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Abstract. Machine learning practitioners often refer to hyper-parameter
optimisation (HPO) as an art form and a skill that requires intuition
and experience; Neuroevolution (NE) typically employs a combination of
manual and evolutionary approaches for HPO. This paper explores the
integration of a stochastic hill climbing approach for HPO within a NE
algorithm. We empirically show that HPO by restrained stochastic hill
climbing (HORSHC) is more effective than manual and pure evolutionary
HPO. Empirical evidence is derived from a comparison of: (1) a NE algo-
rithm that solely optimises hyper-parameters through evolution and (2)
a number of derived algorithms with random search optimisation integra-
tion for optimising the hyper-parameters of a Neural Network. Through
statistical analysis of the experimental results it has been revealed that
random initialisation of hyper-parameters does not significantly affect the
final performance of the Neural Networks evolved. However, HORSHC,
a novel optimisation approach proposed in this paper has been proven to
significantly out-perform the NE control algorithm. HORSHC presents
itself as a solution that is computationally comparable in terms of both
time and complexity as well as outperforming the control algorithm.

Keywords: hyper-parameter optimisation, global optimisation, neuroevo-
lution, artificial neural networks, random search, stochastic hill climbing

1 Introduction

Neuroevolution (NE), a sub-field of Artificial Intelligence (AI), originated in the
1980s as shown by the work of Montana & Davis [21]; NE involves evolving
and adapting Artificial Neural Networks (ANN) by employing Evolutionary Al-
gorithms (EA) such as Genetic Algorithms (GA), a sub-field of Evolutionary
Computation (EC), to optimise ANNs as well as solve complex Reinforcement
Learning (RL) tasks [33]. As proposed by Yao [42], the Neural Network(s) pro-
duced by NE can be described as an Evolutionary Artificial Neural Network
(EANN). Traditionally, non-evolving ANNs often employ Gradient-based, Back
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Propagation algorithms [22, 43, 35] to learn and optimise performance by ad-
justing the ANNs hyper-parameters and weights. However, in traditional NE
approaches the topology is chosen prior to the employment of the learning al-
gorithm [33] and will not evolve during training. The ANN topology is an im-
portant factor to consider when planning to employ an ANN; this is due to the
fact that the topology chosen plays a fundamental role in its functionality and
performance [11], and therefore it’s ability to produce a meaningful output.

Prominent empirical studies [33, 26] have shown that EAs can be employed
to dynamically evolve the weights as well as the overall topology of ANNs. The
GAs used are often categorised depending on the type of evolution achieved.
Algorithms that solely evolve the weights are known as conventional Neuroevo-
lution algorithms [14, 33, 13, 24]; whereas, algorithms that evolve the weights and
topology are known as Topology and Weight Evolving Artificial Neural Network
algorithms (TWEAAN) [33]. Many popular and modern NE algorithms have
adopted the TWEANN approach. However, the topics of simplification and com-
plexification are crucial factors that algorithms should consider. The goal of a
NE algorithm is to find the best performing solution for a given problem while
reducing unnecessary complexity of the topology.

It should be noted that NE is not the only approach used for hyper-parameter
optimisation (HPO). It is in fact one of five popular HPO approaches that can
be applied to ANN evolution and learning; moreover, NE can be used for op-
timisation of model parameters and hyper-parameters. Alternative approaches
include grid search, random search, Bayesian optimisation and Gradient-based
optimisation; the latter of these is most commonly employed and has become the
primary approach for Neural Network (NN) parameter optimisation by applying
a Gradient Descent and Back-propagation algorithm. The research will focus on
the most popular, prominent and currently available NE algorithm implementa-
tions in order to evaluate and compare them against alternative hyper-parameter
optimisation approaches.

