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ABSTRACT 

Due to an aging population and younger patients presenting with musculoskeletal disorders, 

there is a need for orthopaedic implants with improved healing rates and longer implant life.  

Numerous research has developed implant surfaces with micro-topography and biomolecules 

to imitate the native extra cellular matrix (also known as biomimetic surfaces).  This research 

has utilised such a biomimetic approach by immobilising the cell adhesive peptide, RGD 

(Arginine-Glycine-Aspartic Acid), to a titanium alloy Ti6Al4V surface.  This research polymerised 

Hyperbranched Polyglycerol (HBPG) from the titanium surface using Ring Opening Multi-

Branching Polymerisation (ROMBP).  HBPG is a biologically compatible and non-toxic synthetic 

biopolymer, able to reduce non-specific protein adsorption, increase the titanium surface 

wetting (hydrophilicity), thereby limiting foreign body reactions.  Extensive hydroxyl groups at 

the periphery of HBPG provides conjugation sites for biomolecule attachment.   In this work the 

RGD peptide was conjugated to the polymer via a siloxane layer. 

This research developed a novel passivation solution for the preparation of the titanium alloy 

surface, using a mixture of hydrogen peroxide and nitric acid (a passivation mixture not used in 

the literature).  This novel mixture was shown to etch the titanium surface, producing micro and 

nano surface features, both of which have been shown to improve cellular function in the 

literature.  The hydrogen peroxide/nitric acid solution showed extensive oxidising ability on 

titanium, leading to the formation of reactable hydroxyl groups.  Contact-angle measurements 

showed that the novel passivating solution produces a hydrophilic surface similar to that of 

peroxidation for 12-hours, but achieved in only 2-hours.  In conjunction with the etching and 

oxidising abilities of hydrogen peroxide, the nitric acid reacts with the titanium surface, leading 

to the formation of a protective titanium oxide layer, enhancing corrosion resistance and 

improving biocompatibility. 

Biological investigations with the pre-osteoblast cell line MC3T3-E1 showed greater osteoblast 

cell attachment and adhesion strength, as well as improved bone matrix mineralisation on the 

passivated titanium surface functionalised with HBPG and the RGD peptide, compared to the 

raw and passivated titanium surfaces.  Antibacterial testing of HBPG revealed substantially 

reduced bacterial cell colonies on the passivated/polymerised titanium surface, possibly arising 

from electrostatic and hydrophobic repulsion. 

This research has successfully developed a new titanium passivation solution (hydrogen 

peroxide/nitric acid) that can yield a contact-angle of around 35° in just 2-hours, rivalling the 
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Piranha solution.  The successful immobilisation of a cyclic RGD (cyclic-RGDfc) to a titanium 

surface functionalised with HBPG, has been shown in this research to drastically improve 

mineralised bone matrix production from the MC3T3-E1 cell line.  This indicates earlier 

osseointegration of the implant may be possible, thereby improving patient healing times. 
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1 Introduction 

Over the last decade or so, interest in artificial materials and their importance in medicine have 

been growing.  The field of tissue engineering was developed in order to serve the research need 

for artificial biocompatible materials as substitutes for damaged organs and tissues.  Shortcomings 

of current traditional implants such as compatibility, early implant failure, and prolonged healing 

times, have yielded a general consensus which outlines the need for novel biomaterials as 

orthopaedic implants.  Biomaterials are crucial for scientific research of artificial templates of the 

Extra Cellular Matrix (ECM), thus facilitating the study of ECM signals in controlling cell 

adhesion, proliferation, and differentiation (VANDEVONDELE et al., 2003, WANG et al., 

2002). 

Three main groups of biomaterials are generally considered for use as implants; inorganics (e.g. 

titanium, steel, and hydroxyapatite (HA)), organics (natural and synthetic polymeric structures), 

and inorganic-organic hybrids that combine the advantages of both.  Great strides have been made 

in the way of HA coatings, mainly due to their inherent osteoinductive and osteoconductive 

properties, although exhibiting poor strength and brittleness; such coatings have a tendency to 

crack thereby causing implant loosening and failure.  Polymer constructed organic biomaterials 

on the other hand, provide a cell supportive scaffold which degrades in vivo as host cells adhere 

and infiltrate. In time the organic coating diminishes, leaving behind only the implant material 

which is now colonised with host cells.  This allows the implant surface to maintain an intimate 

connection with the host bone as it develops, forming a much stronger Bone-Implant Contact 

(BIC). However organic coatings have been shown to possess less than average osteoconductive 

properties, as well as little to no osteoinductive properties.   

Two main strategies for the modulation of cell-material interactions exist when constructing 

biocompatible implants.  One is the creation of a biologically inert surface that does not allow 

ECM proteins to adsorb readily and hence disallow cell adhesion.  This prevents activation of the 
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immune system, and inflammatory and wound healing interactions between the material and 

surrounding cellular environment, and is used in the creation of heads and cups for joint 

prostheses (COOK et al., 1997) for example.  Another strategy is the modulation of a biomaterial 

to promote cell adhesion, proliferation, differentiation, and long-term cell functioning, an 

example of which is an orthopaedic implant that induces the formation of mineralised bone tissue 

at the bone-implant interface. 

As our knowledge regarding the environment that is favourable to cellular tissue development 

expands, it becomes clearer how dynamic and biologically reactive an environment must be to 

support new tissue growth.  Synthetically developed tissue engineering scaffolds present an 

obstacle in their role as the ECM.  Such materials are unable to recreate the correct environment 

during tissue engineering to promote accurate tissue development.  Thus, a synthetic biomaterial 

must possess properties to accommodate multiple cell types, respond to changes commanded by 

the cells (i.e. tissue remodelling), and introduce signals to these cells for tissue growth and 

maintenance.  Inclusion of these properties has led to the development of polymers with reactive 

sites, open to modification for attachment of biomolecules, or sites engineered into the polymer 

backbone to aid enzymatic degradation (Dang and Leong, 2006).  The development of next-

generation engineered tissues aims to produce biological scaffolds, which can relay information 

to the ECM and cells to stimulate cell attachment, proliferation and growth.  The use of 

biomolecules, such as growth factors and proteins, have been sought (usually animal derived) to 

manipulate the host healing response to facilitate tissue repair and tissue growth, thus developing 

bio-functionalised engineered tissues.  The strategy is then one of biomimicry, imitating the ECM 

and endowing information or signalling for cell function to impart requirements of dynamic 

reciprocity for tissue engineering (Malafaya et al., 2007). 
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2 Background Literature 

2.1 Bone Repair around Osseous Implants 

Bone repair around an orthopaedic implant is governed by three processes; osteoinduction, 

osteoconduction and osseointegration.  Osteoinduction is accelerated new bone formation.  It 

is a process in which undifferentiated and pluripotent cells (stem cells) are recruited and 

stimulated to develop into the bone-forming cell lineage, preosteoblasts and subsequently into 

osteoblasts (Figure 1).  It can also be said that this is the process by which osteogenesis is induced 

(sometimes known as ossification, the process of laying down new bone material by 

osteoblasts).  Osteoinduction can also be sub-defined as active (biological growth factor activity) 

or passive (nano/microstructure of biomaterial surface induces osteogenic cell differentiation, 

or osteostimulation) (DACULSIA et al., 2013). 

Osteoconduction is the process of bone growth on a surface, be it on existing bone or an 

orthopaedic implant.  Osseointegration, described as the direct anchorage of an implant, is the 

direct contact of the host bone tissue with an implant surface, without the growth of fibrous 

tissue at the bone-implant interface.  However, a more precise definition, with clinical 

application and from a biomechanical sense, is the process where the rigid fixation of an implant 

is successful and maintained in bone during functional loading, and that is cli’nically 

asymptomatic (Albrektsson and Johansson, 2001). 
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Figure 1 - At the time of bone damage/injury, pluripotent cells differentiate through the osteoinductive 
process into the bone-forming cell lineage (preosteoblasts) (Albrektsson and Johansson, 2001). 

 

Bone healing differs from other musculoskeletal tissue in that it has an extraordinary ability to 

heal without scar tissue formation.  The processes involved are determined by biomechanical 

stability and the biological environment.  Bone healing depends on the supply of blood to the 

bone and the extent of bone damage and surrounding tissue: the greater the damage the slower 

the rate of bone healing.  The bone healing pattern is often modified by external factors such as 

the mechanical environment (excessive movement of the implant may hinder osseointegration) 

which can in turn be influenced by surgical interventions.  The mechanical environment, and 

hence stability of bone at the region of damage, is to ensure maximum biology of healing and 

reduce the time to bone union and function restoration (Westerman and Scammell, 2012, 

Wraighte and Scammell, 2006). 

Principally bone healing can proceed via two mechanisms, both of which are dependent upon 

the mechanical and biological environment: primary (direct) and secondary (indirect).  Primary 
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healing occurs when there is absolute stability (no motion between bone injury surfaces under 

load) i.e. with anatomical reduction and internal fixation procedures, and is commonly 

associated with intramembranous ossification.  Secondary healing occurs when there is relative 

stability (some controlled micromotions between bone injury surfaces under load) i.e. with 

plaster cast treatment or external fixation (Wraighte and Scammell, 2006). 

Bone healing following orthopaedic implantation occurs via the processes outlined in Figure 2 

below.  Initially, bleeding occurs which lasts for a few hours, after which vasodilation induces 

the supply of plasma and leucocytes, with macrophages that recycle the cellular and tissue 

fragments.  Inflammation occurs and a subsequent clot involving platelets is formed, as cells 

synthesise growth factors that regulate cell proliferation, differentiation and migration.  These 

growth factors are essential in the process as they play a crucial role in fabricating the ECM.  The 

biological cascade proceeds with angiogenesis (growth of new blood vessels) at the site of 

healing, permitting cell metabolism to become viable.  Mesenchymal stem cells differentiate 

into osteoblasts which head-up the formation of bone, and vascularisation allows the delivery 

of calcium ions, phosphorus ions and growth factors to be made and concomitant synthesis of a 

bony mineral matrix occurs (Ambard and Swider, 2006). 
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Figure 2 - Biological events of bone healing following orthopaedic implantation (Ambard and Swider, 
2006). 

 

Periprosthetic tissue healing is thus a process conducted by intramembranous ossification 

(mesenchymal stem cells differentiate into osteoblasts which secrete osteoid matrix that is later 

mineralised into woven bone), and the osteoid matrix conversion into bone precedes the 

formation of conjunctive fibrous tissue without an intermediary cartilage phase (a process seen 

in endochondral ossification) (Ambard and Swider, 2006).  Therefore, successful clinical 

outcomes for orthopaedic implantation requires complete rigid fixation of the implant to 

promote bone healing via the primary healing pathway.  This ensures maximum 

osseointegration of the implant; excessive mobility of the implant through micromotions greater 

than 150µm may induce the formation of a fibrous membrane around the implant, causing 

displacement of the bone-implant interface hindering osseointegration (Marco et al., 2005, 

Kuzyk and Schemitsch, 2011). 
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2.2 Cellular Adhesion on Implant Surfaces 

The surface features of titanium implants influence certain biochemical processes immediately 

following placement of the implant, and these dictate the success of the implant.  Upon implant 

placement, water from the extracellular fluid surrounds and coats the implant surface, forming 

a hydration layer (SHARD and TOMLINS, 2006).  The hydration layer facilitates the adsorption of 

proteins from the surrounding biological environment onto the implant surface, forming a 

surface protein layer; the conformation, composition, and orientation of which are possibly 

affected by the implant surface properties and topography (WILSON et al., 2005, RAUT et al., 

2005, WEI and LATOUR, 2008). 

Cells in the immediate vicinity of the implant adhere to the implant surface via the adsorbed 

protein layer, mainly through cell surface bound receptor mediated communication, creating a 

cell-protein surface bound interface (taking minutes to days to form following implant 

placement).  Cell adhesion to the implant via the adsorbed protein layer is mostly initiated by 

cell surface bound receptors of the integrin family.  Recognition by these receptors leads to the 

activation of signal transduction and biochemical secretions that trigger signalling for cell 

adhesion, proliferation, differentiation, and ECM deposition (CHANG and WANG, 2011).  The 

orchestration of these complex biochemical interactions essentially leads to wound healing, 

tissue regeneration, and implant integration (Singhatanadgit, 2009).  This wound healing phase 

is regulated by biological factors that include cell surface bound proteins, cytoskeletal proteins 

and extracellular proteins, environmental aspects of the ECM, cell behaviour, and may also be 

influenced to some extent by the implant surface chemistry and topography (RATNER and 

BRYANT, 2004, CHANG and WANG, 2011).  The final response of the body to the inserted 

orthopaedic implant is the continuous development of the prior mentioned stages, resulting in 
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mineralised bone and subsequent remodelling of such active and functional bone 

(Singhatanadgit, 2009). 

When anchorage-dependent cells attach to a surface that supports cellular growth, the cells go 

through a developmental process whereby their shape changes from almost spherical to discoid.  

During this stage, the formation of focal adhesions and plaques mediate adhesion to the surface 

(focal adhesions and plaques are constructed from an assemblage of transmembrane bound 

integrin receptors which secure the cytoskeleton to the ECM secreted by surface bound cells) 

(LIU et al., 2007b). 

Vogler expressed an adjunct theory to cell adhesion based on a study in which it was shown that 

cell contact through attachment, normally observed in cell culture medium, could also be 

replicated in the absence of proteins (VOGLER, 1988, VOGLER, 1989, VOGLER, 1993).  In this 

study, a detergent solution was used to match the interfacial tension of serum-containing 

medium (Fetal Bovine Serum – FBS).  This suggests that the early stages of cell attachment are 

also dictated by physical forces, and not significantly ECM production.  Thus, implant surface 

chemistry could influence cell attachment to a greater degree than previously thought (LIU et 

al., 2007b). 

Liu and co-workers emphasize that cell attachment time is an important variable when 

correlating cell morphology to substratum properties, such as chemical topology.  Their 

experience suggests that cell flattening on a surface is independent of the substratum 

compatibility with the cell.  On surfaces with poor cell compatibility, cells remained round for a 

longer period of time when compared with compatible surfaces.  Also on the poorly compatible 

surfaces, if the cells survived they would eventually flatten out and populate the surface.  It was 

then suggested that the expression of morphological traits could be seen as delayed on poorly 
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compatible surfaces, where cells are occupied in an extended process of secreting ECM into their 

microenvironment in order to make the surface compatible (Liu et al., 2007a). 

 

2.2.1 Cell Adhesion and the Integrin Receptor 

It has become more apparent that full and successful integration of an implant hinges on its 

ability to mimic normal physiological responses such as cell attachment, and as such cell 

adhesion is sometimes regarded as a ‘condicio sine qua non’ (an essential action without which 

it cannot be) for the effective applications of modern bioengineering, more so where the 

application is the implantation of a biomedical scaffold colonised by the patient’s own cells 

(Costa e Silva Filho and Conde Menezes, 2004). 

Cell adhesion to an implant surface dictates the development and maintenance of neo osseous 

tissue.  Adhesion reactions of the implant surface with ECM components is essential for 

osteoblast survival, differentiation, proliferation, bone matrix mineralisation, and is also 

important for osteoclast functions related to bone remodelling.  Cell adhesion pathways related 

to bone cells and ECM ligands involved in bone tissue repair, are mediated by the integrin 

superfamily of transmembrane receptors (Garcia and Reyes, 2005). 

Native ECM proteins, such as fibronectin, laminin, vitronectin and collagen for example, contain 

the tripeptide sequence RGD (Arginine-Glycine-Aspartic acid) in their macromolecular structure 

which represents a recognition site for specific binding to integrin receptors that are present in 

virtually all cells.  The interaction of these proteins with the integrin receptor (receptor-ligand 

binding) induces cell adhesion, adhesion strengthening and cell spreading on the surface 

presenting the RGD sequence (Garcia and Reyes, 2005). 
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Cell adhesion regulated by integrins encompasses four cascade events; cell attachment, cell 

spreading, actin cytoskeleton organisation, and focal adhesion formation.  The first step is 

described as the initial attachment as the cell contacts a surface and some ligand-receptor 

binding occurs.  Ligand-integrin binding leads to the association of integrins with actin filaments 

of the cell cytoskeleton, a process whereby the cell begins to flatten after which actin organises 

into bundles of microfilaments, also known as stress fibres.  The final step concludes with the 

formation of focal adhesion points connecting ECM molecules to the cytoskeleton (Hersel et al., 

2003).  The actin filaments cluster into focal adhesions that contain signalling and structural 

cues. 

These focal adhesions are macromolecular complexes that link the ECM with the cytoskeleton 

and are essential for governing stable cell adhesion and migration.  Focal adhesions combine 

with growth factors to activate signalling mechanisms such as: Mitogen-Activated Protein Kinase 

(MAPK), which regulates cellular functions such as gene expression, mitosis, differentiation, 

proliferation and cell survival; and the Stress-Activated Protein Kinase (SAPK) member of the 

MAPK, the c-Jun NH-terminal protein Kinase (JNK).  These integrin mediated signalling pathways 

are crucial for the commitment of mesenchymal cells and osteoblast differentiation (Garcia and 

Reyes, 2005). 

The cell spreading step is crucial and dictates whether a cell will survive.  If the cell attachment 

is poor (i.e. non-immobilised ligand), the cell will not flatten and exhibit a more spherical 

structure which will lead to cell death via apoptosis (also known as ‘anoikis’ a Greek word 

meaning homelessness) (Hersel et al., 2003), as loss of cellular adhesion deactivates the integrin 

receptor pathways leading to limited cell function (Schneider et al., 2001).  This mechanism is 

illustrated in the following Figure 3. 
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Figure 3 - Integrin-ligand binding effects. Ligands that are immobilised on a surface exhibit agonistic effects of the 
ECM, inducing cell adhesion and survival, whereas free flowing ligands antagonise and lead to cell detachment and 
apoptosis (Hersel et al., 2003). 

 

The integrin transmembrane signalling receptors are unique in that they can relay signals in both 

directions (outside-in and inside-out).  Once activated, signal transduction occurs via the 

aforementioned kinase proteins via phosphorylation and dephosphorylation events, leading to 

the up and down-regulation of cellular functions.  This is the principal pathway that regulates 

bone cell functions from the initial attachment and adhesion of cells, right through to cell 

differentiation, proliferation and growth (Figure 5).  Generally, ligand-receptor interactions bring 

about a physiological change in the responding cell, and can include responses such as 

differentiation, proliferation, migration, production of ECM components, as well as others 

(Figure 4) (de Boer et al., 2008). 

 

Cell Adhesion Cell Apoptosis 

A)  Surface Interaction B)  No Surface Interaction 
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Figure 4 - Diagram illustrating cell signalling leading to 3 potential physiological responses by the responding cell (de 
Boer et al., 2008). 
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Figure 5 - Diagrammatic overview of the integrin-mediated activation leading to inside-out and outside-in signalling. 
Ligand-integrin binding activates Protein Kinase C enzyme (PKC) causing auto-phosphorylation of Focal Adhesion 
Kinase (FAK). This outside-in signal, as well as others, activates the Mitogen Activated Protein Kinase (MAPK) pathway, 
leading to cell proliferation and spreading. The inside-out signalling occurs when changes inside the cell affects the 
affinity of the integrin pair for its target ligand (de Boer et al., 2008). 

 

2.2.2 RGD Cell Adhesive Peptide 

The ECM contains multifunctional signalling cues in the form of proteins such as fibronectin, 

laminin and vitronectin that control the development and maintenance of cell functions.  The 

transmembrane receptor, integrin, connects the cell cytoskeleton with the exterior ECM 
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through signalling pathways.  Via this pathway, integrins relay information pertaining to cell 

adhesion, growth, division, survival, migration, cell differentiation, and apoptosis across the cell 

membrane. 

Integrins are a superfamily of cell membrane receptors that regulate cell-to-cell and cell-to-

matrix attachments.  Integrins therefore play an important role in cell signalling and control the 

biological activity of cells, thus coating a titanium implant surface with integrin recognition 

motifs may enhance peri-implant osteogenesis (Singhatanadgit, 2009).  Identifying small integrin 

binding oligopeptide sequences native to the ECM creates a therapeutic conduit to conjugate a 

tissue engineering scaffold with these biological cues, allowing biomolecular recognition of the 

surface by host cells. 

A major limitation of tissue engineering scaffolds is their lack of cell specific adhesion, and 

research has investigated the use of cell adhesion peptides derived from ECM proteins which 

represent important cell adhesion targets.  Cell adhesion peptides are usually derived from ECM 

proteins such as fibronectin (RGD, REDV and PHSRN peptides), laminin (IKVAV, LRE and LRGDN 

peptides), collagen (DGEA and GFOGER peptides) and elastin (VAPG peptide), and one of the 

most commonly researched peptides is RGD, a cell binding domain derived from fibronectin, 

laminin and collagen (Zhu, 2010). 

ECM signalling proteins, such as fibronectin and laminin, contain a short tripeptide sequence 

known as RGD (Arginine-Glycine-Aspartic Acid) which can bind integrin receptors and induce cell 

adhesion signals.  RGD enhances the osteoconductivity of many polymer scaffolds simply by 

attachment, and it has been extensively investigated to promote biomolecular recognition, cell 

attachment and function (van Gaalen et al., 2008).  Structurally RGD exists as linear and cyclic 

forms, although it has been discussed that the cyclic form plays an essential role particularly in 

terms of affinity and activity. 
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In vivo, RGD has been reported to increase osteointegration in some studies (ELMENGAARD et 

al., 2005, Germanier et al., 2006, Schuler et al., 2006a), but not others (Petrie et al., 2008, Barber 

et al., 2007). The biological activity of RGD is less potent than that of native fibronectin or the 

fibronectin fragment FNIII7-10 (Garcia and Reyes, 2005, Petrie et al., 2006). This suggests that 

the linear RGD peptide alone may be insufficient for optimal interaction of the cell with its 

substrate or extracellular matrix.  

Some researchers provide the premise that the RGD sequence in the cell binding domain of 

fibronectin is exposed at the tip of a loop, generating a spatial constraint that leads to enhanced 

affinity for cell binding (Zhu, 2010).  The cyclic RGD better mimics the native loop structure of 

the peptide in the source protein, benefiting cell specific adhesion (Zhu, 2010).  The use of such 

short peptide sequences is founded on a principle that suitable sequences found in proteins, can 

lead to molecular constructs with affinity and activity similar to that of the entire protein, 

without the need of such a large molecule (Liskamp et al., 2008).  Thus, the cyclic peptide RGD 

tries to mimic the activity of the larger aforementioned proteins in a ‘pars pro toto’ method (a 

part taken for the whole).  As the cyclic variant of the RGD peptide shows greater specificity and 

binding affinity to integrin receptors, a cyclic RGD peptide was utilised in this work, specifically 

cyclo-RGDfc (Figure 6).  Due to their greater level of integrin activity, the cyclic RGD peptides are 

being actively researched (Heller et al., 2018, Hahn et al., 2017), although most of the research 

surrounding RGD peptides is based on cancer detection and targeting. 
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Figure 6 - 2-Dimensional structure of the cyclic RGD peptide cyclo-RGDfc. Structure adapted from peptide sales 
website (BACHEM) and drawn using Acelrys Draw software. 

  

Integrins are transmembrane proteins consisting of two subunits, α and β that form 

heterodimers, of which over 20 have been elucidated (Anselme, 2000, GRONTHOS et al., 2001, 

Hersel et al., 2003).  The combinations of the subunits will ultimately determine the ligand 

specific binding of integrin.  RGD was an effort to take a macromolecular ligand and downscale 

it into a small recognition motif, and was first identified more than 30 years ago as a cell 

adhesion peptide sequence found in fibronectin.  Integrins that have been investigated and 

known to bind to ECM molecules via the RGD sequence are α2β1, α3β1, α5β1, α8β1, αVβ1, 

αVβ3, αVβ5, αVβ6, and αVβ8, although the most highly researched integrins which have shown 

more prominent roles in osteoblastic adhesion and subsequent mineralisation are αVβ3, α2β1, 

and α5β1 (McCarthy et al., 2004, Schneider et al., 2001). 
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Most integrins can bind several ligands, such as α3β1 which binds laminin, collagen and 

fibronectin, and some ligands can activate more than one integrin; collagen and laminin can bind 

α3β1 and α2β1, whereas other integrins are specific for just one protein; α7β1 binds only 

laminin and αVβ6 binds only fibronectin (Verrier et al., 2002).  RGD is not the only cell adhesion 

motif and others have been found however, RGD is unique in its broad range of usage in that it 

can be programmed to bind just one target integrin or many (Hersel et al., 2003).  The following 

figure is a schematic and ribbon diagram of the αVβ3 integrin showing the spatial location of the 

RGD binding domain (Figure 7). 
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Figure 7 - Integrin structure: A) Structural diagram of integrin receptor, composed of a head region 
supported on two legs. Ligand binding takes place at the interface between the Beta-Propeller Domain 
and Beta-A Domain. B) Ribbon diagram of ecto-domain (domains extending into the ECM) of integrin 

αVβ3 in complexation with cyclic-RGD peptide ligand (in Green). The α-subunit is in red and the β-subunit 
in blue. Divalent calcium ions (silver spheres) Line the base of the Propeller and the top face of the Beta-A 
Domain. Protein is shown in closed form, which is bent at the ‘Genu’ (Indicated by Orange Arrow) (Askari 

et al., 2009). 
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The RGD sequence binds to a multitude of integrin species but the synthetic peptide provides 

many advantages for biomaterials use.  The functionality of RGD is maintained even after post-

processing techniques such as sterilisation, actions that would normally denature the source 

protein.  Synthetic RGD negates the risk of immune responsiveness or pathogenic transfer which 

is problematic with xenografts (tissue transplantation from one species into another) or cadaver 

and animal sourced proteins.  Modern chemistry techniques allow RGD to be fully conjugated 

to many material surfaces, organic and inorganic, at controllable distributions and orientations 

to maximise the potency of the peptide for binding.  Lastly, RGD can be synthesised readily and 

inexpensively allowing direct translation of the therapy into the clinical setting (Bellis, 2011). 

Although the design criteria for synthesising RGD containing peptides is sparse, the only mention 

being the addition of a few amino acids (found in the source protein) in front and behind the 

RGD sequence inferring similar abilities compared to the whole protein.  Work done by Verrier 

and co-workers showed that the addition or removal of just one amino acid to the RGD sequence 

led to a reversal in cell adhesion from adherent to non-adherent, and vice versa.  In fact they 

revealed that the addition of the amino acid serine after the RGD sequence (RGDS) inhibited the 

adhesion of vitronectin onto osteoprogenitor cells (Verrier et al., 2002).  This shows that the 

conformation and orientation of the amino acid residues is an important aspect in receptor 

recognition, the correct sequence of amino acids will dictate a conformational structure that will 

either allow cell adhesion or inhibit it (Lieb et al., 2005). 

The use of the cyclic RGD peptide over its linear analogue is preferred due to four main criteria; 

affinity, activity, degradation, and solubility.  Studies by Verrier et al (2002) showed major 

advantages of using cyclic RGD compared with linear.  Their results indicated enhanced affinity 

to vitronectin receptors and increased cell adhesion of cyclic RGD peptides to bone marrow 

stromal cells, with the highest observed cell adhesion efficiency.  Furthermore, their quantitative 
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results exhibited increased cell adhesion to titanium at 3 hours and even after 24 hours, when 

the surface was derivatised with cyclic RGD, confirming that it is a good ligand substitute to the 

source protein (Verrier et al., 2002). 

Other authors also confirm the higher binding affinity of RGD containing peptides with integrin 

receptors (Bogdanowich-Knipp et al., 1999b, Haubner et al., 1996a).  Haubner also 

demonstrated that cyclic RGD exhibits greater affinity to integrin αVβ3 and has a biological 

activity some 240 times that of the linear analogue (Haubner et al., 1996b).  This greater cell 

binding ability of cyclic RGD is important in promoting strong and rapid cell adhesion due to 

greater receptor affinity, especially when time is of the essence in situations such as the clinical 

setting (Hersel et al., 2003). 

Many studies have proven that the cyclic variant of RGD bears greater resistance to enzymatic 

and chemical degradation when compared to the linear constructs (Bogdanowich-Knipp et al., 

1999a, Verrier et al., 2002).  Bogdanowich-Knipp and co-workers state that this enhanced 

stability against degradation could be due to the rigid backbone of the RGD peptide resulting 

from cyclisation.  They hypothesised that the chain rigidity prevents the carboxyl group on the 

aspartic acid residue from appropriately positioning itself for attack on the peptide backbone, 

increasing the stability of the cyclic peptide 30 fold over the linear variant at neutral pH 

(Bogdanowich-Knipp et al., 1999a).  Further experimental investigation indicated the presence 

of a salt bridge between side chain groups Arginine and Aspartic Acid residues in the cyclic 

peptide, most notably at neutral pH.  This salt bridge in conjunction with decreased flexibility 

arising from the ring structure, imparts the cyclic peptide with great rigidity (Bogdanowich-Knipp 

et al., 1999b).  With regards to solubility, many synthesised RGD peptides are soluble in aqueous 

environments, although solubility can be enhanced by the addition of highly charged amino acid 

residues into the peptide structure. 
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Some authors have revealed that non-immobilised ligands for integrins cause apoptosis via 

‘anoikis’ due to non-cell adhesion, as previously mentioned (Hersel et al., 2003, Schneider et al., 

2001), and limited studies have shown negative results to RGD peptides in terms of cellular 

adhesion.  However, Yang and co-workers studied RGD by simply coupling the peptide to a 

polymeric surface via electrostatic interactions on a porous implant surface, and subsequently 

inserted the samples into the femur and tibiae of adult white rabbits (Yang et al., 2009b).  They 

observed increased BIC and greater removal torque needed for the RGD coated implants 

compared to controls, indicating more bone tissue growth and enhanced osseointegration.  

Additionally, they observed no or very little sign of inflammatory reactions, possibly due to the 

RGD peptides exhibiting antithrombotic properties via restriction of fibrinogen-receptor 

interactions (Bogdanowich-Knipp et al., 1999b). 

 

2.3 Titanium Alloy Ti6Al4V and Surface Properties 

Titanium alloys are generally classified into 5 groups; α, near-α, α+β, metastable β, or stable β 

depending on the microstructure at room temperature. The α and β refer to the metals used in 

the titanium alloying.  Titanium can be alloyed with a multitude of elements falling into three 

main categories; 1) α-stabilisers (such as aluminium or carbon); 2) β-stabilisers (such as 

vanadium or molybdenum); and 3) neutrals (such as zirconium).  The α and near-α alloys show 

considerable corrosion resistance with low temperature strength.  Contrastingly, α+β alloys 

have higher strength as they possess both α and β phases.  Finally the β phase provides such 

titanium alloys with a lower modulus of elasticity and enhanced corrosion resistance (Moore et 

al., 2014) 
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Material properties hinge on the relative proportions of, and therefore composition of, the α 

and β phases (Moore et al., 2014, Petrie et al., 2008).  The titanium alloy Ti6Al4V contains 

aluminium and vanadium (α+β alloy) therefore possesses excellent corrosion resistance, 

strength, and lower elastic moduli of ~100 GPa, when compared to more conventional stainless 

steel (~200 GPa) and chromium (~280 GPa) (Moore et al., 2014, Benoit and Anseth, 2005, 

Rosales-Leal et al., 2010).  This titanium alloy has the closest tensile elasticity to that of human 

bone (~20 GPa), making it the far better choice as hard tissue replacements in artificial bones, 

joints and dental implants.  Its low elastic modulus is a biomechanical advantage which results 

in lower stress shielding (Wolff’s law). 

The areas of bone that are subjected to the most resorption and formation are those where 

tension and compression dominate respectively, also known as Wolff’s Law.  Bone that is 

subjected to high compressive forces, or load bearing, will exhibit greater bone formation 

leading to denser, stronger bone.  If load bearing forces are withdrawn from the bone, then 

tension will result in higher rates of bone resorption ultimately making the bone weaker (Moore, 

2011).  If an orthopaedic implant has strength and elastic moduli much greater than that of the 

surrounding bone tissue, load-bearing forces will shift onto the implant and away from the 

surrounding bone tissue, leading to bone resorption around the implant, and subsequently 

implant loosening.  Therefore, the relatively low elasticity modulus of the titanium alloy Ti6Al4V 

ensures a more uniform transfer of stress across the implant and surrounding bone, preventing 

bone resorption. 

The favourable properties of titanium and its alloys, such as corrosion resistance, ability for re-

passivation, chemical inertness and biocompatibility, are thought to stem from the stability and 

structure of the native oxide layer on the titanium surface (Moore et al., 2014).  Like most 

metals, titanium can rapidly oxidise (even in normal atmosphere) spontaneously to yield a native 
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oxide layer just nanometres thick.  Work done by Sano and Shiba show that titanium surfaces 

are uniformly coated with amorphous phase titanium dioxide (TiO2) (Sano and Shiba, 2003). 

The biocompatibility of titanium and its alloys is also thought to be derived from its ability to 

allow the nucleation of apatite crystals (HA) on its surface.  It has been suggested that OH groups 

in the oxide layer directly induce apatite formation on exposure to biological fluids, and in vitro 

research has shown this to be the case when titanium, or its alloys, are subjected to Hank’s 

solution or Simulated Body Fluid (SBF) (Pan et al., 1996), both of which contain calcium 

phosphate ions for apatite nucleation.  Even though the oxide film formed on the titanium 

surface is inert, the surface remains active. It reacts with moisture in air and in solution to rapidly 

form hydroxyl groups on the surface (Figure 8).  The biocompatibility of titanium and its alloys 

is also linked with the oxide layer.  A thicker oxide layer leads to a more wettable surface, and 

enhanced osteoblast ALP enzyme expression (a major indicator of osteoblast cell differentiation) 

(LEE et al., 2012). 

 

 

Figure 8 - Formation of hydroxyl groups on titanium oxide surface, from passivation/oxidation of  (Hanawa, 2011). 
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When titanium dental implants are inserted into the jaw bone, calcium, phosphate and sulphur 

are reconstituted into the surface oxide film (Zhu et al., 2004, ESPOSTITO et al., 1999). Calcium 

phosphate is also formed on the surface of Ti6Al4V when it is used for fracture fixation.  

Furthermore, when titanium or its alloys are submerged in Hank’s solution, calcium phosphate 

has been found to be deposited (HANAWA and OTA, 1991, HANAWA and OTA, 1992, HEALY and 

DUCHEYNE, 1992, SERRO et al., 1997). These findings show that the physiological processes that 

occur in the body are well reflected by in vitro experiments. 

The Point of Zero Charge (PZC) of the titanium oxide layer is roughly pH 5, meaning that at 

biological pH 7, the oxide layer is negatively charged.  In vitro work conducted by Ellingsen 

showed that on exposure of the titanium oxide layer (TiO2) to calcium, calcium deposited onto 

the negatively charged oxide layer, inducing selective protein binding (Ellingsen, 1991).  This 

negative charge may also be an important factor in apatite nucleation, which occurs on OH- 

groups in the oxide layer.  Although further information related to the properties and 

composition of the oxide layer is beyond the scope of this research, as it has been numerously 

dealt with in the literature. 

Commercially pure titanium and the titanium alloy Ti6Al4V represent the gold standard 

materials for use as orthopaedic implants, due to their high biocompatibility, osteoconductivity 

and mechanical strength.  Pure titanium naturally oxidises in air to form an oxide layer on the 

surface which prevents excessive corrosion however, and some research has disputed whether 

the native oxide layer on titanium is inert.  Studies have shown that when implanted, the oxide 

layer of titanium implants can increase from around 5nm to some 200nm following 5 years of 

implantation, denoting that the titanium surface is continually oxidised (Mosser, 1992, HOSSAIN 

and GAO, 2008). 
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In vitro studies have also shown that mineral ions pass through the adsorbed protein layer on 

the titanium surface, changing the native oxide layer into complex phosphates of titanium and 

calcium containing hydroxyl groups and surface bound water (Zhu et al., 2004).  The vanadium 

portion of the Ti6Al4V titanium alloy helps to prevent further corrosion, making this titanium 

alloy a better choice; as the corrosion rate here is further reduced over pure titanium, there is 

less chance of titanium ions being released into surrounding tissue and causing foreign body 

reactions.  Although there are still some reports that show continued passivation of the Ti6Al4V 

alloy in simulated bodily fluids (HANAWA and OTA, 1991). 

There has been widespread research into improving the surface of such titanium alloys to 

promote osteoconductivity, and even osteoinductivity; such as nano-scale surface roughening, 

HA coatings, and biomolecules that could initiate and/or promote biochemical processes to 

achieve osseointegration (biomimetic coatings).  

Modification of the titanium surface is the fundamental step to achieving complete 

osseointegration of orthopaedic implants, and has been an importantly researched avenue.  

Implant surface characteristics play a large role in the formation and maintenance of bone at 

the alloplastic surface (MASUDA et al., 1998, Kieswetter et al., 1996a).  Such surface features 

include roughness, chemistry, hydrophilicity/hydrophobicity, and attached coatings; and these 

surface characteristics of the implant dictate the success, or failure, of osteoblastic cells to 

adhere to the implant surface.  The most highly researched processes to modifying titanium 

surfaces include; sand-blasting, acid-etching, oxidising (otherwise known as passivation), plasma 

spraying, and calcium phosphate coating (or HA coating). 
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2.3.1 Wettability 

The wettability of surfaces is a crucial physicochemical property of biomaterials that may 

regulate protein adsorption and hence cellular behaviour.  When a biomaterial, such as an 

implant, is exposed to body fluid or a cell culture medium, the adsorption of ECM proteins on 

the material surface plays a critical role in the initial cell attachment process (WEI et al., 2009).  

The hydrophilicity of implant surfaces is known to greatly influence cell response, and studies 

have shown that hydrophilic surfaces associate with greater cell adhesion (Goddard and 

Hotchkiss, 2007, XU and SIEDLECKI, 2007), it is therefore generally regarded in the scientific 

community that osteoblast cell adhesion is better achieved on hydrophilic surfaces (Altankov 

and Groth, 1994). 

Chang reported that as a surface becomes more hydrophobic, the adhesion of osteoblast cells 

to the surface decreases (CHANG and WANG, 2011), although the hydrophilicity of a surface also 

affects other cell behaviour such as cell spreading and differentiation (WEI et al., 2009, YILDIRIM 

et al., 2010).  Wei and co-workers demonstrated MC3T3-E1 Murine osteoblasts to exhibit a more 

fractal cellular morphology when seeded onto hydrophilic surfaces, while the 7F2 Murine 

osteoblast cell line has been shown to improve metabolic activity and differentiation on 

hydrophilic surfaces, with contact angles in the range 24-31°, when compared to hydrophobic 

surfaces with a contact angle of around 72° (YILDIRIM et al., 2010, WEI et al., 2009).  Similarly 

Wei demonstrated that the murine osteoblast cell line MC3T3-E1 presented greater cell 

attachment within 3-hours on hydrophilic surfaces, and that such hydrophilic surfaces promoted 

the adsorption of the cell adhesion promoting protein fibronectin (WEI et al., 2009). 

Hydrophilicity of the implant surface affects the hydration layer formed, such as the rate of 

formation and extent of hydration; and the hydration layer is important in dictating the 

adsorption of the subsequent protein layer.  Not only does the hydration layer facilitate the 
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adsorption of ECM proteins to the implant surface, but it also permits the reorganisation of 

these proteins.  On extremely hydrophobic substrates, the adsorbed cell-adhesion mediating 

proteins become stiff and resistant to reorganisation.  If the adsorbed proteins cannot 

reorganise, their specific amino acid sequences that constitute the cell adhesion motif, may not 

be accessible to cell-surface bound integrin receptors, thereby preventing cell adhesion (GARCIA 

et al., 1999, GROTH et al., 1999). 

The adsorption of cell adhesive serum proteins, such as fibronectin and vitronectin, play crucial 

roles in the adhesion of cells to a biomaterial surface (GRINNELL and FELD, 1982, HORBETT and 

SCHWAY, 1988, STEELE et al., 1992).  When a biomaterial surface is exposed to cell medium 

containing serum, the protein albumin (which is one of the most abundant serum proteins) is 

expected to preferentially adsorb onto the surface at the early stages of formation of the 

adsorbed protein layer.  It is then assumed that albumin will be competitively displaced by cell 

adhesive proteins (Arima and Iwata, 2007).  A study by Wei in which surfaces of varying contact 

angles were exposed to cell medium containing a mixture of fibronectin and albumin, was 

conducted to test the competitive adsorption of these two proteins to such biomaterial surfaces.  

They demonstrated that on hydrophilic surfaces, fibronectin was able to displace albumin and 

hence achieve greater initial cell attachment of murine osteoblast cells.  Whereas on 

hydrophobic surfaces albumin dominated, thus lowering the cell attachment of osteoblast cells 

within 3 hours of incubation (WEI et al., 2009). 

