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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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of a Product Service System (PSS). It is therefore necessary for an OEM that provides services bundled with products to ensure timely response 
without significant impact on cost. This paper proposes a make-to-order spare parts supply chain strategy through the adoption of Redistributed 
Manufacturing (RdM) where the supply chain is shortened and total cost is decreased. An agent-based model that portrays an OEM’s response 
to repair a failed equipment is developed to exhibit the potential time and cost savings gained by OEMs.  
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1. Introduction 

In an increasingly competitive after-sales market, maintenance, 
repair and operations (MRO) activities constitute both a 
considerable source of revenue as well as a significant source of 
cost for original equipment manufacturers (OEMs). As OEMs 
strive for customers’ satisfaction, key decisions have to be made 
to ensure timely and efficient MRO offerings while maintaining 
associated costs at an acceptable level. Timely and efficient MRO 
offerings would naturally require abundance of resources such as 
full inventory of spare parts, skilled technicians and transportation 
vehicles always available and in close proximity to demand points. 
This setting, however, entails high cost and low resource 
utilization which are difficult to justify and often prohibitively 
costly. 

This paper proposes redistributed manufacturing (RdM) for the 
localized production of spare parts. RdM is an emerging 
manufacturing paradigm closely related to but distinct from 
ubiquitous manufacturing (UM); where the former revolves 
around decentralization of operations, resources and decision 
making, while the latter imply the integration of ubiquitous 

computing (UC) into production activities [1]. More specifically, 
RdM entails the shift from centralized mass production towards 
smaller geographically dispersed manufacturing facilities located 
in close proximity to the end user, and interconnected through 
information and communication technologies (ICT) and 
empowered by the latest manufacturing technologies [2,3] such as 
additive manufacturing (AM) [4].  
   In this paper, a simulation model is presented to assess the 
impact of RdM on the performance of MRO offerings from the 
perspective of OEMs. Two hypothetical scenarios are formulated 
on the basis of thorough investigation of case studies in the 
contemporary literature as well as reports from corporation that 
employ RdM in the production of spare parts. Both scenarios are 
then simulated from a bottom-up approach using agent-based 
modelling (ABM) to assess the impact of RdM on the total cost of 
MRO, machines downtime at the clients’ premises and utilization 
of resources. 
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the system that is being studied, and predicts the performance of 
different system designs under different sets of input parameters 
[15]. 
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Fig. 1. Generic repair process diagram for the RdM scenario. 

Out of the three mainstream simulation methods i.e. discrete-event 
simulation (DES), system dynamics (SD) and agent-based 
modelling (ABM); ABM has been chosen as the simulation 
technique for this study. The reason for choosing ABM could be 
mainly attributed to the nature of the problem and the nature of the 
modelled systems. To model individual repair processes as 
described in the previous section and account for the interaction 
between the models’ constituents and observe the subsequent 
emerging behavior, an individual-based approach with relatively 
low level of abstraction is required. This requirement could be 
achieved through DES or ABM since SD is an abstract high level, 
top-down modelling approach that models the interaction and 
feedback loops between aggregates of entities, rather than 
representing each individual entity on its own [16]. System 
dynamics have, however, been employed in similar contexts 
[12,13] as was shown in the Related work section, but its use has 
been limited to measure inventory and carbon footprint levels 
only. ABM was preferred over DES since behavior in DES, as 
Law [17, p.695] puts it, “behaviors are implemented in the model 
“blocks” that entities pass through, rather than being encapsulated 
into the entities themselves” as in the case of ABM. Encapsulation 
is defined by Dennis et al., [18, p.20] as “the combination of 
process and data into a single entity”. ABM is usually 
implemented through object-oriented programming paradigm [17] 
as object-orientation, in addition to encapsulation, allows the 
handling of complexity through the modularization of a system 
into several smaller simpler individual objects, that are then 
brought together to form a system [18]. 

The agent-based models were developed from an object-
oriented perspective using AnyLogic, a Java-based simulation 
development platform. The models consist of five population of 
agents namely: machines, technicians, suppliers, warehouse, AM 
equipment (present only in the RdM proposed scenario). Two 
further agents are also defined in the model to represent non-
physical entities, namely: repair Request and zones. Both of these 
agent types i.e. repair request and zone correspond to Class 
structure in object-oriented programming and encapsulate data 
about the failed machine and each zone’s allocated resources 
respectively such as machine location, failure type, required parts 
and so on. Table 1 below summarizes the model’s agents, their key 
parameters, key functions and key states. Agents marked with 
asterisk are only present in the RdM scenario, while the rest of the 
agents exist in both scenarios. 

Table 1. Constituents of the agent-based models. 

