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Abstract

Background: The glucokinase regulatory protein encoded by GCKR plays an important role in glucose metabolism and a
single nucleotide polymorphism (SNP) rs1260326 (P446L) in the gene has been associated with several age-related
biomarkers, including triglycerides, glucose, insulin and apolipoproteins. However, associations between SNPs in the gene
and other ageing phenotypes such as cognitive and physical capability have not been reported.

Methods: As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and
women from five UK cohorts aged between 44 and 90+ years were genotyped for rs1260326. Meta-analysis was used to
pool within-study genotypic associations between the SNP and several age-related phenotypes, including body mass index
(BMI), blood lipid levels, lung function, and cognitive and physical capability.

Results: We confirm the associations between the minor allele of the SNP and higher triglycerides and lower glucose levels.
We also observed a triglyceride-independent association between the minor allele and lower BMI (pooled beta on z-
score = 20.04, p-value = 0.0001, n = 16,251). Furthermore, there was some evidence for gene-environment interactions,
including physical activity attenuating the effects on triglycerides. However, no associations were observed with measures
of cognitive and physical capability.

Conclusion: Findings from middle-aged to older adults confirm associations between rs1260326 GCKR and triglycerides and
glucose, suggest possible gene-environment interactions, but do not provide evidence that its relevance extends to
cognitive and physical capability.
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Introduction

The ageing process is complex, comprising several mechanisms

and resulting in increased frailty and disease susceptibility [1].

Despite there being no single dominant mechanism of ageing,

there are several reported associations observed among age-related

phenotypes [2–5], suggesting phenotypes may directly or indirectly

affect others and/or that distinct phenotypes may be affected by

common causes [6]. For instance, associations observed between

cognitive and physical performance in older adults [2,4] may be

indicative of genetic factors influencing age-related diseases that

lead to the impairment of both sets of indicators or of direct

genetic effects on the indicators [6]. Whilst not all studies [7]

support a common cause hypothesis for ageing phenotypes [8,9],

there are some genes that appear to influence multiple age-related

traits.

GCKR (glucokinase (hexokinase 4) regulator) is one such gene

with potentially pleiotropic effects. Encoding the glucokinase

regulatory protein that regulates the activity of glucokinase (GCK),

a regulator of glucose, a non-synonymous [10] single nucleotide

polymorphism (SNP), rs1260326 (P446L), in the gene appears to

be functional, inhibiting GCK activity in the liver [11]. This

property has several phenotypic manifestations, with many reports

of the T allele of the SNP being associated with increased levels of

triglycerides[10,12–14], in addition to increased C-reactive protein

(CRP) [15], factor VII [16], apolipoproteins [12,13], albumin

[17], creatinine [18], protein C [19] and uric acid [20], as well as

lower levels of insulin [21] and fasting glucose [10,22] in candidate

gene and genome-wide association studies (GWAS). SNPs in

strong linkage disequilibrium with the variant have also been

associated with serum calcium [23] and risk of Crohn’s disease

[24]. Furthermore, these genotypic associations may be environ-

mentally influenced as there is evidence that an intensive lifestyle

intervention, including increased physical activity, may reduce the

effects of rs1260326 on triglyceride levels [25].

Given the hypothesised relationships between some of these

biomarkers and other important age-related phenotypes, such as

physical and cognitive performance [5,26], we hypothesised that

GCKR may also be relevant to the capacity to undertake the

physical and mental tasks of daily living. Indicators of physical

capability, including grip strength, decline from mid-life [27] and

have been associated with morbidity [28] and mortality [29] rates.

The substantial heritability estimates for these indicators [30,31]

suggest genetic variants may contribute to their inter-individual

variability. Measures of cognitive capability, such as verbal

fluency, also have a substantial genetic component [30,32] and

show associations with mortality rate; though these associations

may be partly explained by lifestyle and socioeconomic factors

[33,34]. We conducted analyses on 16,251 participants aged

between 44 and 90+ from five UK cohorts as part of the

HALCyon research programme (Healthy Ageing across the Life

Course; www.halcyon.ac.uk) to investigate associations between

rs1260326 (GCKR) and several age-related phenotypes. From this

multi-cohort exploratory study we provide further evidence for the

well-reported associations between the SNP and triglycerides,

investigate several novel associations, including those with lung

function, physical and cognitive capability, as well as explore

interactions between the SNP and physical activity and sex on

these measures.

