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Abstract

Bottom-up saliency detection has been widely studied in many applications,
such as image retrieval, object recognition, image compression and so on.
Saliency detection via manifold ranking (MR) can identify the most salient
and important area from an image efficiently. One limitation of the MR
model is that it fails to consider the prior information in its ranking pro-
cess. To overcome this limitation, we propose a prior regularized multi-layer
graph ranking model (RegMR), which uses the prior calculating by bound-
ary connectivity. We employ the foreground possibility in the first stage and
background possibility in the second stage based on a multi-layer graph. We
compare our model with fifteen state-of-the-art methods. Experiments show
that our model performs well than all other methods on four public databases
on PR-curves, F-measure and so on.

Keywords: graph ranking, boundary connectivity, background possibility,
foreground possibility, multiple layer

1. Introduction

Humans can identify the most salient and important area in a scene. In
order to simulate this ability of human vision system in computer vision,
more and more researchers pay attention to the study of the visual saliency
detection. It has been a pre-processing procedure and widely used in many
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applications, such as image retrieval [1, 2], object recognition [3, 4], image
compression [5, 6] and so on.

Visual saliency detection can be classified into video saliency detection
[7, 8] and image saliency detection by using different input data. We focus on
the second. Image saliency detection tends to find the salient regions, while
the mission of segmentation [9, 10] is to divide the digital image into multiple
image sub-regions. Image saliency detection can be generally fell into three
categories. Top-down methods[11, 12, 13] are task-driven by using the high-
level knowledge. Bottom-up methods [14, 15, 16] are data-driven and rely
on the assumptions of the background and foreground. Mixed models [17,
18, 19] are combined by top-down and bottom-up models. According to the
technical method used, saliency detection can be divided into deep learning
models [20, 21, 22, 23, 24] and traditional models. To avoid time-consuming
training by deep learning models, we focus on traditional and bottom-up
methods. Some state-of-the-art bottom-up saliency detection methods are
presented in [25]. Boundary prior, contrast prior, boundary connectivity
and so on are widespread to use in many models [14, 26, 27, 28]. Itti [14]
et al. propose a fusional model as a pioneer, which get saliency maps by
fuse the color, direction and gray features of input images. With decades of
development, more and more effective methods are appeared. Harel et al.
[15] propose a graph-based visual saliency detection model. Gopalakrishnan
et al. [29] firstly construct a completely graph and a k-regular graph by
image patch and obtain the global and local properties of image. And then,
they regard the saliency detection as Markov random walk on graphs to
get the final results. Classically, Wei et al. [26] exploit geodesic saliency by
using boundary and connectivity priors, which focus more on the background
instead of the object. Yang et al. [27] calculate the saliency values by using
a manifold ranking function and the relationships of all super-pixels. Zhu
et al. [28] describe the boundary connectivity and present a general energy
optimization framework to optimize the final results. Li et al. [30] propose a
novel approach that take advantage of both region-based features and image
details. Wang et al. [31] put forward a saliency detection approach by
exploiting both local graph structure and background priors. Tu et al. [32]
explain an minimum spanning tree representation instead of the super-pixel
representation and propose an exact and iteration free solution on the tree.
Xia et al. [33] try to find what is and what is not a salient object, and present
a new model by ensembling linear exemplar regressors.
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2. Related work

Manifold ranking is firstly proposed to exploit the intrinsic manifold struc-
ture of data [34], which is used in many computer vision problems including
image retrieval [35], person re-identification [36], video concept detection
[37], co-saliency detection [38, 39], object tracking [40, 41] and object co-
segmentation [42]. He et al. [35] propose a a general transductive learning
framework, in which they initialize a pseudo seed vector firstly and then
spread its scores via manifold ranking to all the unlabeled images. Loy et
al. [36] obtain results by propagating the query information along the unla-
beled data manifold in their model. Tang et al. [37] raise structure sensitive
manifold ranking model by taking local distribution differences into account
to more accurately measure pairwise similarity by instead of using distance
only. Yao et al. [38] present a novel co-saliency detection framework to
solve the two sub-problems by using two-stage multi-view spectral rotation
co-clustering. Han et al. [42] employ a novel two-stage co-segmentation
framework to address the robustness issue by using the background prior
instead of strong prior knowledge.

