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1 | INTRODUCTION

| Rian L. Griffiths

Rationale: Lipids are important mycobacterium cell wall constituents; changes are
linked with drug resistance. Liquid extraction surface analysis (LESA) enables direct
sampling in a highly sensitive manner. Here we describe protocols for the analysis
of lipids from bacterial colonies. Lipids form various adducts, complicating spectra.
Salt additives were investigated to circumvent this problem.

Methods:

analysis by LESA-MS. The inclusion of (ESI-compatible) acetate salts of sodium,

Chloroform:methanol mixtures were studied for lipid extraction and

potassium or lithium in the extraction solvent was investigated.
Results: We report the detection of bacterial cell wall lipids from mycobacterial species
using LESA for the first time. Sampling protocols were optimised for the use of volatile
extraction solvents. The inclusion of acetate salt additives in the sampling solvent
significantly reduces spectral complexity in comparison with no additives being used.

Conclusions: LESA offers a sensitive technique for bacterial lipid phenotyping. The
inclusion of an acetate salt in the sampling solvent drives adduct formation towards a

specific adduct type and thus significantly reduces spectral complexity.

components of the cell envelope. PIMs are predominantly located in

the mycobacterial plasma membrane, which is highly asymmetric and

Tuberculosis (TB) continues to be the primary cause of global
morbidity and mortality caused by a single infectious agent. The
etiological agent of TB, Mycobacterium tuberculosis, is a unique
bacterial pathogen with a highly complex cell envelope that is
essential for its pathogenicity, virulence and ability to combat
molecular attack from host defence mechanisms and antibiotic
therapy. The mycobacterial cell envelope is loaded with a complex
polysaccharide, arabinogalactan, which serves to covalently
connect the inner peptidoglycan layer with an outer mycolate
layer that is highly hydrophobic. This complex cell wall structure
linked with natural antibiotic resistance.!

has been directly

Phosphatidylinositol mannosides (PIMs) are essential phospholipid

also contains other phospholipids such as phosphatidylinositol (PI),
phosphatidylethanolamine (PE) and cardiolipin (CL). The PIMs appear
in different glycosylation and acylation states and have been shown
to play an important role in host-pathogen interactions.? The specific
acylation states of these lipids have been linked with the initiation of
granuloma formation;® thus, these PIM species can be considered
important biomarkers with respect to healthy and M. tuberculosis
disease state clinical samples.

Ambient ionisation is a useful tool for the direct analysis of a
wide variety of biomolecules from biological samples that are not
vacuum stable and thus need to be sampled under normal room

conditions, such as bacterial colonies grown on agar. A wealth of

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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ambient ionisation techniques have been described in recent years;
however, only a handful have been described for the direct
analysis of bacterial colonies. Desorption electrospray ionisation
(DESI), which desorbs analytes from a surface in a continuously
sprayed jet of solvent ions, has recently been described for
imaging of recombinant small molecule biocatalysts from E. coli.*
Rapid evaporative ionisation mass spectrometry (REIMS), also
known as the iKnife, which continuously ablates a sample and then
detects gaseous ions removed from the sample, has been described
for the analysis of phospholipids from bacterial colonies including
P. aeruginosa, B. subtilis, and S. aureus grown on agar.®

Flowprobe MS, which samples a surface via a continuous
solvent flow over the sample, before aspirating away and
ionising via conventional electrospray ionisation (ESI), has been
described for small molecule metabolites produced by a large
variety of bacterial and fungal species grown on agar.® Finally,
liquid extraction surface analysis (LESA), which probes a surface
via a liquid interface formed between a conductive pipette tip
and the sample surface prior to conventional ESI, has been
described for the direct analysis of intact proteins from E. coli,
Pseudomonas aeruginosa and Staphylococcus aureus grown on
agar’® and for lipid analysis from tissues,” and other surfaces.'®
This approach is of particular interest as LESA provides higher
sensitivity than the three continuous ablation/extraction methods
described above.