Agent Key Parameters Key Functions Key 
States 

Machine Number of 
machines 
Zone 

Process jobs 
Report failure 

Working 
Failed 

Technician Number of 
technicians 
Zone 

En-route to machines  
Inspect machine 
Order parts 
Repair 

Idle 
Driving 
At 
machine 

AM 
Machine*  

Number of 
machines 
Zone 
Rate of 
production 

Producing parts Idle 
Producing 

Warehouse Location 
Inventory level 
of each part 

Order parts 
replenishments 
Notify repair 
personnel of parts 
availability 
Deliver parts to RdM’s 
local storage facility 

N/A 

Supplier Lead time Deliver parts to 
warehouse/ machines 

N/A 

Repair 
Request 

Machine 
Failure type 

N/A N/A 

Zones* Assigned AM 
Assigned machines 
Assigned technicians 

N/A 

 
The communication between agents in both simulation models 

is performed through messages (data packets) exchange. 
Messages can carry different types of data and are used to trigger 
agent actions or to store some information that the agent can later 
use to make decisions. In addition to messages, agents’ actions are 
also triggered by either deterministic or stochastic timeouts that 
follow certain probability distributions where an event is triggered 
after a certain amount of time has passed. Time-out triggered 
events are mostly used to trigger the completion of tasks such as 
inspection, repair and delivery processes. Agents’ actions in an 
ABM environment can also be triggered by Boolean conditions, 
where an agent acts in reaction to the state change within itself, 
other agent, or within the environment where all agents live. 
Finally, as agents travel freely in ABM, agents can make decisions 
or perform some action upon their arrival to a specific location or 
to some other agent. 

  Agents behavior and decision making logic is defined and 
governed through statecharts. Statecharts are modelling constructs 
based on UML’s state machine diagram. Statecharts contain two 
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2. Related Work 

Multiple models and frameworks utilizing different techniques 
have been developed to aid in the decision making in the area of 
spare parts logistics [5,6]. However the area of on-demand 
distributed production of spare that is enabled by advanced ICT 
and manufacturing technologies is relatively new;  with [7] being 
one of the first attempts in this field. Much of the work in this area 
has targeted the aerospace sector [8–12] due to the significant costs 
associated with the aircrafts’ grounding. Other works, however, 
developed hypothesized supply chains independent of any specific 
sector to assess the impact of decentralization coupled with the 
production using AM technology on cost and carbon footprint 
[13], or departed from the aerospace sector [14] and investigated 
the impact of AM on different spare parts supply chains. Most of 
the reviewed papers assessed supply chains’ performance on either 
cost of introducing and operating under RdM utilizing AM 
[8,9,11,13], or different inventory performance metrics [10,12,14], 
or both cost and carbon footprint [13].  

Most of the research in this area found a significant advantage 
of on-demand production of spare parts using AM technologies. 
However, much of the contemporary research concludes that, with 
the current state of the existing AM technologies, the centralized 
setting of spare parts production is preferable to the distributed one 
[8,9,12].  

The use of simulation modelling in the distributed production 
of spare parts is somehow limited. Only two of the reviewed 
[12,13] papers used simulation modelling, particularly system 
dynamics (SD) as the main tool of investigating the impact of 
distributed AM-enabled production of spare parts on supply 
chains. Two further papers [9,11] used simulation in a limited 
format; the authors used Monte Carlo simulation to complement 
scenario modelling in order to model inventory stock-outs. Two of 
the papers were qualitative in nature [8,14]; where techniques such 
as conceptual designs [8] and systems theory and dynamics 
capabilities [14] were used in this context. These studies, although 
lack the empirical side that could verify the findings, provide 
valuable insights into distributed spare parts production and the 
introduction of AM to the spare parts supply chains. One paper 
[10] used the supply chain reference model (SCOR) to 
quantitatively analyze the impact of the distributed production of 
spare parts on the inventory safety stock of a hypothetical supply 
chain.  

This paper aims fill a part of the gap in the use of simulation 
modelling in the area of on-demand distributed production of spare 
parts. This research takes a bottom-up approach where individual 
heterogeneous entities and processes are modelled, and the 
systems’ behavior emerges as a result of the interaction between 
different entities and entities with the environment they inhabit. 

3. Generic repair process 

Two models representing two hypothetical generic repair 
processes are formulated for this study. The generic repair process 
in this context refers to a high level representation of attending to 
a failed machine where the basic functions performed in most 
repair processes and the ones that are relevant to the objective of 
this research are included. The functions in the repair process are 
attending to the failed machine by a technician, inspection, 

ordering parts (if necessary), and repairing. Both models represent 
a fleet of machines of a similar model, all prone to failures, 
distributed over a given geographical area. 

