
A Meta-Reinforcement Learning Approach to
Optimize Parameters and Hyper-parameters

Simultaneously

Abbas Raza Ali1[0000−0003−0505−2638], Marcin Budka1[0000−0003−0158−6309], and
Bogdan Gabrys2[0000−0002−0790−2846]

1 Bournemouth University, Poole BH12 5BB, UK
{aali,mbudka}@bournemouth.ac.uk

2 University Technology Sydney, Ultimo NSW 2007, Australia
bogdan.gabrys@uts.edu.au

Abstract. In the last few years, we have witnessed a resurgence of in-
terest in neural networks. The state-of-the-art deep neural network ar-
chitectures are however challenging to design from scratch and requiring
computationally costly empirical evaluations. Hence, there has been a
lot of research effort dedicated to effective utilisation and adaptation
of previously proposed architectures either by using transfer learning or
by modifying the original architecture. The ultimate goal of designing a
network architecture is to achieve the best possible accuracy for a given
task or group of related tasks. Although there have been some efforts
to automate network architecture design process, most of the existing
solutions are still very computationally intensive. This work presents a
framework to automatically find a good set of hyper-parameters resulting
in reasonably good accuracy, which at the same time is less computation-
ally expensive than the existing approaches. The idea presented here is
to frame the hyper-parameter selection and tuning within the reinforce-
ment learning regime. Thus, the parameters of a meta-learner, RNN, and
hyper-parameters of the target network are tuned simultaneously. Our
meta-learner is being updated using policy network and simultaneously
generates a tuple of hyper-parameters which are utilized by another net-
work. The network is trained on a given task for a number of steps and
produces validation accuracy whose delta is used as reward. The reward
along with the state of the network, comprising statistics of network’s
final layer outcome and training loss, are fed back to the meta-learner
which in turn generates a tuned tuple of hyper-parameters for the next
time-step. Therefore, the effectiveness of a recommended tuple can be
tested very quickly rather than waiting for the network to converge.
This approach produces accuracy close to the state-of-the-art approach
and is found to be comparatively less computationally intensive.

Keywords: Convolutional Neural Networks · Meta-Learning · Rein-
forcement Learning · Policy Gradients · Hyper-parameter optimization

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/222828967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Ali et al.

1 Introduction

Deep neural networks (DNN) have attained tremendous success by consistently
outperforming the shallow learning techniques. However, solving complex tasks
need deeper and wider networks which are considered hard to design. Transfer
learning, often, works well on simple and more general tasks whereas complex
tasks require effort to design a customized network. The network designing pro-
cess requires specialized skills and numerous trials which is a time consuming and
computationally expensive task. The state-of-the-art networks require well-tuned
hyper-parameters which often demand numerous computationally intensive tri-
als.

In recent years, Meta-Reinforcement Learning (Meta-RL) has become a de-
facto standard to automatically search for optimal hyper-parameters. Therefore,
the proposed framework uses Meta-RL to efficiently explore the optimal hyper-
parameters of a deep network from the given search space. The exploration
happens simultaneously for both the policy network and the DNN. Given a tuple
of hyper-parameters that is generated by a policy network, a network is built
and trained for a number of steps. The network computes accuracy on hold-out
validation-set whose delta is used as a reward. Furthermore, this reward along
with the state of the network comprising statistics of probability distribution
over the number of classes and training loss, are back-propagated to the policy
network which generates a tuned tuple for the next time-step. The network is
initialized once where different tuples of hyper-parameters are tested on the
go without resetting the network. Therefore, a tuple of hyper-parameters is not
required to train till convergence of the network which saves a significant amount
of computation.

There are a number of recent studies around hyper-parameter optimization
using Reinforcement learning. The earliest effort of Meta-RL was made by [3]
where a recurrent neural network (RNN) based agent is used to learn the behav-
ior of the environment. The goal of the agent is to learn a policy for learning new
policies. The Meta-RL is defined in this work in a way that the agent gets trained
once on a problem and transfer learned on similar kind of tasks. Moreover, the
idea is a learning policy to learn another policy in a family of similar Markov
Decision Processes (MDPs). A Meta-agent adjusts its policy after training for a
few episodes and validates on an unseen environment. This approach worked well
on both small- and large-scale problems. Another simple, yet powerful Meta-RL
approach is Model-Agnostic Meta-learning (MAML) [4]. MAML does not ini-
tialize model parameters randomly but rather it provides a good initialization
to achieve optimal and efficient learning on a new task. The fine-tuning requires
a small number of gradient steps. The key aspect of the MAML is that the
model can be trained using a gradient descent including convolutional neural
networks (CNNs) with a variety of potential loss functions. Additionally, it is
equally effective for regression, classification, and reinforcement learning, where
it outperformed a number of previous approaches.

