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Abstract   20 

Background: Previously developed in vitro cultures of the human retina have been solo 21 

or dual cell cultures. We developed a triple-cell culture in vitro model utilizing a 22 

membrane system to produce a better representation of a functional and morphological 23 

human retina.  24 

Methods: Retinal microvascular endothelial cells (HRMVEC/ACBRI181, Cell systems), 25 

retinal pigment epithelium cells (RPE/ARPE-19, ATCC) and Müller glial cells (MIO-M1, 26 

UCL) were grown in a triple-culture. Our optimized triple-culture media contained a mix 27 

of specific endothelial medium and high glucose Dulbecco's Modified Eagle's medium 28 

(DMEM), where all three layers were viable for up to 5 days. Co-culture effect on 29 

morphological changes (cell staining) and gene expression of functional genes (pigment 30 

epithelial derived factor (PEDF) and vascular endothelial growth factor (VEGF)) were 31 

measured from RNA via real time PCR. Expression of tight junction protein 1 (TJP1) was 32 

measured in RNA isolated from ARPE-19s, to assess barrier stability.  33 

Results: The triple-culture promotes certain cell functionality through up-regulation of 34 

TJP1, increasing PEDF and decreasing VEGF expression highlighting its importance for 35 

the assessment of disease mechanisms distinct from a solo culture which would not 36 

allow the true effect of the native microenvironment to be elucidated. 37 

Conclusion: This model’s novelty and reliability allows for the assessment of singular 38 

cellular function within the retinal microenvironment and overall assessment of retinal 39 

health, whilst eliminating the requirement of animal-based models. 40 

Key words; Human retina, Cell culture, Triple-culture, In vitro model 41 

 42 
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1. Introduction 43 

The human eye is a complex organ that is comprised of three main areas; the cornea, 44 

lens, and the retina. The retina is a highly specialised organ of photoreception, involved 45 

in translating light energy into action potentials which are relayed to the brain, where 46 

the information is processed into vision. The integrity of the retina is dependent upon 47 

its immediate microenvironment, which is reliant on cell-cell interactions of the 48 

different human retinal cellular components. Disruption of which results in a variety of 49 

retinal diseases including diabetic retinopathy (DR)1. DR is associated with the 50 

breakdown of both the inner blood-retinal-barrier (BRB)2, 3 and more recently linked to 51 

the outer BRB4. The inner BRB is composed of tight junctions between retinal capillary 52 

endothelial cells and the outer of tight junctions between the retinal pigment epithelial 53 

cells (RPE). The inter-relationship between vascular and endothelial cells that form the 54 

BRB is vital maintaining a specialized environment of the neural retina.  55 

Current findings show that BRB breakdown is multifactorial, including;  impaired 56 

endothelial cells, pericyte demise, thickening of capillary basement membrane and the 57 

alteration of tight junctions between RPE and endothelial cells5. Additionally RPE, 58 

endothelial and other cell types within the retina can be responsible for the release of 59 

neurotrophic factors that can alter the integrity of the BRB, such as vascular endothelial 60 

growth factor (VEGF) and pigment endothelial derived factor (PEDF)6-8. These factors 61 

can also be released from Müller cells8-10, which are a subset of the retinal macroglia 62 

that are strongly linked to RPEs, establishing structural connections with the subretinal 63 

space and choroidal vasculature8, 11. It is evident that research into DR requires a 64 
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complex system that can encompass the interaction of all cells present within both the 65 

inner and outer BRB.  66 

Currently research into retinal disease utilizes two main methodologies; in vitro 67 

analysis of solo or dual cell cultures, and animal models. The current literature and 68 

project designs relating to RPE cultures are often limited to them encompassing a dual-69 

culture system with endothelial cells. The culture formations published comprise of cells 70 

either in direct contact12, sandwiched with extracellular matrix proteins13, 14, or cells 71 

cultured on either side of a membrane15-17. Alternatively, there are published models 72 

that encompass a dual system where these cells do not come into contact18. There are 73 

very few multi-culture systems within literature, with those published comprising of 74 

mixed species cell sources19. We aim to expand on current in vitro models to develop a 75 

triple-culture which utilizes both human cell lines and primary cells, to demonstrate a 76 

better representation of a functional and morphological human retina.  77 

 78 

2. Methods 79 

Cell line and isolated primary cell culture 80 

Retinal pigment epithelial cells 81 

RPE were authenticated and sourced as a commercially available cell line; ARPE-19 82 