The two modelled scenarios are namely the Traditional 
scenario and the RdM one, both named after the production 
approach. It is worth mentioning here that the RdM scenario 
adopts hub setting i.e. not fully distributed; where the geographical 
area where the machines are placed is divided to zones, each 
containing a number of machines and has its own dedicated 
resources that are shared between the zone’s constituents. The 
Traditional scenario consists of the same geographical area with 
the same machines and the same resources; which are all 
centralized.  

The repair process in the Traditional scenario goes as follows: 
when a machine breaks down, a repair request is sent to the 
maintenance center where it joins a queue and is picked on a first-
come-first-serve basis by the first available technician. The 
technician then travels to the failed machine, inspects it, and if no 
parts are required repairs it. If parts are needed, the technician 
orders the required parts from the warehouse, checks whether 
there are any other broken machines that need attending to, and 
then leaves either for a new job or back to the maintenance center. 
Meanwhile, if the technician decides that parts are needed for 
repair, the failed machine joins a queue for machines that are 
grounded until their respective parts arrive either from the central 
warehouse, or from the parts’ respective suppliers in the event of 
a stock-out. 

The repair process in the RdM scenario, which is presented in 
Fig. 1. below, is triggered with the breakdown of a machine. Once 
a machine breaks down, a repair request is sent to the machine’s 
respective zone’s maintenance center, which contains a local 
storage facility that contains all the parts in limited quantities and 
is replenished daily, and AM equipment for on-demand 
manufacturing. The repair request then joins a queue and is picked 
from the respective zone’s technician on a first-come-first-serve 
basis. The zone’s respective technician then heads to inspect the 
failed machine, if no parts are needed then the technician repairs 
the machine in the same visit. If parts are required, then the 
technician checks what parts could be manufactured on-demand 
in the corresponding local maintenance center, and sends a request 
to the zone’s local maintenance center to produce these parts; the 
request to produce parts on-demand joins a queue and is picked 
once the first AM equipment becomes available. If the required 
parts cannot be produced on-demand then the technician checks 
the parts availability at the zone’s maintenance center storage area, 
where if all the required parts are available they are reserved. If the 
required parts are not available at the local maintenance center 
storage facility, then the technician checks with the central 
warehouse. In case of stock-out at the central warehouse, the parts 
are requested from the respective suppliers(s). Based on the 
conceptual model, the next section presents the ABM simulation 
model. 

4. Agent-based simulation model 

 Since the objective of modelling in this research is to improve 
the performance of a system through observing and evaluating 
what-if scenarios, simulation modelling has been chosen as the 
modelling approach. Simulation allows deeper understanding of 
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the system that is being studied, and predicts the performance of 
different system designs under different sets of input parameters 
[15]. 
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Fig. 1. Generic repair process diagram for the RdM scenario. 
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emerging behavior, an individual-based approach with relatively 
low level of abstraction is required. This requirement could be 
achieved through DES or ABM since SD is an abstract high level, 
top-down modelling approach that models the interaction and 
feedback loops between aggregates of entities, rather than 
representing each individual entity on its own [16]. System 
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only. ABM was preferred over DES since behavior in DES, as 
Law [17, p.695] puts it, “behaviors are implemented in the model 
“blocks” that entities pass through, rather than being encapsulated 
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is defined by Dennis et al., [18, p.20] as “the combination of 
process and data into a single entity”. ABM is usually 
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as object-orientation, in addition to encapsulation, allows the 
handling of complexity through the modularization of a system 
into several smaller simpler individual objects, that are then 
brought together to form a system [18]. 

The agent-based models were developed from an object-
oriented perspective using AnyLogic, a Java-based simulation 
development platform. The models consist of five population of 
agents namely: machines, technicians, suppliers, warehouse, AM 
equipment (present only in the RdM proposed scenario). Two 
further agents are also defined in the model to represent non-
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agent types i.e. repair request and zone correspond to Class 
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The communication between agents in both simulation models 

is performed through messages (data packets) exchange. 
Messages can carry different types of data and are used to trigger 
agent actions or to store some information that the agent can later 
use to make decisions. In addition to messages, agents’ actions are 
also triggered by either deterministic or stochastic timeouts that 
follow certain probability distributions where an event is triggered 
after a certain amount of time has passed. Time-out triggered 
events are mostly used to trigger the completion of tasks such as 
inspection, repair and delivery processes. Agents’ actions in an 
ABM environment can also be triggered by Boolean conditions, 
where an agent acts in reaction to the state change within itself, 
other agent, or within the environment where all agents live. 
Finally, as agents travel freely in ABM, agents can make decisions 
or perform some action upon their arrival to a specific location or 
to some other agent. 

