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Abstract 

The genomic fusion of two genes can lead to the expression of a fusion protein that can have 

oncogenic potential. The important contribution of such fusion genes to oncogenesis and 

tumour progression is being increasingly recognised. Here we report the presence of a novel 

VANGL2-ITLN1 fusion gene in the IMR32 neuroblastoma cell line. The fusion gene was 

identified by applying FusionHunter analysis to neuroblastoma cell line RNA sequencing 

data. This fusion results in the dramatic overexpression of a fusion transcript incorporating 

the full length ITLN1 coding sequence. Furthermore, the tumour expression levels of both 

components of the fusion gene (ITLN1 and VANGL2) are predictive of neuroblastoma 

patient outcome. High ITLN1 expression levels correlate with worse outcome across all 

neuroblastoma tumour stages and across MYCN amplification statuses. Survival probability 

was markedly worse for patients with both elevated MYCN and ITLN1 expression. We show 

that the VANGL2-ITLN1 fusion transcript can be transcriptionally upregulated upon lithium 
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chloride (LiCl) treatment, a known agonist of the Wnt signalling pathway. The novel 

VANGL2-ITLN1 fusion is associated with regulatory networks such as MYCN, ALK and the 

Wnt/Planar Cell Polarity (PCP) pathway which are key regulators of neuroblastoma outcome. 

We reveal novel putative multilevel-interactions between the fusion gene components and the 

MYCN oncogene, including MYCN ITLN protein-protein interactions. Through its 

interactions with other oncogenes the VANGL2-ITLN1 fusion gene is likely to be involved 

in driving neuroblastoma progression and poor patient outcomes.  

 

Introduction 

Many cancer cell types show inherently accelerated rates of mutation, which enables them to 

acquire selective advantages that drive tumour progression. Genomic instability, one of the 

major hallmarks of cancer, leads to random mutations, including chromosomal 

rearrangements and gene fusions. The fusion of two genes can lead to the expression of a 

fusion protein with oncogenic potential [1-5], such as the EWS-FL1 fusion in Ewing’s 

sarcoma and the BCR-ABL fusion in leukaemia [6, 7]. Such fusion proteins are ideal 

potential targets for cancer treatment, since they do not occur in normal tissues. Alternatively, 

chromosomal translocation events can lead to the fusion of a proto-oncogene to a strong 

active promotor, or reduce the expression of a tumour suppressor gene by fusion to a silenced 

promoter, a promoter-less region, or by destroying the open reading frame. 

Whole genome sequencing can be useful for detecting novel fusion genes. However, to 

determine whether predicted fusion genes are indeed expressed requires independent 

expression profiling, which can be challenging given the level of false positives which are 

called by current short read length sequencing methods. For example, in a study of putative 

chimeric genes in neuroblastoma, only 19% of chimeric genes identified by genomic DNA 

sequencing had detectable levels of transcript expression when subsequently profiled by 

RNA-seq [8]. Furthermore, in the majority of cases where tumour RNA was not also 

preserved along with the tumour DNA it can be extremely problematic to prove expression. 

However, detecting tumour genes using paired-end RNA-seq [5] not only identifies fusions 

but simultaneously provides quantification of their expression level. RNA-seq-based fusion 

gene detection therefore provides an additional means to filter for fusions more likely to be 

functionally relevant. Here, we have used RNA-seq-based fusion gene detection to identify 

gene fusions with putative functional relevance for neuroblastoma, a paediatric solid tumour 

with a lack of conventional somatic mutations [9-11]. This lack of recurrent somatic 
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mutations has hampered the development of targeted therapeutic approaches for 

neuroblastoma. Therefore, the identification of functionally relevant fusion genes may 

provide effective therapeutic targets to improve patient outcome. 

Neuroblastoma arises from an embryonal tissue, the neural crest, due to improper terminal 

differentiation of neural crest derived stem cells [12-18], and is responsible for 15% of all 

childhood cancer deaths [19]. There is a relative paucity of recurrent activating somatic point 

mutations or gene fusions in neuroblastoma [9-11, 20]. However, this lack of fusion genes 

may be due to limited investigation rather than fusions being truly absent, especially given 

that fusions are an underappreciated class of mutations in solid tumours [5]. Indeed, given the 

paucity of recurrent somatic coding mutations in neuroblastoma [9] it is quite likely that 

fusion events have played a hitherto underappreciated role in contributing to tumourigenicity 

in this malignancy. We detected the novel fusion of the VANGL2 and ITLN1 genes in the 

neuroblastoma cell line IMR32 by applying FusionHunter [21] to our paired-end 

transcriptome sequencing. Both genes sit on chromosome 1, within 1q23 (human genome 

build: GRCh38/hg38). Chromosome 1 frequently harbours chromosomal abnormalities in 

neuroblastoma; for example, 70% of cases contain structural rearrangement of chromosome 

1p [22]. Chromosome 1q gain occurs commonly in cancers (generally 1q23-1q32 region) and 

is more frequent in recurrent tumours, possibly associated with tumour progression [23, 24]. 

Specifically in neuroblastoma, 1q21-1q25 gain has been associated with progressive disease 

[23, 25]. 

VANGL2 (Van Gogh-Like Planar Cell Polarity Protein 2) encodes a membrane protein 

involved in the regulation of planar cell polarity [26] and is conserved among species from 

flies to mammals [27]. In vertebrates, Planar Cell Polarity genes play a role in embryonic 

development during gastrulation and neurulation, with VANGL2 itself being involved in 

neural tube closure [28, 29] and axonal guidance [30]. Studies have shown that VANGL2 is 

strongly expressed in the developing nervous system of mice [31], but also in adult rat 

neurons [32]. In mice and humans there are two VANGL-family members, VANGL1 and 

VANGL2, with about 70% amino-acid sequence identity, which have differing expression 

patterns [31, 33]. VANGL genes are increasingly being recognised for their involvement in a 

number of cancers [34-37], including the paediatric solid tumour neuroblastoma [38, 39]. 

VANGL2 is a key component of the Wnt/planar cell polarity pathway, as well as being 

associated with the canonical Wnt/β-catenin signalling pathway [36, 40], and its expression is 

associated with less differentiated cell types [38]. Both the Wnt/β-catenin signalling pathway 
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and the Wnt/planar cell polarity pathway are important regulators of neuroblastoma cell 

behaviour and patient outcome [38, 41-44]. A VANGL2-PDE4DIP fusion gene has 

previously been identified in adenocarcinoma [3] (Mitelman Database of Chromosome 

Aberrations and Gene Fusions in Cancer [2017], 

https://cgap.nci.nih.gov/Chromosomes/Mitelman). 

ITLN1 (Intelectin-1) is usually expressed in the small intestine and the colon, where it is 

secreted from goblet cells into the mucus [45]. It can bind to specific structures on the surface 

of bacteria and might play a role in immune defence [45]. Upon infection or inflammation, an 

increase in the expression of ITLN1 mRNA can be observed in the intestine [46, 47] and in 

the bronchi of the lungs [48]. ITLN1 has been shown to be overexpressed and secreted from 

human malignant pleural mesothelioma [49, 50], and also in the majority of human gastric 

cancer tissues [51]. For the latter, there is a positive correlation between ITLN1 expression in 

gastric cancer and patient survival [51]. Additionally, in vitro transfection of the ITLN1 gene 

into gastric cancer cells [51] and prostate cancer cells [52] has led to attenuated proliferation 

and decreased in vitro cell viability, which indicates a tumour suppressor function for ITLN1 

in those cells. Recently, ITLN1 has been shown to have a functional role in neuroblastoma, 

where its ectopic expression suppressed the growth, invasion and metastasis of 

neuroblastoma cells in vitro and in vivo [53]. Conversely, knockdown of ITLN1 promoted the 

growth, invasion, and metastasis of neuroblastoma cells [53]. 