(ATCC® CRL-2302, USA). Upon receipt were grown in Dulbecco’s Modified Eagle’s 83 

medium (DMEM) containing glutamine supplemented with 10% fetal bovine serum 84 

(FBS) and 1% penicillin-streptomycin (Invitrogen-Gibco, Rockville, MD). Cells were 85 
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incubated at 37°C at 5% CO2, with media changed every 2-3 days and sub-cultured (1:3 86 

split) at 80% confluency with 0.05% trypsin-EDTA (Invitrogen-Gibco, Rockville, MD).  87 

Müller glial cells 88 

Human Moorfield Institute of Ophthalmology-Müller 1 (MIO-M1) cell line were isolated, 89 

authenticated and purchased from Professor Limb (Institute of Ophthalmology and 90 

Moorfields Eye Hospital,  UK)20.Upon arrival, cells were cultured in the same media as 91 

ARPE-19, incubated at 37°C at 5% CO2 and media changed every 2-3 days.  92 

Retinal microvascular endothelial cells 93 

Primary human retinal microvascular endothelial cells (HRMVEC) are commercially 94 

available, sourced from Applied Cell Biology Research Institute (ACBRI 181, Cell Systems, 95 

Kirkland, USA).  All experimental procedures completed using primary cells were in 96 

compliance with the Human Tissue Act. Cells were grown in Cell Systems Culture (CS-C) 97 

medium, incubated at 37°C at 5% CO2, with media changed every 2-3 days. Cells were 98 

passaged when confluent using Cell Systems Passage Reagent (all reagents sourced from 99 

Cell Systems, Kirkland, USA) and used in experiments at passage 8.  100 

 101 

Co-culture formation 102 

To assess cell viability in a microenvironment, cells were grown in solo, dual (MIO-M1 & 103 

ARPE-19, ARPE-19 & HRMVEC and MIO-M1 & HRMVEC) and triple formations (ARPE-19, 104 

MIO-M1 & HRMVEC), using the following protocol.  105 

 106 

System set-up 107 
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During solo-, dual- and triple-culture formations all cell types were grown in the same 108 

location as seen within triple-culture schematic (Figure 1). Multi-culture system utilizes 109 

a 0.4 µm pore size polyester (PET) Transwell® membrane with a 10 µm membrane 110 

thickness (Corning, Thermo Scientific, UK). Cells were plated according to Figure 1, using 111 

an in-house optimized multi-culture media (MC media) consisting of 2:1 DMEM with 112 

glutamine: CS-C medium.   113 

 114 

Figure 1. Triple-culture schematic for ARPE-19 (R), MIO-M1 (M) and HRMVEC (E). Annotated medium is 115 

the culturing medium present in both well insert and culture dish well as described in methodology, multi- 116 

culture. (MC).  117 

 118 

Cell seeding and maturation 119 

ARPE-19 was grown on the base of a 6-well culture dish, as shown (Figure 1). Cells were 120 

prepared for all experiments at passage 6, split ratio 1:3, requiring maturation and tight-121 

junction formation for 28 days with growth media changed every 2-3 days (Supp. Figure 122 

1A). At day 28, MIO-M1 cells were seeded at 100,000 cells per cm2 in 150 µL (passage 123 

34) onto the basal side of a Transwell® membrane by inverting the membrane structure 124 

and incubated for 3 hours at 37°C at 5% CO2. Once adhered, excess medium was 125 
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removed, the membrane reversed and placed in the 6-well culture plate containing the 126 