  Agents behavior and decision making logic is defined and 
governed through statecharts. Statecharts are modelling constructs 
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of spare parts is somehow limited. Only two of the reviewed 
[12,13] papers used simulation modelling, particularly system 
dynamics (SD) as the main tool of investigating the impact of 
distributed AM-enabled production of spare parts on supply 
chains. Two further papers [9,11] used simulation in a limited 
format; the authors used Monte Carlo simulation to complement 
scenario modelling in order to model inventory stock-outs. Two of 
the papers were qualitative in nature [8,14]; where techniques such 
as conceptual designs [8] and systems theory and dynamics 
capabilities [14] were used in this context. These studies, although 
lack the empirical side that could verify the findings, provide 
valuable insights into distributed spare parts production and the 
introduction of AM to the spare parts supply chains. One paper 
[10] used the supply chain reference model (SCOR) to 
quantitatively analyze the impact of the distributed production of 
spare parts on the inventory safety stock of a hypothetical supply 
chain.  

This paper aims fill a part of the gap in the use of simulation 
modelling in the area of on-demand distributed production of spare 
parts. This research takes a bottom-up approach where individual 
heterogeneous entities and processes are modelled, and the 
systems’ behavior emerges as a result of the interaction between 
different entities and entities with the environment they inhabit. 

3. Generic repair process 

Two models representing two hypothetical generic repair 
processes are formulated for this study. The generic repair process 
in this context refers to a high level representation of attending to 
a failed machine where the basic functions performed in most 
repair processes and the ones that are relevant to the objective of 
this research are included. The functions in the repair process are 
attending to the failed machine by a technician, inspection, 

ordering parts (if necessary), and repairing. Both models represent 
a fleet of machines of a similar model, all prone to failures, 
distributed over a given geographical area. 

The two modelled scenarios are namely the Traditional 
scenario and the RdM one, both named after the production 
approach. It is worth mentioning here that the RdM scenario 
adopts hub setting i.e. not fully distributed; where the geographical 
area where the machines are placed is divided to zones, each 
containing a number of machines and has its own dedicated 
resources that are shared between the zone’s constituents. The 
Traditional scenario consists of the same geographical area with 
the same machines and the same resources; which are all 
centralized.  

The repair process in the Traditional scenario goes as follows: 
when a machine breaks down, a repair request is sent to the 
maintenance center where it joins a queue and is picked on a first-
come-first-serve basis by the first available technician. The 
technician then travels to the failed machine, inspects it, and if no 
parts are required repairs it. If parts are needed, the technician 
orders the required parts from the warehouse, checks whether 
there are any other broken machines that need attending to, and 
then leaves either for a new job or back to the maintenance center. 
Meanwhile, if the technician decides that parts are needed for 
repair, the failed machine joins a queue for machines that are 
grounded until their respective parts arrive either from the central 
warehouse, or from the parts’ respective suppliers in the event of 
a stock-out. 

The repair process in the RdM scenario, which is presented in 
Fig. 1. below, is triggered with the breakdown of a machine. Once 
a machine breaks down, a repair request is sent to the machine’s 
respective zone’s maintenance center, which contains a local 
storage facility that contains all the parts in limited quantities and 
is replenished daily, and AM equipment for on-demand 
manufacturing. The repair request then joins a queue and is picked 
from the respective zone’s technician on a first-come-first-serve 
basis. The zone’s respective technician then heads to inspect the 
failed machine, if no parts are needed then the technician repairs 
the machine in the same visit. If parts are required, then the 
technician checks what parts could be manufactured on-demand 
in the corresponding local maintenance center, and sends a request 
to the zone’s local maintenance center to produce these parts; the 
request to produce parts on-demand joins a queue and is picked 
once the first AM equipment becomes available. If the required 
parts cannot be produced on-demand then the technician checks 
the parts availability at the zone’s maintenance center storage area, 
where if all the required parts are available they are reserved. If the 
required parts are not available at the local maintenance center 
storage facility, then the technician checks with the central 
warehouse. In case of stock-out at the central warehouse, the parts 
are requested from the respective suppliers(s). Based on the 
conceptual model, the next section presents the ABM simulation 
model. 

4. Agent-based simulation model 

 Since the objective of modelling in this research is to improve 
the performance of a system through observing and evaluating 
what-if scenarios, simulation modelling has been chosen as the 
modelling approach. Simulation allows deeper understanding of 



710 Yousef Haddad  et al. / Procedia CIRP 81 (2019) 707–712

 

 

 Yousef Haddad  et al. / Procedia CIRP 00 (2019) 000–000  5 

provide a valuable first primal insight about the performance of 
stochastic systems. The normal distribution was used to trigger 
the machines failure for the same reason, but high uncertainty, 
represented by a relatively high standard deviation, and the 
need to occasionally include extreme values; to better represent 
random break-downs made the normal distribution a more 
appropriate choice that is sufficiently generic while 
maintaining realistic. Since the standard deviation is relatively 
high (40% of the mean), to avoid getting negative values for 
the time before failure, the absolute value of the time before 
failure was used. 
 

