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A coupled 3D Discrete Elements/Iso-geometric Method

for Particle/Structure Interaction Problems
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Abstract

To utilize the geometry smoothness of isogeometric analysis (IGA) for
solid media and the effectiveness of the discrete element method (DEM) for
particulate matters, a coupled three-dimensional (3D) isogeometric/discrete-
element method is developed to model the contact interaction between struc-
tures and particles. The coupling procedure for handling interactions be-
tween isogeometric elements and discrete elements (DEs) includes global
search, local search/resolution and interaction force calculation. Since in-
teraction models for contacting particles and isogeometric elements have sig-
nificant effects on the contact forces in simulations, several commonly used
contact models, including liner, Hertz and quadratic models, are investigat-
ed. For a small ball impacting a thick plate example, it is found that the
Hertz contact model exhibits the best behaviour as the interaction law be-
tween a sphere and an isogeometric element in the elastic regime, and no
additional correction factor is needed. In addition, an assembly of randomly
arranged granular particles impacting a tailor rolled blank is also simulated
to further illustrate the applicability of the proposed method.
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1. Introduction

The discrete element method (DEM) [1] is an effective numerical method
to model granular materials (GMs) where the motion of individual particles
can be tracked. Due to this feature, DEM has been widely employed in many
engineering and industrial applications that exhibit a particulate nature [2].
When DEM is applied to problems where discrete particles are interacting
with structures, the structures are usually assumed as rigid without consider-
ing their deformation [3], while the interaction between the discrete elements
(DEs) and the structures is modeled by contact theories, e.g. the Hertz
theory. To account for the effects of the structural deformation on the DE-
structure interaction, the finite element method (FEM) can be adopted to
analyze the structures. Some coupling FEM/DEM methods are proposed to
handle GM-structure interactions [4, 5, 6, 7, 8, 9, 10, 11].

In traditional finite element formulation, the displacement-field of a struc-
ture is usually C0 continuity [12]. Therefore, non-smoothness appears at
the common edges and/or nodes of adjacent surfaces in the finite element
mesh. However, the particle-structure interaction is sensitive to the inter-
action surface between the structures and discrete particles. Besides, the
non-smoothness of an interaction surface will result in three types of DE/FE
contact situations: DE-node, DE-edge and DE-surface contact, which makes
the contact algorithm more complicated [9, 10, 13, 14, 15, 16, 17]. In addition,
the FE/DE contact force is prone to suffering the so-called time continuity
problem, especially when a DE is near FE edges and/or nodes [9, 18, 19],
and may also lead to numerical instability due to the generation of superfi-
cial energy. A possible solution to this energy instability problem within the
coupling DE/FE framework involves using energy conservation based contact
theories [5, 20, 21].

The isogeometric analysis (IGA) proposed by Hughes et al. [22] uses the
same basis functions as those in CAD [23], e.g. B-spline or NURBS basis
functions, to describe the solution field. Consequently, a CAD design model
can be used for IGA analysis, and the difference between the CAD design
and the IGA model can be minimized. Furthermore, the outer surfaces of
an IGA model have the same smoothness as the corresponding CAD model,
except at some corners and edges. Because of these advantages over the
traditional FEM, a coupled IGA/DEM method has been proposed to model
the particle-structure interaction problems [24].

The contact-force calculation has a direct influence on the interaction be-
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tween DEs and IGA elements. For linear elastic spheres in DEM, the Hertz
contact model is commonly used to calculate the contact force between a pair
of contacting elements. In FEM, however, penalty function methods are gen-
erally employed to handle the contact constraint and compute the contact
force between deformable finite elements. In IGA/DEM contact problem-
s, discrete elements are assumed rigid, while IGA elements are deformable.
Hence, it seems not clear at this stage what interaction laws should be em-
ployed to compute contact forces between DEs and IGA elements. Therefore,
several commonly used contact models, including linear, Hertz and quadratic
models, which can be viewed as penalty function based methods in the con-
text of FE contact mechanics, will be investigated to assess their suitability
as interaction models for contacting between DEs and IGA elements.

The paper is organized as follows. Section 2 introduces NURBS basis
functions and isogeometric approximations. The basic formulations of spher-
ical discrete element models for particulate systems are briefly reviewed in
Section 3. Section 4 describes the approach that couples DEs and IGA ele-
ments, and focuses on the local contact search/resolution between a sphere
and a NURBS surface. Different contact interaction models used for comput-
ing contact forces between DEs and IGA elements are assessed in Section 5
for an impact problem, and the best interaction model is identified accord-
ingly. Section 6 presents a numerical example to further demonstrate the
applicability of the proposed coupling approach. Conclusions are drawn in
Section 7.