Our findings reveal that neuroblastoma cell lines can harbour previously unidentified fusion 

genes and that the components of the VANGL2-ITLN1 fusion are associated with patient 

outcome. Importantly, our results highlight the need for comprehensive fusion gene screening 

in neuroblastoma tumour samples. Such analysis would be extremely timely given the advent 

of the precision medicine-era [54-56] and the associated dramatic increase in the number of 

tumours being transcriptomically sequenced. 

 

Results 

Identification of a VANGL2-ITLN1 fusion gene in IMR32 cells 

Fusion genes play an increasingly well-recognised role in numerous tumour types [2-4]. We 

therefore mined paired-end RNA-seq data from five neuroblastoma cell lines (IMR32, SY5Y, 

Kelly, KCN and KCNR) for the presence of novel gene fusions, using FusionHunter [21]. We 

had previously generated this transcriptomic dataset to determine the MYCN signalling 

network functionally responsible for driving poor-outcome neuroblastoma [13, 43, 57-59], 
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and as such the cell lines cover a range of MYCN expression and amplification statuses [57, 

58]. The FusionHunter analysis revealed the existence of a VANGL2-ITLN1 fusion gene in 

the MYCN amplified IMR32 cell line (Fig. 1A). The IMR32 cell line was derived from a 

metastatic neuroblastoma tumour and expresses high levels of MYCN [57, 58, 60]. The 

VANGL2-ITLN1 fusion gene was not detected in the other four cell lines, being unique to 

IMR32 cells. The fusion gene transcript comprises part of the 5’ untranslated region (UTR) 

of the VANGL2 gene, and the complete and intact open reading frame (ORF) and 3’ UTR of 

ITLN1 (Table 1, Fig. 1A). 

Table 1. Sequence of the VANGL2-ITLN1 fusion gene mRNA transcript. The VANGL2 5’ UTR is shaded in 

grey. Start and stop codons of the ITLN1 ORF are shaded in green. 

 

VANGL2-ITLN1 fusion mRNA sequence  
    1 GGCTCCCGAT CTGATTCCTG ATCCTTGATT CCTTGATCCT TGGTCCCGCC 

   51 ATGGGAGCCT GAGCGCCCCC TATTCCCCCC TGGCCCCCAG CCCCCGGGGC 

  101 CTTGAGGGGG AAGAGGCAGC GGTCTGGGAC GGAGCAGGGG GTGACCAGAC 

  151 TCAAGAACCC CCCCCTCAAC ATCCCCCATC GCGCGCGCTG CCTGTCCAGG 

  201 AGCGCCGAGT TCGGAGCGAC CCGGAGCGCT GCGGATACAA AGGCGACGGG 

  251 CCGAGCGGGG CGCCCGCGGA GCCCACCCGG CAGTTCGCAG CGGCGGATTA 

  301 CAATGAACCA ACTCAGCTTC CTGCTGTTTC TCATAGCGAC CACCAGAGGA 

  351 TGGAGTACAG ATGAGGCTAA TACTTACTTC AAGGAATGGA CCTGTTCTTC 

  401 GTCTCCATCT CTGCCCAGAA GCTGCAAGGA AATCAAAGAC GAATGTCCTA 

  451 GTGCATTTGA TGGCCTGTAT TTTCTCCGCA CTGAGAATGG TGTTATCTAC 

  501 CAGACCTTCT GTGACATGAC CTCTGGGGGT GGCGGCTGGA CCCTGGTGGC 

  551 CAGCGTGCAC GAGAATGACA TGCGTGGGAA GTGCACGGTG GGCGATCGCT 

  601 GGTCCAGTCA GCAGGGCAGC AAAGCAGTCT ACCCAGAGGG GGACGGCAAC 

  651 TGGGCCAACT ACAACACCTT TGGATCTGCA GAGGCGGCCA CGAGCGATGA 

  701 CTACAAGAAC CCTGGCTACT ACGACATCCA GGCCAAGGAC CTGGGCATCT 

  751 GGCACGTGCC CAATAAGTCC CCCATGCAGC ACTGGAGAAA CAGCTCCCTG 

  801 CTGAGGTACC GCACGGACAC TGGCTTCCTC CAGACACTGG GACATAATCT 

  851 GTTTGGCATC TACCAGAAAT ATCCAGTGAA ATATGGAGAA GGAAAGTGTT 

  901 GGACTGACAA CGGCCCGGTG ATCCCTGTGG TCTATGATTT TGGCGACGCC 

  951 CAGAAAACAG CATCTTATTA CTCACCCTAT GGCCAGCGGG AATTCACTGC 

 1001 GGGATTTGTT CAGTTCAGGG TATTTAATAA CGAGAGAGCA GCCAACGCCT 

 1051 TGTGTGCTGG AATGAGGGTC ACCGGATGTA ACACTGAGCA CCACTGCATT 

 1101 GGTGGAGGAG GATACTTTCC AGAGGCCAGT CCCCAGCAGT GTGGAGATTT 

 1151 TTCTGGTTTT GATTGGAGTG GATATGGAAC TCATGTTGGT TACAGCAGCA 

 1201 GCCGTGAGAT AACTGAGGCA GCTGTGCTTC TATTCTATCG TTGAGAGTTT 

 1251 TGTGGGAGGG AACCCAGACC TCTCCTCCCA ACCATGAGAT CCCAAGGATG 

 1301 GAGAACAACT TACCCAGTAG CTAGAATGTT AATGGCAGAA GAGAAAACAA 

 1351 TAAATCATAT TGACTCAAAA AAAAAAAAAA AAAAAAAAAA AAAAA 

 

 

To ensure that the detection of the fusion gene was not due to a sequencing or computational 

artefact we verified the presence of the VANGL2-ITLN1 fusion by conventional PCR and 

RT-qPCR using primers that were designed based on the fusion transcript sequence obtained 

from the RNA-seq data (Table 2). The full VANGL2-ITLN1 fusion transcript was amplified 

via conventional PCR and Sanger sequenced. Using qPCR we confirmed that the fusion gene 
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was only present in IMR32 cells, and not expressed in the other four cell lines (SY5Y, Kelly, 

KCN and KCNR).  

 

 

 

 

 

Table 2. ITLN1 and VANGL2 primer sequences used for RT-qPCR and conventional PCR. 

Primers list Primer sequence Product size 

For detecting fusion expression:   

VANGL2 qPCR Fwd  GGGGTGACCAGACTCAAGAA 187bp 

ITLN1 qPCR Rev GCAGGAAGCTGAGTTGGTTC  

 

For detecting wild type expression: 

  

ITLN1 w.t. qFwd1 AGCGTTTTTGGAGAAAGCTG 135bp 

ITLN1 qPCR Rev 
 

As above  

VANGL2 w.t. qFwd1 CTCGGAGAGGAAAACAGCAC 192bp 

VANGL2 w.t. qRev1 CAGCCGCTTAATGTGAGTGA  

   

For amplifying full fusion transcript:   

VANGL2 start Fwd GGCTCCCGATCTGATTCC 1,369bp 

ITLN1 end Rev TTTGAGTCAATATGATTTATTGTTTTC  

   

For assessing background level of 

plasmid 

  

Plasmid Backbone qPCR Fwd CAACCCGGTAAGACACGACT 76bp 

Plasmid Backbone qPCR Rev GCCTACATACCTCGCTCTGC  

   

The expression levels of the two fusion gene components were then examined in our 

neuroblastoma cell line RNA-seq data (Fig. 1B). VANGL2 was widely expressed across all 

five neuroblastoma cell lines, although IMR32, the cell line harbouring the VANGL2-ITLN1 

fusion gene, had over double the level of VANGL2 expression seen in any other cell line. 