Table 2. Key input parameters. 

Input parameter Value 

Number of machines 1000 
Number of technicians 5 
Number of zones 5 
Number of failures 10 
Number of AM parts 5 
Delivery time from central warehouse 1 day 
Delivery time from local warehouses Triangular (3, 6, 8) hours 
Delivery from supplier(s) Triangular (1, 2, 1) days 
Machines failure rate Normal (30, 12) days 
Number of AM machines per zone 3 

On-demand parts production time Triangular (8, 12, 10) hours 
Annual AM technician salary £ 60,000 
Number of AM machines per technician 3 
AM machine price £ 100,000 

5. Results and discussion 

Experiments were performed to simulate a service period of 
five years to evaluate the performance of both scenarios. The 
evaluation of performance was based on three criteria, namely 
cost, downtime, and utilization of resources (machines and 
repair technicians). Table 3 shows an accumulated cost 
comparison between the two scenarios. It is clear from the cost 
breakdown below that the implementation of distributed on-
demand production of spare parts entails more cost segments 
(e.g. more personnel, the acquisition of AM machines, AM 
production cost). Regardless of this, the total cost of this 
scenario remains lower than the Traditional centralized 
scenario. It is worth mentioning that the total cost in both 
scenarios excludes the downtime cost, since this value varies 
significantly depending on the sector, context, service level 
agreement and a host of other factors making it difficult to 
estimate for a generic case.  

The main savings from RdM scenario are fairly spread 
across the entire cost segments spectrum. Although it is 
expected that the total inventory cost will decrease in the RdM 
scenario, mainly due to savings on suppliers’ orders – as a 
portion of the parts assortment will be manufactured in-house - 
and the elimination of a portion of the parts from stock, which 
means savings on holding costs, the significant decrease in the 
cost of incurring stock outs and subsequently lower downtimes 
is high. This decrease in stock outs is mainly due to the 

assumption that a share of the parts assortment is no longer 
supplied from a third party supplier, but rather always available 
after in-house on-demand production and post processing. 
There was also significant saving on transportation costs since 
all machines are assigned to zones, each has its own, and 
shares, dedicated resources. Table 3 below shows a breakdown 
of the costs for both scenarios. 

Table 3. Cost breakdown in £ for both scenarios after 5 years of operations. 

Cost Traditional Scenario RdM Scenario 

Orders cost 16,169,265 12,008,120 
Stock out cost 1,964,800 741,400 
Holding cost 428,971 339,886 

AM production cost 0 2,753,240 
Total cost of acquiring AM 
equipment 

0 1,500,000 

Total AM technician salaries 0 1,500,000 
Total transportation cost 2,468,540 1,187,937 
Total cost 21,031,576 20,030,583 

 
It is important however, to note that the cost reduction 

incurred from the implementation of the proposed RdM 
scenarios is not apparent on the short-term. It rather takes a few 
years to begin to observe the cost savings, due mainly to the 
substantial initial investment required to decentralize 
operations and acquire advanced production equipment. Fig. 3. 
below shows a break-even chart for the accumulated cost for 
both scenarios where the break-even point occurs around the 
4th year. This means that unless an OEM is committed to long-
term MRO processes, and the depreciation rate of the AM 
equipment is relatively low, and AM equipment can operate for 
many years, then the RdM scenario is not appropriate. 

 

Fig. 3. Break-even chart for the accumulated total cost for both scenarios. 
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main elements namely states and transitions. States define the state 
that the agent is in while the state is active e.g. available or busy, 
while transitions as discussed above control the moves between 
the agents’ states. States can take two forms namely: simple and 
composite. A simple state is a standalone state i.e. a state that exists 
by itself, in other words a state that does not contain further states 
inside. While a composite state, as the name suggests, is a state that 
contain further states inside e.g. an agent’s state “Busy” could 
contain further states elaborating exactly what the agent is busy 
doing such as “Performing job A”.  

Each statechart has one and only one simple state active at any 
single moment in time during the simulation run. Each state has 
two sets of instructions that define agents’ actions; one executes 
immediately upon entering the state, and the other executes once 
the agent leaves the state. In other words once a state is triggered, 
its corresponding agent performs some action, then the state stays 
active i.e. the agent waits for some time to pass or an event to 
occur, and then once it is time (or condition) to move to another 
state, the next set of instructions is executed and the agent leaves 
to the next state. This is best illustrated by an example. Fig. 2. 
shows the statechart diagram of the technicians, the naming 
convention of the states follows Java naming conventions. Once 
the simulation run commences, the technician enters the “atBase” 
state which means that the technician is idle and ready to head out 
to attend to a failed machine. Once the technician is assigned a job, 
through a scheduling algorithm that loops through the failed 
machines queue and assigns jobs to technicians based on location 
and the total number of jobs performed by each technician that 
day. The scheduling rule is applied in the Traditional scenario 
only, as it is assumed that each zone has only one technician. It 
could be however used in the RdM scenario, in case more than one 
technician is assigned to any zone, by looping through each failed 
machine’s zone’s allocated technicians. This example is taken 
from the Traditional scenario. 