As a popular graph-based method, manifold ranking model plays an im-
portant role in saliency detection. But the traditional manifold ranking
saliency model [27] is not considering the existing prior information. In ac-
tual conditions, the prior is useful to the saliency detection, which can lead
to raise a better performance. We can get many prior information from mul-
tiple ways. For better to employ them, we propose a prior regularized graph
ranking model (RegMR) to obtain the saliency maps. Our preliminary work
on RegMR has been present in work [43]. Moreover, we extend our prior
regularized graph ranking model (RegMR) to multi-layer case and propose
a multi-layer RegMR model by using a multi-layer graph. The results are
showed in Fig. 1. The main contributions of this work are enunciated as
follows: Firstly, we propose a prior regularized multi-layer graph manifold
ranking model to make better use of the existing prior information. Secondly,
we can get the close-form solution and obtain the final results of the function.
At last but not the least, we get more efficient results by many experiments.

3. Brief review of manifold ranking

For an image, Yang et al. [27] use simple linear iterative clustering (SLIC)
algorithm [44] to gain n super-pixels as graph nodes in manifold ranking(MR)
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(a) Input (b) MR (c) Ours (d) GT

Figure 1: (a)Input image; (b)The results by using MR method; (c) The
results by using our method; (d)The ground truth.

method. A graph G = (V,E) is first constructed, where nodes V represent
the super-pixels X and edges E denote the affinities W between pairs of
super-pixels. Formally, let X = {x1, x2, · · · , xn} be the set of super-pixels
as graph nodes. Let q = (q1,q2, · · ·qn) be the indication vector of queries.
If xi is a query super-pixel, qi = 1, else qi = 0. The aim of MR is to gain
a ranking value ri for each node xi ∈ X according to its relevance to the
queries q. Then, MR computes the optimal ranking r by solving

min
r

JMR =
1

2

n∑
i=1

n∑
j=1

Wij(
ri√
di

− rj√
dj

)2 + µ0

n∑
i=1

(ri − qi)
2, (1)

where di =
∑n

j=1 Wij. It is known that the above MR model has a closed-
from solution and the optimal solution [27] r∗ is given by

r∗ = (I− 1

1 + µ0

S)−1q

4



where S = D− 1
2WD− 1

2 ,D = diag(d1,d2, · · ·dn) and I is an identity matrix.
To get more effective result, MR model obtains another ranking function

[27] by using the un-normalized Laplacian matrix as,

r∗ = (D− 1

1 + µ0

W)−1q (2)

4. Prior regularized multi-layer graph ranking model

Model formulation. Let Xk = {xk
1, x

k
2, · · · , xk

Nk
} be the set of graph

nodes in Lk layer (k = 1, 2, . . . , K), Wk is an affinity matrix of relationship
between pairs of nodes in the Lk layer, Ckk′ is an affinity matrix of rela-
tionship between pairs of nodes separately from the Lk and L′

k layers. Let
qk = (qk

1,q
k
2, · · ·qk

Nk
) be the indication vector of queries. if xk

i is a query
node, qk

i = 1, otherwise, qk
i = 0. Then, we can get the ranking value rki of

the node xi in the Lk layer by the multi-layer manifold ranking model as,

min
r

J =
K∑
k=1

1

2
[

Nk∑
i,j=1

Wk
ij(r

k
i − rkj )

2 + µ

Nk∑
i=1

dk
i (r

k
i −

qk
i√
dk
i

)2]

+ η

K∑
k,k′=1,k ̸=k′

Nk∑
i,j=1

Ckk′

ij (rki − rk
′

j )
2,

where dk
i =

∑
j W

k
ij. The first term is the smoothness constraint in the

Lk layer, the second term is the fitting constraint and the third term is the
smoothness between different layers Lk and Lk′ .

