in Listing 4).

1) Use the sensor values to estimate the state of the
system.

2) Compute the difference between the estimated system
state and the set point of the controller (error term).

3) Compute the local derivative of the error.
4) Integrate the error.
5) Compute the corresponding correction:

a) multiply the error by K
p (see Listing 5);

b) multiply the integral of the error by K
i;

c) multiply the derivative of the error by Kd.
6) Compute and output the sum of the above three

terms as the correction term.

Each component of the PID controller implementation
(AppImpl) corresponds to each of the above six algorithmic
steps. Similarly, each component has an AppSpec model
including preconditions and postconditions. The actual
implementation of each of these steps is wrapped, and their

input and output are presented to the RSM for their consist-

ency checking.
We have implemented our prototype monitor in Allegro

Common Lisp on a MacBook Pro with a 2.8-GHz Intel Core
i7 processor. In a real operational environment, the PID
algorithm will run as the application in a programmable

logic controller (PLC), while our RSM will run as part of the

PLC’s middleware. Thus, the PID application will be devel-
oped through any application development environment,

e.g., using ladder logic, while the RSM will be part of the
operating system, considering the current trend of PLC

environments where real-time operating systems (RTOSs)
are continuously adopted, or the middleware that runs on

the PLC, if it is not an operating system. We assume that the
PLC runs a control cycle on the water tank subsystem every

0.1 s, which is a very low rate of control cycles for such an
ICS. Our experiment simulates the subsystem for 100 s, i.e.,
1000 control cycles, and we observe that, when we enable
fine-grained monitoring, the RSM consumes 8.93 × 10 −4

 s

of CPU time and 9 . 07 × 10 −4
 s of real time for each cycle of

the PID algorithm, which is very small (less than 2%) com-

pared to the length of the control cycle (0.1 s).
In the evaluation of our prototype implementation,

the RSM quickly detects arbitrary modifications (i.e., arti-
ficial attack), because of the low abstraction gap between
the RSM model (AppSpec) and the actual computation
(AppImpl). For instance, if the parameter Ki is altered,

then the aforementioned step 5(c) produces a different out-
put that is instantaneously detected as being inconsistent

with the predicted value.
Our fine-grained modeling allows us to classify the nature

of the attack immediately through fine-grained diagnostic
resolution. For instance, in the above case, we can easily
deduce that either Ki or the implementation of step 5(c) was
altered. However, fine-grained behavioral monitoring suffers
from a computational overhead. Therefore, to achieve high
performance, we can simply monitor the input and output

of the algorithm and ignore its intermediate steps. Clearly,
this reduction in communication overhead would result in a

higher diagnostic resolution overhead, because the only infor-

mation we have is that the algorithm is somehow corrupted.
Nevertheless, we can bypass other intermediate monitoring

checks, such as the procedure execution order, and instead

monitor the correctness of the data and control flows. All the
aforementioned variations are evaluated as shown in Fig. 6.

A security monitor is necessary to detect cyber com-

putational attacks at runtime. However, it is important to
understand what attacks it is capable of detecting and what

remaining vulnerabilities remain. Particularly, in the case of
FDI attacks it has been shown that it is possible to construct
a “stealthy” attack [21] that evades detection by the runtime
monitor. Thus, we also have constructed methods to analyze

Listing 5. Example specification of the compute�proportional�term. Fig. 6. Application execution performance.

the behavior of the runtime monitor thereby either proving

that the monitor provides complete coverage or identifying

types of attacks that can evade the monitor.

V. V U L NER A BILIT Y A NA LYSIS FOR FDI
AT TACK S

FDI attacks against CPSs are becoming increasingly popu-

lar among attackers, because they avoid attacking comput-

ing systems and their networks and just compromise the
input data to control systems. The goal of an FDI attack is
to lead the control system to make wrong decisions and take

wrong actions based on manipulated input data, rather than

compromising the systems themselves; in these attacks, sys-

tems operate correctly, but on the wrong input data. A sim-

ple example, referring to our water tank case, would be to

input to the controller a sensor value for the water level that

is close to zero, leading the controller to open the pump,

introduce more water in the tank (to reach the targeted

water level) and thus, overflow the tank. In industrial envi-
ronments, cars, medical systems, and similar application

domains, such actions can be catastrophic, even fatal.
Recently, FDI attacks have drawn research attention,

focusing mostly on power systems [8], [22]–[25]. In these
efforts, power systems have been analyzed to identify condi-

tions under which FDI attacks remain undetected and to pro-

pose defenses. Most efforts have been following traditional
approaches to attack and failure detection, based on network

topology characteristics and statistical analysis of data.
We follow a different approach to defend against FDI

attacks. We have developed a method for vulnerability
analysis that identifies FDI vulnerabilities of a system at the
design phase [8]. Based on the identified vulnerabilities, we
redesign the system, introducing constraints that lead to

elimination of identified FDI attacks. This redesign process
is repeated until either FDI vulnerabilities cannot be identi-
fied, or the expected FDI attacks have been considered.

The basic concept of our method is to describe the sys-

tem through a state function, which is analyzed for input

combinations that constitute FDI attacks. We consider that
a CPS implements a control loop, as shown in Fig. 7, for
a process P . At every instant t , the state of the system is

described with a function P(x t) , where x t is the set of input

variables to the process at time t . In the implementation of
the system, the variables x are measured with sensors, input

to the controller, and used to calculate the state of the sys-

tem as well as the necessary actions, denoted with a t . We
denote with z t the measurements of variables x t , i.e., the
measurements of variables x at time t . We also consider that,
as in typical control systems, the system is monitored by a

monitor mon(x, z) , which, at time t , inputs the measure-

ments z t and evaluates them for acceptance due to potential

sensor failures.
Considering a fault-free operation, mon(x, z) accepts all

measurements z and calculates the state P(x, z) of the system

using them. A successful FDI can be launched against the
system using a set of measurements z ′ , if 1) mon(x, z ′) accepts

z ′ ; and 2) z ′ are compromised values of z , i.e., z ′ ≠ z . Thus,
we can identify the existence of one or more FDI attacks, if
we can answer positively the question: Does there exist a z ′
for the system P(x, z) and mon(x, z) ?