Through the many studies that have been performed in the scientific community, it is now 

generally regarded that hydrophilic surfaces are better for cell adhesion (Altankov and Groth, 

1994), due to the permitted adsorption of cell adhesive proteins, and allowing their composition 

and reorganisation in order to better recognise cell-bound integrin receptors. 
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2.3.2 Surface Charge 

Polymer surfaces with neutral hydroxyl functional groups have been shown to exhibit better cell 

adhesion than negatively charged carboxyl groups.  It is thought that specific hydrogen bonding 

between the material surface hydroxyl groups of the polymer and polar groups of the cell 

surfaces are responsible (LEE et al., 1991, CURTIS et al., 1983).  Similarly, Lee et al (1994) 

demonstrated better cell growth on neutral hydroxyl group surfaces than negative carboxyl 

groups.  Positively charged and neutral functional groups surfaces show better cell adhesion and 

cell growth than negatively charged ones possibly due to the abundant ECM proteins that are 

negatively charged, such as fibronectin and vitronectin, thus exhibiting strong electrostatic 

interactions.  A greater level of attachment of these specific proteins to a surface directly 

influences cell adhesion and hence cell growth (LEE et al., 1994). 

Principally, there are three ways in which implant surface charge can influence cellular 

responses; surface charge density, charge polarity, and the type of functional group. Jung et al 

demonstrated that as the surface charge density of poly(styrene-ran-acrylic acid) was increased, 

cultured cells exhibited greater adhesion and proliferation (JUNG et al., 2008).  Studies have also 

shown that ionic polarity is also a determining factor for biocompatibility, cell affinity, and 

differentiation on implant surfaces (Bet et al., 2003), as demonstrated by Schneider et al (2004).  

Their research showed that when the 2-hydroxyethyl methacrylate (HEMA) hydrogel was 

incorporated with positive charges, seeded osteoblast cells exhibited higher cell attachment and 

spreading (SCHNEIDER et al., 2004). 

Work conducted by Lee et al showed that various functional groups with differing charges can 

also modify cell behaviour (LEE et al., 1994).  They prepared polyethylene surfaces with different 

functional groups (carboxylic, hydroxyl, and amine).  When seeded with Chinese Hamster Ovary 

(CHO) cells, they found greater cell adhesion on the functional group grafted surfaces than 



 
 

47 
 

controls.  They hypothesised that the cause could be related to increased wettability of 

hydrophilic functional groups.  It is also theorised that surface charges modulate protein 

adsorption onto the implant, thus affecting integrin binding and specificity (CHANG and WANG, 

2011). 

Keselowsky et al showed that different functional groups with varying charges could modify the 

adsorption of fibronectin to surfaces, thereby controlling osteoblast cell adhesion by directing 

integrin binding (Keselowsky et al., 2003).  They concluded that MC3T3 osteoblast cell 

adherence to fibronectin surfaces was greater on the hydroxyl grafted surface, followed by 

carboxylic (which is comparable to amine).  Keselowsky also demonstrated that amine and 

hydroxyl grafted surfaces up-regulated osteoblastic gene expression, Alkaline Phosphatase (ALP) 

enzyme activity, and bone matrix mineralisation (Keselowsky et al., 2005).  Finally, Schmidt 

reported that neutral hydrophilic hydroxyl groups promoted osteoblast differentiation 

(including positive hydrophilic amine groups), while negative hydrophilic carboxyl groups 

facilitated osteoblast attachment (SCHMIDT et al., 2000). 

 

2.3.3 Surface Roughness 

Varying surface roughness and topographies can be achieved through different surface 

modification techniques such as plasma-spraying, anodic oxidation, sand-blasting, and acid-

etching.  Sandblasting typically uses micron-scale particles to produce a micro rough surface, 

whereas acid-etching produces roughness at the micron and sub-micron level (ZHAO et al., 

2007). 

Studies have numerously shown that osteoblast cell adhesion, proliferation and cell spreading 

is enhanced on smoother surfaces.  And on the other hand, rougher surfaces stimulate better 
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cell differentiation.  Studies have shown that osteoblast cells cultured on rougher surfaces 

exhibited elevated levels of ALP enzyme and osteocalcin bone protein.  Therefore on rough 

titanium surfaces, osteoblasts alter their microenvironment to one which is more osteogenic to 

regulate bone remodelling, which is characterised by the release of local factors to promote cell 

differentiation (BOYAN et al., 2003).  These results are in agreement with animal studies that 

have demonstrated enhanced BIC on rougher titanium surfaces (BUSER et al., 1991), as well as 

greater torque removal from bone pull out testing (WENNERBERG et al., 1997, KLOKKEVOLD et 

al., 1997).  

Numerous studies have shown that implant surface changes in topography affect cell adhesion.  

In vitro research tells us that osteoblast cell attachment, proliferation, and cell spreading are all 

increased when grown on smooth surfaces (Anselme and Bigerelle, 2005), although rougher 

surfaces have shown to exhibit better cell differentiation, bone matrix mineralisation, and 

growth factor production (Ji et al., 2008).  Again, SEM studies of bone cells grown on materials 

of varying roughness, exhibited better cell spreading and continuous cell layer formation on 

smooth surfaces compared to rougher ones (Anselme, 2000, Kieswetter et al., 1996b). 

However, it is not so ‘cut and dry’, the literature is riddled with conflicting results.  Bowers and 

Stanford showed a higher number of adherent primary cultured osteoblasts on rougher surfaces 

(BOWERS et al., 1992), while other studies showed a decrease in cell attachment (HULSHOFF et 

al., 1995, LOHMANN et al., 2000, MUSTAFA et al., 2000).  This could be due to certain studies 

not adequately controlling other surface characteristics between sample groups such as surface 

charge and wettability. 

It is hypothesised that reduced cell proliferation is preceded by expression of the more 

differentiated phenotype (LIAN and STEIN, 1992, STEIN et al., 1990).  Therefore, cells cultured 

on rougher surfaces may present at a later stage of differentiation than cells grown on smoother 
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surfaces.  It has also been suggested that differences between immature and mature cells 

indicates that cell maturation is a more crucial factor in cell response than the cell type or species 

(Kieswetter et al., 1996b). 

Many studies have evidenced that implant surface roughness can increase the BIC much more 

early after implantation, leading to early osseointegration of the implant (Cooper, 2000).  Other 

studies have shown that surface roughness of titanium implants can alter the biosynthetic ability 

and differentiation of adhered osteoblast cells.  Cooper explained that one of the mechanisms 

causing this phenomenon could be a modification in the expression of bone matrix proteins 

(Cooper, 2000).  ALP activity and osteocalcin were shown to be expressed at a more elevated 

level on rougher titanium surface (Davies, 1998), and Martin explained that this was especially 

the case when cells were grown on sand blasted and acid etched surfaces compared to 

machined titanium surfaces (MARTIN et al., 1995).  Similarly, it was demonstrated that micron 

and sub-micron roughened surfaces yielded advantageous bone tissue formation when using 

osteogenic cell culture models (ZINGER et al., 2004, WIELAND et al., 2005).  In addition, Schwartz 

and co-workers showed that micro and sub-micron roughened surface topography promoted 

the early development of mineralised bone matrix, which was not apparent on machined 

smooth surfaces (SCHWARTZ FO et al., 2007). 

Of the many ways in which surface roughness can be achieved on titanium implants, passivation 

has been highly researched; where the passivation solution is generally a mixture of hydrogen 

peroxide and an acid.  Acid etched surfaces have been shown to promote the formation of bone-

like nodules in rat osteogenic subcultures (WIELAND et al., 2005).  Bone nodule formation is a 

key factor of osteoblast differentiation, and are formed by differentiated osteoblasts, thus bone 

nodule formation can be a marker for the differentiation of osteoblasts.  Bone nodules formed 

by differentiated osteoblasts represent counterparts to differentiated osteoclasts and bone 
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resorption.  The balance between these two processes, also known as bone remodelling, is vital 

for the formation of healthy bone tissue. 

It has been reported that nano surface topography achieved through passivation of titanium 

surfaces using sulphuric acid and hydrogen peroxide (Piranha solution), yields greater osteoblast 

proliferation whilst inhibiting fibroblast growth.  And Vetrone and colleagues found that nano 

topography of titanium substrates increased extracellular accumulation of the bone proteins 

osteopontin and bone sialoprotein, indicating accelerated cell differentiation, and more efficient 

protein adsorption on such nano roughened surfaces (Vetrone et al., 2009).  Many other in vitro 

studies have also shown significant increases in osteoconductivity by facilitating mesenchymal 

stem cells and osteogenic cells attachment and proliferation, when performed on nanoscale 

surface features (but not smooth surfaces) (Depprich et al., 2008, Qin et al., 2016, Moore et al., 

2013, Steinhilber et al., 2011, Wei et al., 2014, Mabilleau et al., 2006). 

The topic of surface roughness on cell function has been actively debated, and yet it is unclear 

whether micro surface features perform better than nano, or vice versa.  Research conducted 

by Dalby and co-workers has shown great potential for nanostructured surfaces.  Their work has 

demonstrated strong responses from mesenchymal cells and osteoprogenitors to nanoscale 

surface features, with increased levels of osteocalcin and osteopontin, two of the most 

important matrix proteins in bone healing (Drelich et al., 2011).  Their work implicates 

nanostructured surfaces to facilitate implant osteoinductive properties by enhancing osteoblast 

differentiation of osteoprogenitor cells. 

Dalby also hypothesised that progenitor cells are much more responsive to surface topography 

than mature cell types, in that they are vigorously seeking out surface signals from the 

microenvironment (Yang et al., 2009a).  Although the mechanisms behind this phenomenon are 

not well known, it could be possible that optimally sized nano surface features, such as pits, 
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pores and cracks, allow stem cell elongation influencing cytoskeletal stress, and subsequently 

promoting stem cell differentiation to the osteoblastic cell lineage (Singhatanadgit, 2009). 

Although the mechanisms by which biomaterial surfaces affect cellular function are elusive, 

Davies hypothesised that acid-etched titanium implant surfaces enhanced the wettability of the 

surface and improved clot retention, resulting in better wound healing and osseointegration, 

possibly due to the mechanisms that encourage osteoconduction at the implant surface (Davies, 

1998).  However, research presents contradictory evidence of the influence of surfaces features 

on osteoblast cell functions. 

 

2.3.4 Biologically Active Molecules 

As well as modifying biomaterial surfaces to enhance biological action, certain biomolecules can 

be attached to implant surfaces in order to initiate cellular responses.  The most widely 

researched biomolecules for such functionalisation methods include those of the Transforming 

Growth Factor (TGF) superfamily, particularly the Bone Morphogenetic Proteins (BMPs), and the 

RGD cell adhesive peptide. 

The use of peptides and growth factors to functionalise implant surfaces was conceptualised 

from the hypothesis that imitating the in vivo environment of bone could enhance implant 

performance, promoting the initial biological response, otherwise known as biomimesis.  

Biomolecular functionalisation of implant surfaces has attracted a lot of research interest from 

the scientific community in recent years, as these bio-functionalised surfaces could reduce 

unspecific protein adsorption that leads to fibrotic capping, improve attachment of osteogenic 

cells with a view to enhance BIC, and present receptor-mediated signals to invoke the bone 

healing response (RAMAZANOGLU and OSHIDA, 2011). 
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The general architecture of the so called biomimetic surface is short oligopeptide or 

carbohydrate ligands for integrin or proteoglycan receptors, respectively, to promote 

interactions between the biomaterial surface and surrounding cells, often leading to improved 

cell adhesion, proliferation, and/or differentiation.  An advantage of using such biomolecules 

negates the need for the entire protein molecule, preventing inflammatory responses, 

thrombosis, and even device-associated infections (TANG et al., 1998, VANDEVONDELE et al., 

2003).  Other advantages include cell selective response, allowing one cell type to flourish over 

others, thus preventing fibrosis for example. 

The use of BMPs adsorbed onto orthopaedic implants has led to wide spread research in order 

to induce and maintain implant osseointegration (Bessho et al., 1999, BOYNE and JONES, 2004, 

Liu et al., 2005, WIKESJO et al., 2002).  Although promising as they are, such factors must be 

released in a controlled method progressively into the microenvironment surrounding the 

implant.  BMPs have the ability to induce differentiation of stem cells to the osteogenic cell line, 

and enhance the proliferation of newly formed bone cells.  If BMPs are released into systemic 

circulation, they could cause bone formation in other organs, the kidneys in particular, therefore 

causing severe damage to health (HARWOOD and GIANNOUDIS, 2005, RIPAMONTI et al., 2001). 

A new approach to the use of biomolecules is Platelet-Rich-Plasma (PRP).  In PRP therapy a small 

fraction of the patient’s blood is prepared, containing a high concentration of platelets, or 

thrombocytes (cells that clump together forming a blood clot and stopping bleeding).  Its 

composition is mainly a fibrin matrix (fibrin is a protein found in the blood clotting process) in 

which platelets are dispersed.  In addition to the platelets, PRP also contains various growth 

factors and cytokines, which can influence cell behaviour directly (Tejero et al., 2014).  PRP has 

been utilised in dental implant surgery to potentially enhance the bioactivity of titanium.  

Centrifugation of the patient’s own blood is all that is required to obtain PRP, it is then deposited 



 
 

53 
 

onto the titanium implant as a gel.  PRP coating if titanium has shown improved bone 

regeneration (Tejero et al., 2014).  The action of PRP begins at the early stages of titanium 

implantation, and supports a provisional 3D fibrin matrix with a complex environment over the 

titanium.  PRP then facilitates neovascularisation (new blood capillary formation) and osteoblast 

cell recruitment, thereby enhancing titanium osseointegration, and contributing to implant 

success (Inchingolo et al., 2015). 

Another heavily researched biomolecule is the RGD peptide.  This tripeptide is natively found in 

the structure of bone matrix proteins such as fibronectin and osteopontin.  It interacts with a 

superfamily of cell bound receptors known as integrins that are crucial for cell to cell 

attachments, as well as cell to ECM attachments, playing a major role in cellular signalling and 

thus controlling biological activity.  The interaction of cells with an implant surface is mainly 

mediated by integrin receptors which bind the RGD portion of certain ECM bone proteins, 

facilitating cell adhesion and signalling through biochemical transduction mechanisms.  

Research has numerously shown the positive effects of RGD to promote cellular adhesion to 

implant materials, and increase osteoblast differentiation, thereby enhancing peri-implant 

osteogenesis (SCHLIEPHAKE et al., 2005), and bone to implant bonding (Yang et al., 2009b), 

leading to enhanced fixation of mechanical implants, with decreased fibrous tissue capping 

(ELMENGAARD et al., 2005). 

It is thought that RGD presenting biomaterial surfaces improve cellular adhesion to the implant 

surface earlier after implantation, and promote bioactivity of adhering cells, leading to early cell 

differentiation attributed by higher ALP enzyme levels (Singhatanadgit, 2009).  Similarly, in vivo 

research utilising animal models has suggested that implants coated with integrin binding sites 

can improve BIC and peri-implant bone formation (SCHLIEPHAKE et al., 2005), while other 
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studies have suggested that RGD functionalised implant surfaces may promote bone formation 

during the early bone regeneration stages (Benoit and Anseth, 2005). 

Generally, the RGD peptide is considered a more sustainable solution than BMPs; as the peptide 

must be immobilised onto the implant surface, there is no concerns with biomolecule release 

into surrounding tissues, and subsequent ectopic bone formation. 

 

2.4 Natural and Synthetic Biopolymers 

Organic biomaterials, such as natural and synthetic polymers, have been utilised in medicine for 

many decades.  Due to their ease of synthesis and subsequent modification to tailor properties 

such as chemical composition, structure and reactivity. Thus, they have been extensively 

researched for tissue engineering purposes as most of them can be, or are made to be, 

biologically compatible and degrade into harmless by-products in vivo.  These researches have 

culminated in the ubiquitous use of polymeric materials to be inserted into the body and 

successfully used as hard and soft tissue substitutes (Chang, 1981). 

The use of natural biopolymers has stemmed from trends in biomimicry where the general idea 

is that materials from nature should be able to repair said nature.  Natural biopolymers 

demonstrate how properties exhibited by biological systems are established by the 

physicochemical properties of the constituent monomeric sequence.  Thus, a well characterised 

structure can result in a plethora of complex functions at the mesoscale.  This is where structural 

flexibility, interactions and functional properties are tailored by the chain of monomeric sub-

units (Malafaya et al., 2007). 
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2.4.1 Natural Biopolymers 

Fundamentally three types of natural polymers exist; protein based (e.g. collagen), 

polysaccharide based (e.g. Chitosan) and peptide based; which are also known as biopolymers 

(polymers existing in organisms, such as protein and DNA).  All three types of natural polymers 

have been suggested, and highly researched, for their use in tissue engineering.  The relatively 

low toxicity, interactions with living cells, and biological compatibility of these polymer types, 

have led to their numerous research in the literature.  Protein based polymers have a distinct 

advantage as they can mimic certain features of the ECM to direct cell migration, growth and 

organisation during tissue regeneration and wound healing.  Polysaccharide based polymers also 

show similar properties but have lower costs compared to other biopolymers such as collagen 

(Malafaya et al., 2007).  A major advantage of natural polymer coatings in bone tissue 

engineering, is that that are able to activate specific biological signalling pathways, induce cell 

adhesion, and modify bone remodelling (Civantos et al., 2017). 

Drawbacks of natural polymers are their batch variation possibility (due to animal sources), 

narrow and limited range of mechanical properties, and conventional methods used to produce 

polymers may find it difficult to process naturally derived polymers.  Also, natural polymers 

derived from animal sources can exhibit some level of immunogenicity and could potentially 

carry infection.  Although recombinant technologies can be sought to overcome these problems 

as well as eliminate polydispersity, and control defined properties.  These naturally derived 

polymers also have the advantages of biocompatibility, cell-controlled degradation, cellular 

interactions, as well as the predictable placement of cross-linkers, addition of biomolecules at 

specific sites along the chain or programmable degradation, making them very attractive for 

tissue engineering purposes (Gomes et al., 2008). 
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When considering natural polymers from a manufacturing viewpoint, their composition is far 

more complex than synthetic polymers.  Also, synthetic polymers can be synthesised and 

modified through a wide variety of chemical techniques, with defined and well-known 

compositions.  Contrastingly, natural polymers present complex structures, making it very 

challenging to synthesise them homogeneously, therefore possibly limiting their use clinically 

(Civantos et al., 2017). 

The polysaccharide-containing ECM component, Glycosaminoglycans (GAGs), have been applied 

to implants and found that they interact with surrounding cells, increasing implant 

biocompatibility (Goodman et al., 2013).  The GAG, chondroitin sulfate (CS) has been shown to 

bind ECM molecules and interact with osteoblast cells, accelerating ECM-binding to integrins 

and facilitating the formation of focal adhesions, improving cell attachment (Goodman et al., 

2013). 

Type I collagen is a natural biopolymer that makes up a large part of the bone ECM, making up 

approximately 90% of the osteoid phase.  An osteoinductive biomolecular coating, it is one of 

the most highly studied proteins to improve implant surface bioactivity (Civantos et al., 2017).  

Sartori and colleagues functionalised titanium surfaces with type I collagen, and when these 

implants were inserted into the femoral condyle of healthy and osteopenic (low bone mineral 

density) rats, the total bone-implant contact, as well as bone ingrowth, was increased (Sartori 

et al., 2015). 

A very new therapy which utilises natural biopolymers is Platelet-Rich-Plasma, a small fraction 

of the patient’s blood that contains a high concentration of platelets, or thrombocytes, cells 

which clump together and clot so as to prevent bleeding.  PRP is composed of a fibrin matrix (a 

blood clotting protein) in which the platelets are dispersed.  PRP also contains various growth 

factors and cytokines, which can influence cell behaviour directly (Inchingolo et al., 2015).  PRP 
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has already been utilised in dental implant surgery to enhance the bioactivity of titanium.  From 

centrifugation of the patient’s blood, the resultant PRP is deposited onto the titanium implant, 

and has been shown to improve bone regeneration (Inchingolo et al., 2015).  The action of PRP 

begins at the early stages of titanium implantation, supporting the 3D fibrin matrix with complex 

environments around the titanium.  PRP also facilitates neovascularisation and osteoblast cell 

recruitment, speeding up osseointegration times (Tejero et al., 2014). 

 

2.4.2 Synthetic Biopolymers 

Synthetic polymers have been commonly used in medicine for decades.  Their ease of synthesis, 

biocompatibility and high modifiability to precisely alter chemical and physical properties, have 

made them a popular biomaterial for use in tissue engineering.  This allows tailoring of 

biopolymers to provide a range of properties that are more predictable, giving a clear advantage 

over natural biopolymers.  As such synthetic biopolymers are the primary material of choice for 

the fabrication of scaffolds in tissue engineering applications.  Polymers that have been 

approved for use in biomedical applications, and thus are in use, include poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) to 

name but a few.  Although the biopolymers PLA, PGA (and their co-polymer poly(lactic-co-

glycolic acid) or PLGA), and PEG are the most extensively researched and the most popular for 

tissue engineering applications (Liu et al., 2007a, Ramakrishna et al., 2001).  And the degradable 

synthetic polymer, polyphosphazenes, is currently under clinical stage investigation. 

Due to the ability of modifying synthetic biopolymers, important aspects such as size, shape and 

degradation can be precisely controlled, giving rise to structures such as solids, fibres, fabrics, 

films and gels.  Through chemical modification, synthetic biopolymers can be altered to degrade 
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in vivo yielding harmless by-products.  This can be via simple hydrolysis or enzymatic cleavage 

of chemical linkages.  Also, by introducing further degradable bonds, or altering existing ones, 

the degradation rate of the biopolymer can be precisely controlled.  This is an important factor 

as previously mentioned, the degradation rate of the biological scaffold may influence implant 

success. 

A synthetic biopolymer that has garnered much attention in recent years in polyglycerol (PG).  

Scientists have shown great interest in PG as it is non-toxic and biocompatible, eliciting 

extremely low levels of foreign body interactions.  This research has used polyglycerol (PG) as a 

tissue engineering scaffold, and an anchor for the conjugation of the bioactive peptide RGD, and 

more detailed information relating to this polymer will be explained forthwith. 
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Scheme 1 - Basic chemical synthesis and structure of Hyperbranched Poly(glycerol). Adapted from Sunder et al. (1999) 
using Acelrys Draw software. The glycidol monomer is reacted with a core/initiator species which contains many 
hydroxyl groups. The glycidol monomer reacts with and attaches to each hydroxyl group on the core/initiator. The 
core/initiator becomes incorporated into the polymer structure, as a focal point from where the polymer branches out. 

 

The structure of PG consists of an inert backbone of polyether groups and can be fabricated 

from the Ring Opening Polymerisation (ROP) of the epoxide derivative of glycerol, glycidol 

(Scheme 1).  Unlike PEG, the structure of PG contains many hydroxyl functional groups which 

impart it with extreme water solubility.    Due to its biocompatibility and extremely low toxicity, 
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the use of PG in medicine was realized many years ago, although its investigation and use has 

been constrained to a drug delivery vehicle. 

Unlike other biocompatible polymers, PG was one of the first to be synthesised in a highly 

branched fashion in a relatively easy one-pot synthesis method.  This allowed 3D constructs of 

dendrimer-like Hyperbranched PG (HBPG) to be fabricated, giving rise to a cheap and viable 

alternative to dendrimers.  This has moved research in HBPG from just drug delivery applications 

to the formation of 3D bio-scaffolds for tissue engineering. 

The term “dendrimer” comes from a Greek word which roughly translates into “part of a tree” 

thus giving an insight into their structure which resembles the branches of a tree.  Also known 

as arborals, these macromolecules were first prepared using organic chemistry over 50 years 

ago.  They are highly branched constructs with nanospherical architecture and differ from linear 

polymeric structures, in that their structure is highly precise and controlled presenting them 

with tailorable and predictable molecular weights, biodegradability and biocompatibility 

(depending on the constituent monomers) (Oliveira et al., 2010).  Dendrimers exhibit 

remarkable advantages including nanoscale spherical architecture, narrow polydispersity and 

highly modifiable surface functional groups.  The intramolecular cavity is relatively empty and 

allows encapsulation of guest molecules for controlled release, such as medicinal agents 

(Duncan and Izzo, 2005) (Error! Reference source not found.). 
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Figure 9 - Representation of a 3rd generation dendrimer, indicating unique structural units; central core, dendritic 
(within the generations), and terminal groups (Mlynarczyk et al., 2017). 

  

The surface functional groups are extremely versatile and can be modified to alter the 

physicochemical properties of the dendrimer, and tailor it to a precise application.  Using simple 

organic chemistry properties such as size, shape, topology, surface functionality and reactivity, 

can all be precisely controlled.  As a result of these properties, including narrow molecular 

weight distributions, allows them to be prepared with reproducible pharmacokinetic profiles 

and high solubility in a wide range of organic solvents; researchers have investigated dendrimers 

for potential use in biomedical applications (Oliveira et al., 2010).  Dendrimers are classified by 

their generation number.  The generations of a dendrimer are the number of repeated 

branching cycles performed during synthesis.  Each successive generation generally leads to a 

dendrimer of twice the molecular weight of the previous dendrimer.  Dendrimers of higher 

generation have more exposed surface functional groups, which can be customised for any 

application.  The previous figure (Figure 9) gives a schematic representation of a generation 3 

dendrimer. 
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The high number of hydroxyl groups on PG allows this polymer to be modified by co-

polymerisation with other degradable polymers, or to convert the hydroxyl groups into other 

functional groups, providing a route to the grafting of biomolecules.  These modifications also 

allow tailoring of the polymer properties such as solubility, drug release kinetics, degradation 

and polymer scaffold rigidity. 

PG is one of the first polymers to be synthesised with a hyperbranching structure using a ‘one 

pot’ synthesis scheme.  The glycidol monomer is often referred to as a latent AB2 monomer (A 

and B representing reactive functional groups), the epoxide ring of which can be opened using 

a base catalyst.  When opened, the now glycerol molecule contains 2 hydroxyl groups and a 3rd 

alkoxide ion.    The alkoxide ion allows glycerol to react with a deprotonated functional core 

molecule, starting the chain growth.  Simultaneously through intermolecular and intramolecular 

ion transfer, a rapid cation exchange equilibrium ensues between the hydroxyls and alkoxides, 

which leads to chain propagation from all of the hydroxyls in the polymer chain, creating a 

hyperbranching structure (KAINTHAN et al., 2006).  Hence all hydroxyl groups on the polymer 

chain are potential active sites for chain growth, thus producing random branching (Scheme 2). 
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Scheme 2 - Activation of Hydroxyl Groups Using Base Catalyst (Initiation Forms Alkoxide Ion O-Na+), and Subsequent 
Propagation of Glycidol Monomer Ring Opening from Alkoxide Ion, and Intramolecular/Intermolecular Transfer of the 
Alkoxide Ion on Glycidol Monomer, Hence Each Hydroxyl Group on Monomer is Potential Polymerisation Active Site. 
Adapted from Sunder et al (1999) using Acelrys Draw software. 

 

HBPG has been highly researched in recent years for its ability to conjugate biomolecules 

relatively easily.  The abundance of hydroxyl groups at the polymer periphery, and within the 

core, allow attachment of a high number of biologically active substances.  As well as 

biofunctionalisation, PG can be modified to alter its properties such as glass transition 

temperature, charge, hydrophilicity, and degradation, thus it has been a research interest of 

many scientists for use as a drug delivery vehicle or tissue engineering scaffold.  Another 

advantage of PG is its hydrophilic character brought on by the hydroxyl groups in its structure.  

The polymer therefore improves the hydrophilic character of a biomaterial surface and prevents 

non-specific protein adsorption, similarly to ‘stealth’ polymers such as PEG, which may prevent 

foreign-body reactions. 

This research has sought the use of PG; a biologically compatible and non-toxic polymer, as a 

tissue engineering scaffold mainly for the purpose of anchoring immobilised RGD peptides to an 
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implant surface.  PG was synthesised with hyperbranching architecture similar to that seen in 

dendrimers.  The highly branched nature of the polymer allows compacting of the polymer 

chains, creating a polymeric structure within the nano-scale domain, as well as having a plethora 

of functional hydroxyl groups within the polymer core and at the polymer periphery. 

 

2.5 Implant Associated Infections 

Infectability remains to be a major problem in the use of biomaterials for medical applications, 

being the principal cause of implant failures, it presents unresolved issues to the clinician.  

Although efforts have been made to adhere to strict sterile and aseptic conditions to prevent 

infection in patients, such as ‘deep clean’ procedures for hospital wards and surgical theatres, 

and protocols for peri-operative antibiotic prophylaxis, which have proved effective but fall 

short in completely controlling the occurrence of this serious condition (Montanaro et al., 2007).  

Even under aseptic sterile conditions, up to 50,000 skin particles are detached from each 

physician, that contains microorganisms from the flora or human microbiota; an aggregation of 

microorganisms residing on the surface and in deep layers of skin, in saliva, oral mucosa, and 

intestinal tract such as fungi and bacteria.  Some form a symbiotic relationship with the host 

while others do not and are harmless. 

Around 90% of clean wounds can be found infected with Staphylococcus Aureus at the time of 

wound closure (Oakes and Wood, 1986).  The main sources of implant infection caused by 

microorganisms are the skin of the physician performing surgery and the host during implant 

insertion, then migration of bacterial cells through incisions to the device surfaces, followed by 

haematogenous spread.  The type and location of the implant material used determines the 

microbiological profile of the implant-related infection.  Total joint replacements 
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(endoprostheses) are typically infected by opportunistic Staphylococci, Enterococci and Candida 

species, as well as infecting catheters, cardiac valves and pacemakers (Schierholz and Beuth, 

2001). 

It is generally considered that two points of infection onset befall orthopaedic implants, or any 

medically implantable device, which classify as Prosthetic Joint Infections (PJI).  These are early, 

delayed or late.  Early onset of infection that establishes immediately following surgical 

intervention is defined as the appearance of symptoms within the first 3 months following 

surgery, and is associated with peri-implant contamination (infection from a microorganism 

during surgery) and remains to be the most common route.  Delayed onset is the first 

appearance of symptoms generally between 3 months and 2 years following surgery.  Late onset 

of infection generally manifests after 2 years of surgery, and is usually associated with 

haematogenous infections (infection elsewhere in the patient that travels to the implant site 

through the blood) (Esposito and Leone, 2008). 

Haematogenous infections have been well documented in medical devices that are exposed to 

the blood stream, such as artificial valves and stents, though they are much less frequent and 

mainly associated with bacteria originating from respiratory, skin, dental, or urinary tract 

infections (Galanakos et al., 2009).  Early post-operative implant infections more often exhibit 

acute symptoms of infection, whereas late prosthetic joint infections, which generally develop 

after a few months or years following surgery, show misleading symptoms of persistent chronic 

pain and signs of inflammation. 

2.5.1 Aetiopathogenesis 

Over the last few decades, the distribution of isolated pathogens has not changed much, with 

Staphylococcus Aureus, coagulase-negative Staphylococci, Enterococcus species and Escherichia 
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Coli being the most isolated pathogens from SSIs.  Also, a higher proportion of SSIs are associated 

with antibiotic resistance strains like Methicillin-Resistant Staphylococcus Aureus (MRSA), and 

an increasing incidence of fungal SSIs from species such as Candida Albicans.  It is suggested that 

these outcomes are linked with severely ill patients who are immunocompromised, and the 

increasingly high use of broad-spectrum antibiotics (Mangram et al., 1999).  Staphylococcus 

Aureus and Staphylococcus Epidermidis are considered the most common infecting 

microorganisms, which account for around 65% of all PJIs, and are frequently reported in early 

and late infections of total hip and knee prostheses (Esposito and Leone, 2008). 

The aetiology of implant infection has also been related to the implanted materials due to 

foreign-body reactions.  The implanted material offers a surface for microbial anchorage, 

growth, protection in internal pores, and often provides nutrients that accelerate microbial 

growth such as ions released from some metals (stainless steel being a material known to attract 

and harbour microbes), or even resorbable materials (Montanaro et al., 2007).  It has been 

suggested that stainless steel is associated with greater infection rates than titanium implants 

due to firm adherence of soft tissue on this metal, and also the generation of a fibrous capsule, 

a recognised reaction to stainless steel.  The fibrous capsule contains a non-vascularised fluidic 

space that is less accessible to the host defences, allowing microbes to spread and freely multiply 

(Galanakos et al., 2009). 

Medical implants, as is the same for all foreign body reactions, creates an interstitial milieu at 

the implant-tissue interface that is known to be locus minoris resistentiae, in that it presents an 

environment that has a low resistance and increased susceptibility to infection, and is 

characterised by depleted immune defences such as a compromised immune system, although 

formation of a biofilm is important (Galanakos et al., 2009).  Immunosuppression develops at 

the implant-tissue interface due to a granulocyte (white blood cells) defect, which is induced by 
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non-phagocytosable foreign bodies (the implant material).  Granulocytes normally undergo 

production of superoxide radicals to kill pathogenic microorganisms however, presence of the 

implant material leads to partially de-granulated granulocytes and impaired killing of invading 

pathogens (Zimmerli, 2006). 

The circumstances of foreign body reactions to the implant and the low pathogenic resistance 

at the implant-tissue interface, provides opportunistic pathogens a way to gain access to and 

colonise the implant surface.  Successful establishment of the infection, which is made possible 

by conditions presented by the implant, is concluded by the virulence potential of the 

microorganism (Montanaro et al., 2007).  Hence a pathogen of strong virulence will have a 

greater likelihood of causing infection, although low virulent pathogens can also gain entry and 

colonise an implant under such circumstances imposed by the presence of the implant.  Local 

Immunosuppression, brought on by foreign body reactions to implanted materials, lowers the 

threshold of bacterial infections (Schierholz and Beuth, 2001) and experiments have shown that 

foreign body presence decreases the minimal infecting dose of Staphylococcus Aureus by 

100,000 fold, leading to a permanent abscess.  Animal models revealed that just 100 colony 

forming units of Staphylococcus were enough to infect 95% of subcutaneous implants (Zimmerli, 

2006). 

 

2.5.2 Biofilm Formation 

Most implant-related infections are the basis for microbiological contamination during insertion 

at surgery however; they are not the sole result of microorganisms transmitted in a healthcare 

setting.  Bacteria, and on occasion fungi, colonise an implant surface by adhering to it through 

the formation of a biofilm.  These biofilms display further challenges for infection management, 
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and shielding bacteria from antimicrobial agents (resistance).  Biofilms can resist antibiotic 

concentrations of up to 1,000 times that required to kill planktonic bacteria (free-floating as 

opposed to sessile) (Alexander, 2010).  They can also protect residing bacterial cells from metal 

toxicity, acid exposure, dehydration and salinity, and even phagocytosis (Hall-Stoodley et al., 

2004) 

Microorganisms adhere to implant surfaces due to rapid attachment by specific and non-specific 

factors.  Specific factors include adhesins, cell-surface protein components or appendages that 

facilitate bacterial adhesion to other cells or inanimate surfaces.  Adhesins can take the form of 

pili (hair-like appendages covering bacterial cells, used primarily for transfer of genetic 

information between cells, or conjugation) or fimbrae (proteinaceous appendages covering 

most gram-negative bacteria and some gram-positive bacteria, used solely for cell binding).  

Non-specific factors such as surface tension, hydrophobicity, and electrostatic forces of 

attraction, can also govern bacterial cell adhesion (Galanakos et al., 2009). 

Microorganisms can generally take two forms: a free-floating planktonic form (in which the 

microorganisms propagate over the surface of the implant), and a sessile form (where the 

microorganisms are immobile within a biofilm).  Bacteria, especially Staphylococci, have a 

tendency to phenotypic variation, or phase variation.  This term governs a group of genetic 

mechanisms whereby the expression of a gene varies reversibly from generation to generation 

(Christensen et al., 1990).  A phenotypic change induces the expression of enzymes that catalyse 

the production of an exopolysaccharide substance known as glycocalyx or ‘slime’ which, in 

association with the bacterial cells adhering to each other, generates the biofilm (Galanakos et 

al., 2009, Schierholz and Beuth, 2001).  Biofilms are generally composed of many extracellular 

polymeric substances of varying structure and size, mostly polysaccharides, as well as proteins 

and DNA (Hall-Stoodley et al., 2004).   
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Planktonic bacteria undergo phenotypic variation that leads to adhesion, biofilm formation and 

subsequent resistance to antibiotics and the host immune system (phagocytes and antibodies).  

Within an established biofilm both adhesive and non-adhesive subpopulations of cells reside.  

Planktonic bacteria colonised on the implant surface can cause systemic infection to the host, 

while sessile bacteria survive during attack from antibiotics and the host immune system, 

leading to chronic indolent infections (Schierholz and Beuth, 2001).  Nutrient depletion and/or 

the accumulation of waste product in the biofilm lead to the microorganisms entering a 

stationary state (non-growing).  In this state the microorganisms become 1,000 times more 

resistant to most antibiotic therapy than in their planktonic form (Galanakos et al., 2009).  The 

following figure illustrates the key stages in biofilm formation on a surface (Figure 10). 
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Figure 10 - Biofilm formation life-cycle. Planktonic bacteria adhere to a surface and form a monolayer with the 
production of 'slime'. Growth and differentiation leads to the formation of a mature micro-colony and subsequently a 
biofilm. Sessile bacterial cells are dispersed from the biofilm and revert back to their planktonic form, ready to adhere 
and colonise a surface again, completing the life-cycle. Adapted from Galanakos et al (2009). 

  

2.5.3 Anti-fouling Polymers 

Recently much attention has been awarded to antimicrobial polymers as they possess a great 

deal of qualities that could prove useful in the tissue engineering arm of the medical sector.  The 

use of polymers that exhibit inherent antimicrobial activity in themselves, removes the reliance 

on conventional antibiotics that are becoming less efficacious due to resistant bacterial strains.  

Without a need for antimicrobial agents, side effects to the patient are minimised or removed, 

and antimicrobial polymers provide a longer duration of activity compared with antibiotics.  A 

vast majority of polymers not only exhibit antimicrobial qualities, but they can be modified to 
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do so, by simply preparing co-polymer blends.  Polymer science is at the forefront of tissue 

engineering, providing biocompatible and biodegradable scaffolds to guide tissue regeneration, 

but the inclusion of antimicrobial activity offers a sound solution to the ever elusive problem of 

orthopaedic implant infections (Muñoz-Bonilla and Fernández-García, 2012).  Generally 

speaking, two main types of antimicrobial polymers exist, those that are non-adhesive (inhibit 

microbial cell colonisation on their surface and subsequently prevent biofilm formation), and 

those that are bactericidal (kill microbial cells upon contact). 

Polymers exhibit a wide range of properties that are essential to the development of surfaces 

that can be tailored for a variety of biosystems, such as multiple length scales (allowing varying 

molecular weight polymers to be synthesised into higher organisations by controlling their 

length), surface chemistries (which are easily modifiable), and mechanical properties.  There are 

many different approaches to achieve antimicrobial polymers: polymers which are biopassive 

(reduce the adhesion of bacteria to their surface e.g. hydrophilic polymers), bioactive polymers 

(that kill microbial cells upon contact with their surface), and polymer surfaces that release 

antimicrobial agents in the vicinity of their surface (Charnley et al., 2011). 

Biopassive polymers inhibit the adhesion of extracellular proteins to their surface, consequently 

preventing bacterial adhesion as well.  Bacterial cell adhesion to a surface relies on the adhesion 

of ECM proteins to the surface, after which certain bacteria contain binding moieties for the 

adhered proteins.  Bacteria contain adhesin proteins that mediate their initial cell attachment 

to the host tissue.  These adhesins are generally given the name Microbial Surface Components 

Recognising Adhesive Matrix Molecules (MSCRAMM), with one of the most important adhesins 

being fibronectin binding protein on Staphylococcus Aureus.   

Such biopassive polymers are synthesised using hydrophilic well-hydrated monomers, which are 

either covalently or physically adsorbed onto a surface.  As the initial step in the pathogenesis 
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of implant related infections is the adhesion of bacteria to the implant surface, prevention of 

bacterial adhesion is an ideal strategy to avoid foreign body infections.  Also, biomaterials which 

are anti-adhesive to ECM proteins and bacterial cells don’t lose their antimicrobial properties 

during use right away; therefore early and late infections can be obviated (KOHNEN and JANSEN, 

1995).  By inhibiting the adhesion of proteins to a surface, the attachment platform for bacterial 

cells is removed thereby reducing bacterial colonisation (Charnley et al., 2011). 