2 Background study

2.1 Neuroevolution

Neuroevolution is the process of evolving ANNs through evolutionary algorithms
[17] and is inspired by the evolution of biological brains [32, 33]. Various research
papers have proven that a GA can be applied and used to find ANNs that consis-
tently display improved learning speeds in comparison to a typical Feed Forward
ANN [40]. NE establishes a fundamentally different approach to learning tasks
in contrast to alternative techniques such as Back Propagation with Gradient
Descent. NE is a phylogenetic learning approach that focuses on evolving a whole
population of solutions, whereas conventional ontogenetic approaches focus on
training a single solution [15, 36]. Moreover, GAs have been proven to successfully
perform tasks such as: connection weight training, architecture design, learning
rule adaptation, input feature selection, connection weight initialisation and rule
extraction [42].
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Neuroevolution can have a number of evolutionary taxonomies, including
weights, topology, and learning rules [42]. Moreover, there have been numerous
discussions on the methods that evolve topologies; specifically, whether the algo-
rithm should complexify or simplify a NN topology, also known as constructive
and destructive algorithms [30, 42, 44, 1]. This would entail adding or removing
connections and/or neurons from the NN. In recent years, there has been an
increasing amount of literature on NE, specifically, on how to improve the per-
formance of the NNs evolved against increasingly difficult multi-objective prob-
lems such as Atari game playing, and complex real-world control/automation
problems. Differentiable plasticity, a concept proposed by [20] seeks to address
the problem of “learning to learn”. It aims to decouple training and learning,
as currently agents must be retrained for a different task than the one initially
learnt. Despite the initial usage of GAs for NE, recent research has moved to-
wards using Evolution Strategies (ES) for NN training [23], a class of black box
optimisation algorithms whose performance, when applied to complex RL prob-
lems, rivals that of algorithms such as Q-Learning (DQN) and Policy Gradients
(A3C), and which are also highly parallelisable [5, 29]. A primary differentiating
factor of ES is that solutions are encoded using real numbers [25]. Also, ES uses
mutation in a fundamentally different way to GAs and it is achieved through
self-adaptation or Covariance Matrix Adaptation (CMA) [38]. However, despite
these alternative approaches, researchers at Uber AI Labs [35] have developed
Deep GA, a GA for Deep Neuroevolution; moreover, their findings show that a
simple GA is competitive at completing modern problems that were originally
thought of as extremely challenging [38]

2.2 Hyper-parameter Optimisation

Hyper-parameter optimisation is a crucial step of applying a ML algorithm and
finding optimal hyper-parameter values manually is often a time consuming and
tedious task [10] and it is often referred to as an art form [12]. ML algorithms
are rarely hyper-parameter free, and indeed, they are often considered nuisances,
however, the process of automatically determining optimal values can be seen
as a process of optimisation [31]. HPO is the process of optimising a loss func-
tion over a graph-structured configuration space [4]; the aim is to maximise or
minimise a given function [39]. Determining appropriate values for the hyper-
parameters is fundamental in finding an optimal solution, however, it is a frus-
tratingly difficult task [18, 10, 8, 9] and the performance of NNs crucially depend
on the hyper-parameters used [9, 6]. For example, the internal structure is a key
factor in determining the efficiency of the NN [27]. Moreover, a major challenge
when designing and building a NN is determining the optimal hyper-parameters
for the network given the data for the problem at hand [7]. There are a num-
ber of popular and widely employed HPO approaches; each has been developed
with a different aim and generally improves upon the previously developed ap-
proach. However, grid search and manual search are presently the most widely
used strategies for HPO [3].
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Grid and random search Grid search, also known as a parameter sweep, is
the traditional approach used for finding the optimal set of hyper-parameters
for a given function; the approach is an exhaustive search that tries all possible
combinations to find the optimal value(s) [3]. Due to the fact that all possible
values are explored, the approach can guarantee reliable optimisation in low di-
mensional spaces [3]. However, not necessarily efficiently because it exhaustively
tries all possible combinations and suffers from the curse of dimensionality as
the number of values grows exponentially with the number of hyper-parameters
[2, 3].