Lipids are a diverse class of molecules ranging from polar to apolar
species, neutral to basic and acidic; thus different solvent systems are
preferentially used to extract different classes of lipids.**'? Previous
reports of lipid analysis of other surfaces via LESA have considered
only limited extraction solvent systems, namely 4:2:1 isopropanol:
methanol:chloroform with the inclusion of either ammonium acetate
or formate (20 mM). LESA investigations using these solvent systems

have led to the detection of wax ester species,'® cholesterol esters

1314 3nd fatty acids.**

and ceramides,*® phospholipids,

Lipid analysis is further complicated by the formation of multiple
different adducts during the ionisation process, such as [M+H]",
[M+Na]* and [M+K]".

the electrospray solvent has afforded simplified spectra owing to

Previously, the inclusion of certain salts in

the formation of a single adduct type. The inclusion of ammonia
has been shown to simplify spectra by eliminating interfering
sodium adducts in previous ESI experiments.r® Furthermore, the
addition of lithium acetate to ESI solvents has been described to
be optimal for lipid dissociation (MS/MS) experiments.*® Finally,
the inclusion of ammonium-based salts in DESI extraction solvents
has been shown to provide benefits in purified protein analysis
from glass slides.”

Here we describe suitable LESA extraction solvents for the
direct analysis of acyl-phosphatidylinositol mannoside (Acyl-PIM)
glycolipids, triacylglycerols and phosphoethanolamine species from
bacterial colonies of Mycobacterium smeglatis (M. smegmatis) a
bacterial model system for Mycobacterium tuberculosis. We also
explore acetate salt addition to LESA extraction solvents for
spectral structural characterisation,

simplification and aiding

accurate mass matching of lipid species directly to online
mycobacterial databases. Our approach offers a rapid method for

bacterial phenotyping via direct lipid analysis.

2 | EXPERIMENTAL

2.1 | Materials

All salts (lithium acetate, sodium acetate and potassium acetate) were
(Gillingham, UK). HPLC grade
chloroform and methanol were sourced from J. T. Baker (Deventer,
The Netherlands). Middlebrook 7H9, Triptic Soy Broth (TSB) and
Bacto Agar mycobacterial growth media were also purchased from
Sigma-Aldrich.

purchased from Sigma-Aldrich

2.2 | Bacterial sample preparation

Mycobacterium Smegmatis mc2155 was initially inoculated into 5 mL of
TSB media and cultured to an ODggg of 0.5. Cells were then harvested
by centrifugation and resuspended in 5 mL of 7H9 media before 2-pL
aliquots were inoculated onto 7H9 agar plates (6 cm, 100 mL agar),
supplemented with 1.2% w/v Bacto Agar, using a dropping pipette
to ensure that the colonies formed were sufficiently large enough
for LESA sampling (~5mm diameter). Agar plates were incubated at
37°C for 3-4days and then transferred into a dark fridge
environment where the temperature was kept at 5°C for storage.

2.3 | LESA sampling

LESA was carried out by use of the Triversa Nanomate (Advion
Biosciences, Ithaca, NY, USA) using the advanced user interface
feature. The extraction/ionisation solvent was 2:1 chloroform:
methanol either with or without the inclusion of 10 mM acetate salt
(lithium, sodium or potassium). During extraction, 10 uL of solvent
was aspirated from the solvent well, before sampling the bacterial
colony with 5 pL of this solvent for 3s. Finally, 6 uL of the sampling
solvent was re-aspirated and infused into the mass spectrometer at

a gas pressure of 0.15 psi and a potential of 1.7 kV.

24 | Mass spectrometry

All data were acquired on an Orbitrap Elite instrument (Thermo Fisher
Scientific, Waltham, MA, USA). Full scan mode data were recorded in
postive ion mode at a resolution of 120,000 at m/z 200 between m/z
150 and 2000. The automatic gain control (AGC) target was 1 x 10°
charges, and the maximum injection time was 1000 ms. Data were
acquired for up to 2min in full scan mode. Data were analysed by
use of the Xcalibur software (version 3.0.63, Thermo Fisher
collision-induced  dissociation (HCD)

Scientific).  High-energy

experiments were performed at a collision energy of 45eV.
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2.5 | Data analysis

Lipids were identified via accurate mass matching with the LIPID
MAPS mycobacterial database. Experiments performed without salt
*, [M+Na]" and [M +K]*
values. Sodium and potassium acetate experiments were searched
against either [M+Na]* only or [M+K]*

Lithium adducts do not feature

addition data were searched against [M + H]

values only, respectively.
in the database; therefore,
assignments made upon lithium adduct addition were searched
against a calculated neutral mass after subtracting the most

abundant isotopic mass of lithium from the detected m/z value.