Concentrations of possible virulent microorganisms in body fluids are mostly below the infection 

causing limit.  However, attachment of microorganisms to a surface leads to local proliferation, 

biofilm formation, and production of high concentrations of pathogen or systemic infection.  

Thus, the killing of microorganisms is not always essential, but to prevent their adhesion to 

surfaces and reducing their virulence.  Such non-adhesive polymeric surfaces have none or very 

few sites for microbial binding and two main principles to effectively repel microbial cells are 

electrostatic repulsion, and extreme hydrophilicity or hydrophobicity (Figure 11) (Tiller, 2008). 

It has been discussed that microbial cells generally carry a negative surface charge.  This is largely 

due to membrane proteins; gram-positive bacteria contain teichoic acids, and gram-negative 

bacteria contain negatively charged phospholipids (Ortiz et al., 2017).  The net negative charge 

of bacterial cell membranes could potentially be repelled by negatively charged polymers, 

thereby preventing bacterial cell adhesion with the surface. 
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Figure 11 - Diagram Illustrating the two Main Antibacterial Principles of Biopassive Polymers; Electrostatic Repulsion 
(A) and Hydrophilic/Hydrophobic Repulsion (B). Adapted from Charnley et al (2011) and Siedenbiedel & Tiller (2012). 

  

It has been known for many years that hydrophilic surfaces, such as water soluble polymers, and 

polymers that swell or hydrogels (polymer networks that form stable gels with water), lower the 

adhesion of microbial cells (Ackart et al., 1975, Cook et al., 1993).  The most widely given 

explanation of this phenomenon is due to surface free energy.  Bacterial cells cannot adhere 

because an energy minimum is attained by the largest amount of adsorbed water.  Furthermore, 

hydrogels exhibit a lower potential to adhere certain ECM proteins which promote microbial 

adhesion, such as fibronectin.  Another hypothesis is that possible binding sites for microbial 
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cells are taken up by water, giving them less chance to adhere to the surface (Kuusela et al., 

1985, Park et al., 1998). 

 

2.5.3.1 Anti-fouling PEG and PG Polymers 

PEG is the most widely studied polymer for inhibiting non-specific protein adsorption to a 

surface, and hence reducing bacterial adherence.  Containing many oxygen atoms in its polymer 

backbone readily available for hydrogen bonding, PEG is extremely hydrophilic.  When PEG 

polymers are subjected to aqueous fluid, an interfacial layer forms which prevents the PEG 

surface coating coming into direct contact with proteins and cells (Wang et al., 1997, Yoshimoto 

et al., 2010). 

PEG contains two hydroxyl groups (one at each end of the chain) which can be used to graft to 

a surface.  Research has shown that by grafting PEG to a surface via one of the end hydroxyl 

groups, it imparts hydrophilicity to that surface and exhibits microbial repelling qualities (Park 

et al., 1998).  PEG can be either grafted into the backbone of a polymer, or introduced into the 

side chains, forming a densely packed PEG monomolecular layer (Charnley et al., 2011).  PEG 

side chains grafted to a polycationic poly(lysine) backbone, producing a comb-like polymer, has 

been shown to resist adhesion from Staphylococcus Aureus/epidermidis and Pseudomonas 

aeruginosa (Harris et al., 2004).  Research by Desai et al demonstrated that polyethylene 

terephthalate films modified with PEG exhibited 70-95% reduction in adherent bacteria 

compared to unmodified films, indicating the usefulness of PEG modification in reducing the risk 

of implant associated infections (Desai et al., 1992). 

It has been shown that as the density of PEG functions conjugated to collagen increases, there 

is a decrease in the number of adhered Staphylococcus Aureus cells up to 93% compared to non-
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modified collagen (see Figure 12) (Tiller, 2008).  Also, by swapping the remaining end hydroxyl 

group for one with a negative charge can improve the microbial repellence of PEG (negative 

charge on most bacterial cell surfaces would lead to electrostatic (Tiller, 2008) repulsion), in fact 

it could lower the adhesion of Staphylococcus epidermidis by fivefold when compared to 

unmodified PEG grafted surfaces (Han et al., 1998, Tiller, 2008). 

 

Figure 12 - Number of adhered Staphylococcus Aureus cells on PEG-modified collagen in relation to PEG grafting 
density (Tiller, 2008). 

 

One fundamental flaw in the utilisation of PEG-based anti-adhesive systems is their lack of long-

term stability.  PEG is oxidatively degraded in vivo resulting in chain cleavage, leading to loss of 

surface functionality which means reduced hydrophilicity and less resistance to non-specific 

adsorption (Charnley et al., 2011). 
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2.5.4 Anti-Infective RGD Peptide 

Research has shown that instead of utilising the protein, a small binding motif can be conjugated 

to the coating, one which can only be recognised by osteoblasts.  The tripeptide amino acid 

sequence RGD is a small binding domain, found in ECM proteins such as fibronectin and laminin, 

which is responsible for binding to the integrin receptor.  Functionalising antimicrobial surfaces 

with RGD peptide can enhance osteoblast adhesion and function, whilst not impacting on the 

antimicrobial activity of the underlying coatings (Charnley et al., 2011, Neoh et al., 2012, Zhao 

et al., 2009, CHUA et al., 2008).  Work by Harris et al and Maddikeri et al. showed that PEG 

grafted poly(L-lysine) with attached RGD motif coated onto titanium substrates was able to 

resist adhesion of Staphylococcus Aureus/epidermidis, as well as other bacteria, whilst allowing 

attachment of osteoblasts in a selective bio-interaction pattern, exhibiting the usefulness of this 

biomaterial in applications of orthopaedic implantology (Harris et al., 2004, Maddikeri et al., 

2008).  Similar research has shown that RGD peptides exhibit antiadhesive properties against 

certain bacterial strains (WAGNER et al., 2004). 

It has been suggested that the war between pathogenic cells and host cells is a ‘race to the 

surface’.  If the pathogenic cells win the surface, they will attach, spread, form a biofilm and 

proliferate to the point of infection.  However, if the pathogenic cells are blocked from attaching 

to the surface i.e. competitively inhibited by the host cells, then the host cells will win the 

surface, and the pathogenic cells will not proliferate and may not cause infection.  The RGD 

peptide has been reviewed in this regard, as it allows the preferential attachment of host cells 

and matrix proteins, forcing advantage towards the host cells, leading to the attachment of 

fewer pathogenic cells, thus disrupting infection. 
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2.6 Research Aims and Objectives 

There are two aims of this research: the primary aim is to enhance mineralised bone matrix 

production, and reducing infection is a secondary aim.  The former aim will be met by completing 

three objectives: passivation of the titanium surface (forming hydroxyl groups for conjugation 

and improving surface wettability, and etching the titanium surface to yield a roughness at the 

nanoscale), polymerisation of Hyperbranched Polyglycerol (HBPG) directly from the titanium 

surface, and attachment of the RGD peptide.  The secondary aim of reducing infection will be 

met by completing two objectives: passivation of the titanium surface, and polymerisation of 

HBPG directly from the titanium surface (Figure 13). 

 

Figure 13 - Flowchart depicting the two aims of this research (Enhanced mineralised bone matrix production and 
reduced infection), and the four objectives to complete them (RGD peptide attachment, nanoscale surface roughness, 
Hyperbranched polyglycerol polymerisation, and titanium surface passivation).. 

 

The research tested four experimental hypotheses.  The first hypothesis is that passivation of 

the titanium surface will enhance the wettability and develop nano surface roughness.  The 
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second hypothesis is that polymerisation of PG from the titanium surface will enhance 

wettability and further develop nano surface features.  The third hypothesis is that the same 

PG layer can reduce infection from pathogenic microorganisms.  The fourth and final 

hypothesis if that the RGD peptide can activate osteoblast cells, thus improving cell 

attachment and adhesion strength, enhance cell proliferation and differentiation, and increase 

mineralised bone matrix production. 

The null hypotheses are therefore the opposites of the experimental hypotheses.  Thus, the 

null hypotheses state that: passivation will not enhance titanium surface wettability and not 

develop nano surface roughness, PG polymerisation will not further enhance the titanium 

surface wettability and not develop surface nano features, PG layer will not reduce infection 

from pathogenic microorganisms, and the RGD peptide will not improve cell attachment and 

adhesion strength, not enhance cell proliferation and differentiation, and not increase 

mineralised bone matrix production.  
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3 Titanium Surface Preparation 

3.1 Passivation 

Passivation is an important step when producing a biologically successful titanium implant.  The 

process cleans the surface of all contaminants and develops an oxide layer on the titanium 

surface, like that of the native oxide layer, thus improving implant biocompatibility (Ratner, 

2001, Pan et al., 1996).  Some studies have discovered that when titanium is implanted, over the 

course of some years the native oxide layer continues to grow (Sundgren et al., 1986), and in 

doing so it can release titanium ions into the surrounding tissue and cause adverse reactions.  

However, when a titanium surface is passivated, the newly oxidised layer prevents further 

excessive oxidation of the surface and improves corrosion resistance (Mabilleau et al., 2006), 

preventing titanium ion release thus minimising toxicity and foreign body reactions. 

Passivation could be a safer alternative to other surface modification techniques such as 

blasting.  Alumina blasting is well known and used to create random surface texture (Kantlehner 

et al., 2000, Weber et al., 2012, Depprich et al., 2008), as well as increased surface area.  

Although blasting may lead to the development of random bone cell orientations, contributing 

to the formation of scar tissue (Zarrabi et al., 2014, Kulkarni et al., 2014).  The blasting technique 

may also give rise to increased concentrations of cytotoxic elements released from the implant 

surface (Weber et al., 2012). 

Another technique for oxidising metal surfaces that is widely available is electrochemical 

treatment.  This process may provide the best control for generating consistent oxide layers 

(Larsson et al., 1994), although they are not completely pure (Lausmaa et al., 1988).  However, 

electrochemical methods are costly and time consuming, making them less commercially 

attractive (Nanci et al., 1998). 
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Generally, passivating the titanium surface converts titanium oxide (Ti-O2) groups in the oxide 

layer into titanium hydroxide (Ti-OH), or hydroxylation of the titanium surface, like the oxidation 

of titanium to form the native oxide layer (Figure 8, page 41).  The abundant hydroxyl groups on 

the passivated titanium surface, form hydrogen bonds with water molecules, improving the 

hydrophilic character of the titanium surface (Figure 14). 

 

Figure 14 - Diagrammatic representation of hydrogen bond formation between water molecules and -OH groups on 
passivated/oxidised titanium surface. 

 

This is the case with hydrogen peroxide passivation of titanium however, passivation with nitric 

acid leads to the formation titanium oxide (Ti-O2).  Formation of the oxide layer is how nitric acid 

passivation improves corrosion resistance.  By broadening the hydroxylate rich region of the 

oxide layer, many sites the conjugation of biologically active substances are created, as well as 

providing a positive environment for cell adhesion and function in terms of hydrophilicity and 

surface charge from the aforementioned hydroxyl groups (Pan et al., 1994). 

There are a few well known passivation procedures that utilise certain chemicals; some harsher 

than others such as Piranha solution.  Piranha uses a mixture of concentrated sulphuric acid and 

hydrogen peroxide (H2O2).  The acid and H2O2 combination cleans the substrate surface, oxidises, 

and roughens the titanium producing cracks, pits, and pores (also known as etching).  While this 
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mixture is suitable and numerously used in research, Piranha solution is extremely corrosive, 

explosively unstable, and costly in clean up and waste removal, hence its use is discouraged 

commercially. 

When passivating the titanium surface with hydrogen peroxide, it is well known that the 

decomposition of hydrogen peroxide to oxygen and water take place at the titanium surface.  

Titanium oxidation and corrosion then take place concurrently with water uptake and 

generation of a Ti-H2O2 complex, which is responsible for a yellow colouration of the passivation 

solution also observed in this research.  This titanium-hydrogen peroxide complex generates a 

stable end product, the Ti-OOH adduct (TengvalI et al., 1989).   Computational studies of the 

reaction also shows that other likely stable products are: Ti-OOH + O-H, Ti-OH + Ti-O + O-H, and 

Ti-OO + O-H + O-H (Huang et al., 2011) (Figure 15).   
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Figure 15 - Hydroxyl group formation on titanium surface when passivating with hydrogen peroxide. These are the 
three most likely and stable products of the passivation reaction, as analysed by computational studies by Huang et 
al., (2011). 

 

Another popular passivation solution is nitric acid (HNO3).  This chemical is more widely used 

and has been considered a ‘gold standard’ for the passivation of titanium surfaces, as well as 

other metals, with a view to achieving corrosion resistance.  Corrosion can occur on metals when 

exposed to corrosive biological fluids.  In case of titanium and its alloys, cracking of the 

protective oxide layer can lead to corrosive attack on the underlying surface, with the potential 

to release metal ions (Pan et al., 1996).  Metal ions released from implants are known to cause 

cytotoxic events in the tissue surrounding the implant site.  Most notably, nickel, aluminium, 

iron, and vanadium have been shown to be toxic, demonstrating poor cell proliferation and 

viability at concentrations found in patients with musculoskeletal joint replacements (Hamlet et 
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al., 2012).  Substantial metal ion release may cause osteolysis and subsequent implant loosening 

(Alfarsi et al., 2014).  Although there is contradictory evidence as to the corrosion resistant 

effects of HNO3 passivation, since some studies have found metal ion release from such 

passivated titanium alloys, as well as continued oxidation of the surface, it remains a popular 

procedure to impart corrosion resistance to titanium and other metals, thereby minimising 

potentially toxic metal ion release. 

The passivation of titanium surfaces with HNO3 does not lead to the generation of hydroxyl 

groups on the substrate surface, but instead cleans the titanium and generates an oxide coating, 

protecting the surface from corrosion.  According to a conference paper delivered at the 

International Titanium Association (ITA) Conference in 2014, Titanium Europe 2014, the vice 

president for research and development of SCANACON AB Thorsten Schneiker, a world leader 

in acid process solutions, and Dr Kerstin Forsberg of KTH – Royal Institute of Technology Sweden, 

outlined the reaction mechanism for nitric acid passivation of titanium (Schneiker and Forsberg, 

2014) (Scheme 3). 

 

Scheme 3 - Reaction mechanism for the nitric acid passivation of titanium (Schneiker and Forsberg, 2014). 

 

Although the time to passivate the substrate with HNO3 is just 30-minutes to a couple of hours, 

its ability to roughen the titanium surface is limited compared to the use of H2O2 and other 

stronger acids, but the passivation time with H2O2 is much lengthier.  Some have suggested a 

passivation time of around 24-hours with H2O2 is ideal to oxidise and develop surface features, 

such as roughness, that is conducive to cell function as well as plasma protein attachment 

Ti + 2HNO3 TiO2 + 2HNO
2
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(Kainthan et al., 2007).  It has been suggested in the literature that the use of an acid with H2O2 

may enhance the oxidising effects, therefore allowing a reduced passivation time.  However, for 

industry scale-up 24-hours is too long a time for preparing the titanium surface. 

Mixing H2O2 with an acid, such as HNO3, could enhance the oxidation potential of H2O2, and may 

be the reason why Piranha solution is preferred in the literature.  To replicate the acid etching 

and oxidation ability of Piranha solution, but to minimise dangers of high corrosiveness and 

instability, H2O2 30%wt was mixed with 25% HNO3 to form the fourth tested passivation solution 

(H2O2/HNO3). 

It was thought that mixing H2O2 with HNO3 could lightly roughen the titanium surface (producing 

nano rough surface features), whilst increasing oxidation and imparting corrosion resistance 

simultaneously.  Literature reports that H2O2 can be mixed with up to 35% HNO3 strength, yet 

remain stable enough to mitigate any danger (Morais et al., 2010, Rezania et al., 1999, Nanci et 

al., 1998). Higher concentrations of HNO3 with H2O2 could yield violent reactions, releasing heat 

and large volumes of mono-nitrogen oxides (Sah and Miller, 1992). 

Schneiker and Forsberg (2014) presented that hydrofluoric acid etching of titanium exposes 

surface metal atoms which are oxidised through nitric acid passivation, forming adsorbed 

trivalent titanium cations.  These titanium cations are then further oxidised by nitric acid to form 

the titanium oxide coating (Scheme 4).  In this research it is thought that hydrogen peroxide 

treatment might expose these surface metal atoms in a similar way, thus enhancing the nitric 

acid led formation of the oxide layer.  Therefore, the actions of hydrogen peroxide and nitric 

acid may help each other to enhance the titanium oxide coating and generate an abundance of 

hydroxyl groups on the titanium surface. 
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Scheme 4 - Reaction of nitric acid with titanium surface metal atoms and oxidation to yield titanium oxide layer 
(Schneiker and Forsberg, 2014). 

 

H2O2 30%wt was the first solution tested.  The literature reports that a passivation time of 24-

hours with H2O2 alone is best to achieve a hydrophilic surface, along with random surface 

features such as cracking and pitting, and achieve a micro rough surface (Kainthan et al., 2007).  

The next solutions tested consisted of two strengths of 70% HNO3 in deionised water 

(HNO3/H2O): the ratios of HNO3 to water included 3:7 and 1:1. 

The HNO3/H2O passivation solutions tested here are derived from a procedure that is in 

accordance with the protocol specified in ‘Standard Practice for Surface Preparation and 

Marking of Metallic Surgical Implants’ in the American Society for Testing and Materials (ASTM) 

F 86-01 (ASTM, 2013).  This protocol is used mainly to clean metal surfaces, making them free 

from organic contaminants and iron inclusions.  As well as cleaning metal surfaces, HNO3 

passivation of titanium leads to the formation of thin (less than 10nm) oxide films, similar to the 

native oxide layer that covers the titanium alloy surface (Burakowska et al., 2009, Kantlehner et 

al., 2000, Porte-Durrieu et al., 2004).  The detailed effects of passivation on corrosion resistance 

remains an actively debated topic.  It is generally believed that this passivation procedure 

improves corrosion resistance, via formation of the protective oxide coating, although results 

found in the literature are conflicting (Burakowska et al., 2009). 
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3.2 Materials and Methods 

 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; Acetone ACS Reagent ≥99.5% 

(Sigma); triple filtered ultra-pure deionised water, Millipore (Cranfield Health); HNO3 ACS 

Reagent, 70% (Cranfield Health); H2O2 solution, containing inhibitor, 30 wt.% in water, ACS 

Reagent (216763 Sigma); analogue ultrasonic cleaner (Cranfield Health); contact angle 

goniometer, with light source, CCD camera and CAM 200 software, conforming to ISO and ASTM 

standards (Cranfield Health); Environmental Scanning Electron Microscope (ESEM), FEI XL30 

(Cranfield School of Applied Science (SAS)); Energy Dispersive X-ray Fluorescence (EDXF), Bruker 

S2 Ranger (Cranfield SAS); Atomic Force Microscopy (AFM), Digital Instruments (Veeco) 

Nanoman VS  (Cranfield SAS). 

 

Passivation Protocol 

Before any titanium discs were immersed in the passivation solutions, they were first 

ultrasonically cleaned in deionised water and then acetone for 5 minutes in each, followed by 

drying in a stream of nitrogen gas.  The cleaned titanium discs were then immersed in the 

passivation solutions (5ml solution per titanium disc) chosen for specified periods of time.  The 

passivated titanium discs were then removed and thoroughly rinsed three times in deionised 

water, followed by drying in nitrogen gas and being stored dry in a desiccator. 

In this research four passivation solutions were tested: H2O2 30%wt; 70% HNO3 in water at two 

ratios (3:7 and 1:1); and a mixture of H2O2 30%wt with 70% HNO3 in water (1:1) (H2O2/HNO3).  

First H2O2 30%wt was tested due to low contact angles with titanium surfaces described in the 

literature.  H2O2 was tested at 24-hours passivation, as suggested abundantly in the literature, 
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followed by a shorter time of 12-hours in efforts to improve processing time.  Next HNO3 was 

tested at two ratios, the 3:7 ratio solution was tested according to ASTM F 86-01 protocol (30-

minutes passivation), followed by a stronger concentration over three passivation times (30-

minutes, 1-hour, and 2-hours).  Finally, the novel passivation solution H2O2/HNO3 was tested 

again following 30-minutes, 1-hour and 2-hours of passivation. 

Mixing of H2O2 and HNO3 was thought to enhance the oxidation effect of H2O2, enable acid 

etching of the titanium surface, and provide corrosion resistance simultaneously.  In fact, 

sulphuric acid or hydrochloric acid is readily mixed with H2O2 for the passivation of titanium and 

its alloys.  The acid etches the titanium surface whilst H2O2 oxidises it, increasing the thickness 

of the oxide layer and generating reactable hydroxyl groups.  HNO3 passivation of metals alone 

can release harmful NOx gases (nitrous oxides), while mixing HNO3 with H2O2 suppresses the 

formation of NOx by re-oxidising NOx to NO3-.  Here it was thought that mixing HNO3 with H2O2 

could accomplish the same; and with the limited acid etching ability of HNO3, nano surface 

features might be formed.  Although no mention on the use of this mixture to passivate titanium, 

or its alloys, could be found in the literature, maintaining a degree of novelty for this research. 

Surfaces were analysed for contact angle, using the sessile drop technique, imaged and profiled 

via ESEM and AFM, and a surface elemental analysis carried out using EDX.  Before samples were 

analysed with ESEM, they were gold sputtered, and then imaged using the following parameters: 

Accelerating Voltage 2kV, Working Distance 57mm, Probe Diameter Spot Magnification.  

Analysis using AFM was conducted in contact mode with a silicon nitride probe.  Three discs per 

sample group were analysed, and then averaged to give the result. 
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Table 1 - Passivation Solutions Tested, Passivation Solution Compositions, and Passivation Times (hours). 

Passivation Solution Passivation Time (hours) 

H2O2 30%wt 12 and 24 

70% HNO3/H2O (3:7) 0.5 

70% HNO3/H2O (1:1) 0.5, 1 and 2 

30%wt H2O2/25% HNO3 (1:1) 0.5, 1 and 2 

 

 

3.3 Results of Titanium Surface Passivation and Discussion 

3.3.1 Contact-Angle 
 

Contact -Angle-Contact-angle measurements were performed on a goniometer, which consists 

of a high-resolution camera for the observation and measurement of the angle subtended by a 

small droplet of liquid on a material surface.  The goniometer is best used for planar surfaces 

such as plaques and films.  After the droplet of liquid has been resolved by the camera, 

computer software calculates the contact-angle in a matter of seconds, making it a popular 

method of choice when investigating the wettability of a surface.  The following images show 

three instances of contact-angle measurements taken during this work (Figure 17, Figure 18 

and Figure 18). 

 

Figure 16 - Photograph of Contact-Angle Measurement of Raw Titanium Disc. 
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Figure 17 - Photograph of Contact-Angle Measurement of H2O2/HNO3 (1:1) 30-minutes Passivated Titanium Disc. 

 

Figure 18 - Photograph of Contact-Angle Measurement of H2O2/HNO3 (1:1) 2-hours Passivated Titanium Disc. 

 

Table 2 - Contact Angles of Raw Titanium Disc (Control) and Titanium Discs Passivated with H2O2 30%wt (12 hours), 
H2O2 30%wt (24 hours), and HNO3/H2O (3:7) (30 minutes). Contact Angles are Means of 3 Discs per Sample Group. 
Confidence Intervals are Calculated at 95% significance (P=0.05). 

 Passivation Solutions and their Contact Angles (Degrees °) 

 Raw Disc 
H2O2 30%wt, 

12-hours 
H2O2 30%wt, 

24-hours 
HNO3/H2O (3:7), 

30-minutes 

Titanium Disc 1 80.72 31.20 19.26 79.64 

Titanium Disc 2 82.56 31.15 16.25 74.02 

Titanium Disc 3 64.71 40.52 21.09 59.78 

Mean 76.00 34.29 18.87 71.14 

95% Confidence 
Interval 

11.11 6.11 2.77 11.58 

Standard Deviation 9.82 5.40 2.44 10.24 
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Figure 19 - Passivation results graph showing mean contact angles on Raw, H2O2 30%wt (12 and 24-hours), and 
HNO3/H2O (3:7, 30-minutes) Samples.  Error bars represent 95% Confidence Intervals (P=0.05). 

 

Contact angle measuring of a material surface has become increasingly popularised over the 

past two decades, especially since a wide acceptance in the scientific community that 

hydrophilicity/hydrophobicity can be controlled through simple topography changes and 

roughness.  It is generally regarded that contact angles of 90° and above constitute a 

hydrophobic surface, while angles less than this can be regarded as hydrophilic (Drelich et al., 

2011).  Titanium alloy, as well as many other metals, is considered hydrophilic due to the native 

oxide layer covering its surface. Therefore, it is no surprise that the Raw titanium alloy sample 

is hydrophilic, though its contact angle is close to the 90° cut-off for hydrophilic surfaces, similar 

Passivation Solutions

Raw Titanium Disc (Control) 76.00

H2O2 30%wt, 12-hours 34.29

H2O2 30%wt, 24-hours 18.87
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to values reported in the literature (Yang et al., 2009a, Kutsevlyak et al., 2008) and is the least 

wettable surface.  This result is expected, as the raw titanium surface is hydrophilic but not 

strongly so, perhaps indicating a very thin oxide layer and/or possible hydrophobic surface 

contaminants. 

Tukey-Kramer comparison analysis reveals that the Raw sample has a contact angle that is 

significantly greater than both hydrogen peroxide passivations (12-hour and 24-hour), but the 

same as HNO3/H2O (3:7) 30-minute passivation.  Also, both hydrogen peroxide passivations (12-

hour and 24-hour) are the same but both produce a significantly lower contact angle than the 

HNO3/H2O (3:7) 30-minute passivation solution.  In this test group, the hydrogen peroxide 

passivation (12-hours and 24-hours) yields a significantly lower contact angle, and therefore a 

more hydrophilic surface (see Appendix sub-chapter 8.3.1 page 199-200). 

 

Passivating with H2O2 30%wt resulted in the lowest contact angle after 24-hours of passivation 

(18.87° ± 2.77°), followed closely by passivating for 12-hours (34.29° ± 6.11°) (Table 2).  These 

values are very close to those reported in the literature (Kainthan et al., 2007), where it is 

mentioned that passivation with hydrogen peroxide (or peroxidation) can yield one of the most 

hydrophilic surfaces on titanium and its alloys.  Increasing the time of passivation from 12-hours 

to 24-hours with hydrogen peroxide yielded a significantly reduced contact angle (Figure 19), 

similar to previously reported trends.  Reports in the literature have suggested that the native 

oxide coating on titanium is composed of 2 layers; a barrier inner layer and a porous outer layer, 

and it is this outer oxide layer that houses the reactable hydroxyl groups.  Furthermore, these 

reports have also suggested that hydrogen peroxide passivation increases dissolution and 

oxidation rates of the oxide layer and titanium atoms at the substrate surface, yielding enhanced 

oxide layer growth (Pan et al., 1996, Liu et al., 2004, Sobieszczyk, 2010).  Therefore, increasing 
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passivation time with hydrogen peroxide could produce a much thicker oxide coating (thicker 

outer oxide layer), further improving the hydrophilic character of the surface with more hydroxyl 

groups, agreeing with the results here. 

Hydrogen peroxide passivation of the titanium alloy surface is a preferred passivation technique 

in biomaterial applications research, with numerous research articles utilising hydrogen 

peroxide mixed with sulphuric acid, or piranha solution.  One of the reasons for this is that a 

titania gel layer can be formed on titanium, and its alloys, through hydrogen peroxide 

passivation.  The titania gel coating can enhance the bioactivity of titanium-based implants by 

inducing the formation of apatite crystals (theorised by enhanced adsorption of calcium and 

phosphate ions), thereby improving bone matrix mineralisation (Liu et al., 2004, Mendonca et 

al., 2008). 

Passivating with HNO3/H2O (3:7) for 30-minutes yielded contact angles like that of the Raw 

titanium surface, with a mean contact angle of 71.14° ± 11.58° (Table 2).  This high contact angle 

could indicate that HNO3 passivation yields a very thin oxide layer, much like the native oxide 

formed on raw titanium.  This coincides with literature reports that indicate the hydrophilic 

oxide layer formed from nitric acid passivation is very thin at around 10 nm (SMITH et al., 1991).  

Also, passivating metals with nitric acid is usually conducted to clean surfaces of organic 

contaminants, such as metallic surgical equipment pre-treatment, and not necessarily to 

improve surface wetting. 
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Table 3 - Contact Angles of Titanium Discs Passivated with HNO3/H2O (1:1) and H2O2/HNO3 (1:1). Contact Angles 
were Measured over 30-minutes, 1-hour, and 2-hours Passivation Times. Contact Angles are Means of 3 Discs per 
Sample Group. Confidence Intervals are Calculated at 95% Significance Level (P=0.05). 

 
 

Passivation Solutions and Their Contact 
Angles (Degrees °) 

  HNO3/H2O (1:1) H2O2/HNO3 (1:1) 

30-minutes 
Passivation 

Time 

Titanium Disc 1 75.09 47.31 

Titanium Disc 2 75.14 51.18 

Titanium Disc 3 75.00 45.34 

Mean 75.07 47.94 

95% Confidence Interval 0.07 3.36 

Standard Deviation 0.08 2.97 

1-hour 
Passivation 

Time 

Titanium Disc 1 60.77 48.60 

Titanium Disc 2 72.06 33.74 

Titanium Disc 3 76.50 47.26 

Mean 69.78 43.20 

95% Confidence Interval 9.18 9.30 

Standard Deviation 8.11 8.22 

2-hours 
Passivation 

Time 

Titanium Disc 1 71.79 30.76 

Titanium Disc 2 77.76 38.43 

Titanium Disc 3 69.39 36.87 

Mean 72.98 35.35 

95% Confidence Interval 4.88 4.95 

Standard Deviation 4.31 4.05 
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Figure 20 - Passivation results graph comparing mean contact angles of titanium discs passivated with HNO3/H2O 
(1:1) (blue bars) and H2O2/HNO3 (1:1) (orange bars) following passivation times of 30-minutes, 1-hour and 2-hours. 
Error bars indicate confidence intervals calculated at 95% significance level (P=0.05). 

 

Increasing the strength of the nitric acid passivation solution led to the testing of HNO3/H2O in 

a 1:1 ratio.  Again, the results yielded poor contact angles of 75.07° ± 0.07°, 69.78° ± 9.18° and 

72.98° ± 4.88° following passivation times of 30-minutes, 1-hour and 2-hours, respectively (Table 

3).  Tukey-Kramer statistical comparison revealed no significant difference between the three 

passivation times (see Appendix sub chapter 8.3.1, page 201-202). 

Contact angles for passivation with the novel solution H2O2/HNO3 (1:1) were very promising, 

achieving mean contact angles of 47.94° ± 3.36°, 43.20° ± 9.30° and 35.35° ± 4.95° degrees 

following passivation times of 30-minutes, 1-hour and 2-hours, respectively (Table 3).  The 

wettability of the titanium alloy surface prepared by this solution is very similar to that of 
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hydrogen peroxide passivation, and achieved with a much faster passivation time.  ANOVA and 

Tukey-Kramer analysis revealed a statistically significant difference between the 30-minutes and 

2-hours passivation times only (P=2.12-06), indicating that the 2-hours passivation with this 

solution yields the best surface in terms of hydrophilicity (excluding hydrogen peroxide 

passivation alone).  Furthermore, a Tukey-Kramer comparison revealed that the 2-hours 

passivation yielded a contact angle comparable to that of hydrogen peroxide alone at 12-hours 

passivation (see Appendix sub chapter 8.3.1, page 203).  Compared to the Raw titanium surface, 

H2O2/HNO3 passivation (2-hours) reduced the contact angle of the titanium alloy surface by 

approximately 53.49%.  The contact angle result achieved here with the hydrogen 

peroxide/nitric acid mixture confirms literature reports; that mixing hydrogen peroxide with an 

acid enhances its oxidation effect.  This enabling a much shorter passivation time to significantly 

improve hydrophilicity of the titanium surface. 

Generally, surfaces with increased wettability are sought to obtain surface characteristics that 

are conducive to stronger bone-implant bonding, and hydrophobic surfaces have been shown 

to reduce cellular metabolic activity in vitro (Liu et al., 2004).   
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3.3.2 ESEM Imaging of Titanium Surface 

 

 

Figure 21 - A) and B) ESEM Images of Raw Titanium Disc at 10k and 25k Magnification, respectively. C) and D) H2O2 
30%wt, 24 hours Passivation at 10k and 25k Magnification, respectively (10K and 25K Magnification Scale Bars at 2 
and 1µm, Respectively). 

 

The SEM images reveal the raw titanium alloy surface to have minimal surface features which is 

expected as the surface is machined (Figure 21, A and B).  The SEM images for H2O2 30%wt 24-

hours passivation (Figure 21, C and D) show a vastly cracked surface with extensive pitting and 

crevasses.  This agrees with literature reports that passivating titanium with hydrogen peroxide 

for a prolonged period can etch the surface, leading to sub-micron and nano surfaces features.  
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The cracks, pits and crevasses produce a level of porosity that could allow infiltration of osteoid 

matrix and its subsequent mineralisation, thereby enhancing osseointegration. 

 

Figure 22 - ESEM Image of Titanium Alloy Disc Passivated with HNO3/H2O (3:7) Following 30-minutes Passivation 
Time (25µm Scale Bar). 

 

The SEM image above (Figure 22) shows that passivating the titanium surface with nitric acid 

yields more surface features than that of the raw surface, such as cracks and pits.  This result is 

in agreement with literature reports that indicate acid etching with strong acids (such as 

sulphuric, hydrochloric, or nitric acid) can form micro pits on a titanium implant surface 

(Manjaiah and Laubscher, 2017), though the extent of surface etching is not superior to that of 

peroxidation. 
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Figure 23 - ESEM Image of Titanium Alloy Discs Passivated with HNO3/H2O (1:1) Following A) 30-minutes B) 1-hour 
and C) 2-hours Passivation Times (25µm Scale Bar). 

 

SEM images (Figure 23 A, B and C) reveal no significant changes to the surface topography when 

passivated with the stronger nitric acid solution compared to the weaker strength.  Passivating 

the titanium surface with HNO3 (1:1) shows little difference between the three passivation times 

(30-minutes, 1-hour, and 2-hours), indicating the inability of nitric acid to further etch the 

titanium surface after 30-minutes of passivation.  This could be a reason why the ASTM F-86 

procedure of nitric acid passivation of metals recommends a passivation time of just 30-minutes 

and no more. 
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Figure 24 - ESEM Images of Titanium Alloy Discs Passivated with H2O2/HNO3 (1:1) Following A) 30-minutes B) 1-hour 
and C) 2-hours Passivation Times (25 µm Scale Bars). 

 

SEM images of titanium discs passivated with the novel hydrogen peroxide/nitric acid mixture 

(Figure 24, A, B and C) show a highly rough surface with extensive cracking.  The contrast 

between light and dark areas on the SEM images indicate the peaks and valleys, respectively.  

The images here show many different shades from very light regions to much darker lines 

indicating peaks and valleys (and/or pits), similar to those seen on the SEM images of titanium 

discs passivated with hydrogen peroxide alone for 24-hours (Figure 21, C and D).  The ability of 

nitric acid to enhance the oxidation effect of hydrogen peroxide is evident in these SEM images.  

This is expected since piranha solution is popularised with biomaterial surface pre-treatment in 

the literature, where hydrogen peroxide is mixed with sulphuric acid. 
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The topography of the titanium surface appears to show what can be described as cracks or 

valleys in circular formations, creating an anisotropic bumpy-like texture not seen with nitric 

acid passivation.  Clearly this can be attributed to the hydrogen peroxide portion of the 

passivation mixture, and may be a result of the enhanced dissolution/oxidation effect of the 

oxide layer and titanium atoms at the surface. 

 

3.3.3 AFM 3D Images of Titanium Surface 

 

 

Figure 25 - 3D AFM Image of Raw Titanium Alloy Surface. 

 

The 3D AFM image (Figure 25) clearly shows the raw titanium alloy surface to have minimal 

topographical features, as previously mentioned.  The surface is smooth with some peaks that 

have sharp steep edges and some straight cracks and scratches (as seen from the SEM image, 

Figure 21, A and B), indicative of a machined surface. 
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Figure 26 - 3D AFM Image of Titanium Alloy Surface Passivated with H2O2 30%wt Following 24-hours Passivation. 
Area Circles in Green Indicates Circular Bumpy Nanotexture. 

 

The 3D AFM of the H2O2 30%wt 24-hours passivated titanium surface shows crevasses and 

pitting of up to 600nm deep however, on closer examination nano-width valleys can also be 

seen in circular formations (circled in green on Figure 26), thus creating a bumpy texture that is 

also seen on the SEM images of titanium discs passivated with the novel hydrogen 

peroxide/nitric acid mixture (Figure 24), as previously explained.  The circular bumpy formations 

are roughly 250nm in diameter and separated by valleys of about 10nm in width.  It is possible 

this nanoscale bumpy texture lends to the nano rough surface topography of the titanium when 

passivated with hydrogen peroxide. 
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Figure 27 - 3D AFM Image of Titanium Alloy Surface Passivated with HNO3/H2O (3:7) Following 30-minutes 
Passivation Time. Areas Circled in Green Show Pit and Crevasse Formations. 

 

Literature reports indicate that acid etching can infer micro-pits on the titanium surface ranging 

from 0.5 to 2 µm, and it can be seen in the 3D AFM image pits of approximately 0.3 to 2 µm in 

diameter (Figure 27, possible pitting is circled in green) when the surface is passivated with 

HNO3/H2O (3:7).  Although nitric acid passivation is not natively used for acid etching, clearly the 

3D AFM image, as well as the SEM images (Figure 22 and Figure 23), show that nitric acid does 

have some ability to form random surface features and thus increase the roughness of the 

titanium surface over that of the raw titanium.  Also, the nanoscale bumpy texture seen on the 

titanium surface passivated with hydrogen peroxide is not seen here, perhaps due to the 

omission of hydrogen peroxide from the passivation mixture, and therefore no enhanced 

dissolution/oxidation at the titanium surface. 
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Figure 28 - 3D AFM Image of Titanium Alloy Surface Passivated with HNO3/H2O (1:1) Following 30-minutes 
Passivation Time. 

  

Passivating with the stronger nitric acid solution (HNO3/H2O, 1:1) again reveals pitting and/or 

trenches of roughly 0.5 – 1.5µm deep with a relatively smooth surface after 30-minutes of 

passivation (Figure 28), similar to that of the weaker strength nitric acid (Figure 27).  Although 

the raised areas appear to have smoother edges as opposed to sharp edges, possibly indicating 

a further etching of the surface over that of the weaker strength nitric acid passivation.  

However, the surface of the titanium discs passivated with HNO3/H2O (1:1) after 1 and 2-hours 

of passivation (Figure 54 and Figure 55in the appendix sub chapter 8.1.1, respectively), shows a 

similar level of surface topography to that of the 30-minutes passivation, showing the inability 

of nitric acid to further etch the titanium surface beyond this time.  
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Figure 29 - 3D AFM Image of Titanium Alloy Surface Passivated with H2O2/HNO3 (1:1) Following 2-hours Passivation 
Time. Areas Circled in Green Indicate Circular Bumpy Nanotexture. 

 

The titanium surface passivated with the novel hydrogen peroxide/nitric acid mixture shows a 

relatively smoother and flatter surface than nitric acid passivation (Figure 29), with crevasses up 

to 1-1.5µm deep, but the bumpy texture that was previously seen when passivating with 

hydrogen peroxide is still visible, although the bumps are much less pronounced and flattened 

(bumpy texture circled in green on Figure 29).  The 3D AFM images for the titanium surfaces 

passivated with H2O2/HNO3 (1:1) following 30-minutes and 1-hour of passivation time, Figure 56 

and Figure 57 in Appendix sub chapter 8.1.1, show a surface topography similar to that 

passivated at 2-hours.  Furthermore, the circular bumpy nanotexture seen on the 2-hour 

passivation is also is also seen on the 30-minute and 1-hour passivation times however, the 

circular bumps are larger.  Perhaps more time is required to etch the surface and develop the 

circular bumpy nano surface structures.  
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3.3.4 AFM Spectral Graphs 
 

 

Figure 30 - AFM Spectral Graphs of Titanium Samples Passivated with HNO3/H2O (1:1) for A) 30-minutes B)1-hour 
and C) 2-hours Passivation Times 
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Figure 31 - AFM Spectral Graphs of Titanium Samples Passivated with HNO3/H2O2 (1:1) for A) 30-minutes B)1-hour 
and C) 2-hours Passivation Times 
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The previous two images (Figure 30 and Figure 31) are spectral graphs produced from AFM 

section images.  This type of graph shows the undulations of the surface (peaks and troughs) as 

the AFM tip scans over the sample at a measured length.  On samples passivated with the 

stronger nitric acid strength, the spectral graphs show a smooth line with micron sized peaks 

and troughs (Figure 30, smooth line circled in green).  However, for the samples passivated with 

the novel H2O2/HNO3 mixture, the line on the spectral graph shows nano sized peaks in a tight 

jagged pattern, indicating small peaks and troughs tightly packed together (Figure 31, rough line 

circled in green).  This could indicate a surface roughness at the nano level, possibly making up 

the nano bumpy texture previously seen on the SEM and AFM 3D images. 