[18] proposed a long short-term memory (LSTM) [8] based approach to train
a meta-classifier. The few-shot learning method finds the optimal set of parame-



A Meta-RL Approach to Optimize Params. & Hyper-params. Simultaneously 3

ters. However, [5] claims that the MAML initialization of the model parameters
is more resilient to over-fitting, particularly, for smaller datasets. Also, it is more
effective when the model is dealing with new unseen tasks. Similarly, [1] proposed
an effective and efficient domain adaption approach by fine-tuning the final layers
of a CNN for both small- and large-scale problems.

Neural Architectural Search (NAS) is another effort towards Meta-RL based
network search [24]. NAS uses an RNN based controller that samples a candidate
architecture known as child network. The child network is trained till conver-
gence to obtain accuracy on a hold-out validation-set. The accuracy is used as an
immediate reward which further updates the controller. The controller generates
better architectures over time where the weights are updated by policy gradient.
The approach seems quite simple and powerful but it is tested on very small
size tasks. Another observation is that the search space of the child network was
limited. The reason behind limiting the experiment to small tasks is the ineffi-
ciency of the approach. Progressive Neural Architecture Search (PNAS) proposes
a different approach to architecture search known as sequential model-based op-
timization (SMBO) strategy [15]. In SMBO, instead of randomly recommending
and testing out the blocks, they are tested and structures searched in order
of increasing complexity. Instead of traversing the entire search space, this ap-
proach starts off simple and only gets complex when required. PNAS claims
to be significantly less computationally expensive than NAS. Another effort to
make architecture search more efficient is known as, Efficient Neural Architec-
ture Search (ENAS), proposed by [17]. ENAS allows sharing of weights across
all the models instead of training every model from scratch. The idea is to reuse
the weights of a block which are already trained. Thus, the system uses transfer
learning to train a new model which makes convergence very fast. It is a very
effective method and comparatively less computationally expensive than PNAS.
The only observation about this approach is that it keeps a large number of
architectures in the memory.

[23] proposed a different approach of learning to do exploration in off-policy
RL which is Deep Deterministic Policy Gradients (DDPG). The authors com-
pared two different policy gradient RL approaches: a) On-policy Gradient Al-
gorithms (OPGA) which includes algorithms like Proximal Policy Optimization
(PPO), and b) Trust Region Policy Optimization (TRPO) where a stochastic
policy is used for exploration of RL environment. A separate policy has been
used instead of a simple heuristic for the exploration. This policy is trained us-
ing OPGA methods where the reward for training is a relative improvement in
the performance of the exploitation policy network. Experimental results show
faster convergence of DDPG with higher rewards. [25] further extended NAS
where they also replaced REINFORCE with PPO.

The proposed approach is an efficient form of NAS and ENAS to find optimal
neural architecture. The shortcomings of NAS is its limitation to small tasks
because it is computationally very expensive. On the other hand, ENAS keeps
numerous architectures in the memory so that the new architectures can share
the weights of the pre-trained blocks. This work further simplifies architecture



4 A. Ali et al.

search problem which is equally effective for large datasets. The approach tunes
the hyper-parameters of the network during training rather than waiting until
convergence which saves significant computation time. The effectiveness of a
tuple of hyper-parameters is tested by training for a few steps. Further, the
feedback of the tuple is used to tune the policy gradient at the same time-step.

This method significantly reduces the computational complexity of the op-
timal hyper-parameter search problem. Along with minimal computation, the
approach requires a substantially smaller amount of memory by optimizing a
single instance of the network rather than creating and keeping numerous ar-
chitectures in the memory. The simplicity of the approach does not affect the
accuracy of the network and makes it equally effective for more complex and
bigger tasks. This is the key contribution of this study.