The random search approach was developed and aimed to reduce the cost
of computation and find an alternative to grid search. In principle, the random
search approach is very similar to that of grid search, however, instead of all pos-
sible value combinations tested, the algorithm stochastically tries values within
the search space. A number of empirical studies have shown random search to
outperform and be computationally more efficient than grid search at finding an
optimal combination of hyper-parameters [3].

3 Experimental Design

The design of this experiment draws on existing research, most notably: [3, 4, 19,
45]. A considerable amount of literature has been published on grid search, it is
widely accepted as a computationally expensive approach. However, in problems
where the intrinsic dimensionality is low, it may be an appropriate approach. NE
and EAs are stochastic algorithms that often employ manual and evolutionary
HPO, however, there are some unanswered questions about the validity of this
approach and its ability find optimal hyper-parameters. Therefore, this research
aims to integrate and utilise a random search approach for HPO. The question
that then naturally arises is whether this approach is reliable, as randomising
the optimisation process may arbitrarily produce optimal solutions, which may
represent a long-winded process as the computation time required to find an
optimal solution increases at each step an optimal solution is not found.

This experiment involves taking a standard NE algorithm and producing
five distinct modified versions, as listed in Table 1, and applying them to an
Unsupervised Learning problem that involves the NNs learning to target seek.
The modifications included in the experiment can be categorised as either an
initialisation modification (alias prefix IN) or a run-time optimisation modifica-
tion (alias prefix RT). The NE algorithm used is Neataptic [37], a JavaScript
implementation based on NEAT [33]. The random search optimisation modifi-
cations will be integrated into multiple distinct copies of the original Neataptic
algorithm.

In order to carry out the experiment, each algorithm must be configured as
shown in Table 2. Each algorithm will undergo a total of 10000 function evalu-
ations with a sample size of 30 executions for each algorithm. The population
size has been determined using a method developed in [34], specifically, the pop-
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ulation size P = N × 10 where N is the number of objectives (i.e. 1 in our
experiment).

Algorithm 1 is the pseudo-code for the experiment and outlines the funda-
mental flow of execution for the experiment and the algorithms.

Table 1: Included algorithm descriptions and alias definitions
Algorithm Alias

Neataptic (no modifications) Vanilla
Neataptic with initial neuron activation function modification INAFM
Neataptic with initial neuron bias modification INBM
Neataptic with initial network topology modification INTM
Neataptic with run-time activation function optimisation RTAFO
Neataptic with run-time network topology optimisation RTNTO

Table 2: Parameter configurations for the GA
Parameter Value

Mutation rate 0.3
Elitism 0.1
Selection method Tournament
Crossover method Uniform

Mutation methods Add neuron Remove neuron Add self-connection
Add connection Remove connection Remove self-connection
Modify weight Modify bias Remove recurrent connection
Add gate Remove gate Add recurrent connection

Population size 100
Generation count 100

4 Hyper-parameter Optimisation by Restrained
Stochastic Hill Climbing

Stochastic hill climbing chooses it’s next value at random from the available
search-space [28]. The approach introduced in this section, named hyper-parameter
optimisation by restrained stochastic hill climbing (HORSHC), proposes an ap-
proach to HPO that rivals the manual and evolutionary approach found in the
NE algorithm used in our experiment.

The HORSHC process outlined in Algorithm 2 begins by defining a limit,
this is the restrainment applied to the algorithm. This can be considered another
hyper-parameter for optimisation. The algorithm then goes on to stochastically
increase or decrease a network’s size, doing so until either the limit is reached
or performance no longer improves.
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Algorithm 1 Hyper-parameter optimisation experiment execution cycle.