Let pk
i be the prior of the node x

k
i , the larger is p

k
i , the less reference of the

node xk
i ranking value. Formally, by incorporating the prior regularization

Ψ(rki ,p
k
i ), k = 1, . . . , K in multi-layer manifold ranking model, the model can

be formulated as

min
r

J =
K∑
k=1

1

2
[

Nk∑
i,j=1

Wk
ij(r

k
i − rkj )

2 + µ

Nk∑
i=1

dk
i (r

k
i −

qk
i√
dk
i

)2]

+ η
K∑

k,k′=1,k ̸=k′

Nk∑
i,j=1

Ckk′

ij (rki − rk
′

j )
2 + λ

K∑
k=1

Nk∑
i=1

Ψ(rki ,p
k
i ),
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where pk
i denotes some prior information in the Lk layer. Many regularization

functions can be used here. In this paper, we set Ψ(rki ,p
k
i ) = pk

i r
k
i
2
and

propose a prior regularized multi-layer graph ranking model (RegMR) as
follows,

min
r

JRegMR =
K∑
k=1

1

2
[

Nk∑
i,j=1

Wk
ij(r

k
i − rkj )

2 + µ

Nk∑
i=1

dk
i (r

k
i −

qk
i√
dk
i

)2] (3)

+ η
K∑

k,k′=1,k ̸=k′

Nk∑
i,j=1

Ckk′

ij (rki − rk
′

j )
2 + λ

K∑
k=1

Nk∑
i=1

pk
i r

k
i

2
,

Optimization. Our RegMR model is convex and the global optimal solution
can be computed. Using vector representation, problem Eq.(3) is equivalently
formulated as

min
r

JRegMR = rT (D− E)r+ µ(rTDr− 2rTD
1
2q+ qTq) + λrTPr,

where dk
i =

∑
j W

k
ij,D

k = diag(dk
1,d

k
2 · · · ,dk

Nk
),D = diag(D1,D2, · · · ,Dk),Pk =

diag(pk
1,p

k
2 · · · ,pk

Nk
),P = diag(P1,P2, · · · ,Pk), and also

E =


W1 2ηC12 . . . 2ηC1K

2ηC21 W2 . . . 2ηC2K

...
...

. . .
...

2ηCK1 2ηCK2 . . . WK

 ,

q =


q1

q2

...
qK

 , r =


r1

r2

...
rK

 ,

The optimal solution is computed by setting the first derivative of the
above function JRegMR(r) w.r.t r to be zero, i.e.,

∂JRegMR(r)

∂r
= (Dr− Er) + µ(Dr−D

1
2q) + λPr = 0

Thus, we obtain the result,

r∗ =
(
D− 1

1 + µ
E+

λ

1 + µ
P
)−1

q (4)
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5. Saliency detection

Saliency detection model via super-pixels can get more details but ignore
the overall information when the super-pixel is small. On the other hand, if
the super-pixel is too large, then the small salient object can not be detected
efficiently. And also, the above MR model [27] has one limitation, which fails
to consider the prior (background or foreground possibility) information in its
ranking process. For saliency detection tasks, the prior information has been
shown importantly in saliency computation problem. Our aim in this section
is to propose a prior regularized multi-layer graph ranking model to overcome
the limitations. We describe the details of the saliency detection progress.
At first, we construct graphs in multiple layers. Additionally, we calculate
the prior vector by using the boundary connectivity. At last, we describe the
saliency detection progress based on the prior regularized multi-layer graph
model.

5.1. The multi-layer graph construction

We construct graphs in this section. One bottom layer L1 is constructed
by super-pixels, which can get more details of image information. We use
simple linear iterative clustering (SLIC) algorithm [44] to gain N1 super-
pixels at the bottom layer, which is showed in the left of the Fig. 2. The
higher K−1 layers Lk, k = 2, 3, . . . , K are constructed by lager region, which
are clustering by super-pixels and can get more global information. In K−1
higher layer, we cluster the bottom super-pixels as a region. We use spectral
segmentation as detailed in [45] to get K− 1 high layers(Lk, k = 2, 3, . . . , K)
graph nodes that is explained in the right of Fig. 2, the nodes number are
N2, N3, . . . , NK .

The details are explained as follows.
(1) Inner the Lk layer: Each node is connected to those neighbor nodes

within the layer Lk. And also the nodes are connected to the 2-hop neighbor
nodes in the L1 layer, in which all nodes on four boundaries are adjacent
by constricting the graph as a close-loop graph. When xi, xj ∈ Lk, k =
1, 2, . . . , K and xi is connected to xj,

Wk
ij = e

−
∥xi−xj∥

σ2
k , (5)

where xi and xj denote the mean of the super-pixels corresponding to two
nodes in the CIE LAB color space. σk is a parameter.
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Figure 2: Left: Supe-rpixels are gained by SLIC algorithm on the original
image to get the L1 layer. The pink and blue dots are the directly neighbors
and 2-hop neighbors of the green dot. The black dots are the boundary
nodes. Right: The Lk(k = 2, 3, · · · , K) layer nodes are gained by clustering
the L1 layer nodes such as the green region.

