
I . IN TRODUC TION

Industrial control systems (ICSs) are a significant class 
of cyber–physical systems (CPSs) that are increasingly 

employed in the control and management of critical 

infrastructure around the world, from transport systems 

to water management systems and from the manufactur-

ing floor to smartgrids. They constitute typical hybrid 
 systems and their control process models are adopted 

to several other application domains, especially health 

systems and the emerging Industrial Internet of Things 
(IIoT). Importantly, from the computational point of 
view, ICSs constitute special purpose computing systems 

with different characteristics from typical information 

technology (IT) systems, in terms of purpose, ownership, 
interfaces, functional and nonfunctional requirements, 

etc. ICSs are considered a different form of computation 
from IT system and as such are referred to as operational 
technology (OT) systems [1]. As special purpose systems, 
ICSs (OT systems) are embedded, cyber–physical systems 
with restricted functionality, typically, to the application 

domain targeted by the system.
A typical ICS is shown in Fig. 1. In this typical con-

figuration, measurements of a process’ data are collected 
by the sensors and delivered to the programmable logic 

controllers/remote terminal units (PLCs/RTUs) through 
a network, while commands from PLCs/RTUs travel back 
through the network to actuators. PLCs/RTUs typically 
implement simple operations and control sensors and 

actuators, while they are managed and coordinated by the 

hierarchically higher layer supervisory control and data 

acquisition (SCADA) system, which implements a con-

trol application or plant.
The reliability and security of ICSs is of major impor-

tance considering the effects of their compromise or 

 failure. A failed ICS can cause serious damage beyond the 
ICS itself, for example, through release of toxic chemi-

cals. An attack on the power grid may have major sec-

ondary effects, disabling transportation, medical systems, 

and pipelines. The ability to cause such effects through 
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cyber means alone was first demonstrated in the well-known 
Aurora experiment where a pure cyber attack successfully 
destroyed a diesel generator [2]; Stuxnet [3] and the recent 
Ukrainian smartgrid attack [4] as well as several additional 
less known incidents have demonstrated the potential of 

cyber attacks to inflict serious societal damage. Finally, ICSs 
may be compromised to serve as elements of a Botnet as the 

recent Mirai attack indicates [5].
To address reliability and security in ICSs, one needs to 

take into account the characteristics of OT technology that 
differentiates ICSs from typical IT systems, because this 
influences the security methods and solutions that are appro-

priate for ICSs. ICSs typically have real-time  requirements, 
often hard ones, whose violation may have significant, or 
even catastrophic, results. It is important to note that func-

tional and nonfunctional requirements of ICSs, and CPSs 

in general, are different from the requirements of typical 

IT systems and, thus, need to be carefully considered in the 
design and development of security and safety solutions. In 
fact, requirements for ICSs involve domains for cyber and 

physical resources that have discrete and continuous opera-

tions based on linear and nonlinear constraints with strict 

time bounds.
Until recently, security of the ICS infrastructure has not 

been a significant requirement although safety and depend-

ability have been quite strong requirements. The reason is 
that ICSs and networks have been typically considered as 

vulnerable mainly to failures and not to attackers who tar-

get them on purpose. So, methodologies for dependability 
and safety have been developed assuming stochastic mod-

els of failures of components and subsystems. Although 
these methodologies have served control processes well 

until recently, the growth of cyber attacks and the inter-

est of strong actors to damage critical infrastructure lead 

to the need of developing new methods that protect ICSs 

and networks against purposeful cyber attacks. The first 
efforts in this direction have been to harden systems and 

interconnections, adding security methods and moderniz-

ing systems that have been in the field, unprotected for long 
periods. Operating systems are being increasingly adopted, 
mostly specialized real-time operating systems (RTOSs) 
or variations of workstation operating systems such as 

Windows and Linux, providing access control mechanisms. 
Intrusion detection mechanisms for the systems them-

selves or for the networks are becoming common, but most 

of them are adopting tools and methods from the IT envi-
ronment, i.e., malware detection and intrusion detection 
methods and tools that have been developed for general IT 
environments [6], [7]. Importantly, little effort has been 
made to include in the security methods the processes/

applications that get implemented by the ICSs, although 

the requirements on the ICSs are placed by them for both 

functional and nonfunctional ones. Recently, the OT char-

acteristics and differentiators from classical IT systems have 
been introduced in the efforts to develop effective security 

and safety solutions, especially for defensing against false 

data injection (FDI) attacks, which constitute a special class 
of attacks that has been emerging against CPSs. In these 
attacks, attackers do not compromise the computational 

systems or their networks, but introduce false data at points 

of measurements, i.e., at sensors, introducing false data to 
the sensors, who, in turn, send them to control centers and 

lead them to wrong actions [8], [9].
We introduce a design methodology for developing 

reliable and secure ICSs based on the process (applica-

tion) behavior rather than the classical intrusion detection 

mechanisms. We define as “behavior” of an ICS process, 
in terms of software engineering, the set of functional and 

nonfunctional (e.g., security, performance) characteristics 
of both the cyber and the physical resources of the process. 
Typically, the cyber resources have a discrete behavior, 
while the physical resources have a continuous one. The 
complexity of modeling such a process increases when 

functional and nonfunctional characteristics are a mix of 

discrete and continuous ones. We manage the modeling 
 complexity by describing the “behavior” of an ICS process 

Fig. 1. Overview of ICS design.

Fig. 2. Gravity-draining water tank�an example scenario.



with an executable specification based on an abstract data 
type (in Coq). We derive reliable and secure implemen-

tations of the ICS process by stepwise refinement of the 
specification applying deductive synthesis (in Coq); each 
refinement formally preserves the behavioral semantics. 
Furthermore, we assure that the derived implementation is 
reliable in respect to characteristics of functional behavior 

and is secure and efficient conforming to characteristics of 
nonfunctional behavior. Importantly, the proof obtained 
through deductive synthesis assures that only the derived 

implementation is reliable and secure and not the execu-

tion of the implementation. Thus, from the given execut-
able specification, we generate a runtime monitor that 
assures that the behavior of the implementation execution 

is also reliable, secure and efficient at runtime by check-

ing consistency between the specification produced predic-

tions and the runtime execution produced observations. 
The monitor is bound to detect any arising inconsistency 
under the assumption that the execution of the specifica-

tion is always correct, i.e., that it cannot be attacked; this 
can be achieved by executing the specification in a strongly 
protected environment, such as SGX (Intel) or Trust Zone 
(ARM). Hence, the runtime monitor detects any compu-

tational attack but may not be able to detect FDI attacks. 
Therefore, we synthesize the executable specification after 
vulnerability analysis that identifies potential FDI attacks 
through the application of an SMT solver for nonlinear, real 
functions. Based on the results of the solver, we either syn-

thesise the specification so that the implementation is not 
vulnerable to false data attacks, or consider the values of the 

identified FDI attacks as attack vectors to be monitored and 
detected at runtime.