ARPE-19 cells. At day 32, HRMVEC were seeded at 100,000 cells per cm2 to the apical 127 

surface of the membrane insert washed with attachment factor, and grown in 1.5 mL 128 

MC medium, cells reached optimal confluency (70%) for experimentation after 48 hours 129 

(day 34).  MC media of well and insert was replenished every 2-3 days, cell viability valid 130 

for up to 5 days of construction of complete model (i.e. day 37) due to cellular 131 

characteristics and phenotypes of specific cell lines being lost after prolonged culture (> 132 

14 days)20.   133 

For permeability assay, an alternative layout was assembled to assess barrier 134 

properties as original triple-culture layout does not allow for this. Cells were cultured as 135 

described previously, but with cell seeding and maturation occurring in alternative 136 

positions i.e. ARPE-19 grown on apical surface of the membrane, MIO-M1 on basal 137 

surface and HRMVEC on bottom of the culture well (Figure 2).  138 

 139 

 140 

Figure 2. A- Alternative formation of multi-culture to assess Transwell® permeability in a multi-culture. R-141 

ARPE-19, M-MIO-M1 and E-HRMVEC.  142 

 143 
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Morphological changes 144 

Immunocytochemical analysis was conducted to ensure the presence of correct cell 145 

types within culture (See Supp. Work 1 and Supp. Figure 1). Basic cell morphologies and 146 

relative diameter were determined using Hematoxylin (Sigma) staining and digital 147 

imaging via light microscopy. Cell quantification, density and diameter were assessed 148 

using ImageJ software (NIH, Version 2). Limitations of a basic cell imaging only allows 149 

data to be used as a relative check for cell morphology instead of a quantification of 150 

absolute size. Each experimental well produced images in 5 fields, each field was pre-151 

defined and set prior to cell seeding to remove experimental bias. A total of 20 cells per 152 

type at x50 magnification were analysed to determine cell diameter and morphologies 153 

(n=100 cells for data analysis, per biological repeat) (representation of images provided 154 

in Supp. Figure 2). Each cell type was analysed within 3 biological repeats.  155 

 156 

Gene expression analysis 157 

All expression data was collected from each culture layout from three biological repeats 158 

and three experimental repeats per plate (n=9 per culture layout). Individual cells types 159 

were harvested at day 32 of culture, homogenized in QIAzol lysis reagent and total RNA 160 

isolated using a RNeasy Mini Kit (Qiagen, UK). 1000ng/µl of total RNA was converted to 161 

cDNA using a reverse transcription kit (Invitrogen, Thermo Fisher, UK). 1:10 dilutions of 162 

cDNA transcripts were run on a CFX connect (BioRad, UK) using SYBR Green I (BioRad, 163 

UK) for each primer set (VEGF: Forward-ACT TCT GGG CTG TTC TC, Reverse-TCC TCT TCC 164 

TTC TCT TCT TCC; PEDF: Forward-TGC AGG CCC AGA TGA AAG GG, Reverse-TGA ACT CAG 165 
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AGG TGA GGC TC. TJP1: sourced and optimized from BioRad, UK) at optimal cycling 166 

conditions of; 95°C for 3min, followed by 35 cycles of 95°C for 30s, 59.5°C for 30s and 167 

72°C for 30s, followed by melt peak conditions. The average Ct value was 168 

taken from triplicate assays and normalised against the invariant expression of β-169 

actin housekeeper gene. Result were analysed using the 2-ΔΔCt method to produce 170 

relative fold change values in comparison between groups, standard error of the mean 171 

(SEM) was calculated from the average Ct value for each sample produced within the 172 

experiment cohort. Fold change range of -1.5 to 1.5 is indicative of no overall change in 173 

gene expression levels.   174 

 175 

Permeability assay 176 

Permeability assays were completed to assess barrier properties in a mixed cell 177 

environment, based on a horseradish peroxidase (HRP) (Sigma™) diffusion ELISA (n=9, 178 

per culture layout). For permeability assays, DMEM without FCS was used at all stages. 179 

