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Abstract—The current rise in malicious attacks shows that
existing security systems are bypassed by malicious files.
Similarity hashing has been adopted for sample triaging in
malware analysis and detection. File similarity is used to cluster
malware into families such that their common signature can be
designed. This paper explores four hash types currently used in
malware analysis for portable executable (PE) files. Although each
hashing technique produces interesting results, when applied
independently, they have high false detection rates. This paper
investigates into a central issue of how different hashing
techniques can be combined to provide a quantitative malware
score and to achieve better detection rates. We design and develop
a novel approach for malware scoring based on the hashes results.
The proposed approach is evaluated through a number of
experiments. Evaluation clearly demonstrates a significant
improvement (> 90%) in true detection rates of malware.

Keywords: Malware, Static Analysis, detection, hashes, Intern.-
of Things,

I. INTRODUCTION

Internet of Things (IoT) offer new and exciting opportunities
such as smart homes, smart devices, smart cities .nd - "art
transportation, to name but a few. [oT is growing < enormc 1s
scale and is expected to be used in connecting bill*on 0. *ev'es
in the near future. But as the market, scope and 2 ,plic .tion areas
of IoT increase, it becomes more vulnerable to ri ,us k ads of
security breaches, such as malware, spoofin‘, jamn.. ~c, etc. —
these issues been surveyed in related we .. "33]. This paper
focuses on the issue of malware in the Io'1. With .~ growth of
IoT, the types of malware are continv ,us, - evolving. Having
various devices connected to the IoT ¢” angr 5 not only the attack
target landscape, but also supplies c-imin. - with resources that
were previously not available. Ir { srcurity challenges have
made the IoT devices a vector . = r ower .ul DDoS attack in
recent years [1]. Malware targe* Tol v ces vulnerabilities so
that exploited devices can be .ome p. t of a botnet. The longer
the malware is not detected, the mor : devices it can exploit.
Thwarting analysis impli=~ tha. “.c malware samples have
become more complex »ver tii. <, therefore, the evolution of
malware is two sided: th. erowth a numbers collected daily and
the complexity of the sam. ueing discovered. For instance,
according to AV-Tc t . .0 *e, over 856.62 million malware
were collected in 2018. "~ .aly 13% (113.78 million) of these were
new malware samples. “he statistics from AV-test Institute

UK.
1. "ounas@brookes.ac.uk

show an exponential g,  /th in the number of malware seen each
year. The growtt ... comp 2xity of malware is shown by the
ever-evolving :omplex methods discovered in collected
malware samples *hat ar used to evade and/or disable malware
prevention 7 .u detecuon systems.

It is tl eref (e \ rucial to generate new methods that can
isolate files wat arr variations of malware which have already
been know.. On one hand, this can shorten the time spent on
analy~ing malw e, and on other hand, it can o detect malware
in differc ¢ st- ges. Detection of malware in stages reduces the
impac. ~f sample analysis on system performance as less
= ' __ _l.nalware is needed to be analysed [2]. The need for
secw. . trustworthy and high-performance devices [3] in IoT
devices and other fast systems automatically limits the use of
dv .amic analysis-based detection methods. Dynamic analysis
r Tuires more resources and more time to execute and observe
“he behaviour of the file. However, this is not feasible in the
IoT environment given the scarcity of resources.

An efficient strategy is to utilise existing static feature-
evaluation methods and to design new approaches for better
detection rates. Evaluating static features of a sample can be
constrained by the structure of the file. In this paper, we
therefore focus on the Microsoft portable executable (PE) files.
The rationale is that 90% of computer users in the world
currently use Windows operating systems [4]. Moreover, with
the multiplatform Windows 10, PE files are expected to continue
being a possible threat vector as Windows systems are used in
or interact with [oT devices.