Our approach identifies the existence of FDI attacks
by answering the above question. To achieve this, we rep-

resent the state of the system with a real function f() and

we express the above question as an input to an SMT solver
for real functions, namely dReal [26]. If the expression that
represents the FDI existential question is satisfiable, then
our system is vulnerable to FDI attacks; importantly, the
SMT solver provides us with one set z ′ that constitutes such

an attack.
When FDI attacks are identified, a method to defend

against them is to place constraints on the values of the

measured parameters, so that the set of values that satisfy

the state function is reduced. As we introduce more con-

straints, the space of solutions to the state function becomes

smaller and thus, reduces—if it does not eliminate—the

potential FDI attacks. Based on this, when we identify an
FDI vulnerability, we can redesign the system introducing
constraints and thus, reducing the attack surface. The new
design can be subsequently analyzed for new FDI attacks
with the new constraints. If FDI vulnerabilities are identi-
fied again, the system can be further constrained and rede-

signed and so on. The process can be repeated until the real-
istic FDI attacks are eliminated or reduced to meet the set
system specifications.

A. Example

In order to demonstrate our approach, we provide an

example using a variation of the water tank that we have

analyzed through the paper, as shown in Fig. 2. In this vari-
ation, the water tank has two pumps, one with incoming

water and one with outgoing water, each pump with one

sensor measuring its water rate (r in and r out for the incoming Fig. 7. ICS control loop.

and outgoing flow, respectively) and one actuator, opening
it to a specified flow rate. Furthermore, we assume that the
system has one sensor measuring the water level. With this
model, we analyze a system with three sensors rather than

the trivial case of two sensors, as the gravity-draining water

tank. For convenience, we consider that the rates r in and

r out are real numbers in the range { 0, 1} and the horizontal
cross-section area of the tank is 1. These normalized values
lead to the property that the volume of water in the tank has

the same value as the height of the water in it, making the

state function expression clearer.
For the example water tank, we consider that it operates

in discrete time and at the beginning of every time unit the

state of the pumps may change. The state of system, which
is monitored by the monitor mon(x, z) , is expressed with

the function H(t + 1) = H(t) + r in (t + 1) − r out (t + 1) that
represents the height H() of the water at the end of the time

unit t + 1 .
Let us consider the following scenario: at time t ,

 (t) = 5 , and at time (t + 1) the system is configured with
r in (t + 1) = 0.5 and r out (t + 1) = 0 . Clearly, H(t + 1) = 5.5 .
If the sensors of the system provide to the monitor the correct

values r in (t + 1) = 0.5 , r out (t + 1) = 0 , and H(t + 1) = 5.5 ,
the monitor will accept the state of the system, based on

H(t) = 5 . However, an attacker could compromise the
values for r in (t + 1) , r out (t + 1) , and H(t + 1) and provide
fake values to the monitor. The monitor will accept them,
if they are consistent with the function for H(t + 1) , and
reject them, i.e., detect the attack, if the fake values are
not consistent with the function H(t + 1) . For example,
if an attacker provides as input the values r in (t + 1) = 1 ,
 r out (t + 1) = 0 , and H(t + 1) = 8 , then the monitor
will detect an inconsistency since H(t + 1) ≠ H(t) +

r in − r out ⇔ 8 ≠ 5 + 1 − 0 . However, if the attacker
provides the values r in (t + 1) = 1 , r out (t + 1) = 0 , and
H(t + 1) = 6 , the monitor will accept them because they
satisfy H(t + 1) = H(t) + r in − r out ⇔ 6 = 5 + 1 − 0
although they are not the real values; this demonstrates
that the system is vulnerable to an FDI attack when (sen-

sors) values r in , r out , and H are compromised. We can iden-

tify such an FDI attack with our method through the use of
the SMT solver, providing the monitoring function H() as

an input and asking if there is a solution to this equation

with parameter values r in , r out , and H in the defined ranges,
which is different from the real action. Listing 6 shows the
input to dReal for our described example scenario as well as

the result, which is a successful FDI attack to the system as
depicted by results in Listing 7. Analyzing the system, one
can easily realize that the space of existent FDI attacks is
large, considering all the combinations of values that sat-

isfy H() and are different from the specific real values of
the example.

Based on the above and considering the large space of

potential attacks, a designer can introduce constraints on the

vulnerable parameters (r in , r out and H), in order to reduce the

attack surface. For example, one can decide that r in should be

an integer, i.e., 0 or 1, rather than a real number, reducing
the attack surface significantly. A similar constraint on the
value of r out will make the potential attacks quite few, lead-

ing to a new design and a significantly more robust system. It
should be noted that the gravity-draining water tank that we

have analyzed in this paper is a constrained system (r out is not

a parameter), which provides a smaller attack surface than

the two-pump tank we analyze here; this is the reason why it
constitutes a trivial example for this analysis.

Clearly, this methodology can be applied to any system

with a monitoring function that can be input to an SMT solver
like dReal. We have applied our method to more complex
systems, specifically alternating current (ac) state estimators
for smartgrids [27], with successful results. We have ana-

lyzed benchmark power distribution networks, based on the

IEEE 14-Bus, 30-Bus, 157-Bus, and 300-Bus benchmark suite,
demonstrating not only the effectiveness of the approach,

but also its feasibility for realistic and practical systems. As
we have demonstrated in our power state analysis, FDI vul-
nerabilities are identified successfully with analyses that are
efficient, independently of the size of realistic networks. Fig.
2 in [27] shows that the time required to analyze benchmark
power networks for FDI on state estimation is in the order
of seconds or minutes, depending on the exact network con-

figuration and the constraints on node branches and buses.
However, for a design cycle of a practical power distribution
network, this performance of the analysis makes the approach

an indispensable tool for the development of networks that

are robust against FDI attacks.