(2) Inter the Lk layer: The bottom layer nodes are clustering into higher
layer graph nodes by using spectral segmentation methods, then these bottom
layer graph nodes are connected to the higher layer graph node.

Ckk′

ij =

{
γ if k = 1 or k′ = 1, k ̸= k′

0 else
(6)

where γ is a parameter.

5.2. The prior by boundary connectivity

By reduce the influence of wrong region prior information of the lager
region, we focus on the prior of super-pixels in the bottom layer, which can
be calculated by any method. We introduce the boundary connectivity here
to indicate the background and foreground prior value. The connotation of
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the boundary connectivity [28] is the proportion of the region occupied the
boundary comparing with the square root of the whole area. If boundary
connectivity BndCon(xi) of node xi is low, the foreground probability pfg

i of
node xi is high, the background probability pbg

i is low. Then, the foreground
probability and the background probability by boundary connectivity [28]
are calculated as,

pfg
i =

e
−BndCon2(xi)

2σ2
p if xi ∈ X1

0 if xi ∈ Xk, k = 2, 3, . . . , K
(7)

pbg
i =

1− e
−BndCon2(xi)

2σ2
p if xi ∈ X1

0 if xi ∈ Xk, k = 2, 3, . . . , K
(8)

where BndCon(xi) is the boundary connectivity of super-pixel xi and σp is
a parameter.

5.3. Saliency detection via prior regularized multi-layer graph ranking model

We describe the saliency detection progress based on the prior regularized
multi-layer graph model in this section. We use two stages ranking method
to get the final saliency maps. Fig.3 give example images ranking result in
two stage.

(a) Input (b) stage1 results (c) stage2 results (d) GT

Figure 3: (a)Input image; (b)Saliency map of the first stage results by our
model; (c) Saliency map of the second stage results by our model(final re-
sults); (d)The ground truth;.
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In the first stage, boundary super-pixels on the bottom layer are used
as query nodes. We separately use the super-pixels in the four bound-
ary as background queries, which is top, down, left and right. qm

1 (m =
top, down, left, right) are the query vectors. The prior matrix Pfg can be
gained by prior value pfg

i , which is the foreground probability of node xi.
We can get the result as,

rm1 =
(
D− 1

1 + µ
E+

λ

1 + µ
Pfg

)−1

qm
1 ,m = top, down, left, right (9)

Then, the first N1 ranking results are selected in the first stage result and be
normalized to [0,1] as r̄m1 .

s1i =
∏

i=1,··· ,N1;m=top,down,left,right

sm1i (10)

where
sm1i = 1− r̄m1i,m = top, down, left, right. (11)

In the second stage, we choose some salient nodes as queries, if s1i ≥
mean(s1), then q2i = 1, else q2i = 0, we can summarize the query nodes as
follows,

q2i =


1 if s1i ≥ mean(s1) and xi ∈ X1

0 if s1i < mean(s1) and xi ∈ X1

0 if xi ∈ Xk, k = 2, 3, . . . , K

(12)

The prior matrix Pbg can be gained by prior value pbg
i , which is the back-

ground probability of node Then, we compute the refinement saliency map
by,

s = r2 =
(
D− 1

1 + µ
E+

λ

1 + µ
Pbg

)−1

q2, (13)

where Pbg = diag(pbg
i ). Then, we get the second stage results. And also, we

choose the first N1 ranking results and normalize to [0,1] as s̄, then give the
super-pixel ranking value to all pixel as f, which is the saliency results of all
pixels.

The overall algorithm is summarized in Algorithm 1.
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Algorithm 1 Saliency computation by the proposed model.