The first crucial stage of triaging malware and clustering
samples based on similarity matching normally uses hashing.
Given that malware authors change internal structure/value to
defeat basic hashing, a more complex hashing structure is
needed. Therefore, we propose a combinational approach
which is believed to lead to better results. If file similarities
detected by the hashes as used as attribute similarity factors for
a sample dataset, multiple attribute decision making, and
evidence combination mathematical models are applicable to
automate the decision-making process of malware detection.
Various uncertainty-based reasoning models have been
designed to assist expert systems in decision making based on
unreliable data. This paper exploits this theory in order to
propose and design a new approach that synthesises different
hashing techniques to provide a quantitative malware score and



to achieve better detection rates. The main contributions of the
proposed method are:

e We combined tried and tested similarity matching
hashes that are provided in almost all automated static
analysis tools like Peframe and Virustotal. This implies
that the deployment cost and manual effort required for
dynamic analysis and advanced static analysis are
avoided.

e The proposed method is scalable which can be
customised to the needs of a malware analyst.

o Considering different hashes as file attributes reduces
the storage capacity required by the system. This makes
the proposed method light weight and more efficient.

The rest of this paper is structured as follows. Section 2

explores related work. Section 3 provides an overview of the
background topics such as hashes, combination methods, and the
evaluation approach used in the study. Section 4 describes
design and modelling of the proposed method. Evaluation and
results are presented in Section 5. Section 6 presents conclusion
of the paper.

II. RELATED WORK

Although a lot of developments have been made in anti-
malware research, most of the them have focused on behavioural
analysis and dynamic heuristic analysis [6], [7]. Static analysis-
based research has a limited scope. Existing research work
around similarity matching hash functions has been limited to
malware clustering as discussed herein. Since the proposed
approach in this paper investigates into how multiple feature-
based decision making has been utilised to improve malwai.
detection rates in various scenarios, we discuss related work that
has used multiple feature-based methods to improve ma. ‘.
detection. However, readers interested in general IoT security
issues are referred to related work, such as [33] and [341. which
provide surveys of challenges and open issues in IoT securi. .

DigitalNinjas [8] is a technical report that sho. ~ an inif al
work in the use of fuzzy hashing similarity to dr iect n.. 'w .re.
Using only Ssdeep hash to detect different malw .re f- .nilies, the
work achieves a level of confidence of 67%. Fi.~c 1 and Casey
[9] extended this work by conducting a st dy usu,, Jifferent
fuzzy hashing methods. A comparativi . *dy of popular
similarity hashes used in malware clustering has “een carried
out in [10]. This study shows that fuz .y I shing outperforms
cryptographic hashing. A methodolc_~ th it clusters malware
using Imphash based similarity chec’iing w. ~ first introduced by
Mandiant. This is now known as F7 eEy . and is analysed in[11].
Although the results in [12] show “i‘ aer - ensitivity matching,
the functionality of hashing - ma. -~ re detection is still
restricted to malware clusteri .g. Simu ry, in other related work
[8], [9], [11]-15], one hash 1. used in sach study.

Multiple features-bas~ ' dec...on making is applied in
heuristic engines which ase alg. -ithms that do not necessarily
provide an optimum so. ‘tion. U alike the old signature-based
detection methods, heurisuo, utilise different features in
malware and have | -ove . .. be better at unknown malware
detection. Combinatio. of file features and file relations
improve malware detectic 1 results. This was introduced in [16]

which developed a file verdict system called “Valkyrie”. The
authors build a semi-parametric classifier model to perform the
combination and test the model against a dataset of 39,138
malware samples. This model is reported to have been applied
in the Comodo Anti-Malware software.

Kolter & Maloof in [17] e¥ .mine the results of various
classifiers on malware detecti 1. ‘hrough a simple heuristic
based technique of text classirication, vhich is known as n-
grams. The proposed appro7 -n v sts techniques which include,
Naive Bayes, decision tr =s, .upport vector machines and
boosted variants. This appi.>ch not only uses multiple
methodologies to train and 1. “ the algorithm, it also gives good
detection rates of 95%,-9. %. Huwever, this approach used a
very limited dataset of 1° 71 wialware which is a rather small
dataset and thus it ma, not be applicable to the enormous
malware sample oeing <oliected nowadays.

The MaTR 6] appri ach combines static heuristic file
features and dec -ion-,ee machine learning algorithms to
design a mr.nod “~r improving malware detection. This work
initially ~ res _cate the experimental environment
[17], hig lights ite veaknesses which are then used to build a a
different dew. ‘ion algorithm. Experimentation using a dataset
of31.73 malic yus and 25195 clean files leads to 99.9 accuracy
in ti.~ dete. - .1 rates.