V I. R EL ATED WOR K

This section includes state of the art for each component of
our design methodology, i.e., secure-by-design ICS applica-

tions, runtime security monitoring, and vulnerability analy-

sis for FDI attacks, respectively.

Listing 6. Example water tank specification.

Listing 7. Example FDI detection.

A. Reliable-and-Secure-by-Design ICS Applications

Based on the principle of correct-by-construction
approach [28], we have devised an approach to develop
secure-by-design ICS applications. Here, the challenge
is to model behavior of both cyber and physical as first
class models, though they possess fundamentally different

semantics (i.e., discrete and continuous) and characteristics
(i.e., linear and nonlinear). Yet another challenge here is to
adequately model uncertain physical environmental varia-

tions that may influence behavior of physical resources of
an ICS on one hand, and operate on variable levels of infor-

mation abstraction about physical environment on the other

hand. Based on Fiat [15], secure-by-design approach allows
to derive correct and secure implementation from specifica-

tion through stepwise refinements using Coq. Thus, allow-

ing to construct reliable and secure ICS applications by

design, the approach has advanced existing approaches in

at least one of the following ways: 1) reliability and security
by design; 2) ADT-based CPS modeling; and 3) deductive
synthesis of security properties.

1) Reliability and Security by Design: For the last decade,
there have been various efforts to develop approaches that

allow reliable and secure implementations by design. For
instance, Ur/Web [29] is a language for developing reliable
and secure web applications by construction/design. For
reliability, the language assures that the application will

1) not crash during generating web pages; 2) not return inva-

lid HTML; and 3) not produce dead intra-application links,
to name a a few. Furthermore, Ur/Web assures that the
application 1) does not suffer from code-injection attacks;
and 2) does not attempt invalid SQL queries, to name a few.
The language supports a rich-type system based on depend-

ent types that guarantees that the developed application
respects the aforementioned features. However, the goal
of Ur/Web was to provide a unified web model, where a
programmer develops web application in a single program-

ming language that can be compiled to other web standards
supporting encapsulation of state and concurrency of mul-

tithreaded applications. In [10], Yang et al. have developed
a language Jeeves whose runtime enforces security policies
and guarantees that the programs respects security prop-

erties by construction. However, the goal of Jeeves was to
enforce security policies at runtime. Recently, there has
been some efforts that focused on applying the aforemen-

tioned alike approaches in ICS domain. For instance, the
ROSCoq framework [30] has been developed in Coq to
model cyber and physical resources of robots. The frame-

work has extended logic of events to model the resources of
CPS involving CoRN theory of constructive real analysis and
then to assure various properties of the model. In [31] and
[32], the authors have developed a Coq library “VeriDrone”
as a reasoning framework to ensure security of CPS mod-

els at different but independent levels, i.e., from high level
models to CPS implementation in C.

In contrast to the aforementioned approaches, our

approach derives correct and secure implementation from

a specification that treats models of cyber and physical
resources as first class models with complex behavioral
characteristics. The derivation is based on stepwise refine-

ments of the hybrid model using Coq. We encode such com-

plex models (including security and reliability properties)

and characteristics (including discrete and continuous) as

abstract data types (ADTs) in Coq and then derive imple-

mentations through deductive synthesis of ADTs using Coq
that is secure and correct by construction with a formal

proof. As far as we are aware, no other design methodology
allows the derivation of secure, correct, and efficient imple-

mentations of ICSs from a specification treating cyber and
physical models as first class models.

2) ADT-Based CPS Modeling: There have not been more
results in the modeling of cyber–physical resources using

ADTs. Recently, in [33], based on VDM, the authors have
developed a design methodology that allows comodeling of

cyber and physical resources using operations defined over
ADTs. The methodology allows to interpret the model as
a bond graph, which is a directed graph that compares the

comodel at the end.

3) Deductive Synthesis of Security Properties: As far as we
are aware, deriving correct and secure implementations

from a given ADT-based CPS model through deductive syn-

thesis has not been addressed so far. However, there have
been efforts to derive correct implementations for simple

domains from a given specification through a deductive
synthesis. For instance, Paige and Henglein [34] show the
derivation of initial implementations of the ADT-based
specification employing fix-point iterations, and later opti-
mizing the implementation using finite differencing. Lately,
in [35], Hawkins et al. have applied the deductive synthe-

sis to derive ADT-based implementations based on abstract
relational descriptions for various database operations, e.g.,
query and update.

Our approach extends the above works by allowing to

encode the specification in a general purpose theorem
prover, Coq, which enables us to perform sound synthesis

by checking the proof for consistency. However, our goal
is to apply the same method to the CPS domain, by algo-

rithmically generating secure-and-reliable implementations

from ADT-based specifications through a deductive synthe-

sis using Coq.

B. Runtime Security Monitoring

Runtime security monitoring of ICSs is a complex and

challenging task, as it involves physical processes and criti-

cal infrastructures. In order to address these challenges, we
have developed a runtime security monitor that advances

the existing techniques in at least one of the following ways:

1) formalism of our specification language; 2) modeling

security properties; 3) monitoring based on executable
specification; 4) modular and abstract specification; and
5) performance efficiency.