Our threat model includes both computational attacks 

and FDI attacks. As computational, we consider all attacks 
that lead to the active alteration (injection, deletion, or 
replacement) of application code and/or system code, or 

of variable values (data or control) that lead to the incor-

rect execution of the application code on the ICSs; such 
attacks include viruses, worms, etc. As FDI attacks, we con-

sider the ones that input (insert) into the ICSs values that 

are different from the intended ones, i.e., sensor measure-

ments that have been tampered with, for example, between 

the environment and sensors, sensors and PLC/RTUs, etc. 
Importantly, our approach leads to systems that defend 

against the attacks, both computational and data ones, of 

our threat model because the attacks constitute violations of 

the security requirements.
In this paper, we demonstrate our approach to secure 

and safe ICSs by describing the design methodology using 

a simple example of a control application for a water tank. 
We describe the methods and the tools that we use as parts 

of the methodology, focusing on ARMET, the real-time 
security monitor that constitutes our main research con-

tribution. Although our work is currently progressing the 
three components of the methodology separately, i.e., the 

secure-by-design application development, the real-time 

security monitor, and the vulnerability analysis, our ongo-

ing work focuses on the integration of the three components 

in a unified environment that will enable synthesis of the 
application code, the real-time monitor, and the FDI attack 
monitor automatically.

The paper is organized as follows. Section II presents our 
threat model. Section III introduces an approach to develop 
reliable and secure ICS applications by design. Section IV 
demonstrates our approach for runtime security monitor-

ing, including a proof for system defense against known and 

unknown computational attacks. Section V presents our 
approach for vulnerability analysis of FDI attacks in ICSs. 
We demonstrate each of the aforementioned approaches 

with the help of an example of a water tank, as the con-

trolled plant, in each corresponding section. In Section VI, 
we present prior art for each component of our approach 

separately.

II . THR E AT MODEL

A program for an ICS, e.g., a typical controller (PLC) pro-

gram or a supervisory (SCADA) program, is composed of 
instructions (also known as source code) operating on some 

external-input data values. Based on this view, we consider 
a threat model that includes computational attacks for 

instructions as well as FDI attacks for external-input values. 
The program implementation  P , its execution   P E   , or the pro-

gram external-input values are considered to have a threat, 

when some insider or external adversary (e.g., user or other 
program) with legitimate or illegitimate access attempts to 

affect their behavior.
In a computational attack, on one hand, the adver-

sary attempts to modify the behavior of the program by: 

1) modifying the instructions or internal-data values of the
implementation or execution of  P ; 2) exploiting any vul-
nerability or a bug in them; or 3) injecting an additional
code (e.g., command) into  P  or   P E   . On the other hand, the
adversary may attempt to affect the nonfunctional behav-

ior of   P E    by running some other program, for instance,

running a malware that may affect the performance of   P E   .
Note that  P  refers to the program of the application imple-

mentation and not the program of the specification imple-

mentation. The latter always runs correctly as discussed in
Section I.

In an FDI attack , the adversary attempts to change 
external data values that are input for computation at the 

controller by attacking sensors or the network between 

sensors and the computing system. However, as the values 
belong to data-type “real,” therefore, small variation in the 
values may not violate the system constraints and thus goes 

undetected leading to some advanced persistent threat.
The specification of functional and nonfunctional behav-

ior of a program allows us to detect computational threats 

by comparing the behavior of  P  or   P E    with the specified 



behavior. Such specification also enables identification of 
legal data values that lead to FDI attacks by the application 
of the nonlinear verification method.

III . R ELI A BLE-A ND -SECU R E-BY-
DESIGN A PPLIC ATIONS

Developing reliable and secure ICS applications by design 
through derivation of the application implementation from 

a given declarative specification formally assures that the 
application meets its requirements on one hand and is free 

from various classes of vulnerabilities and attacks (e.g., FDI, 
cross-site scripting) on the other hand. Furthermore, runtime 
monitoring of such an application based on the declarative 

specification assures that the application execution is reli-
able and secure at runtime. However, formally deriving such 
reliable and secure implementations for ICS  applications is 

challenging because it involves reasoning about both dis-

crete and continuous system behavioral models.
Most of the existing approaches have focused on either 

deriving reliable or secure implementations of ICS applica-

tions. Many of these approaches only allow modeling of timed 
security properties or security policies of ICS applications, 

and then deriving application implementations that assure 

enforcing the security properties and policies at runtime 

[10]–[13]. Quite a few have attempted to derive  reliable ICS 
application implementations, for instance, Soulat [14] derives 
correct implementation of schedulers of hybrid systems.

Based on Fiat [15], we introduce a different approach 
that employs deductive synthesis to develop reliable-and-

secure-by-design ICS applications through interactively 

stepwise refinement of declarative specifications, where 
description of both cyber and physical resources of ICSs are 

first class models on one hand and nonfunctional proper-

ties (i.e., security, performance) are modeled integral to 
functional properties on the other hand. In this approach, 
the user starts with an initial nondeterministic program/

specification with obscure nonfunctional characteristics, for 
example, security and efficiency. Then, the specification is 
synthesized through stepwise refinements; each refinement 
replaces some statements in the specification with other at 
least equally deterministic statements such that no extra 

behavior is introduced that is beyond that of the replaced 

statements on one hand, and none of the security properties 

are violated on the other hand, as depicted in Fig. 3. Finally, 

the specification is refined into a fully deterministic imple-

mentation that is not only correct with respect to its specifi-

cation but is also obviously secure and efficient, respecting 
security constraints and employing efficient representations 
and algorithms, respectively. In detail, first the initial pro-

gram is realized by its high-level declarative specification of 
its functionality and security. Then, through an iteration of 
semantically preserved optimizations, an efficient and cor-

rect executable implementation is generated that also con-

forms specified security constraints. The optimizations can 
be modified through sound refinements to meet nonfunc-

tional requirements, e.g., security and performance.
In the reliable-and-secure-by-construction approach, 

we use the Coq proof assistant to encode an abstract-data-

type-based declarative specification of an ICS behavior that 
includes both functional and nonfunctional properties as its 

first class elements. The encoding is based on abstraction 
relation as specified by Hoare [16]. Then, we employ deduc-

tive synthesis of the specification through sound refine-

ments. Importantly, all refinement steps are encoded in 
the proof assistant and thus provide high assurance of reli-

able resulting implementation that is correct, secure, and 

efficient. Every refinement corresponds to an optimization 
script that resolves nondeterminism of the program in a 

(functional and nonfunctional) behavior-preserving way as 

shown in Fig. 3.