Conversely, ITLN1 expression was practically silenced in the other four neuroblastoma cell 

lines. We postulated that this ITLN1 expression in IMR32 was due to the fusion event, with 

the ITLN1 transcript’s expression being driven by the ectopic upstream VANGL2 promoter. 

To assess the veracity of this assumption, qPCR primer sets capable of differentiating 

between VANGL2-ITLN1 fusion transcripts and wild type ITLN1 and wild type VANGL2 

transcripts were designed (Table 2) and qPCR performed using cDNA generated from IMR32 

cells (Fig. 1C). This confirmed that wild type VANGL2 transcripts are abundant in IMR32 

cells, and revealed that wild type ITLN1 expression was practically silenced. 

Interestingly, the expression of genes immediately upstream of VANGL2 (UCSC genome 

browser [61], human genome build: hg38) were elevated in IMR32 cells also, suggesting the 
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possibility of a larger mutational event (Fig. 1D, Table S1), likely due to a 1q21-1q25 gain 

known to occur in some neuroblastoma tumours [23, 25]. The VANGL2 and ITLN1 genes sit 

relatively close together on chromosome 1, being separated by only nine genes with the end 

of VANGL2 and the beginning of the ITLN1 gene being 447.9kb apart (Fig. 1D, UCSC 

genome browser [61], human genome build: hg38). Interestingly, the expression of the gene 

immediately upstream of VANGL2, NHLH1, was also highly elevated in IMR32 cells 

compared with the other four neuroblastoma cell lines (Fig. 1D and Table S1). Expression of 

NHLH1, a neurogenesis-related gene [62], has previously been linked with neuroblastoma 

[63, 64] with our results suggesting that NHLH1 expression may be altered by the same 

chromosomal translocation event responsible for generating the VANGL2-ITLN1 fusion. 

  

ITLN1 and VANGL2 tumour expression levels are predictive of patient outcome 

Having confirmed the expression of the fusion transcript in IMR32 cells we next determined 

if the results obtained from the cell line were relevant to neuroblastoma tumour biology. We 

examined whether there was any correlation between the two components of the fusion gene 

and neuroblastoma patient outcome in a large neuroblastoma tumour dataset (SEQC [65] with 

498 tumours), using the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl). 

VANGL2 and ITLN1 mRNA expression levels were each prognostic of patient survival (Fig. 

2A), with VANGL2 showing the strongest predictive power. Low VANGL2 expression was 

associated with worse outcome, which is interesting given that the VANGL2-ITLN1 fusion 

event in IMR32 results in a fusion product with no VANGL2 ORF/transcript. However, it 

should be noted that IMR32 cells do retain a functionally transcribed copy of VANGL2 (Fig. 

1B, C), suggesting the fusion gene was generated by a trisomy event as is known to occur in 

that 1q region [23]. Interestingly, high ITLN1 expression was associated with worse 

outcome. When ITLN1 expression in these tumours was compared with neuroblastoma risk 

stage there was a significant difference between the stages (ANOVA, p-value = 9.4E-03), 

with higher expression levels tending towards higher classification stage (Fig. 3A). However, 

interestingly, stage 4S also tended towards higher expression of ITLN1. Despite having 

disseminated tumours, stage 4S patients have a good prognosis (due to phenomena such as 

spontaneous regression). Conversely, regular stage 4 patients have the lowest survival rate of 

all stages.  

Given this stage-specific difference in ITLN1 expression, we next examined ITLN1’s ability 

to predict survival probability in each tumour stage. Consistently, in each stage (including 
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4S) those tumours with higher ITLN1 expression showed a lower survival rate (Fig. 3B). We 

next examined whether there was any difference in ITLN1’s ability to predict survivorship in 

MYCN amplified and MYCN non-amplified tumours. MYCN amplification status is the 

strongest single genetic marker prognostic for neuroblastoma outcome [66]. Once again in 

both groups, even when accounting for MYCN, the ITLN1 expression level was able to add 

additional predictive power to patient survival, with high ITLN1 expression being predictive 

of worse outcome in both MYCN status cohorts (Fig. 3C). Although it should be noted that 

while this difference was statistically significant in the non-amplified MYCN cohort (p-value 

= 2.9E-03), in the MYCN amplified cohort this trend was just shy of statistical significance 

(p-value = 0.054) due to the smaller sample size, and low overall survival rate. No patient 

with MYCN amplification and high ITLN1 expression survived beyond 36 months. 

 

Other cancer cell lines and tumour samples harbour additional VANGL2 and ITLN1 

mutations 

Given that low levels of ITLN1 expression are associated with better patient outcome, we 

next examined two wider neuroblastoma cell line panels to assess the mutation and 

expression status of the fusion gene components. We mined a recent RNA-seq database of a 

39 neuroblastoma cell line panel [67] and the catalogue of somatic mutations in cancer 

(COSMIC) (http://cancer.sanger.ac.uk/cosmic, COSMIC v81) database [68]. 

The low levels of ITLN1 expression in the neuroblastoma cell lines that we profiled which 

lacked the fusion gene (KCN, KCNR, Kelly and SY5Y) were consistent with ITLN1 

expression across the 39 neuroblastoma cell lines profiled by RNA-seq by Harenza et al. [67] 

(Fig. 4A). ITLN1 expression was also extremely low in RPE1 cells (a retinal pigment 

epithelial cell line) and human foetal brain tissue, which was also profiled in the Harenza et 

al. study [67] (Fig. 4A). ITLN1 was practically silenced across the 39 neuroblastoma cell 

lines, with only four of them showing ITLN1 expression. Similar to our five cell line panel, 

almost all of the neuroblastoma cell lines had high levels of VANGL2 expression (Fig. 4A). 

We also utilised the catalogue of somatic mutations in cancer (COSMIC) 

(http://cancer.sanger.ac.uk/cosmic, COSMIC v81)[68] database to further examine the fusion 

component genes in neuroblastoma cells and cancer more generally. Two of 34 

neuroblastoma cell lines in the COSMIC database harboured ITLN1 over- or under-

expression, while almost half of these 34 cell lines showed VANGL2 overexpression (Table 

3). While a VANGL2-ITLN1 fusion gene has not previously been reported in the COSMIC 
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database, both of these genes do have a number of mutations and altered expression patterns 

in both cancer tissue and cell line samples (Table 4), further supporting their potential 

relevance to oncogenic processes. Interestingly, in tumour samples with altered VANGL2 or 

ITLN1 expression, both genes were predominantly overexpressed, rather than 

underexpressed, indicating that excess transcription of these genes (as seen in the IMR32 cell 

line, largely due to the fusion gene) is associated with tumours.  

 

Table 3. Expression status of 34 neuroblastoma cell lines present in the COSMIC database. 

 

Table 4. ITLN1 and VANGL2 mutation and expression status in COSMIC database tumour and cell line 

samples. 