The rest of the paper is organized as follows. Section 2 is devoted to discussing
the methodology of this study. The formulation of REINFORCE, base-learner
and stochastic depth algorithms are outlined in Section 3. Section 4 outlines the
data-sources and different configurations that have been used to conduct vari-
ous experiments. Section 5 reports the experimental results and their analysis.
Finally, the paper is concluded in Section 6.

2 Methodology
The primary goal of this study is to efficiently explore the optimal set of hyper-
parameters for a given task. This is achieved by optimizing the meta-learner
parameters and network hyper-parameters at the same time. Typically, the pol-
icy network needs to train for several episodes so that it can start producing an
effective outcome. In case of hyper-parameter tuning using Meta-RL, the child
network needs to be sequentially trained on a task at hand using all the tuples,
recommended by the meta-learner, until convergence in order to conclude their
effectiveness. It becomes a time and computationally intensive task. Hence, this
challenge has been tackled and addressed in this study.

In order to evaluate the proposed approach, a framework is designed using
a typical RL setting which consists of two key components: an agent and an
environment [20]. The environment can be in different states (S) which are ob-
served by the agent at different time-steps (t). Given its knowledge of the state
and a set of available actions the agent chooses an action (A). These actions
affect the state of the environment and in return, generate a reward (R). To
find the optimal set of hyper-parameters the agent needs to find the actions that
lead to maximizing expected reward, see Equation 1. The γ is a discount factor,
which allows the agent to maximize its expected reward on either short- or long-
term transitions based on its value. However, the reward is non-differentiable
and hence needs a policy gradient method to iteratively update θ as formulated
in Equation 2. The stochastic policy π(a|s) describes a probability distribution
over the set of actions.

Rt ←
∞∑
i=0

γiRt+i, γ ∈ [0, 1] (1)

θ ← θ + α∇θlogπθ(st, at)rt (2)



A Meta-RL Approach to Optimize Params. & Hyper-params. Simultaneously 5

The agent generates a tuple of hyper-parameters using an RNN which is
known as meta-learner. This tuple specifies a neural network architecture known
as base-learner in the framework. The base-learner is trained on a task and
evaluated on the held-out validation-set. The base-learner provides feedback to
the meta-learner to get a well-tuned tuple in the next time-step. Figure 1 shows
the setting of the proposed Meta-RL framework.

Fig. 1: A typical setting of Meta-RL framework where agent contains a policy
gradient and network sits in the environment

2.1 Meta-learner

The Meta-learner consists of a stochastic policy gradient which makes weight ad-
justments in a direction that lies along the gradient of expected reinforcement.
It is a statistical gradient-based approach known as REINFORCE as described
by [21]. It makes weights adjustment without explicitly computing gradient es-
timates with back-propagation. The Meta-learner initializes a base-learner once
with the initial values of hyper-parameters from search space except for depth.
However, the depth is initialized with the maximum value. For instance, if the
maximum depth is 34 in the search space, the network is initialized once with
the maximum depth. The meta-learner is a two-layer RNN LSTM with 35 neu-
rons per layer. The network is trained with Adam optimizer [11]. An initial
learning rate of 0.0006 has been used. The weights are initialized with Xavier-
initialization [6]. A discount factor of 0.97 is used to prevent the total reward
from reaching infinity. The meta-learner is updated via a policy gradient method
which is computed using an immediate reward.

2.2 Base-learner

The base-learner used in this work is a modified form of Residual Network
(ResNet) [7]. It is constructed by stacking a set of residual blocks on top of
the input layer and followed by a fully-connected (FC) layer. A block consists of
a sequence of two convolutional layers with filter sizes 1x1 and 3x3, respectively,



6 A. Ali et al.

Algorithm 1 Computing immediate reward of an episode

1: beta = 0.8
2: Time-step = t
3: episode = e
4:
5: rewardt = (accuracy −moving accuracyt−1)
6: rewardt = clip(reward,−0.1, 0.1)
7:
8: moving accuracyt = (1− beta) ∗ accuracye
9: moving accuracyt += beta ∗moving accuracyt−1

where a stride of 2 is used by the first convolutional layer to reduce feature
map size. Also, there is a bottleneck setting of the block which consists of three
convolutional layers with filter sizes of 1x1, 3x3 and 1x1, respectively. The bot-
tleneck block is used for the networks with a depth of 50 or more. The benefit
of using ResNet architecture is two-fold: a) residual blocks have repeated units
of convolutions with fixed hyper-parameters, namely, kernels and strides, and b)
it has a skip-connection feature that provides flexibility to change the depth of
the network during the training. The base-leaner has been initiated once and its
hyper-parameters are modified during the training cycles.