1: g ← 0
2: p← [size] . in our experiment size = 100
3: p = InitialisePopulation(size)
4: while g ≤ max do . in our experiment max = 100
5: for network ← 0 to size do
6: ApplyToLossFunction(network)
7: f = evaluateFitness(network)
8: start = now
9: optimise(network)
10: finish = now
11: storeTimes(finish - start)
12: storeFitness(f)
13: end for
14: g ← g + 1
15: end while

Algorithm 2 HORSHC execution cycle

1: limit← 3
2: h←network.score
3: i← 0
4: do
5: h←network.score
6: if p >= 0.5 then . p is assigned a random number 0-1
7: network = simpiflyNetwork
8: else
9: network = complexifyNetwork
10: end if
11: ApplyToLossFunction(network)
12: network.score← FitnessFunction
13: i← i + 1
14: while network.score > h and i != limit

5 Numerical Results

Figure 1 depicts the overall performance of each of the initialisation modifica-
tions (INAFM, INBM, INTM), compared with the unmodified vanilla version;
specifically, the average fitness scores as well as the average of the worst and best
performing solutions throughout the 100 generations. Figure 2 does the same for
the run-time activation function modification (RTAFO), and Figure 3 shows the
results for the run-time network topology modification (RTNTO).

In order to complement the other findings, the Wilcoxon signed-rank test [41]
has been performed using a significant value of 0.05. The test will determine if
there is a significant statistical difference between the results obtained from the
vanilla algorithm and the other algorithms, hypothesis values with a = indicates
equal performance, - indicates inferior performance and a + indicates superior
performance.

Table 3 shows the average of the worst, mean, and best performing solutions
for all algorithm variations across 30 independent samples of 10000 function
evaluations in comparison to the vanilla. Despite the results illustrated in Fig-
ure 1 that depicted potential performance increases, none of the results for the
initialisation modifications were significantly different to the results produced by
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(a) Lows (b) Averages (c) Highs

Fig. 1: Experimental results for the initialisation modifications

(a) Lows (b) Averages (c) Highs

Fig. 2: Experimental results for the activation function modifications

(a) Lows (b) Averages (c) Highs

Fig. 3: Experimental results for the topology optimisation modifications
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the vanilla algorithm. However, results for the run-time modifications show that
both RTAFO and RTNTO significantly outperform the vanilla algorithm.

Table 4 shows the Wilcoxon test results for the total times of the full exper-
iment execution, RTNTO represents a significantly inferior algorithm compared
to the vanilla algorithm in terms of overall time taken to execute. Whereas,
RTAFO had equal performance of that shown by the vanilla algorithm.

Table 3: Wilcoxon test results for the modified algorithms.
Worst Mean Best

Algorithm p-value Hypothesis p-values Hypothesis p-value Hypothesis

INAFM 0.65176 0 (=) 0.65544 0 (=) 0.51585 0 (=)
INBM 0.26876 0 (=) 0.77657 0 (=) 0.19093 0 (=)
INTM 0.85942 0 (=) 0.95153 0 (=) 0.37074 0 (=)

RTAFO 0.00078147 1 (-) 0.33874 0 (=) 0.00078147 1 (+)
RTNTO 0.56638 0 (=) 1.8626e-08 1 (+) 9.3132e-09 1 (+)

Table 4: Wilcoxon test results for the total time of RTAFO and RTNTO in
comparison to the vanilla algorithm.

Total time

Algorithm Mean time (mins) p-value Hypothesis

RTAFO 9.1542 0.55611 0 (=)
RTNTO 10.9112 5.7183e-07 1 (-)

6 Conclusion

The experiment carried out during this research examined 3 hyper-parameter
initialisation approaches and 2 run-time HPO approaches. The 3 initialisation
approaches aimed to better improve the initialisation performance of solutions;
whereas, the run-time optimisation approaches aimed to optimise existing solu-
tions in the population. The novel run-time optimisation approaches employed
have performed remarkably well in comparison to the vanilla algorithm. It should
be remarked that RTNTO has been shown to significantly outperform all other
algorithms and was able to do so within a third of the total function evaluations
allocated.