Xinp. et al, [18] propose to combine both static and
«_uanuc Teatures in order to improve malware classification.
This ~ethod uses classifiers and adopts the prediction when
w.. nut is the same. This work tested the proposed method
v 282 samples which is a very small sized test dataset and thus
he - very limits the scope.

The authors in [19] propose combining features using
evidence combination methods in the detection of android
malware. This work treats each feature statically which is
extracted from android applications as information sources. It
uses Dempster-Shafer theory of evidence combination to
combine the information sources. Using a dataset of 1580
malware samples, the method achieves a detection accuracy of
97% and a false positive rate of 1.9%. The results show that
combining different features improve malware detection rates.
In our work, we apply this method to PE files and use static
based hashes as representatives of heuristic features. These are
believed to reduce resources, cost and efforts as compared to
existing the method proposed in [19].

Studies towards attaching a malicious score to a file as a
method of malware detection have been an evolving topic in
security research. Taking the approach of the CVSS (Common
Vulnerability Scoring System), MAEC project introduces the
concept of a malware threat scoring system. It uses predefined
categories to attach a threat score to a file [20]. RSA, the
security division of EMC has introduced the RSA Security
Analytics Malware Analysis scoring categories [21]. Both the
MAEC and RSA categories look at static analysis as a required
category. Kumar et al [22] propose to attach a heuristic score to
a PE file which is based on the features extracted from PE file
itself. Using 10 static features and a dataset of 1360 malware
and 1230 clean files, the proposed model achieves an accuracy
detection rate of 85%. Although the detection rates are not high,



the scoring approach proposes a method of allowing a malware
analyst in classifying malware based on urgency. In the quest
to build a more resilient cyber space, this work further explores
and expands the approach introduced in [22] and is an extension
of our previous work presented in [23].

The work in this paper focuses on calculating a malicious file
score from combining different hashing techniques (e.g.,
cryptographic hash, ImHash, SSDEP, PeHash) for malware
detection purposes. Mathematical theories rooted in uncertainty
reasoning are explored. It also explores the hashes as heuristic
feature representatives and investigates into the effect of
similarity hashes in relation to malware detection.

III. OVERVEIW OF THE BUILDING BLOCKS OF THE PROPOSED
METHOD

Existing malware detection methods rely on the expertise of
malware researchers and analysts. However, it is difficult (if not
impossible) to provide such expertise that can effectively and
timely handle the massive numbers of newly discovered
malware. This motivates the need for the design and
development of new automated analysis methods that can use
uncertain data to make decisions and fight malware. Many
expert systems exhibit low errors in decisions making using
uncertain data as they employ mathematical theories [24]. Thus
as foundational information to our study, this section discusses
the identified building blocks; the known and tested hash
functions used in malware analysis, and uncertainty based
cognitive approaches, and the methods used to evaluate the
proposed approach.

A. Hashing Functions

Hashing functions are mathematical computations v™i~h
take input (messages) and produce output (message diges.
according to the contents of a file [12]. Some of the common
hashes are illustrated as follows.

1) Cryptographic Hashes: These are t'e popu ar
cryptographic hashes which include, MD5 sum, S."A1 - ad
SHA256. These are mainly used for file integri’y ch-cks. with
respect to similarity matching, these are limi. 1 i sco e and
efficiency due to the fact, that a minor change .n the ..'» an have
a negative influence on the overall cor., *ed hash digest.
However, these are useful in malware analysi> -t the initial
identification and classification stage ;/>" as an immediate
match means that the file is an exact ¢ ~v ¢ . a known malicious
file.

2) Ssdeep Hash: It is used to ¢ :tect similarity in files and is
usually known as Context Tr.~ ced Zliecewise Hashing
(CTPH) [25] or fuzzy hashin-, ¢ was aitially used for anti-
spam research (called Spamr sum). v is a non-cryptographic
hash based on a combina. »n of the piecewise hashing
(Fowler/Noll/Vo —FNV ' .s1) ana rolling hashing as shown
in Fig. 1, which uses an :xample fa 5 byte hexadecimal block.