Require: An image and required parameters.
1: Segment the input image into N1 super-pixels as bottom layer nodes,

construct 2-neighbor graph and get W1 by Eq.(5);
2: AchieveK−1 higher layer regions by clustering bottom layer super-pixels

as graph nodes N2, . . . , NK , construct graphs and get W2, . . . ,WK by
Eq.(5);

3: Compute the edge weight between higher layer and bottom layer to get
Ck1k2 , k1 ̸= k2, k1, k2 = 1, . . . , K by Eq.(6);

4: Compute the foreground probability and the background probability with
Eq.(7) and Eq.(8);

5: Get the saliency results with Eq.(9) and Eq.(10) in the first stage;
6: Get the saliency results with Eq.(12) and Eq.(13) in the second stage ;
7: Use the normalized ranking score to get the saliency value s̄ of super-

pixels, then set the super-pixel values to all pixels and get the final
saliency map f.

Ensure: A saliency map f with the same size as the input image.

6. Experiments

For verifying the effectiveness of our method, we compare with fifteen
state-of-the-art saliency object detection methods including CA [46], FT [47],
SEG [48], BM [49], SWD [50], SF [51], GCHC [52], LMLC [53], HS [54], PCA
[55], MR [27], MS [56], RR [30], MST [32] and MAP [57].

6.1. Datasets

We compare our proposed method on four public datasets: The first one
is ECSSD [54], which contains 1000 images. The second one is ASD databse
[47], which also contains 1000 images. SED [58] contains 200 images, in
which 100 images have only one salient object and the other 100 images have
two salient objects. PASCAL-S dataset [59] is one of the most challenging
saliency datasets, which is composed of 850 natural images.

6.2. Parameter Settings

In all experiments, Multi-layer K is set to 4, in which we set the number
of super-pixels N1 = 300 in the bottom layer L1, N2 = 80, N3 = 50, N4 = 30.
Multi-layer graph construction parameters γ = 0.1, σ2

1 = 10, σ2
2 = σ2

3 = σ2
4 =
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5. The parameter σp in prior is set to 1. Besides, there are three controlling
parameters, α = 1

1+µ
is setting to 0.99 as [27], β = λ

1+µ
is setting to 0.1 by

experiments in Fig. 4, and η = 1
2
by experience.
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Figure 4: Results of our model with different value of β comparing on SED
database.

6.3. Evaluation Criterions

In the comparisons, we use precision-recall curves (PR-curves), F-measure
and mean absolute error (MAE) to evaluate all methods with our model. PR-
curves are constructed by comparing the saliency map with ground truth
by thresholds in the range [0:0.05:1]. Precision is the ratio of the number
of correctly salient pixels to the number of all ground truth salient pixels.
Recall is the percentage of all selected salient pixels number to the number of
all ground truth pixels. After the calculating of the precision and recall, then
we can gain the F-measure, which is an overall performance and calculated
as,

F =
(1 + ξ)Precision ·Recall

ξPrecision+Recall
, (14)

referred to [47, 27], we set ξ = 0.3 in our experiments.
The mean absolute error (MAE) is another measurement, which is the

average difference between saliency map and ground truth. To gain MAE
value, we should normalize both of saliency map and ground truth in the
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range [0, 1]. The difference can be measured as [32],

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|f(i, j)−GT (i, j)|, (15)

where H,W denote the height and width of image, respectively. f(i, j) is the
saliency value of pixel level, GT (i, j) is the ground truth of pixel level.

6.4. Examinations of Design Options
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(b) F-measure

Figure 5: Comparison of results by using different superpixel segmentation
method. From top to bottom, the results are obtained by SLIC, DBSCAN,
and LRW method, respectively.

The selection of the superpixel algorithm [60] has a strong effect to the
saliency detection results. We do some experiments by different superpixel
segmentation method including SLIC [44], DBSCAN [61] and LRW [62]. The
SLIC method is as quick as the DBSCAN, but the LRW pays much time on
segmentation. And also, the results of PR-curves and F-value from Fig. 5
show that SLIC method is the best for our model.