1) Formalism: Formalism of our specification language
consists of monadic second-order logic (MSL) [36] and
event calculus [37] operating over algebraic data structures.
This formalism is the most appropriate to model cyber and
physical resources of ICSs and their security properties, with

strict real-time requirements. Based on equivalence results
of finite automaton and MSL [38]–[41], any MSL formula
can be efficiently translated into a machine code [19], ena-

bling our monitor to perform efficient comparison of pre-

dictions and observations respecting real-time constraints

of ICSs. In order to handle potential unknown attacks, our
language allows to specify various attack plans that are later

exploited by the monitor for timely detection of such attacks

and threats including advanced persistent threats and zero-

day attacks. Crash Hoare-logic [42] is similar to our formal-
ism, as it also allows to specify the unsafe behavior of a file
system. In order to specify fundamentally different charac-

teristics (e.g., hybrid systems with a mix of discrete and con-

tinuous behaviors) and semantics of physical and cyber mod-

els, our formalism allows composition and construction of

high-level system behavior (i.e., discrete) from semantically
different low-level behavior(s) (i.e., continuous) by employ-

ing a method analogous to classical set builder together with

closure property of MSL formulas under function composi-

tion [43], [44]. The formalism of most of the existing ICS
security monitors is based on temporal logic [45], [46], rule
systems [47], regular expressions and grammars [48], to
name a few. However, the expressive power of these formal-
isms does not comprehend ICS requirements for modeling

physical processes and security properties as first class spec-

ifications, integral with functional specification.

2) Modeling Security Properties: Adequate modeling of an
ICS application is a complex task, as it involves modeling of

both cyber and physical resources that have different char-

acteristics and real-time constraints [49]. Therefore, as a
prerequisite of a security model of an ICS application, our

language allows to describe physical processes/resources

as first class models along with cyber resources. However,
with cyber and physical models as first class models, mod-

eling and monitoring security properties become challeng-

ing because security properties need to combine the discrete

and continuous behaviors of cyber and physical processes.
Therefore, we model a security property as a relationship
between a set of discrete behavior of cyber processes and a

set of continuous behavior of physical processes based on

event calculus. In fact, in a typical CPS, cyber processes
are realized as discrete controllers that are responsible for

making decisions, while the physical processes are realized

as continuous controllers that determine physical dynam-

ics and execute the decisions of the discrete controllers.
Recently, there has been some effort to model security

properties of ICSs. For instance, a language ASLan++ [45]
allows to model security properties of ICSs for a watar treat-

ment plant in discrete time. Here, our approach is similar
to APEX [50] which employs recent results in reachability
analysis [51] to verify hybrid systems. In detail, APEX allows
to model discrete and continuous system constraints and

then checks whether the system reaches unsafe regions. The
tool suffers from scalability issues due to the state explosion

problem in model checking. However, the goal of our work
is to check the consistency between hybrid system con-

straints and a “run” of the system at runtime. In fact, we
deal with a single instance of execution at a time and thus

avoid scalability concerns.

3) Monitoring Based on Executable Specifications: Building

runtime security monitors from executable specifications
for monitoring real-time systems has recently started get-

ting attention [52]. However, executable specifications are
powerful in detecting any violation of real-time constraints

while executing the specification in parallel to the applica-

tion are more suitable for the runtime security monitoring

of ICSs. In [53], an executable specification ASML for runt-
ime monitoring has been developed at Microsoft. ASML is
developed based on state transition systems whose states

are first-order algebras [54]. An executable specification
language for runtime monitoring of timed systems has been

proposed by Chupilko and Kamkin [55] who use extended
time interval as a pair of a time event and a time interval to

model properties, which is used by the monitor to check the

conformance of an implementation word and the specifica-

tion trace. Also in [56], Ghezzi et al. developed executable

specification specification and environment (TRIO/TRIO+)
based on events and their relationship, interpreted in first-
order temporal logic. However, the language is not suitable
for modeling real-time systems, as it does not support mod-

eling hierarchical and modular specifications [57]. Recently,
the authors have developed a method for attack detection

in ICSs (a water treatment plant) by deriving physical pro-

cess invariants for each stage of the CPS from its design and

then monitoring the invariants at runtime. Like [58], we
also specify physical process invariants to detect any secu-

rity threat to ICSs. Additionally, we also specify other func-

tional and nonfunctional constraints, e.g., performance. In
contrast to aforementioned executable specification lan-

guages, the set theoretic formalism of our specification lan-

guage directly supports classification of observed behaviors
that belong to different sets of specification. Furthermore,
our language enables modeling hierarchical and modular

specifications.

4) Modular and Abstract Specification: The ICS physical
processes are dynamic, as they depend on physical environ-

mental conditions, and thus, are abstract in nature, subject
to evolution. For instance, the filtering membrane of a water
desalination plant may start filtering at a different rate with
respect to the amount of humidity in the environment.

Thus, in order to support modeling of such systems and
their evolving constraints, we have introduced model-based

abstract [59] and modular specification, whose syntax (i.e.,
constructs) and operational semantics (i.e., execution) are
not directly dependent on the structure of the ICS applica-

tion implementation. In contrast to our language, classical-
model-based specification languages, for instance [60],
allow only a contract-based model, whose execution flow
operation (i.e., structure and semantics) representation
is dependent on the syntactic structure of the application

implementation. Such models 1) do not support the mod-

eling of information that is independent of the applica-

tion implementation, e.g., nonfunctional constraints; and
2) supports limited modularity, only in the case when the
application implementation is modular. Furthermore, our
language is highly modular and abstract, e.g., in our case,
application specification (AppSpec) is independent of the
application’s implementation (AppImpl). Hence, our lan-

guages allow modeling those behavioral details that operate

on top of the implementation, for instance, component spe-

cific workflow execution under additional (dynamic) con-

straints or (evolving) security policies/requirements. The
syntax of our language is similar to that of the executable

specification language OBJ [61]. Since our language is devel-
oped in Lisp, the efficiency and the strength of the abstrac-

tion and modularity of our language lie in Lisp’s underlying
expert system Joshua [62]; Joshua provides deductive facili-
ties to our language, based on forward and backward chain-

ing rules that are realized as generic functions to support

arbitrary abstraction. Furthermore, Joshua has builtin sup-

port for modularity that is identifiable and reusable. Joshua
enables the selection of arbitrary data structures to achieve

the desired efficiency.