 Tested samples Curated 

fusions 

Mutated Over 

expressed 

Under 

expressed 

ITLN1:      

Tumour samples 29,379 0 126 276 0 

Cancer cell lines  1,020 0 28 23 27 

NB cell lines only 34 0 2 1 1 

 

VANGL2: 

     

Tumour samples 29,379 0 178 895 13 

Cancer cell lines  1,020 0 51 57 20 

NB cell lines only 34 0 1 15 0 

 

We further analysed how the expression levels of the fusion gene components in 

neuroblastoma compared with levels in other healthy and malignant tissues using the In Silico 

Transcriptomics (IST) Online database (http://ist.medisapiens.com/, version 2.1.3) which 

Neuroblastoma cell lines in COSMIC database with 

over/under expression of VANGL2 or ITLN1 

Expression 

status 

Exp. level z score Average ploidy 

ITLN1:    

CHP-212 Under -2.28 1.98 

NB7 Over 2.40 3.04 

 

VANGL2: 

   

BE2-M17 Over 3.39 1.84 

CHP-126 Over 2.83 2.01 

CHP-134 Over 2.51 1.97 

GOTO Over 3.54 2.02 

IMR-5 Over 4.41 2.05 

KELLY Over 2.11 1.99 

KP-N-YN Over 2.81 1.93 

MHH-NB-11 Over 2.45 2.40 

NB(TU)1-10 Over 2.48 3.00 

NB1 Over 2.32 1.94 

NB10 Over 2.24 3.39 

NB17 Over 2.05 2.97 

SIMA Over 2.25 3.86 

SK-N-DZ Over 2.10 3.90 

TGW Over 2.02 3.17 

http://ist.medisapiens.com/
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contains human transcriptomics data for 3,082 healthy tissue samples, 15,392 malignant 

tissue samples and 1,590 other disease samples. In line with the other datasets, VANGL2 

expression was highly elevated in neuroblastoma tissue compared with healthy tissue types, 

with only prostate, penis and vagina/vulva tissues reaching VANGL2 expression levels 

similar to that of neuroblastoma (Fig. 4B). Furthermore, the neuroblastoma cohort expressed 

higher VANGL2 levels than the majority of other malignancies, although generally VANGL2 

expression was elevated in across malignancies compared with healthy tissues (Fig. 4B). 

Interestingly, melanoma samples had a similarly high level of VANGL2 mRNA to that seen 

in neuroblastoma. Both melanocyte and neuroblast cells share a common tissue of origin, the 

embryonal tissue the neural crest whose induction and migration is associated with canonical 

and Wnt/PCP signalling [43, 69-71]. The IST Online database once again confirmed that 

endogenous ITLN1 expression was very low in neuroblastoma samples (Fig. 4B). The IST 

Online database’s cell line panel also confirmed that VANGL2 tends to be more highly 

expressed than ITLN1 across the majority of cell types (Fig. 4C). 

We next examined patient outcome and expression patterns of WNT5A (Figs 4D, S1A). 

WNT5A is the main Wnt ligand associated with the Wnt/PCP pathway of which VANGL2 is 

a downstream component [38, 43, 72, 73]. Mirroring VANGL2, patients with low WNT5A 

had worse outcomes. However, a larger cohort of patients harboured low VANGL2 

expressing tumours than WNT5A, indicating that alterations/mutations of the PCP pathway 

in neuroblastoma more commonly occur downstream of the Wnt ligand with VANGL2 

expression levels providing a more broadly informative readout of patient outcome. The fact 

that more downstream alterations to the Wnt/PCP pathway are a more common feature is 

supported by recent findings that Wnt-related genes, including VANGL1, are recurrently 

mutated in relapsed neuroblastoma [39, 74, 75]. 

  

VANGL2-ITLN1 fusion expression can be transcriptionally regulated by lithium 

chloride 

Having confirmed that altered expression and mutations in the component genes of the 

VANGL2-ITLN1 fusion are present in other neuroblastoma and cancer cell lines, we next 

examined whether the expression of the fusion gene was under transcriptional control of the 

VANGL2 promoter. VANGL2 is regulated by canonical and non-canonical Wnt signalling. 

Additionally, VANGL2 interacts at the protein level with Wnt genes (Fig. S1B), being a key 

Wnt/planar cell polarity pathway component [36, 40, 76]. When IMR32 cells were treated 
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with lithium chloride (LiCl) (an inhibitor of GSK3β that activates Wnt/β-catenin pathway 

activity [57]), both VANGL2 and ITLN1 expression increased by a similar fold change (Fig. 

5A), suggesting that the fusion gene in IMR32 cells is indeed under similar translational 

control as wild type VANGL2, i.e. the VANGL2 upstream promoter is also likely fused to 

and regulating the expression of the ITLN1 gene. We used our qPCR assays to examine the 

specific lithium-induced changes in expression for the VANGL2-ITLN1 fusion transcript and 

the wild type VANGL2 and ITLN1 transcripts. This revealed that all three transcripts were 

upregulated by LiCl, and that the change in fusion gene expression most closely resembled 

that of wildtype VANGL2 (Fig. 5A). 

 

VANGL2 and ITLN1 interact with the MYCN oncogenic network 

In line with VANGL2 mutations predominantly occurring in relapsed rather than primary 

neuroblastoma, the fusion gene does not appear to be involved in the initial stages of 

oncogenic transformation. Overexpression of the fusion gene in a NIH-3T3 mouse fibroblasts 

focus formation assay by transfection with a pcDNA3 plasmid containing the full length 

fusion transcript did not increase foci formation, despite the transcript being expressed (Fig. 

S1C, D). The effect of the fusion gene components on neuroblastoma patient outcome (Figs 

2A, 3A-C) is likely due to these genes modulating post-initiation events such as 

neuroblastoma progression, resistance to therapy or metastasis through interaction with other 

neuroblastoma genetic drivers. Therefore, we next examined known regulatory network 

interactions involving the fusion gene components. 

Amplification of the MYCN oncogene is the strongest single gene prognostic factor for 

neuroblastoma patient outcome (Fig. 3C), with MYCN being amplified in 20% of 

neuroblastoma tumours [17, 66, 77-79]. IMR32 cells are MYCN amplified and express high 

levels of MYCN mRNA and protein [57, 58]. For this reason we examined whether any links 

exist between MYCN and the two component genes of the VANGL2-ITLN1 fusion. We used 

the Genome-scale Integrated Analysis of Gene Networks in Tissues (GIANT, 

http://giant.princeton.edu/) programme [80] to examine whether interactions exist between 

MYCN and the two components of the fusion gene. MYCN had direct links to both 

VANGL2 and ITLN1, as well as all three genes being part of an interconnected network (Fig. 

5B), suggesting that these genes (and therefore potentially the fusion gene) may cooperate 

with the MYCN oncogene in playing a role in poor outcome neuroblastoma. Interestingly, 

ALK was also a direct edge of ITLN1. ALK is another key neuroblastoma driver gene 

http://giant.princeton.edu/
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recurrently mutated in tumours and can drive poor outcome, both in cooperation with and 

independently of the MYCN oncogene [66, 81]. 

Finally, we mined our extensive MYCN overexpression omics data [58] to identify any 

points of interaction between the fusion component genes and MYCN (Figs 5C, S2A-C). 

This analysis showed that a putative protein-protein interaction exists between MYCN and 

ITLN proteins (MYCN mass spec. coIP, Fig. S2A). It also showed that MYCN protein 

directly binds to the DNA of the VANGL1 and VANGL2 genes (MYCN ChIP-seq, Table 

S2) and that MYCN overexpression exerts a modest repressive effect on VANGL2 

transcription (MYCN overexpression 4sU-seq, Fig. S2B). Taken together these findings 

reveal cross-talk between the MYCN oncogene and the two component genes of the 

VANGL2-ITLN1 fusion, and suggest that the fusion gene may play a functional role 

contributing to poor outcome neuroblastoma. 

 

Discussion 

This study has demonstrated the potential for previously undiscovered fusion genes to exist in 

neuroblastoma, even being harboured in a widely studied neuroblastoma cell line, IMR32. 