An alternative layout of both dual- and triple-culture was used to assess Transwell® 180 

permeability due to the functional properties of each cell type. To assess the implication 181 

of culture formation on both ARPE-19 and HRMVEC, they were grown on the apical and 182 

basal side of the membrane, respectively. Medium within the well and insert 183 

compartments were replaced for assay media and the insert compartment dosed with 184 

HRP [1250 mU], incubated for 20 minutes and medium from the lower well 185 

compartment collected for analysis.  Culture media was transferred to a 96-well clear 186 

microplate plate for colorimetric analysis via 3,3',5,5'-Tetramethylbenzidine (TMB) and 187 

stop solution (Invitron, UK) and absorbance recorded at a wavelength of 450 nm and 188 
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corrected at 620 nm.  Membrane permeability was analysed in comparison to a control 189 

membrane with no cellular growth. Relative permeability was produced as a 190 

percentage;  191 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (%) =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
 𝑥𝑥 100 192 

 193 

Statistical analysis 194 

Raw data was analysed using SPSS™ Version 23. Continuous data is summarized by mean 195 

and standard deviation (SD) when normally distributed, and by median and interquartile 196 

range (IQR) if not normally distributed. Normality of the data was verified by the 197 

Kolmogorov-Smirnov test and visualised on q-q plots. A Student t-test was used to 198 

compare the mean of two groups and analysis of variance (ANOVA) to compare the 199 

mean of more than two groups for normally distributed data. Alternatively, not normally 200 

distributed data was analysed using Mann Whitney U and Kruskal Wallis tests. For gene 201 

expression data, statistical analysis was run on threshold cycle (Ct) data normalised 202 

against β-actin housekeeper, assessed using Student t-test. P-values less than 0.05 were 203 

deemed statistically significant. 204 

 205 

3. Results 206 

Cell morphology 207 

Across all three cell types, no significant alterations in cell morphologies were noted in 208 

any culture formation (Table 1). Analysis of HRMVEC morphologies using cellular 209 

staining and microscopy was unable to produce sufficient images within the triple-210 

culture to assess cell diameter. RNA spectroscopy did confirm cell growth on the apical 211 
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surface and we believe a lack of imaging reflect limitations within methodology.  Gene 212 

expression of TJP1 was measured in RNA isolated from ARPE-19 to assess barrier stability 213 

in a multi-culture system. Data indicates a significant increase in fold change (FC) for 214 

TJP1 when RPE are grown in combination with either MIO-M1 (+11.4 FC, p<0.001), 215 

HRMVEC (+12.9 FC, p<0.001) or both in a triple-culture (+7.8 FC, p<0.001) (Figure 3). 216 

Barrier permeability was not assessed within the primary formation of the dual- and 217 

triple-culture as described in methodology. 218 

 219 

Table 1. Mean and standard deviation of cell diameter (µM) for the three cell types grown in all culture 220 

formations. P-value determined using one-way ANOVA. 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

Culture 

Formation 

Cell Type 

ARPE-19  

(n=300) 

MIO-M1  

(n=300) 

HRMVEC  

(n=300) 

Solo 17.5 (6.1) 62.7 (13.3) 98.9 (24.4) 

Dual  61.9 (10.6) 97.8 (28.0) 

Dual 18.1 (4.3)  96.0 (22.9) 

Dual 17.9 (4.5) 63.8 (13.9)  

Triple 18.2 (5.3) 62.5 (14.3) - 

P-value 0.48 0.54 0.66 
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 233 

Figure 3. Relative fold change values for TJP1 gene expression data in multi-culture formations in 234 

comparison to solo-culture. Fold change between -1.5 and 1.5 is classed as no relative gene expression 235 

change (grey shaded region). Statistical significance represented by asterisks (**p<0.01), determined 236 

using an independent t-test. R-ARPE-19, M-MIO-M1 and E-HRMVEC.  237 

 238 

Implications of multi-culture on gene expression levels 239 

PEDF expression (Figure 4A) demonstrated an increase in FC in both ARPE-19 (+5.2 FC, 240 

p<0.01) and MIO-M1 (+7.5 FC, p<0.05) in triple compared to solo-culture. Triple 241 

compared to solo-culture demonstrated no significant FC in VEGF expression in either 242 