3 | RESULTS
3.1 | LESA-MS sampling of lipids from bacterial
colonies

Direct analysis of bacterial colonies using extraction solvents suitable
for lipid analysis presents numerous challenges. Previously, intact
protein species have been extracted from bacterial colonies of E. coli,
Pseudomonas aeruginosa and Staphylococcus aureus grown on agar’®
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using a mixture of acetonitrile and water containing formic acid.
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However, this was achieved via contact-LESA, by disrupting the
colony. This type of analysis has also been demonstrated to allow
analysis of surfaces such as tissue using volatile solvent systems that
are required for lipid analysis (e.g. mixtures of chloroform, methanol
and propanol).**

The LESA sampling regimes in these studies describe extraction
times upwards of 30s. This is not compatible with liquid-junction
sampling of bacterial colonies with the volatile solvents required for
lipid extraction as the solvent simply either evaporates or seeps into
the colony, and the liquid-junction is lost. An extraction time of 3s
was found to be optimal when using these solvent systems and was
used throughout this study. In addition, the inclusion of formic acid
in the extraction solvent is not required to achieve high signal
intensities (unlike typical intact protein protocols) because the lipid
species detected are highly ionisable.

Sampling of the bacterial colonies with chloroform:methanol
(2:2),

extraction experiments,'® led to the detection of abundant lipid

a commonly reported lipid extraction solvent in bulk

species in the m/z range 1150-1550. These species were not
abundant in the background spectrum acquired from agar only (see
Figure S1, supporting information). Figure 1A shows a typical mass

B) Lithium Acetate
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FIGURE 1 LESA-MS spectra of bacterial colonies of M. smegmatis sampled with chloroform:methanol sampling solvents containing A, no other
additives; B, 10 mM lithium acetate; C, 10 mM sodium acetate; and D, 10 mM potassium acetate. A number of abundant Ac1PIM1 lipid species
were detected in the region shown [Color figure can be viewed at wileyonlinelibrary.com]
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spectrum of 1min of summed data upon sampling of the
mycobacterium with 2:1 chloroform:methanol. Lower intensity ions
were detected in the phospholipid region between m/z 700 and
900; these are discussed in further detail below. Processing of the
tabulated m/z values detected in the LIPID MAPS mycobacterium
database®? reveals that many of the species detected in the region
m/z 1150-1350 are phosphatidylinositol mannoside (acyl-PIM)
lipids. However, lipids form various adduct types (protonated,
sodium and potassium adducts); hence, it is difficult to confidently
assign which lipids are present.

The eight most abundant peaks in the m/z range 1220-1320 upon
sampling M. smegmatis with chloroform:methanol (2:1) were m/z
1229.8, 1243.8, 1257.8, 1273.8, 1283.8, 1299.8, 1311.9 and 1327.8,
as shown in Figure 1A. Searching these m/z values in the LIPID MAPS
database against protonated, sodium and potassium adduct matches
generates up to three results per m/z value. For example, the ion
detected at m/z 1229.8 can be assigned as either the protonated
adduct of Ac1PIM1(50:5) (-5.20 ppm deviation) or the sodium adduct
of Ac1PIM1(48:2) (-7.16 ppm deviation). Similarly, the ion detected at
m/z 1243.8 can be assigned as either the protonated adduct of
Ac1PIM1(51:5) (-4.90ppm deviation) or the sodium adduct of
Ac1PIM1(49:2) (-6.83 ppm deviation) and that at m/z 1299.8 can be
assigned as either the protonated adduct of Ac1PIM1(55:5) (-2.31 ppm
deviation) or the sodium adduct of Ac1PIM1(43:2) (-4.15ppm
deviation). These examples are all within 10 ppm deviation of the
accurate masses of these ions and within a few ppm of each other. It is
therefore challenging, without very high mass accuracy such as that
afforded by Fourier transform ion cyclotron resonance (FT-ICR)
analysers, to confidently assign which lipids have been detected.

The peak at m/z 1257.8 can also be assigned as either the
protonated adduct of Ac1PIM1(52:5) (-4.69 ppm deviation) or
the sodium adduct of Ac1PIM1(50:2) (-6.60 ppm deviation); the
situation is further complicated when utilising lower accurate
mass instrumentation as the potassium adduct of Ac1PIM1(49:3)
is predicted within just 0.06 m/z units or 50 ppm. It can also be
possible to have a mixture of contributions; hence, it is difficult to
be certain which lipids are present without reducing this spectral
complexity and/or performing dissociation experiments. This
complication of overlapping sodium and potassium adducts is also
the case for m/z 1283.8 (either Ac1PIM1(52:3) or Ac1PIM1(51:4))
and m/z 1311.8 (either Ac1PIM1(54:3) or Ac1PIM1(53:4)).