The following AFM spectral image also indicates no nanoscale bumpy texture (smooth profile 

line) on the titanium alloy surface passivated with the weaker nitric acid solution, HNO3/H2O 

(3:7) (Figure 32, area circled in green). 

 

Figure 32 - Spectral Image and Graph from AFM of Titanium Alloy Surface Passivated with HNO3/H2O (3:7) Following 
30-minute Passivation. Area Circled in Green Shows Intimate Surface Profile (Peaks and Troughs), Revealing no 
Nanoscale Bumpy Texture. 
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3.3.5 Surface Roughness 
 

The most important parameters that are considered to characterise the topography of a surface 

are amplitude parameters.  These are used to measure vertical distances (peaks and valleys) of 

the surface deviations.  Ra is defined as the arithmetic mean of the profile height deviations 

from the mean line across one sampling length, and is one of the most popularised roughness 

parameters describing average roughness irregularities, being easy to measure and providing a 

good generalisation of the height deviations of a sample surface.  Though it does not give 

information regarding wavelength and is not sensitive to occasional profile changes.  Therefore, 

the roughness parameter Rq or RMS (Root Mean Squared) is often used in conjunction as it gives 

the standard deviation of the distribution heights, making it more sensitive to occasional highs 

and lows, whereas the Ra parameter averages all the peaks.  The final roughness parameter that 

was measured here is Rmax.  This parameter gives the vertical distance between the lowest 

valley and highest peak along a sampling length, and is thus very sensitive to high peaks or deep 

scratches (Gadelmawla et al., 2002). 

The aforementioned parameters are the most widely used, and functionally important, height 

parameters to assess the roughness profile of a material surface in two dimensions along a single 

sampling length; a lower value for each of these parameters indicates a smooth surface, while a 

higher value indicates a rough surface topography. 
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Table 4 - Surface Roughness Parameters of all Passivated Surfaces, including Raw Titanium Disc (as Measured by 
AFM). Roughness Parameters Measured Include Ra, Rmax and RMS. All Roughness Values Measured in nm. 

 

 Roughness Parameters 

Passivation Solution Ra (nm) Rmax (nm) RMS or Rq (nm) 

Raw Titanium Alloy (No Passivation) 28.0 401 38.5 

H2O2 30%wt, 24 hours 105 1026 147 

HNO3/H2O (3:7), 30 minutes 155 1374 198 

HNO3/H2O (1:1), 30 minutes 194 1330 236 

HNO3/H2O (1:1), 1 hour 93.8 1128 129 

HNO3/H2O (1:1), 2 hours 78.1 680 99.3 

H2O2/HNO3 (1:1), 30 minutes 75.3 763 90.3 

H2O2/HNO3 (1:1), 1 hour 64 629 83.3 

H2O2/HNO3 (1:1), 2 hours 81.5 979 104 



 
 

110 
 

 

Figure 33 - Surface roughness results for Raw and Passivated sample surfaces. Graph shows that titanium surfaces 
passivated with the novel hydrogen peroxide/nitric acid solution, to yield surface roughness at the nano scale. 

 

The surface roughness results (Table 4) show the H2O2/HNO3 solution following 1-hour 

passivation yielded the second lowest Ra value of 64 nm, after the raw titanium surface.  This 

passivation solution also gave the second lowest value for Rmax (629 nm).  Unlike the nitric acid 

passivation; which yields a smoother surface as the passivation time increases, the H2O2/HNO3 

solution increased the roughness of the surface with increasing passivation time from 1-hour to 

2-hours, indicating that it may further etch the titanium surface if given more time.  Passivating 

with H2O2 alone for 24-hours revealed that the average roughness of the surface lies at the nano 

scale boundary, with a Ra value of 105 nm and RMS of 147 nm (Table 4 and Figure 33), though 

passivating with the novel hydrogen peroxide/nitric acid solution provides a truly nano rough 

surface with Ra values less than 100 nm (for all three passivation times). 
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The higher concentration of HNO3 (1:1) yielded the roughest surface with a Ra value of 194 nm, 

which is in agreement with literature reports, such as that obtained by Mante et al. (2004) who 

reported an Ra value of 208.1 nm following HNO3 passivation in accordance with ASTM F 86-01 

protocol.  The novel passivation mixture H2O2/HNO3 yielded the smoothest surfaces (not 

including the raw sample), with Ra values of 75.3 nm, 64.0 nm and 81.5 nm following 30-

minutes, 1-hour and 2-hours passivation, respectively.  The H2O2 30%wt and HNO3 solutions all 

generated an average roughness greater than 100 nm (except the higher strength HNO3 (1:1) 

after 1 and 2-hour passivation).  Nano is defined as a length of 100 nm and below therefore, the 

H2O2 30%wt and HNO3 solutions yielded roughness levels that can be considered at the sub-

micron level, and the novel H2O2/HNO3 solution can be said to yield a nano rough surface on 

titanium. 

Disregarding the raw titanium surface, all titanium samples show Rmax values at the micron 

level, whereas the novel H2O2/HNO3 mixture provides a titanium surface with Rmax values at 

the sub-micron level.  Also, the Ra and Rq values for all samples are at the sub-micron level, but 

passivating the titanium surface with H2O2/HNO3 produces roughness values at the nano level.  

Thus, the novel passivating solution is the only mixture that produces both sub-micron and nano 

scale topographic features when passivating the titanium surface. 

Although many studies suggest that nano surface topography can enhance interactions 

between implant surfaces and cells, through the theory of biomimesis, micro surface 

topography has also been shown to achieve similar results.  By itself, RGD has been shown to 

increase cell attachment and proliferation (Ruoslahti and Pierschbacher, 1987, Ruoslahti, 

1996), including the attachment and proliferation of osteoblasts to tissue culture polystyrene 

(Dee et al., 1998, Schuler et al., 2006a, Schuler et al., 2006b). These studies suggested that 
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osteoblast differentiation was promoted by substrates that fostered reduced spreading like 

microstructured Ti (Boyan et al., 2001) and PLL-g-PEG (Tosatti et al., 2004). 

 

3.3.4 EDS 

 

Table 5 - EDS Elemental Analysis of Titanium Disc Surfaces Passivated with HNO3/H2O (3:7 and 1:1), and 
H2O2/HNO3. 

 Element Weight% 

Passivation 

Solution and 

Time 
Carbon Oxygen Aluminium Silicon Titanium Vanadium 

Raw Titanium 

Alloy (No 

Passivation) 
0.91 1.21 4.13 0.06 89.34 4.35 

HNO3/H2O (3:7) 

30-minutes 
0 0.38 4.03 - 91.33 4.25 

HNO3/H2O (1:1) 

30-minutes 
0.46 0.98 3.89 0.12 90.36 4.19 

HNO3/H2O (1:1) 

1-hour 
0.62 1.19 3.89 0.16 89.83 4.3 

HNO3/H2O (1:1) 

2-hours 
0.13 0.50 3.95 0.1 90.91 4.41 

H2O2/HNO3 

(1:1) 30-minutes 
0.53 2.13 4.14 - 89.91 3.3 

H2O2/HNO3 

(1:1) 1-hour 
0.6 2.32 4.03 - 89.49 3.57 

H2O2/HNO3 

(1:1) 2-hours 
0.6 2.44 4.03 - 89.45 3.48 
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Figure 34 - Doughnut graph showing the elemental oxygen weight% on Raw titanium and Passivated surfaces. 

 

EDX elemental analysis showed no distinct change in oxygen weight% between the two HNO3 

strengths, possibly indicating a similar extent of formation of a thin oxide coating.  Also, 

increasing the passivation time from 30-minutes through to 2-hours yielded no significant 

change in oxygen %weight for the higher strength HNO3. 

The EDX elemental analysis does reveal the hydrogen peroxide/nitric acid passivating mixture 

to increase the weight% of oxygen over all other passivating solutions.  This could indicate a 

highly oxidised titanium surface containing more TiO2 and/or TiOH groups.  Furthermore, 

passivating with hydrogen peroxide/nitric acid increased the surface oxygen weight% by an 

average of 171% (compared to all other sample surfaces), which correlates with the increased 

hydrophilicity of the titanium surface following this passivation treatment. 
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Rougher surfaces generally tend to show hydrophobicity due to frictional forces.  The passive 

oxide layer coating the titanium alloy is a major factor that dictates the wettability of the surface; 

containing hydroxyl groups in the outer oxide layer for hydrogen bonding with water.  A greater 

extent of oxide layer formation could render the titanium surface hydrophilic, and vice versa.  

The raw titanium surface therefore may have the thinnest oxide layer covering its surface, given 

that the vanadium portion of this titanium alloy generally yields corrosion resistance.  

Passivation treatment with hydrogen peroxide and/or nitric acid has the general effect of 

cleaning the metal surface from hydrocarbon contaminants.  The untreated raw titanium alloy 

surface therefore may have hydrocarbon contaminants, thus increasing its hydrophobicity. 

Passivation with H2O2 therefore produces both micro and nano surface features, both of which 

are conducive to differing cellular functions.  Literature reports suggest that micro rough 

surfaces improve cell attachment, spreading, and proliferation, while nano surface features have 

been shown to enhance cell differentiation, bone matrix protein production, and thus improved 

bone matrix mineralisation (Webster and Ejiofor, 2004, Ji et al., 2008, Davies, 1998, Lorenzetti 

et al., 2015), although many studies show conflicting results. 

As previously mentioned, the combination of H2O2 with an acid may enhance the oxidation 

effect of the passivating solution.  This is evidenced by the EDS elemental analysis (Table 5) 

which shows a greater amount of oxygen content on the titanium surface passivated with this 

novel mixture.  This indicates a greater level of oxidation of the titanium surface compared to 

that of the raw surface and even HNO3 passivation.  This passivation mixture may therefore 

increase the thickness of the oxide layer on the titanium surface.  The oxide layer is important 

for both compatibility of the surface, and the surfaces propensity to permit bone matrix 

mineralisation.  Literature reports suggest that the oxide layer on titanium directly reacts with 

calcium phosphate in simulated biological fluid (Pan et al., 1996, Moore et al., 2014).  On 
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exposure of the oxide layer to biological fluids, hydroxyl groups in the oxide layer can induce the 

spontaneous nucleation of apatite crystals (Hydroxyapatite) (Oates et al., 2011).  Furthermore, 

the native oxide layer found on the surface of titanium (and its alloys) formed via atmospheric 

oxidation or chemical passivation, is absolutely essential to its biocompatibility, as well as 

enhanced osseointegration of titanium implants and achieving a dynamic bone-implant 

interface (Mandracci et al., 2016). 

Numerous studies in the literature have shown that titanium surface properties, such as 

roughness and topography, can influence cellular morphology and cell surface guidance 

(Manjaiah and Laubscher, 2017).  Knowledge from the literature tells us that a smoother surface 

is better for cell support in terms of cell attachment and spreading.  Conversely, a rougher 

surface induces cell differentiation.  Some reports suggest that a substrate surface that better 

resembles the natural ECM environment of the cells will lead to a better cell response (otherwise 

known as a biomimetic surface), thus speculating at the advantageous effects of topographical 

surfaces at the nano level. 
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4 Hyperbranched Polyglycerol Polymerisation (HBPG) 

The aim of this portion of the research was to covalently attach polyglycerol (PG) to the 

titanium alloy surface.  Research in the literature has revealed surface initiated polymerisation 

via atom transfer radical polymerisation of other polymers to silica and aluminium surfaces, 

but this research utilised a simpler polymerisation scheme, whereby Hyperbranched 

Polyglycerol (HBPG) was polymerised from a titanium alloy surface via Ring Opening Multi 

Branching Polymerisation (ROMBP). 

HBPG was chosen in this research due to its extremely low in vivo toxicity and biocompatibility.  

The literature has shown HBPG to accumulate in vital organs very minimally, even less so than 

other polymers that are currently in use for various biomedical applications, and has been 

found to be non-immunogenic (Abbina et al., 2017).  Thus, it has been researched actively by 

the scientific community in areas such as pharmaceutical carries and controlled drug delivery, 

cell supportive tissue engineering scaffolds, dialysis, organ preservation, and cell surface 

engineering, as imaging agents and theranostics, as well as antibacterial/antifouling agents 

(Abbina et al., 2017). 

The polymerisation protocol here uses a base catalysed ROMBP of glycidol, and was adapted 

from the protocol presented by Sunder and colleagues (1999) and also Kainthan et al. (2006).  

Although PG is polymerised from a multifunctional core molecule in this work the titanium 

surface, which bares many hydroxyl groups, acted as the functional core from which 

polymerisation proceeds, effectively producing HBPG covalently attached to the titanium 

surface.  The following scheme provides an overview of the polymerisation reaction between 

the titanium surface and the glycidol monomer (Scheme 5), although a more in-depth reaction 

scheme was shown in sub chapter 2.4.2 (Scheme 1 and Scheme 2). 
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Scheme 5 - Reaction scheme for polymerisation of Hyperbranched Polyglycerol (HBPG) from the titanium surface. 
Reaction proceeds via base catalysis using potassium methylate to activate hydroxyl groups on titanium, followed by 
addition of glycidol monomer to initiate and propagate chain growth (adapted from Sunder et al. (1999). 
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Passivation testing revealed the novel H2O2/HNO3 (2-hour passivation) solution to produce a 

highly oxidised surface (high wettability) with nano surface features, therefore this passivation 

procedure was utilised for the Passivated and Passivated/Polymerised sample titanium discs 

for further experiments.  Surfaces were analysed for contact angle using the sessile drop 

technique, imaged and profiled via ESEM, AFM, and a surface elemental analysis carried out 

using EDX.  Before samples were analysed with ESEM, they were gold sputtered, and then 

imaged using the following parameters: Accelerating Voltage 2kV, Working Distance 57mm, 

Probe Diameter Spot Magnification.  Analysis using AFM was conducted in contact mode with 

a silicon nitride probe.  Due to time constraints and no access to suitable equipment, the 

strength of polymer adhesion could not be measured.  This is an important aspect for 

orthopaedic implants, as the polymeric coating would need to withstand storage, delivery, 

handling and implantation into the host bone. 

 

4.1 Materials and Methods 
 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; Potassium Methoxide ~25% in 

methanol (60402 Sigma Aldrich); Glycidol 96% (G5809 Sigma Aldrich); 1,4-Dioxane, 

ReagentPlus ≥99% (D201863 Sigma); single syringe infusion pump, Cole Palmer (Cranfield 

Health); hot plate magnetic stirrer, IKA C-MAG HS7 (Cranfield Health); CamLab Choice OS20-S 

LED digital overhead stirrer (DL/840102318888 CamLab Limited); Acetone ACS Reagent ≥99.5% 

(Sigma); triple filtered ultra-pure deionised water, Millipore (Cranfield Health); Environmental 

Scanning Electron Microscope (ESEM), FEI XL30 (Cranfield School of Applied Science (SAS)); 

Energy Dispersive X-ray Fluorescence (EDXF), Bruker S2 Ranger (Cranfield SAS); Atomic Force 

Microscope (AFM), Digital Instruments (Veeco) Nanoman VS  (Cranfield SAS). 
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Ring Opening Multi-Branching Polymerisation (ROMBP) of HBPG 

10 titanium discs were placed in the glass vessel, which was purged with argon gas, and placed 

in a silicon oil bath at 85 degrees Celsius (reflux with gas bubbler attached).  Approximately 

300µl of potassium methylate 30%wt (in ethanol) was dropped onto each disc over a period of 

5 minutes, and left to react for 2 hours to deprotonate the hydroxyl groups on the titanium 

surface.  After the 2 hours had elapsed, a pump was connected to the vessel to create a 

vacuum for 30 minutes, the aim of which was to ensure complete removal of the methanol in 

the base solution.  This was followed by injection of a mixture of 30ml glycidol monomer (3ml 

per titanium disc) and 10ml of dioxane over 12 hours, and mixing of the monomer solution in 

the vessel using a mechanical stirrer at 200rpm. 

HBPG is usually synthesised without any solvent addition, however when attempting to 

synthesise higher molecular weight PG, the subsequent increase in viscosity requires an inert 

solvent to aid mixing.  Although diglyme solvent can be added, dioxane was shown to yield 

higher molecular weight HBPG (KAINTHAN et al., 2006).  Also, an undesired side-reaction can 

lead to the production of cyclised by-products known as macrocyclics.  Addition of the glycidol 

monomer slowly over a period of 12 hours suppresses this side reaction (Slow Monomer 

Addition – SMA), which leads to a faster polymer chain propagation reaction, and also narrow 

polydispersity (KAINTHAN et al., 2006, Sunder et al., 1999). 

Upon completion of the polymerisation, the titanium discs were removed from the vessel and 

rinsed 3 times in deionised water to remove any low molecular weight entangled polymer 

chains.  Any polymer covering the underside of the discs was carefully scraped away to ensure 

only the top surface of the disc was covered with polymer.  The polymerised discs were very 

briefly rinsed in acetone and then dried in a stream of nitrogen gas, then stored dry in a 

desiccator. 
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4.2 HBPG Polymerisation Results and Discussion 

 

 

Figure 35 - Photo of Passivated/Polymerised Titanium Alloy Disc. Titanium Disc Passivated with H2O2/HNO3 (1:1) 2-
hours Passivation. Polymer Layer is approx. 0.7-0.8mm in Thickness, compared to the 1mm Thick Titanium Disc. 
Polymer is Highly Viscous, Clear and Transparent, Indicating Hyperbranched Structure. 

 

The colour and form of polyglycerol (PG) is a good indicator as to whether the polymerisation 

has yielded a hyperbranched structure, specifically a viscous and transparent polymer is 

formed.  If the polymer does not polymerise into a hyperbranched structure it becomes more 

free flowing, or if it contains undesired cyclised polymeric constituents its colour changes to 

yellow and its form changes to a waxy-like texture.  In this research the polymer yielded was 

completely transparent with a highly viscous form, indicating a hyperbranched structure of PG 

(HBPG) (Figure 35). 
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4.2.1 Contact Angle 

Table 6 - Contact angle results for Raw, Raw/Polymerised, Passivated, and Passivated/Polymerised sample surfaces. 
Passivated samples are passivated using the novel H2O2/HNO3 solution for 2-hours passivation time. Confidence 
intervals calculated at 95% significance level. 

 Titanium Disc Sample Surfaces and Contact Angles (Degrees °) 

 
Raw (No 

Passivation/No 
Polymerisation) 

Raw/ 
Polymerised 

Passivated 
Passivated/ 
Polymerised 

Disc 1 80.72 49.18 30.76 34.13 

Disc 2 82.56 56.51 38.43 43.45 

Disc 3 64.71 46.02 36.87 44.99 

Mean 76.00 50.57 35.35 40.86 

95% 
Confidence 
Interval 

11.11 6.09 4.59 6.65 

Standard 
Deviation 

9.82 5.38 4.05 5.88 
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Figure 36 – Contact angle results graph for Raw, Raw/Polymerised, Passivated and Passivated/Polymerised titanium 
surfaces. Passivated and Passivated/Polymerised samples were passivated using H2O2/HNO3 for 2-hours. Error bars 
calculated at 95% significance level (P=0.05). 

 

Polymerisation of the Raw and Passivated titanium disc samples dramatically reduced the 

contact angle on these surfaces.  The contact angle of the Raw disc was reduced by 33.5% after 

polymerisation however, the contact angle increased slightly when the Passivated surface was 

polymerised.  Although ANOVA and Tukey Kramer analysis revealed no significant difference 

between the Passivated disc and the Passivated/Polymerised surface.  The same analysis also 

showed no significant difference between the Raw/Polymerised, Passivated, and 

Passivated/Polymerised discs.  ANOVA and Tukey-Kramer statistical analyses only revealed 

that the Raw surface was significantly different from the other three sample surfaces 

(Raw/Polymerised, Passivated, and Passivated/Polymerised) (see sub chapter 8.3.2 page 213). 
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The significantly reduced contact angle of the Raw/Polymerised surface over the Raw disc 

confirms the extreme hydrophilicity imparted by HBPG on the titanium surface.  Such 

hydrophilic surfaces are known to reduce non-specific protein adsorption, with the effect of 

preventing undesired cell-biomaterial interactions that may produce immunogenic actions 

leading to implant rejection.  This is known as the ‘stealth effect’ similar to polyethylene glycol 

(PEG) polymers.  The hydrophilic character of the implant surface is also known to aid cell 

attachment and spreading, and thus may improve such desired cell-biomaterial interactions. 

 

4.2.2 ESEM Images of Polymerised Titanium Surfaces 
  

 

Figure 37 – Scanning Electron Microscope Images of Raw/Polymerised Titanium Alloy Surface. A) 5k, B) 10k, and C) 
25k Magnifications (Scale Bars at 5, 2, and 1µm, Respectively). 
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Figure 38 – Scanning Electron Microscope Images of Passivated/Polymerised Sample. Titanium Surface Passivated 
with H2O2/HNO3 for 2-hours. A) 5k, B) 10k, and C) 25k Magnification (Scale Bars at 5, 2, and 1µm, Respectively). 

 

SEM images (Figure 37 and Figure 38) reveal the presence of the polymer layer; the 

Raw/Polymerised surface showing what appears to be small globular-like polymer structures, 

with those globular structures being larger in size on the Passivated/Polymerised disc.  The 

larger polymer structures seen on the Passivated/Polymerised disc surface could indicate 

higher molecular weight HBPG, or a greater amount of polymer synthesised on this surface, 

than on the Raw/Polymerised disc.  This is likely due to the increased number of hydroxyl 

groups on the disc surface; active sites from which HBPG begins polymerising. 
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4.2.3 AFM 3D Images of Polymerised Titanium Surfaces 

 

 

Figure 39 - 3D AFM Image of Raw/Polymerised Titanium Alloy Surface. 

 

 

Figure 40 - 3D AFM Image of Passivated/Polymerised Titanium Alloy Surface. Titanium Disc Passivated with 
H2O2/HNO3 (1:1) at 2-hours Passivation. 
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The AFM 3D images (Figure 39, Figure 40) show that polymerisation of the titanium surface 

yielded an increased number of topographical features, indicated by the highly irregular and 

bumpy surface texture.  This was evident on both the Raw/Polymerised and 

Passivated/Polymerised surfaces.  The presence of many of these peaks and troughs are 

important as the scientific literature informs us that focal adhesions between the cell and 

biomaterial surface may reside in cracks below the surface for cell anchorage.  Furthermore, 

the AFM 3D images show the Passivated/Polymerised surface to contain much larger peaks 

than the Raw/Polymerised sample.  Similar to the SEM images, this could also indicate more 

polymer at the surface which may have a higher molecular weight. 

 

4.2.4 Surface Roughness Results and Discussion 
 

Table 7 - Surface Roughness Parameters of Raw/Polymerised and Passivated/Polymerised Titanium Alloy Disc 
Surfaces (as Measured by AFM). (mean of 3 discs per group). 

 Roughness Parameters 

 Ra (nm) Rmax (nm) Rq (RMS) (nm) 

Raw (No 
Passivation/No 
Polymerisation) 

28.0 401 38.5 

Raw Titanium Alloy 
Polymerised 

34.7 597 46.7 

H2O2/HNO3 (1:1) 2 
hours Passivation 

81.5 979 104 

H2O2/HNO3 (1:1) 2 
hours Passivation 
and Polymerised 

58.5 644 73.9 
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Figure 41 - Roughness Parameter Rq results graph for Raw, Raw/Polymerised, Passivated and 
Passivated/Polymerised samples. Passivated Titanium Disc samples passivated with H2O2/HNO3 (1:1) at 2-hours 
Passivation. 

 

 

The AFM result shows that polymerisation of the Raw titanium surface increases the surface 

roughness from an Ra value of 28nm to 34.7nm, though this result may not be significant.  

Polymerising the Raw surface does not seem to alter the topography significantly.  This change 

in roughness is reversed for the passivated disc, with an Ra value of 81.5 nm and 58.5 nm pre- 

and post-polymerisation respectively.  Perhaps the cracks and pits on the surface of the 

passivated disc became filled with HBPG after polymerisation, leading to a smoother surface.  

Or perhaps as the disc was passivated, there could be an even spread of active hydroxyl groups 

on the surface.  This may have led to polymerisation of the surface evenly, giving rise to similar 

amounts of polymer across the surface, hence the lower mean roughness.   Although the Ra 
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value for the Raw/Polymerised surfaces is still less than 100nm (as well as the 

Passivated/Polymerised disc), indicating that both surfaces may have nano and sub-micron 

topographical features. 

 

4.2.4 EDS Elemental Analysis of Polymerised Titanium Surfaces 

 

Table 8 - Elemental Analysis of Titanium Alloy Disc Surface. Samples Analysed Include Raw, Raw/Polymerised, 
Passivated, and Passivated/Polymerised. (mean of 3 discs per group). 

 Element Weight% 

 C O Al Ti V 

Raw Disc 3.76 15.16 3.32 66.61 2.92 

Raw Disc Polymerised 4.75 23.95 2.71 58.87 2.47 

H2O2/HNO3 (1:1) 2 hours Passivated Disc 2.89 25.17 3.11 59.67 2.46 

H2O2/HNO3 (1:1) 2 hours Passivated and Polymerised 5.28 30.79 2.16 54.65 2.16 
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The EDS analysis also provides evidence to the presence of the polymer layer formed on the 

titanium surface, with an increased content of carbon and oxygen on the titanium surface after 

polymerisation.  The EDS results agree with the SEM and AFM results in that polymerisation on 

the hydrogen peroxide/nitric acid passivated surface perhaps yielded more polymer at a higher 

molecular weight, evident here by the increased oxygen weight% which is 28.6% higher than 

the Raw/Polymerised sample.  This could indicate a greater amount of polymer and/or greater 

extent of polymerisation, yielding higher molecular weight HBPG with more branching units 

and thus more hydroxyl groups.  It is clearly evident that subsequent polymerisation, following 

passivation with H2O2/HNO3 (2-hour passivation), yielded a greater amount of polymer on the 

titanium surface with nano-scale roughness.  This may be due to the increased number of 
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active hydroxyl groups on the passivated surface, therefore more polymerisation initiation 

sites. 

Polymerising HBPG from the titanium surface is an important aspect of this research, not only 

to enable functionalisation of the titanium with the RGD peptide, but also to function as a 

tissue engineering scaffold to support cellular infiltration and growth.  Furthermore, the HBPG 

acts to enhance the hydrophilic nature of the titanium surface, thus limiting non-specific 

protein adsorption. 
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5 RGD Peptide Immobilisation 

The RGD peptide motif has been extensively researched in the last decade or so, and has 

shown great promise for the use of enhancing bone formation around orthopaedic implants.  

The tri-peptide sequence is natively found in ECM bone proteins where it activates the integrin 

transmembrane receptor to induce cell-cell and cell-matrix adhesions.  When found free-

flowing in the serum it causes apoptosis of cells that bind it.  Conversely when immobilised on 

a surface, osteoblasts (as well as other cell types) initiate cellular adhesion to the surface 

presenting the RGD signal; thus, there are no concerns regarding ectopic bone formation 

resulting from the immobilised peptide.  Although the RGD peptide is not currently in clinical 

use for enhancing osseointegration of orthopaedic implants, understanding of the RGD-

Integrin receptor binding has led to the development of anti-clotting drugs.  Also, for the last 

few years RGD coated ECM mimetic tissue culture plates have been available, supporting the 

attachment of specific cell types, or to restrict differentiation of pluripotent stem cells.  

Furthermore, the RGD peptide is being trialled as a target for the delivery of anti-cancer 

therapeutics and diagnosis, as well as for the monitoring of treatment responses of anti-

angiogenic therapies to tumours.  

At present there are many studies researching the use of bone proteins such as BMPs with 

similar clinical outcomes (Haimov et al., 2017, Hyzy et al., 2017).  Although these proteins and 

growth factors need to be released from the implant surface coating in a controlled manner, 

and if they creep into systemic circulation there is the possibility of these biomolecules 

interacting with cells away from the implant site, resulting in ectopic bone formation for 

example.  Other issues include, but are not limited to, increased cost of sourcing the protein 

and immunogenic interactions, thus highlighting the importance polymerised titanium surface, 

the polymer of which is also covalently attached to the titanium surface, has been attempted.  
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The decision to use the cyclic RGDfc peptide specifically is because it has very high affinity to 

the αvβ3 integrin heterodimer and when activated, enhance cell adhesion and proliferation of 

osteoblast cells.  The majority of research in the literature has focused on the covalent 

attachment of RGD to a biocompatible polymer, and the subsequently binding of that polymer 

onto a titanium surface via electrostatic adsorption.  This type of ligand attachment to a 

surface is more characteristic of passive attachment.  Although there has been an influx of new 

research over the last few years, in which the RGD peptide is covalently attached to a polymer 

that is polymerised directly from the titanium surface, covalently immobilising the ligand to 

the implant surface.  In this work however, a polymerised titanium surface (covalently bonded 

HBPG) was covered with a silane layer, after which RGD was chemically grafted through fast 

carbodiimide coupling chemistry. 

Passive coating of RGD can improve cell proliferation and decrease time to confluence, though 

lower mineralisation rates have been obtained in contrast to chemically grafted RGD (REZANIA 

and HEALY, 2000).  Also techniques that use physical adsorption require much larger quantities 

of the biomolecule, and that may become denatured or leach into surrounding tissue causing 

undesired effects away from the implant site (Rezania and Healy, 1999, Nanci et al., 1998).  

Biomolecules that are covalently attached to a surface may provide a chemically stable surface 

with more aligned biomolecules for optimum biological efficacy (MANTE et al., 2004).  

Research has shown that a certain concentration of attached RGD peptide is required to elicit a 

biological response from surrounding cells. 
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5.1 Materials and Methods 
 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; cyclo-RGDfc (cyclo-Arginine-

Aspartic Acid-D-Phyenylalanine-Lysine-Cysteine) peptide (H-7226, Bachem UK Ltd); Acetone 

ACS Reagent ≥99.5% (Sigma); Dichloromethane (DCM) Anhydrous ≥99.8% (Provided by 

Cranfield Health); triple filtered ultra-pure deionised water, Millipore (Cranfield Health); 1,4-

Butanediol diglycidyl ether (Diepoxide) (220892, Sigma); Carbonate-Bicarbonate buffer 

capsules, pH9.6 (C3041, Sigma); Fluoresceine 5(6)-isothiocyanate (FITC) (F3651, Sigma); 

Dimethyl Sulfoxide (DMSO), anhydrous (276855, Sigma); PD Miditrap G-10 by GE Healthcare; 

BCA protein assay (Thermo Fisher Scientific); 3-Aminopropyl Triethoxysilane (APTES); Ethanol, 

anhydrous ≤0.003% water (Sigma); 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) 

(Cranfield Health) ; N-Hydroxysuccinimide (NHS) (Cranfield Health); Confocal Laser Scanning 

Microscope (CLSM), Zeiss LSM510 Meta (Cranfield SAS). 

 

5.1.1 Fluorescent Tagging of the RGD Peptide and its Filtration 
 

Before the RGD peptide could be immobilised onto the titanium samples it was fluorescently 

tagged with a dye molecule, allowing the peptide to be viewed by fluorescence microscopy. 

The dye molecule used to tag the RGD, Fluorescein Isothiocyanate (FITC), is a fluorescein dye 

conjugated with Isothiocyanate, a reactive group with the nomenclature –N=C=S, at one of the 

two hydrogen atoms on the ring structure.  The dye molecule is highly reactive towards 

primary amines, as well as other nucleophiles on peptides, proteins and many other 

biomolecules.  FITC has excitation/emission wavelengths of 494/520nm enabling it to emit 

green light in the visible spectrum, and therefore allowing visualisation using fluorescence 
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microscopy.  Analysis of sample surfaces was conducted using a Confocal Laser Scanning 

Microscope (CLSM) for the fluorescently-tagged RGD. 

 

Fluorescent Tagging of the RGD Peptide and Filtration Protocol 

A 2mg/ml solution of RGD was prepared in a pH9 carbonate-bicarbonate buffer, and a 2mg/ml 

solution of FITC was prepared in anhydrous DMSO.  The solutions were mixed in a 3:1 molar 

ratio of FITC to RGD and covered with foil.  The 3:1 molar ratio of dye to peptide is the 

minimum standard used to fluorescently tag proteins and peptides, since roughly a third of the 

dye molecules conjugate, thus ensuring the highest conjugation efficiency possible.  Although 

higher molar ratios can be used, ratios greater than 6:1 can result in unspecific over labelling 

and thus wastage.  Similarly, a peptide concentration of 2mg/ml is also the minimum standard 

necessary as the reaction kinetics are heavily concentration dependent.  A peptide 

concentration below this would require extensive time for dye-peptide conjugation.  This 

protocol was adapted from the book Bioconjugate Techniques Third Edition (Hermanson, 

2013). 

The reaction mixture was incubated at room temperature in an incubator shaker with an 

orbital rotation speed of 40rpm for 6 hours.  The fluorescently tagged RGD solution was then 

filtered using gravity filtration to remove unreacted dye molecules.  Filtration was achieved 

using PD Miditrap G-10 by GE Healthcare.  These disposable columns are prepacked with 5.3ml 

of Sephadex G-10 gel filtration medium for sample clean-up of small proteins and peptides.  

The filtration was carried out as per the manufacturer instructions, and using carbonate-

bicarbonate buffer at pH9 as the equilibration buffer, although the filtration was completed 

twice.  This was to ensure complete removal of the unbound FITC, as the molecular weight of 
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the FITC-RGD conjugate is very close to the molecular weight cut-off of the Sephadex G-10 

medium.  Molecular weight of the peptide-FITC conjugate is approximately 968 g/mol, while 

the exclusion cut-off limit for Sephadex G-10 is approximately 700 g/mol.  Therefore, the 

fluorescently tagged peptide would be eluted first, followed closely by the untagged peptide 

(molecular weight 578.7 g/mol), and finally the fluorescent molecule (molecular weight 389.3 

g/mol), as species with a molecular weight lower than the cut-off (the untagged peptide and 

the FITC molecules) would enter the pores of the sephadex medium slowing down their 

elution. 

Briefly, the filtration medium was resuspended and the column storage solution eluted, 

followed by column equilibration.  1 ml of sample (fluorescently-tagged RGD peptide) was 

added to the column and allowed to enter the packed bed.  0.7 ml of equilibration buffer 

(stacker volume) was also added and again allowed to enter the packed bed completely.  Up to 

this point any flow-through was discarded.  The sample was then eluted with 4ml of buffer and 

the eluate collected in 0.25 µl fractions in centrifuge tubes.  The collected fractions were first 

analysed with a UV light to fluoresce the FITC dye, thereby gauging which fractions held the 

highest concentration of FITC and therefore RGD peptide.  This constituted the first elution 

profile in which each fraction was analysed for peptide content using a BCA protein assay 

(Thermo Fisher Scientific). 

Analysis of the elution profile revealed the speed with which the peptide was released from 

the column, and hence the volume of equilibration buffer in which the peptide would be 

eluted.  A second elution profile was carried out (second filtration) and again analysed for 

peptide content, although the eluted sample was collected in 500 µl fractions, speeding up the 

peptide recovery.  Using the parameters by which the fluorescently-tagged peptide could be 

eluted, the complete FITC-RGD mixture was subsequently double-filtered.  Exposing the eluted 
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fractions to UV light indicated that the first filtration was showing signs that unbound FITC 

molecules may have been eluted with the FITC-tagged peptide, as all fractions had a strong 

green fluorescence from FITC.  A second filtration was carried out in order to completely 

remove any unbound dye molecules, thus a high degree of confidence that all unbound FITC 

and unbound RGD were removed. 

 

5.1.2 Silanisation 
 

Silanisation of an inorganic/organic surface provides functional groups for the attachment of 

biological species to that surface.  Many silanisation solutions exist which differ in the number 

of functional groups available, and the length of the silane molecule (Error! Reference source 

not found.). 

 

 

Figure 42 - General structure of an Organofunctional Silane molecule. R group represents an organic functional 
group such as amine, vinyl, or epoxide. The X group is usually methoxy or ethoxy (Arkles, 1977). 

 

The silane chemical 3-Aminopropyl Triethoxysilane (APTES) was utilised.  Consisting of one 

active functional group for biomolecule immobilisation, a highly reactable amine, and three 
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ethoxide groups for attachment to the substrate surface, it represents one of the more simpler 

and easier to use siloxanes. 

The silanisation reaction is a very simple one; generally, the substrate surface is exposed to the 

silane solution for some time, ranging from minutes to hours (depending on the number of 

silane layers required, and the propensity of the substrate surface to form silane layers) (Error! 

Reference source not found.).  The silane molecules self-assemble and form hydrogen bonds 

with chemical species on the substrate surface, thus forming a silane layer (or multiple 

monolayers) (Error! Reference source not found., A).  The silane layer is then cured, either at 

room temperature overnight or at elevated temperatures of around 80 to 100°C for some 

minutes.  This dehydrates the bonding between the silane and substrate, forming covalent 

bonds (Error! Reference source not found., B).  The now silanised surface contains highly 

reactable functional groups for biomolecule conjugation, in this case primary amine groups. 

 

Scheme 6 - Reaction Scheme for A) Hydrolysis of Silane to the Reactive Silanol and B) Subsequent Condensation 
Silanol to the Siloxane Monolayer (Arkles, 1977). 

 



 
 

138 
 

 

 

Scheme 7 - Reaction Scheme for A) Hydrogen Bonding of Siloxane Monolayer to Hydroxyl Groups on Substrate 
Surface and B) Covalent Bond Formation between Siloxane Monolayer and Substrate Surface After Temperature 
Curing (Arkles, 1977). 

 

In this research silanisation of the polymerised titanium surface was attempted.  It was 

theorised that the abundant hydroxyl groups on the polymer could provide hydrogen bonding 
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sites for the silane molecules to attach.  The silanised layer would then provide amine groups 

for further biomolecule conjugation, namely the RGD peptide. 

 

Silanisation Protocol 

Pre-frozen polymerised discs (-80°C) were submerged in a 20% silane solution (APTES in 95% 

ethanol/5% water) in an ice bath and left to react for 15 minutes.  Only enough silane solution 

was prepared so that the surface of the polymerised discs was completely submerged 

(approximately 5ml of silane solution per disc).  After formation of the silane layer, the discs 

were rinsed in ethanol (in an ice bath) for 5 minutes, and then cured at room temperature for 

24 hours before being stored dry in a desiccator (Protocol adapted from (Arkles, 2014)).  By 

conducting the silanisation in an ice bath, it ensured that the polymer form remained a glassy 

solid (lower temperature than the glass transition temperature of the polymer), allowing the 

silane layer to be formed with minimal polymer dissolution/degradation.  Also, curing the 

silane layer at room temperature prevented melting of the polymer to a free-flowing liquid. 

 

5.1.3 RGD Coupling via Carbodiimide Chemistry 

Carbodiimides are cross-linking molecules containing the functional group RN=C=NR.  For the 

purposes of synthetic organic chemistry, carbodiimides are most notably used to activate 

carboxylic acids to produce amide bond formations when coupled with a primary amine 

(Mattson et al., 1993).  They are sometimes referred to as ‘zero-length’ cross-linking agents as 

they do not introduce any additional chemical structures amidst the conjugating molecules. 
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The chemical reaction of carbodiimides generally begins as a proton transfer from a carboxylic 

acid to the carbodiimides basic nitrogen, and subsequent addition of the carboxylate yields an 

O-acylisourea (Khorana, 1953, Bellucci and Volonterio, 2012), a highly reactive acylating ester 

intermediate species that is unstable.  This intermediate can then react with a nucleophile, 

such as a primary amine, and form an amide bond and a urea by-product (Porte-Durrieu et al., 

2004) (Scheme 8).  The O-acylisourea intermediate may react with other nucleophiles, such as 

sulfhydryl groups and form a thioester bond, although these are less stable and therefore 

uncommon. 
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Scheme 8 - Reaction Mechanism Scheme for the Conjugation of a Carboxylic Acid with a Primary Amine to Yield an 
Amide Bond, Using EDC as a Fast Coupling Carbodiimide (Bellucci and Volonterio, 2012). 