Entering and leaving the “atMC” state, which refers to “at 
maintenance center”, updates the value of different variables that 
store time-related information that are used for statistical purposes. 
Once the scheduling algorithm assigns a job to a technician, it 
sends the respective technician a message containing information 
about the job such as the location of the failed machine. Then the 
technician agent enters the “busy” composite state, which in itself 
contains two further simple states. Entering the “busy” composite 
state will execute its corresponding set of instructions, mainly 
updating the values of a set of variables, then the simple state 
“enRouteToMachine” becomes active. Entering the “enRoute 
ToMachine” simple state will instruct the technician agent to move 
to the location of the failed machine, which was provided in the 
message received by the technician to attend to the job. 

 

Fig. 2. Technicians' state diagram. 

The technician then moves in two dimensional space with a 
predefined speed (assumed to be 50 miles per hour) to the failed 
machine. The arrival of the technician to the failed machine 
triggers the transition between the two simple states 
“enRouteToMachine” and “atMachine, which has to go 
through a branch first. Once the technician agent arrives at the 
failed machine, it communicates with the failed machine agent; 
so that the corresponding failed machine statechart can be 
updated accordingly e.g. the failed machine’s corresponding 
active state becomes either “beingInspected” or 
“beingRepaired” based on whether this is the first visit or the  
technician has come to finish a job. The technician agent then 
enters the “atMachine” state and stays there until receiving a 
message from the failed machine containing information that 
the repair process has been completed and the machine is back 
to its operating state, or that there are parts missing and the 
technician has to order necessary parts and leave. The 
technician agent then enters the “checkForRequests” simple 
state, where it checks whether there are any broken machines 
determined by the scheduling algorithm to be nearby, so it can 
attend to. If so the technician enters the “busy” composite state 
and goes through the same steps as above. Otherwise it enters 
the “onRoteToMC” state where MC is short for maintenance 
center, the technician then moves in the two-dimensional space 
back towards the maintenance center, and the “atBase” state 
becomes active. This was an example of a simple statechart that 
defines the behavior of the technicians’. During the model runs, 
transitions between states and interactions between different 
agents are the driving force behind the behavior of the modelled 
systems. 
The data from Table 2 below that were used as inputs for the 
model were hypothesized after careful examination of real case 
studies used in previous research studies and reports from big 
corporations that are implementing distributed on-demand 
spare parts production. As noticed from the table, the triangular 
distribution has been used frequently to model time needed to 
accomplish tasks. This is mainly because the data used as input 
were estimates and do not reflect accurate data of an existing 
system. Indeed the use of the triangular distribution has been 
suggested in many simulation specialist texts [15,17,19] to 
model time-related tasks when little or no data are available. 
The advocacy for the use of the triangular distribution where 
data are scarce or unavailable is mainly because of the relative 
ease of estimating its parameters i.e. min, max and mode, which 
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provide a valuable first primal insight about the performance of 
stochastic systems. The normal distribution was used to trigger 
the machines failure for the same reason, but high uncertainty, 
represented by a relatively high standard deviation, and the 
need to occasionally include extreme values; to better represent 
random break-downs made the normal distribution a more 
appropriate choice that is sufficiently generic while 
maintaining realistic. Since the standard deviation is relatively 
high (40% of the mean), to avoid getting negative values for 
the time before failure, the absolute value of the time before 
failure was used. 
 

Table 2. Key input parameters. 

Input parameter Value 

Number of machines 1000 
Number of technicians 5 
Number of zones 5 
Number of failures 10 
Number of AM parts 5 
Delivery time from central warehouse 1 day 
Delivery time from local warehouses Triangular (3, 6, 8) hours 
Delivery from supplier(s) Triangular (1, 2, 1) days 
Machines failure rate Normal (30, 12) days 
Number of AM machines per zone 3 

On-demand parts production time Triangular (8, 12, 10) hours 
Annual AM technician salary £ 60,000 
Number of AM machines per technician 3 
AM machine price £ 100,000 

5. Results and discussion 

Experiments were performed to simulate a service period of 
five years to evaluate the performance of both scenarios. The 
evaluation of performance was based on three criteria, namely 
cost, downtime, and utilization of resources (machines and 
repair technicians). Table 3 shows an accumulated cost 
comparison between the two scenarios. It is clear from the cost 
breakdown below that the implementation of distributed on-
demand production of spare parts entails more cost segments 
(e.g. more personnel, the acquisition of AM machines, AM 
production cost). Regardless of this, the total cost of this 
scenario remains lower than the Traditional centralized 
scenario. It is worth mentioning that the total cost in both 
scenarios excludes the downtime cost, since this value varies 
significantly depending on the sector, context, service level 
agreement and a host of other factors making it difficult to 
estimate for a generic case.  