MIO-M1 (+1.0 FC, p=0.49) or ARPE-19 (+0.6 FC, p=0.34) (Figure 4B). However, expression 243 

was significantly decreased within HRMVEC (-3.2 FC, p<0.05). Sub-analysis of dual-244 

cultures implicates MIO-M1 for the observed change in VEGF expression (dual-culture 245 

of; MIO-M1+HRMVEC, -6.0 FC, p<0.05 and dual-culture; ARPE-19+HRMVEC, +1.80 FC, 246 

p=0.11). 247 

  248 
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 249 

Figure 4A-B. Relative fold change values for gene expression data in multi-culture formations in 250 

comparison to solo-culture. Fold change between -1.5 and 1.5 is classed as no relative gene expression 251 

change (grey shaded region). (A) PEDF-fold change & (B) VEGF-fold change. Statistical significance 252 

represented by asterisks (*p<0.05, **p<0.01), determined using an independent t-test of the difference 253 

of ΔCt in multi-culture formation of cells versus solo-cultured cells. 254 

 255 

Assessment of multi-culture on membrane properties 256 

HRP diffusion across the Transwell® membrane altered significantly dependent on the 257 

cells grown on the surface. ARPE-19 monolayer formation resulted in the diminishing of 258 

HRP passing through the membrane, this barrier was significantly strengthened in the 259 

presence of MIO-M1 grown on the basal side of the membrane in both a dual- and triple-260 

culture (ARPE-19 vs ARPE-19/MIO-M1; 34.1 (3.9)% v 25.7 (1.2)%: p<0.01; ARPE-19 vs 261 

ARPE-19/MIO-M1/HRMVEC; 34.1 (3.9)% vs 26.5 (0.5)%: p<0.01) (Figure 5). Diffusion of 262 

molecules through the Transwell® membrane is significantly reduced by cell growth on 263 

the surface, data demonstrated minimal relative permeability is 25.7% (±1.2) indicating 264 

cross membrane molecule diffusion is still occurring. 265 
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 266 

Figure 5. HRP diffusion assay, relative permeability (%) for all cell formations that require growth on the 267 

Transwell® membrane, error bars indicate standard deviation. Statistical significance represented by 268 

asterisks (**p<0.01), determined using an independent t-test. R-ARPE-19, M-MIO-M1 and E-HRMVEC.  269 

 270 

4. Discussion 271 

This study presents the evidence for a novel human in vitro model of the retina. This 272 

model is reproducible and provides flexibility in formation and structure to maximise 273 

the yield of experimental research that can be conducted, including mechanistic 274 

research into retinal disease, retina biology and pharmacology intervention. The culture 275 

model allows for the arrangement of cellular components that mimic the retinal 276 

microvasculature, neuronal retina and RPE in vivo, allowing us to explore the tissues 277 

cellular microenvironment. The triple-culture model represents the close contacting 278 

relationship between the Müller glial cells (MIO-M1) and the blood vessels (HRMVEC) 279 

within the retina and the distal location of the non-contacting RPE (ARPE-19) retinal 280 

layer (Figure 6)21. These cell types in particular play a pivotal role in the function of the 281 