Table 1: Hyper-parameter search space and parameters covering behaviour of
the network that is used as states t+1

Parameters Values (range)

A. Hyper-parameter search space

Number of layers (D) 2-50
Dropout Rate (DR) 0.5-1.0
Learning Rate (LR) 0.0001-0.9
Momentum (M) 0.6-0.99

B. Representation of the environment (states)

Network training loss 0-1.0
Mean entropy of class probabilities 0-1.0
Standard deviation entropy of class probabilities 0-1.0

The meta-learner (RNN) suggests a tuple of hyper-parameters from the
search space which are listed in Table 1 (A). The table shows the search space
range of all the hyper-parameters. Based on the suggested hyper-parameters, the
existing CNN architecture is trained for 50 steps with a batch size of 32. Fur-
thermore, delta of validation accuracy has been computed which becomes the
immediate reward. The reward that is used to update the meta-learner is the
delta of validation accuracy of the recent two episodes. The procedure to com-
pute the immediate reward is formulated in Algorithm 1. Apart from the reward
few other parameters of the environment are computed at time-step t compris-
ing of network training loss and entropy of probability distribution over number
of classes. The entropy is averaged over an episode, see Equation 3, where x is
the output of the softmax layer and N is the size of the episode. Further, the



A Meta-RL Approach to Optimize Params. & Hyper-params. Simultaneously 7

mean and standard deviation of the entropy has been computed over the number
of images, N , processed in an episode, see Table 1 (B). These parameters are
utilized by meta-learner as the state information to generate a tuned tuple for
time-step t+1. The network is trained with Momentum optimizer with Nesterov
momentum [19].

entropy = −
N∑
j=1

(fj(xi) ∗ log2(fj(xi))) (3)

xl+1 = ReLU(xl + f(xl,Wl)) (4)

Residual Block with Stochastic Depth A residual block is composed of
convolution layers, batch normalization (BatchNorm) [10] and rectified linear
units (ReLU) [16] which is represented as function f in Equation 4. xl represents
skip-connection path and f(xl,Wl) is a residual block. A configuration of the
base-learner with maximum depth 4 is shown in Figure 2 (a). The meta-learner
has recommended a depth size 3 so the last residual block has been disabled for
the current episode. Hence, the gradient update of the last block is stopped for
the current episode.

The depth of the network is controlled by stochastic depth approach pre-
sented by [9]. It leverages the skip-connection path of the residual block xl to
control network depth even during training of the network. The idea of original
stochastic depth work, [9], is to randomly skip the residual blocks by letting
through only the identity of the raw feature in order to skip a path. In this work
rather than randomly skipping the blocks, meta-learner suggests which blocks
to skip. Therefore, when a block is skipped, the identity path has been chosen
which stops updating the block’s gradients.

3 Formulation

The approach to optimize parameters and hyper-parameters simultaneously is
outlined in Algorithm 2. It has two components: a) meta-learner and b) base-
learner. A meta-learner is an RNN which suggests a tuple of hyper-parameters
in the form of actions. These actions are applied to the environment which is a
base-learner. The base-learner is a CNN which trains the task at hand on the
actions of current time-step for a few steps. Furthermore, the network computes
accuracy on a hold-out validation-set which is used as an immediate reward at
the time-step t. This reward and the state of the network is observed and used to
update the weights of the meta-learner that generates new actions for time-step
t+ 1 which are dependent on how well the base-learner performs.

Algorithm 3 shows how stochastic depth approach is modified for this work.
The base-learner only updates the gradients of the residual blocks which are less
than the suggested depth (D). For the rest of the layers, a skip-connection path
has opted. The base-learner is initialized with a maximum value of the depth
once and modifies, often, on every episode.