A. Example

Based on the water tank example (see Fig. 2), we dem-

onstrate our approach in a familiar notation, i.e., Java-like 
syntax as shown in Listing 1.

For our example specification (Listing 1), in each 
clock tick, either the pump FILLs the water tank, or does 
NOTHING. The water tank is continuously DRAINing as 
enumerated by “Action” [see L(ine).1]. The specification 
says that the water tank is initially empty (see L.4). When a 
user issues a command to fill the water tank up to a certain 
level, if the command (i.e., reading) is in the range of sensor 
accuracy (see L.7), then we either accept the value or any 

Fig. 3. Deductive program synthesis through sound refinements. Listing 1. Water tank specification.



value (see L.8). At each time stamp (see L.10), the water 
tank is either in

•  FILLing state, i.e., the pump is pumping in the water
such that water tank does not overflow (see L.13-14)
and the water tank attains a new water level (see

L.19); or
•  DRAINing state, i.e., the water is draining at a con-

stant GRAVITY_RATE assuring that the tank 1) does
not underflow (see L.15–16) and 2) attains a new
water level (see L.20).

Based on design decisions and synthesising the speci-

fication (Listing 1), we derive the Java implementation 
(Listing 2).

Analogous to specification description, water tank 
implementation (Listing 2) says that initially water tank is 
empty (see l.4). We accept any value from a user command 
(see L.7). At each time stamp, we

•  FILL the water tank to attain new height of the water
(see L.14), if the tank does not overflow (see L.11-13); or

•  DRAIN the water tank to attain new height of the
water (see L.17), if the tank does not underflow (see
L.16); or

•  do NOTHING (see L.20), if all the water has been
drained.

Although deductive synthesis produces a correct-and-
secure-by-construction controller, this by itself is inad-

equate. The proof is constructed under the assumption that 
the operating system and runtime environment in which 

the controller executes are correct. These assumptions are 
not generally correct; the runtime libraries supporting C 
(and other language) code are known to contain vulner-

abilities and these vulnerabilities can be exploited to change 

the code that executes in the controller. Furthermore, FDI 
attacks (i.e., corrupting the sensor data before it reaches the 
controller) can cause the control algorithm to issue com-

mands that will have disastrous effects, even if the control-

ler is unmodified (for example, corrupting the water level 

sensor data to be lower than it should be will result in the 

controller issuing a “FILL” command when it should not). 
Thus, while it is certainly an advantage to have constructed 
a provably correct and secure controller, one must also 

actively monitor the runtime behavior of the system to guar-

antee that the controller continues to behave correctly.

I V. RU N TIME SEC U R IT Y MONITOR

The workflow of our runtime security monitor (RSM) 
is shown in Fig. 4. The RSM requires both the specifica-

tion (AppSpec) and implementation (AppImpl) of an ICS 
application for monitoring [17]. Since the specification and 
implementation of the application operate at different levels 

of abstraction, the “Wrapper” wraps the implementation in 
order to share the observed data of interest with the RSM 

in a way that is comparable to the executable specification 
of the application. During monitoring, the RSM checks for 
the consistency of the runtime behavior (observations gen-

erated by the “Wrapper”) of the application and the appli-
cation’s expected behavior (predictions generated by the 
“AppSpec”). The RSM raises an alarm if an inconsistency is 
detected. To support the real-time constraints of ICSs, the 
alarm can be used by AWDRAT [18], which may first sus-

pend the execution and later resume the execution in a safe 

state, after diagnosis.
In detail, the “AppSpec” allows us to model the behavior 

of cyber and physical resources of ICSs as first class models 
through description of

•  the normal behavior (“good behavior”) of the (cyber
and physical) resources by decomposing their behav-

ior into various submodules, by encoding precondi-

tion and postconditions and invariant(s) for each

submodule;
•  the flow and control model of values as data-flow and

control-flow links connecting the submodules;
•  the exceptional behavior of the resources, known

attacks, and suspected attack plans to rigorously

characterize the misbehavior (“bad behavior”) of a
module/submodule.

Listing 2. Water tank code.

Fig. 4. Runtime security monitor (RSM).



Based on the model (AppSpec) of the application 
implementation (AppImpl), the RSM runs the AppSpec 
and AppImpl in parallel and checks their consistency by 
comparing predictions (generated from the model, i.e., 
“AppSpec”) and runtime observations (produced by the 
implementation, i.e., “AppImpl”). The level of granularity 
at which the monitoring application operates determines 

the performance–diagnosis tradeoff. Coarse-grained moni-
toring lessens the execution overhead, but limits the result-

ing diagnostic information. On the other hand, fine-grained 
monitoring incurs higher computational overhead, but is 

able to produce quick and thorough diagnoses.
The novelty of the RSM arises from the specification 

language (its elements, e.g., attack plans, formalism, and 
encoding cyber and physical resources as first class models 
based on their both functional and nonfunctional proper-

ties) of the application it monitors, whose high level domains 

are shown in Fig. 5. In principle, our specification language 
allows to describe 1) discrete behavior of cyber–physical 
ICS resources; and 2) continuous behavior of physical ICS 
resources side by side as first class specifications. Monadic 
second-order logic and event-calculus-based rich formalism 

of the specification language enables us to describe system 
behavior at various levels of abstraction, with higher degree 

of modularity. Semantically, such logical formalism-based 
executable specification language can be directly compiled 
into a machine code, and is thus, inherently efficient for 
our runtime behavioral comparison. In detail, the formal-
ism of our specification translates into a finite automaton 
that recognizes only the words that satisfy the specification 
[19]. “AppSpec” is an active model of normal behavior [18] 
and consists of a decomposition into submodules as well as 

in precondition and postconditions and invariant(s) for each 

submodule. Furthermore, data-flow and control-flow links 
connect the submodules, specifying the intended control 

and flow of values. The preconditions and postconditions 
and invariant(s) are first-order statements about the set of 
data values (that flow into and out of the submodules) and 
arbitrary constraints, respectively. Optionally, the model 
can also specify suspected/known undesired behavior of 

a resource and associated potential attack plans, allowing 

diagnostic reasoning to characterize the component’s mis-

behavior. In principle, attack plans are hypothetical attacks 
based on rules that describe different ways of compromising 

a component by specifying “bad” behavior of the systems. 
The monitor exploits the attack plans at runtime to detect 
any such misbehavior, thus making the monitor more robust. 
For an example attack plan for our controller, see Listing 3.