BRB and investigation of their cross-communication could lead to great enhancements 282 

for understanding retinal disease that results in, or is the result of, BRB malfunction.  283 
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Our findings highlight the importance of cell to cell interaction in retinal biology, 284 

with multi-culture systems resulting in changes in both structural and genetic alterations 285 

when compared to solo-cultures. On the other hand, the assessment of cell morphology 286 

resulted in no significant changes when the cells were grown in solo or in formations 287 

with each other. However, the methodology used to assess morphology is a basic 288 

technique and is limited in quantification and should only be utilised as an indication of 289 

cell type presence. We propose that within future expansion of this model, investigation 290 

into an optimized confocal analysis of cell markers across the membrane will confirm 291 

and quantify our original findings.  292 

 293 

Figure 6. Schematic drawing of the cellular components of the retina taken from Vecino et al, 201621. The 294 

different cell types are situated in a standard large mammalian retina, depicting the interactions between 295 

the Müller cells in blue (M) and blood vessels (BV) (represented in triple-culture model with HRMVEC). 296 

Different layers of the retina; optic nerve (ON), nerve fibre layer (NFL), ganglion cell layer (GCL), inner 297 

plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), outer 298 

segment layer (OS), retinal pigment epithelium (RPE) & choroid (Ch).  299 
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Structurally, these findings indicate a significant 11- and 7-fold increase in gene 300 

expression for TJP1 or often referred to as zonula occludens (ZO1), when RPE are grown 301 

in either a solo-culture, or in combination with MIO-M1 as a dual-culture or in a triple-302 

culture. This is also reflected within the barrier properties of the cultures, indicating a 303 

significantly strengthened barrier when MIO-M1 cells were grown on the basal side of 304 

the membrane. Previously published findings have associated Müller glial cell with 305 

tightened tight junctions and upregulated and polarized localization of specific blood-306 

brain-barrier transporters19, 22. However, expansion of these findings would require 307 

protein analysis to determine the downstream impact.  308 

Within DR and retinal disease, often researched is the alteration of key genes. 309 

Gerhardinger and colleagues report that in mice, 6 months post streptozotocin 310 

induction of diabetes, resulted in the alteration of 78 genes within Müller glial cells23. 311 

Over a third of these genes were reported to be associated with inflammation and 312 

inflammatory response including cytokines such as VEGF5, 23. These inflammatory 313 

cytokines can initiate a cascade of events within the retinal microenvironment and result 314 

in dysfunction of various cell types. The findings of this model indicate that within a 315 

triple-culture, expression of VEGF was significantly altered within HRMVEC; we 316 

hypothesise this is due to the presence of MIO-M1 cells.  PEDF expression is often 317 

demonstrated in literature to promote the health of the BRB24, 25; within this model we 318 

show a marked increase in PEDF gene expression. We hypothesise that the triple-culture 319 

system promotes the functionality of the BRB, not only structurally through the 320 

promotion of TJP1/ZO1, but also by an increase in the expression of beneficial growth 321 

factors such as PEDF and decreasing the expression of detrimental growth factors such 322 
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as VEGF. This data highlights the significance of using a multi-culture system within the 323 

assessment of disease mechanism, as a solo-culture would not elucidate the effect of 324 

the native environment due to the implications of additional cell types. Let alone this 325 

model does not represent all cell types present within the retina, it does provide species 326 

specificity and three cell type interactions, therefore improving on the current retinal 327 

models available and published. 328 

Often disputed in literature, is the use of cell lines in model design due to the 329 

presence of developmental abnormalities17, 26. The prolonged culture of both ARPE-19 330 

and MIO-M1 can result in abnormalities in characteristic features of the cell such as the 331 

loss of pigmentation in ARPE-19 and MIO-M1 exhibiting progenitor characteristics27. 332 

However, within our study design we have allowed for maturation and low passage 333 

numbers to ensure manipulation of culture conditions will result in minimal difference 334 

from parent tissue26. The superior use of an alternative cell source i.e. primary cell 335 

sources will yield a truer representation of the native tissue. However, it can also 336 

produce poor efficiency of the model in practice allowing for restricted use of repeats 337 

and minimise use in pharmacological testing. Additionally, models do not allow for the 338 

manipulation of culture environments to exacerbate a disease effect, for example; 339 

chronic exposure to high glucose and varying glycaemic levels during cell seeding and 340 

growth, to induce phenotypes seen in DR. Due to difficulties in sourcing human primary 341 