Furthermore, peaks at m/z 1257.8 and 1273.8 can be tentatively
assigned as the [M+Na]" and [M+K]* adducts, respectively, of the
same species (AcPIM1(50:2)) based on accurate mass, see Table 1.
These are two of the most abundant peaks detected and this
demonstrates an inherent challenge with lipid analysis from
biological samples which often contain various salts from which
lipids can form cationic adducts. Any individual analyte forming
multiple adducts/ions is associated with decreased sensitivity at a
given m/z value. Thus, promoting the formation of a single adduct
type to reduce spectral complexity is attractive.

In order to address these problems salt additives were

introduced into the extraction solvent with the aim of directing

dominant adduct formation to reduce spectral complexity and
afford greater confidence in assignment by requiring searching
against a single adduct type only.

3.2 | Salt additive addition to extraction solvents for
spectral simplification

The addition of 10 mM lithium, sodium or potassium acetate to the
sampling solvent led to a shift in dominant adduct formation to the
respective cationic adduct and thus much reduced spectral
complexity. Note that only acetate salts were investigated in this
study as they are volatile salts that are compatible with the ESI
process; other salt forms are less appropriate for electrospray based
techniques as they reduce sensitivity.!? For brevity, trends observed
upon salt addition will be described for the most abundant ions only;
a full list of detected lipids is provided in Table 1.

The inclusion of lithium acetate in the LESA sampling solvent led
to a change in the abundant m/z values detected from the bacterial
colony. Figure 1B shows representative mass spectra from the
lithium acetate additive experiment. Peaks corresponding to the
lithium adducts of the seven most abundant Acl1PIM1 species:
(48:2), (49:2), (50:2), (51:2), (52:3), (53:3) and (54:1) were detected
at m/z 1213.8, 1227.8, 1241.8, 1255.8, 1267.8, 1281.9 and
1295.9, respectively. The inclusion of sodium acetate in the
extraction solvent led to the detection of dominant peaks at m/z
1229.8, 1243.8, 1257.8, 1271.8, 1283.8, 1297.8 and 1311.9
corresponding to sodium adducts of the same Acl1PIM1 species:
(48:2), (49:2), (50:2), (51:2), (52:3), (53:3) and (54:1), respectively, see
Figure 1C. It should be noted that searching these masses in the
LIPID MAPS mycobacterial database returns just one result (as
sodium adducts). When potassium acetate was included in the
sampling solvent dominant peaks were detected at m/z 1245.7,
1259.8, 1273.8, 1287.8, 1299.8, 1313.8 and 1327.8, corresponding
to a mass shift of 16 Da in comparison with the sodium acetate
experiment and potassium adducts of the same seven Acl1PIM1
species as described above, see Figure 1D.

Driving adduct formation to a specific cationic adduct helps
confirm that the dominant peaks in the control experiment are a
mixture of adduct types; m/z 1257.8 was the most abundant peak in
the spectrum. However, it is not detected in high abundance when
potassium acetate is included in the sampling solvent; thus, it can be
confirmed as the sodium adduct Ac1PIM1(50:2) rather than the
potassium adduct of Ac1PIM1(49:1). This becomes particularly
important for assignments made on lower accurate mass
instrumentation where up to three adducts are detected within a
small m/z window. Conversely, the peak at m/z 1273.8 (the second
most abundant peak in this m/z region) is not present in high
abundance in the sodium acetate experiment and can be confirmed
as the potassium adduct of the same lipid (Ac1PIM1(50:2)). The fact
that the same abundant species were detected in each experiment
provides good confidence of these assignments; thus, inclusion of a

salt in the sampling solvent simplifies analysis.
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However, when lithium acetate was included in the sampling
solvent a number of peaks were dominant in the region m/z 1200-
1320 that were not assigned via the searches. For example, m/z
1273.8 corresponds to the potassium adduct of the most abundant
species in this region (Ac1PIM1(50:2) [M+K]*). Thus, the inclusion
of lithium acetate in the LESA sampling solvent did not provide the
same degree of spectral simplification as that described above when
either sodium or potassium acetate was incorporated.