Based on the assumption that the specification runs 
safely, our security monitor is sound and complete, i.e., there 
are no false alarms or undetected computational attacks by 

the monitor. Specifically, we have proved the soundness and 
completeness of our monitor for some specific constructs, 
as shown in [17] and [20] to show that our proof method 
works, in principle.

A. Example

In order to demonstrate our approach, we have defined
a specification language that allows to describe the behavior 
of a simple PID controller (see Listing 4) that manages the 
level of a water tank through a pump. We have also imple-

mented a working prototype for our security monitor and 

have applied it to monitor the PID controller. As a start-
ing point, we have modeled the cyber resources (i.e., PID 
controller) and physical resources (i.e., feed-water subsys-

tem) of a typical ICS. In detail, the application specifica-

tion (“AppSpec”) includes a cyber model that specifies the 

Fig. 5. Top level syntactic domains.

Listing 3. Example specification of code-attack.

Listing 4. Example specification of controller-step.



computations performed by the PID controller, and a physi-
cal model that specifies physical characteristics and dynam-

ics of the water tank subsystem as shown in Fig. 2. The lat-
ter is employed to detect computational and FDI attacks, by 
observing the systematic deviation of the sensor’s behavior 
from the state of the physical plant, as predicted by the 

model. Moreover, based on “AppSpec,” bugs in the imple-

mentation (AppImpl) can also be detected.
The focus of our prototype development of RSM is to 

detect “computational” attacks, where an attacker success-

fully alters the operation or parameter values of the PID 
controller implementation (AppImpl). For demonstration, 
we have modeled the PID controller with four parameters: 
the set point, and three weighting factors Kp, Ki and Kd. It 
performs the following steps (see :components in Listing 4).

1)  Use the sensor values to estimate the state of the
system.

2)  Compute the difference between the estimated system
state and the set point of the controller (error term).

3) Compute the local derivative of the error.
4)  Integrate the error.
5)  Compute the corresponding correction:

a)  multiply the error by K
p (see Listing 5);

b)  multiply the integral of the error by K
i;

c)  multiply the derivative of the error by Kd.
6)  Compute and output the sum of the above three

terms as the correction term.

Each component of the PID controller implementation 
(AppImpl) corresponds to each of the above six algorithmic 
steps. Similarly, each component has an AppSpec model 
including preconditions and postconditions. The actual 
implementation of each of these steps is wrapped, and their 

input and output are presented to the RSM for their consist-

ency checking.
We have implemented our prototype monitor in Allegro 

Common Lisp on a MacBook Pro with a 2.8-GHz Intel Core 
i7 processor. In a real operational environment, the PID 
algorithm will run as the application in a programmable 

logic controller (PLC), while our RSM will run as part of the 

PLC’s middleware. Thus, the PID application will be devel-
oped through any application development environment, 

e.g., using ladder logic, while the RSM will be part of the
operating system, considering the current trend of PLC

environments where real-time operating systems (RTOSs)
are continuously adopted, or the middleware that runs on

the PLC, if it is not an operating system. We assume that the
PLC runs a control cycle on the water tank subsystem every

0.1 s, which is a very low rate of control cycles for such an
ICS. Our experiment simulates the subsystem for 100 s, i.e.,
1000 control cycles, and we observe that, when we enable
fine-grained monitoring, the RSM consumes  8.93 ×  10   −4

   s

of CPU time and  9 . 07 ×  10   −4
   s of real time for each cycle of

the PID algorithm, which is very small (less than 2%) com-

pared to the length of the control cycle (0.1 s).
In the evaluation of our prototype implementation, 

the RSM quickly detects arbitrary modifications (i.e., arti-
ficial attack), because of the low abstraction gap between 
the RSM model (AppSpec) and the actual computation 
(AppImpl). For instance, if the parameter Ki is altered, 

then the aforementioned step 5(c) produces a different out-
put that is instantaneously detected as being inconsistent 

with the predicted value.
Our fine-grained modeling allows us to classify the nature 

of the attack immediately through fine-grained diagnostic 
resolution. For instance, in the above case, we can easily 
deduce that either Ki or the implementation of step 5(c) was 
altered. However, fine-grained behavioral monitoring suffers 
from a computational overhead. Therefore, to achieve high 
performance, we can simply monitor the input and output 

of the algorithm and ignore its intermediate steps. Clearly, 
this reduction in communication overhead would result in a 

higher diagnostic resolution overhead, because the only infor-

mation we have is that the algorithm is somehow corrupted. 
Nevertheless, we can bypass other intermediate monitoring 

checks, such as the procedure execution order, and instead 

monitor the correctness of the data and control flows. All the 
aforementioned variations are evaluated as shown in Fig. 6.

A security monitor is necessary to detect cyber com-

putational attacks at runtime. However, it is important to 
understand what attacks it is capable of detecting and what 

remaining vulnerabilities remain. Particularly, in the case of 
FDI attacks it has been shown that it is possible to construct 
a “stealthy” attack [21] that evades detection by the runtime 
monitor. Thus, we also have constructed methods to analyze 

Listing 5. Example specification of the compute�proportional�term. Fig. 6. Application execution performance.



the behavior of the runtime monitor thereby either proving 

that the monitor provides complete coverage or identifying 

types of attacks that can evade the monitor.