 

The formation of an amide bond using a carbodiimide cross-linker is straightforward, however 

certain side-reactions can occur which produce either the required product or an undesired 

one.  One of the side reactions that can occur is hydrolysis of the active ester intermediate.  In 

the presence of water, the oxygen atoms may act as the attacking nucleophile, thus hydrolysis 

by water is a strong competing reaction leading to inactivation of the carbodiimide, cleaving 

off the ester intermediate and producing an isourea and reforming the carboxylic acid.  

Another side-reaction, although less detrimental, is the reaction of the O-acylisourea 
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intermediate with another carboxylate to form an acid anhydride (Scheme 9, B) (Hermanson, 

2013).  This side reaction is less worrisome as the acid anhydride can further react to yield the 

desired amide bond, albeit with less efficiency.  If the carboxylic acid is in excess, the acid 

anhydride pathway will predominate, but if it is equimolar with the carbodiimide, then the 

reaction will proceed via the O-acylisourea pathway (WILLIAMS and IBRAHIM, 1981). 

The main undesired side reaction is the intramolecular acyl transfer, or rearrangement, of the 

O-acylisourea intermediate to the stable N-acylurea, sometimes referred to as the O-N shift 

(Scheme 9, A) (Bellucci and Volonterio, 2012).  The stable N-acylurea prevents any further 

reaction, although this undesired pathway predominates in long reaction times such as in solid 

phase peptide synthesis (Hermanson, 2013). 
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Scheme 9 - Reaction Mechanism Schemes Showing Major Side Reactions of the EDC Carbodiimide Coupling.  A) 
Rearrangement of the O-acylisourea Intermediate to the Stable N-acylisourea (O-N shift) and B) Formation of Stable 
Amide Bond from Reaction of the Active Ester Intermediate with Carboxylic Acid (via Acid Anhydride) (Montalbetti 
and Falque, 2005) 
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Certain measures can be taken to keep side reactions to a minimum and increase conjugation 

efficiency, such as the possibility to stabilise the active ester intermediate with the addition of 

a hydroxylated amine such as N-Hydroxysuccinimide (NHS) or N-Hydroxybenzotriazole (HOBt), 

and as such is frequently included in such carbodiimide coupling reactions (Scheme 10).  When 

combined with NHS, carbodiimide couples NHS to the carboxylic acid, forming an NHS ester, 

the NHS therefore acting as a transfer agent.  The amine-reactive NHS ester is far more stable 

than the O-acylisourea in aqueous conditions, and affords more efficient coupling to amine 

groups under physiological pH (Mattson et al., 1993).   Furthermore, to prevent rearrangement 

and subsequent inactivation of the O-acylisourea (O-N shift), solvents with low dielectric 

constants are used in concert with NHS or HOBt that can minimise this side reaction, the most 

popular choices being chloroform or dichloromethane (DCM).  
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Scheme 10 - Reaction Mechanism Scheme for the EDC Carbodiimide Coupling, with Addition of NHS to form stable 
Amine-Reactive NHS Ester, and Subsequent Amide Bond Formation (Montalbetti and Falque, 2005) 
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Carbodiimide Coupling Protocol 

Coupling carbodiimide to carbonyl groups is predominantly favoured in reduced pH conditions 

at around pH 4-5.  An MES buffer is best used for this stage of the reaction however, the use of 

a buffering system in this work was avoided completely due to the high dissolution rate of the 

polymer in aqueous solutions.   Unlike other carbodiimides, such as dicyclohexylcarbodiimide 

(DCC), EDC can be used under mild conditions in solvents such as water, DMF, THF or DCM.  

Low coupling efficiencies arising from the omission of a buffer system can be compensated by 

increasing the EDC amount in the reaction. 

The solvent DCM was chosen for this experiment in order to prevent the O-N shift side 

reaction and subsequent inactivation of the O-acylisourea active intermediate.  Also, PG 

showed the highest stability in this solvent in terms of dissolution and polymer 

loss/degradation.  In efforts to further stabilise the polymer in DCM for longer periods, the 

experiment was conducted in an ice bath (similar to the silanisation reaction).  The decreased 

temperature ensured the polymer form was a glassy solid (as previously explained), thus 

reducing dissolution/degradation. 

30ml of DCM was poured into a large beaker and put on ice.  This volume of solvent was 

enough to ensure complete submersion of the titanium disc surfaces, but not so much as to 

dilute the reactants.  The titanium disc samples were then immersed in the DCM (titanium 

discs were pre-frozen at -80°C prior to use, ensuring glassy solid phase). 

Initial testing of the RGD coupling to the titanium discs revealed an extremely small amount of 

immobilised RGD (when viewed with Confocal Microscopy of the fluorescently tagged RGD).  

Therefore, the amount of RGD used was just 1mg per every 4 titanium discs to prevent 
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wastage of the costly peptide.  The amount of EDC used was a 10-molar excess over the 

amount of RGD, and the same number of moles of NHS was also used. 

EDC, NHS and RGD were dissolved separately in small beakers containing 5ml of DCM each.  

Dissolution testing revealed this volume of solvent was sufficient to dissolve the three 

substituents within 20 minutes.  Upon dissolution of the three components, the EDC solution 

was added to the RGD solution and left at room temperature to react for 5 minutes (with 

occasional swirling and protected from light).  After which the NHS solution was added and left 

to react for a further 10 minutes (again with occasional swirling).  The solution complex now 

containing all three substituents was pipetted into the large beaker containing the titanium 

discs immersed in DCM.  The reaction was run for up to 2.5 hours in an ice bath protected 

from light.  All beakers were covered with aluminium foil to protect the fluorescently tagged 

RGD from photo-bleaching. 

The reaction was stopped by removing the titanium discs from the beaker and rinsing 

thoroughly in deionised water (in ice bath) for 5 minutes, allowing any excess chemicals and 

the water-soluble by-product to be removed.  The titanium discs were flash dried with 

nitrogen gas and left in a desiccator at 4°C (refrigerated) until analysis.  Control samples were 

prepared in the same way, although no EDC or NHS was included in the reaction mixture.  The 

following reaction scheme outlines the interactions of the RGD peptide with EDC, NHS and the 

silane layer (Scheme 11). 
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Scheme 11 - RGD peptide and silane layer reaction scheme. Green circled areas indicate reacting groups. A) Reaction 
between carboxylic acid group on cyclo-RGDfc and EDC carbodiimide to yield O-Acylisourea active ester B) Reaction 
between O-Acylisourea active ester (of EDC and cyclo-RGDfc) and NHS to yield the NHS ester of cyclo-RGDfc C) 
Reaction of NHS ester of cyclo-RGDfc with silane layer (on Passivated/Polymerised titanium disc) to yield peptide 
bond formation. Chemical structures were drawn using Acelrys Draw software. Reaction scheme adapted from 
Montalbetti and Falque (2005). 
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5.2 RGD Immobilisation Results 

5.2.1 Fluorescent Tagging of the RGD Peptide and Filtration 
 

 

Figure 43 - Graph Showing the Elution Profile of FITC-Tagged RGD Peptide. Represents the 1st Filtration. Peptide is 
Eluted within the First 2.5ml of elution buffer. 
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Figure 44 - Graph Showing the Elution Profile of FITC-Tagged RGD Peptide. Represents the 2nd Filtration. Peptide is 
again Eluted within the First 2.5ml of elution buffer. 

 

The previous two figures (Figure 44 and Figure 44) show that the fluorescently tagged peptide 

was successfully filtered twice via gravity filtration, and recovered.  Through both filtration 

cycles, the fluorescently tagged peptide was recovered between 1.5 and 2.5 ml of elution 

buffer.  All other elution buffer volumes outside of this range were discarded.  UV light 

exposure to the collected peptide filtration fractions showed a faint green fluorescence, also 

indicating successful fluorescence tagging of RGD, although discarded fractions showed high 

fluorescence indicating low fluorescence tagging efficiency. 
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5.2.2 Confocal Microscope Images of RGD Immobilisation 

 

 

Figure 45 - Confocal Microscope Images of RGD Peptide Immobilisation on Control Discs A, C, E, G, I and K, and Fully-
Functionalised RGD (FF-RGD) Discs B, D, F, H, J, and L. Peptide Immobilised Using Carbodiimide Coupling. FF-RGD 
Discs are Passivated/Polymerised/Silanised/RGD Titanium Discs. Peptide immobilised after 30-minutes (A-D), 1-hour 
(E-H) and 1.5-hours (I-L) of Immobilisation Reaction Time. Peptide is Visible due to Green Fluorescence Emitted from 
FITC Tagging of Peptide (Scale Bars Represent 100 µm). 

 

The Confocal Microscope images give clear indication that the FITC-tagged RGD peptide was 

immobilised on the polymer surface of the titanium discs (Error! Reference source not found. 

B, D, F, H, J, and L).  After each immobilisation time the control discs show virtually no RGD 

immobilised on the titanium disc surfaces (Error! Reference source not found., A, C, E, G, I, 

and K).  After 30-minutes there is some fluorescence from the peptide on the FF-RGD discs, 

although it is a very small amount of peptide (Error! Reference source not found., B and D).  

 



 
 

152 
 

Following 1-hour of immobilisation, the amount of RGD immobilised had increased (Error! 

Reference source not found., F and H), indicated by a larger area and intensity of the 

fluorescence signal which is directly proportional to the amount of peptide immobilised.  As 

the immobilisation reaction time increased to 1.5-hours, a sharp decline in the fluorescence 

signal could be seen, indicating very little RGD peptide immobilised (Error! Reference source 

not found., K and L).  After 2 and 2.5-hours of reaction time, the fluorescence signal from the 

sample discs was comparable to the controls (Figure 58 in the Appendix sub-chapter 8.2.1). 

It is entirely possible that the polymer layer had begun to dissolve/degrade after 1-hour.  

Dissolution of the polymer may have led to loss of the silane, and hence no immobilisation of 

the peptide.  Furthermore, as the peptide immobilisation reaction was conducted in a non-

aqueous environment, the hydrolytic instability of the silane layer would not have posed a 

problem here.  1-hour of peptide immobilisation using carbodiimide chemistry yielded the 

strongest fluorescence signal, indicating the most RGD bound to the polymerised titanium 

surface. 
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5.2.3 RGD Surface Area Analysis 
 

Table 9 - Immobilised RGD surface area. Surface area of green fluorescence on Confocal Microscope Images of RGD 
immobilisation. Surface area analysed on Fully Functionalised-RGD samples (FF-RGD) and Control samples. Surface 
area calculated using ImageJ microscopy analysis software. Surface area expressed as µm2. Confidence intervals 
calculated at 95% significance level (P=0.05). 

 

  RGD Surface Area (µm2) 

 
 

30-minutes RGD 
Immobilisation 

1-hour RGD 
Immobilisation 

1.5-hours RGD 
Immobilisation 

Control Disc 

Control Disc 1 1.62 30.03 142.03 

Control Disc 2 19.48 40.58 163.27 

Mean 10.55 35.31 152.65 

Standard 
Deviation 

12.63 7.46 15.02 

95% Confidence 
Interval 

17.50 10.34 20.81 

FF-RGD Disc 

FF-RGD Disc 1 3605.23 7638.99 3057.38 

FF-RGD Disc 2 3188.87 6798.96 2109.41 

Mean 3397.05 7218.98 2583.39 

Standard 
Deviation 

294.41 593.99 670.32 

95% Confidence 
Interval 

408.03 823.21 929.00 
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Figure 46 - Surface area of immobilised RGD. Surface area of green fluorescence from confocal microscope images of 
RGD immobilisation. Surface area calculated using ImageJ microscopy analysis software. Error bars indicate 
confidence intervals calculated at 95% significance level (P=0.05). 

 

Analysis of the confocal microscope images using image analysis software ImageJ, allowed the 

surface area of the green fluorescence signal to be calculated, making comparison between 

controls and samples easier (Table 9 and Figure 46).  Surface area analysis clearly shows that 1-

hour peptide immobilisation via carbodiimide coupling to yield the highest amount of attached 

RGD, with a 112.5% and 179.4% increase in immobilised peptide surface area compared to the 

30-minutes and 1.5-hours reaction times, respectively.  

As previously mentioned, the carbodiimide coupling reaction is optimally performed at a 

reduced pH of around 4-5.  This easily affords the carboxylate anion allowing the reaction to 

proceed much faster, usually in just a matter of minutes.  However, omission of a buffering 
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system undoubtedly reduces coupling efficiency.  It was thought that an aqueous buffer may 

dissolve/degrade the polymer layer on the titanium surface, hindering peptide conjugation 

altogether.  Although addition of NHS and DCM solvent may have reduced the dreaded O-N 

shift, and allowed even a very small amount of peptide to attach.  Also, utilising an excess of 

EDC and NHS may have bolstered the conjugation efficiency without the use of a buffering 

system, thus increasing the conjugation time from minutes to 1-hour. 
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6 Biological Investigation 

Bioassays were conducted to assess the biological efficacy of the immobilised RGD and 

passivated surface towards murine pre-osteoblast cells.  Raw, Passivated and Fully-

Functionalised RGD (FF-RGD) surface were analyses for cell detachment, cell attachment, cell 

proliferation, differentiation and mineralised bone matrix. While Raw, Raw/Polymerised, 

Passivated and Passivated/Polymerised samples were analysed for their anti-infective 

properties against Staphylococcus aureus and Escherichia coli.  Prior to any cell assay the 

titanium discs were sterilised with 70% isopropyl alcohol for 5 minutes, following by passive 

drying at room temperature. 

 

6.1 Culture of MC3T3-E1 Murine Osteoblast Cells 

6.1.1 Materials and Methods 
 

MC3T3-E1 mouse pre-osteoblast cell (Calvaria) (CRL-2593 LGC Standards, ATCC); T75 tissue 

culture treated flasks, Nunc (Cranfield Health); 24-well non-treated, round flat bottom, cell 

culture plates, Corning Costar (CLS3738 Sigma); α-Minimum Essential Media (MEM), 

nucleosides, no ascorbic acid, Gibco (A10490-01 Invitrogen, Thermo Scientific); Fetal Bovine 

Serum, qualified, US origin, Gibco (26140-079 Invitrogen, Thermo Scientific); Dulbecco’s 

Phosphate-Buffered Saline (DPBS) no calcium, no magnesium, Gibco (14190 Invitrogen, 

Thermo Scientific); Antibiotic/Antimycotic 100X, Gibco (15240-062 Invitrogen, Thermo 

Scientific); 0.25% Trypsin-EDTA (1X) phenol red, Gibco (25200 Invitrogen, Thermo Scientific);  

Dimethyl Sulfoxide (DMSO) sterile filtered (D2650 Sigma); Invitrogen Countess Automated Cell 
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Counter (Cranfield Health); Scanning Probe Microscope (SPM), Digital Instruments (Veeco) 

Nanoman VS (Cranfield SAS);  

 

Cell Culture Protocol 

The MC3T3-E1 Murine (Calvaria) pre-osteoblast cell line was used for the biological 

investigations.  The cell suspension was cultured according to protocols suggested by the 

supplier; cells were grown in α-Minimum Essential Media (MEM) cell culture medium, 

supplemented with 10% fetal bovine serum and 1% Antibiotic-Antimycotic solution to produce 

the complete growth medium.  Cells were incubated at 37°C in a 95% air/5% carbon dioxide 

atmosphere, and cultured in T75 tissue culture flasks through to passage 3 using a sub-

cultivation ratio of 1:6 (medium was renewed every 2 days). 

Cultured cells were then frozen at a cell concentration of 1 x 106 cells/ml in freezing medium 

(95% complete growth medium + 5% Dimethyl Sulfoxide (DMSO)) at -80°C for 24 hours, after 

which they were stored in liquid nitrogen vapour phase at -150°C.  The cells were frozen slowly 

down to -150°C to prevent ice crystal formation.  Prior to any cell assay, cells were thawed and 

re-cultured through to passage 5 before cell harvesting and seeding onto sample discs.  

Titanium discs were placed in 24 well plates for each cell assay before cell seeding.  The 

diameter of the wells for these 24 well plates was only just larger than that of the titanium 

discs, thus leaving no room for cells to attach to the underlying plastic surface of the cell 

plates. 

For the cell detachment, attachment and proliferation assays, cell concentrations were 

analysed using PrestoBlue cell viability reagent.  Containing a cell permeable resazurin-based 

solution, the reducing power of living cells converts resazurin into a highly fluorescent product, 
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changing the colour of the medium from deep purple/blue to pink/red.  The fluorescence of 

the samples was then assessed by way of a fluorescence plate reader set to the 

excitation/emission wavelengths of the fluorescent product (560nm/590nm respectively). 

 

6.2 Cell Detachment 
 

Cell detachment tests were conducted to assess the strength of cell adhesion to the sample 

surfaces following 24-hours of cell seeding.  Cell detachment tests are commonly performed by 

detaching the cells from the substrate, usually with 0.25% (w/v) Trypsin-EDTA enzyme 

solution.  Typically, 4-6 detachment cycles are performed in order to eventually remove all of 

the cells.  The strength of cell adhesion is inversely proportional to the number of cells 

detached, thus giving insight into which surface provides greater strength of cell adhesion. 

6.2.1 Materials and Methods 
 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; MC3T3-E1 mouse pre-osteoblast 

cell (Calvaria) (CRL-2593 LGC Standards, ATCC); 24-well non-treated, round flat bottom, cell 

culture plates, Corning Costar (CLS3738 Sigma); 96-well imaging plates, tissue culture treated, 

black, clear flat bottom, BD Falcon (353219 BD Biosciences); α-Minimum Essential Media 

(MEM), nucleosides, no ascorbic acid, Gibco (A10490-01 Invitrogen, Thermo Scientific); Fetal 

Bovine Serum, qualified, US origin, Gibco (26140-079 Invitrogen, Thermo Scientific); Dulbecco’s 

Phosphate-Buffered Saline (DPBS) no calcium, no magnesium, Gibco (14190 Invitrogen, 

Thermo Scientific); Antibiotic/Antimycotic 100X, Gibco (15240-062 Invitrogen, Thermo 

Scientific); 0.25% Trypsin-EDTA (1X) phenol red, Gibco (25200 Invitrogen, Thermo Scientific);  
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PrestoBlue cell proliferation reagent, (A-13261 Invitrogen, Thermo Scientific); Varioskan Flash 

Multimode Fluorescence Plate Reader (5250040 Thermo Scientific, provided by Cranfield 

Health); Invitrogen Countess Automated Cell Counter (Cranfield Health); Scanning Probe 

Microscope (SPM), Digital Instruments (Veeco) Nanoman VS (Cranfield SAS);  

 

Cell Detachment Protocol 

300,000 cells were first seeded onto each titanium disc placed in a 24 well plate, incubated for 

2 hours (to alloy cell adherence), after which 1ml of growth medium was added to each well 

and subsequently re-incubated for 24 hours.  Cells were detached using 0.25% Trypsin/EDTA 

enzyme solution.  Cell culture medium was removed from the wells to be analysed.  0.5ml of 

the enzyme solution was added to each well for investigation, and the cells incubated for 4 

minutes.  After incubation 1ml of complete growth medium was added to inhibit the enzyme 

solution and prevent further cell detachments, after which the cell suspension was removed 

and transferred to a second plate for analysis.  Complete growth medium was reintroduced 

into the sample wells and incubated for 15 minutes (allowing the remaining cells to re-attach). 

This constitutes the first detachment cycle.  Three further cell detachment cycles were 

conducted for 4, 7 and 10 minutes, giving a total detachment time of 25 minutes.  After 

gathering all cell detachment samples, 50µl of PrestoBlue cell viability reagent was added to 

each sample of detached cells, and subsequently analysed in a fluorescence microplate reader 

to estimate the concentration of detached cells using the PrestoBlue standard curve. 
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6.2.2 Results and Discussion 
 

Table 10 - Cell Detachment Assay Result Table for Raw, Passivated and FF-RGD Sample Surfaces (Assay Performed in 
Triplicate). Cell Detachment Measured as Concentration of Cells Removed Following the Detachment Cycles 
(cells/ml). Confidence Intervals Calculated at 95% Significance Level (P=0.05). 

  Concentration of Cells Detached (cells/ml) 

  
Cell 

Detach 
Cycle 1 

Cell 
Detach 
Cycle 2 

Cell 
Detach 
Cycle 3 

Cell 
Detach 
Cycle 4 

Total 
Cells 

Detached 

Overall 
Mean 
Cells 

Detached 

95% 
Confidence 

Interval 

Raw Discs 

1 44,620 35,421 11,544 12,168 103,754 

125,041 11,790 2 68,835 21,460 17,113 18,560 125,968 

3 82,473 26,241 19,611 17,075 145,400 

Passivated 
Discs 

1 147,161 47,456 35,545 29,994 260,156 

287,622 14,183 2 159,438 59,734 47,823 42,272 309,267 

3 99,377 130,716 42,751 20,597 293,442 

FF-RGD 
Discs 

1 12,813 13,702 14,255 14,102 54,872 

42,132 12,581 2 7,666 6,306 2,406 77 16,456 

3 29,561 15,798 4,638 5,073 55,069 
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Figure 47 - Cell Detachment Test Result. Samples Analysed: Raw, Passivated, and Fully-Functionalised RGD (FF-RGD). 
Cell Detachment Measured as Cell Concentration of the Cells Removed following all 4 Detachment Cycles. Error Bars 
Represent Confidence Intervals at 95% Significance Level (P=0.05). 

 

The cell detachment test result is both expected and surprising (Table 10 and Figure 47).  The 

FF-RGD sample shows the fewest cells removed following all detachment cycles, indicating the 

highest strength of cell adhesion to the substrate surface.  However, here it is thought that the 

‘sticky’ nature of the underlying polymer could lead the cells to be trapped on the polymer 

matrix, imitating a stronger cell adherence.  Though this may seem unlikely as the siloxane 

layer on the polymer could hinder cell attachment, being a hydrophobic layer.  Although it is 

plausible that cells that have attached to the FF-RGD substrate may have died soon after 

attaching (Costa e Silva Filho and Conde Menezes, 2004), it is not entirely clear from this result 

whether the reduced number of cells detached from the FF-RGD substrate surface (indicating a 
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strong level of cell adhesion) is directly linked to a biological response elicited by the RGD 

peptide itself. 

The passivated sample shows the poorest cell adhesion strength, with the most cells removed 

following the detachment cycles.  The passivated surface is expected to perform better than 

the raw titanium, containing an abundance of hydroxyl groups from the extensively oxidised 

surface and enhanced hydrophilicity.  The native oxide layer on titanium has a Point of Zero 

Charge (PZC) below pH7.  The PZC is a physicochemical phenomenon that describes the charge 

density of a substrate in relation to an electrolyte’s pH.  Therefore, at physiological pH 

(approximately 7.4) the native oxide layer will be slightly negatively charged (negative OH- 

groups) (Born et al., 1998, Tanaka et al., 2008).  Many of the ECM proteins related to 

osteoblast function, such as fibronectin and vitronectin, are negatively charged and therefore 

may experience electrostatic interactions, preventing their attachment to negatively charged 

surfaces and limiting cell adhesion (LEE et al., 1994).  Passivating the titanium surface with 

hydrogen peroxide/nitric acid is likely to increase the thickness of the outer oxide layer and 

present more surface hydroxyl groups than the raw surface (Pan et al., 1996).  This could 

explain the greater number of detached cells from the passivated surface than the raw 

titanium. 

Research in the literature shows that smoother surfaces are often better for cell attachment 

and spreading, although some report the opposite.  The raw titanium surface, which is also the 

smoothest, here showed better cell adhesion than the rougher passivated surface, supporting 

most of the literature, although the passivated titanium surface is rougher at the nano scale.  

The FF-RGD surface is also passivated and rougher (again at the nano level) than the raw 

titanium surface, but it exhibited the strongest cell adhesion.  The RGD peptide may have 

elicited a biological response from osteoblast cells, perhaps enhancing focal adhesions to the 
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substrate surface, and/or stimulating increased ECM protein secretion, thereby making the 

rougher surface more viable to cell attachment.  Cells will eventually attach to any surface, 

although if the surface is not optimal for cell adhesion, the cells will secrete more ECM 

proteins to acclimatise to the surface for their attachment, as previously explained in sub-

chapter 2.2. 

 

6.3 Cell Attachment 
 

A cell attachment assay was conducted to gauge the initial speed of osteoblast cell attachment 

to the sample surfaces.  Following cell seeding the cells were allowed to attach for a specified 

period of time (1 and 2-hours) before removing the unbound cells and analysing the cell 

concentrations.  Degree of cell attachment is inversely proportional to the number of cells 

removed (or unbound cells). 

6.3.1 Materials and Methods 
 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; MC3T3-E1 mouse pre-osteoblast 

cell (Calvaria) (CRL-2593 LGC Standards, ATCC); 24-well non-treated, round flat bottom, cell 

culture plates, Corning Costar (CLS3738 Sigma); α-Minimum Essential Media (MEM), 

nucleosides, no ascorbic acid, Gibco (A10490-01 Invitrogen, Thermo Scientific); Fetal Bovine 

Serum, qualified, US origin, Gibco (26140-079 Invitrogen, Thermo Scientific); Dulbecco’s 

Phosphate-Buffered Saline (DPBS) no calcium, no magnesium, Gibco (14190 Invitrogen, 

Thermo Scientific); Antibiotic/Antimycotic 100X, Gibco (15240-062 Invitrogen, Thermo 

Scientific); 0.25% Trypsin-EDTA (1X) phenol red, Gibco (25200 Invitrogen, Thermo Scientific);  

PrestoBlue cell proliferation reagent, (A-13261 Invitrogen, Thermo Scientific); Varioskan Flash 
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Multimode Fluorescence Plate Reader (5250040 Thermo Scientific, provided by Cranfield 

Health); Invitrogen Countess Automated Cell Counter (Cranfield Health); Scanning Probe 

Microscope (SPM), Digital Instruments (Veeco) Nanoman VS (Cranfield SAS);  

 

Cell Attachment Protocol 

100,000 cells were seeded onto each titanium disc in a 24 well plate and incubated for 1 or 2 

hours, after which 1ml of complete growth medium was added to each well and the 24 well 

plate re-incubated.  After 1 or 2 hours the medium was aspirated from each well and 

transferred to a new plate to which Prestoblue was added (50µl).  The plate was analysed in a 

fluorescence plate reader to estimate the cell concentration of the cells that were removed 

(the cells that did not attach) using the PrestoBlue standard curve. 

 

6.3.2 Results and Discussion 

 

Table 11 - Cell Attachment Assay Result Table for Raw, Passivated and Fully-Functionalised RGD (FF-RGD) Sample 
Surfaces (Assay Performed in Triplicate). Cell Attachment Measured as Concentration of Cells Removed Following 1-
hour of cell attachment time. Confidence Intervals Calculated at 95% Significance Level (P=0.05). 

Cell Attachment 
1-hour 

Concentration of Cells Removed from Sample Surface (cells/ml) 

 Raw Sample Passivated Sample FF-RGD Sample 

Sample Disc 1 40,673 28,475 5,892 

Sample Disc 2 39,124 35,955 7,427 

Sample Disc 3 51,106 33,744 7,117 

Mean Cells 
Detached 

43,634 32,725 6,812 

Standard Deviation 6,516 3,843 812 

95% Confidence 
Interval 

7,374 4,348 919 
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Table 12 - Cell Attachment Assay Result Table for Raw, Passivated and Fully-Functionalised RGD (FF-RGD) Sample 
Surfaces (Assay Performed in Triplicate). Cell Attachment Measured as Concentration of Cells Removed Following 2-
hours of cell attachment time. Confidence Intervals Calculated at 95% Significance Level (P=0.05). 

Cell Attachment 
2-hours 

Concentration of Cells Removed from Sample Surface (cells/ml) 

 Raw Sample Passivated Sample FF-RGD Sample 

Disc 1 23499 21380 5655 

Disc 2 23261 15014 6041 

Disc 3 31948 20374 5847 

Mean Cells 
Detached 

26236 18923 5847 

Standard Deviation 4948 3422 193 

95% Confidence 
Interval 

5599 3872 218 

 

 

Figure 48 - Cell Attachment Test Result. Samples Analysed: Raw, Passivated, and Fully Functionalised-RGD (FF-RGD). 
Cell Attachment Measured as Cell Concentration of Cells Removed Following 1-hour (Blue Bars) and 2- hours (Red 
Bars) of Cell Attachment Time (cells/ml). Error Bars Represent Confidence Intervals at 95% Significance Level 
(P=0.05). 
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Table 11 and Table 12 show the concentration of cells removed following 1 and 2-hours of cell 

attachment time, respectively.  From the results graph (Error! Reference source not found.) it 

is observed that all three sample substrates exhibited better initial cell attachment after 2-

hours of attachment time than 1-hour (as expected), with the Raw, Passivated and FF-RGD 

surfaces showing a 40.2, 42.6 and 14.9% reduction in unattached cells, respectively.  The FF-

RGD result is substantially lower showing the fewest unattached cells being removed, 

therefore more cells attached to the surface.  Although the result for FF-RGD after 1-hour and 

2-hours attachment time is not significantly different, they are both significantly lower than 

Raw and Passivated samples after both attachment times.  This result indicates that the FF-

RGD substrate may increase the speed of initial cell attachment, although the results could 

again be linked to the highly ‘sticky’ nature of the polymer, with cells perhaps being trapped 

on the polymer matrix, thus leading to fewer unattached cells. 

The passivated surface revealed fewer unattached cells compared to the raw titanium surface, 

indicating better initial cell attachment to nano rough surfaces than the smoother raw 

titanium surface, which is in agreement with literature reports.  While the passivated surface 

showed better cell attachment, the cell detachment results indicated poor cell adhesion to this 

surface. 

Clearly the highly oxidised and nano rough passivated surface is producing an effect on the 

cells, allowing them to attach faster than on the raw surface, although with less adhesive 

strength.  Research in the literature suggests that hydrophilic surfaces aid initial cell 

attachment, which is in agreement with these results.  Reduced cell adhesion strength on the 

passivated surface may be explained by the surface charge of the oxide layer which is 

negatively charged, as previously explained.  Literature reports that neutral and positive 

charges on a surface can lead to enhanced cell adhesion, compared to negatively charged 
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surfaces (LEE et al., 1994).  Also, it is speculated that surface charge density could influence 

focal adhesions and cell contact guidance, affecting the strength of cell adhesion to such 

surfaces (MONSEES et al., 2005). 

 

6.4 Cell Proliferation 

A cell proliferation assay was conducted to gauge how well the cells grew on the various 

sample surfaces.  Cell growth is crucial to bone formation and bone healing, as it dictates 

cellular activity and cell differentiation.  The cell proliferation was analysed using PrestoBlue 

cell viability reagent.  When added to a cell suspension, living cells actively reduce the reagent, 

changing its fluorescence from blue to red. 

 

6.4.1 Materials and Methods 

 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; MC3T3-E1 mouse pre-osteoblast 

cell (Calvaria) (CRL-2593 LGC Standards, ATCC); 24-well non-treated, round flat bottom, cell 

culture plates, Corning Costar (CLS3738 Sigma); 96-well imaging plates, tissue culture treated, 

black, clear flat bottom, BD Falcon (353219 BD Biosciences); α-Minimum Essential Media 

(MEM), nucleosides, no ascorbic acid, Gibco (A10490-01 Invitrogen, Thermo Scientific); Fetal 

Bovine Serum, qualified, US origin, Gibco (26140-079 Invitrogen, Thermo Scientific); Dulbecco’s 

Phosphate-Buffered Saline (DPBS) no calcium, no magnesium, Gibco (14190 Invitrogen, 

Thermo Scientific); Antibiotic/Antimycotic 100X, Gibco (15240-062 Invitrogen, Thermo 
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Scientific); 0.25% Trypsin-EDTA (1X) phenol red, Gibco (25200 Invitrogen, Thermo Scientific);  

PrestoBlue cell proliferation reagent, (A-13261 Invitrogen, Thermo Scientific); Varioskan Flash 

Multimode Fluorescence Plate Reader (5250040 Thermo Scientific, provided by Cranfield 

Health); Invitrogen Countess Automated Cell Counter (Cranfield Health); Scanning Probe 

Microscope (SPM), Digital Instruments (Veeco) Nanoman VS (Cranfield SAS);  

 

Cell Proliferation Protocol 

100 cells were seeded onto each titanium disc in a 24 well plate.  The cells were incubated for 

2 hours, allowing initial cell attachment to occur.  Each well was then supplemented with 1ml 

of complete growth medium and relocated to the incubator.  On the specified days for taking 

measurements (day 7, 9, 11, 13, 17, and 21), 50µl of PrestoBlue was added to each test well.  

The plate was again incubated to allow the cells to actively reduce the cell viability reagent.  

After the incubation period 50µl of cell culture medium was taken from each well and placed 

into a 96 well plate for analysis with a fluorescence plate reader.  The Relative Fluorescence 

Units (RFU) of the samples is directly proportional to the cell concentration of the samples; 

higher RFU indicates higher cell concentration, and vice versa. 
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6.4.2 Results and Discussion 

 

Table 13 - Cell Proliferation Results for Raw, Passivated and FF-RGD Samples (Performed in Triplicate). Cell 
Proliferation Measured on Days 7, 9, 11, 13, 17 and 21. Cell Proliferation Measured as Relative Fluorescence Units 
(RFU) which is Directly Proportional to the Cell Concentration. Confidence Intervals Calculated at 95% Significance 
Level (P=0.05). 

 
 

Cell Proliferation Measured as Relative Fluorescence Units 
(RFU) 

  Day 7 Day 9 Day 11 Day 13 Day 17 Day 21 

Raw Discs 

1 4.00 4.14 5.99 4.96 3.98 4.37 

2 3.62 4.17 7.29 4.57 3.94 5.23 

3 3.17 4.68 5.39 4.60 3.92 5.02 

Mean 3.60 4.33 6.22 4.71 3.95 4.87 

Standard 
Deviation 

0.42 0.31 0.97 0.22 0.03 0.45 

95% 
Confidence 

interval 
0.47 0.35 1.10 0.24 0.04 0.51 

Passivated 
Disc 

1 3.41 28.07 6.68 10.69 28.11 17.39 

2 5.04 28.77 14.11 18.40 30.87 13.29 

3 4.98 28.61 6.27 11.71 28.48 18.21 

Mean 4.47 28.48 9.02 13.60 29.15 16.30 

Standard 
Deviation 

0.93 0.37 4.41 4.19 1.50 2.64 

95% 
Confidence 

interval 
1.05 0.41 4.99 4.74 1.69 2.98 

FF-RGD 
Discs 

1 23.23 5.57 11.45 5.56 3.98 14.19 

2 17.81 4.89 35.67 5.33 3.92 16.00 

3 22.48 18.00 11.70 5.16 3.94 15.40 

Mean 21.17 9.49 19.61 5.35 3.95 15.20 

Standard 
Deviation 

2.94 7.38 13.91 0.20 0.03 0.93 

95% 
Confidence 

interval 
3.32 8.35 15.74 0.23 0.04 1.05 
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Figure 49 -  Cell Proliferation Level at 7, 9, 11, 13, 17 and 21 Days Following Incubation. Samples Tested: Raw, 
Passivated, and Fully Functionalised-RGD. Cell Proliferation Level Measured as RFU (Relative Fluorescence Units). 
Error Bars Represent Confidence Intervals at 95% Significance Level (P=0.05). 

 

The cell proliferation result is extremely poor.  The error bars of all three sample groups 

overlap at almost every measurement, indicating no differences between the groups.  

Literature reports have indicated increased cell proliferation with RGD coated titanium 

surfaces.  There are many reasons why this research failed to show different cell proliferation 

rates between the three groups studied, such as the isopropyl alcohol sterilisation step.  If 

enough time had not elapsed for the discs to dry following sterilisation, a small amount of 

alcohol may have resided on all the discs, equally disrupting cell growth.  Also, inadequate 

maintenance of the incubators may have led to drying out of the cell medium, leading to cell 

death and reduced proliferation in all three sample groups. 
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Another reason why the RGD peptide failed to elicit a biological response leading to enhanced 

cell proliferation, could be due to cell spreading.  Biologists describe cell adhesion to a 

substrate surface using four main stages: serum protein adsorption, cell contact, cell 

attachment, cell spreading, and finally cell growth (VOGLER, 1989).  Before exponential cell 

growth, or cell proliferation, cells must spread out on the substrate surface.  The cell 

detachment and attachment results were produced in this work clearly show that the FF-RGD 

surface has an enhanced ability for cell attachment and increased strength of cell adhesion, 

fulfilling the initial stages of cell adhesion.  However, the poor cell proliferation shown in the 

work could be due to poor cell spreading on the polymerised titanium surface.  If the 

osteoblast cells failed to fully spread on the polymerised titanium surface, then cell 

proliferation would be stunted. 

Although the results here failed to show any substantial increase in osteoblast proliferation, 

this aspect has been studied extensively in the literature.  Such works in the literature have 

shown improved cell proliferation on surfaces functionalised with RGD peptides (Bell et al., 

2011, Huang et al., 2003, Kantlehner et al., 2000), as well as increased osseointegration in vivo 

((ELMENGAARD et al., 2005), although some studies show conflicting evidence (Barber et al., 

2007, Petrie et al., 2008).  The bioactivity of the RGD peptide has been shown to be less potent 

than the ECM protein fibronectin, or even the fibronectin peptide fragment FNIII7-10 (Garcia 

and Reyes, 2005, Petrie et al., 2006).  This suggests that the RGD peptide alone may be 

insufficient to elicit an optimal response from cell interactions.  Some have suggested that a 

combination of binding domains need to be presented in the proper spatial configuration to 

maximize the biological efficacy of RGD (Healy et al., 1999, Dettin et al., 2002, Reyes and 

Garcia, 2004, Garcia, 2005, Cavalcanti-Adam et al., 2006, Cavalcanti-Adam et al., 2007). 
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6.5 Alkaline Phosphate Enzyme Activity 
 

The Alkaline Phosphatase (ALP) enzyme is a marker for the differentiation of osteoblast cells.  

When osteoblasts begin to differentiate their ALP enzyme level rises and is the highest at the 

point of differentiation (as well as other protein markers such as osteocalcin).  This assay was 

performed in parallel with the mineralisation assay as it does not require adding of a reagent 

to the seeded cells.  Also, the cells subjected to the mineralisation assay were cultured in 

osteogenic medium that helps initiate cell differentiation and mineralisation.  The ALP enzyme 

produced by osteoblast cells is released into the cell culture medium, and a small sample of 

the medium can be removed for analysis, leaving the remaining cells, medium and sample 

titanium discs undisturbed for subsequent analysis of mineralised bone matrix. 

 

6.5.1 Materials and Methods 
 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; MC3T3-E1 mouse pre-osteoblast 

cell (Calvaria) (CRL-2593 LGC Standards, ATCC); 24-well non-treated, round flat bottom, cell 

culture plates, Corning Costar (CLS3738 Sigma); 96-well imaging plates, tissue culture treated, 

black, clear flat bottom, BD Falcon (353219 BD Biosciences); α-Minimum Essential Media 

(MEM), nucleosides, no ascorbic acid, Gibco (A10490-01 Invitrogen, Thermo Scientific); Fetal 

Bovine Serum, qualified, US origin, Gibco (26140-079 Invitrogen, Thermo Scientific); Dulbecco’s 

Phosphate-Buffered Saline (DPBS) no calcium, no magnesium, Gibco (14190 Invitrogen, 

Thermo Scientific); Antibiotic/Antimycotic 100X, Gibco (15240-062 Invitrogen, Thermo 

Scientific); 0.25% Trypsin-EDTA (1X) phenol red, Gibco (25200 Invitrogen, Thermo Scientific);  
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Alkaline Phosphatase (ALP) assay kit (fluorometric) (ab83371, Abcam); Varioskan Flash 

Multimode Fluorescence Plate Reader (5250040 Thermo Scientific, provided by Cranfield 

Health); Invitrogen Countess Automated Cell Counter (Cranfield Health); Scanning Probe 

Microscope (SPM), Digital Instruments (Veeco) Nanoman VS (Cranfield SAS);  

 

ALP Enzyme Protocol 

Similar to the cell proliferation assay, the ALP measurement was taken on day 7, 9, 11, 13, 17, 

and 21. 

80µl of cell culture medium was removed from each of the sample wells of the 24 well plate 

and transferred to a 96 well plate (black BD Falcon round flat-bottom wells).  The volume of 

the sample medium in each well of the 96 well plate was brought up to 110µl using assay 

buffer (contained in the ALP assay kit).  A sample of complete growth medium was also placed 

in the 96 well plate as a background, to which 20µl of the stop solution was added (contained 

in the ALP assay kit).  To each well of the 96 well plate (including background well), 20µl of 

0.5mM 4-Methylumbelliferyl phosphate disodium salt (MUP) substrate was added (from the 

ALP assay kit).  The MUP is a substrate for the ALP enzyme which cleaves the phosphate group 

from this non-fluorescent substrate, yielding a fluorescent signal from the dephosphorylated 

MUP substrate.  The 96 well plate was incubated at room temperature for 30 minutes 

protected from light. 