We confirmed the fusion of  the VANGL2 and ITLN1 genes in IMR32 cells, and that the 

fusion was not present in other neuroblastoma cell lines tested (Kelly, KCN, KCNR and 

SY5Y). The fusion essentially drives the overexpression of the ITLN1 gene, linking it to 

VANGL2’s upstream transcriptional regulatory apparatus, and removing the ITLN1 5’ UTR 

from the transcript. Although the fusion event could have conceivably resulted in reduced 

expression of VANGL2, wild type VANGL2 expression remains high in IMR32. This 

suggests that the fusion was generated by a trisomy event known to occur at that 

chromosomal location in a number of malignancies [23]. At the very least the presence of the 

fusion gene may have implications for studies on the widely utilised IMR32 neuroblastoma 

cell line, which is used not only as a neuroblastoma model but also as a neurological model 

for a range of conditions, e.g. Alzheimer's disease [82]. The results of such studies may need 

to be reinterpreted in light of the presence of this novel fusion gene, particularly for those 

studies directly investigating VANGL2, ITLN1 or their immediate networks and interactors 

[38]. However, the fusion may have wider relevance given the statistically significant 

associations between the fusion gene components and neuroblastoma patient outcome, the 

known chromosomal rearrangements at 1q [23, 25], the VANGL coding mutations recently 

identified in relapsed neuroblastoma tumours [39], the historical lack of effort to 
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systematically identify neuroblastoma fusions, and the fusion components being MYCN-

related genes.  

There is a growing appreciation of the role of VANGL2 and indeed the Wnt pathways 

themselves in neuroblastoma biology, including their contribution to the maintenance of more 

stem-like states associated with worse outcome [13, 38, 42-44]. Furthermore, mutations in 

Wnt component genes have recently been identified by deep sequencing of recurrent/relapsed 

neuroblastoma tumours [39, 74, 75]. Our analysis adds fusion events to the mechanisms by 

which VANGL genes are mutated in neuroblastoma. Furthermore, VANGL2 sits adjacent to 

NHLH1 on chromosome 1, in a chromosomal region frequently containing structural 

rearrangements in neuroblastoma [22, 23, 25]. We show that the VANGL1 and VANGL2 

genes are bound by MYCN protein (MYCN ChIP-seq), a gene known to drive chromosomal 

instability. Our analysis highlights the strong correlation between VANGL2 expression and 

neuroblastoma patient outcome (Fig. 2A) and the gene’s elevated expression in 

neuroblastoma cell lines, mirroring the high expression observed in human foetal brain tissue 

(Fig. 3A). We also demonstrated that VANGL2’s 5’ UTR region likely conferred its Wnt 

transcriptional responsiveness upon the VANGL2-ITLN1 fusion.  

Recently it has been shown that ITLN1 attenuated the growth and metastasis of SY5Y-

derived tumours in vivo. When SY5Y cells with ITLN1 overexpression were injected into 

nude mice the overall tumour weight and the occurrence of lung metastasis were reduced 

compared with those of wild-type SY5Y-derived tumours [53]. Conversely, ITLN1 knock 

down increased the weight of SY5Y-derived tumours and the occurrence of lung metastasis 

[53]. These authors also claimed that high ITLN1 expression was associated with good 

outcome in neuroblastoma patients, a finding in direct contrast with our analysis (Fig. 2A). 

Crucially, however, Li et al. based this finding on a small patient cohort (also obtained from 

the R2 microarray analysis and visualization platform) consisting of only 57 neuroblastoma 

patients, a mere eight of which exhibited high ITLN1 expression. Our analysis from a cohort 

of 498 neuroblastoma patients reveals that high ITLN1 expression in fact correlates with poor 

outcome. Furthermore, this correlation holds true across all tumour stages and independently 

of MYCN amplification status (Fig. 3). However, our analysis also suggests that the effect of 

elevated ITLN1 expression may be exacerbated depending on the genetic background of the 

tumour, as, strikingly, no patients with MYCN amplification and high ITLN1 expression 

survived beyond 36 months post diagnosis (Fig. 3C).  Therefore, the genetic background of a 

tumour, particularly its MYCN amplification status, may account for the discrepancy in the 
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effects of ITLN1. We show here that ITLN1 is part of a MYCN regulatory network 

potentially even having direct protein-protein interactions with MYCN. In this light it should 

be noted that Li et al.’s in vivo assay used SY5Y cells which are not a MYCN-amplified cell 

line, and express minimal levels of MYCN [58]. ITLN1’s role in neuroblastoma could be 

further complicated depending on whether a tumour harbours an activating ITLN1 fusion. 

The rate of ITLN1 fusions in neuroblastoma tumours is not currently known, and we cannot 

precisely segregate patient outcome by presence or absence of fusions using the available 

microarray cohorts. However, we do know that SY5Y cells neither harbour the VANGL2-

ITLN1 fusion transcript (qPCR, data not shown, and FusionHunter analysis) nor express 

ITLN1 (Fig. 1B). Therefore, the beneficial phenotypes observed by Li et al. occurred in a 

background lacking MYCN amplification or VANGL2-ITLN1 fusion and it would be 

extremely interesting to determine whether repeating the assay with cell lines representing 

more high-risk neuroblastoma (e.g. IMR32 cells) would produce similar phenotypes. Our 

findings suggest an association between elevated ITLN1 expression, genetic-background 

effects on ITLN1 function and of a putative role in more advanced neuroblastoma, and are 

supported by the literature related to chromosome 1q gain. Chromosome 1q gain, the region 

including both the VANGL2-ITLN1 fusion component genes, occurs in a number of cancers 

including neuroblastoma, and is more frequent in recurrent tumours, having been linked to 

tumour progression [23-25]. We recommend that in-depth functional studies be conducted to 

comprehensively determine the role of ITLN1 and VANGL2 in neuroblastoma outcome, and 

that such studies also consider the possible effects of the VANGL2-ITLN1 fusion gene. 

Although segmental chromosomal aberrations are common in neuroblastoma, translocation 

events that create fusion oncogenes are rarely seen in neuroblastomas at diagnosis, but do 

occur more frequently in relapsed disease after exposure to intensive DNA damaging 

chemotherapeutic agents [11]. Prior to the broad adoption of deep sequencing technologies in 

neuroblastoma research, Santo et al. (2012) [83] identified the transcriptional activation of 

the normally silenced FOXR1, in the 11q23 region, by a deletion-fusion in a number of 

neuroblastoma tumours. Fusion transcripts involving the ALK, NBAS, PTPRD, ARHGEF33 

and ODZ4 genes have also previously been identified [8]. However, that study only profiled 

two neuroblastoma tumours. Fusion analysis should be more generally applied to 

neuroblastoma tumours and indeed other malignancies and disease types to fully utilise the 

rich information currently being generated by deep sequencing technologies, as precision 

medicine initiatives result in an ever increasing cohort of genomically and transcriptomically 
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profiled tumours [54-56]. Indeed,  eight putative fusion genes were recently detected in a 

panel of 151 neuroblastoma tumour samples genomically profiled by next-generation 

sequencing [75]. However, the authors did not confirm whether these putative fusions were 

expressed, again highlighting the inherent advantage of using RNA sequencing-based 

approaches for novel fusion gene detection enabling simultaneous transcriptional validation 

and quantification.  