V. V U L NER A BILIT Y A NA LYSIS FOR FDI
AT TACK S

FDI attacks against CPSs are becoming increasingly popu-

lar among attackers, because they avoid attacking comput-

ing systems and their networks and just compromise the 
input data to control systems. The goal of an FDI attack is 
to lead the control system to make wrong decisions and take 

wrong actions based on manipulated input data, rather than 

compromising the systems themselves; in these attacks, sys-

tems operate correctly, but on the wrong input data. A sim-

ple example, referring to our water tank case, would be to 

input to the controller a sensor value for the water level that 

is close to zero, leading the controller to open the pump, 

introduce more water in the tank (to reach the targeted 

water level) and thus, overflow the tank. In industrial envi-
ronments, cars, medical systems, and similar application 

domains, such actions can be catastrophic, even fatal.
Recently, FDI attacks have drawn research attention, 

focusing mostly on power systems [8], [22]–[25]. In these 
efforts, power systems have been analyzed to identify condi-

tions under which FDI attacks remain undetected and to pro-

pose defenses. Most efforts have been following traditional 
approaches to attack and failure detection, based on network 

topology characteristics and statistical analysis of data.
We follow a different approach to defend against FDI 

attacks. We have developed a method for vulnerability 
analysis that identifies FDI vulnerabilities of a system at the 
design phase [8]. Based on the identified vulnerabilities, we 
redesign the system, introducing constraints that lead to 

elimination of identified FDI attacks. This redesign process 
is repeated until either FDI vulnerabilities cannot be identi-
fied, or the expected FDI attacks have been considered.

The basic concept of our method is to describe the sys-

tem through a state function, which is analyzed for input 

combinations that constitute FDI attacks. We consider that 
a CPS implements a control loop, as shown in Fig. 7, for 
a process  P . At every instant  t , the state of the system is 

described with a function  P( x t  ) , where   x t    is the set of input 

variables to the process at time  t . In the implementation of 
the system, the variables  x  are measured with sensors, input 

to the controller, and used to calculate the state of the sys-

tem as well as the necessary actions, denoted with   a t   . We 
denote with   z t    the measurements of variables   x t   , i.e., the 
measurements of variables  x  at time  t . We also consider that, 
as in typical control systems, the system is monitored by a 

monitor  mon(x, z) , which, at time  t , inputs the measure-

ments   z t    and evaluates them for acceptance due to potential 

sensor failures.
Considering a fault-free operation,  mon(x, z )  accepts all 

measurements  z  and calculates the state  P(x, z )  of the system 

using them. A successful FDI can be launched against the 
system using a set of measurements   z ′   , if 1)  mon(x, z ′  )  accepts  

z ′   ; and 2)   z ′    are compromised values of  z , i.e.,   z ′   ≠ z . Thus,
we can identify the existence of one or more FDI attacks, if 
we can answer positively the question: Does there exist a   z ′   
for the system  P(x, z)   and  mon(x, z) ?

Our approach identifies the existence of FDI attacks 
by answering the above question. To achieve this, we rep-

resent the state of the system with a real function  f( )  and 

we express the above question as an input to an SMT solver 
for real functions, namely dReal [26]. If the expression that 
represents the FDI existential question is satisfiable, then 
our system is vulnerable to FDI attacks; importantly, the 
SMT solver provides us with one set   z ′    that constitutes such

an attack.
When FDI attacks are identified, a method to defend 

against them is to place constraints on the values of the 

measured parameters, so that the set of values that satisfy 

the state function is reduced. As we introduce more con-

straints, the space of solutions to the state function becomes 

smaller and thus, reduces—if it does not eliminate—the 

potential FDI attacks. Based on this, when we identify an 
FDI vulnerability, we can redesign the system introducing 
constraints and thus, reducing the attack surface. The new 
design can be subsequently analyzed for new FDI attacks 
with the new constraints. If FDI vulnerabilities are identi-
fied again, the system can be further constrained and rede-

signed and so on. The process can be repeated until the real-
istic FDI attacks are eliminated or reduced to meet the set 
system specifications.

A. Example

In order to demonstrate our approach, we provide an

example using a variation of the water tank that we have 

analyzed through the paper, as shown in Fig. 2. In this vari-
ation, the water tank has two pumps, one with incoming 

water and one with outgoing water, each pump with one 

sensor measuring its water rate (  r in    and   r out    for the incoming Fig. 7. ICS control loop.



and outgoing flow, respectively) and one actuator, opening 
it to a specified flow rate. Furthermore, we assume that the 
system has one sensor measuring the water level. With this 
model, we analyze a system with three sensors rather than 

the trivial case of two sensors, as the gravity-draining water 

tank. For convenience, we consider that the rates   r in    and   

r out    are real numbers in the range  { 0, 1}  and the horizontal 
cross-section area of the tank is 1. These normalized values 
lead to the property that the volume of water in the tank has 

the same value as the height of the water in it, making the 

state function expression clearer.
For the example water tank, we consider that it operates 

in discrete time and at the beginning of every time unit the 

state of the pumps may change. The state of system, which 
is monitored by the monitor  mon(x, z ) , is expressed with 

the function  H(t + 1)  =  H(t)  +  r in   (t + 1)  −  r out   (t + 1)  that
represents the height  H( )  of the water at the end of the time 

unit  t + 1 .
Let us consider the following scenario: at time  t , 

 (t) = 5 , and at time  (t + 1)  the system is  configured with
r in   (t + 1 )  =  0.5  and   r out   (t + 1) = 0 . Clearly,  H(t + 1 )  =  5.5 .
If the sensors of the system provide to the monitor the correct

values   r in   (t + 1 ) = 0.5 ,   r out   (t + 1 )  =  0 , and  H(t + 1 )  =  5.5 ,
the monitor will accept the state of the system, based on  