Methods

Ethics Statement
Informed consent was obtained from all participants. Ethical

approval was obtained from the South-east Multi-centre Research

Ethics Committee, the North Thames Multi-centre Research

Ethics Committee, the Joint UCL/UCLH Committees on the

Ethics of Human Research (Committee Alpha), the Medical

Research and Ethics Committee, and the Lothian Research Ethics

Committee.

Study Populations
The National Child Development Study (NCDS) follows

individuals from all births in England, Scotland and Wales during

1 week in March 1958. In 2002–04 a Biomedical Survey was

conducted during home visits by a research nurse. Following

informed consent, DNA was extracted from 8017 participants

aged 44–45 years; the sample with immortalised cell line culture

(n = 7526) is used here. In 2008–09, an eighth sweep was carried

out during which cognitive performance tests were conducted

[35]. Further details of the study are available on the cohort’s

genetic information website (http://www.b58cgene.sgul.ac.uk/)

and elsewhere [36].

The Medical Research Council National Survey of Health and

Development (NSHD) comprises participants sampled from all

births in a week in March 1946 and followed up since. In 1999, at

age 53 years, men and women were visited by a research nurse

and consent for DNA extraction was given by approximately 2900

members of the cohort. Details of the data collected and the

several phases of the study are available on the cohort’s website

(www.nshd.mrc.ac.uk) and elsewhere [37].

The Whitehall II study targeted all civil servants aged between

35 and 55 years working in London in 1985–88. In 2002–04

(Phase 7), the genetics study was established and DNA was

extracted from 6156 participants. Details of the study design and

data collected have been described elsewhere [38].

The English Longitudinal Study of Ageing (ELSA) comprises

men and women aged 50 years and over who originally

participated in the Health Survey for England in 1998, 1999 or

2001. Fieldwork began in 2002–03 (Phase I) with two-yearly

follow-ups and in 2004–05 (Phase II) blood samples were provided

by 6231 participants. Details of the cohort have been published

elsewhere [39].

The Lothian Birth Cohort 1921 (LBC1921) participants were all

born in 1921 and most completed a cognitive ability assessment at

age 11 years. In 1999–2001 (Wave I), at approximately 79 years

old, 550 participants living in and around Edinburgh, underwent a

series of cognitive and physical tests. Details of the recruitment into

the study are available on its website (www.lothianbirthcohort.ed.

ac.uk) and have been published previously [40,41].

Genotyping and Quality Control
Genotype information for GCKR rs1260326 (P446L) came from

various sources. In NCDS, information came from both the

GCKR and Age-Related Phenotypes
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Illumina HumanHap550K v3 and Illumina 1.2 M chips (www.

illumina.com) [42]. Data in NSHD and Whitehall II came from

the Illumina Metabochip. In ELSA, the closest available proxy was

used; SNP rs780094, in very strong linkage disequilibrium

(r2 = 0.93; 1000 Genomes Pilot 1, CEU population), was obtained

via the Applied Biosystems SNPlex 48-plex SNP genotyping

system. Information for LBC1921 came from the Illumina Human

610-Quadv1 Chip [43]. Departure from the Hardy-Weinberg

equilibrium was assessed in all studies using the chi-square test.

Phenotypes
Anthropometry and biological function. Several measures

of anthropometry and biological function were used, where

available in the cohorts. Body mass index (BMI kg/m2) was

calculated as weight divided by height squared derived from

measurements conducted at clinics, during a clinical interview in

the home, or from self-report. Waist-hip ratio (WHR) was defined

as waist circumference (cm) divided by hip circumference (cm).

Sitting systolic blood pressure (SBP), diastolic blood pressure (DBP)

(mmHg) and pulse rate (BPM) were recorded at the clinical

interview; where more than one measurement was taken the mean

values were used in analysis. Spirometry was used to assess lung

function: forced vital capacity (FVC) and forced expiratory volume

(FEV) in 1s (L); the highest value was used in the analyses. Blood

samples were used to measure fibrinogen (g/L), total, low-density

lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol

(mmol/L), triglycerides (mmol/L), fasting glucose (mmol/L) and

non-fasting glycosylated hemoglobin (HbA1c, %).

Cognitive capability. A number of cognitive performance

tests in the different studies were used to assess cognitive capability.

Different assessments of verbal memory were conducted: in ELSA

and NCDS, a list of 10 common words were used, with

participants asked to recall the list immediately and again after a

delay, the mean score was used in the analysis; in NSHD, 15

words were used over three trials; in Whitehall II 20 words were

used; responses in NSHD and Whitehall II were given in writing.