The inclusion of salt additives in MALDI matrices has become a
commonplace approach for spectral simplification through directing
lipid adduct formation.2® Previous ESI studies have utilised acetate
salts to drive adduct formation towards a desired lipid adduct for
phosphocholine and  triacylglycerol  species;'® however, this
methodology has not previously been described for the LESA of lipids
directly extracted from biological samples. The inclusion of ammonium
salt additives in sampling solvents for DESI-MS analysis of intact
proteins has been shown to increase sensitivity.” The salt additive

approach in this study has enabled assignment (by reducing matches

to a single result from a single adduct type and based on accurate
mass only) of the detection of 20 different acyl-phosphatidylinositol
mannoside species in agreement across three experiments, as shown in
Table 2. There is also evidence of cardiolipin species which are
important structural cell membrane components that enable cell
curvature and represent an attractive drug target.21 Here we show for
the first time that similar approaches can be extended to LESA and
for the analysis of biologically relevant bacterial cell wall lipids. It
should be noted that certain cardiolipin species and acyl-
phosphatidylinositol mannoside species have masses within a few ppm
of one another and therefore cannot be distinguished from one
another without structural characterisation.

Although
phosphatidylinositol mannoside lipids (and these were the most

these experiments targeted analysis of acyl-
abundant species detected in this study) a number of other lipid
species were also indicated from the LIPID MAPS database searches.
In the region m/z 700-900 a total of nine phosphatidylethanolamine

assignments within 5ppm accurate mass were suggested by the

TABLE 2 Lipid species detected across salt additive experiments (lithium, sodium and potassium acetate addition). Deviation (ppm) is shown as

an average of three values

Neutral mass (Da) Assignment Deviation (ppm) Neutral mass (Da) Assignment Deviation (ppm)
689.4996 PE(32:1) 4.83 1192.7613 Ac1PIM1(47:2) -7.16
691.5152 PE(32:0) 0.83 1194.8402 Ac1PIM1(47:1) 2.94
705.5308 PE(33:0) 0.60 1206.7770 Ac1PIM1(48:2) -6.90
715.5152 PE(34:2) 1.78 1208.7926 Ac1PIM1(48:1) -1.14
717.5308 PE(34:1) 1.36 1218.777 Ac1PIM1(49:3) -7.40
719.5465 PE(34:0) 1.00 1220.7926 Ac1PIM1(49:2) -6.66
733.5621 PE(35:0) 1.11 1222.8083 Ac1PIM1(49:1) 1.26
745.5621 PE(36:1) 0.36 1232.7926 Ac1PIM1(50:3) -6.60
774.6737 TG(46:2) 1.48 1234.8083 Ac1PIM1(50:2) -6.40
775.6091 PE(C38) 1.40 1236.8239 Ac1PIM1(50:1) 1.19
776.6894 TG(46:1) 1.18 1246.8083 Ac1PIM1(51:3) -6.26
778.7050 TG(C46) 2.35 1248.8239 Ac1PIM1(51:2) -5.85
786.6314 MK-9(C) 2.34 1250.8396 Ac1PIM1(51:1) 0.73
790.7050 TG(47:1) 1.42 1258.8083 Ac1PIM1(52:4) -7.70
792.7207 TG(47:0) 1.44 1260.8239 Ac1PIM1(52:3) -6.22
800.68%4 TG(48:3) 1.53 1262.8396 Ac1PIM1(52:2) -1.02
802.7050 TG(48:2) 2.11 1264.8552/1264.8470 Ac1PIM1(52:1)/CL(58:2) -1.85/-4.56
804.7207 TG(48:1) 0.85 1274.8396 Ac1PIM1(53:3) -6.38
806.7363 TG(48:0) 1.51 1276.8552 Ac1PIM1(53:2)/CL(59:3) -1.68/-6.61
818.7363 TG(49:1) 1.44 1278.8708 Ac1PIM1(53:1)/CL(59:2) 2.30/4.84
820.7520 TG(49:0) 2.15 1288.8552 Ac1PIM1(54:3) -6.16
828.7207 TG(50:3) 0.98 1290.8709/1290.8626 Ac1PIM1(54:2)/CL(60:3) 0.68/-5.96
830.7363 TG(50:2) 1.02 1292.9498 Ac2SGL(C71) 3.15
832.7520 TG(50:1) 0.90 1302.8709 Ac1PIM1(55:3) -6.43
844.7520 TG(51:2) 2.16 1304.8782 CL(61:3) -5.66
846.7676 TG(51:1) 1.04 1304.8865 Ac1PIM1(55:2) 0.52
848.7832 TG(51:0) 1.27