After 30 minutes 20µl of the stop solution was added to all wells of the 96 well plate (except 

the background well which already contained the stop solution).  The fluorescence of the 

samples was measured in a fluorescent plate reader at an excitation/emission wavelength for 

the dephosphorylated MUP substrate (360nm/440nm respectively).  The Relative Fluorescence 
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Units (RFU) of the samples is directly proportional to the amount of ALP enzyme present in the 

samples; higher RFU indicates higher amount of ALP enzyme, and vice versa. 

 

6.5.2 Results and Discussion 

 

Table 14 - ALP Assay Result for Raw, Passivated and FF-RGD Sample Surfaces (Assay Performed in Triplicate). ALP 
Activity Measured at Days 7, 9, 11, 13, 17 and 21. ALP Activity Measured as Relative Fluorescence Units (RFU) which 
is Directly Proportional to Cell Concentration. Confidence Intervals Calculated at 95% Significance Level (P=0.05). 

  ALP Activity Measured as Relative Fluorescence Units (RFU) 

  Day 7 Day 9 Day 11 Day 13 Day 17 Day 21 

Raw Discs 

1 23.21 20.06 14.29 16.03 18.70 21.08 

2 21.71 20.33 12.95 18.65 20.47 21.93 

3 21.10 16.68 13.05 18.67 21.75 21.90 

Mean 22.01 19.02 13.43 17.78 20.31 21.64 

95% 
Confidence 

interval 
1.23 2.30 0.84 1.72 1.73 0.54 

Passivated 
Discs 

1 22.58 19.78 23.12 17.91 27.29 22.16 

2 17.73 18.00 20.87 11.24 24.29 22.41 

3 19.14 22.91 19.31 18.93 25.66 23.19 

Mean 19.82 20.23 21.10 16.03 25.75 22.59 

95% 
Confidence 

interval 
2.82 2.81 2.16 4.73 1.70 0.60 

FF-RGD 
Discs 

1 25.45 20.88 24.78 18.12 24.96 25.86 

2 21.82 18.16 21.59 17.90 27.43 26.55 

3 26.69 18.44 22.13 23.99 27.37 25.63 

Mean 24.65 19.16 22.83 20.00 26.58 26.02 

95% 
Confidence 

interval 
2.87 1.69 1.93 3.91 1.59 0.54 
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Figure 50 - Alkaline Phosphatase (ALP) Enzyme Level at 7, 9, 11, 13, 17 and 21 days Following Incubation. ALP 
Enzyme Level Measured as RFU (Relative Fluorescence Units). Error Bars Represent Confidence Intervals at 95% 
Significance Level (P=0.05). 

 

The ALP enzyme level on the Passivated and FF-RGD samples is greater than on the Raw 

sample, although the error bars at all time points are merged except at days 11 and 17, and 

the graph shows that the Passivated and FF-RGD samples are quite similar.  This could indicate 

that these two surfaces are showing similar levels of reactivity with the osteoblast cells, and 

thus may give rise to a higher level of differentiation over that of the Raw surface, which shows 

the least amount of reactivity.  The difference in ALP level between the three groups could be 

attributed simply to operator error. 

Evidence in the literature suggests that the RGD peptide in fact could reduce the 

differentiation of osteoblast cells (Bell et al., 2011), opposing the hypothesis for this work but 
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corroborating the results.  Work done by Tosatti et al. on poly(L-lysine)-graft-poly(ethylene 

glycol) coated titanium surfaces (PLL-PEG) with attached RGD peptides, revealed that the PLL-

PEG coated surface alone enhanced cell differentiation, possibly by stimulating growth factor 

release and osteocalcin.  However, attachment of RGD blocked the stimulatory effect of the 

PLL-PEG layer on the differentiation of osteoblast-like cells (Tosatti et al., 2004).  Also, it has 

been suggested that while the RGD peptide is recognised by the αvβ3 and α5β1 integrin 

heterodimers (of which α5β1 is greatly expressed in osteoblast cells), high affinity of RGD to 

α5β1 requires the PHSRN peptide site to fully activate the osteoblastic signalling pathway (Bell 

et al., 2011).  The PHSRN peptide, also known as the synergy site, is a peptide cell adhesion site 

within the fibronectin protein, and is believed to activate integrin receptors on osteoblast cells 

to stimulate cell attachment and adhesion, which can be regarded as prerequisites for 

eventual cell differentiation. 

 

6.6 Bone Matrix Mineralisation 
 

The mineralisation assay was performed using a mineralisation assay kit by Osteolmage 

(Lonza).  This assay kit uses a fluorescent molecule which binds to and stains hydroxyapatite 

specific portions of mineralised bone, as well as bone-like nodules, deposited by osteoblasts.  

This assay kit is far superior to the von Kossa and Alizarin Red assays as they stain any calcium 

phosphate deposits.  Also, the Osteolmage mineralisation assay requires fewer and simpler 

steps to perform and is much faster. 

 

6.6.1 Materials and Methods 
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Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; MC3T3-E1 mouse pre-osteoblast 

cell (Calvaria) (CRL-2593 LGC Standards, ATCC); 24-well non-treated, round flat bottom, cell 

culture plates, Corning Costar (CLS3738 Sigma); α-Minimum Essential Media (MEM), 

nucleosides, no ascorbic acid, Gibco (A10490-01 Invitrogen, Thermo Scientific); Fetal Bovine 

Serum, qualified, US origin, Gibco (26140-079 Invitrogen, Thermo Scientific); Dulbecco’s 

Phosphate-Buffered Saline (DPBS) no calcium, no magnesium, Gibco (14190 Invitrogen, 

Thermo Scientific); Antibiotic/Antimycotic 100X, Gibco (15240-062 Invitrogen, Thermo 

Scientific); 0.25% Trypsin-EDTA (1X) phenol red, Gibco (25200 Invitrogen, Thermo Scientific);  

Osteolmage bone mineralisation assay kit, Lonza (PA-1503 Stratech Scientific); L-ascorbic acid 

(A4403 Sigma); β-Glycerophosphate disodium salt hydrate (G9422 Sigma); Varioskan Flash 

Multimode Fluorescence Plate Reader (5250040 Thermo Scientific, provided by Cranfield 

Health); Invitrogen Countess Automated Cell Counter (Cranfield Health); Scanning Probe 

Microscope (SPM), Digital Instruments (Veeco) Nanoman VS (Cranfield SAS);  

 

Bone Mineralisation Protocol 

Titanium discs for evaluation were placed in a 24 well plate and 200 cells seeded onto each 

disc.  The plate was placed in an incubator for 1-2 hours to allow the cells to initially attach to 

the substrate surface.  1ml of complete growth medium was then added to each well and the 

plate relocated to the incubator (37°C, 95% air + 5% carbon dioxide atmosphere).  The 24 well 

plate was kept in the incubator for a full 21 days before analysing. Medium was replaced every 

2 days. 
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After 7 days of incubation the culture medium was replaced with osteogenic medium.  For the 

mineralisation assay ascorbic acid and β-glycerophosphate were added to the culture medium 

in order to help induce mineralised bone nodule formation, as well as provide inorganic 

phosphate.  Supplementing the cell culture medium with ascorbic acid and β-

glycerophosphate induces differentiation of the pre-osteoblast cells, giving these cells the 

ability to form mineralised bone nodules.  The mineralised bone nodules that form display 

morphological and biochemical characteristics similar to that of woven bone formed in vivo, 

thus mimicking in vivo bone growth.  Therefore it creates an osteogenic model of mineralised 

bone growth (Beresford et al., 1993).  Complete growth medium was supplemented with 

200µM ascorbic acid and 10mM β-glycerophosphate.  From day 7 to day 21 of the assay this 

osteogenic medium was supplied to the cells, and again replenished every 2 days. 

On day 21 the medium was removed, and the cells washed once with D-PBS.  The cells were 

fixed using 70% ethanol for 20 minutes and then rinsed twice with wash buffer (diluted from a 

10x stock buffer contained in the assay kit).  0.5ml of staining reagent (diluted from the 100x 

stock reagent in the assay kit) was added to each well of the 24 well plate and incubated at 

room temperature for 30 minutes protected from light. 

After the 30 minutes had elapsed, the staining reagent was discarded, and the wells washed 

with diluted wash buffer 3 times (leaving the wash buffer in the wells for 5 minutes each time 

before removing).  The titanium discs were removed from the 24 well plate and fixed onto 

glass slides and covered with glass cover slips.  The surfaces of the discs were analysed using 

CLSM with a fluorescein filter set to match the excitation/emission of the staining reagent 

(492nm/520nmm respectively).  Stained mineralised bone matrix was seen in green colour 

which is also directly proportional to the amount mineralised bone present.  Finally, image 

analysis software ImageJ was used to calculate the surface area of immobilised RGD 
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fluorescence on the confocal microscope images.  ImageJ is an open-source software package 

developed by scientists in the field, and it was utilised to assess the area of mineralisation on 

the confocal microscope images.  Converting the image to binary and subsequently adjusting 

the threshold to select all the fluorescence signal, the software can calculate the area 

encompassed by the fluorescence.   
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6.6.2 Results and Discussion 

 

Figure 51 - Fluorescence Images from Confocal Laser Scanning Microscope (CLSM) of Mineralised Bone Matrix on 
Raw (A, B and C), Passivated (D, E and F), and Fully-Functionalised RGD (G, H and I) Titanium Discs, Following 21 
days of Cell Culture. Images of 3 Discs Recorded from Each Sample. Error Bars Indicate 100µm Length. 

 

 

 



 
 

181 
 

Table 15 - Mineralised Bone Matrix Surface Area on Raw, Passivated and Fully-Functionalised RGD (FF-RGD) 
Surfaces. Mineralised Bone Matrix Area is Calculated by ImageJ Software for Confocal Microscope Image Analysis, 
and units of Area are µm2. Confidence Intervals are Calculated at 95% Significance Level (P=0.05). 

 Mineralised Bone Matrix Surface Area (µm2) 

 Raw Discs Passivated Discs FF-RGD Discs 

Titanium Disc 1 68,194 44,405 149,822 

Titanium Disc 2 51,231 66,041 133,225 

Titanium Disc 3 58,229 57,301 181,622 

Mean Area 59,218 55,916 154,890 

95% Confidence 
Interval 

9,646 12,317 27,829 

 

 

Figure 52 - Mineralised Bone Matrix Area on Raw, Passivated and Fully-Functionalised RGD (FF-RGD) Surfaces. 
Mineralised Bone Matrix Area Measured in µm2. Error Bars Represent Confidence Intervals at 95% Significance Level 
(p=0.05). 
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The CLSM images (Error! Reference source not found.) clearly show that the fluorescence 

chemical from the Osteolmage mineralisation assay kit, which stains HA specific calcium 

phosphate or mineralised bone, exhibits a higher signal on the FF-RGD discs.  Large 

interlocking clumps of mineralised bone matrix of roughly 40 to 80µm, and even 100µm, in size 

can be seen (Error! Reference source not found.).  The Raw and Passivated surfaces do show 

some mineralisation occurring, although it is very limited.  This is one of the most definitive 

results that show the clinical potential of the RGD peptide to enhance bone healing around 

titanium alloy implants. 

The FF-RGD sample showed a 161.6% increase in area of mineralised bone matrix than the 

Raw surface, and a 177% increase over that of the Passivated surface.  Furthermore, ANOVA 

and Tukey Kramer statistical analyses revealed that the FF-RGD sample had significantly 

increased mineralised bone matrix compared to both the Raw and Passivated surfaces, and 

that there was no difference in mineralisation between Raw and Passivated samples (see 

Appendix sub-chapter 8.3.4). 

Research in the literature has shown that surface topography can affect levels of mineralised 

bone matrix.  Furthermore, they have shown that chemical-based surface treatments, such as 

peroxidation and acid etching that produce various random nano structured surface features, 

can enhance the level of mineralisation (Depprich et al., 2008).  As well as the biological effects 

of the RGD peptide on the FF-RGD disc, the surface nano features and enhanced oxidation of 

the oxide layer, imparted by passivation, may have worked in concert to enhance apatite 

nucleation on the titanium surface, leading to increased levels of mineralised bone matrix.  As 

previously mentioned, the native oxide coating on titanium plays an important role in 

mineralisation.  It has the ability to adsorb calcium ions from the ECM as well as initiate 

hydroxyapatite nucleation.  Also, enhanced oxide layer growth from hydrogen peroxide 
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passivation further improves phosphate ion adsorption as well, thereby boosting apatite 

nucleation and calcium phosphate mineralisation. 

Research by Schneider et al. (2001) showed that perturbation of certain integrin receptors 

such as α1β2 and αVβ3 (which also recognise the RGD peptide sequence) led to decreased 

mineralisation.  Also, targeting of just a subunit rather than the integrin heterodimer resulted 

in only partial reduction in mineralisation, suggesting that a combination of the αβ integrin 

heterodimer may be important to control mineralisation initiation (Schneider et al., 2001).  

From their findings it can be suggested that the RGD peptide may contribute to the ability of 

the MC3T3-E1 cell line to mediate the initiation of the mineralisation phenotype, through 

integrin-mediated signal transduction pathways.  Furthermore, the cyclic RGD peptide used in 

this research may activate both integrin heterodimers, vastly increasing the mineralisation. 

 

6.7 Antibacterial Testing 
 

Antibacterial testing was conducted to evaluate theories in the literature that hydrophilic 

polymers, such as HBPG and PEG, could prevent bacterial cell adhesion to a biomaterial 

surface via non-specific protein adsorption.  ECM proteins and certain bacterial adhesive 

proteins, such as fibronectin and MSCRAMM, are necessary for cell adhesion to biomaterial 

surfaces.  Hydrophilic polymers make it difficult for such proteins to adhere to the surface via 

formation of a hydration layer, thereby preventing or delaying the onset of bacterial cell 

adhesion. 

A selection of titanium alloy samples (Raw, Raw/Polymerised, Passivated, and 

Passivated/Polymerised) were seeded with the bacterial cells (gram-negative Escherichia coli 
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(ATCC11229) and gram-positive Staphylococcus aureus (ATCC6538) provided by Cranfield 

Health, Cranfield University), incubated and then the surface of the discs analysed for colony 

forming bacteria. 

6.7.1 Materials and Methods 
 

Titanium Alloy (Ti6Al4V) circular discs (provided by SinteaPlustek and William Gregor Ltd), with 

dimensions of 14mm diameter by 1mm thick, machine cut; Escherichia coli (ATCC11229, 

provided by Cranfield Health); Staphylococcus aureus (ATCC6538, provided by Cranfield 

Health) T75 tissue culture treated flasks, Nunc (Cranfield Health); 24-well non-treated, round 

flat bottom, cell culture plates, Corning Costar (CLS3738 Sigma); Petri Dishes, Sterilin (Thermo 

Scientific); Lysogeny broth medium, Fluka (Sigma); nutrient agar, Fluka (Sigma); Dimethyl 

Sulfoxide (DMSO) sterile filtered (D2650 Sigma); Invitrogen Countess Automated Cell Counter 

(Cranfield Health); Scanning Probe Microscope (SPM), Digital Instruments (Veeco) Nanoman VS 

(Cranfield SAS);  

 

Antibacterial Testing Protocol 

Bacterial cells were incubated towards the middle of their exponential phase using Lysogeny 

broth medium to yield a suspension of around 5*106cells/ml.  Titanium alloy disc samples 

were sterilised with IPA for 5 minutes, then transferred to a pre-sterilised 24-well plate (Costar 

3526, Corning).  0.5ml of the bacterial cell suspension was added to each well containing a 

sample disc, followed by 1.5ml of complete growth medium (DMEM and FBS from Invitrogen, 

Life Science Technology) to mimic the in vivo environment, and subsequently incubated at 

37°C for 24 hours allowing enough time for the formation of a biofilm.  The disks were 
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removed and rinsed thoroughly with PBS, and the bacterial cells collected from the disc 

surfaces.  0.1ml of the collected bacterial suspension was spread onto a nutrient agar (Fluka, 

Sigma Aldrich) plate (Sterilin, Thermo Fisher Scientific); three samples were taken from each 

disc. The agar plates were incubated overnight at 25°C after which the colony numbers were 

counted. 

 

6.7.2 Results and Discussion 

Table 16 - Colony Count of Escherichia coli on Raw, Passivated, and Passivated/Polymerised Titanium Surfaces. 
Passivated titanium samples are passivated using the novel hydrogen peroxide/nitric acid solution for 2-hours 
passivation. Confidence Intervals Calculated at 95% Significance Level (P=0.05). 

E. coli E. coli Colony Count 

 Raw Sample Passivated Sample FF-RGD Sample 

Titanium Disc 1 1720 2078 360 

Titanium Disc 2 1944 1790 477 

Titanium Disc 3 2000 1784 489 

Titanium Disc 4 2744 1084 592 

Titanium Disc 5 3664 904 160 

Titanium Disc 6 3920 1474 174 

Mean 2665 1519 375 

Standard Deviation 942 453 177 

95% Confidence 
Interval 

754 362 142 

 

Table 17 - Colony Count of Staphylococcus Aureus on Raw, Passivated, and Passivated/Polymerised Titanium 
Surfaces. Passivated titanium samples are passivated using the novel hydrogen peroxide/nitric acid solution for 2-
hours passivation. Confidence Intervals Calculated at 95% Significance Level (P=0.05). 

S. aureus S. aureus Colony Count 

 Raw Sample Passivated Sample FF-RGD Sample 

Disc 1 3604 1860 500 

Disc 2 3200 1260 692 

Disc 3 3560 1764 594 

Disc 4 2600 2964 622 

Disc 5 2270 1844 660 

Disc 6 3150 3570 440 

Mean 3064 2210 585 

Standard Deviation 531 869 97 
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95% Confidence 
Interval 

425 695 77 

 

 

 

Figure 53 - Mean Colony Count of Escherichia Coli and Staphylococcus Aureus on Raw, Passivated and 
Passivated/Polymerised Titanium Surfaces. Passivated titanium samples are passivated using the novel hydrogen 
peroxide/nitric acid solution for 2-hours passivation. Assay Performed on Six Discs per group. Error Bars Indicate 
Confidence Intervals Calculated at 95% Significance level (P=0.05). 

 

Results of the antibacterial test show decreased cell colonies of both E. coli and S. aureus on 

the Passivated/Polymerised discs.  Theories in the literature discussing the anti-adhesive 

actions of hydrophilic polymers is clearly evidenced here.  The hydrophilic character of the 

HBPG may reduce non-specific protein adsorption, including limiting the adsorption of 

bacterial cell adhesins, proteins that are necessary for bacterial cell attachment to the surface.  

Raw Activated Polymerised
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0

500

1000

1500

2000

2500

3000

3500

4000

N
u

m
b

er
 o

f 
B

ac
te

ri
al

 C
o

lo
n

ie
s

Titanium Disc Samples

Mean Colony Count of E. coli and S. aureus on Titanium 
Alloy Disc Samples Raw, Passivated, and Polymerised

E. Coli

S. Aureus



 
 

187 
 

Another view is that of steric hindrance from the highly branched polymer matrix of HBPG, 

making it difficult for bacterial cells to reach the underlying titanium disc surface, and hence 

preventing attachment.  As well as the formation of a hydration layer that is able to repel 

hydrophobic bacterial cells, such as E. coli and S. aureus. 

The polymerised disc surface yielded an 85.9% reduction in the mean colony number of E. coli 

compared to the Raw disc, and a 75.3% reduction compared to the Passivated disc.  ANOVA 

analysis and Tukey Kramer comparison revealed that the mean colony number for E. coli was 

significantly different across the three groups tested (Raw, Passivated, and Polymerised) (see 

Appendix chapter 8.3.5) 

Regarding S. aureus, the Polymerised disc yielded an 80.9% reduction in mean colony number 

compared to the Raw disc, and a 73.5% reduction compared to the Passivated disc.  ANOVA 

and Tukey Kramer analysis revealed no difference in S. aureus colonies between the Raw and 

Passivated samples, although the Polymerised disc showed significantly reduced colonies (see 

Appendix chapter 8.3.5) 

ANOVA analysis between E. coli and S. aureus colonies on the Raw samples showed no 

significant differences (see Appendix chapter 8.3.5), and the same was found of the Passivated 

samples (see Appendix chapter 8.3.5).  However, the mean colony number of E. coli was 

significantly lower than that of S. aureus on the Polymerised discs (see Appendix chapter 

8.3.5).  These analyses indicate that the Passivated and Polymerised surfaces showed a greater 

level of activity against E. coli than S. aureus. 

The significantly reduced mean colony count of E. coli and S. aureus on Polymerised discs 

compared to Raw and Passivated discs could be explained by a difference in cell surface 

properties between E. coli and S. aureus.  Using electrophoretic mobility measurements, 
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Sonohara et al. (1995)  were able to detect a more negatively charged surface on E. coli cells 

compared to S. aureus cells.  It is likely that the greater negative charge on E. coli is due to 

carboxylic acid derivatives on the bacterial cell surface (Hamadi et al., 2008).  Due to the 

negatively charged oxide layer, which on the passivated surface is extensively enhanced 

through peroxidation, electrostatic repulsive forces may have been greater on the Passivated 

disc, thereby preventing the adhesion of E. coli cells more so than S. aureus.  Furthermore, 

both E. coli and S. aureus cells are hydrophobic due to extensive hydrocarbons on their cell 

surfaces.  These hydrophobic cells would be repelled by the hydrophilic oxide coating on the 

Passivated disc, as well as the Passivated/Polymerised disc.  The Raw and Passivated surfaces 

failed to show a difference in response to E. coli and S. aureus however, the 

Passivated/Polymerised surface showed a greater level of activity against E. coli than S. aureus, 

a result that is significant as analysed by ANOVA and Tukey-Kramer analysis (p=?).  The greater 

level of antibacterial activity against E. coli than S. aureus is likely due to greater electrostatic 

interaction between the more negative E. coli and the Passivated and Polymerised discs, 

whereas S. aureus is less negative but more hydrophobic (Gogra et al., 2010).  Perhaps the 

electrostatic repulsive force is greater than that of the hydrophobic repulsive force.  Also, as 

the Polymerised disc was passivated prior to polymerisation, it showed the least mean colony 

number for E. coli and S. aureus as the bacterial cells may have exhibited both electrostatic 

forces of repulsion as well as hydrophobic repulsion. 
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7. Discussion 
 

The novel hydrogen peroxide/nitric acid (H2O2/HNO3) (2-hours) passivation solution developed 

in this research, produced one of the most hydrophilic titanium alloy surfaces tested (contact-

angle 35.35°), coming second only to hydrogen peroxide (24-hours) peroxidation (contact-angle 

18.87°).  The H2O2/HNO3 (2-hours) passivation solution gave a similar contact-angle to that of 

Piranha solution (sulphuric acid/hydrogen peroxide, 50:50) (Ketonis et al., 2009), one of the 

most highly oxidising solutions popularised with biomaterial surface preparation.  In vitro cell 

adhesion to metals is well known to be linked to the hydrophilicity of the surface, and therefore 

surface energy.  Studies have demonstrated that hydrophilic surfaces generally reduce cell 

proliferation but increase cell differentiation, and thus increase the release of local growth 

factors in vitro (Tosatti et al., 2004).  Meanwhile, in vivo studies have shown that increased 

hydrophilicity of implant surfaces yields greater bone-implant contact and better initial bone 

apposition (Petrie et al., 2008).  Surfaces showing increased wettability are able to adsorb matrix 

proteins with a more dynamic conformation in vitro, allowing adhering cells to reorganise the 

proteins as they see fit (Huang et al., 2003), thus improving cellular adhesion and spreading (Lee 

et al., 2004 - nanoscale). 

The same H2O2/HNO3 (2-hours) passivation solution produced surface roughness at the nano 

level, with a circular bumpy nanotexture, alongside sub-micron surface features such as pits and 

crevasses.  Surface modifications at the nano scale have been shown to affect protein 

adsorption, cell morphology and the function of varying cell types including fibroblasts and 

osteoblasts.  In addition, the increased accumulation of bone matrix proteins, most notably 

osteopontin and bone sialoprotein, on a titanium nanotopography indicates an increased level 

of cell differentiation, while the efficiency of protein adsorption and/or retention is greatly 
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improved on such nano-featured surfaces (Bueno 2011).  The results obtained from the titanium 

surface passivation experiment fulfilled the first objectives of both aims, which were shared.  

These were; the passivation of titanium surface to enhance wettability, and to etch the titanium 

surface with nanoscale roughness.  Also, the first hypothesis was proved right, that passivation 

of the titanium surface will enhance the wettability, and develop nano surface roughness. 

Polymerisation of Hyperbranched Polyglycerol (HBPG) was successfully conducted, synthesising 

a transparent, viscous polymer from the titanium surface.  Elemental analysis and contact-angle 

measurements confirmed the presence of the polymer layer, with increased oxygen and carbon 

content at the surface (attributed by the hydroxyl groups and hydrocarbon backbone of the 

polymer structure), and high wettability of the polymerised surface, and thus fulfilling the 

second objectives of both aims, the polymerisation of HBPG from the titanium surface.  Although 

the passivated/polymerised surface showed a very low contact-angle, the polymer did not 

significantly lower the contact-angle over that of the passivated disc.  Furthermore, the 

passivated/polymerised sample surface revealed a highly bumpy texture at the sub-micron level 

with an average roughness in the nano scale.  Therefore, the results of the polymerisation 

experiment proved the second hypothesis, polymerisation of HBPG from the titanium surface 

will enhance wettability and further develop surface nano features. 

The RGD peptide was successfully tagged with a fluorophore, FITC, and filtered.  The CLSM 

images clearly show that the fluorescently labelled RGD was immobilised onto the polymerised 

titanium surface, via silanisation and subsequent carbodiimide coupling.  Surface area analysis 

of the CLSM images indicated that the immobilised RGD was significantly higher than the 

controls, which showed virtually no fluorescent peptide.  This result fulfilled the final objective 

of the first aim, immobilisation of the RGD peptide onto the Passivated/Polymerised titanium 

surface.  Although the fluorescently labelled RGD was successfully immobilised, the confocal 
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microscope images show it to possibly be a small amount.  Research has shown that the 

concentration of RGD ligand on a surface can affect its ability to manipulate host cell responses.  

RGD density greater than 0.6 pmol/cm2 were shown to enhance osteogenic cell spreading and 

attachment compared with peptide densities below 0.01 pmol/cm2 (Rezania and Healy, 2000, 

Rezania et al., 1999, Liu et al., 1992).  Consequently, RGD density greater than 0.62 pmol/cm2 

revealed greater cell maturation and mineralisation of ECM (Rezania and Healy, 2000).  Rezania 

and Healy hypothesised that an optimum surface concentration of adsorbed fibronectin is 

required for cell adhesion and movement (Rezania and Healy 2000).  As this research did not 

focus on RGD density, it may have a causal relationship to the poor cell proliferation and 

differentiation results. 

Four out of six biological investigations yielded positive results.  The cell detachment on the 

Fully-Functionalised RGD (FF-RGD) surface indicated stronger cell adhesion compared to the 

Raw and Passivated surfaces.  The cell attachment test also revealed that the FF-RGD surface 

showed improved initial cell attachment as well. 

The FF-RGD sample failed to show improved cell proliferation and differentiation of the 

osteoblasts.  This could have been due to operator errors, although it is more likely that the RGD 

peptide does not improve such cellular functions, as is discussed in the literature where the 

research is conflicted.  It is entirely plausible that the amount of RGD attached to the FF-RGD 

titanium surface, was too little to elicit an efficacious biological response from osteoblast cells, 

regarding cell proliferation and ALP enzyme activity.  Although some evidence in the literature 

does suggest use of the RGD peptide can reduce cell differentiation.  Furthermore, studies have 

shown that for high affinity of RGD to integrin receptor sites, additional peptide sites may be 

required to fully activate the integrin signalling pathways, as previously explained in section 

6.5.2. 
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The bone matrix mineralisation result is the most compelling evidence that the RGD peptide 

elicits a sufficient biological response from osteoblast cells, that leads to enhanced bone matrix 

production and mineralisation.  The FF-RGD surface showed higher levels and areas of 

fluorescence on the CLSM images, with surface area analysis showing the FF-RGD sample to have 

161.6% and 177.0% increase in mineralised bone matrix over that of the Raw and Passivated 

surface, respectively.  The production of bone matrix and its subsequent mineralisation is crucial 

for implant success.  It means a greater rate and amount of bony on growth onto the implant 

surface, improving BIC, and leading to full osseointegration of the implant.  The bone matrix 

mineralisation results from this work also indicate faster growth of mineralised bone matrix, 

thereby reducing time to osseointegration and therefore reduced patient healing time. 

Antibacterial testing showed that the Polymerised surface led to a substantial reduction in 

bacterial colonies for both E. coli and S. aureus, compared to the Raw and Passivated surfaces.  

The enhanced antibacterial activity of HBPG against these bacterial species could be explained 

by hydrophobic repulsion.  Hydrophobic repulsion of the hydrophobic bacterial cells with the 

hydrophilic polymer could have hindered the bacterial cells from contacting the titanium 

surface. Also, the Passivated sample surface showed a significant reduction in E. coli colony 

numbers compared to the Raw surface, perhaps due to electrostatic repulsion of the negatively 

charged bacterial cells with the negatively charged titanium oxide layer. As the Polymerised 

sample was also passivated, it showed a drastic reduction in colony numbers most likely due to 

the combined effects of the oxide layer and the polymer. 

The results of the antibacterial testing proved the third hypothesis, that the HBPG can reduce 

infection from pathogenic microorganisms.  However, not all facets of the fourth hypothesis 

were proved, namely cell proliferation and differentiation.  Although cell attachment, adhesion 

strength, and mineralised bone matrix were all improved. 
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8. Conclusion 
 

 

The novel hydrogen peroxide/nitric acid passivation mixture used in this work has been shown 

to be more advantageous than nitric acid alone, producing a more oxidised surface with 

anisotropic nano features, and when compared to hydrogen peroxide passivation alone 

(peroxidation), it yields a similar hydrophilic character but in a much shorter amount of time 

(just 2-hours passivation compared to 12-hours).  The hydrogen peroxide/nitric acid 

passivation mixture has also been shown in this research to yield a nano-rough surface 

topography, as well as surface features in the sub-micron range, such as pits and crevasses. 

Cell proliferation and ALP enzyme assays in this research failed to show the biological efficacy 

of the RGD peptide, which has been numerously documented in the literature to be conflicted.  

However, the cell detachment assay conducted here showed that chemically grafted RGD on a 

polymerised titanium surface may enhance the strength of osteoblast cell adhesion.  Also, the 

cell attachment assay showed a significant increase in cell attachment on the Fully-

Functionalised RGD surface after 1 and 2-hours of attachment time, compared to the Raw and 

Passivated samples.   

This research has fundamentally shown that by covalently attaching a cyclic RGD peptide to 

Hyperbranched Polyglycerol (HBPG), on a titanium alloy surface, it could greatly enhance bone 

matrix secretions which are subsequently mineralised, producing hydroxyapatite specific bone 

matrix.   

Work done in this research has also revealed an antibacterial nature of HBPG, most likely an 

antiadhesive action.  Due to its extreme hydrophilicity, it has been shown capable of repelling 

both Staphylococcus aureus and Escherichia coli bacterial cells from the titanium alloy surface, 
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thereby reducing implant infection and could prevent implant loosening and failure from such 

infections.  Furthermore, the protective titanium oxide layer, which is negatively charged at 

physiological pH, may electrostatically repel negatively charged bacterial cells, such as E. coli 

and S. aureus.  

Although the product of this work has shown its viability, and the main aims that were set out 

have been accomplished, more research needs to be carried out in order to increase the 

biological efficacy of the cyclic-RGD peptide.  Further research is warranted in areas such as 

optimal ligand distance/spacing from the biomaterial surface, and efficient strategies to 

optimally increase RGD density on the surface.  Although work in this research has shown the 

benefits of the hydrogen peroxide/nitric acid passivating solution to improve surface 

hydrophilicity and gain nano surface features on titanium, optimisation of this passivation 

technique is required to produce titanium surfaces with a more isotropic nano patterning, 

which may enhance cell surface contact guidance and cell spreading, and thus improve cell 

proliferation.  Lastly, optimisation of the polymerisation of HBPG is needed.  This research 

found that HBPG was a viscous liquid with high dissolution/degradation.  Cross-linking of HBPG 

may provide a route to a more stable polymer structure, able to resist harsher chemical 

conditions, thereby allowing the use buffering systems in the carbodiimide conjugation 

reaction, and increasing RGD immobilisation efficiency. 

This work has successfully shown the potential biological effects of cyclic-RGD and HBPG as 

they pertain to orthopaedic implants, as well as improved titanium surfaces by passivation 

with the novel hydrogen peroxide/nitric acid solution, in hopes that further research with their 

concomitant use may be carried out. 
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8. Appendix 

8.1 Titanium Surface Passivation Results  

8.1.1 AFM 

3D AFM of Titanium Surface Passivated with HNO3/H2O (1:1) Following 1-hour Passivation 

 

 

Figure 54 - 3D AFM Image of Titanium Alloy Surface Passivated with HNO3/H2O (1:1) Following 1-hour Passivation. 

 

 

 

 

 

 

 

 

 

 

 



 
 

196 
 

3D AFM of Titanium Surface Passivated with HNO3/H2O (1:1) Following 2-hour Passivation 

 

 

Figure 55 - 3D AFM Image of Titanium Alloy Surface Passivated with HNO3/H2O (1:1) Following 2-hour Passivation. 

 

After passivating the titanium surface with the stronger nitric acid solution (HNO3/H2O, 1:1) 

following 1-hour and 2-hours passivation times, the topography of the surfaces, as shown in the 

AFM 3D images (Figure 54 and Figure 55), are similar to the 30-minutes passivation with the 

same solution (maximum height deviation of approximately 0.4 µm).  This indicates that the 

ability of nitric acid to etch the titanium surface is limited beyond 30-minutes of passivation. 
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3D AFM of Titanium Surface Passivated with H2O2/HNO3 (1:1) Following 1-hour Passivation 

 

 

Figure 56 - 3D AFM Image of Titanium Alloy Surface Passivated with H2O2/HNO3 (1:1) Following 1-hour Passivation 

 

3D AFM of Titanium Surface Passivated with H2O2/HNO3 (1:1) Following 30-minutes 

Passivation 

 

 

Figure 57 - 3D AFM Image of Titanium Alloy Surface Passivated with H2O2/HNO3 (1:1) Following 30-minutes 
Passivation 
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The former two figures (Figure 56 and Figure 57) show the topography of the titanium surfaces 

passivated with the novel H2O2/HNO3 solution at passivation times of 1-hour, and 30-minutes 

respectively.  These AFM 3D images were omitted from the main results section as they show 

no substantial difference in topography compared to the 2-hours passivation time with the 

same solution.  Also, they fail to show the circular bumpy nanotexture seen on the AFM, and 

SEM image, for the 2-hours passivation time. 

 

8.2 RGD Peptide Immobilisation Results 

8.2.1 CLSM 

 

Figure 58 - Confocal Microscope Images of RGD Peptide Immobilisation on Control Discs A, B, E, F and FF-RGD 
Sample Discs C, D, G, and H. Peptide Immobilised Using Carbodiimide Coupling onto 
Passivated/Polymerised/Silanised Titanium Discs with 2-Hours Immobilisation Reaction Time (A-D) and 2.5-Hours 
Immobilisation Time (E-H). Green Fluorescence Emitted From FITC-Tagged RGD Peptide (Scale Bars Represent 100 
µm). 
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The previous image (Figure 58) of the peptide immobilisation result shows that the FF-RGD discs 

are comparable to the controls.  This indicates that the peptide immobilisation is near zero 

efficiency when the immobilisation time is 2-hours and beyond using the carbodiimide coupling 

strategy.  This could be attributed to an instability of the silane layer and/or excessive 

dissolution/degradation of the polymer layer in the DCM solvent, thus completely inhibiting the 

RGD peptide conjugation. 
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8.3 Statistical Analyses  

8.3.1 Passivation Results Statistical Analysis 

ANOVA Statistical Analysis for Contact Angle Between Raw, H2O2 (12h), H2O2 (24h), and 

HNO3/H2O (3:7, 30m) Passivation Solutions 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) Raw 3 227.99 76.00 96.39   

2) H2O2 12h 3 102.87 34.29 29.11   

3) H2O2 24h 3 56.60 18.87 5.97   

4) HNO3/H2O (3:7) 
30m 

3 213.44 71.15 104.80 
  

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 7017.22 3 2339.07  39.60 3.79939E-05 4.066 

Within Groups 472.54 8 59.07    

 
      

Total 7489.76 11     

F value of 39.60 is larger than the F critical of 4.066, indicating that the population means are 

different. 

 

 

 

 



 
 

201 
 

Tukey-Kramer Comparison Tables for Contact angle analysis between Raw, H2O2 (12h), H2O2 

(24h), and HNO3/H2O (3:7, 30m) Passivation Solutions 

Tukey-Kramer Comparison Table  
Total no. of samples 15 

Pooled Variance = MS from ANOVA 59.07 

Number of Groups 4 

Number of samples per group 3 

Num df (number of groups) 4 

Den df (total no. samples - df) 11 

Critical value of Studentized Range, Q 4.26 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1 vs 2 41.71 20.63 Different 

1 vs 3 57.13 20.63 Different 

1 vs 4 4.85 20.63 not different 

2 vs 3 15.42 20.63 not different 

2 vs 4 36.86 20.63 Different 

3 vs 4 52.28 20.63 Different 

 

Tukey-Kramer comparison analysis reveals that the Raw sample has a contact angle that is 

significantly greater than both hydrogen peroxide passivations (12-hour and 24-hour), but the 

same as HNO3/H2O (3:7) 30-minute passivation.  Also, both hydrogen peroxide passivations (12-

hour and 24-hour) are the same but both produce a significantly lower contact angle than the 

HNO3/H2O (3:7) 30-minute passivation solution.  In this test group, the hydrogen peroxide 

passivation (12-hours and 24-hours) yields a significantly lower contact angle, and therefore a 

more hydrophilic surface. 
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ANOVA Statistical Analysis for Contact Angle Between HNO3/H2O (1:1) and H2O2/HNO3 (1:1) 

Passivation Solutions Following 30-minutes, 1-hour and 2-hours Passivation Times 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) HNO3/Water 
(1:1) 30m 

3 225.23 75.08 0.01 

  

2) H2O2/HNO3 (1:1) 
30m 

3 143.83 47.94 8.83 

  

3) HNO3/Water 
(1:1) 1h 

3 209.33 69.78 65.77 

  

4) H2O2/HNO3 (1:1) 
1h 

3 129.60 43.20 67.57 
  

5) HNO3/Water 
(1:1) 2h 

3 218.94 72.98 18.58 

  

6) H2O2/HNO3 (1:1) 
2h 

3 106.06 35.35 16.43 

  

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 4456.52 5 891.30 30.18 2.12343E-06 3.11 

Within Groups 354.35 12 29.53    

 
      

Total 4810.87 17     

 

The F value of 30.18 is substantially greater than the F critical value of 3.11, indicating a 

difference between the sample populations. 
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Tukey-Kramer Comparison Tables for Contact angle analysis between HNO3/H2O (1:1) and 

H2O2/HNO3 (1:1) Passivation Solutions Following 30-minutes, 1-hour and 2-hours Passivation 

Times 

Tukey-Kramer Comparison Table  
Total no. of samples 18 

Pooled Variance = MS from ANOVA 29.53 

Number of Groups 6 

Number of samples per group 3 

Num df (number of groups) 6 

Den df (total no. samples - df) 12 

Critical value of Studentized Range, Q 4.75 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1) vs 2) 27.13 14.90 different 

1) vs 3) 5.30 14.90 not different 

1) vs 4) 31.88 14.90 different 

1) vs 5) 2.10 14.90 not different 

1) vs 6) 39.72 14.90 different 

2) vs 3) 21.83 14.90 different 

2) vs 4) 4.74 14.90 not different 

2) vs 5) 25.04 14.90 different 

2) vs 6) 12.59 14.90 not different 

3) vs 4) 26.58 14.90 different 

3) vs 5) 3.20 14.90 not different 

3) vs 6) 34.42 14.90 different 

4) vs 5) 29.78 14.90 different 

4) vs 6) 7.85 14.90 not different 

5) vs 6) 37.63 14.90 different 

 

Following each passivation time (30-minutes, 1-hour and 2-hours), the novel hydrogen 

peroxide/nitric acid solution yields a consistently lower contact angle than nitric acid 

passivation.  Also, the contact angles between all three passivation times for nitric acid is the 

same.  The same is also true for hydrogen peroxide/nitric acid passivation, with no difference 
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between the three passivation times however, the comparison between hydrogen 

peroxide/nitric acid 30-minutes and 2-hours yields an absolute difference (12.59) which is very 

close to the critical range of 14.90.  This indicates that the 2-hours passivation with hydrogen 

peroxide/nitric acid may give a lower contact angle than passivating for 30-minutes. 