In Whitehall II, participants recalled in writing in 1 min as many

words as possible beginning with ‘S’ to assess phonemic fluency,

while in LBC1921 three letters ‘C’, ‘F’ and ‘L’ were used with

responses given orally. Participants were asked to recall as many

animals as possible within 1 min to measure semantic fluency;

responses were given orally in ELSA, NCDS and NSHD, and in

writing in Whitehall II. To assess search speed [44], 1-min letter

searches among grids of letters were used; 600 letters in NSHD

and 780 in ELSA and NCDS.

Physical capability and activity. Grip strength was mea-

sured in NSHD, ELSA and LBC1921 using electronic or

hydraulic dynamometers, with the best measure used in the

analysis where more than one trial was conducted. Speeds were

calculated from timed walks over 2.44 m (8 feet) and 6 m carried

out in ELSA and LBC1921 respectively, with the fastest speed

used in the analysis where more than one trial was conducted.

Timed chair rises [45] involved asking participants to rise from a

chair and sit back down 5 times in ELSA and 10 times in NSHD;

the reciprocal of time taken in seconds 6100 [46] was used in the

analysis. Standing balance tests were conducted with participants’

eyes open using the Flamingo Balanace Test [47] (stopped at 30 s)

in NSHD and the side-by-side, semi-tandem and full tandem [48]

in ELSA. Poor standing balance was defined for this analysis as the

inability to complete 5 s. Further details of these measurements in

these cohorts are presented elsewhere [49]. Levels of physical

activity were derived from self-reported levels using question-

naires. Individuals were categorised as ‘physically active’ in this

analysis if they engaged in at least moderate sport or activities at

least monthly in NCDS, NSHD and LBC1921, or vigorous sport

or activities at least monthly in ELSA or at least weekly in

Whitehall II.

Statistical Methods
Where information on ethnicity was collected, non-European

participants were excluded from analyses in order to avoid

confounding from population stratification [50]. Within studies,

linear and logistic regression analyses were conducted on the

continuous and dichotomous traits within the cohorts respectively,

adjusting for age in the age heterogeneous cohorts of ELSA and

Whitehall II, as well as sex. Given the strong associations with

triglycerides [12,13], in a second model, measures were addition-

ally adjusted for it, as well as height and weight, except when

testing for the associations with height, weight, BMI and

triglycerides. Additive models were used with genotypes coded as

0, 1 and 2 for the number of minor alleles. Likelihood ratio tests

were used to compare the fit of the additive models compared with

the full genotype models. For continuous traits, the normality of

the standardised residuals was inspected with distributional

diagnostic plots. For the harmonisation of continuous traits that

were used to obtain pooled estimates of the genotypic effects, z-

score units were calculated in each study by subtracting the study

mean and dividing by its standard deviation. The overall mean for

z-scores is 0 and standard deviation 1. Two-step [51] meta-

analyses using a random-effects model were performed to obtain

pooled genotypic effects. The I2 measure was used to quantify

heterogeneity [52]. Additionally, meta-analyses of the interaction

terms in the second model between the SNP and physical activity,

as well as between the SNP and sex were conducted for all

outcome measures. Reporting of the analyses met the appropriate

items of recommended checklists [53,54]. A two-tailed significance

level of p,0.05 was used as evidence of statistical significance.

Statistical analysis was performed in Stata 11.2 (StataCorp LP).

Quanto [55] was used for power calculations using the overall

minor allele frequency (MAF) of 0.39.

Results

Cohort Summaries and Genotyping Quality
Of the 17,004 participants with valid genotypic data, 753 (4.4%)

were excluded due to missing values of height, weight and

triglycerides, leaving 16,251, as presented in Table 1. Similar

genotypic frequencies were observed across the studies and the

HWE condition was met for both sources of the NCDS data, as

well as for all other studies (p-values.0.07), except NSHD (p-

value = 0.03).

Associations between Genotype and Phenotypes
Results of the investigations between the SNP and measures of

anthropometry and biological function are presented in Table 2

and Table S1. Evidence of associations in the pooled analyses

between the SNP and measures of anthropometry were only

observed after adjusting for triglycerides, with the T allele being

associated with lower weight and BMI (Figure S1). The T allele

was also associated with lower WHR after adjusting for age, sex

and triglycerides (p-value = 0.002; data not shown), though this

association no longer remained after additional adjustment for

height and weight (Table 2). There was no evidence for

associations between the GCKR genotype and measures of blood

pressure or pulse rate from the pooled results of either model (p-

values.0.2; Table 2 and Table S1). There was some evidence that

the T allele was associated with higher FVC, after additional

adjustment for height, weight and triglycerides (Table 2, Table S1,

GCKR and Age-Related Phenotypes
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Figure S2), though there was heterogeneity in the associations with

FEV. Evidence for an association between the T allele and

increased HDL cholesterol was apparent in the second model

(Figure S3), with evidence for heterogeneity among the studies.