The novel VANGL2-ITLN1 gene fusion identified here has the potential to be involved in 

driving neuroblastoma tumorigenesis and poor patient outcomes owing to the association of 

the fusion with regulatory networks such as MYCN, ALK and the Wnt/PCP pathway, which 

are key regulators of neuroblastoma outcome [11, 13, 15, 38, 58, 72, 84-86]. Given the 

variety of developmental processes with which the fusion component genes are associated, 

mutations in these genes may have implications beyond oncology, particularly for neuronal-

related diseases. Our identification of the VANGL2-ITLN1 fusion highlights the 

underappreciation of the potential contribution of gene fusions to malignancies, being present 

even in a model system previously considered to be well characterised. Fusion gene analysis 

should become a standard test in human oncology and other non-communicable diseases over 

the coming decades as genomic-era medicine continues to be more widely implemented in 

the clinic. 

 

Materials and Methods 

Fusion gene detection using paired-end RNA sequencing 

We mined our previously generated neuroblastoma paired-end RNA-seq data [57, 58] for 

fusion genes. For a description of how the RNA-seq experiments were conducted and our 

initial bioinformatics analysis, please see the following references: [57, 58, 87]. Five 

neuroblastoma cell lines (IMR32, SY5Y, Kelly, KCN and KCNR) were examined for the 

presence of novel gene fusions using FusionHunter [21] with stringent parameters. Fusion 

genes were called only if a minimum of two mate pairs mapping at the two different genomic 

locations and at least a single read mapped across the junction. Single read mapping across 

junctions was used to determine the exact breakpoint. 

ArrayExpress (http://www.ebi.ac.uk/arrayexpress) accession numbers or RNA-seq datasets 

used in this study were: E-MTAB-1684, E-MTAB-2690, E-MTAB-2691, E-MTAB-2787, E-

MTAB-4100 and E-MTAB-2689. The VANGL2-ITLN1 fusion transcript sequence was 
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deposited in NCBI’s GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accession number 

pending). 

 

Cell lines and culture conditions 

Cell lines were cultured as previously described [57]. Briefly, Kelly, SMS-KCN, SMS-

KCNR and IMR32 cells were cultured in RPMI-1640 media (Invitrogen) supplemented with 

2mM L-glutamine, 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in Nunc 

cell culture flasks (Thermo Scientific) and maintained at 37°C in a humidified atmosphere. 

The culture medium for SH-SY5Y-MYCN cells (inducible expression system SH-

SY5Y/6TR(EU)/pTrex-Dest-30/MYCN [88]) additionally contained G418 and Blasticidin. 

NIH-3T3 mouse fibroblast cells were cultured in DMEM (Invitrogen) supplemented with 

2mM L-glutamine, 10% FBS and 1% penicillin/streptomycin. Upon transfection, NIH-3T3 

cells were cultivated in DMEM media supplemented with 10% DBS (Donor Bovine Serum, 

Invitrogen) until they reached full confluency. The cells were harvested using Versene (1mM 

EDTA in 1 x PBS) for the neuroblastoma cell lines or 0.25% Trypsin-EDTA (Gibco) for 

NIH-3T3 cells.  

 
RNA extraction and reverse transcription 

RNA was isolated from cell lines using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s instructions. RNA concentration was measured using the NanoDrop 2000 

(Thermo Scientific). For generating cDNA for standard PCR, 5 µg of total RNA were 

subjected to a DNA-removal step using the Dnase I Rnase-free Kit (Roche). Reverse 

transcription was performed using the High-Capacity cDNA Reverse Transcription Kit 

(Invitrogen). We used an equivalent of 1 µg of DNA-free RNA, and 1 µl oligo(dT)12-18-

primers (Invitrogen) to a final concentration of 25 ng/µl for the reverse transcription reaction. 

For qPCRs, cDNA was synthesised as previously described [57], using a QuantiTect Reverse 

Transcription Kit (Qiagen) including the gDNA removal with step.  

 
Conventional PCR 

Note that amplification of the full-length fusion transcript proved to be difficult. We tested 

several different polymerases according to the manufacturer’s protocols: GoTaq DNA 

Polymerase (Promega), PfuUltra High-Fidelity DNA Polymerase (Agilent Technologies) and 

Platinum Taq DNA Polymerase (Life Technologies), with only Platinum Taq providing 

successful full-length amplification. Amplification of the full length VANGL2-ITLN1 fusion 
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gene was successful using the Platinum Taq polymerase (Life Technologies) at 55°C 

annealing temperature and 2mM MgSO4 (PCR program: 95°C 2min, (95°C 15sec, 55°C 

30sec, 68°C 3min) x 35, 68°C 4min). For primer sequences please see Table 2. The PCR 

product of approximately 1400bp was purified from an agarose gel using the QIAquick Gel 

Extraction Kit (Qiagen) and confirmed by Sanger sequencing (MWG Eurofins).  

 

 

VANGL2-ITLN1 fusion gene plasmid construction 

The full length fusion gene, obtained by PCR, was cloned into the pJET1.2/blunt cloning 

vector (CloneJET PCR  Kit, Thermo Scientific) using the sticky end protocol according to the 

manufacturer’s instructions. It was amplified by transformation into DH5α competent E. coli 

cells as follows: 3 µl of the ligated vector were added to 50 µl of competent bacteria, 

incubated on ice for 30 min and heat shocked at 42°C for 30 sec. For plasmid expression, 250 

µl of SOC-medium (Invitrogen) were added to the cells and they were incubated for 1 h at 

37°C and 800 rpm. 50 µl of the mixture was then plated on agar plates containing 100 µg/ml 

ampicillin. Positive cultures were selected by colony PCR and propagated in 3 ml LB-

medium (100 µg/ml ampicillin) overnight. The plasmids were retrieved using a Plasmid Mini 

Kit (Qiagen) and correct insertion of the fusion gene was verified by Sanger sequencing 

(MWG Eurofins). The insert was then cut out of the cloneJET vector with the BglII 

restriction enzyme and purified on an agarose gel using the QIAquick Gel Extraction Kit 

(Qiagen). Since the insertion into the mammalian expression vector pcDNA3-Flag was 

required both in forward and reverse orientation (due to the open reading frames in the non-

coding strand), both insert and pcDNA3-Flag (cut open with EcoRI) were blunted using the 

blunting enzyme from the Thermo Scientific CloneJET Kit before ligation. The ligation itself 

was then performed using an insert-to-vector ratio of 3:1 (69 ng : 90 ng = 0.075 mol : 0.025 

mol) and 2 µl T4-Ligase (New England Biolabs) in a 20 µl reaction mixture. The mixture 

was incubated for 20 min at RT, before 3 µl were taken off diluted in 5 µl 1 x T4 reaction 

buffer and incubated for another 1 h at room temperature. All of the 8 µl reaction was 

subsequently used for transfection of DH5α cells as described above. Positive clones were 

identified by colony PCR, propagated and plasmids extracted, as above. The orientation of 

the insert was assessed by restriction digest with EcoRI and KpnI and verified by sequencing 

(MWG Eurofins). Finally, one clone was selected for each of the forward and the reverse 

oriented insert and propagated in 50 ml LB medium (100 µg/ml ampicillin) for plasmid 

extraction (Qiagen, EndoFree Plasmid Maxi Kit).  
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Transfection into NIH 3T3 cells (Lipofectamine2000) / Focus formation assay 

NIH-3T3 cells were cultivated in DMEM with 10% FCS, Penicillin / Streptomycin and 1 x 

Glutamine in a 175cm² flask until confluent. The cells were trypsinised and approximately 