8 A. Ali et al.

Algorithm 2 Meta-Reinforcement learning algorithm to optimize parameters
and hyper-parameters simultaneously

1: . META-LEARNER
2: Network depth = D
3: Dropout rate = DR
4: Base-learner’s Learning rate = αb
5: Momentum = p
6: Actions (a) = < D,DR,αb, p >
7: Time-step = t
8: Meta-learner’s Learning rate = αm
9: Reward at time t = rt

10: Differential policy at time t which maps actions to probabilities = πθ(st, at)
11: Initialize the policy parameter: θ = Xavier-initialization
12: Initialize base-learner CNN: model← ResNet(a)
13:
14: for episode← 1 to πθ : s1, a1, r2, ..., sT−1, aT−1, rT do
15: . policy network
16: for t← 1 to T − 1 do
17: θ ← θ + αm∇θlogπθ(st, at)rt . gradient update
18:
19: . BASE-LEARNER
20: . Tune the hyper-parameters of network with θ
21: for s← 1 to Steps← 50 do
22: features← next batch(train, labels)
23: if training = True then
24: fit model← model.fit(a, features)
25: end if
26: end for
27: if testing = True then
28: test accuracy ← fitted model(testset)
29: end if
30:
31: rt = test accuracyt −moving accuracyt−1

32: s1t = train loss . states of t
33: s2t = final layer statistics
34: end for
35: end for

Algorithm 3 Stochastic Depth routine

1: Depth suggested by meta-learner = D
2: Maximum depth of a network = maxD
3:
4: for block no← 1 to maxD do
5: if block no >= D then x← ReLU(x+ f(x,W )) . residual block
6: end if
7: if block no < D then x← Identity(x) . shortcut
8: end if
9: end for



A Meta-RL Approach to Optimize Params. & Hyper-params. Simultaneously 9

(a)

0 100 200 300 400 500 600 700

Time (minutes)

0

20

40

60

80

100
N

e
tw

o
rk

 v
a
li
d
a
ti

o
n
 a

c
c
u
ra

c
y
 (

%
)

(b)

Fig. 2: (a) A schematic view of base-learner with maximum depth 4 and current
depth 3. (b) Cifar-10 time taken versus network validation accuracy plot

4 Experimentation Environment

In order to evaluate the proposed approach, a number of experiments have been
performed. These experiments use different image classification tasks listed in
Table 2. A tuple of hyper-parameters is tested for only a few steps rather than
till convergence. Hence, the number of steps the base-learner trains on a tuple
of hyper-parameters is a critical parameter. Thus, different values of step-size
and batch size have been tested to obtain the optimal values which can evaluate
a recommended tuple in the shortest time. The experiments suggest a step-size
50 with a batch size 32 which is sufficient to test a tuple of hyper-parameters
efficiently. Likewise, capturing the appropriate parameters which can better rep-
resent the state of the network after a training episode is key. The accuracy or
loss can be sufficient if for each of the generated tuples the network is trained
until convergence. Hence, the behaviour of the environment, at every episode,
has been captured to evaluate the effectiveness of the recommended tuple. The
effectiveness of a tuple is measured using the validation accuracy.



10 A. Ali et al.

4.1 Datasets

In this work, five publicly available datasets have been used with different char-
acteristics and complexity levels. The proposed approach is equally effective for
both small and large datasets unlike most of the neural architecture search ap-
proaches which are only tested on small datasets. The datasets size, number of
classes and image resolution is listed in Table 2. The datasets are divided into
training- and validation-set with 80-20 split.

Table 2: Image datasets used in this work

Dataset Training-set Testing-set Classes Dimensions

Mnist [14] 50,000 10,000 10 28x28x1
Fashion-mnist [22] 60,000 10,000 10 28x28x1
Cifar-10 [12] 50,000 10,000 10 32x32x3
Cifar-100 [12] 50,00 10,000 100 32x32x3
Tiny-imagenet [13] 100,000 20,000 200 64x64x3

5 Results and Analysis

A comprehensive set of experiments is conducted to evaluate the effectiveness
of the proposed approach. The experiments were performed on 5 Nvidia 1080Ti
GPUs, one dataset per GPU. A comparison of the proposed approach with
other architecture search approaches is shown in Table 3. This comparison is
only available for Cifar-10 dataset as most of the previous studies used it in
their experiments. A plot of validation accuracy against the time taken can be
seen in Figure 2 (b). The vertical red dotted line is pointing to the top accuracy
whose hyper-parameters settings are mentioned in Table 4.