There was very strong evidence for an association between the T

allele and higher levels of triglycerides, which strengthened after

adjustment for body size (p-value = 3610211; Figure S4). Associ-

ations between the T allele and lower glucose were also stronger in

the second model (Figure S5). There was no evidence for

associations between the SNP and fibrinogen or LDL cholesterol

(p-values.0.1).

No genotypic associations were observed for any of the cognitive

capability traits in the pooled analyses (p-values.0.1; Table 3), or

for any of the measures of physical capability (p-values.0.1;

Table 4). Additional adjustment for glucose did not materially

change the null associations observed for the cognitive and

physical capability measures (data not shown).

In only a relatively small number of tests did the per allele

model represent a significantly poorer fit than the full genotype

model (indicated in Table 3 and Table S1).

Interactions between Genotype and Physical Activity
There was suggestive evidence that physical activity attenuated

the negative association between the minor allele and weight

towards the null (pooled p-value for interaction terms for

weight = 0.07, Figure S6; BMI p-value = 0.1, data not shown) with

effects only observed in the physically inactive individuals when

analysed separately (pooled beta for weight z-score = 20.06,

p-value = 0.0001, n = 8289 in inactive; beta = 20.02, p-value = 0.1,

n = 7854 in active; data not shown). There was also suggestive

Table 1. Summary of Sex, Age and GCKR Genotype Frequencies by Cohort.

Cohort Male (%) Age* in years, C/C C/T T/T Total

median (range) n (%) n (%) n (%)

NCDS 50 44 1901 (36.4) 2513 (48.1) 808 (15.5) 5222

NSHD 47 53 819 (35.8) 1141 (49.8) 329 (14.4) 2289

Whitehall II 77 59 (50–73) 1110 (35.3) 1535 (48.8) 502 (16.0) 3147

ELSA" 46 64 (52–90+) 1922 (37.7) 2438 (47.8) 736 (14.4) 5096

LBC1921 42 79 (77–80) 195 (39.2) 230 (46.3) 72 (14.5) 497

Total 54 53 (44–90+) 5947 (36.6) 7857 (48.3) 2447 (15.1) 16251

*Age at phase from which the majority of variables are taken, i.e. ELSA: II; LBC1921: I; NCDS: Biomedical Survey (2002); NSHD: 1999 Collection; Whitehall II: VII. ELSA:
English Longitudinal Study of Ageing; NCDS: National Child Development Study; NSHD: National Survey of Health and Development.
"rs780094 in ELSA, r2 = 0.93 with rs1260326.
doi:10.1371/journal.pone.0070045.t001

Table 2. Anthropometry and Biological Function by GCKR Genotype (Pooled Results).

Model 1* Model 2**

Variable Total Beta (95% CI) p I2%; Het p Beta (95% CI) p I2%; Het p

Height, cm 16251 20.011 (20.030–0.007) 0.23 24.6; 0.26 0.006 (20.011–0.023) 0.48 23.7; 0.26

Weight, kg 16251 20.018 (20.047–0.011) 0.23 45.1; 0.12 20.040 (20.061–20.020) 0.0001 15.9; 0.31

BMI, kg/m2 16251 20.011 (20.041–0.019) 0.48 37.1; 0.17 20.045 (20.067–20.022) 0.0001 7.4; 0.36

Waist-hip ratio 15680 0.006 (20.011–0.022) 0.51 0.0; 0.51 20.010 (20.024–0.004) 0.15 0.0; 0.77

Systolic blood pressure, mmHg 15630 0.007 (20.027–0.041) 0.67 51.9; 0.08 20.002 (20.035–0.032) 0.92 52.8; 0.08

Diastolic blood pressure, mmHg 15630 0.003 (20.035–0.042) 0.87 61.3; 0.035 20.003 (20.041–0.036) 0.90 63.6; 0.027

Pulse rate, BPM 11990 20.003 (20.028–0.022) 0.80 0.0; 0.55 20.015 (20.039–0.010) 0.24 0.0; 0.42

Forced vital capacity, L 12587 0.013 (20.006–0.032) 0.19 0.0; 0.64 0.022 (0.005–0.039) 0.013 0.0; 0.49