2. Isogeometric method

In order to construct a basis function, a knot vector k I for the I th dimen-
sion can be defined as

k I =

{
ξI1 , . . . , ξ

I
pI+1︸ ︷︷ ︸

(pI+1)terms

, ξIpI+2, . . . , ξ
I
i , . . . , ξ

I
nk
I
, ξInk

I+1, . . . , ξ
I
mk

I︸ ︷︷ ︸
(pI+1)terms

}
(1)

where ξIi denotes the ith knot. k I is an ordered sequence of nondecreasing
parameter values, i.e. ξIi ≤ ξIi+1, i = 1, . . . , nk

I + pI . Here, pI is the degree of
the basis functions, and nk

I denotes the total number of the accompanying
control nodes in the I th dimension. ne

I = pI + 1 is the node number of each
control mesh in the I th direction, andmk

I = nk
I+ne

I denotes the value numbers
of the knot vector k I . The parameter space for a 3D IGA element (i, j, k)
can be defined as the non-zero knot spans [ξ1i , ξ

1
i+1), [ξ

2
j , ξ

2
j+1) and [ξ3k, ξ

3
k+1).
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2.1. B-spline basis functions

Given a knot vector k I , the B-spline basis function ϕi,pI (ξ
I), can be de-

fined recursively by the Cox-de-Boor formula [25, 26] as

ϕi,pI (ξ
I) =

ξI − ξIi
ξIi+pI

− ξIi
ϕi,pI−1(ξ

I)+
ξIi+pI+1 − ξI

ξIi+pI+1 − ξIi+1

ϕi+1,pI−1(ξ
I), for pI ≥ 1 (2)

with the zeroth degree basis function defined as

ϕi,0(ξ
I) =

{
1, if ξIi ≤ ξI < ξIi+1

0, otherwise
(3)

When evaluating a basis function, some repeating knots may result in a
quotient of form �/0 which is defined as zero. The non-negative ϕi,pI (ξ

I) is
simplified as ϕi(ξ

I) below for conciseness. ϕi(ξ
I) is infinitely differentiable

in the interior of any non-zero knot span (ξIi , ξ
I
i+1), but is (pI − kI) times

continuously differentiable at a knot ξIi where kI is the knot multiplicity. In
any given knot span [ξIi , ξ

I
i+1), among all the basis shape functions ϕi(ξ

I),
there are at most pI+1 nonzero functions{

ϕm(ξ
I) ̸= 0, for m = (i− pI), . . . , i

ϕm(ξ
I) = 0, for m < (i− pI) or m > i

(4)

2.2. NURBS basis functions, surface and element

A NURBS basis function Ri(ξ
I) is defined from B-spline basis functions

as

Ri(ξ
I) =

ϕi(ξ
I)ωi

nk
I∑

m=0

ϕm(ξI)ωm

(5)

where ωi > 0 is the ith weight. Combining with Eq. (4), Ri(ξ
I) in the knot

span [ξIi , ξ
I
i+1) can be represented as

Ri(ξ
I) =

ϕi(ξ
I)ωi

i∑
m=i−pI

ϕm(ξI)ωm

(6)

In this knot span, only pI + 1 basis functions may be greater than zero, i.e.

Ri−pI (ξ
I), . . . , Ri(ξ

I) ≥ 0, for knot span [ξIi , ξ
I
i+1) (7)
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By linearly combining the NURBS basis functions with the control nodes,
an arbitrary point in or on a NURBS geometry can be determined. For
instance, a NURBS curve, Ci(ξ

1), can be constructed by

Ci(ξ
1) =

i∑
m=m0

Rm(ξ
1)xm (8)

where xm is the position vector of the control node m. To illustrate this con-
struction, a two-dimensional (2D) second-degree NURBS curve is displayed
in Fig. 1, where Ni is the ith control node and Ci denotes the ith section of
this NURBS curve. The basis functions, parameter space, curve sections and
control nodes are depicted in Table 1.