 

ANOVA Statistical Analysis for Contact Angle Between H2O2 (12h), H2O2 (24h), and 

H2O2/HNO3 (1:1, 2h) Passivation Solutions 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) H2O2 12h 3 102.87 34.29 29.11   

2) H2O2 24h 3 56.60 18.87 5.97   

3) HNO3/H2O2 (1:1) 
2h 

3 106.06 35.35 16.43 

  

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 510.82 2 255.41 14.87 0.0047 5.14 

Within Groups 103.03 6 17.17    

 
      

Total 613.85 8     

A larger F value (14.87) than the F critical of 5.14 indicates a difference between the sample 

means. 
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Tukey-Kramer Comparison Tables for Contact angle analysis between H2O2 (12h), H2O2 (24h), 

and H2O2/HNO3 (1:1, 2h) Passivation Solutions 

Tukey-Kramer Comparison Table  
Total no. of samples 9 

Pooled Variance = MS from ANOVA 17.17 

Number of Groups 3 

Number of samples per group 3 

Num df (number of groups) 3 

Den df (total no. samples - df) 6 

Critical value of Studentized Range, Q 4.34 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1) vs 2) 15.42 10.38 different 

1) vs 3) 1.06 10.38 not different 

2) vs 3) 16.49 10.38 different 

 

The Tukey-Kramer comparison reveals that that the novel hydrogen peroxide/nitric acid solution 

(at 2-hours passivation) yields a contact angle which is similar to that of hydrogen peroxide alone 

for 12-hours, but achieved 10-hours faster.  This shows the industry scale-up advantages of this 

novel passivating solution to yield a very hydrophilic titanium surface quickly, easily and cheaply. 
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ANOVA Analysis of Reproducibility for HNO3/H2O (1:1) at 30-minute, 1-hour, and 2-hours 

Passivation Times (3 batches of discs analysed for each passivation time) 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) 30m Batch 1 4 303.91 75.98 16.33   

2) 30m Batch 2 4 296.39 74.10 7.37   

3) 30m Batch 3 4 300.53 75.13 17.07   

4) 1h Batch 1 4 281.91 70.48 7.71   

5) 1h Batch 2 4 267.12 66.78 379.83   

6) 1h Batch 3 4 288.21 72.05 46.55   

7) 2h batch 1 4 283.67 70.92 8.93   

8) 2h batch 2 4 280.98 70.25 26.93   

9) 2h batch 3 4 311.02 77.76 86.61   

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 374.77 8 46.85 0.71 0.683876974 2.31 

Within Groups 1791.95 27 66.37    

 
      

Total 2166.71 35     

The F value of 0.71 obtained from ANOVA is less than the F critical, indicating that the population 

means are the same.  Passivating the titanium surface with nitric acid yields reproducible contact 

angles, although there are no differences in contact angles between the three passivation times. 
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ANOVA Analysis of Reproducibility for the novel H2O2/HNO3 (1:1) at 30-minute, 1-hour, and 

2-hours passivation times (3 batches of discs analysed for each passivation time) 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) 30m Batch 1 4 181.89 45.47 15.32   

2) 30m Batch 2 4 188.66 47.17 51.51   

3) 30m Batch 3 4 204.70 51.18 6.00   

4) 1h Batch 1 4 164.56 41.14 185.08   

5) 1h Batch 2 4 164.79 41.20 47.40   

6) 1h Batch 3 4 189.01 47.25 67.05   

7) 2h batch 1 4 143.38 35.85 90.11   

8) 2h batch 2 4 126.74 31.69 23.50   

9) 2h batch 3 4 153.71 38.43 32.79   

       

       

ANOVA       

Source of Variation SS Df MS F P-value F crit 

Between Groups 1234.92 8 154.36 2.68 0.026281862 2.31 

Within Groups 1556.28 27 57.64    

 
      

Total 2791.20 35     

The F value of 2.68 is greater than the F critical, indicating a difference between the population 

means. 
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Tukey-Kramer Comparison Table for Analysis of Reproducibility for the novel H2O2/HNO3 (1:1) at 

30-minute, 1-hour, and 2-hours passivation times 

Tukey-Kramer Comparison Table  
Total no. of samples 36 

Pooled Variance = MS from ANOVA 57.64 

Number of Groups 9 

Number of samples per group 4 

Num df (number of groups) 9 

Den df (total no. samples - df) 27 

Critical value of Studentized Range, Q 4.76 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1) vs 2) 1.69 18.07 not different 

1) vs 3) 5.70 18.07 not different 

1) vs 4) 4.33 18.07 not different 

1) vs 5) 4.28 18.07 not different 

1) vs 6) 1.78 18.07 not different 

1) vs 7) 9.63 18.07 not different 

1) vs 8) 13.79 18.07 not different 

1) vs 9) 7.05 18.07 not different 

2) vs 3) 4.01 18.07 not different 

2) vs 4) 6.02 18.07 not different 

2) vs 5) 5.97 18.07 not different 

2) vs 6) 0.09 18.07 not different 

2) vs 7) 11.32 18.07 not different 

2) vs 8) 15.48 18.07 not different 

2) vs 9) 8.74 18.07 not different 

3) vs 4) 10.04 18.07 not different 

3) vs 5) 9.98 18.07 not different 

3) vs 6) 3.92 18.07 not different 

3) vs 7) 15.33 18.07 not different 

3) vs 8) 19.49 18.07 different 

3) vs 9) 12.75 18.07 not different 

4) vs 5) 0.06 18.07 not different 

4)  vs 6) 6.11 18.07 not different 

4) vs 7) 5.30 18.07 not different 

4) vs 8) 9.46 18.07 not different 

4) vs 9) 2.71 18.07 not different 



 
 

209 
 

5) vs 6) 6.05 18.07 not different 

5) vs 7) 5.35 18.07 not different 

5) vs 8) 9.51 18.07 not different 

5) vs 9) 2.77 18.07 not different 

6) vs 7) 11.41 18.07 not different 

6) vs 8) 15.57 18.07 not different 

6) vs 9) 8.83 18.07 not different 

7) vs 8) 4.16 18.07 not different 

7) vs 9) 2.58 18.07 not different 

8) vs 9) 6.74 18.07 not different 

 

Tukey-Kramer comparison reveals that the contact angles between the batches of all three 

passivation times are the same, indicating that the contact angle results from passivation using 

the novel hydrogen peroxide/nitric acid solution is reproducible. 
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8.3.2 Polymerisation Results Statistical Analysis 

ANOVA Statistical Analysis of Contact Angle between Raw, Raw/Polymerised, Passivated, 

and Passivated/Polymerised titanium samples (Passivated and Passivated/Polymerised 

samples are both passivated using novel H2O2/HNO3 (1:1) 2-hours solution) 

 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) Raw 3 227.99 76.00 96.35   

2) Raw/Polymerised 3 151.71 50.57 28.96   

3) Passivated 3 106.06 35.35 16.43   

4) Passivated/ 
Polymerised 

3 122.57 40.86 34.53 

  

       

       

ANOVA       

Source of Variation SS df MS F P-value 
F 

crit 

Between Groups 2917.22 3 972.41 22.07 0.00032 4.07 

Within Groups 352.54 8 44.07    

 
      

Total 3269.76 11     

F value is greater than the F-crit value = Population means are different 
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Tukey-Kramer Comparison Tables for Analysis of Contact Angle between Raw, 

Raw/Polymerised, Passivated, and Passivated/Polymerised titanium samples (Passivated and 

Passivated/Polymerised samples are both passivated using novel H2O2/HNO3 (1:1) 2-hours 

solution) 

Tukey-Kramer Comparison Table  
Total no. of samples 12 

Pooled Variance = MS from ANOVA 44.07 

Number of Groups 4 

Number of samples per group 3 

Num df (number of groups) 4 

Den df (total no. samples - df) 8 

Critical value of Studentized Range, Q 4.53 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1 vs 2 25.43 17.36 different 

1 vs 3 40.64 17.36 different 

1 vs 4 35.14 17.36 different 

2 vs 3 15.22 17.36 not different 

2 vs 4 9.71 17.36 not different 

3 vs 4 5.50 17.36 not different 

 

Contact angle of the Raw sample surface is significantly higher than the Raw/Polymerised, 

Passivated and Passivated/Polymerised samples.  Tukey-Kramer comparison shows no 

significant difference in contact angles between the Raw/Polymerised, Passivated and 

Passivated/Polymerised samples.  Polymerisation of the Raw titanium yields a surface with 

hydrophilicity that is comparable to the Passivated surface.  Also, polymerisation of the 

Passivated surface does not further lower the contact angle, as the passivated surface is already 

very hydrophilic. 
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8.3.3 RGD Immobilisation Statistical Analysis 
 

ANOVA Analysis of Immobilised RGD Surface Area between Control and Fully-Functionalised 

RGD surfaces, Following RGD Immobilisation Times of 30-minutes, 60-minutes, and 90-

minutes  

Anova: Single 
Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) Control 
30m 2 21.10 10.55 159.42   

2) Control 
60m 2 70.61 35.31 55.66   

3) Control 
90m 2 305.31 152.65 225.55   

4) FF-RGD 
30m 2 6794.09 3397.05 86678.66   

5) FF-RGD 
60m 2 14437.95 7218.98 352824.36   

6) FF-RGD 
90m 2 5166.79 2583.39 449328.30   

       

       

ANOVA       

Source of 
Variation SS Df MS F 

P-
value 

F 
crit 

Between Groups 
80869426.63 5 16173885.33 109.13 8.34 

E-06 
4.39 

Within Groups 889271.95 6 148211.99    

 
      

Total 81758698.57 11     

F value is greater than the F-crit value = Population means are different 
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Tukey-Kramer Comparison Tables for Immobilised RGD Surface Area between Control and 

Fully-Functionalised RGD surfaces, Following RGD Immobilisation Times of 30-minutes, 60-

minutes, and 90-minutes  

Tukey-Kramer Comparison Table  
Total no. of samples 12 

Pooled Variance = MS from ANOVA 148211.99 

Number of Groups 6 

Number of samples per group 2 

Num df (number of groups) 6 

Den df (total no. samples - df) 6 

Critical value of Studentized Range, Q 5.63 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

Control 30m 
vs Control 

60m 

24.755 1532.622044 not different 

Control 30m 
vs Control 

90m 

142.103 1532.622044 not different 

Control 30m 
vs RGD 30m 

3386.495 1532.622044 different 

Control 30m 
vs RGD 60m 

7208.425 1532.622044 different 

Control 30m 
vs RGD 90m 

2572.844 1532.622044 different 

Control 60m 
vs Control 

90m 

117.348 1532.622044 not different 

Control 60m 
vs RGD 30m 

3361.741 1532.622044 different 

Control 60m 
vs RGD 60m 

7183.670 1532.622044 different 

Control 60m 
vs RGD 90m 

2548.089 1532.622044 different 

Control 90m 
vs RGD 30m 

3244.393 1532.622044 different 

Control 90m 
vs RGD 60m 

7066.322 1532.622044 different 

Control 90m 
vs RGD 90m 

2430.741 1532.622044 different 

RGD 30m vs 
RGD 60m 

3821.9295 1532.622044 different 
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RGD 30m vs 
RGD 90m 

813.6515 1532.622044 not different 

RGD 60m vs 
RGD 90m 

4635.581 1532.622044 different 

 

All three Control groups (30-minute, 60-minute and 90-minute RGD immobilisation time) show 

no difference in the surface area of immobilised RGD, corresponding to the fluorescence signal 

on the confocal microscope images. 

All Control groups are significantly different from all RGD immobilised groups.  Also, RGD 

immobilisation time of 60-minute shows significantly higher surface area of immobilised RGD 

than 30-minutes or 90-minutes of RGD immobilisation time. 

 

8.3.4 Bone Matrix Mineralisation Statistical Analysis 
 

ANOVA Analysis of Immobilised RGD Surface Area on Raw, Passivated, and FF-RGD sample 

surfaces 

 

Anova: Single Factor     
 

  

     
 

  

SUMMARY     
 

  

Groups Count Sum Average Variance    

1) Raw 3 177654 59218 7266943
3 

 

  

2) Passivated 3 167747 55915.67 1.18 E+08    

3) FF-RGD 3 464669 154889.6
7 

6.05 E+08  
  

     
 

  

     
 

  

ANOVA     
 

  

Source of Variation SS df MS F 
 

P-value 
F 

crit 

Between Groups 
18.96 
E+09 

2 94.80 
E+08 

35.73  0.0005 5.1
4 

Within Groups 
15.92 
E+08 

6 26.53 
E+07 

    

 
       

Total 
20.55 
E+09 

8      

F value is greater than the F-crit value = Population means are different 
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Tukey-Kramer Comparison tables of Immobilised RGD Surface Area on Raw, Passivated, and 

FF-RGD sample surfaces 

Tukey-Kramer Comparison Table  
Total no. of samples 9 

Pooled Variance = MS from ANOVA 265322084.9 

Number of Groups 3 

Number of samples per group 3 

Num df (number of groups) 3 

Den df (total no. samples - df) 6 

Critical value of Studentized Range, Q 4.34 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

Raw vs 
Passivated 

3302.33 40814.62 not different 

Raw vs FF-
RGD 

95671.67 40814.62 different 

Passivated 
vs FF-RGD 

98974.00 40814.62 different 

 

Surface area of immobilised RGD on confocal microscope images, is the same on both Raw and 

Passivated surfaces.  The FF-RGD surface shows significantly higher surface area of RGD 

immobilised, compared to the Raw and Passivated surfaces. 
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8.3.5 Antibacterial Testing Statistical Analysis 

Antibacterial analysis of Escherichia coli between Raw, Passivated, and Polymerised titanium 

disc samples (Passivated sample is passivated using H2O2/HNO3 (1:1) 2-hours) 

 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) Raw 6 15992.00 2665.33 8.87E05   

2) Passivated 6 9114.00 1519.00 2.05E05   

3) Polymerised 6 2252.00 375.33 31467.87   

       

       

ANOVA       

Source of Variation SS df MS F P-value 
F 

crit 

Between Groups 157.32E05 2 78.66E05 21.01 4.48E-05 3.68 

Within Groups 56.17E05 15 3.74E05    

 
      

Total 213.5E05 17     

F value is greater than the F-crit value = Population means are different 
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Tukey-Kramer Comparison Tables analysing Escherichia coli colonies between Raw, Passivated, 

and Polymerised titanium disc samples (Passivated sample is passivated using H2O2/HNO3 (1:1) 

2-hours) 

Tukey-Kramer Comparison Table  
Total no. of samples 18 

Pooled Variance = MS from ANOVA 3.74E05 

Number of Groups 3 

Number of samples per group 6 

Num df (number of groups) 3 

Den df (total no. samples - df) 15 

Critical value of Studentized Range, Q 3.67 

 

 

 

Tukey-Kramer analysis reveals that the Polymerised surface resists E. coli colonisation more so 

than the Passivated surface, following by the Raw titanium. 

 

 

 

 

 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1) vs 2) 1146.33 916.87 different 

1) vs 3) 2290.00 916.87 different 

2) vs 3) 1143.67 916.87 different 
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Antibacterial analysis of Staphylococcus aureus between Raw, Passivated, and Polymerised 

titanium disc samples (Passivated sample is passivated using H2O2/HNO3 (1:1) 2-hours) 

 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) Raw 6 18.38E03 3064.00 2.82E05   

2) Passivated 6 13.26E05 2210.33 7.55E05   

3) Polymerised 6 3508.00 584.67 9354.67   

       

       

ANOVA       

Source of Variation SS df MS F P-value 
F 

crit 

Between Groups 19.4E06 2 95.19E05 27.29 1.005E-05 3.68 

Within Groups 52.32E05 15 3.49E05    

 
      

Total 24.27E06 17     

F value is greater than the F-crit value = Population means are different 
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Tukey-Kramer Comparison Tables for analysis of Staphylococcus aureus colonies between Raw, 

Passivated, and Polymerised titanium disc samples (Passivated sample is passivated using 

H2O2/HNO3 (1:1) 2-hours) 

Tukey-Kramer Comparison Table  
Total no. of samples 18 

Pooled Variance = MS from ANOVA 3.49E05 

Number of Groups 3 

Number of samples per group 6 

Num df (number of groups) 3 

Den df (total no. samples - df) 15 

Critical value of Studentized Range, Q 3.67 

 

 

 

Tukey-Kramer comparison reveals no significant difference in S. aureus colonisation between 

the Raw and Passivated surfaces, only that the Polymerised surface performs significantly better 

than both the Raw and Passivated samples. 

 

 

 

 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1) vs 2) 853.67 884.87 not different 

1) vs 3) 2479.33 884.87 different 

2) vs 3) 1625.67 884.87 different 
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ANOVA analysis between E. coli and S. aureus colonies on Raw titanium sample 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) E. coli 6 1.60E04 2665.33 8.87E05   

2) S. aureus 6 1.84E04 3064.00 2.82E05   

       

       

ANOVA       

Source of Variation SS Df MS F P-value 
F 

crit 

Between Groups 47.68E04 1 47.68E04 0.82 0.39 4.96 

Within Groups 58.44E05 10 58.44E04    

       

Total 63.20E05 11         

F value is lower than the F-crit value = Population means are the same 

ANOVA analysis shows that the Raw surface performs equally against E. coli and S. aureus. 
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ANOVA analysis between E. coli and S. aureus colonies on Passivated titanium sample 

(Passivated sample is passivated with H2O2/HNO3 (1:1) 2-hours) 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) E. coli 6 9114.00 1519.00 20.51E04   

2) S. aureus 6 1.33E04 2210.33 75.52E04   

       

       

ANOVA       

Source of Variation SS Df MS F P-value 
F 

crit 

Between Groups 14.34E05 1 14.34E05 2.99 0.11 4.96 

Within Groups 48.02E05 10 48.02E04    

 
      

Total 62.35E05 11     

F value is lower than the F-crit value = Population means are the same 

ANOVA analysis reveals that the Passivated surface performs equally against E. coli and S. 

aureus, like the Raw sample surface. 
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ANOVA analysis between E. coli and S. aureus colonies on Polymerised titanium sample 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

1) E. coli 6 2252.00 375.33 31467.87   

2) S. aureus 6 3508.00 584.67 9354.67   

       

       

ANOVA       

Source of Variation SS df MS F P-value 
F 

crit 

Between Groups 13.15E04 1 13.15E04 6.44 0.03 4.96 

Within Groups 20.41E04 10 20411.27    

       

Total 33.56E04 11         

F value is greater than the F-crit value = Population means are different 

Tukey-Kramer Comparison Table  
Total no. of samples 12 

Pooled Variance = MS from ANOVA 20411.27 

Number of Groups 2 

Number of samples per group 6 

Num df (number of groups) 2 

Den df (total no. samples - df) 10 

Critical value of Studentized Range, Q 3.15 

 

 

 

ANOVA and Tukey-Kramer analyses reveal that the Polymerised sample performs significantly 

better on E. coli than S. aureus. 

 

Sample 
Comparisons 

Absolute 
Difference 

Critical 
Range 

Result 

1) vs 2) 209.333 183.7257 different 
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8.4 PrestoBlue Standard Curve 

 

Figure 59 - Standard Curve for PrestoBlue Cell Viability Reagent. Standard Curve Generated for Cell Concentrations 
86, 172, 344, 688, 1,375, 2,750, 5,500, 11,000, 22,000, 44,000, and 88,000 cells/ml. 

 

 

 

 

 

 

y = 0.0507x + 6.1420
R² = 0.9952

0

10

20

30

40

50

60

0 200 400 600 800 1000

R
el

at
iv

e 
Fl

u
o

re
sc

en
ce

 U
n

it
s 

(R
FU

)

Cell Concentration (cells/ml) x100

PrestoBlue Standard Curve



 
 

224 
 

9 References 
 

ABBINA, S., VAPPALA, S., KUMAR, P., SIREN, E. M. J., C. LA, C., ABBASI, U., BROOKSA, D. E. & 
KIZHAKKEDATHU, J. N. 2017. Hyperbranched polyglycerols: recent advances in synthesis, 
biocompatibility and biomedical applications. Journal of Materials Chemistry B, 5, 9249-9277. 
ACKART, W. B., CAMP, R. L., WHEELWRIGHT, W. L. & BYCK, J. S. 1975. Antimicrobial polymers. 
Journal of Biomedical Materials Research, 9, 55-68. 
ALBREKTSSON, T. & JOHANSSON, C. 2001. Osteoinduction, osteoconduction and 
osseointegration. European Spine Journal, 10, S96-S101. 
ALEXANDER, L. L. 2010. CME Accreditation Resource #9448:Healthcare-Associated Infections. 
Sacramento, California: CME Resource. 
ALFARSI, M. A., HAMLET, S. M. & IVANOVSKI, S. 2014. Titanium surface hydrophilicity 
modulates the human macrophage inflammatory cytokine response. Journal of biomedical 
materials research. Part A, 102, 60-7. 
ALTANKOV, G. & GROTH, T. H. 1994. Reorganization of substratum-bound fibronectin on 
hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials 
Science - Materials in Medicine, 5, 732-737. 
AMBARD, D. & SWIDER, P. 2006. A predictive mechano-biological model of the bone-implant 
healing. European Journal of Mechanics - A/Solids, 25, 927-937. 
ANSELME, K. 2000. Osteoblast adhesion on biomaterials. Biomaterials, 21, 667-681. 
ANSELME, K. & BIGERELLE, M. 2005. Topography effects of pure titanium substrates on human 
osteoblast long-term adhesion. Acta biomaterialia, 1, 211-22. 
ARIMA, Y. & IWATA, H. 2007. Effect of wettability and surface functional groups on protein 
adsorption and cell adhesion using well-defined mixed self-assembled monolayers. 
Biomaterials, 28, 3074-3082. 
ARKLES, B. 1977. Tailoring Surfaces with Silanes. CHEMTECH, 7, 766-778. 
ARKLES, B. 2014. Silane Coupling Agents: Connecting Across Boundaries [Online]. Morrisville, 
Pennsylvania: Gelest, Inc. Available: https://www.gelest.com/wp-content/uploads/Goods-PDF-
brochures-couplingagents.pdf [Accessed November 2014]. 
ASKARI, J. A., BUCKLEY, P. A., MOULD, A. P. & HUMPHRIES, M. J. 2009. Linking integrin 
conformation to function. Journal of Cell Science, 122, 165-170. 
ASTM. 2013. Standard Practice for Surface Preparation and Marking of Metallic Surgical 
Implants: ASTM F86-01 [Online]. West Conshohocken, Pennsylvania: ASTM International. 
Available: www.astm.org [Accessed January 26th 2013]. 
BACHEM. Cyclo(-Arg-Gly-Asp-D-Phe-Cys) acetate salt [Online]. Bachem. Available: 
http://shop.bachem.com/h-7226.html [Accessed 14th March 2012]. 
BARBER, T. A., HO, J. E., DE RANIERI, A., VIRDI, A. S., SUMNER, D. R. & HEALY, K. E. 2007. Peri-
implant bone formation and implant integration strength of peptide-modified p(AAM-co-
EG/AAC) interpenetrating polymer network-coated titanium implants. Journal of biomedical 
materials research. Part A, 80, 306-20. 
BELL, B. F., SCHULER, M., TOSATTI, S., TEXTOR, M., SCHWARTZ, Z. & BOYAN, B. D. 2011. 
Osteoblast response to titanium surfaces functionalized with extracellular matrix peptide 
biomimetics. Clinical oral implants research, 22, 865-72. 
BELLIS, S. L. 2011. Advantages of RGD peptides for directing cell association with biomaterials. 
Biomaterials, 32, 4205-10. 
BELLUCCI, M. C. & VOLONTERIO, A. 2012. Carbodiimides-Mediated Multi Component Synthesis 
of Biologically Relevant Structures. Organic Chemistry Insights, 4, 1-24. 

http://www.gelest.com/wp-content/uploads/Goods-PDF-brochures-couplingagents.pdf
http://www.gelest.com/wp-content/uploads/Goods-PDF-brochures-couplingagents.pdf
http://www.astm.org/
http://shop.bachem.com/h-7226.html


 
 

225 
 

BENOIT, D. S. & ANSETH, K. S. 2005. The effect on osteoblast function of colocalized RGD and 
PHSRN epitopes on PEG surfaces. Biomaterials, 26, 5209-20. 
BERESFORD, J. N., GRAVES, S. E. & SMOOTHY, C. A. 1993. Formation of mineralized nodules by 
bone derived cells in vitro: a model of bone formation? American Journal of Medical Genetics, 
45, 163-178. 
BESSHO, K., CARNES, D. L., CAVIN, R., CHEN, H.-Y. & ONG, J. L. 1999. BMP Stimulation of Bone 
Response Adjacent to Titanium Implants in vivo. Clinical oral implants research, 10, 212-218. 
BET, M. R., GOISSIS, G., VARGAS, S. & SELISTRE-DE-ARAUJO, H. S. 2003. Cell adhesion and 
cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and 
wettability. Biomaterials, 24, 131-137. 
BOGDANOWICH-KNIPP, S. J., CHAKRABARTI, S., WILLIAMS, T. D., DILLMAN, R. K. & SIAHAAN, T. 
J. 1999a. Solution stability of linear vs. cyclic RGD peptides. Journal of Peptide Research : 
official journal of The American Peptide Society, 53, 530-541. 
BOGDANOWICH-KNIPP, S. J., JOIS, D. S. S. & SIAHAAN, T. J. 1999b. The effect of conformation 
on the solution stability of linear vs cyclic RGD peptides. Journal of Peptide Research, 53, 523-
529. 
BORN, R., SCHARNWEBER, D., RÖßLER, S., STÖLZEL, M., THIEME, M., WOLF, C. & WORCH, H. 
1998. Surface analysis of Ti based biomaterials. Fresenius Journal of Analytical Chemistry, 361, 
697-700. 
BOWERS, K. T., KELLER, J. C., RANDOLPH, B. A., WICK, D. G. & MICHAELS, C. M. 1992. 
Optimization of Surface Micromorphology for Enhanced Osteoblast Responses in vitro. 
International Journal of Oral Maxillofacial Implants, 7, 302-310. 
BOYAN, B. D., LOHMANN, C. H., DEAN, D. D., SYLVIA, V. L., COCHRAN, D. L. & SCHWARTZ, Z. 
2001. Mechanisms involved in osteoblast response to implant surface morphology. Annual 
Review of Materials Research, 31, 357-371. 
BOYAN, B. D., LOSSDORFER, S., WANG, L., ZHAO, G., LOHMANN, C. H. & COCHRAN, D. L. 2003. 
Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough 
microtopographies. European Cells and Materials, 6, 22-27. 
BOYNE, P. & JONES, S. D. 2004. Demonstration of the Osseoinductive Effect of Bone 
Morphogenetic Protein within Endosseous Dental Implants. Implant Dentistry, 13, 180-184. 
BURAKOWSKA, E., QUINN, J. R., ZIMMERMAN, S. C. & HAAG, R. 2009. Cross-linked 
hyperbranched polyglycerols as hosts for selective binding of guest molecules. Journal of the 
American Chemical Society, 131, 10574-80. 
BUSER, D., SCHENK, R. K., STEINEMANN, S., FIORELLINI, J. P. & FOX, C. H. 1991. Influence of 
surface characteristics on bone integration of titanium implants: a histomorphometric study in 
miniature pigs. Journal of Biomedical Materials Research, 25, 889-902. 
CAVALCANTI-ADAM, E. A., MICOULET, A., BLUMMEL, J., AUERNHEIMER, J., KESSLER, H. & 
SPATZ, J. P. 2006. Lateral spacing of integrin ligands influences cell spreading and focal 
adhesion assembly. Journal of Cell Biology, 85, 219-224. 
CAVALCANTI-ADAM, E. A., VOLBERG, T., MICOULET, A., KESSLER, H., GEIGER, B. & SPATZ, J. P. 
2007. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. 
Biophysical Journal, 92, 2964-2974. 
CHANG, H.-I. & WANG, Y. 2011. Cell Responses to Surface and Architecture of Tissue 
Engineering Scaffolds. In: PROF. EBERLI, D. (ed.) Regenerative Medicine and Tissue Engineering 
- Cells and Biomaterials. InTech. 
CHANG, P.-I. 1981. Polymer implant materials with improved x ray opacity and 
biocompatibility. Biomaterials, 2, 151-155. 
CHARNLEY, M., TEXTOR, M. & ACIKGOZ, C. 2011. Designed polymer structures with 
antifouling–antimicrobial properties. Reactive and Functional Polymers, 71, 329-334. 



 
 

226 
 

CHRISTENSEN, G., BADDOUR, L., MADISON, B., PARISI, J., ABRAHAM, S., HASTY, D., LOWRANCE, 
J., JOSEPHS, J. & SIMPSON, W. 1990. Colony morphology of staphylococci on Memphis agar: 
phase variation of slime production, resistance to beta-lactam antibiotics, and virulence. The 
Journal of Infectious Diseases, 161, 1153-1169. 
CHUA, P. H., NEOH, K. G., KANG, E. T. & WANG, W. 2008. Surface functionalization of titanium 
with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast 
functions and inhibiting bacterial adhesion. Biomaterials, 29, 1412-1421. 
CIVANTOS, A., MARTÍNEZ-CAMPOS, E., RAMOS, V., ELVIRA, C., GALLARDO, A. & ABARRATEGI, 
A. 2017. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive 
Implants. ACS - Biomaterials Science and Engineering, 3, 1245-1261. 
COOK, A. D., HRKACH, J. S., GAO, N. N., JOHNSON, I. M., PAJVANI, U. B., CANNIZZARO, S. M. & 
LANGER, R. 1997. Characterization and  development of RGD-peptide-modified poly(lactic acid-
co-lysine) as an interactive, resorbable biomaterial. Journal of Biomedical Materials Research, 
35, 513-523. 
COOK, A. D., SAGERS, R. D. & PITT, W. G. 1993. Bacterial adhesion to Poly(HEMA)-Based 
Hydrogels. Journal of Biomedical Materials Research, 27, 119-126. 
COOPER, L. F. 2000. A role for surface topography in creating and maintaining bone at titanium 
endosseous implants. The Journal of Prosthetic Dentistry, 84, 522-534. 
COSTA E SILVA FILHO, F. & CONDE MENEZES, G. 2004. Osteoblasts attachment and adhesion: 
how bone cells fit fibronectin-coated surfaces. Materials Science and Engineering: C, 24, 637-
641. 
CURTIS, A. S. G., FORRESTER, J. V., MCINNES, C. & LAWRIE, F. 1983. Adhesion of cells to 
polystyrene surfaces. Journal of Cell Biology, 97, 1500-1506. 
DACULSIA, G., FELLAHA, B. H., MIRAMONDA, T. & DURAND, M. 2013. Osteoconduction, 
Osteogenicity, Osteoinduction, what are the fundamental properties for a smart bone 
substitutes. Innovation and Research in Biomedical Engineering, 34, 346-348. 
DANG, J. M. & LEONG, K. W. 2006. Natural polymers for gene delivery and tissue engineering. 
Advanced drug delivery reviews, 58, 487-99. 
DAVIES, J. E. 1998. Mechanisms of endosseous integration. International Journal of 
Prosthodontics, 11, 391-401. 
DE BOER, J., EL GHALBZOURI, A., D’AMORE, P., HIRSCHI, K., ROUWKEMA, J., VAN BEZOOIJEN, R. 
& KARPERIEN, M. 2008. Cellular Signaling. In: VAN BLITTERSWIJK, C., PETER THOMSEN, ANDERS 
LINDAHL, JEFFREY HUBBELL, DAVID F. WILLIAMS, RANIERI CANCEDDA, BRUIJN, J. D. D. & 
SOHIER, J. (eds.) Tissue Engineering. Elsevier Inc. 
DEE, K. C., ANDERSEN, T. T. & BIZIOS, R. 1998. Design and function of novel osteoblast-
adhesive peptides for chemical modification of biomaterials. Journal of Biomedical Materials 
Research, 40, 371-377. 
DEPPRICH, R., OMMERBORN, M., ZIPPRICH, H., NAUJOKS, C., HANDSCHEL, J., WIESMANN, H. 
P., KUBLER, N. R. & MEYER, U. 2008. Behavior of osteoblastic cells cultured on titanium and 
structured zirconia surfaces. Head & face medicine, 4, 29. 
DESAI, N. P., HOSSAINY, S. F. A. & HUBBELL, J. A. 1992. Surface-immobilized polyethylene oxide 
for bacterial repellence. Biomaterials, 13, 417-420. 
DETTIN, M., CONCONI, M. T., GAMBARETTO, R., PASQUATO, A., FOLIN, M., DI BELLO, C. & 
PARNIGOTTO, P. P. 2002. Novel osteoblast-adhesive peptides for dental/orthopedic 
biomaterials. Journal of Biomedical Materials Research, 60, 466-471. 
DRELICH, J., CHIBOWSKI, E., MENG, D. D. & TERPILOWSKI, K. 2011. Hydrophilic and 
superhydrophilic surfaces and materials. Soft Matter, 7, 9804. 
DUNCAN, R. & IZZO, L. 2005. Dendrimer biocompatibility and toxicity. Advanced drug delivery 
reviews, 57, 2215-37. 



 
 

227 
 

ELLINGSEN, J. E. 1991. A study on the mechanism of protein adsorption to TiO2. Biomaterials, 
12, 593-596. 
ELMENGAARD, B., BECHTOLD, J. E. & SOBALLE, K. 2005. In vivo effects of RGD-coated titanium 
implants inserted in two bone-gap models. Journal of Biomedical Materials Research A, 75, 
249-255. 
ESPOSITO, S. & LEONE, S. 2008. Prosthetic joint infections: microbiology, diagnosis, 
management and prevention. International journal of antimicrobial agents, 32, 287-93. 
ESPOSTITO, M., LAUSMAA, J., HIRSCH, J. M. & THOMSEN, P. 1999. Surface analysis of failed 
oral titanium implants. Journal of Biomedical Materials Research, 48, 559=568. 
GADELMAWLA, E. S., KOURA, M. M., MAKSOUD, T. M. A., ELEWA, I. M. & SOLIMAN, H. H. 2002. 
Roughness Parameters. Journal of Materials Processing Technology, 123, 133-145. 
GALANAKOS, S. P., PAPADAKIS, S. A., KATEROS, K., PAPAKOSTAS, I. & MACHERAS, G. 2009. 
Biofilm and orthopaedic practice: the world of microbes in a world of implants. Orthopaedics 
and Trauma, 23, 175-179. 
GARCIA, A. J. 2005. Get a grip: integrins in cell-biomaterial interactions. Biomaterials, 26, 7525-
7529. 
GARCIA, A. J. & REYES, C. D. 2005. Bio-adhesive Surfaces to Promote Osteoblast Differentiation 
and Bone Formation. Journal of Dental Research, 84, 407-413. 
GARCIA, A. J., VEGA, M. D. & BOETTIGER, D. 1999. Modulation of cell proliferation and 
differentiation through substrate-dependent changes  in fibronectin conformation. Molecular 
Biology of the Cell, 10, 785-798. 
GERMANIER, Y., TOSATTI, S., BROGGINI, N., TEXTOR, M. & BUSER, D. 2006. Enhanced Bone 
Apposition Around Biofunctionalized Sandblasted and Acid-Etched Titanium Implant Surfaces. 
A Histomorphometric Study in Miniature Pigs. Clinical oral implants research, 17, 251-257. 
GODDARD, J. M. & HOTCHKISS, J. H. 2007. Polymer surface modification for the attachment of 
bioactive compounds. Progress in Polymer Science, 32, 698-725. 
GOGRA, A. B., YAO, J., SANDY, E. H., ZHENG, S., ZARAY, G., KOROMA, B. M. & HUI, Z. 2010. 
Cell surface hydrophobicity (CSH) of Escherichia coli, Staphylococcus aureus 
and Aspergillus niger and the biodegradation of Diethyl Phthalate (DEP) via Microcalorimetry. 
Journal of American Science, 6, 78-88. 
GOMES, M., AZEVEDO, H., MALAFAYA, P., SILVA, S., OLIVEIRA, J., SILVA, G., SOUSA, R., MANO, 
J. & REIS, R. 2008. Natural Polymers in Tissue Engineering Applications. In: VAN BLITTERSWIJK, 
C., PETER THOMSEN, ANDERS LINDAHL, JEFFREY HUBBELL, DAVID F. WILLIAMS, RANIERI 
CANCEDDA, BRUIJN, J. D. D. & SOHIER, J. (eds.) Tissue Engineering. Elsevier Inc. 
GOODMAN, S. B., YAO, Z., KEENEY, M. & YANG, F. 2013. The future of biologic coatings for 
orthopaedic implants. Biomaterials, 34, 3174-3183. 
GRINNELL, F. & FELD, M. K. 1982. Fibronectin adsorption on hydrophilic and hydrophobic 
surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing 
medium. Journal of Biological Chemistry, 257, 4888-4893. 
GRONTHOS, S., SIMMONS, P. J., GRAVES, S. E. & ROBEY, P. G. 2001. Integrin-Mediated 
Interactions Between Human Bone Marrow Stromal Precursor Cells and the Extracellular 
Matrix. Bone, 28, 174-181. 
GROTH, T., ALTANKOV, G., KOSTADINOVA, A., KRASTEVA, N., ALBRECHT, W. & PAUL, D. 1999. 
Altered vitronectin receptor (αv integrin) function in fibroblasts adhering on hydrophobic 
glass. Journal of Biomedical Materials Research, 44, 341-351. 
HAHN, E. M., ESTRADA-ORTIZ, N., HAN, J., FERREIRA, V. F. C., KAPP, T. G., CORREIA, J. D. G., 
CASINI, A. & KÜHN, F. E. 2017. Functionalization of Ruthenium(II) Terpyridine Complexes with 
Cyclic RGD Peptides To Target Integrin Receptors in Cancer Cells. European Journal of Inorganic 
Chemistry, 2017, 1667-1672. 