Forced expiratory volume, L 12588 0.019 (20.012–0.051) 0.23 51.5; 0.10 0.030 (20.005–0.065) 0.09 65.0; 0.036

Fibrinogen, g/L 13530 0.020 (20.011–0.050) 0.21 30.9; 0.23 0.019 (20.008–0.046) 0.16 15.7; 0.31

Total cholesterol, mmol/L 16251 0.052 (0.019–0.084) 0.0018 47.6; 0.11 0.013 (20.018–0.045) 0.41 51.2; 0.08

HDL cholesterol, mmol/L 15575 0.000 (20.037–0.037) 0.98 64.3; 0.038 0.042 (0.003–0.081) 0.033 75.0; 0.007

Log triglycerides, mmol/L 16251 0.105 (0.064–0.147) 6.261027 67.4; 0.015 0.112 (0.079–0.145) 2.8610211 54.9; 0.064

LDL cholesterol, mmol/L 15128 20.004 (20.027–0.019) 0.75 0.0; 0.73 20.018 (20.041–0.005) 0.12 0.0; 0.90

Glucose" 14106 20.042 (20.066–20.018) 0.0007 0.0; 0.60 20.056 (20.080–20.033) 2.661026 0.0; 0.74

Het- heterogeneity. Beta coefficients per T allele based on z-scores.
*Adjusted for age and sex.
**Additional adjustments: i) height model: weight and triglycerides; ii) weight model: height and triglycerides; iii) triglycerides model: height and weight; iv) BMI model:
triglycerides; v) all other models: height, weight and triglycerides.
"Glucose in mmol/L or HbA1c in %.
doi:10.1371/journal.pone.0070045.t002
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Table 3. Cognitive Capability by Cohort and GCKR Genotype.

Model 1* Model 2**

Variable Cohort Mean (SD) [n] Beta (95% CI) p I2%; Het p Beta (95% CI) p I2%; Het p

Word recall- 10 words NCDS 6.0 (1.5) [5159] 0.00 (20.04–0.04) 0.85 0.01 (20.03–0.04) 0.79

Word recall- 45 words NSHD 23.9 (6.3) [2235] 0.05 (20.01–0.12) 0.08 0.07 (0.01–0.13) 0.0324

Word recall- 20 words Whitehall II 7.0 (2.4) [3103] 20.03 (20.08–0.02) 0.25 20.02 (20.07–0.02) 0.33

Word recall- 10 words ELSA 5.0 (1.7) [5044] 0.02 (20.02–0.06) 0.31 0.03 (20.01–0.06) 0.16

Pooled [15541] 0.010 (20.019–0.038) 0.50 37.6; 0.19 0.016 (20.016–0.047) 0.33 48.5; 0.12

Phonemic fluency- 1 letter Whitehall II 16.0 (4.1) [3093] 0.03 (20.02–0.08) 0.20 0.04 (20.01–0.09) 0.11

Phonemic fluency- 3 letters LBC1921 40.5 (12.1) [494] 0.01 (20.12–0.14) 0.84 20.00 (20.13–0.13) 0.99

Pooled [3587] 0.030 (20.016–0.077) 0.20 0.0; 0.78 0.035 (20.012–0.082) 0.14 0.0; 0.56

Semantic fluency NCDS 22.5 (6.3) [5189] 20.01 (20.05–0.03) 0.67 20.01 (20.05–0.03) 0.73

NSHD 23.7 (6.8) [2275] 0.00 (20.06–0.06) 0.96 0.01 (20.05–0.07) 0.80

Whitehall II 16.0 (3.7) [3103] 0.00 (20.05–0.05) 0.90 0.01 (20.04–0.06) 0.63

ELSA 20.3 (6.1) [5047] 0.03 (20.01–0.07) 0.14 0.03 (20.00–0.07) 0.08

Pooled [15614] 0.008 (20.014–0.030) 0.49 0.0; 0.59 0.013 (20.009–0.035) 0.26 0.0; 0.53

Search speed- 780 letters NCDS 333 (86) [5089] 0.01 (20.03–0.05) 0.60 0.01 (20.03–0.05) 0.59

Search speed- 600 letters NSHD 282 (76) [2264] 0.00 (20.06–0.06){ 0.95 0.01 (20.05–0.07) 0.73

Search speed- 780 letters ELSA 300 (90) [4990] 0.01 (20.03–0.05) 0.74 0.01 (20.03–0.05) 0.58

Pooled [12343] 0.007 (20.018–0.033) 0.57 0.0; 0.97 0.011 (20.014–0.036) 0.39 0.0; .0.99

Het- heterogeneity. Beta coefficients per T allele based on z-scores. NCDS: Sweep 8 (2008).
*Adjusted for age and sex.
**Additionally adjusted for height, weight and triglycerides in all models.
{Full genotype model representing a significantly better fit than the given per allele model.
doi:10.1371/journal.pone.0070045.t003

Table 4. Physical Capability by Cohort and GCKR Genotype.