H(t)  = 5 . However, an attacker could compromise the
values for   r in   (t + 1) ,   r out   (t + 1) , and  H(t + 1)  and provide
fake values to the monitor. The monitor will accept them, 
if they are consistent with the function for  H(t + 1) , and
reject them, i.e., detect the attack, if the fake values are 
not consistent with the function  H(t + 1) . For example,
if an attacker provides as input the values   r in   (t + 1 )  = 1 ,
  r out   (t + 1) = 0 , and  H(t + 1) = 8 , then the monitor
will detect an inconsistency since  H(t + 1) ≠ H(t)  +  

r in   −  r out   ⇔ 8 ≠ 5 + 1 − 0 . However, if the attacker
provides the values   r in   (t + 1 )  =  1 ,   r out   (t + 1 )  =  0 , and
H(t + 1 )  = 6 , the monitor will accept them because they
satisfy  H(t + 1) = H(t) +  r in   −  r out   ⇔ 6 = 5 + 1 − 0
although they are not the real values; this demonstrates 
that the system is vulnerable to an FDI attack when (sen-

sors) values   r in   ,   r out   , and  H  are compromised. We can iden-

tify such an FDI attack with our method through the use of 
the SMT solver, providing the monitoring function  H( )  as 

an input and asking if there is a solution to this equation 

with parameter values   r in   ,   r out   , and  H  in the defined ranges, 
which is different from the real action. Listing 6 shows the 
input to dReal for our described example scenario as well as 

the result, which is a successful FDI attack to the system as 
depicted by results in Listing 7. Analyzing the system, one 
can easily realize that the space of existent FDI attacks is 
large, considering all the combinations of values that sat-

isfy  H( )  and are different from the specific real values of 
the example.

Based on the above and considering the large space of 

potential attacks, a designer can introduce constraints on the 

vulnerable parameters (  r in  ,    r out    and  H ), in order to reduce the 

attack surface. For example, one can decide that   r in    should be 

an integer, i.e., 0 or 1, rather than a real number, reducing 
the attack surface significantly. A similar constraint on the 
value of   r out    will make the potential attacks quite few, lead-

ing to a new design and a significantly more robust system. It 
should be noted that the gravity-draining water tank that we 

have analyzed in this paper is a constrained system (  r out    is not 

a parameter), which provides a smaller attack surface than 

the two-pump tank we analyze here; this is the reason why it 
constitutes a trivial example for this analysis.

Clearly, this methodology can be applied to any system 

with a monitoring function that can be input to an SMT solver 
like dReal. We have applied our method to more complex 
systems, specifically alternating current (ac) state estimators 
for smartgrids [27], with successful results. We have ana-

lyzed benchmark power distribution networks, based on the 

IEEE 14-Bus, 30-Bus, 157-Bus, and 300-Bus benchmark suite, 
demonstrating not only the effectiveness of the approach, 

but also its feasibility for realistic and practical systems. As 
we have demonstrated in our power state analysis, FDI vul-
nerabilities are identified successfully with analyses that are 
efficient, independently of the size of realistic networks. Fig. 
2 in [27] shows that the time required to analyze benchmark 
power networks for FDI on state estimation is in the order 
of seconds or minutes, depending on the exact network con-

figuration and the constraints on node branches and buses. 
However, for a design cycle of a practical power distribution 
network, this performance of the analysis makes the approach 

an indispensable tool for the development of networks that 

are robust against FDI attacks.

V I. R EL ATED WOR K

This section includes state of the art for each component of 
our design methodology, i.e., secure-by-design ICS applica-

tions, runtime security monitoring, and vulnerability analy-

sis for FDI attacks, respectively.

Listing 6. Example water tank specification.

Listing 7. Example FDI detection.



A. Reliable-and-Secure-by-Design ICS Applications

Based on the principle of correct-by-construction 
approach [28], we have devised an approach to develop 
secure-by-design ICS applications. Here, the challenge 
is to model behavior of both cyber and physical as first 
class models, though they possess fundamentally different 

semantics (i.e., discrete and continuous) and characteristics 
(i.e., linear and nonlinear). Yet another challenge here is to 
adequately model uncertain physical environmental varia-

tions that may influence behavior of physical resources of 
an ICS on one hand, and operate on variable levels of infor-

mation abstraction about physical environment on the other 

hand. Based on Fiat [15], secure-by-design approach allows 
to derive correct and secure implementation from specifica-

tion through stepwise refinements using Coq. Thus, allow-

ing to construct reliable and secure ICS applications by 

design, the approach has advanced existing approaches in 

at least one of the following ways: 1) reliability and security 
by design; 2) ADT-based CPS modeling; and 3) deductive 
synthesis of security properties.

1) Reliability and Security by Design: For the last decade, 
there have been various efforts to develop approaches that 

allow reliable and secure implementations by design. For 
instance, Ur/Web [29] is a language for developing reliable 
and secure web applications by construction/design. For 
reliability, the language assures that the application will 

1) not crash during generating web pages; 2) not return inva-

lid HTML; and 3) not produce dead intra-application links, 
to name a a few. Furthermore, Ur/Web assures that the 
application 1) does not suffer from code-injection attacks; 
and 2) does not attempt invalid SQL queries, to name a few. 
The language supports a rich-type system based on depend-

ent types that guarantees that the developed application 
respects the aforementioned features. However, the goal 
of Ur/Web was to provide a unified web model, where a 
programmer develops web application in a single program-

ming language that can be compiled to other web standards 
supporting encapsulation of state and concurrency of mul-

tithreaded applications. In [10], Yang et al. have developed 
a language Jeeves whose runtime enforces security policies 
and guarantees that the programs respects security prop-

erties by construction. However, the goal of Jeeves was to 
enforce security policies at runtime. Recently, there has 
been some efforts that focused on applying the aforemen-

tioned alike approaches in ICS domain. For instance, the 
ROSCoq framework [30] has been developed in Coq to 
model cyber and physical resources of robots. The frame-

work has extended logic of events to model the resources of 
CPS involving CoRN theory of constructive real analysis and 
then to assure various properties of the model. In [31] and 
[32], the authors have developed a Coq library “VeriDrone” 
as a reasoning framework to ensure security of CPS mod-

els at different but independent levels, i.e., from high level 
models to CPS implementation in C.

In contrast to the aforementioned approaches, our 

approach derives correct and secure implementation from 

a specification that treats models of cyber and physical 
resources as first class models with complex behavioral 
characteristics. The derivation is based on stepwise refine-

ments of the hybrid model using Coq. We encode such com-

plex models (including security and reliability properties) 

and characteristics (including discrete and continuous) as 

abstract data types (ADTs) in Coq and then derive imple-

mentations through deductive synthesis of ADTs using Coq 
that is secure and correct by construction with a formal 

proof. As far as we are aware, no other design methodology 
allows the derivation of secure, correct, and efficient imple-

mentations of ICSs from a specification treating cyber and 
physical models as first class models.