 
 

228 
 

HAIMOV, H., YOSUPOV, N., PINCHASOV, G. & JUODZBALYS, G. 2017. Bone Morphogenetic 
Protein Coating on Titanium Implant Surface: a Systematic Review. Journal of Oral and 
Maxillofacial Research, 8, e1. 
HALL-STOODLEY, L., COSTERTON, J. W. & STOODLEY, P. 2004. Bacterial biofilms: from the 
Natural environment to infectious diseases. Nature Reviews Microbiology, 2, 95-108. 
HAMADI, F., LATRACHE, H., ZAHIR, H., ELGHMARI, A., TIMINOUNI, M. & ELLOUALI, M. 2008. 
THE RELATION BETWEEN ESCHERICHIA COLI SURFACE FUNCTIONAL GROUPS’ COMPOSITION 
AND THEIR PHYSICOCHEMICAL PROPERTIES. Brazilian Journal of Microbiology, 39, 10-15. 
HAMLET, S., ALFARSI, M., GEORGE, R. & IVANOVSKI, S. 2012. The effect of hydrophilic titanium 
surface modification on macrophage inflammatory cytokine gene expression. Clinical oral 
implants research, 23, 584-90. 
HAN, D. K., PARK, K. D. & KIM, Y. H. 1998. Blood compatible polymers. Journal of Biomaterials 
Science, Polymer Edition, 9, 163-174. 
HANAWA, T. 2011. A comprehensive review of techniques for biofunctionalization of titanium. 
Journal of periodontal & implant science, 41, 263-72. 
HANAWA, T. & OTA, M. 1991. Calcium phosphate naturally formed on titanium in electrolyte 
solution. Biomaterials, 12, 767-774. 
HANAWA, T. & OTA, M. 1992. Characterization of surface film formed on titanium in 
electrolyte using XPS. Applied Surface Science, 55, 269-276. 
HARRIS, L. G., TOSATTI, S., WIELAND, M., TEXTOR, M. & RICHARDS, R. G. 2004. Staphylococcus 
aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-
functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials, 25, 4135-
4148. 
HARWOOD, P. J. & GIANNOUDIS, P. V. 2005. Application of Bone Morphogenetic Proteins in 
Orthopaedic Practice: Their Efficacy and Side Effects. Expert Opinion on Drug Safety, 4, 75-89. 
HAUBNER, R., GRATIAS, R., DIEFENBACH, B., GOODMAN, S. L., JONCZYK, A. & KESSLER, H. 
1996a. Structural and functional aspect of RGD-containing cyclic pentapeptides as highly 
potent and selective integrin avb3 antagonist. Journal of the American Chemical Society, 118, 
7461-7472. 
HAUBNER, R., SCHMITT, W., HOLZEMANN, G., GOODMAN, S. L., JONCZYK, A. & KESSLER, H. 
1996b. Cyclic RGD peptides containing b-turn mimetics. Journal of the American Chemical 
Society, 118, 7881-7891. 
HEALY, K. E. & DUCHEYNE, P. 1992. The mechanisms of passive dissolution of titanium in a 
model physiological environment. Journal of Biomedical Materials Research, 26, 319-338. 
HEALY, K. E., REZANIA, A. & STILE, R. A. 1999. Designing biomaterials to direct biological 
responses. Annals of the New York Academy of Science, 875, 24-35. 
HELLER, M., KUMAR, V. V., PABST, A., BRIEGER, J., AL-NAWAS, B. & KÄMMERER, P. W. 2018. 
Osseous response on linear and cyclic RGD-peptides immobilized on titanium surfaces in vitro 
and in vivo. Journal of Biomedical Materials Research Part A, 106, 419-427. 
HERMANSON, G. T. 2013. Fluorescent Probes. In: HERMANSON, G. T. (ed.) Bioconjugate 
Techniques. 3rd ed.: Elsevier - Academic Press. 
HERSEL, U., DAHMEN, C. & KESSLER, H. 2003. RGD modified polymers: biomaterials for 
stimulated cell adhesion and beyond. Biomaterials, 24, 4385-4415. 
HORBETT, T. A. & SCHWAY, M. B. 1988. Correlations between mouse 3T3 cell spreading and 
serum fibronectin adsorption on glass and hydroxyethylmethacrylate- ethylmethacrylate 
copolymers. Journal of Biomedical Materials Research, 22, 763-793. 
HOSSAIN, M. M. & GAO, W. 2008. How is the Surface Treatments Influence on the Roughness 
of Biocompatibility? Trends in Biomaterials  & Artificial Organs, 22, 144-157. 
HUANG, H., ZHAO, Y., LIU, Z., ZHANG, Y., ZHANG, H., FU, T. & MA, X. 2003. Enhanced 
osteoblast functions on RGD immobilized surface. Journal of Oral Implantology, 29, 73-79. 



 
 

229 
 

HUANG, W. F., RAGHUNATH, P. & LIN, M. C. 2011. Computational study on the reactions of 
H2O2 on TiO2 anatase (101) and rutile (110) surfaces. Journal of computational chemistry, 32, 
1065-81. 
HULSHOFF, J. E., VAN DIJK, K., VAN DER WAERDEN, J. P., WOLKE, J. G., GINSEL, L. A. & JANSEN, 
J. A. 1995. Biological Evaluation of the Effect of Magnetron Sputtered Ca/P Coatings on 
Osteoblast-Like Cells in vitro. Journal of Biomedical Materials Research, 29, 967-975. 
HYZY, S. L., OLIVARES-NAVARRETE, R., ORTMAN, S., BOYAN, B. D. & SCHWARTZ, Z. 2017. Bone 
Morphogenetic Protein 2 Alters Osteogenesis and Anti-Inflammatory Profiles of Mesenchymal 
Stem Cells Induced by Microtextured Titanium In Vitro. Tissue Engineering Part A, 23, 1132-
1141. 
INCHINGOLO, F., BALLINI, A., CAGIANO, R., INCHINGOLO, A., SERAFINI, M., DE BENEDITTIS, M., 
CORTELAZZI, R., TATULLO, M., MARRELLI, M. & INCHINGOLO, A. 2015. Immediately loaded 
dental implants bioactivated with platelet-rich plasma (PRP) placed in maxillary and 
mandibular region. Clinical Therapeutics, 166, e146-152. 
JI, W., HAN, P., ZHAO, C., JIANG, Y. & ZHANG, X. 2008. Increased osteoblast adhesion on 
nanophase Ti6Al4V. Science Bulletin, 53, 1757-1762. 
JUNG, H., KWAK, B., YANG, H. S., TAE, G., KIM, J.-S. & SHIN, K. 2008. Attachment of cells to 
poly(styrene-co-acrylic acid) thin films with various charge densities. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 313-314, 562-566. 
KAINTHAN, R. K., HESTER, S. R., LEVIN, E., DEVINE, D. V. & BROOKS, D. E. 2007. In vitro 
biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials, 28, 
4581-90. 
KAINTHAN, R. K., MULIAWAN, E. B., HATZIKIRIAKOS, S. G. & BROOKS, D. E. 2006. Synthesis, 
Characterization, and Viscoelastic Properties of High Molecular Weight Hyperbranched 
Polyglycerols. Macromolecules, 39, 7708-7717. 
KANTLEHNER, M., SCHAFFNER, P., FINSINGER, D., MEYER, J., JONCZYK, A., DIEFENBACH, B., 
NIES, B., GÜNTER HÖLZEMANN, GOODMAN, S. L. & KESSLER, H. 2000. Surface Coating with 
Cyclic RGD Peptides Stimulates Osteoblast Adhesion and Proliferation as well as Bone 
Formation. Chembiochem : a European journal of chemical biology, 1, 107-114. 
KESELOWSKY, B. G., COLLARD, D. M. & GARCIA, A. J. 2005. Integrin binding specificity regulates 
biomaterial surface chemistry effects on cell differentiation. Proceedings of the National 
Academy of Sciences of the United States of America, 102, 5953-7. 
KESELOWSKY, B. G., COLLARD, D. M. & GARCıA, A. J. 2003. Surface chemistry modulates 
fibronectin conformation and directs integrin binding and specificity to control cell adhesion. 
Journal of Biomedical Materials Research Part A, 66A, 247-259. 
KETONIS, C., PARVIZI, J., ADAMS, C. S., SHAPIRO, I. M. & HICKOK, N. J. 2009. Topographic 
Features Retained after Antibiotic Modification of Ti Alloy Surfaces: Retention of Topography 
with Attachment of Antibiotics. Clinical orthopaedics and related research, 467, 1678-1687. 
KHORANA, H. G. 1953. The Chemistry of Carbodiimides. Chemical Reviews, 53, 145-166. 
KIESWETTER, K., SCHWARTZ, Z., DEAN, D. D. & BOYAN, B. D. 1996a. THE ROLE OF IMPLANT 
SURFACE CHARACTERISTICS IN THE HEALING OF BONE. Critical Reviews in Oral Biology and 
Medicine, 7, 329-345. 
KIESWETTER, K., SCHWARTZ, Z., HUMMERT, T. W., COCHRAN, D. L., SIMPSON, J. & DEAN, D. D. 
1996b. Surface roughness modulates the local production of growth factors and cytokines by 
osteoblast-like MG-63 cells. Journal of Biomedical Materials Research, 32, 55-63. 
KLOKKEVOLD, P. R., NISHIMURA, R. D., ADACHI, M. & CAPUTO, A. 1997. Osseointegration 
enhanced by chemical etching of the titanium surface: a torque removal study in the rabbit. 
Clinical oral implants research, 8, 442-447. 
KOHNEN, W. & JANSEN, B. 1995. Polymer Materials for the Prevention of Catheter-related 
Infections. Zentralbl Bakteriol, 283, 175-186. 



 
 

230 
 

KULKARNI, M., SCHMUKI, P., MAZARE, A. & IGLIC, A. 2014. Biomaterial Surface Modification Of 
Titanium and Titanium Alloys for Medical Applications. In: SEIFALIAN, A., MEL, A. D. & 
KALASKAR, D. M. (eds.) Nanomedicine. UK: One Central Press (OCP). 
KUTSEVLYAK, V. I., STARIKOVA, S. L., STARIKOV, V. V., MAMALIS, A. G., LAVRYNENKO, S. N. & 
RAMSDEN, J. J. 2008. Influence of Implant Surface Modification on Integration with Bone 
Tissue. Journal of Biological Physics and Chemistry, 8, 147-150. 
KUUSELA, P., VARTIO, T., VUENTO, M. & MYHRE, E. B. 1985. Attachment of staphylococci and 
streptococci on fibronectin, fibronectin fragments, and fibrinogen bound to a solid phase. 
Infection and Immunity, 50, 77-81. 
KUZYK, P. R. T. & SCHEMITSCH, E. H. 2011. The basic science of peri-implant bone healing. 
Indian Journal of Orthopaedics, 45, 108-115. 
LARSSON, C., THOMSEN, P., LAUSMAA, J., RODAHL, M., KASEMO, B. & ERICSON, L. E. 1994. 
Bone response to surface modified titanium implants: Studies on electropolished implants with 
different oxide thicknesses and morphology. Biomaterials, 15, 1062-1074. 
LAUSMAA, J., KASEMO, B., ROLANDER, U., BJURSTEN, L. M., ERICSON, L. E., ROSANDER, L. & 
THOMSEN, P. 1988. Preparation, surface spectroscopic and electron microscopic 
characterization of titanium implant materials. In: RATNER, B. D. (ed.) Surface Characterization 
of Biomaterials. Amsterdam: Elsevier Science. 
LEE, J. H., JUNG, H. W., KANG, I. K. & LEE, H. B. 1994. Cell behaviour on polymer surfaces with 
different functional groups. Biomaterials, 15, 705-711. 
LEE, J. H., PARK, J. W. & LEE, H. B. 1991. Cell adhesion and growth on polymer surfaces with 
hydroxyl groups prepared by water vapour plasma treatment. Biomaterials, 12, 443-448. 
LEE, Y. J., CUI, D. Z., JEON, H. R., CHUNG, H. J., PARK, Y. J., KIM, O. S. & KIM, Y. J. 2012. Surface 
characteristics of thermally treated titanium surfaces. Journal of periodontal & implant science, 
42, 81-87. 
LIAN, J. B. & STEIN, G. S. 1992. Concepts of osteoblast growth and differentiation: Basis for 
modulation of bone cell development and tissue formation. Critical Reviews in Oral Biology 
and Medicine, 3, 269-305. 
LIEB, E., HACKER, M., TESSMAR, J., KUNZ-SCHUGHART, L. A., FIEDLER, J., DAHMEN, C., HERSEL, 
U., KESSLER, H., SCHULZ, M. B. & GOPFERICH, A. 2005. Mediating specific cell adhesion to low-
adhesive diblock copolymers by instant modification with cyclic RGD peptides. Biomaterials, 
26, 2333-41. 
LISKAMP, R. M. J., RIJKERS, D. T. S. & BAKKER, S. E. 2008. Bioactive Macrocyclic Peptides and 
Peptide Mimics. In: DIEDERICH F., S. P. J., TYKWINSKI R.R. (ed.) Modern Supramolecular 
Chemistry: Strategies for Macrocycle Synthesis. Weinheim, Germany: WILEY-VCH Verlag GmbH 
& Co. KGaA. 
LIU, C., XIA, Z. & CZERNUSZKA, J. T. 2007a. Design and Development of Three-Dimensional 
Scaffolds for Tissue Engineering. Chemical Engineering Research and Design, 85, 1051-1064. 
LIU, X., CHU, P. & DING, C. 2004. Surface modification of titanium, titanium alloys, and related 
materials for biomedical applications. Materials Science and Engineering: R: Reports, 47, 49-
121. 
LIU, X., LIM, J. Y., DONAHUE, H. J., DHURJATI, R., MASTRO, A. M. & VOGLER, E. A. 2007b. 
Influence of substratum surface chemistry/energy and topography on the human fetal 
osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro. 
Biomaterials, 28, 4535-4550. 
LIU, Y., DE GROOT, K. & HUNZIKER, E. B. 2005. BMP-2 liberated from biomimetic implant 
coatings induces and sustains direct ossification in an ectopic rat model. Bone, 36, 745-57. 
LOHMANN, C. H., BONEWALD, L. F., SISK, M. A., SYLVIA, V. L., COCHRAN, D. L. & DEAN, D. D. 
2000. Maturation state determines the response of osteogenic cells to surface roughness and 
1,25-dihydroxyvitamin D3. Journal of Bone and Mineral Research, 15, 1169-1180. 



 
 

231 
 

LORENZETTI, M., DOGSA, I., STOSICKI, T., STOPAR, D., KALIN, M., KOBE, S. & NOVAK, S. 2015. 
The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS 
applied materials & interfaces, 7, 1644-51. 
MABILLEAU, G., BOURDON, S., JOLY-GUILLOU, M. L., FILMON, R., BASLE, M. F. & CHAPPARD, D. 
2006. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of 
commercially pure titanium. Acta biomaterialia, 2, 121-9. 
MADDIKERI, R. R., TOSATTI, S., SCHULER, M., CHESSARI, S., TEXTOR, M., RICHARDS, R. G. & 
HARRIS, L. G. 2008. Reduced medical infection related bacterial strains adhesion on bioactive 
RGD modified titanium surfaces: a first step toward cell selective surfaces. Journal of 
Biomedical Materials Research, 84A, 425-435. 
MALAFAYA, P. B., SILVA, G. A. & REIS, R. L. 2007. Natural-origin polymers as carriers and 
scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced drug 
delivery reviews, 59, 207-33. 
MANDRACCI, P., MUSSANO, F., RIVOLO, P. & CAROSSA, S. 2016. Surface Treatments and 
Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in 
Dental Implantology. Coatings, 6, 7. 
MANGRAM, A. J. M., HORAN, T. C., PEARSON, M. L. M., SILVER, L. C. & JARVIS, W. R. M. 1999. 
Guideline for Prevention of Surgical Site Infection. American Journal of Infection Control, 27, 
97-134. 
MANJAIAH, M. & LAUBSCHER, R. F. 2017. A review of the surface modifications of titanium 
alloys for biomedical applications. Materiali in tehnologije, 51, 181-193. 
MANTE, F. K., LITTLE, K., MANTE, M. O., RAWLE, C. & BARAN, G. R. 2004. Oxidation of 
Titanium, RGD Peptide Attachment, and Matrix Mineralization of Rat Bone Marrow Stromal 
Cells. Journal of Oral Implantology, 30, 343-349. 
MARCO, F., MILENA, F., GIANLUCA, G. & VITTORIA, O. 2005. Peri-implant osteogenesis in 
health and osteoporosis. Micron, 36, 630-44. 
MARTIN, J. Y., SCHWARTZ, Z., HUMMERT, T. W., SCHRAUB, D. M., SIMPSON, J. & LANKFORD JR, 
J. 1995. Effect of Titanium Surface Roughness on Proliferation, Differentiation, and Protein 
Synthesis of Human Osteoblast-Like Cells (MG63). Journal of Biomedical Materials Research, 
29, 389-401. 
MASUDA, T., YLIHEIKKILA, P. K., FELTON, D. A. & COOPER, L. F. 1998. Generalizations Regarding 
the Process and Phenomenon of Osseointegration. Part I. In vivo Studies. The International 
Journal of Oral Maxillofacial Implants, 13, 17-29. 
MATTSON, G., CONKLIN, E., DESAI, S., NIELANDER, G., SAVAGE, M. D. & MORGENSEN, S. 1993. 
A practical approach to crosslinking. Molecular Biology Reports, 17, 167-183. 
MCCARTHY, A. D., UEMURA, T., ETCHEVERRY, S. B. & CORTIZO, A. M. 2004. Advanced glycation 
endproducts interefere with integrin-mediated osteoblastic attachment to a type-I collagen 
matrix. The international journal of biochemistry & cell biology, 36, 840-8. 
MENDONCA, G., MENDONCA, D. B., ARAGAO, F. J. & COOPER, L. F. 2008. Advancing dental 
implant surface technology--from micron- to nanotopography. Biomaterials, 29, 3822-35. 
MLYNARCZYK, D. T., KOCKI, T. & GOSLINSKI, T. 2017. Dendrimer Structure Diversity and 
Tailorability as a Way to Fight Infectious Diseases. In: PROF SEEHRA, M. S. (ed.) Nanostructured 
Materials - Fabrication to Applications. InTechOpen. 
MONSEES, T. K., BARTH, K., TIPPELT, S., HEIDEL, K., GORBUNOV, A., POMPE, W. & FUNK, R. H. 
2005. Effects of different titanium alloys and nanosize surface patterning on adhesion, 
differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs, 180, 81-95. 
MONTALBETTI, C. A. G. N. & FALQUE, V. 2005. Amide bond formation and peptide coupling. 
Tetrahedron, 61, 10827-10852. 
MONTANARO, L., CAMPOCCIA, D. & ARCIOLA, C. R. 2007. Advancements in molecular 
epidemiology of implant infections and future perspectives. Biomaterials, 28, 5155-68. 



 
 

232 
 

MOORE, D. 2011. Fracture Healing [Online]. Available: http://www.orthobullets.com/basic-
science/9009/fracture-healing [Accessed 07/02/12 2012]. 
MOORE, E., DELALAT, B., VASANI, R., THISSEN, H. & VOELCKER, N. H. 2014. Patterning and 
biofunctionalization of antifouling hyperbranched polyglycerol coatings. Biomacromolecules, 
15, 2735-43. 
MOORE, E., THISSEN, H. & VOELCKER, N. H. 2013. Hyperbranched polyglycerols at the 
biointerface. Progress in Surface Science, 88, 213-236. 
MORAIS, J. M., PAPADIMITRAKOPOULOS, F. & BURGESS, D. J. 2010. Biomaterials/tissue 
interactions: possible solutions to overcome foreign body response. The AAPS journal, 12, 188-
96. 
MOSSER, A. 1992. Biomaterials: Hard Tissue Repair and Replacement. In: MUSTER, D. (ed.) 
Surface Physics Methods for Biomaterials Characterisation. Elsevier Science and Technology 
Books. 
MUÑOZ-BONILLA, A. & FERNÁNDEZ-GARCÍA, M. 2012. Polymeric materials with antimicrobial 
activity. Progress in Polymer Science, 37, 281-339. 
MUSTAFA, K., WENNERBERG, A., WROBLEWSKI, J., LOPEZ, S. B., HANSSON, S. & ARVIDSON, K. 
2000. Attachment, Proliferation, Differentiation and Production of TGF-beta1 by Human 
Osteoblast-Like Cells on Different Titanium Surfaces. Journal of Dental Research, 79, 101-105. 
NANCI, A., WUEST, J. D., PERU, L., BRUNET, P., SHARMA, V., ZALZAL, S. & MCKEE, M. D. 1998. 
Chemical modification of titanium surfaces for covalent attachment of biological molecules. 
Journal of Biomedical Materials Research, 40, 324-335. 
NEOH, K. G., HU, X., ZHENG, D. & KANG, E. T. 2012. Balancing osteoblast functions and 
bacterial adhesion on functionalized titanium surfaces. Biomaterials, 33, 2813-22. 
OAKES, A. & WOOD, A. 1986. Infections in Surgery. The New England 315, 1129-1138. 
OATES, C. J., WEN, W. & HAMILTON, D. W. 2011. Role of Titanium Surface Topography and 
Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts. Materials, 4, 
893-907. 
OLIVEIRA, J. M., SALGADO, A. J., SOUSA, N., MANO, J. F. & REIS, R. L. 2010. Dendrimers and 
derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. 
Progress in Polymer Science, 35, 1163-1194. 
ORTIZ, M., ESCOBAR-GARCIA, D. M., ÁLVAREZ-PÉREZ, M. A., POZOS-GUILLÉN, A., GRANDFILS, C. 
& FLORES, H. 2017. Evaluation of the Osteoblast Behavior to PGA Textile Functionalized with 
RGD as a Scaffold for Bone Regeneration. Journal of Nanomaterials, 2017, 1-8. 
PAN, J., THIERRY, D. & LEYGRAF, C. 1994. Electrochemical and XPS studies of titanium for 
biomaterial applications with respect to the effect of hydrogen peroxide. Journal of Biomedical 
Materials Research Part A, 28, 113-122. 
PAN, J., THIERRY, D. & LEYGRAF, C. 1996. Hydrogen peroxide toward enhanced oxide growth 
on titanium in PBS solution: Blue coloration and clinical relevance. Journal of Biomedical 
Materials Research, 30, 393-402. 
PARK, K. D., KIM, Y. S., HAN, D. K., KIM, Y. H., LEE, E. H. B., SUH, H. & CHOI, K. S. 1998. Bacterial 
adhesion on PEG modified polyurethane surfaces. Biomaterials, 19, 851-859. 
PETRIE, T. A., CAPADONA, J. R., REYES, C. D. & GARCIA, A. J. 2006. Integrin specificity and 
enhanced cellular activities associated with surfaces presenting a recombinant fibronectin 
fragment compared to RGD supports. Biomaterials, 27, 5459-70. 
PETRIE, T. A., RAYNOR, J. E., REYES, C. D., BURNS, K. L., COLLARD, D. M. & GARCIA, A. J. 2008. 
The effect of integrin-specific bioactive coatings on tissue healing and implant 
osseointegration. Biomaterials, 29, 2849-57. 
PORTE-DURRIEU, M. C., GUILLEMOT, F., PALLU, S., LABRUGERE, C., BROUILLAUD, B., BAREILLE, 
R., AMEDEE, J., BARTHE, N., DARD, M. & BAQUEY, C. 2004. Cyclo-(DfKRG) peptide grafting onto 

http://www.orthobullets.com/basic-science/9009/fracture-healing
http://www.orthobullets.com/basic-science/9009/fracture-healing


 
 

233 
 

Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells 
adhesion. Biomaterials, 25, 4837-4846. 
QIN, H., MARUYAMA, K., AMANO, T., MURAKAMI, T. & KOMATSU, N. 2016. Hyperbranched 
polyglycerol-grafted titanium oxide nanoparticles: synthesis, derivatization, characterization, 
size separation, and toxicology. Materials Research Express, 3, 105049. 
RAMAKRISHNA, S., MAYERB, J., WINTERMANTELC, E. & LEONG, K. W. 2001. Biomedical 
applications of polymer-composite materials: a review. Composite Science and Technology, 61, 
1189-1224. 
RAMAZANOGLU, M. & OSHIDA, Y. 2011. Osseointegration and bioscience of implant surfaces - 
Current concepts at bone-implant interface. In: TURKYILMAZ, I. (ed.) Implant dentistry - A 
rapidly evolving practice. InTech. 
RATNER, B. D. 2001. A Perspective on Titanium Biocompatibility. In: BRUNETTE, D. M., 
TENGVALL, P., M., T. & THOMSEN, P. (eds.) Titanium in Medicine. Berlin & Heidelberg: 
Springer-Verlag. 
RATNER, B. D. & BRYANT, S. J. 2004. Biomaterials: Where We Have Been and Where We are 
Going. Annual Review of Biomedical Engineering, 6, 41-75. 
RAUT, V. P., AGASHE, M. A., STUART, S. J. & LATOUR, R. A. 2005. Molecular dynamics 
simulations of peptide-surface interactions. Langmuir, 21, 1629-1639. 
REYES, C. D. & GARCIA, A. J. 2004. Alpha2beta1 integrin-specific collagen-mimetic surfaces 
supporting osteoblastic differentiation. Journal of Biomedical Materials Research A, 69, 591-
600. 
REZANIA, A. & HEALY, K. 2000. The effect of peptide surface density on mineralization of 
matrix deposited by osteogenic cells. Journal of Biomedical Materials Research, 52, 595-600. 
REZANIA, A. & HEALY, K. E. 1999. Biomimetic Peptide Surfaces That Regulate Adhesion, 
Spreading, Cytoskeletal Organization, and Mineralization of the Matrix Deposited by 
Osteoblast-like Cells. Biotechnology Progress, 15, 19-32. 
REZANIA, A., JOHNSON, R., LEFKOW, A. R. & HEALY, K. E. 1999. Bioactivation of Metal Oxide 
Surfaces. 1. Surface characterisation and cell response. Langmuir, 15, 6931-6939. 
RIPAMONTI, U., RAMOSHEBI, L. N., MATSABA, T., TASKER, J., CROOKS, J. & TEARE, J. 2001. 
Bone Induction by BMPs/OPs and Related Family Members in Primates. The Journal of Bone 
and Joint Surgery, 83-A Suppl 1, S116-S127. 
ROSALES-LEAL, J. I., RODRÍGUEZ-VALVERDE, M. A., MAZZAGLIA, G., RAMÓN-TORREGROSA, P. 
J., DÍAZ-RODRÍGUEZ, L., GARCÍA-MARTÍNEZ, O., VALLECILLO-CAPILLA, M., RUIZ, C. & 
CABRERIZO-VÍLCHEZ, M. A. 2010. Effect of roughness, wettability and morphology of 
engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 365, 222-229. 
RUOSLAHTI, E. 1996. Rgd and other recognition sequences for integrins. Annual Review of Cell 
and Developmental Biology, 12, 697-715. 
RUOSLAHTI, E. & PIERSCHBACHER, M. D. 1987. New perspectives in cell adhesion: rgd and 
integrins. Science, 238, 491-497. 
SAH, R. N. & MILLER, R. O. 1992. Spontaneous reaction for acid dissolution of biological tissues 
in closed vessels. Analytical Chemistry, 64, 230-233. 
SANO, K.-I. & SHIBA, K. 2003. A Hexapeptide Motif that Electrostatically Binds to the Surface of 
Titanium. Journal of the American Chemical Society, 125, 14234-14235. 
SARTORI, M., GIAVARESI, G., PARRILLI, A., FERRARI, A., ALDINI, N. N., MORRA, M., CASSINELLI, 
C., BOLLATI, D. & FINI, M. 2015. Collagen type I coating stimulates bone regeneration and 
osteointegration of titanium implants in the osteopenic rat. International orthopaedics, 39, 
2041-2052. 
SCHIERHOLZ, J. M. & BEUTH, J. 2001. Implant infections: a haven for opportunistic bacteria. 
The Journal of hospital infection, 49, 87-93. 



 
 

234 
 

SCHLIEPHAKE, H., SCHARNWEBER, D., DARD, M., SEWING, A., AREF, A. & ROESSLER, S. 2005. 
Functionalization of dental implant surfaces using adhesion molecules. Journal of Biomedical 
Materials Research B: Applied Biomaterials, 73, 88-96. 
SCHMIDT, D. R., WALDECK, H. & KAO, W. J. 2000. Protein Adsorption to Biomaterials. In: 
PULEO, D. A. & BIZIOS, R. (eds.) Biological Interactions on Materials Surfaces. Springer. 
SCHNEIDER, G. B., ENGLISH, A., ABRAHAM, M., ZAHARIAS, R., STANFORD, C. & KELLER, J. 2004. 
The effect of hydrogel charge density on cell attachment. Biomaterials, 25, 3023-3028. 
SCHNEIDER, G. B., ZAHARIAS, R. & STANFORD, C. 2001. Osteoblast Integrin Adhesion and 
Signaling Regulate Mineralization. Journal of Dental Research, 80, 1540-1544. 
SCHNEIKER, T. & FORSBERG, K. 2014. Process Chemistry and Acid Management for Titanium 
Pickling Processes. International Titanium Association (ITA) - Titanium Europe 2014. Sorrento, 
Italy: SCANACON AB. 
SCHULER, M., OWEN, G. R., HAMILTON, D. W., DE WILD, M., TEXTOR, M., BRUNETTE, D. M. & 
TOSATTI, S. G. 2006a. Biomimetic modification of titanium dental implant model surfaces using 
the RGDSP-peptide sequence: a cell morphology study. Biomaterials, 27, 4003-15. 
SCHULER, M., TRENTIN, D., TEXTOR, M. & TOSATTI, S. G. 2006b. Biomedical interfaces: 
titanium surface technology for implants and cell carriers. Nanomedicine, 1, 449-463. 
SCHWARTZ FO, H. O., NOVAES, A. B., DE CASTRO, L. M., ROSA, A. L. & DE OLIVEIRA, P. T. 2007. 
In vitro osteogenesis on a microstructured titanium surface with additional submicron-scale 
topography. Clinical oral implants research, 18, 333-344. 
SERRO, A. P., FERNANDES, A. C., SARAMAGO, B., LIMA, J. & BARBOSA, M. A. 1997. Apatite 
desorption on titanium surfaces - the role of albumin adsorption. Biomaterials, 18, 963-968. 
SHARD, A. G. & TOMLINS, P. E. 2006. Biocompatibility and the Efficacy of Medical Implants. 
Journal of Regenerative Medicine, 1, 789-800. 
SIEDENBIEDEL, F. & TILLER, J. C. 2012. Antimicrobial Polymers in Solution and on Surfaces: 
Overview and Functional Principles. Polymers, 4, 46-71. 
SINGHATANADGIT, W. 2009. Biological Responses to New Advanced Surface Modifications of 
Endosseous Medical Implants. Bone and Tissue Regeneration Insights, 2, 1-11. 
SMITH, D. C., PILLIAR, R. M., METSON, J. B. & MCINTYRE, N. S. 1991. Dental implant materials. 
II. Preparative procedures and surface spectroscopic studies. Journal of Biomedical Materials 
Research, 25, 1069-1084. 
SOBIESZCZYK, S. 2010. Surface modifications of ti and its alloys. Advances in Materials Sciences, 
10. 
SONOHARA, R., MURAMATSU, N., OHSHIMA, H. & KONDO, T. 1995. Difference in surface 
properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic 
mobility measurements. Biophysical Chemistry, 55, 273-277. 
STEELE, J. G., JOHNSON, G. & UNDERWOOD, P. A. 1992. Role of serum vitronectin and 
fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. Journal 
of Biomedical Materials Research, 26, 861-864. 
STEIN, G. S., LIAN, I. B. & OWEN, T. A. 1990. Relationship of Cell Growth to the Regulation of 
Tissue-Specific Gene Expression During Osteoblast Differentiation. Journal of the Federation of 
American Societies for Experimental Biology (FASEB), 4, 3111-3123. 
STEINHILBER, D., SEIFFERT, S., HEYMAN, J. A., PAULUS, F., WEITZ, D. A. & HAAG, R. 2011. 
Hyperbranched polyglycerols on the nanometer and micrometer scale. Biomaterials, 32, 1311-
6. 
SUNDER, A., HANSELMANN, R., FREY, H. & MULHAUPT, R. 1999. Controlled Synthesis of 
Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. 
Macromolecules, 32, 4240-4246. 



 
 

235 
 

SUNDGREN, J. E., BODO, P. & LUNDSTROM, I. 1986. Auger electron spectroscopic studies of the 
interface between human tissue and implants of titanium and stainless steel. Journal of colloid 
and interface science, 110, 9-20. 
TANAKA, Y., SAITO, H., TSUTSUMI, Y., DOI, H., IMAI, H. & HANAWA, T. 2008. Active Hydroxyl 
Groups on Surface Oxide Film of Titanium, 316L Stainless Steel, and Cobalt-Chromium-
Molybdenum Alloy and Its Effect on the Immobilization of Poly(Ethylene Glycol). Materials 
Transactions, 49, 805-811. 
TANG, L., WU, Y. & TIMMONS, R. B. 1998. Fibrinogen adsorption and host tissue responses to 
plasma functionalized surfaces. Journal of Biomedical Materials Research, 42, 156-163. 
TEJERO, R., ANITUA, E. & ORIVE, G. 2014. Toward the biomimetic implant surface: Biopolymers 
on titanium-based implants for bone regeneration. Progress in Polymer Science, 39, 1406-
1447. 
TENGVALI, P., LUNDSTROM, I., SJOQVIST, L., ELWING, H. & BJURSTEN, L. M. 1989. Titanium-
hydrogen peroxide interaction: model studies of the influence of the inflammatory response 
on titanium implants. Biomaterials, 10, 166-175. 
TILLER, J. C. 2008. Coatings for Prevention or Deactivation of Biological Contamination. In: 
KOHLI, R. & MITTAL, K. L. (eds.) Developments in Surface Contamination and Cleaning - 
Fundamentals and Applied Aspects. William Andrew Publishing. 
TOSATTI, S., SCHWARTZ, Z., CAMPBELL, C., COCHRAN, D. L., VANDEVONDELE, S., HUBBELL, J. 
A., DENZER, A., SIMPSON, J., WIELAND, M., LOHMANN, C. H., TEXTOR, M. & BOYAN, B. D. 2004. 
RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation 
by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. Journal of Biomedical 
Materials Research A, 68, 458-472. 
VAN GAALEN, S., KRUYT, M., MEIJER, G., MISTRY, A., MIKOS, A., VAN DEN BEUCKEN, J., 
JANSEN, J., DE GROOT, K., CANCEDDA, R., OLIVO, C., YASZEMSKI, M. & DHERT, W. 2008. Tissue 
Engineering of Bone. In: VAN BLITTERSWIJK, C., PETER THOMSEN, ANDERS LINDAHL, JEFFREY 
HUBBELL, DAVID F. WILLIAMS, RANIERI CANCEDDA, BRUIJN, J. D. D. & SOHIER, J. (eds.) Tissue 
Engineering. Elsevier Inc. 
VANDEVONDELE, S., VOROS, J. & HUBBELL, J. A. 2003. RGD-grafted poly-L-lysine-graft-
(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell 
adhesion. Biotechnology and Bioengineering, 82, 784-790. 
VERRIER, S., PALLU, S., BAREILLE, R., JONCZYK, A., MEYER, J., DARD, M. & AMÉDÉE, J. 2002. 
Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion 
process. Biomaterials, 23, 585-596. 
VETRONE, F., VARIOLA, F., TAMBASCO DE OLIVEIRA, P., ZALZAL, S. F., YI, J. H., SAM, J., 
BOMBONATO-PRADO, K. F., SARKISSIAN, A., PEREPICHKA, D. F., WUEST, J. D., ROSEI, F. & 
NANCI, A. 2009. Nanoscale oxidative patterning of metallic surfaces to modulate cell activity 
and fate. Nano Letters, 9, 659-665. 
VOGLER, E. A. 1988. Thermodynamics of short-term cell adhesion in vitro. Biophysical Journal, 
53, 759-769. 
VOGLER, E. A. 1989. A thermodynamic model of short-term cell adhesion 

in vitro. Colloids and Surfaces, 42, 233-254. 
VOGLER, E. A. 1993. Interfacial chemistry in biomaterials science. In: BERG, J. C. (ed.) 
Wettability. New York: Taylor & Francis. 
WAGNER, V. E., KOBERSTEIN, J. T. & BRYERS, J. D. 2004. Protein and bacterial fouling 
characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-
polymers. Biomaterials, 25, 2247-2263. 



 
 

236 
 

WANG, D. A., JI, J., SUN, Y. H., SHEN, J. C., FENG, L. X. & ELISSEEFF, J. H. 2002. In situ 
immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) 
coupling polymers for human endothelial cell growth. Biomacromolecules, 3, 1286-1295. 
WANG, R. L. C., KREUZER, H. J. & GRUNZE, M. 1997. Molecular Conformation and Solvation of 
Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein 
Adsorption. Journal of Physical Chemistry B, 101, 9767-9773. 
WEBER, T., GIES, Y. & TERFORT, A. 2012. Bacteria-repulsive polyglycerol surfaces by grafting 
polymerization onto aminopropylated surfaces. Langmuir : the ACS journal of surfaces and 
colloids, 28, 15916-21. 
WEBSTER, T. J. & EJIOFOR, J. U. 2004. Increased osteoblast adhesion on nanophase metals: Ti, 
Ti6Al4V, and CoCrMo. Biomaterials, 25, 4731-4739. 
WEI, J., IGARASHI, T., OKUMORI, N., MAETANI, T., LIU, B. & YOSHINARI, M. 2009. Influence of 
surface wettability on competitive protein adsorption and initial attachment of osteoblasts. 
Biomedical materials, 4, 145002. 
WEI, Q., KRYSIAK, S., ACHAZI, K., BECHERER, T., NOESKE, P. M., PAULUS, F., LIEBE, H., 
GRUNWALD, I., DERNEDDE, J., HARTWIG, A., HUGEL, T. & HAAG, R. 2014. Multivalent anchored 
and crosslinked hyperbranched polyglycerol monolayers as antifouling coating for titanium 
oxide surfaces. Colloids and surfaces. B, Biointerfaces, 122, 684-692. 
WEI, Y. & LATOUR, R. A. 2008. Determination of the adsorption free energy for peptide-surface 
interactions by SPR spectroscopy. Langmuir, 24, 6721-6729. 
WENNERBERG, A., EKTESSABI, A., ALBREKTSSON, T., JOHANSSON, C. & ANDERSSON, B. 1997. A 
1-year follow-up of implants of differing surface roughness placed in rabbit bone. International 
Journal of Oral Maxillofacial Implants, 12, 486-494. 
WESTERMAN, R. W. & SCAMMELL, B. E. 2012. Principles of bone and joint injuries and their 
healing. Surgery (Oxford), 30, 54-60. 
WIELAND, M., TEXTOR, M., CHEHROUDI, B. & BRUNETTE, D. M. 2005. Synergistic interaction of 
topographic features in the production of bone-like nodules on Ti surfaces by rat osteoblasts. 
Biomaterials, 26, 1119-1130. 
WIKESJO, U. M., SORENSEN, R. G., KINOSHITA, A. & WOZNEY, J. M. 2002. RhBMP-2/alpha BSM 
induces significant vertical alveolar ridge augmentation and dental implant osseointegration. 
Clinical Implant Dentistry and Related Research, 4, 174-182. 
WILLIAMS, A. & IBRAHIM, I. T. 1981. Carbodiimide Chemistry: Recent Advances. ACS Chemical 
Reviews, 81, 589-636. 
WILSON, C. J., CLEGG, R. E., LEAVESLEY, D. I. & PEARCY, M. J. 2005. Mediation of Biomaterial-
Cell Interactions by Adsorbed Proteins: A Review. Tissue Engineering, 21, 1629-1639. 
WRAIGHTE, P. J. & SCAMMELL, B. E. 2006. Principles of fracture healing. Surgery (Oxford), 24, 
198-207. 
XU, L. C. & SIEDLECKI, C. A. 2007. Effects of surface wettability and contact time on protein 
adhesion to biomaterial surfaces. Biomaterials, 28, 3273-3283. 
YANG, C., CHENG, K. & WENG, W. 2009a. Immobilization of RGD peptide on HA coating 
through a chemical bonding approach. Journal of materials science. Materials in medicine, 20, 
2349-52. 
YANG, G. L., HE, F. M., YANG, X. F., WANG, X. X. & ZHAO, S. F. 2009b. In vivo evaluation of 
bone-bonding ability of RGD-coated porous implant using layer-by-layer electrostatic self-
assembly. Journal of biomedical materials research. Part A, 90, 175-85. 
YILDIRIM, E. D., BESUNDER, R., PAPPAS, D., ALLEN, F., GUCERI, S. & SUN, W. 2010. Accelerated 
differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of 
protein coating and plasma modification. Biofabrication, 2, 014109. 



 
 

237 
 

YOSHIMOTO, K., NISHIO, M., SUGASAWA, H. & NAGASAKI, Y. 2010. Direct observation of 
adsorption-induced inactivation of antibody fragments surrounded by mixed-PEG layer on a 
gold surface. Journal of the American Chemical Society, 132, 7982-7989. 
ZARRABI, A., SHOKRGOZAR, M. A., VOSSOUGHI, M. & FAROKHI, M. 2014. In vitro 
biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a 
candidate for nanomedicine applications. Journal of materials science. Materials in medicine, 
25, 499-506. 
ZHAO, G., RAINES, A. L., WIELAND, M., SCHWARTZ, Z. & BOYAN, B. D. 2007. Requirement for 
both micron- and submicron scale structure for synergistic responses of osteoblasts to 
substrate surface energy and topography. Biomaterials, 28, 2821-2829. 
ZHAO, L., CHU, P. K., ZHANG, Y. & WU, Z. 2009. Review: Antibacterial Coatings on Titanium 
Implants. Journal of Biomedical Materials Research Part B, 91B, 470-480. 
ZHU, J. 2010. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. 
Biomaterials, 31, 4639-4656. 
ZHU, X., CHEN, J., SCHEIDELER, L., REICHL, R. & GEIS-GERSTORFER, J. 2004. Effects of 
topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, 
25, 4087-103. 
ZIMMERLI, W. 2006. Infection and musculoskeletal conditions: Prosthetic-joint-associated 
infections. Best practice & research. Clinical rheumatology, 20, 1045-63. 
ZINGER, O., ANSELME, K., DENZER, A., HABERSETZER, P., WIELAND, M., JEANFILS, J., 
HARDOUIN, P. & LANDOLT, D. 2004. Time-dependent morphology and adhesion of osteoblastic 
cells on titanium model surfaces featuring scale-resolved topography. Biomaterials, 25, 2695-
2711. 

 

 

 

 

  