20,000 cells were seeded into 10 cm plates in 9 ml complete medium. The next day, the cells 

were transfected with pcDNA3 using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions, and different amounts of plasmid DNA (1 µg, 2 µg or 4 µg per 

plate). Empty vector pcDNA3 was used as a negative control, and activated H-Ras12V as a 

positive control. For each 10 cm plate, 10 µl Lipofectamine was diluted in 240 µl serum-free 

medium and incubated for 5 min. Analogously, an appropriate amount of DNA (1 µg, 2 µg or 

4 µg) was diluted in 250 µl serum-free medium and combined with the diluted Lipofectamine 

(total volume = 500 µl per 10 cm plate). The mixture was incubated for 20 min at RT before 

it was added to the cells. 6 h after transfection, the medium was removed, cells were washed 

with PBS and from that point on cultivated in DMEM supplemented with 10% donor bovine 

serum (DBS), Penicillin/Streptomycin, and 1x Glutamine. The cells were incubated at 37°C 

for 4 weeks (3 weeks for the H-Ras12V control cells), with the medium exchanged every 2-3 

days. For analysis, the cells were washed with PBS, fixed in 100% methanol for 10 min and 

then stained with Giemsa solution (5% Giemsa stain (Sigma) in PBS) for 1 h. Subsequent 

destaining was done overnight using tap water. The plates were then dried and cell foci were 

imaged and counted manually.  

 
qRT-PCR 

RT-PCR (RT-qPCR) were performed as previously described [57]. For the sequences of 

primer pairs used please see Table 2. Additionally, TaqMan assays (Applied Biosystems) for 

the endogenous control genes used were RPLPO (4310879E) and ACTB (β-actin, 

4326315E). TaqMan PCR Master Mix (Applied Bio Systems) was used for all TaqMan 

assays, while Power SYBR Green PCR Master Mix (Applied Biosystems) was used for all 

non-TaqMan assays. Biological duplicates were generated for all samples; technical 

replicates for every sample were also performed. 

To verify the expression of forward and reverse insert of pcDNA3-transfected NIH-3T3 

mouse fibroblasts, in addition to the VANGL2-ITLN1 fusion gene primers, and to subtract 

the background signal from contaminating plasmids that were carried over from the 

transfection, we used a set of pcDNA3 backbone primers (see Table 2). 
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MYCN overexpression datasets (ChIP-seq, transcriptomics and interaction proteomics) 

In addition, to the RNA-seq data described above we examined fusion gene related data in a 

number of omic datasets (RNA-seq, MYCN ChIP-seq and MCYN mass spectrometry-based 

interaction proteomics) which we had previously generated. For methods related to the 

generation of these omics datasets please see the following publications: Duffy et al. 2014, 

Duffy et al. 2014,  Duffy et al. 2015,  Schwarzl et al. 2015,  Duffy et al. 2016 and Duffy et 

al. 2017   [13, 43, 57, 58, 87]. 
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Figure Legends 

Figure 1. Identification of a VANGL2-ITLN1 fusion gene in IMR32 cells. (A) Schematic 

overview of the VANGL2-ITLN1 fusion transcript.  (B) Level of absolute gene expression of 

VANGL2 and ITLN1 mRNA transcripts across five neuroblastoma cell lines as detected by 

RNA-seq. Expression is in read counts per million adjusted by gene length in kilobases 

(CPMkb), with error bars denoting the standard deviation between replicates. (C) Relative 

expression of VANGL2-ITLN1 fusion gene and the wild type VANGL2 and 

ITLN1transcripts in IMR32 cells, as detected by RT-qPCR. Error bars denote RQ Min and 

RQ Max, and the levels of expression for each gene are set relative to those of the fusion 

gene. (D) Relative expression of the fusion components (VANGL2 and ITLN1) genes’ 

immediate upstream and downstream genomic neighbours, as detected by RNA-seq. 

Depicted is the relative change in expression level of each gene in IMR32 compared with the 

average expression of that gene in four other neuroblastoma cell lines (SY5Y, Kelly, KCN 

and KCNR).  

 

Figure 2. Patient outcome segregated by VANGL2 and ITLN1 expression. (A) Kaplan-

Meier survival curves showing the predictive strength of the expression levels of the fusion 

gene components VANGL2 and ITLN1 mRNAs in neuroblastoma tumours on patient 

outcome. Curves generated using the SEQC [65] 498 neuroblastoma tumour dataset in the 

R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl). For the ITLN1 high 

and low expression cut-off value for the ITLN1 Kaplan-Meier survival curve please see 

supplementary table 3 (Table S3). 

 

Figure 3. Patient outcome segregated by ITLN1 expression, for discrete neuroblastoma 

stages and MYCN status. (A) ITLN1 mRNA expression level across a large cohort of 

neuroblastoma tumours. Results are grouped by tumour stage, with the risk status, MYCN 

http://r2.amc.nl/
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amplification status and International Neuroblastoma Staging System (INSS) stage of each 

tumour indicated. (B) Kaplan-Meier survival curves separated by neuroblastoma tumour 

stage, showing the predictive strength of the expression levels of the ITLN1 mRNA for 

patient outcome. (C) Kaplan-Meier survival curves separated by a tumour’s MYCN 

amplification status, showing the predictive strength of the expression levels of the ITLN1 

mRNA for patient outcome. All panels generated using the SEQC [65] 498 neuroblastoma 

tumour dataset in the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl). 

For the ITLN1 high and low expression cut-off values for each of the the ITLN1 Kaplan-

Meier survival curves (Fig. 3B, C) please see supplementary table 3 (Table S3). 

 

Figure 4. VANGL2 and ITLN1 expression in a large panel of neuroblastoma cell lines 

and Wnt5A as a predictor of neuroblastoma patient outcome. (A) VANGL2 and ITLN1 

expression across the 39 neuroblastoma cell lines and two control non-neuroblastoma 

samples (human foetal brain tissue and RPE1 cells, a retinal pigment epithelial cell line) 

profiled by RNA-seq by Harenza et al. (2017) [67], expression measured in FPKMBs. (B) 

VANGL2 (top) and ITLN1 (bottom) expression across a large cohort of human healthy tissue 

samples (shaded green) and malignant tissue samples (shaded red). The number of individual 

samples per tissue type is shown in brackets in each x-axis label. The data relating to 

expression in the neuroblastoma sample cohort is highlighted by a red arrow. Expression data 

obtained from and graph generated using the In Silico Transcriptomics (IST) Online database 

(http://ist.medisapiens.com/, version 2.1.3). (C) VANGL2 and ITLN1 expression across a 

large panel of cell lines. Expression data obtained from and graph generated using the IST 

Online database (http://ist.medisapiens.com/, version 2.1.3). (D) Kaplan-Meier survival 

curves showing the predictive strength of the expression level of WNT5 mRNA in 

neuroblastoma tumours on patient outcome. Curves generated using the SEQC [65] 498 

neuroblastoma tumour dataset in the R2: Genomics Analysis and Visualization Platform 

(http://r2.amc.nl). 