2) ADT-Based CPS Modeling: There have not been more
results in the modeling of cyber–physical resources using 

ADTs. Recently, in [33], based on VDM, the authors have 
developed a design methodology that allows comodeling of 

cyber and physical resources using operations defined over 
ADTs. The methodology allows to interpret the model as 
a bond graph, which is a directed graph that compares the 

comodel at the end.

3) Deductive Synthesis of Security Properties: As far as we
are aware, deriving correct and secure implementations 

from a given ADT-based CPS model through deductive syn-

thesis has not been addressed so far. However, there have 
been efforts to derive correct implementations for simple 

domains from a given specification through a deductive 
synthesis. For instance, Paige and Henglein [34] show the 
derivation of initial implementations of the ADT-based 
specification employing fix-point iterations, and later opti-
mizing the implementation using finite differencing. Lately, 
in [35], Hawkins et al. have applied the deductive synthe-

sis to derive ADT-based implementations based on abstract 
relational descriptions for various database operations, e.g., 
query and update.

Our approach extends the above works by allowing to 

encode the specification in a general purpose theorem 
prover, Coq, which enables us to perform sound synthesis 

by checking the proof for consistency. However, our goal 
is to apply the same method to the CPS domain, by algo-

rithmically generating secure-and-reliable implementations 

from ADT-based specifications through a deductive synthe-

sis using Coq.

B. Runtime Security Monitoring

Runtime security monitoring of ICSs is a complex and

challenging task, as it involves physical processes and criti-

cal infrastructures. In order to address these challenges, we 
have developed a runtime security monitor that advances 

the existing techniques in at least one of the following ways: 

1) formalism of our specification language; 2) modeling



security properties; 3) monitoring based on executable 
specification; 4) modular and abstract specification; and 
5) performance efficiency.

1) Formalism: Formalism of our specification language
consists of monadic second-order logic (MSL) [36] and 
event calculus [37] operating over algebraic data structures. 
This formalism is the most appropriate to model cyber and 
physical resources of ICSs and their security properties, with 

strict real-time requirements. Based on equivalence results 
of finite automaton and MSL [38]–[41], any MSL formula 
can be efficiently translated into a machine code [19], ena-

bling our monitor to perform efficient comparison of pre-

dictions and observations respecting real-time constraints 

of ICSs. In order to handle potential unknown attacks, our 
language allows to specify various attack plans that are later 

exploited by the monitor for timely detection of such attacks 

and threats including advanced persistent threats and zero-

day attacks. Crash Hoare-logic [42] is similar to our formal-
ism, as it also allows to specify the unsafe behavior of a file 
system. In order to specify fundamentally different charac-

teristics (e.g., hybrid systems with a mix of discrete and con-

tinuous behaviors) and semantics of physical and cyber mod-

els, our formalism allows composition and construction of 

high-level system behavior (i.e., discrete) from semantically 
different low-level behavior(s) (i.e., continuous) by employ-

ing a method analogous to classical set builder together with 

closure property of MSL formulas under function composi-

tion [43], [44]. The formalism of most of the existing ICS 
security monitors is based on temporal logic [45], [46], rule 
systems [47], regular expressions and grammars [48], to 
name a few. However, the expressive power of these formal-
isms does not comprehend ICS requirements for modeling 

physical processes and security properties as first class spec-

ifications, integral with functional specification.

2) Modeling Security Properties: Adequate modeling of an
ICS application is a complex task, as it involves modeling of 

both cyber and physical resources that have different char-

acteristics and real-time constraints [49]. Therefore, as a 
prerequisite of a security model of an ICS application, our 

language allows to describe physical processes/resources 

as first class models along with cyber resources. However, 
with cyber and physical models as first class models, mod-

eling and monitoring security properties become challeng-

ing because security properties need to combine the discrete 

and continuous behaviors of cyber and physical processes. 
Therefore, we model a security property as a relationship 
between a set of discrete behavior of cyber processes and a 

set of continuous behavior of physical processes based on 

event calculus. In fact, in a typical CPS, cyber processes 
are realized as discrete controllers that are responsible for 

making decisions, while the physical processes are realized 

as continuous controllers that determine physical dynam-

ics and execute the decisions of the discrete controllers. 
Recently, there has been some effort to model security 

properties of ICSs. For instance, a language ASLan++ [45] 
allows to model security properties of ICSs for a watar treat-

ment plant in discrete time. Here, our approach is similar 
to APEX [50] which employs recent results in reachability 
analysis [51] to verify hybrid systems. In detail, APEX allows 
to model discrete and continuous system constraints and 

then checks whether the system reaches unsafe regions. The 
tool suffers from scalability issues due to the state explosion 

problem in model checking. However, the goal of our work 
is to check the consistency between hybrid system con-

straints and a “run” of the system at runtime. In fact, we 
deal with a single instance of execution at a time and thus 

avoid scalability concerns.

3) Monitoring Based on Executable Specifications: Building

runtime security monitors from executable specifications 
for monitoring real-time systems has recently started get-

ting attention [52]. However, executable specifications are 
powerful in detecting any violation of real-time constraints 

while executing the specification in parallel to the applica-

tion are more suitable for the runtime security monitoring 

of ICSs. In [53], an executable specification ASML for runt-
ime monitoring has been developed at Microsoft. ASML is 
developed based on state transition systems whose states 

are first-order algebras [54]. An executable specification 
language for runtime monitoring of timed systems has been 

proposed by Chupilko and Kamkin [55] who use extended 
time interval as a pair of a time event and a time interval to 

model properties, which is used by the monitor to check the 

conformance of an implementation word and the specifica-

tion trace. Also in [56], Ghezzi et al. developed executable 

specification specification and environment (TRIO/TRIO+) 
based on events and their relationship, interpreted in first-
order temporal logic. However, the language is not suitable 
for modeling real-time systems, as it does not support mod-

eling hierarchical and modular specifications [57]. Recently, 
the authors have developed a method for attack detection 

in ICSs (a water treatment plant) by deriving physical pro-

cess invariants for each stage of the CPS from its design and 

then monitoring the invariants at runtime. Like [58], we 
also specify physical process invariants to detect any secu-

rity threat to ICSs. Additionally, we also specify other func-

tional and nonfunctional constraints, e.g., performance. In 
contrast to aforementioned executable specification lan-

guages, the set theoretic formalism of our specification lan-

guage directly supports classification of observed behaviors 
that belong to different sets of specification. Furthermore, 
our language enables modeling hierarchical and modular 

specifications.