Model 1* Model 2**

Variable Cohort Mean (SD) [n] Beta (95% CI) p I2%; Het p Beta (95% CI) p I2%; Het p

Grip strength, kg NSHD 37.8 (14.4) [2206] 20.01 (20.05–0.04) 0.77 0.00 (20.04–0.05) 0.84

ELSA 32.2 (11.5) [5053] 20.00 (20.03–0.02) 0.86 0.00 (20.02–0.03) 0.82

LBC1921 26.7 (9.1) [497] 20.06 (20.14–0.02) 0.16 20.06 (20.14–0.02) 0.14

Pooled [7756] 20.007 (20.027–0.014) 0.53 0.0; 0.44 20.002 (20.025–0.021) 0.87 11.8; 0.32

Timed 2.44 m
walk, m/s

ELSA 0.94 (0.29) [3222] 0.03 (20.01–0.08) 0.17 0.05 (20.00–0.09) 0.05

Timed 6 m
walk, m/s

LBC1921 1.41 (0.37) [494] 0.01 (20.12–0.13) 0.92 20.02 (20.15–0.10) 0.69

Pooled [3716] 0.029 (20.014–0.073) 0.19 0.0; 0.69 0.034 (20.015–0.084) 0.17 8.4; 0.30

Timed chair
rises"-10 rises

NSHD 5.2 (1.7) [2148] 0.01 (20.05–0.08) 0.69 0.01 (20.05–0.07) 0.76

Timed chair
rises"-5 rises

ELSA 9.7 (3.1) [4472] 0.02 (20.02–0.06) 0.24 0.03 (20.01–0.07) 0.17

Pooled [6620] 0.021 (20.013–0.054) 0.23 0.0; 0.77 0.022 (20.011–0.056) 0.19 0.0; 0.64

Variable Cohort Total n (%){ OR (95% CI) p I2%; Het p OR (95% CI) p I2%; Het p

Balance ,5s-One
legged

NSHD 87 (3.9) 1.15 (0.84–1.58) 0.37 1.18 (0.86–1.62) 0.32

Balance ,5s-Tandem ELSA 573 (11.2) 0.96 (0.84–1.10) 0.58 0.94 (0.81–1.08) 0.35

Pooled [660/7326] 0.995 (0.865–1.144) 0.94 7.9; 0.30 1.001 (0.816–1.229) 0.99 39.7; 0.20

Het- heterogeneity. Beta coefficients per T allele based on z-scores.
*Adjusted for age and sex.
**Additionally adjusted for height, weight and triglycerides in all models.
"Reciprocal of time taken in sec 6 100.
{Data within cohorts represent the number (%) of participants unable to balance for at least 5s. Data for pooled row represent the number of participants unable to
balance for at least 5s/number of participants who performed the test.
doi:10.1371/journal.pone.0070045.t004
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evidence that the raising effects of the minor allele on log-

transformed triglycerides was larger among the physically inactive

individuals by around 0.04 z-score units (pooled p-value for

interaction terms = 0.06; Figure S7). Figure S8 shows evidence for

different genotypic effects in the two groups on LDL cholesterol

(pooled p-value for interaction terms = 0.04), with a negative effect

of the minor allele observed in the physically active group when

analysed separately (pooled beta for LDL cholesterol z-score = 0.01,

p-value = 0.7, n = 7725 in inactive; beta = 20.04, p-value = 0.008,

n = 7364 in active; data not shown). There was no evidence that the

genotypic effects on the other measures differed by physical activity

status (p-values.0.09, data not shown).

Interactions between Genotype and Sex
Figures S9 and S10 show that there is evidence that the effects

of the genotype on SBP and DBP differed by sex (pooled p-value

for interaction terms = 0.002 and 0.005, respectively), with a

lowering effect of the minor allele observed in males but not

females when analysed separately (e.g. pooled beta for SBP z-

score = 20.04, p-value = 0.01, n = 8431 in males; beta = 0.04, p-

value = 0.1, n = 7199 in females; data not shown). There was also

evidence for an interaction between the genotype and sex on FEV,

fibrinogen and phonemic fluency (pooled p-values for interaction

terms = 0.04, 0.01 and 0.01, respectively; Figures S11 to S13),

though in neither sex did the effects reach statistical significance.