 

Figure 5. Molecular interactions between the VANGL2-ITLN1 fusion gene components 

and the MYCN and Wnt signalling networks. (A) Right: relative expression of VANGL2 

and ITLN1 mRNA (fusion and wild types not resolved by RNA-seq) in untreated and 28mM 

lithium chloride treated IMR32 cells, as detected by RNA-seq. Absolute expression levels 

measured in CPMkb are inset within each bar. Error bars denote the standard deviation 

between replicates, and the levels of expression for each gene are set relative to those in the 

untreated control cells. Left: relative expression of VANGL2-ITLN1 fusion gene and wild 

type VANGL2 and ITLN1 mRNA in untreated and 28mM lithium chloride treated IMR32 

cells, as detected by qPCR. Error bars denote the RQ Min and RQ Max between replicates, 

and the levels of expression for each transcript are set relative to those in the untreated 

control cells. (B) Interaction network between VANGL2, ITLN1 and MYCN pathway 

component genes, generated using the GIANT (http://giant.princeton.edu/) database. (C) 

Schematic overview of putative multi-level MYCN, ITLN1 and VANGL2 interactions in 

neuroblastoma cells. Proteins are denoted by (p), while genomic DNA is denoted by (g). 

http://r2.amc.nl/
http://ist.medisapiens.com/
http://ist.medisapiens.com/
http://r2.amc.nl/
http://giant.princeton.edu/
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Supplemental Figure Legends 

Supplemental Figure 1. Additional gene expression and focus formation assay data. (A) 

Level of absolute gene expression of WNT5A mRNA transcripts across our five 

neuroblastoma cell line panel (left), and the Harenza et al. (2017) [67] 39 neuroblastoma cell 

line panel (right). Expression is in CPMkb (left) and FPKMBs (right). (B) Protein-protein 

interactions between VANGL2 and Wnt pathway component genes, generated using the 

String database (v10.5, www.string-db.org).  (C) NIH-3T3 mouse fibroblasts focus formation 

assay for transfection with VANGL2-ITLN1 expressing plasmid, H-Ras12V plasmid (0.03 

µg/ml) was used as a positive control, while empty vector, GFP plasmid (0.2 µg/ml) and 

reverse orientation VANGL2-ITLN1 plasmid (0.4 µg/ml) were used as negative controls. 

Forward orientation VANGL2-ITLN1 plasmid was also transfected at a concentration of 0.4 

µg/ml. Plates were imaged 4 weeks (3 weeks for the H-Ras12V control cells) after 

transfection. (D) Relative expression level of VANGL2-ITLN1 transcript above plasmid 

background in NIH-3T3 cells transfected with empty vector, forward orientation VANGL2-

ITLN1 plasmid or reverse orientation VANGL2-ITLN1 plasmid, as detected by RT-qPCR. 

 

Supplemental Figure 2. Additional ITLN and VANGL2 MYCN interaction data. (A) 

Mass spectrometry LFQ intensity values for MYCN co-immunoprecipitation (coIP) showing 

the detection of ITLN (ITLN1 and ITLN2 peptides upon 24h of doxycycline induced MYCN 

overexpression in SY5Y-MYCN cells (left). LFQ intensity values for positive control 

MYCN-MYCN coIP (left). Note: MYCN reaches supraphysiological levels upon 

overexpression in SY5Y-MYCN cells compared with non-transformed cells. However, the 

level of expression achieved in SY5Y-MYCN is only equivalent to that of neuroblastoma 

cells with modest MYCN amplification [58]. Highly amplified MYCN express MYCN at 

even more highly elevated levels [58]. Therefore, while the MYCN expression in induced 

SY5Y-MYCN is well above the level seen in normal untransformed cells, it is in the 

physiological range experienced by MYCN-amplified neuroblastoma tumours. (B) Relative 

expression level of VANGL2 mRNA after 4h MYCN overexpression in the SY5Y-MYCN, 

MYCN inducible cell line, as detected by 4-Thiouridine Pulse-Labelling RNA-seq (4sU-seq). 

Error bars denote the standard deviation between replicates, and the level of VANGL2 

expression is set relative to that of un-induced control cells. 

 

 

 

 

 

 

 

 

 

http://www.string-db.org/
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Table S3. The ITLN1 high and low expression cut-off values for each of the ITLN1 Kaplan-

Meier survival curves, Figs 2A, 3B, C. These curves and cut-offs were generated using the 

scan cut-off Kaplan-Meier survival curves function of the R2: Genomics Analysis and 

Visualization Platform (http://r2.amc.nl) applied to the SEQC [65] 498 neuroblastoma tumour 

dataset.  

 

SEQC 498 NB tumour dataset ITLN1 expression cut-off value 

Entire dataset 1.010 

Stage 1 & 2 1.010 

Stage 3 1.010 

Stage 4 1.105 

Stage 4S 1.088 

MYCN amplified 1.105 

MYCN non-amplified 1.204 

 A) K

C

N 

http://r2.amc.nl/
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Supplemental Figure Legends 

Supplemental Figure 1. Additional gene expression and focus formation assay data. (A) 

Level of absolute gene expression of WNT5A mRNA transcripts across our five 

neuroblastoma cell line panel (left), and the Harenza et al. (2017) [67] 39 neuroblastoma cell 

line panel (right). Expression is in CPMkb (left) and FPKMBs (right). (B) Protein-protein 

interactions between VANGL2 and Wnt pathway component genes, generated using the 

String database (v10.5, www.string-db.org).  (C) NIH-3T3 mouse fibroblasts focus formation 

assay for transfection with VANGL2-ITLN1 expressing plasmid, H-Ras12V plasmid (0.03 

µg/ml) was used as a positive control, while empty vector, GFP plasmid (0.2 µg/ml) and 

reverse orientation VANGL2-ITLN1 plasmid (0.4 µg/ml) were used as negative controls. 

Forward orientation VANGL2-ITLN1 plasmid was also transfected at a concentration of 0.4 

µg/ml. Plates were imaged 4 weeks (3 weeks for the H-Ras12V control cells) after 

transfection. (D) Relative expression level of VANGL2-ITLN1 transcript above plasmid 

background in NIH-3T3 cells transfected with empty vector, forward orientation VANGL2-

ITLN1 plasmid or reverse orientation VANGL2-ITLN1 plasmid, as detected by RT-qPCR. 

 

Supplemental Figure 2. Additional ITLN and VANGL2 MYCN interaction data. (A) 

Mass spectrometry LFQ intensity values for MYCN co-immunoprecipitation (coIP) showing 

the detection of ITLN (ITLN1 and ITLN2 peptides upon 24h of doxycycline induced MYCN 

overexpression in SY5Y-MYCN cells (left). LFQ intensity values for positive control 

MYCN-MYCN coIP (left). Note: MYCN reaches supraphysiological levels upon 

overexpression in SY5Y-MYCN cells compared with non-transformed cells. However, the 

level of expression achieved in SY5Y-MYCN is only equivalent to that of neuroblastoma 

cells with modest MYCN amplification [58]. Highly amplified MYCN express MYCN at 

even more highly elevated levels [58]. Therefore, while the MYCN expression in induced 

SY5Y-MYCN is well above the level seen in normal untransformed cells, it is in the 

physiological range experienced by MYCN-amplified neuroblastoma tumours. (B) Relative 

expression level of VANGL2 mRNA after 4h MYCN overexpression in the SY5Y-MYCN, 

MYCN inducible cell line, as detected by 4-Thiouridine Pulse-Labelling RNA-seq (4sU-seq). 

Error bars denote the standard deviation between replicates, and the level of VANGL2 

expression is set relative to that of un-induced control cells. 
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Supplemental Table 

 

Table S3. The ITLN1 high and low expression cut-off values for each of the ITLN1 Kaplan-

Meier survival curves, Figs 2A, 3B, C. These curves and cut-offs were generated using the 

scan cut-off Kaplan-Meier survival curves function of the R2: Genomics Analysis and 

Visualization Platform (http://r2.amc.nl) applied to the SEQC [65] 498 neuroblastoma tumour 

dataset.  

 

SEQC 498 NB tumour dataset ITLN1 expression cut-off value 

Entire dataset 1.010 

Stage 1 & 2 1.010 

Stage 3 1.010 

Stage 4 1.105 

Stage 4S 1.088 

MYCN amplified 1.105 

MYCN non-amplified 1.204 

 

http://r2.amc.nl/