To analyze the components considered in our mode, we do experiments on
ECSSD under different circumstance and give the PR-curve on Fig. 6, which
shows that our method is better than other conditions. The blue curve is
the PR-curve of MR model; The green curve is the PR-curve of the MR with
prior regularized model; The black curve is the PR-curve of MR model with
only multi-layer graph; The red curve is the prior regularized multi-layer
graph ranking model. Fig. 7 shows the results of our model comparing with
no prior information model on SED and PASCAL-S datasets.
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Figure 6: Results of our model with different cues comparing on ECSSD
database: The blue curve is the PR-curve of MR model; The green curve is
the PR-curve of the our model on only bottom layer with N0 super-pixel ;
The black curve is the PR-curve of MR model with multi-layer graph; The
red curve is our model.
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Figure 7: Results of our model with no prior information comparing on SED
and PASCAL-S databases: The blue curve is the PR-curve of MR model;
The green curve is the PR-curve of the our model on only bottom layer with
N0 super-pixel ; The black curve is the PR-curve of MR model with no prior
information; The red curve is our model.

6.5. Comparisons With Other Models

We have many experiments on ECSSD, ASD, SED and PASCAL-S datasets.
Fig. 8 displays the results of our method comparing with other methods on
ECSSD database. Fig. 9, Fig. 10 and Fig. 11show the comparison results of
PR-curves and F-measure separately on ASD, SED and PASCAL-S datasets.

From above evaluation, our method is better than fourteen state-of-the-
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Figure 8: Precision-recall curves and F-measures comparing with different
methods on ECSSD database.
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Figure 9: Precision-recall curves and F-measures comparing with different
methods on ASD database.

art methods by measuring PR-curves, which also performances well by com-
paring with others on F-measures except MR and RR algorithm on ASD
database. The MAE value of the proposed method is slightly lower than
MST method on all four databases which can be see in Fig. 12 and Fig. 13.

The average runtime of some state-of-the-art models are shown in Tab.1
over all 200 images of SED using an Intel i5-5200U 2.20GHz CPU with 8 GB
RAM. CA and LMLC are obviously slower than our method. Here, we just
list some methods which has similar computational cost with our method.
MAP model here is the fastest (about 0.05 seconds per image), others are in
a same order of magnitude.
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Figure 10: Precision-recall curves and F-measures comparing with different
methods on SED database.
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Figure 11: Precision-recall curves and F-measures comparing with different
methods on PASCAL-S database.

Table 1: Comparison of average run time (seconds per image) on SED
datasets.

Methods SEG BM SWD SF GCHC PCA
Time(s) 2.83 0.96 0.07 0.34 0.58 2.59
Methods MR MS RR MST MAP Ours
Time(s) 0.49 2.03 0.91 0.40 0.05 1.54

Fig. 14 shows some sample saliency maps from four datasets. Our method
can get more accurately saliency maps intuitively. On the whole, the pro-
posed method is better than other fifteen methods.
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Figure 12: MAE values comparing with different methods on ECSSD and
ASD datasets.
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Figure 13: MAE values comparing with different methods on SED and
PASCAL-S datasets.

For deep learning based models, such as DLS [21] and dss [20], they
generally performs better than the proposed method which is unsupervised.
Indeed, supervised methods usually performs better than unsupervised meth-
ods because they utilize a larger number of training data to learn a more dis-
criminative mode for saliency model detection problem. When the training
data are not available in some special case, the unsupervised method can be
used.

6.6. Failure Cases

In this work, we propose a prior regularized multi-layer graph ranking
model by using multiple graph model and existing prior information. The
proposed algorithm is highly effective for most tasks of saliency detection.
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Figure 14: Examples of output saliency maps results using different algo-
rithms on the ECSSD, ASD, SED and PASCAL-S datasets.

However, when salient objects are very small and have similar appearances
with the background and the images are filled with the cluttered background,
our algorithm cannot make the entire salient object be highlighted homoge-
neously as shown in Fig. 15.
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(a) Input (b) GT (c) Ours

Figure 15: Failure cases. (a) Input images. (b) Ground truth. (c) Saliency
maps

7. Conclusion

We propose a prior regularized multi-layer graph ranking model, which
can make full use of existing prior information and overcome the influence
of only super-pixel layer to a certain extent. The proposed model effectively
combines the prior information with the manifold structure information and
also get more global information by multi-layer graph model. We further
demonstrate that the new method achieve higher results comparing with fif-
teen state-of-the-art methods. In the future, we will extend our method in
two ways. Firstly, our model is efficiently on the images which have salient
objects. But the model can not estimate that whether the image have a
salient object or not in actually. We will do some research on the judgement
of whether the image have a salient object before the saliency detection. Sec-
ondly, more kinds of features will be used to obtain the intrinsic relationship
in the images.
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