Discussion

We examined associations between the functional [11] GCKR

SNP rs1260326 (P446L) and several age-related phenotypes,

including previously investigated cardiometabolic biomarkers as

well as novel investigations into other phenotypes including

measures of cognitive and physical capability, in 16,251 men

and women aged between 44 and 90+ years from five UK cohorts.

We confirmed the well-reported associations between the minor

(T) allele of the SNP and higher levels of triglycerides and lower

levels of glucose. In addition, we observed an association between

the allele and lower weight and BMI, as well as higher FVC and

HDL, which was only apparent after adjusting for triglycerides. A

stronger association with glucose was observed after triglyceride

adjustment. Despite the reported associations with a range of

biomarkers [12,13,15–20], we found no strong evidence for

associations between the SNP and our other age-related pheno-

types, including measures of grip strength and verbal memory.

Our investigation into interactions between the genotype and self-

reported physical activity on our phenotypes provide further

evidence for a possible reduction in the genotypic effect on

triglycerides in physically active individuals [25], a reduction in

triglyceride-adjusted LDL cholesterol in active individuals, as well

as evidence for the triglyceride-adjusted effect on weight occurring

in physically inactive individuals only. We also found evidence for

sex differences in the genotypic effects on SBP and DBP with

reduced effects of the T allele only observed in males. These

findings may provide insight into the mechanisms of GCKR on

various phenotypes and should encourage the continued explora-

tion into the modifiers of the genotypic effects of this and other

genes.

GWAS and candidate gene studies have identified SNPs in

GCKR that are strongly associated with a range of traits. In

particular, there is very strong evidence that the T allele of

rs1260326 is associated with increased levels of triglycerides

[12,13], CRP [15] and lower glucose [10], however there is

disagreement among previous reports regarding the associations

for some other phenotypes. For instance, many studies including

one conducted in 4363 Europeans [21] found no association

between the SNP and BMI and WHR, whereas an investigation

into 2900 Han Chinese older adults found an association between

the T allele and lower BMI and waist circumference [56] which,

unlike in our study, was apparent before adjustment for

triglycerides. Furthermore, differences have been reported for

SNPs in the gene regarding associations with apolipoprotein B

[12,13], LDL [14,57] and HDL cholesterol [14,58]. With respect

to the latter, similar to our findings, a positive association with the

minor allele of rs780094 (r2 with rs1260326 is 0.93) and HDL

cholesterol was observed only after adjusting for triglycerides in a

study of around 10,000 middle-aged adults [59]; suggesting the

very strong association with triglycerides may be confounding

associations between SNPs in the gene and other traits. Our

findings for differential genotypic effects on triglycerides, LDL

cholesterol and weight by physical activity status are in line with

other reports that suggest that physical activity can modify genetic

effects [60,61] and, along with confounding by triglycerides, may

provide insight into the contributing factors for the mixed reports

for associations of SNPs in GCKR on phenotypes. We also found

evidence for an interaction between the GCKR genotype and sex

on SBP and DBP, though, a large multi-study investigation

comprising over 34,000 individuals of European ancestry found no

association between SNP rs780094 and SBP and DBP [58],

however, further investigations into these associations by sex are

required to determine whether our findings in males are true

associations.

To the best of our knowledge, this is the first report of an

investigation between SNPs in GCKR and measures of lung

function, physical and cognitive capability. The null associations

observed for physical and cognitive capability, both before and

after adjustment for triglycerides, glucose, and body size, in either

sex or physical activity group, from our large multi-cohort study

provides evidence against the importance of the gene to ageing

beyond cardiometabolic biomarkers and weight. Sample size

calculations determined that we were well-powered to detect

reasonably small effects on quantitative traits. For example,

around 5000 individuals would be required to detect a beta

coefficient of 0.06 z-score units with 80% power at the 5%

significance level, corresponding to a difference in semantic

fluency of around 0.7 points between the two homozygote groups,

assuming a standard deviation of 6, or around 1.3 kg in grip

strength, assuming a standard deviation of 11. Whilst further

larger investigations into the measures of cognitive and physical

capability could reveal some associations, our study did not

provide evidence for an effect of GCKR rs1260326 on these traits.