856.7520 TG(52:3) 1.14

858.7676 TG(52:2) 0.99

860.7832 TG(52:1) 0.68
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FIGURE 2 A, Generic structure of an acyl phosphatidylinositol mannoside (Ac1PIM1) lipid. Example LESA-HCDMSMS mass spectra of B, the
potassium adduct ion; C, the sodium adduct ion; and D, the lithium adduct ion of Ac1PIM1(50:2) detected from M. smegmatis [Color figure can

be viewed at wileyonlinelibrary.com]

LIPID MAPS mycobacterial database in at least two of three repeats,
as shown in Table 2. Furthermore, twenty triacylglycerol species
were also suggested. These lipid classes also comprise part of the
complex cell wall structure of mycobacterium and present
biomolecularly informative ions for bacterial phenotyping and/or

monitoring bacterial stress.

3.3 | Improved structural information

The addition of salt additives to promote a specific adduct type was also
used to investigate the extent of structural information afforded from
each adduct type via high-energy collision-induced dissociation (HCD).
Figure 2 shows the generic structure of an acyl-phosphatidylinositol
mannoside species and the HCD spectra obtained after fragmentation
of the [M+K]", [M+Na]" and [M+Li]" adducts of Ac1PIM1(50:2).
Only four major product ions were detected upon dissociation of the
potassium adduct, indicating that this adduct is relatively stable. A
greater degree of dissociation is observed upon dissociation of the [M
+Na]* adduct and further still upon dissociation of the [M+Li]*
adduct. It is of note that there are a greater number of product ions
between m/z 400 and 850 in the lithium and sodium experiments
which are probably indicative of fatty acid side-chain losses, which
have been reported from other phospholipid backbones. This trend,

that smaller cationic adducts give rise to richer lipid fragmentation

data, has been described previously;??> here we describe the same
benefits for acyl-phosphatidylinositol mannoside species.

Dissociation of each adduct type gave rise to the neutral loss of
248 Da followed by the neutral loss of a further 132 Da. This is a
clear trend indicative of a common fragmentation pattern; however,
these are not easily deduced from the generic structure. These neutral
losses were observed upon dissociation of the same adducts of at
least three different species assigned as acyl-phosphatidylinositol
mannosides by the LIPID MAPS database. This type of lipid species is
not readily commercially available; therefore, it was not possible to
compare this data with that from a purified standard. Similar ESI-HCD
analysis of lithium adducts of a phosphatidylinositol lipid standard
(data not shown) gave rise to neutral losses indicative of the fatty acid
side-chain losses and a neutral loss of 162 Da arising from the neutral
loss of inositol after the loss of water. These did not, however, aid
assignment of the neutral losses or product ions detected upon
dissociation of the acyl-phosphatidylinositol
Further
mechanisms of dissociation of these particular lipid species.

mannoside species.

investigations are required to better understand the

4 | CONCLUSIONS

Here we show suitable volatile extraction solvents and rapid sampling

regimes for the extraction and analysis of lipid species directly from
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mycobacterium. In this way, acyl-phosphatidylinositol mannoside
(Acyl-PIM) lipids, which are important cell wall constituents that
have been implicated in drug-resistance, can be detected. Lipids
form multiple different adduct types, complicating assignments. We
present salt inclusion in LESA sampling solvents as an approach to
promoting formation of a particular adduct type, thus decreasing
spectral complexity. This simultaneously improves mass matching
with available databases as much greater confidence in the lipid
adduct type significantly reduces overlapping m/z values of different
lipids in different adduct forms. Using this approach, we report
the following assignments from the LIPID MAPS mycobacterial
database: twenty acyl-phosphatidylinositol mannosides, nine
phosphatidylethanolamines, twenty triacylglycerols, and at least one
cardiolipin. These results show great promise for the sensitive
analysis of bacterial lipids that can be assigned confidently based on
accurate mass supported by driving adduct formation to a specific
adduct type. High-energy collision-induced dissociation studies show
that lithium adducts provide rich, albeit complex, dissociation data.
Future work will focus on monitoring bacterial stress via changes in
lipid signals upon drug treatments and understanding the data
obtained upon HCD fragmentation for the structural characterisation

of these complex lipids.
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