It can be seen from Fig. 1 and Table 1 that for IGA, control meshes
generally do not coincide with the constructed geometry (curve, surface or
volume), and control nodes may locate outside or inside the geometry con-
structed from the control mesh. However, for FEM, element nodes are always
on its constructed geometry. This difference between FEM and IGA is main-
ly caused by different natures of their basis functions. The basis functions of
FEM are usually interpolatory, while the basis functions of IGA, e.g. B-spline
and NURBS, are usually not.

C1

C2

C3

C4

N1

N2
N3

5

N6

NN4

Figure 1: An opened second-degree NURBS curve with the knot vector k I =
{ξ11 , ξ12 , ξ13 , ξ14 , ξ15 , ξ16 , ξ17 , ξ18 , ξ19}, with repetitive knots at the two ends ξ11 = ξ12 = ξ13 ,
ξ17 = ξ18 = ξ19

In three dimensions, an arbitrary point in a NBRBS volume can also be
determined from the control nodes as

Vijk(ξ
1, ξ2, ξ3) =

i∑
m=m0

j∑
n=n0

k∑
l=l0

Rmnl(ξ
1, ξ2, ξ3)xmnl (9)
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Table 1: The basis functions, parameter space, curve sections and control nodes

Curve C1 Curve C2 Curve C3 Curve C4

Control node N1, N2, N3 N2, N3, N4 N3, N4, N5 N4, N5, N6

Basis function R1, R2, R3 R2, R3, R4 R3, R4, R5 R4, R5, R6

Parameter space [ξ13 , ξ
1
4) [ξ14 , ξ

1
5) [ξ15 , ξ

1
6) [ξ16 , ξ

1
7)

where m0 = i− p1, n0 = j− p2, l0 = k− p3; xijk denotes the position vectors
at the control nodes; and Rijk can be rewritten as

Rijk(ξ
1, ξ2, ξ3) =

ϕi(ξ
1)ϕj(ξ

2)ϕk(ξ
3)ωijk

i∑
m=m0

j∑
n=n0

k∑
l=l0

ϕm(ξ1)ϕn(ξ2)ϕl(ξ3)ωmnl

. (10)

By inheriting the geometric parameters from the NURBS volume, and
then setting ξ3 = 0 or 1, a NURBS surface patch can be fully obtained [27].
For instance, the (lower) surface of the NURBS element (i, j, k) Sij(ξ

1, ξ2)
can be determined by setting ξ3 = 0 and substituting Eq. (10) into Eq. (9)
as

Sij(ξ
1, ξ2) =

i∑
m=m0

j∑
n=n0

Rmn(ξ
1, ξ2)xmn (11)

where xmn denote the position vectors at the control nodes for the surface
ξ3 = 0 and

Rmn(ξ
1, ξ2) =

ϕm(ξ
1)ϕn(ξ

2)ωmn

i∑
M=m0

j∑
N=n0

ϕM(ξ1)ϕN(ξ2)ωMN

(12)

is the NURBS surface shape function associated with the control node (m,n).
Here, m denotes the mth node in the ξ1 direction, while n denotes the nth one
in the ξ2 direction; and ωmn is the weighting factor of the control node (m,n)
for the surface ξ3 = 0. In order to evaluate the projection of a point on the
NURBS surface (see Section 4.2), the derivatives of the NURBS surface with
ξ3 = 0 can be calculated as

∂Sij(ξ
1, ξ2)

∂ξI
=

i∑
m=m0

j∑
n=n0

∂Rmn(ξ
1, ξ2)

∂ξI
xmn (I = 1, 2) (13)
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where

∂Rmn(ξ
1, ξ2)

∂ξI
=

ωmn

ω

{∂[ϕm(ξ
1)ϕn(ξ

2)]

∂ξI
−Rmn(ξ

1, ξ2)
∂ω

∂ξI

}
(14)

with

ω =
i∑

m=m0

j∑
n=n0

ϕm(ξ
1)ϕn(ξ

2)ωmn (15)

2.3. The governing equations for IGA element

The governing equations for an IGA element can be represented as

Meüe = f ext
e − f int

e (16)

where ue denotes the nodal displacement vector of the control mesh; üe

denotes the nodal acceleration vector; f ext
e is the external nodal force vector;

and f int
e is the internal nodal force vector calculated by

f int
e =

∫
Ve

BTσdV (17)

where σ = [σ11, σ22, σ33, σ23, σ13, σ12] is the Voigt notation description of the
stress tensor. For an IGA element (i, j, k), the strain matrix B can be
represented as