4) Modular and Abstract Specification: The ICS physical
processes are dynamic, as they depend on physical environ-

mental conditions, and thus, are abstract in nature, subject 
to evolution. For instance, the filtering membrane of a water 
desalination plant may start filtering at a different rate with 
respect to the amount of humidity in the environment. 



Thus, in order to support modeling of such systems and 
their evolving constraints, we have introduced model-based 

abstract [59] and modular specification, whose syntax (i.e., 
constructs) and operational semantics (i.e., execution) are 
not directly dependent on the structure of the ICS applica-

tion implementation. In contrast to our language, classical-
model-based specification languages, for instance [60], 
allow only a contract-based model, whose execution flow 
operation (i.e., structure and semantics) representation 
is dependent on the syntactic structure of the application 

implementation. Such models 1) do not support the mod-

eling of information that is independent of the applica-

tion implementation, e.g., nonfunctional constraints; and 
2) supports limited modularity, only in the case when the
application implementation is modular. Furthermore, our
language is highly modular and abstract, e.g., in our case,
application specification (AppSpec) is independent of the
application’s implementation (AppImpl). Hence, our lan-

guages allow modeling those behavioral details that operate

on top of the implementation, for instance, component spe-

cific workflow execution under additional (dynamic) con-

straints or (evolving) security policies/requirements. The
syntax of our language is similar to that of the executable

specification language OBJ [61]. Since our language is devel-
oped in Lisp, the efficiency and the strength of the abstrac-

tion and modularity of our language lie in Lisp’s underlying
expert system Joshua [62]; Joshua provides deductive facili-
ties to our language, based on forward and backward chain-

ing rules that are realized as generic functions to support

arbitrary abstraction. Furthermore, Joshua has builtin sup-

port for modularity that is identifiable and reusable. Joshua
enables the selection of arbitrary data structures to achieve

the desired efficiency.

5) Efficiency: Developing runtime security monitors to
meet real-time ICS constraints is a tradeoff between secu-

rity and efficiency of the ICS application. Thus, in order to 
meet the strict real-time ICS constraints, we have devel-

oped a tunable runtime security monitor that monitors 

adequate behavior (i.e., all preconditions, postconditions, 
and invariant) at the time of high threat, and monitors par-

tial (i.e., any combination of preconditions, postconditions, 
and invariant) behavior otherwise. There are no fixed per-

formance metrics for runtime security monitoring of ICS 

applications [63]. However, an evaluation of such moni-
tors is required against the real-time constraints of ICSs. 
In principle, the real-time constraints are periodic, i.e., 
the response of a certain component or a certain decision 

is expected to be completed within a certain time period, 

say  T . Therefore, we ensure that the longest execution of 
our monitor’s implementation completes in time  T , thus 

respecting the real-time constraints of the associated com-

ponent of the monitored application. Furthermore, our 
results (see Section IV-A) show that, even in highly threat-
ened scenarios, our monitor executes in less than 1 ms, 
well 

below the real-time constraints of ICSs for various applica-

tion domains. For example, water or power management 
systems have a desired response delay of a few milliseconds.

Additionally, we will develop a mechanized proof show-

ing that the monitor only alarms if there is an attack, and 

vice versa, using some proof assistant, e.g., Coq. We have 
already shown in [17] and [20] that our proof method works 
in principle.

C. Vulnerability Analysis for FDI Attacks

FDI attack modifies the measurement values that are
exchanged among various ICS subsystems. Such values 
eventually mislead the controller application to conclude 

undesired results [8]. Most of the existing approaches have 
attempted to model linear state estimates of power grids 

[23], [64]–[67]. In fact, analysis of realistic nonlinear state 
estimation models is much harder [22], [24], [66]. Many of 
the existing nonlinear models bypass solving complete non-

linear constraints involved in state estimation, for instance, 

flow equations in power grid. Thus, such solutions only 
offer analysis of system topology or data based on statistical 

techniques.
In contrast to the aforementioned approaches, we aim to 

develop FDI free models by design based on recent results 
in delta-decision procedures [68]. Our approach allows to 
specify nonlinear ICS models in dReal [26], which then 
searches those input values of the variables for which the 

monitor does not alarm by reasoning about nonlinear logical 

constraints over real numbers.

V II. CONCLUSION A ND F U T U R E WOR K

We have introduced a complete behavior-based approach to 

the design of secure ICSs. Our method targets to produce 
an industrial control application implementation that satis-

fies desired security properties (secure-by-design) as well as 
a runtime security monitor that identifies runtime attacks 
by comparing the expected application behavior with the 

behavior of the executed code. The method is feasible and 
practical because it originates from an executable specifica-

tion of the application. Importantly, our approach includes 
a method to develop systems that are resistant not only to 

computational attacks but also FDI attacks, through the use 
of a vulnerability analysis technique that leads to secure 

application designs or identification of FDI attack values 
that can be monitored at runtime. We have demonstrated 
the effectiveness and practicality of our method through 

detailed descriptions of the development of a secure appli-

cation for a simple water tank management ICS.
Our approach leads to a proposed design methodology 

that is composed of three components: secure-by-design 

application development, production of a security runtime 

monitor, and production of an FDI attack monitor through 
vulnerability analysis. In our experiments, up to date, we 



have been using Coq and dReal for the secure-by-design com-

ponent and the vulnerability analysis component, while we 

have developed the security runtime monitor, ARMET.
In future work, we will be working on the automation of 

all required procedures to develop a unified design method-

ology, envisioning the ability to produce reliable and secure 

application code, runtime security monitors, and runtime 

FDI attack value monitors automatically from a single exe-

cutable specification of the ICS application.
Furthermore, with the recent great developments in for-

mal verification of software applications and operating sys-

tems [69], [70], our monitoring component will run without 
any performance and scalability issues in real-time ICSs. Such 

developments will allow our RSM and other associated com-

ponents (e.g., control application, operating system) to run at 
the same level of abstraction (i.e., specification language), thus 
ensuring computation overhead to be negligible on one hand, 

and no scalability issues on the other hand. Furthermore, to 
achieve even higher performance, our RSM allows to monitor 

desired ICS behavior on demand, e.g., to monitor, any or all, 
among preconditions, postconditions, and invariant. �
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