Table 3: Comparison with different architecture search approaches on Cifar-10
dataset

Method GPUs Exploration
time (days)

Parameters
(millions)

Error rate (%)

DenseNet [2] - - 26.20 3.46
NASNet-A [25] 450 3-4 3.30 3.41
PNAS [15] 100 1.5 3.20 3.63
ENAS [17] 1 0.60 4.60 2.89
This work (Cifar-10) 1 0.40 4.58 3.11

There are 5 datasets used for experiments with different complexity-levels.
The exploration of hyper-parameters for the datasets posses different behaviors
in terms of the number of episodes and time. The Mnist, Fasion-mnist and Cifar-
10 datasets were comparatively easier to learn. On the other hand, the explo-
ration of Cifar-100 and tiny-imagenet was hard. The complex datasets took many
more episodes to explore the optimal parameters from the search space. More-
over, the maximum depth of the architectures was bigger for complex datasets.
So a large increase of depth size from one episode to other, particularly in the



A Meta-RL Approach to Optimize Params. & Hyper-params. Simultaneously 11

initial phase, makes the training quite unstable. Figure 2 (b) shows a consis-
tent accuracy after 100 minutes of training till 630 followed by a spike on a
tuple. This tuple produced the maximum accuracy which is reported in Table 4.
At the beginning of the training, a much bigger improvement in accuracy has
been observed with a tuple which is different than the highest performing hyper-
parameter tuple. A network is trained separately from scratch using the highest
performing tuple until convergence which produces an error rate of 3.19 which
is close to the one mentioned in Table 3. This approach is repeated for the rest
of the datasets which produces the accuracy close to the one reported in Table 4
with a marginal difference range of ±0.15. It depicts the effectiveness of the
reported highest performing hyper-parameters tuple in the shortest time.

Figure 3 shows the policy loss, reward and network validation accuracy of
the 5 datasets. The plots show a vertical line along y-axis representing maximum
accuracy. The best hyper-parameters found against each dataset are reported in
Table 4 along with the exploration and network accuracy information. The mnist
and fashion-mnist tasks took very few episodes to find the top performing hyper-
parameters. On the contrary, the complex tasks, cifar-100 and tiny-imagenet,
took many more episodes to try different permutations of the hyper-parameters.

Table 4: Accuracy of various datasets including optimal parameters and episodes
required to achieve the optimal value

Dataset Network Hyper-parameters
[D,DR,α, p]

Episodes Duration
(hours)

Network Accu-
racy (%)

Mnist [4, 0.06, 0.02, 0.95] 720 0.72 98.29
Fashion-mnist [4, 0.06, 0.02, 0.95] 466 0.36 95.37
Cifar-10 [4, 0.3, 0.006, 0.95] 7,203 10.53 96.89
Cifar-100 [11, 0.2, 0.0007, 0.93] 9,810 19.39 76.94
Tiny-imagenet [16, 0.25, 0.0004, 0.89] 13,770 36.83 64.39

The network hyper-parameters are initialized once and tuned after every 50
steps. The policy gradient took more episodes to learn the hyper-parameters
for more complex tasks. To evaluate a recommended tuple, 50 steps are very
limited, hence the behavior of the network was captured and provided to the
meta-learner to more fully observe the impact of the tuple.