B = [Bm0n0l0 , . . . ,Bmnl, . . . ,Bijk] (18)

in which m0 = i− p1, n0 = j− p2, l0 = k− p3; and Bmnl can be expressed as

Bmnl =


∂Rmnl

∂x1
0 0 0 ∂Rmnl

∂x3

∂Rmnl

∂x2

0 ∂Rmnl

∂x2
0 ∂Rmnl

∂x3
0 ∂Rmnl

∂x1

0 0 ∂Rmnl

∂x3

∂Rmnl

∂x2

∂Rmnl

∂x1
0


T

(19)

3. Contact model for spherical elements

Various contact models can be employed to handle the interaction of
granular materials for a wide range of applications [28, 29]. In the present
work, only spherical discrete elements are considered and no friction force
will be taken into account.

When two spheres i and j are in contact, as shown in Fig. 2, the contact
model based on the Hertz-Mindlin theory is used to calculate the contact
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Di

Dj

DE i

DE j

ri

rj

Cd

e δdn

Figure 2: Two discrete elements in contact

force. The contact force in this model is usually divided into normal and
tangential contact components. The normal contact force fdn for the element
i can be calculated based on the Hertz model [30] as

fdn =
4

3
E∗(r∗∥δdn∥1/2)δdn (20)

where δdn is the overlap vector determined by

δdn = (ri + rj − ∥di − dj∥)e (21)

in which e = (di − dj)/(∥di − dj∥) is a unit vector passing through the
DE centroids; and ri and rj are the radii of DEs i and j respectively. The
equivalent radius r∗ and Young’s modulus E∗ are defined as

r∗ =
rirj

ri + rj
, (22)

E∗ =
EiEj

(1− ν2
i )Ej + (1− ν2

j )Ei

(23)

where Ei and Ej are the Young’s moduli of the two DEs, and νi and νj denote
their Poisson’s ratios.
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The tangential contact force fds for the element i can be determined based
on the Mindlin theory as

fds =
16

3
G∗(r∗|δdn|)1/2δds. (24)

where G∗ and δds are, respectively, the equivalent shear modulus and tan-
gential relative displace and are defined as

G∗ =
GiGj

(2− νi)Gj + (2− νj)Gi

, (25)

δds =

∫ t2

t1

v′sdt (26)

where Gi and Gj are the shear moduli of the two DEs; v′s is the relative
velocity at the contact point Cd; and [t1, t2] is the contact time interval.

4. Coupling approach

The coupling between IGA elements and discrete elements are divided
into three stages: global search, local search/resolution and contact force
computation.

4.1. Global search

The global search aims to detect potential contact pairs between IGA ele-
ments (or NURBS surfaces) and discrete elements based on their axis aligned
bounding box (AABB) representations. This step crucially depends on the
strong convex hull property of NURBS surfaces which states that a NURBS
surface is fully enclosed in the convex hull of its control nodes. Therefore,
the bounding box of a NURBS surface can be obtained as the bounding box
of its control points. Hence, by detecting the overlap between the bounding
boxes of DEs and the convex hulls of NURBS surfaces, the potential contact
pairs between DEs and NURBS surfaces can be attained. To illustrate this
clearly, a two-dimensional (2D) case is shown in Fig. 3, where H2 denotes
the convex hull of IGA element 2. When the DE bounding box overlaps with
that of H2, the DE and IGA element 2 constitute a candidate contact pair.

To handle the contact problem involving a large number of DEs and IGA
surfaces, the CGRID method [21, 31] is extended to detect bounding boxes
that are in overlap. This detection process is often time-consuming so it is
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desirable to perform the detection only when necessary rather than at every
time step. To achieve this, the bounding boxes of both DE radii and NURBS
surfaces are extended by (small) buffer zones (see Fig. 3).

C1

C2

C3

C4

N1

N2

N3

5

N6

N

H 2

N4

AABB of H 2

DE’s AABB

Buffer zone

DE

Buffer zone

Figure 3: Bounding boxes of a DE and a NURBS element - the convex hull contains
the corresponding second-degree NURBS curve (degree p1 = 2, node number of a control
polygon ne

1 = p1 + 1 = 3)

4.2. Local search/resolution

Based on potential candidate contact pairs between DEs and NURBS
surfaces obtained in the previous global search stage, the actual contact state
between a contact pair will be resolved in the local resolution stage based
on their true geometric shapes. When the pair is in overlap, their contact
feature, including contact position, penetrations and normal direction, will
be determined.