Therefore, GCKR appears not to be a common cause of ageing

from the phenotypes we investigated and, as yet, there appear to

be very few examples of genes that independently influence a

range of diverse ageing domains.

As adjusting for triglycerides revealed further or stronger

associations for the SNP with some traits, the lack of availability

of other biomarkers in our study may mean that we have missed

the identification of further associations. For example, a triglyc-

eride-independent effect on CRP has been observed [25] and

relationships between inflammatory biomarkers of ageing and

cognitive capability have been hypothesised [26]. Therefore,

further investigations into cognitive and physical capability in

studies that can adjust for other biomarkers may be useful.

Conclusion

The results of this large multi-cohort study of middle-aged to

older adults confirm associations between the functional GCKR

GCKR and Age-Related Phenotypes
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SNP rs1260326 (P446L) and triglycerides and glucose, suggest an

environmentally modifiable effect on triglycerides, LDL and

weight, but do not provide evidence for its relevance to other

ageing phenotypes, such as grip strength and verbal memory.

Supporting Information

Figure S1 Meta-analysis for the Associations between
GCKR Genotype and BMI. Adjusted for age, sex and

triglycerides. Coefficients based on z-scores.

(TIF)

Figure S2 Meta-analysis for the Associations between
GCKR Genotype and FVC. Adjusted for age, sex, height,

weight and triglycerides. Coefficients based on z-scores.

(TIF)

Figure S3 Meta-analysis for the Associations between
GCKR Genotype and HDL Cholesterol. Adjusted for age,

sex, height, weight and triglycerides. Coefficients based on z-

scores.

(TIF)

Figure S4 Meta-analysis for the Associations between
GCKR Genotype and Log Triglycerides. Adjusted for age,

sex, height and weight. Coefficients based on z-scores.

(TIF)

Figure S5 Meta-analysis for the Associations between
GCKR Genotype and Glucose. Adjusted for age, sex, height,

weight and triglycerides. Coefficients based on z-scores. HbA1c(%)

in NCDS, NSHD and LBC1921; glucose (mmol/L) in Whitehall

II and ELSA.

(TIF)

Figure S6 Meta-analysis for the Interaction between
GCKR Genotype and Physical Activity on Weight.
Adjusted for age, sex, height and triglycerides. Coefficients based

on z-scores. Comparing participants defined as physically active to

those physical inactive.

(TIF)

Figure S7 Meta-analysis for the Interaction between
GCKR Genotype and Physical Activity on Log Triglycer-
ides. Adjusted for age, sex, height and weight. Coefficients based

on z-scores. Comparing participants defined as physically active to

those physical inactive.

(TIF)

Figure S8 Meta-analysis for the Interaction between
GCKR Genotype and Physical Activity on LDL Choles-
terol. Adjusted for age, sex, height, weight and triglycerides.

Coefficients based on z-scores. Comparing participants defined as

physically active to those physical inactive.

(TIF)

Figure S9 Meta-analysis for the Interaction between
GCKR Genotype and Sex on Systolic Blood Pressure.
Adjusted for age, height, weight and triglycerides. Coefficients

based on z-scores. Comparing females to males.

(TIF)

Figure S10 Meta-analysis for the Interaction between
GCKR Genotype and Sex on Diastolic Blood Pressure.
Adjusted for age, height, weight and triglycerides. Coefficients

based on z-scores. Comparing females to males.

(TIF)

Figure S11 Meta-analysis for the Interaction between
GCKR Genotype and Sex on FEV. Adjusted for age, height,

weight and triglycerides. Coefficients based on z-scores. Compar-

ing females to males.

(TIF)

Figure S12 Meta-analysis for the Interaction between
GCKR Genotype and Sex on Fibrinogen. Adjusted for age,

height, weight and triglycerides. Coefficients based on z-scores.

Comparing females to males.

(TIF)

Figure S13 Meta-analysis for the Interaction between
GCKR Genotype and Sex on Phonemic Fluency. Adjusted

for age, height, weight and triglycerides. Coefficients based on z-

scores. Comparing females to males.

(TIF)

Table S1 Anthropometry and Biological Function by
GCKR Genotype (Full Results). Het- heterogeneity. Beta

coefficients per T allele based on z-scores. *Adjusted for age and

sex. **Additionally adjusted for height, weight and triglycerides in

all models, except: i) height- weight and triglycerides, ii) weight-

height and triglycerides, iii) triglycerides-height and weight. {Full

genotype model representing a significantly better fit than the

given per allele model. Whitehall II: fibrinogen from Phase V.

(DOC)
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