cells for the modelling of the retina, to date only a rodent in vitro model19 and no human 342 

multi-culture system have been published. We propose the compromise of two highly 343 

characterized and routinely used cell lines ARPE-1928-30 and MIO-M120, 27; and one 344 

primary sourced cell origin ACBRI-181 within this model, allowed for an in vitro multi-345 
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culture model to be utilized in place of either an in vitro mixed species model or an in 346 

vivo/in vitro animal model.  347 

In conclusion, our methodology provides evidence for a novel multi-cell in vitro 348 

culture model of the human retina, for the assessment of retinal biology and disease 349 

mechanisms. The versatility of the model allows the assessment of both singular cellular 350 

function within the retinal microenvironment in addition to a triple-cell assessment of 351 

retinal structure and function in health and disease. 352 

 353 
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Supplementary Work 448 

Fluorescent immunocytochemical staining and imaging of cultures 449 

RPE were grown on 0.1% gelatin coated microscope cover slips and left to mature for 28 450 

days. Both MIO-M1 and HRMVEC were grown as described on Transwell® membrane. 451 

All culture formations (solo, dual and triple) followed the system set up as stated, they 452 

were then rinsed in PBS and fixed in ice-cold PBS containing 4% formaldehyde for 30 453 

minutes. Cultures were washed with wash buffer (1% BSA in PBS (Sigma Aldrich, UK)), 454 

then blocking and permeabilization were achieved by incubation with 5% BSA in 1xPBS 455 

with 0.3% Triton X-100 for 40 minutes prior to the addition of primary antibody 456 

(prepared in blocking buffer) which was incubated overnight at 4°C. The following 457 

conjugated primary antibodies were used: ZO-1 and AlexaFlour 488 (1:100, Thermo 458 

Fisher Scientific, UK), Von Willebrand factor and AlexaFlour 594 (1:1500, Novus Bio, UK) 459 

and Glutamine synthetase and AlexaFlour 488 (1:500, Novus Bio, UK). Post overnight 460 

incubation, cells were washed in wash buffer. This was followed by two washes in PBS 461 

and cultures were incubated with 1μg/ml 4’, 6’-diamino-2-phenylindole (DAPI; D9542, 462 

Sigma Aldrich, UK) for 5 minutes. All cultures were washed an additional two times in 463 

PBS and once in deionized H2O and mounted using PBS and 0.3% Tween-100 as 464 

mounting medium (Sigma Aldrich, UK). RPE were mounted straight to slides by inverting 465 

coverslips, MIO-M1 and HRMVEC grown on inserts were mounted between two glass 466 

coverslips with prior to imaging with a Zeiss microscope with Axiocam MR3 and image 467 

analysis with AxioVision 4.6. 468 
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 469 

 Sup.Figure 1A-C. Immunocytochemical analysis of cells grown in triple-culture, A- ZO-1 expression in 470 

RPE after 28 day maturation marked with Alexa 488 (green), B- Von Willebrand factor expression in 471 

HRMVEC grown on the basal side of the membrane marked with Alexa 568 (red), C- Glutamine 472 

synthetase expression in MIO-M1 grown on the apical side of the membrane marked with Alexa 488 473 

(green). A-C all cells counterstained with nuclear stain DAPI (blue). Scale 50 µM. 474 

A B C 
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 475 

Sup.Figure 2. Representation of Hematoxylin stained cells used in the assessment of cell morphology 476 

including analysis of diameter (µM) by ImageJ software. A- RPE solo-culture, B- RPE dual-culture (+MIO-477 

M1), C- RPE dual-culture (+HRMVEC), D- RPE triple-culture, E- MIO-M1 solo-culture, F- MIO-M1 dual-478 

culture (+RPE), G- MIO-M1 dual-culture (+HRMVEC), H- MIO-M1 triple-culture, I- HRMVEC solo-culture, 479 

J- HRMVEC dual-culture (+RPE) & K- HRMVEC dual-culture (+MIO-M1).  480 
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