In isogeometric analysis, commonly used local contact methods mainly
fall into three groups, the Mortar method [32, 33, 34], the Gauss-point-to-
surface (GPTS) method [27, 35, 36] and the node-to-surface (NTS) method
[37]. Because of the particulate nature of GMs, the NTS method is adopted
for the local search/resolution for an IGA/DEM contact pair.

Fig. 4 shows a possible contact scenario between a sphere (DE) and a
NURBS surface. In this figure, D is the center of the DE, C denotes the
closest projection of D onto the NURBS surface, and x and d denote the
position vectors of C and D, respectively. The DE center, D, is treated as
the slave node in the NTS method.
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D

C

Control Node

Structure line

Figure 4: The closest projection of a DE center on a NURBS surface

The closest projection C, i.e. x (ξ1c , ξ
2
c ), is determined by solving the

following equations simultaneously

∂x

∂ξ1
|(ξ1c ,ξ2c ) · [d − x (ξ1c , ξ

2
c )] = 0 (27)

∂x

∂ξ2
|(ξ1c ,ξ2c ) · [d − x (ξ1c , ξ

2
c )] = 0 (28)

where ξ1c and ξ2c are the unknown parameter coordinates at the projection
on the NURBS surface.

The Brent iteration method [38, 39] is adopted to solve Eqs. (27) and
(28) simultaneously. Because of its local convergence nature, the initial values
of the parameter coordinates, ξ1c and ξ2c , need to be estimated by a robust
method. Because only the squared distance function sd = ∥d −x (ξ1c , ξ

2
c )∥2 is

needed, rather than its derivatives [40, 41], the simplex method is considered
to be a robust optimization method, and thus is employed for the initial
value estimation of the Brent iteration. Refer to [24] for more detail on how
to solve Eqs. (27) and (28).

Once the parameter coordinates ξ1c and ξ2c are determined, the projection
xc = x (ξ1c , ξ

2
c ) on the closest NURBS patch (i, j) can be computed as

xc =
i∑

m=m0

j∑
n=n0

Rmn(ξ
1
c , ξ

2
c )xmn; m0 = i− p1;n0 = j − p2 (29)
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where m and n denote, respectively, the mth and nth control nodes of the
surface patch in both ξ1 and ξ2 directions; Rmn(ξ

1
c , ξ

2
c ) is the shape-function

value at the projection; and xmn denotes the position vector of the control
node.

In comparison with the DE radius, the penetration between a DE and a
NURBS surface is generally small. Hence, the DE centroid is always assumed
to locate outside the NURBS volume of IGA elements. The relative position
of a DE and a NURBS surface can be characterized by the penetration vector
δ

δ =

{
(r − |xd − xc|)n, r − |xd − xc| > 0
0, otherwise

(30)

where r denotes the DE radius, and n = (xd − xc)/∥xd − xc∥ is the unit
normal vector at the projection.

The central difference method, as an explicit scheme, is adopted for the
subsequent time integration of the whole system. Since its critical time step is
usually very small, the projection may in general shift slightly on the NURBS
surface in consecutive time steps. Hence, it is advisable to assign the initial
parameter values of the Brent method in the current time step from the
converged value in the last time step. By employing this initial estimation,
the Brent method usually converges in five iterations or less. Consequently,
the simplex iteration is unnecessary to be preformed at every time step.

4.3. Contact force computation

After the projection of a DE centroid on a NURBS surface and the pen-
etration vector have been computed in the local search/resolution stage, the
contact force between the DE and the IGA element can be calculated. In
discrete element methods, the deformation of discrete elements is equivalent
to their overlaps, while the discrete element geometries remain unchanged.
The contact force between discrete elements are calculated based on an ap-
propriate contact interaction law. The Hertz contact model is accurate for
linear elastic spheres with a (relatively) small impact velocity.

In contrast, in the FEM or IGA contact problem, elements are general-
ly deformable, and the contact interaction between contacting elements is
handled by using a penalty based method, which essentially aims to approxi-
mately enforce the impenetration condition. However, the contact interaction
between a (nominally) rigid discrete element and a deformable isogeometric
element does not fall in either of the above categories. Hence, it is not appar-
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ent what interaction model should be adopted to compute the contact forces
between a DE sphere and an IGA element.