5) Efficiency: Developing runtime security monitors to
meet real-time ICS constraints is a tradeoff between secu-

rity and efficiency of the ICS application. Thus, in order to
meet the strict real-time ICS constraints, we have devel-

oped a tunable runtime security monitor that monitors

adequate behavior (i.e., all preconditions, postconditions,
and invariant) at the time of high threat, and monitors par-

tial (i.e., any combination of preconditions, postconditions,
and invariant) behavior otherwise. There are no fixed per-

formance metrics for runtime security monitoring of ICS

applications [63]. However, an evaluation of such moni-
tors is required against the real-time constraints of ICSs.
In principle, the real-time constraints are periodic, i.e.,
the response of a certain component or a certain decision

is expected to be completed within a certain time period,

say T . Therefore, we ensure that the longest execution of
our monitor’s implementation completes in time T , thus

respecting the real-time constraints of the associated com-

ponent of the monitored application. Furthermore, our
results (see Section IV-A) show that, even in highly threat-
ened scenarios, our monitor executes in less than 1 ms,
well

below the real-time constraints of ICSs for various applica-

tion domains. For example, water or power management
systems have a desired response delay of a few milliseconds.

Additionally, we will develop a mechanized proof show-

ing that the monitor only alarms if there is an attack, and

vice versa, using some proof assistant, e.g., Coq. We have
already shown in [17] and [20] that our proof method works
in principle.

C. Vulnerability Analysis for FDI Attacks

FDI attack modifies the measurement values that are
exchanged among various ICS subsystems. Such values
eventually mislead the controller application to conclude

undesired results [8]. Most of the existing approaches have
attempted to model linear state estimates of power grids

[23], [64]–[67]. In fact, analysis of realistic nonlinear state
estimation models is much harder [22], [24], [66]. Many of
the existing nonlinear models bypass solving complete non-

linear constraints involved in state estimation, for instance,

flow equations in power grid. Thus, such solutions only
offer analysis of system topology or data based on statistical

techniques.
In contrast to the aforementioned approaches, we aim to

develop FDI free models by design based on recent results
in delta-decision procedures [68]. Our approach allows to
specify nonlinear ICS models in dReal [26], which then
searches those input values of the variables for which the

monitor does not alarm by reasoning about nonlinear logical

constraints over real numbers.

V II. CONCLUSION A ND F U T U R E WOR K

We have introduced a complete behavior-based approach to

the design of secure ICSs. Our method targets to produce
an industrial control application implementation that satis-

fies desired security properties (secure-by-design) as well as
a runtime security monitor that identifies runtime attacks
by comparing the expected application behavior with the

behavior of the executed code. The method is feasible and
practical because it originates from an executable specifica-

tion of the application. Importantly, our approach includes
a method to develop systems that are resistant not only to

computational attacks but also FDI attacks, through the use
of a vulnerability analysis technique that leads to secure

application designs or identification of FDI attack values
that can be monitored at runtime. We have demonstrated
the effectiveness and practicality of our method through

detailed descriptions of the development of a secure appli-

cation for a simple water tank management ICS.
Our approach leads to a proposed design methodology

that is composed of three components: secure-by-design

application development, production of a security runtime

monitor, and production of an FDI attack monitor through
vulnerability analysis. In our experiments, up to date, we

have been using Coq and dReal for the secure-by-design com-

ponent and the vulnerability analysis component, while we

have developed the security runtime monitor, ARMET.
In future work, we will be working on the automation of

all required procedures to develop a unified design method-

ology, envisioning the ability to produce reliable and secure

application code, runtime security monitors, and runtime

FDI attack value monitors automatically from a single exe-

cutable specification of the ICS application.
Furthermore, with the recent great developments in for-

mal verification of software applications and operating sys-

tems [69], [70], our monitoring component will run without
any performance and scalability issues in real-time ICSs. Such

developments will allow our RSM and other associated com-

ponents (e.g., control application, operating system) to run at
the same level of abstraction (i.e., specification language), thus
ensuring computation overhead to be negligible on one hand,

and no scalability issues on the other hand. Furthermore, to
achieve even higher performance, our RSM allows to monitor

desired ICS behavior on demand, e.g., to monitor, any or all,
among preconditions, postconditions, and invariant. �

Acknowledgment
The authors would like to thank Prof. A. Chlipala, Prof. A.
Solar-Lezama, and Dr. S. Gao for their indispensable col-
laboration and support of this project.

REFERENCES
[1] W. A. Conklin, “IT vs. OT security: A time

to consider a change in CIA to include
resilienc,” in Proc. 49th Hawaii Int. Conf. Syst.
Sci. (HICSS), Jan. 2016, pp. 2642–2647.

[2] M. Zeller, “Myth or reality—Does the aurora
vulnerability pose a risk to my generator?” in
Proc. 64th Annu. Conf. Protective Relay Eng.,
Apr. 2011, pp. 130–136.

[3] R. Langner, “Stuxnet: Dissecting a
cyberwarfare weapon,” IEEE Security Privacy,

vol. 9, no. 3, pp. 49–51, May 2011.
[4] B. Kang, K. McLaughlin, and S. Sezer,

“Towards a stateful analysis framework for
smart grid network intrusion detection,” in
Proc. 4th Int. Symp. ICS SCADA Cyber Secur.
Res., 2016, pp. 1–8.

[5] U. Lindqvist and P. G. Neumann, “The
future of the Internet of Things,” Commun.
ACM, vol. 60, no. 2, pp. 26–30, Jan. 2017.

[6] R. Mitchell and I.-R. Chen, “A survey of
intrusion detection techniques for cyber-

physical systems,” ACM Comput. Surv., vol.
46, no. 4, pp. 55-1–55-29, Mar. 2014.

[7] S. Cheung, B. Dutertre, M. Fong,
U. Lindqvist, K. Skinner, and A. Valdes,
“Using model-based intrusion detection for
scada networks,” in Proc. SCADA Secur. Sci.
Symp., Jan. 2007, pp. 1–12.

[8] Y. Liu, P. Ning, and M. K. Reiter, “False data
injection attacks against state estimation in
electric power grids,” ACM Trans. Inf. Syst.
Secur., vol. 14, no. 1, pp. 13-1–13-33, Jun.
2011.