6 Conclusions

This study has presented an efficient approach to hyper-parameters search of
deep models. A Policy-based Reinforcement Learning method is used to generate
a tuple of hyper-parameters. The tuple is used by the target network, base-
learner, which is initialized once with random hyper-parameters and, often, tunes
on every episode. In each episode, a validation accuracy has been computed after
training for 50 steps with a batch size of 32. The delta of the accuracy, which is
referred to as reward, is fed back to the policy network along with the behavior
of the environment. The attributes that represent behavior are training loss and
statistics of the target network’s final layer outcome. A more refined tuple of
hyper-parameters, in turn, is generated for the next episode. This cycle tunes



12 A. Ali et al.

0 200 400 600 800 1000

Episodes

0

20

40

60

80

100

m
n

is
t

0 200 400 600 800 1000

Episodes

0

20

40

60

80

100

fa
s
h

io
n

 m
s
t

0 2000 4000 6000 8000 10000

Episodes

0

20

40

60

80

100

c
if

a
r
1

0

0 2000 4000 6000 8000 10000

Episodes

0

20

40

60

80

100

c
if

a
r
1

0
0

0 2000 4000 6000 8000 10000 12000 14000

Episodes

0

20

40

60

80

100

ti
n

y
 i
m

a
g

e
n

e
t

Fig. 3: Statistics of different datasets including policy loss, reward and network
accuracy

the parameters of the policy network and hyper-parameters of the network at
the same time which makes the overall process more computationally efficient
than the existing approaches.

In conclusion, the proposed approach demonstrates a quick and effective
hyper-parameter search approach. Unlike previous studies, it is equally effective
for both small and large datasets. Although the exploration takes more time
if the range of the network depth parameter gets bigger, still using one GPU
the exploration takes less than a day for a complex task. This approach is 20%
less computation expensive than ENAS with marginally higher error-rate. The
depth hyper-parameter is found to be the most effective one where the change
of the depth causes a significant jump in the accuracy. There are many possible
directions for future work. Currently, only four hyper-parameters are part of the
search space which can be enhanced. Accordingly, to evaluate the effectiveness
of a tuple of hyper-parameters, state of the intermediary layers of the network
can be observed rather than only the statistics of final layer outputs.



A Meta-RL Approach to Optimize Params. & Hyper-params. Simultaneously 13

References

1. Ali, A., Budka, M., Gabrys, B.: Towards meta-level learning of deep neural net-
works for fast adaptation. Proceedings of the 16th Pacific RIM International Con-
ference on Artificial Intelligence (PRICAI) (2019)

2. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. Computing Research Repository (CoRR) abs/1708.04552
(2017)

3. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.: Rl2:
Fast reinforcement learning via slow reinforcement learning. Computing Research
Repository (CoRR) abs/1611.02779 (2016)

4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning. vol. 70, pp. 1126–1135. PMLR, International Convention Centre, Sydney,
Australia (8 2017)

5. Finn, C., Levine, S.: Meta-learning and universality: Deep representations and
gradient descent can approximate any learning algorithm. Computing Research
Repository (CoRR) abs/1710.11622 (2018)

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feed-forward
neural networks. Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, PMLR (2010)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
pp. 1735–1780 (1997)

9. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.: Deep networks with stochas-
tic depth. Computing Research Repository (CoRR abs/1603.09382 (2016)

10. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. International Conference of Machine Learning
(ICML) (2015)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR) (2015)

12. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 and cifar-100. Canadian Institute
for Advanced Research

13. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. Stanford CS 231N
(2015)

14. LeCun, Y., Cortes, C., Burges, C.J.C.: The mnist dataset of handwritten digits
(1999)

15. Liu, C., Zoph, B., Neumann, M., et al.: Progressive neural architecture search.
Computing Research Repository (CoRR) abs/1712.00559 (2018)

16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. International Conference of Machine Learning (ICML) (2010)

17. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural archi-
tecture search via parameter sharing. Computing Research Repository (CoRR)
abs/1802.03268 (2018)

18. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. Interna-
tional Conference on Learning Representations (ICLR) (2017)

19. Sutskever, I., Martens, J., Dahl, G., Hinton, G.E.: Practical network blocks design
with q-learning. International Conference of Machine Learning (ICML) (2013)



14 A. Ali et al.

20. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. NIPS (1999)

21. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning pp. 41–49 (2019)

22. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. Computing Research Repository (CoRR)
abs/1708.07747 (2017)

23. Xu, T., Liu, Q., Zhao, L., Peng, J.: Learning to explore with meta-policy gradient.
Computing Research Repository (CoRR) abs/1803.05044 (2018)

24. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. Inter-
national Conference on Learning Representations (ICLR) (2017)

25. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for salable image recognition. Computer Vision and Pattern Recognition (CVPR)
(2018)