To address this important issue, some commonly used contact models
including the linear, Hertz and quadratic models, which could also be viewed
as penalty based models, are employed to calculate the contact forces:

Linear: fL =
4

3
λE∗(r∗)1/2δ (31)

Hertz: fH =
4

3
λE∗(r∗∥δ∥)1/2δ (32)

Quadratic: fS =
4

3
λE∗(r∗)1/2∥δ∥δ (33)

where the equivalent Young’s modulus E∗ is calculated from the material
properties of the surface and the DE; r∗ is the equivalent radius; and λ is a
corrective constant, termed the penalty factor. As the curvature radius of
the NURBS surface at the contact point is usually much larger than the DE
radius, thus from Eq. (22) the equivalent r∗ can be approximated to be the
DE radius r.

The assessment of the accuracy of these contact interaction models for
an impact problem will be performed in the next section.

Because the penetration vector δ points to the DE centroid, the contact
force f acts through the DE centroid without generating a torque. The
reciprocal reaction force acting on the IGA element can be distributed to the
corresponding control nodes by using the nodal shape functions. Because
only the control nodes of the contact surface have nonzero shape-function
values, the contact force should only be distributed to these control nodes,
and the corresponding distributed contact forces fmn are given by

fmn = −Rmn(ξ
1
c , ξ

2
c )f (34)

where Rmn(ξ
1
c , ξ

2
c ) is the shape-function value at the contact point for the

control node at the mth and nth positions along the ξ1 and ξ2 directions
respectively.

Because of the C0 continuity nature of a FE mesh surface, a DE/FE
contact method may have to deal with several distinct contact cases: DE-
surface, DE-edge and/or DE-node contact [9, 16, 10, 42], and thus may lead to
the time discontinuity of the contact force. The IGA/DEM method proposed
here, however, only needs to handle the the contact problem between DEs
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and smooth NURBS surfaces. As a result, the computed contact forces are
always time-continuous, if ignoring contacts between DEs and sharp corners
or C0 edges of a NURBS patch or patches.

5. Assessment of contact interaction models for coupled IGA/DEM

In this section, the accuracy of the contact models listed in Eqs. (31),
(32) and (33) will be assessed by a benchmark problem where a small linear
elastic ball impacts with a thick elastic plate.

This problem has long been investigated. Its analytical solution has been
derived based on the Hertzian impact theory and elastic wave propagation,
and has also been verified by experiments. The impact force history is very
well approximated by a function of half sine as [43, 44]

f(t) =

{
fmaxsin(πt/tc)

3/2, 0 ≤ t < tc
0, t ≥ tc

(35)

where the maximum force fmax is

fmax = 1.917ρ
3/5
b r2b(πE

∗)2/5V
6/5
0 ; (36)

while the duration of the contact interaction tc is determined as

tc = 4.53rb

(
4ρb
3E∗

)2/5

V
−1/5
0 (37)

In Eqs. (36-37), E∗ is the equivalent Young’s modulus calculated from the
two contact bodies; ρb rb and V0 are the density, radius and initial velocity
of the ball respectively.

The square plate is assumed homogeneous, and is fully fixed on its four
sides. The dimensions, material properties, initial conditions of the impact
system are depicted in Table 2. Initially, the ball with the velocity of 1.0 m/s
is impacting with the center of the top-surface of the plate.

In the simulation, the plate is analyzed using IGA, while the ball is mod-
eled by one spherical discrete element, as shown in Fig. 5. The IGA region
is divided into 31 × 31 × 8 = 7688 IGA elements of degree two with the
same knot span in each direction. The interaction between the DE and the
IGA region is dealt with by the IGA/DEM coupling approach proposed. For
each IGA element, the Gaussian integration is employed with three points

14

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 2: The geometry, material properties and initial conditions of the impact system

Density
(kg/m3)

Young’s
modulus

Poisson’s
ratio ν

Radius
or width

Thickness Initial
velocity

Ball 2480 74.6 GPa 0.2285 1.0 mm - 1.0 m/s
Plate 7850 210.6 GPa 0.2860 610 mm 50.1 mm 0.0 m/s

Figure 5: IGA/DEM model of small impacting massive plate

in each direction of the parameter space. The time step is chosen to be 10−5

ms, which is much smaller than the corresponding critical time steps of the
central difference method.

Because the penalty factor λ in each contact model to be evaluated has
a direct influence on computational results, different values of the penalty
factor will also be chosen to observe its influence on the results.