[9] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-
L. Huang, C.-Y. Huang, and S. Sastry,
“Attacks against process control systems:
Risk assessment, detection, and response,” in
Proc. 6th ACM Symp. Inf., Comput. Commun.
Secur., 2011, pp. 355–366.

 [10] J. Yang, K. Yessenov, and A. Solar-Lezama, “A
language for automatically enforcing privacy

policies,” in Proc. 39th Annu. ACM SIGPLAN-
SIGACT Symp. Principles Programm. Lang.,
New York, NY, USA, 2012, pp. 85–96.

[11] M. Zhang, Y. Duan, Q. Feng, and H. Yin,
“Towards automatic generation of security-
centric descriptions for android apps,” in
Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, 2015,
pp. 518–529.

 [12] F. Martinelli and I. Matteucci, “An approach
for the specification, verification and

synthesis of secure systems,” Electron. Notes
Theor. Comput. Sci., vol. 168, pp. 29–43,
Feb. 2007.

 [13] I. Matteucci, “Automated synthesis of
enforcing mechanisms for security

properties in a timed setting,” Electron. Notes
Theor. Comput. Sci., vol. 186, pp. 101–120,
Jul. 2007.

 [14] R. Soulat, “Synthesis of correct-by-design
schedulers for hybrid systems,” Ph.D.
dissertation, École Normale Supérieure

Paris-Saclay—ENS Cachan, Cachan, France,
Feb. 2014.

 [15] B. Delaware, C. Pit-Claudel, J. Gross, and
A. Chlipala, “Fiat: Deductive synthesis of
abstract data types in a proof assistant,” in
Proc. 42nd Annu. ACM SIGPLAN-SIGACT
Symp. Principles Programm. Lang. (POPL),

Mumbai, India, Jan. 2015, pp. 689–700.
 [16] C. A. R. Hoare, “Proof of correctness of data

representations,” Acta Inf., vol. 1, no. 4,
pp. 271–281, 1972.

 [17] M. T. Khan, D. Serpanos, and H. Shrobe, “A
rigorous and efficient run-time security

monitor for real-time critical embedded

system applications,” in Proc. IEEE 3rd World
Forum Internet Things (WF-IoT), Dec. 2016,
pp. 100–105.

 [18] H. Shrobe, “AWDRAT: A cognitive
middleware system for information

survivability,” in Proc. 18th Conf. Innovative
Appl. Artif. Intell., vol. 2. 2006, pp. 1836–1843.

 [19] B. Courcelle and J. Engelfriet, Graph
Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge,
MA, USA: Cambridge Univ. Press, 2012.

 [20] M. T. Khan, D. Serpanos, and H. Shrobe,
“Sound and complete runtime security
monitor for application software,” Dept.
Comput. Sci. Artif. Intell. Lab., MIT,
Cambridge, MA, USA, Tech. Rep. MIT-
CSAIL-TR-2016-017, Dec. 2016.

 [21] C. Kwon, W. Liu, and I. Hwang, “Analysis
and design of stealthy cyber attacks on

unmanned aerial systems,” J. Aerosp. Inf.
Syst., vol. 11, no. 8, pp. 525–539, 2014.

 [22] G. Hug and J. A. Giampapa, “Vulnerability
assessment of ac state estimation with

respect to false data injection cyber-attacks,”
IEEE Trans. Smart Grid, vol. 3, no. 3,
pp. 1362–1370, Sep. 2012.

 [23] A. Teixeira, S. Amin, H. Sandberg,
K. H. Johansson, and S. S. Sastry, “Cyber
security analysis of state estimators in

electric power systems,” in Proc. 49th IEEE
Conf. Decision Control (CDC), Dec. 2010,
pp. 5991–5998.

 [24] M. A. Rahman and H. Mohsenian-Rad,
“False data injection attacks with incomplete

information against smart power grids,” in
Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2012, pp. 3153–3158.

 [25] M. A. Rahman, E. Al-Shaer, and M. A.
Rahman, “A formal model for verifying
stealthy attacks on state estimation in power

grids,” in Proc. IEEE 4th Int. Conf. Smart Grid
Commun. (SmartGridComm), Vancouver, BC,
Canada, Oct. 2013, pp. 414–419.

 [26] S. Gao, S. Kong, and E. M. Clarke, “dReal:
An SMT solver for nonlinear theories over
the reals,” in Proc. 24th Int. Conf. Autom.
Deduction, 2013, pp. 208–214.

 [27] S. Gao, L. Xie, A. Solar-Lezama,
D. N. Serpanos, and H. E. Shrobe,
“Automated vulnerability analysis of AC
state estimation under constrained false

data injection in electric power systems,” in
Proc. 54th IEEE Conf. Decision Control (CDC),

Dec. 2015, pp. 2613–2620.
 [28] E. W. Dijkstra, “A constructive approach to

the problem of program correctness,”
Circulated Privately, Tech. Rep., Aug. 1967.

 [29] A. Chlipala, “Ur/Web: A simple model for
programming the Web,” Commun. ACM,

vol. 59, no. 8, pp. 153–165, Aug. 2016.
 [30] A. Anand and R. Knepper, ROSCoq: Robots

Powered by Constructive Reals. Berlin,
Germany: Springer-Verlag, 2015, pp. 34–50.

 [31] G. Malecha, D. Ricketts, M. M. Alvarez, and
S. Lerner, “Towards foundational
verification of cyber-physical systems,” in
Proc. Sci. Secur. Cyber-Phys. Syst. Workshop
(SOSCYPS), Apr. 2016, pp. 1–5.

 [32] M. Chan, D. Ricketts, S. Lerner, and
G. Malecha, “Formal verification of stability
properties of cyber-physical systems,” in
Proc. CoqPL, Jan. 2016.