The main savings from RdM scenario are fairly spread 
across the entire cost segments spectrum. Although it is 
expected that the total inventory cost will decrease in the RdM 
scenario, mainly due to savings on suppliers’ orders – as a 
portion of the parts assortment will be manufactured in-house - 
and the elimination of a portion of the parts from stock, which 
means savings on holding costs, the significant decrease in the 
cost of incurring stock outs and subsequently lower downtimes 
is high. This decrease in stock outs is mainly due to the 

assumption that a share of the parts assortment is no longer 
supplied from a third party supplier, but rather always available 
after in-house on-demand production and post processing. 
There was also significant saving on transportation costs since 
all machines are assigned to zones, each has its own, and 
shares, dedicated resources. Table 3 below shows a breakdown 
of the costs for both scenarios. 

Table 3. Cost breakdown in £ for both scenarios after 5 years of operations. 

Cost Traditional Scenario RdM Scenario 

Orders cost 16,169,265 12,008,120 
Stock out cost 1,964,800 741,400 
Holding cost 428,971 339,886 

AM production cost 0 2,753,240 
Total cost of acquiring AM 
equipment 

0 1,500,000 

Total AM technician salaries 0 1,500,000 
Total transportation cost 2,468,540 1,187,937 
Total cost 21,031,576 20,030,583 

 
It is important however, to note that the cost reduction 

incurred from the implementation of the proposed RdM 
scenarios is not apparent on the short-term. It rather takes a few 
years to begin to observe the cost savings, due mainly to the 
substantial initial investment required to decentralize 
operations and acquire advanced production equipment. Fig. 3. 
below shows a break-even chart for the accumulated cost for 
both scenarios where the break-even point occurs around the 
4th year. This means that unless an OEM is committed to long-
term MRO processes, and the depreciation rate of the AM 
equipment is relatively low, and AM equipment can operate for 
many years, then the RdM scenario is not appropriate. 

 

Fig. 3. Break-even chart for the accumulated total cost for both scenarios. 
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main elements namely states and transitions. States define the state 
that the agent is in while the state is active e.g. available or busy, 
while transitions as discussed above control the moves between 
the agents’ states. States can take two forms namely: simple and 
composite. A simple state is a standalone state i.e. a state that exists 
by itself, in other words a state that does not contain further states 
inside. While a composite state, as the name suggests, is a state that 
contain further states inside e.g. an agent’s state “Busy” could 
contain further states elaborating exactly what the agent is busy 
doing such as “Performing job A”.  

Each statechart has one and only one simple state active at any 
single moment in time during the simulation run. Each state has 
two sets of instructions that define agents’ actions; one executes 
immediately upon entering the state, and the other executes once 
the agent leaves the state. In other words once a state is triggered, 
its corresponding agent performs some action, then the state stays 
active i.e. the agent waits for some time to pass or an event to 
occur, and then once it is time (or condition) to move to another 
state, the next set of instructions is executed and the agent leaves 
to the next state. This is best illustrated by an example. Fig. 2. 
shows the statechart diagram of the technicians, the naming 
convention of the states follows Java naming conventions. Once 
the simulation run commences, the technician enters the “atBase” 
state which means that the technician is idle and ready to head out 
to attend to a failed machine. Once the technician is assigned a job, 
through a scheduling algorithm that loops through the failed 
machines queue and assigns jobs to technicians based on location 
and the total number of jobs performed by each technician that 
day. The scheduling rule is applied in the Traditional scenario 
only, as it is assumed that each zone has only one technician. It 
could be however used in the RdM scenario, in case more than one 
technician is assigned to any zone, by looping through each failed 
machine’s zone’s allocated technicians. This example is taken 
from the Traditional scenario. 

Entering and leaving the “atMC” state, which refers to “at 
maintenance center”, updates the value of different variables that 
store time-related information that are used for statistical purposes. 
Once the scheduling algorithm assigns a job to a technician, it 
sends the respective technician a message containing information 
about the job such as the location of the failed machine. Then the 
technician agent enters the “busy” composite state, which in itself 
contains two further simple states. Entering the “busy” composite 
state will execute its corresponding set of instructions, mainly 
updating the values of a set of variables, then the simple state 
“enRouteToMachine” becomes active. Entering the “enRoute 
ToMachine” simple state will instruct the technician agent to move 
to the location of the failed machine, which was provided in the 
message received by the technician to attend to the job. 