5.1. Hertz contact model

The Hertz contact model is first considered. The time histories of the
contact force with different penalty factors λ = 0.6, 0.8, 1.0 and 1.2 are com-
pared with the analytical solution and displayed in Fig. 6. In this figure, the
contact-force history with the penalty factor λ= 1.0 is almost identical to the
analytical one. Besides, the curve of the contact force with a larger penalty
factor tends to reach a higher peak value in a shorter time, as expected.

The impact ball with different Young’s moduli and Poisson’s ratios are
also considered, but the other parameters and conditions are kept unchanged
as shown in Table 2. The contact-force histories of the impact ball with Y-
oung’s moduli E = 50, 74.6, 100, 200 and 300 GPa and the penalty factor
λ = 1.0 are compared with the analytical solutions and displayed in Fig. 7.
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Figure 6: Comparison of the time histories of the contact force with different penalty
factors - Hertz contact model
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Figure 7: Comparison of the time histories of the contact force with different Young’s
moduli of the impact ball - Hertz contact model (λ = 1.0)
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The results show that the numerical results with λ = 1.0 are in good agree-
ment with the analytical solutions. The figure also demonstrates that the
Young’s modulus of the discrete sphere has great effects on the contact force
between a DE and an IG element. It is clear from Eqs. (23) and (32) that the
contact model with a larger Young’s modulus of DE will result in a higher
peak value of the force and a shorter impact duration.

The contact-force histories of the impact ball with Poisson’s ratios ν= 0.1,
0.2285, 0.3 and 0.4 and the penalty factor λ = 1.0 are compared with the
analytical solutions and shown in Fig. 8. The numerical results agree very
well with the analytical solutions. This figure also shows that the Poisson’s
ratio of DE has relatively minor effects on the IGA/DEM contact force,
although a smaller Poisson’s ratio tends to results in a lower peak value and
a longer duration of the contact-force curve.
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Figure 8: Comparison of the time histories of the contact force with different Poisson’s
ratios of the impact ball - Hertz contact model (λ = 1.0)

5.2. Linear and quadratic contact models

Both linear and quadratic models are considered next. The contact force
histories computed from the two models with different penalty factors λ are
shown in Figs. 9 and 10 respectively. Note that the values of λ are spe-
cially selected so that the resulting contact forces are close to the analytical
solution.

Fig. 9 clearly demonstrates that the penalty factor λ has a significant
effect on the contact force. In general, the linear contact model has a steeper
slope than the analytical one at the beginning and ending of the contact.
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When the penalty factor is specially chosen such that the linear model obtains
the same impact duration as the analytical solution, the corresponding peak
value is lower than the true value. On the other hand, when the linear
model with λ = 0.055 reaches the same peak value as the analytical one, the
corresponding contact duration is much shorter. In other words, the results
demonstrate that the peak and duration calculated from the linear model can
hardly agree with the analytical ones simultaneously. Thus, it is concluded
that the linear penalty function model seems not suitable for the contact
force calculations between DEM and IGA.
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Figure 9: Comparison of the time histories of the contact force calculated from linear
penalty function with different penalty factors - the linear contact model
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Figure 10: Comparison of the time histories of the contact force calculated from quadratic
penalty function with different penalty factors - the quadratic contact model
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For the quadratic model as shown in Fig. 10, the slope of its contact-force
curves is much gentler than the analytical one at the beginning and ending
of the contact. The peak value and impact duration of the quadratic model
cannot match those of the analytical ones at the same time. Again, it is
clear that the quadratic contact model seems not suitable for the contact
force calculations between DEM and IGA.

Finally, the contact-force histories from the three contact models are
shown in Fig. 11 and compared with the analytical solution. In this fig-
ure, the penalty factor λ used for each contact model considered is chosen to
result in the same peak force value as the analytical one. It is concluded that
only the Hertz contact model with the penalty factor λ = 1.0 can achieve a
very good agreement with the analytical result for the benchmark example.

Note that the plate in this example is fairly thick to make the analytical
solution valid. It is not clear, however, that the Hertz contact model will still
be equally applicable for thin plates. In this case, the impact duration may
be comparably larger than the travel time of the stress wave before reflecting
during the impact. Possible multiple reflection of the stress wave along the
thickness of the plate makes it difficult to derive an analytical solution that
can be employed to further assess the suitability of various contact models for
the coupled modelling of both discrete elements and IGA elements. Further
work is therefore worth being pursued.
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Figure 11: Comparison of the time histories of the contact force calculated from the three
models with the analytical solution
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6. Illustrative example

In order to demonstrate the applicability and robustness of the proposed
coupling method, one illustrative example involving contacts between DEs
and deformable NURBS surfaces is simulated. The example involves gran-
ular particle materials impacting a tailor rolled blank (TRB) plate. The
dimensions and other geometric details of the plate are shown in Fig. 6.