 [33] J. Fitzgerald, K. Pierce, and C. Gamble,
“A rigorous approach to the design of
resilient cyber-physical systems through

co-simulation,” in Proc. IEEE/IFIP 42nd Int.
Conf. Depend. Syst. Netw. Workshops (DSN-W),

Jun. 2012, pp. 1–6.
 [34] R. Paige and F. Henglein, “Mechanical

translation of set theoretic problem

specifications into efficient RAM code—A
case study,” J. Symbolic Comput., vol. 4, no. 2,
pp. 207–232, Aug. 1987.

 [35] P. Hawkins, M. Rinard, A. Aiken, M. Sagiv,
and K. Fisher, “An introduction to data
representation synthesis,” Commun. ACM ,

vol. 55, no. 12, pp. 91–99, Dec. 2012.
 [36] J. Henriksen, “Mona: Monadic second-order

logic in practice,” in Tools and Algorithms for
the Construction and Analysis of Systems

ABOUT THE AUTHORS
Muhammad Taimoor Khan graduated in com-

puter science from the Islamia University Baha-

walpur, Bahawalpur, Punjab, Pakistan, in 2001,

and received the M.S. degree in advanced dis-

tributed systems from the University of Leicester,

Leicester, U.K., in 2008 and the Ph.D. degree from

the Research Institute for Symbolic Computa-

tion (RISC), Johannes Kepler University, Austria,

in 2014.
He is a Postdoctoral Researcher with the Institute of Informatics,

Alpen-Adria University, Klagenfurt, Austria. In the last decade, he has

been applying formal methods as a powerful tool to assure reliability

and security of various software systems, for instance, industrial control

systems, computer mathematics-based systems, to name a few. He has

extensive experience in both software industry and research institutes. He

has been working as a scientist at various premier international research

institutes, including INRIA, France and MIT CSAIL, Cambridge, MA, USA; he

is jointly working with these institutes now.

Dr. Khan has won various research and academic awards including

best paper award(s).

Dimitrios Serpanos (Senior Member, IEEE) received

a Diploma in computer engineering and informat-

ics from the University of Patras, Patras, Greece, in

1985 and the Ph.D. degree in computer science from

Princeton University, Princeton, NJ, USA, in 1990.

He is the Director of the Industrial Systems

Institute/ATHENA RC and a Professor at the

Department of Electrical and Computer Engi-

neering, University of Patras. Before joining the

University of Patras, he was a Research Staff Member at IBM, T.J. Wat-

son Research Center, Yorktown Heights, NY, USA (1990�1996) and faculty

member at the Department of Computer Science, University of Crete,

Crete, Greece (1996�2000), where he also worked at the Institute of

Computer Science of the Foundation for Research and Technology-Hel-

las (ICS-FORTH). He has been Principal Scientist at the Qatar Computing

Research Institute (2013�2016). He has served as President of the Univer-

sity of Western Greece (2010�2013) and another term as Director of the

Industrial Systems Institute/ATHENA RC (2008�2013), where he has been

conducting research since 2000. His research interests include embedded

systems, security systems, industrial systems, and computer architecture.

(Lecture Notes in Computer Science),

vol. 1019. 1995, pp. 89–110.
 [37] G. C. Borchardt, “Event calculus,” in Proc.

9th Int. Joint Conf. Artif. Intell., vol. 1. 1985,
pp. 524–527.

 [38] R. J. Büchi, “Weak second-order arithmetic
and finite automata,” Zeitschrift Mathe.
Logik Grundlagen Math., vol. 6, nos. 1–6,
pp. 66–92, 1960.

 [39] J. R. Buechi, “On a decision method in
restricted second-order arithmetic,” in Proc.
Int. Congr. Logic, Methodol. Philos. Sci., 1962,
pp. 1–11.

 [40] M. O. Rabin, “Decidability of second-order
theories and automata on infinite trees,”
Trans. Amer. Math. Soc., vol. 141, nos. 1–35,
p. 4, 1969.

 [41] C. C. Elgot, “Decision problems of finite
automata design and related arithmetics,”
Trans. Amer. Math. Soc., vol. 98, no. 1,
pp. 21–51, 1961.

 [42] H. Chen, D. Ziegler, T. Chajed, A. Chlipala,
M. F. Kaashoek, and N. Zeldovich, “Using
crash hoare logic for certifying the FSCQ file
system,” in Proc. 25th Symp. Oper. Syst.
Principles, 2015, pp. 18–37.

 [43] R. Alur, A. Durand-Gasselin, and A. Trivedi,
“From monadic second-order definable
string transformations to transducers,”
in Proc. 28th Annu. ACM/IEEE Symp.
Logic Comput. Sci. (LICS), Mar. 2013,
pp. 458–467.

 [44] B. Courcelle, “Monadic second-order
definable graph transductions: A survey,”
Theor. Comput. Sci., vol. 126, no. 1,
pp. 53–75, 1994.

 [45] M. Rocchetto and N. O. Tippenhauer,
“Towards formal security analysis of
industrial control systems,” in Proc. ACM
Asia Conf. Comput. Commun. Secur., 2017,
pp. 114–126.

 [46] A. Bauer, M. Leucker, and C. Schallhart,
“Runtime verification for LTL and TLTL,”
ACM Trans. Softw. Eng. Methodol., vol. 20,
no. 4, pp. 1–68, 2011.

 [47] H. Barringer, D. E. Rydeheard, and K.
Havelund, “Rule systems for run-time
monitoring: From eagle to ruler,” J. Logic
Comput., vol. 20, no. 3, pp. 675–706, 2010.

 [48] F. Chen and G. Rosu, “MOP: An efficient
and generic runtime verification

framework,” ACM Sigplan Notices, vol. 42,
no. 10, pp. 569–588, 2007.

 [49] I. Ruchkin, S. Selva, S. Bradley, R. Amanda,
and G. David, “Challenges in physical
modeling for adaptation of cyber-physical

systems,” in Proc. IEEE World Forum
Internet Things MARTCPS, Dec. 2016,
pp. 210–215.