 

Fig. 2. Technicians' state diagram. 

The technician then moves in two dimensional space with a 
predefined speed (assumed to be 50 miles per hour) to the failed 
machine. The arrival of the technician to the failed machine 
triggers the transition between the two simple states 
“enRouteToMachine” and “atMachine, which has to go 
through a branch first. Once the technician agent arrives at the 
failed machine, it communicates with the failed machine agent; 
so that the corresponding failed machine statechart can be 
updated accordingly e.g. the failed machine’s corresponding 
active state becomes either “beingInspected” or 
“beingRepaired” based on whether this is the first visit or the  
technician has come to finish a job. The technician agent then 
enters the “atMachine” state and stays there until receiving a 
message from the failed machine containing information that 
the repair process has been completed and the machine is back 
to its operating state, or that there are parts missing and the 
technician has to order necessary parts and leave. The 
technician agent then enters the “checkForRequests” simple 
state, where it checks whether there are any broken machines 
determined by the scheduling algorithm to be nearby, so it can 
attend to. If so the technician enters the “busy” composite state 
and goes through the same steps as above. Otherwise it enters 
the “onRoteToMC” state where MC is short for maintenance 
center, the technician then moves in the two-dimensional space 
back towards the maintenance center, and the “atBase” state 
becomes active. This was an example of a simple statechart that 
defines the behavior of the technicians’. During the model runs, 
transitions between states and interactions between different 
agents are the driving force behind the behavior of the modelled 
systems. 
The data from Table 2 below that were used as inputs for the 
model were hypothesized after careful examination of real case 
studies used in previous research studies and reports from big 
corporations that are implementing distributed on-demand 
spare parts production. As noticed from the table, the triangular 
distribution has been used frequently to model time needed to 
accomplish tasks. This is mainly because the data used as input 
were estimates and do not reflect accurate data of an existing 
system. Indeed the use of the triangular distribution has been 
suggested in many simulation specialist texts [15,17,19] to 
model time-related tasks when little or no data are available. 
The advocacy for the use of the triangular distribution where 
data are scarce or unavailable is mainly because of the relative 
ease of estimating its parameters i.e. min, max and mode, which 
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Another decrease was in the utilization of resources. The 
average availability for all machines (i.e. productive time) in 
the RdM scenario increased to 98.27 from 97.65 in the 
Traditional scenario. The availability of the technicians also 
notably improved in the RdM scenario, as there was an increase 
of 13% of availability on average in the technicians’ available 
time. This is mainly due to savings on driving times, as 
technicians only drive in their respective zones. Such 
availability could be exploited by adding more tasks to the 
technicians, or increase the number of machine of machines per 
zones without much compromising the downtime of machines, 
and consequently associated cost. 

 
The RdM scenario also showed a significant reduction in the 

average machines’ downtime as shown in Fig. 4. above, which 
could be critical for some industries and could entail some 
significant penalty for some OEMs. The simulation results 
showed a decrease of 34.3% in the average downtime of all 
machines when adopting the RdM scenario. This decrease 
however, was not solely achieved by the on-demand production 
of a portion of the spare parts, other factors such as shorter 
response time due to sharing resources within defined zones, 
and the existence of small storage facilities near the demand 
points (in RdM facilities) where the delivery of parts to failed 
machines is shorter. 

6. Conclusion 

Simulation modeling was employed to evaluate the 
performance of two generic repair processes based on total 
cost, downtime of machines and utilization of resources. The 
results showed that there is a clear advantage gained from 
employing RdM into the spare parts sector in all three 
performance criteria. It was not however the on-demand 
production that solely contributed to the improved 
performance, as manufacturing technologies (such as AM 
equipment) still lack in technical details, are costly to acquire 
and maintain and could take long time to produce and post 
process a part. It mainly the distribution of resources, pooling 
them and allocating them to corresponding zones, and the 
sharing of resources between agents that live in this zone is 
what contribute the most to the improvement of the system. 

There however remain much to be investigated in this area. 
First, although insight into generic repair processes was 
thoroughly developed, it is necessary to evaluate the 
performance of a case from a particular sector using real data 
to further validate the model. Second, optimizing parameters is 
also an important area that is yet to be investigated in this 
setting. Further, some assumptions were relaxed in order to 
maintain the simplicity of the model. Such assumptions, when 
their corresponding data are available, could provide valuable 
inputs for the model. This research is, however, an important 
step towards understanding the needs for the adoption of RdM 
in the production of spare parts, particularly, the 
decentralization aspects.  
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