3488 spherical particles with radii ranging from 0.4 to 0.6 mm are first
randomly packed in a cylindrical domain above the TRB. There is about 0.1
mm gap between the lowest particles and the top control nodes of the TRB
in the central region. The particles are released with an initial velocity of
10.0 m/s to impact the plate.

The material properties of the particles and the TRB are listed in Table
3. The particles are modeled as spherical discrete elements and the TRB
is modeled by 1332 second-degree solid elements of IGA. The Hertz contact
model without the penalty factor correction is applied to account for both
DE/DE and DE/IGA contact interactions. The time step used in the central
difference scheme for the time integration of the dynamic system is set to be
10−5 ms which is smaller than the required critical time step .
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Figure 12: The dimensions of granular particles impacting a TRB system (unit: mm)

Both the total impact force acting on the TRB and the displacement in
the vertical direction at the center of the TRB bottom surface are displayed
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Table 3: Radius, initial velocity of particles, and material properties of particles and TRB

Initial velocity of particles, V 10.0 m/s
Particle radius, r 0.4 ∼ 0.6 mm
Mass density of particles and TRB, ρ 10−2 g/mm3

Young’s modulus of particles and TRB, E 1.0 GPa
Poisson’s ratio of particles and TRB, ν 0.0

against time in Fig. 13. The impact force initially increases from the be-
ginning to about 0.2 ms, then fluctuates and finally decreases. In the time
interval [0.2, 1.0]ms, the impact force still fluctuates but remains relatively s-
mall. From 0 ms to 1.0 ms, the displacement increases because most particles
maintain in contact with the TRB instead of bouncing back.

The configurations of the particles and the velocity distributions are dis-
played in Fig. 14 at six different time instants. As the particles move down-
wards, some lower particles are in contact with the crest area of the top sur-
face of the TRB first and the velocities of these particles begin to decrease as
shown in Fig. 14(a). Then more particles come into contact with the TRB
top surface as shown in Fig. 14(b). Afterwards, the particles scatter around
because of the uneven TRB top surface and random initial arrangement of
particles, as shown in Figs. 14(c) and (d). Subsequently, more particles s-
catter in a larger area and are in contact with the top surface of the TRB
(see Fig. 14(e)-(f) ). In the whole impact process, no large penetration is
observed between the particles and the TRB.

7. Conclusions

A three-dimensional coupled isogeometric/discrete-element method has
been developed to take the advantages of the geometry smoothness in iso-
geometric analysis and the effective handling of particle contacts in discrete
element modelling. In the coupling phase, candidate contact pairs are de-
tected by modifying the CGRID method, and the exact contact position
between a spherical discrete element and a NURBS surface is obtained by
modifying the simplex and Brent iterations in the local search/resolution.
To calculate the contact force between a DE and an IGA element accurately,
several contact models, including linear, Hertz and quadratic models with
penalty factor correction, have been investigated. Based on the simulation
of a benchmark problem - a ball impacting a thick plate, it is found that
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Figure 13: The impact force and displacement history of TRB

(a) t = 0.03 ms (b) t = 0.11 ms

(c) t = 0.30 ms (c) t = 0.50 ms

(d) t = 0.70 ms (e) t = 0.90 ms

Figure 14: The velocity distributions in the vertical direction and the particle configura-
tions at six time instants: (a) t = 0.03 ms, (b) t = 0.11 ms, (c) t = 0.3 ms, (d) t = 0.5
ms, (e) t = 0.7 ms, (f) t = 0.9 ms
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the Hertz contact model agrees very well with the analytical solution, and
no penalty factor correction is needed. The applicability and robustness of
the coupling approach has also been demonstrated through the simulation of
an example involving random arranged granular particles impacting a tailor
rolled blank in the elastic regime.

It is noted, however, that it is not clear if the Hertz contact model will
still be accurate for thin plate cases. Furthermore, more work needs to be
done to establish what contact models should be adopted when elasto-plastic
deformation of the structure needs to be considered.
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