 [50] M. O’Kelly, H. Abbas, S. Gao, S. Shiraishi,
S. Kato, and R. Mangharam, “APEX:
Autonomous vehicle plan verification and
execution,” in Proc. SAE World Congr., vol. 1.
Apr. 2016, pp. 1–13.

 [51] S. Kong, S. Gao, W. Chen, and E. Clarke,
dReach: δ -Reachability Analysis for Hybrid
Systems. Berlin, Germany: Springer-Verlag,
2015, pp. 200–205.

 [52] M. Blum and H. Wasserman, “Software
reliability via run-time result-checking,”
J. ACM, vol. 44, pp. 826–849, 1994.

 [53] M. Barnett and W. Schulte, “Runtime
verification of.NET contracts,” J. Syst. Softw.,
vol. 65, no. 3, pp. 199–208, 2003.

 [54] E. Borger and R. F. Stark, Abstract State
Machines: A Method for High-Level System
Design and Analysis. New York, NY, USA:
Springer-Verlag, 2003.

 [55] M. M. Chupilko and A. S. Kamkin, “Runtime
verification based on executable models:

On-the-fly matching of timed traces,” in
Proc. 8th Workshop Model-Based Test., 2013,
pp. 67–81.

 [56] C. Ghezzi, D. Mandrioli, and A. Morzenti,
“Trio: A logic language for executable
specifications of real-time systems,”
J. Syst. Softw., vol. 12, no. 2, pp. 107–123,
May 1990.

 [57] S. Gérard, H. Espinoza, F. Terrier, and
B. Selic, “Modeling languages for real-time
and embedded systems: Requirements and

standards-based solutions,” in Proc. Int.
Dagstuhl Conf. Model-Based Eng. Embedded
Real-Time Syst., 2010, pp. 129–154.

 [58] S. Adepu and A. Mathur, Using Process
Invariants to Detect Cyber Attacks on a Water
Treatment System. Cham, Switzerland:
Springer-Verlag, 2016, pp. 91–104.

 [59] J. M. Wing, “A specifier’s introduction to
formal methods,” Computer, vol. 23, no. 9,
pp. 8–23, Sep. 1990.

 [60] T. Gary Leavens and Y. Cheon (2006). Design
by Contract With JML. A Tutorial. [Online].
Available: ftp://ftp.cs.iastate.edu/pub/
leavens/JML/jmldbc.pdf

 [61] J. A. Goguen, T. Winkler, J. Meseguer,
K. Futatsugi, and J.-P. Jouannaud, Introducing
OBJ. Boston, MA, USA: Springer-Verlag,
2000, pp. 3–167.

 [62] S. Rowley, H. Shrobe, R. Cassels, and
W. Hamscher, “Joshua: Uniform access to
heterogeneous knowledge structures or why

joshing is better than conniving or
planning,” in Proc. AAAI, Seattle, WA, USA,
1987, pp. 48–52.

 [63] A. Kane, “Runtime monitoring for safety-
critical embedded systems,” Ph.D.
dissertation, Dept. Electr. Comput. Eng.,
Carnegie Mellon Univ., Pittsburgh, PA,
USA, 2015.

 [64] G. Dán and H. Sandberg, “Stealth attacks
and protection schemes for state estimators

in power systems,” in Proc. 1st IEEE Int. Conf.
Smart Grid Commun. (SmartGridComm), Oct.
2010, pp. 214–219.

 [65] O. Kosut, L. Jia, R. J. Thomas, and L. Tong,
“Malicious data attacks on the smart grid,”
IEEE Trans. Smart Grid, vol. 2, no. 4,
pp. 645–658, Dec. 2011.

 [66] A. Teixeira, I. Shames, H. Sandberg, and
K. H. Johansson, “Revealing stealthy attacks
in control systems,” in Proc. 50th Annu.
Allerton Conf. Commun., Control, Comput.
(Allerton), Oct. 2012, pp. 1806–1813.

 [67] L. Xie, Y. Mo, and B. Sinopoli, “Integrity
data attacks in power market operations,”
IEEE Trans. Smart Grid, vol. 2, no. 4,
pp. 659–666, Dec. 2011.

 [68] S. Gao, J. Avigad, and E. M. Clarke, “ δ -Complete

decision procedures for satisfiability over the

reals,” in Proc. 6th Int. Joint Conf. Autom.
Reasoning-(IJCAR), Manchester, U.K., Jun.
2012, pp. 286–300.

 [69] Deepspec. [Online]. Available: https://
deepspec.org/page/Research/

 [70] Certikos. [Online]. Available: http://flint.
cs.yale.edu/certikos/

Prof. Serpanos is currently a member of the Board of Governors of the

IEEE Computer Society (2017). He is a member of the New York Academy

of Sciences, the Association for Computing Machinery (ACM), the Ameri-

can Association for the Advancement of Science (AAAS), and the Technical

Chamber of Greece.

Howard Shrobe received the M.S. and Ph.D.

degrees from the MIT's Artificial Intelligence

Laboratory, Cambridge, MA, USA, in 1975 and

1978, respectively.

He is a Principal Research Scientist at MIT

Computer Science and Artificial Intelligence Lab-

oratory (MIT CSAIL), Cambridge, MA, USA. He is

a former Associate Director of CSAIL and is the

current Director of CSAIL's CyberSecurity@CSAIL

initiative. He has served twice as a program manager at DARPA. From

1994 to 1997, he served as Chief Scientist of the Information Technology

Office and led the Information Security Initiative; from 2010 to 2013, he

served as a Program Manager in TCTO and then I2O, leading the CRASH

and MRC programs. While at DARPA, he initiated and led the Evolutionary

Design of Complex Software program as well as the Information Surviv-

ability program. While at MIT, he has participated in several Cyber Security

research projects such as DARPA's Intrusion Tolerant Systems program,

the OASIS program, the Self-Regenerative Systems and IARPA's NICECAP

program.

Dr. Shrobe was selected Fellow of the American Association for the

Advancement of Science (AAAS) in November 2016.