With that said, the initialisation algorithms do present some interesting re-
sults. Despite neither INAFM, INBM, or INTM displaying superior performance
to that of the vanilla algorithm, all 3 were able to produce results that were of
equal performance. However, the results show that INAFM has consistently im-
proved the initial performance of the best performing solutions; therefore, it
suggests that the selection and crossover mechanisms used by the algorithm are
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not subsequently producing better performing solutions. Instead, INAFM is ac-
celerating the initial optimisation process that the other approaches were unable
to achieve.

An important question to answer is whether performance can be improved
by different permutations of the initialisation approaches; however, this could
also result in a further acceleration of the optimisation and not result in higher
performing solutions at the end of the process. The method of complexification
employed by many modern algorithms ensures that the initial size of the NNs are
small, however, INTM disregards this and allows solutions to have potentially
larger initial topologies. Depending on the requirements, it may not be advan-
tageous to produce high performing solutions whose topologies are potentially
over-complex in comparison to their counterparts.

Moreover, the results of RTNTO have revealed an unanticipated superior
performance in comparison to the vanilla algorithm and all other algorithms
used in this research. As previously mentioned, RTNTO was able to outper-
form the other algorithms within a third of the allocated function evaluations.
As with INAFM, the RTNTO algorithm was able to not only accelerate the
optimisation of solutions, but also increase overall solution performance by 56
percent. However, despite the significant performance improvement, as with all
of the algorithms, RTNTO was unable to increase performance of the whole
population as average low scores were significantly lower and did not show signs
of improvement during execution.

Similarly, due to the increase in computation time required, RTNTO takes
significantly longer to complete than both the vanilla and RTAFO algorithms.
Generally speaking, a single, optimal solution is what a researcher/practitioner
requires and this inability to remove weak performing solutions and/or execute in
the fastest time may not pose a problem. Interestingly, RTNTO was a by-product
of another algorithm and was similar in its approach but was unrestricted in
terms of how may hidden layers/neurons could be added during a single function
evaluation. Despite a lack of statistical evidence, this former algorithm displayed
similar performance to that of RTNTO.

Contrasting RTAFO and RTNTO, despite the initial promising performance
of INAFM during the initialisation experiments, RTAFO was unable to achieve
similar results to that of RTNTO. Comparing RTAFO to the vanilla algorithm,
it was able to significantly outperform in terms of average highest fitness for
candidate solutions. However, it has become apparent throughout the research
that all of the algorithms are unable to improve the population as a whole
and RTAFO is no exception to this; in fact, it is the only algorithm that was
significantly outperformed by the vanilla algorithm on this basis. Due to this
consistency, it opens a question to whether the surrounding components are to
blame or whether additional logic is required to eliminate the issue and allow
the whole population to improve.
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7 Future Work

The results uncovered during this research on the integration of alternative HPO
approaches within a Neuroevolution algorithm have revealed 2 probable hypothe-
ses: (1) random initialisation of hyper-parameters has little significance on the
final performance of solutions; (2) HORSHC performed significantly better than
pure evolutionary and/or manual search strategies for finding high performing
solutions. HORSHC is a competitive HPO algorithm and it is proposed that it
should be employed for optimising NNs solving single objective problems such as
the target seeking problem used in our experiment. However, several questions
remain unanswered: (1) how well do the approaches demonstrated in this re-
search perform against a problem with multi/many objectives?; (2) how well do
the approaches demonstrated in this research perform on a different set of prob-
lems?; (3) Are there permutations of initialisation methods that provide better
optimisation results? A natural progression of this work would be to explore the
application of the approaches proposed in this research according to questions
1 and 2 as well as the combination of approaches to see if they reveal further
performance increases. Furthermore, a further study could assess the effect of
activation function optimisation and its significance; [16] performed a similar
experiment and introduced HA-NEAT that is analogous to RNAFO. Further-
more, as RTNTO was restricted to 3 modifications, it could be argued that this
is another hyper-parameter to tune and increases/decreases may yield better
results. Finally, as ES lead the latest research and have fewer hyper-parameters
[29], a further study of traditional HPO with ES would be a complementary
contribution.
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