FNV Hash
8A |07 |47 | 2¢ | E8 | —» 2ce855%3
07 |47 |2c |E8 | —» 98658812
47 _|2c | E8 | —» 218184¢9
, 2C_|Ef | —» deab81G6
Rolling Hash ! ' — > 45006ca7

Blocksize CTPH - 32967

2% Blocksize CTPH - 397 Ss¢ :ep Signature - 2: 32967:397

Fig. 1. Calc '~ting u.. Ssdeep Signature

Blocksize: Block_S° ynat 1»=:Double-Block_Signature
6144:tkDtgNp95Ltuj’ {2..a” y1Dw. £U/e:utUpDtgKmw/LgJWa

Fig 2., deep Signature Form

Without con idering 1e 64 signature length requirement of
the algorithm the "N hashes are computed after setting a
rolling wir dow .~ a byte blocksize. The resulting CTPH
signature is ~ oncat ;nation of one string from the FNV hashes.
A comp. ‘con _.gorithm then uses CTPH signature and
Levenshtein 1 istance to calculate the sequence similarity
betwee.. any 2 hashes. The score is normalised such that 50
score ‘= counsidered as a reasonable threshold for a good
detectine “grpblum [25] adopted Spamsum for forensic science
res. 'ting into a function called Ssdeep. It was applied to
malwarc analysis by FireEye [26]. An Ssdeep signature of a file
tal ¢s we form shown in Fig. 2 — which also includes an extract
o an Ssdeep hash of a file. It has a very high confidence of 99%
‘or the return similarity match score for any 2 files. and is
therefore considered a critical step in static analysis of files.

3) Imphash: Designed by cybersecurity firm - FireEye [9],
Imphash is used to compute the digest of the import section of
portable executable files in three stages:

—  Extract the structure of the PE file,

—  Populate the imports in the order {API, Function (dll or sys
or ocx)} for each API being found.

—  Return the MDS5 digest of the populated strings.

Similarity matching using Imphash allows for clustering of
malware based on the contents and order of the executables’
import tables. This hash is easily compromised by a change in
the imports table order. Since malware can sometimes share
some common system interaction behaviours, Imphash still
plays a role in malware clustering.

4) PeHash: It represents a binary cryptographic hash value
[14] which is related to the structure of a executable’s file. In
addition to the structure of the file, PeHash algorithm uses bzip2
compression ratio as an approximation for Kolmogorov
complexity to get obfuscated data in file’s sections. With the
possibility that some malware repeat the use of specific
encryption techniques, different instances of the malware
sample can result in the same Kolmogorov complexity, thus
creating a clustering mechanism. The algorithm first creates 2
classes of hash buffers: global properties and section hashes



buffer. The PeHash is the SHA1 value of the overall hash buffer
of the file and is noted to provide efficient clustering for
polymorphic malware.

B. Evidence Combinational Methods

These are mathematical approaches that combine various
belief factors which are determined based on different degrees
of uncertainty in order to make the best effort decision [27].
Assuming two pieces of evidence defined by different degrees,
e.g., A and B are respectively defined with degrees a and b. If
these supports the hypothesis (M), then the resultant decision
mainly relies on the degree of belief gathered from the
evidences. We use the strict Archimedean t-conorms (as with
logical connectives) to design combinational decision making
methods [28]. The degree of belief in Maliciousness hypothesis
(M) is defined by the function:

a*b inM )

1) Fuzzy logic: It is used in situations when deterministic
data is not available. It states that the accurary or truth of end
result depends on the accuracy of the support evidence [29].
According to [28], the algebraic sum is given by the following
equation:

ax*b=a+b—a.b (2)

2) The Certainty Factor model: This model is used in rule
based systems such as MYCIN expert system that is used to
diagnose bacterial infections. In this model, the overall belief in
the hypothesis is calculated by taking into account t -
uncertainty in a rule and a single common factor. Using the T-
conorms, given two pieces of supporting evidence, the ov~rall
degree of belief (O-DoB) > (DoB-SE); which is the degrec £

belief in single evidence [30]. This is computed as:
a+b

a*b = (3)

C. Method Evaluation Approach

Evaluating the malware detection perfo .nan e ot the
proposed method requires the use of the binary 'as .ific7 .1on of
the confusion matrix, as shown in Table I.

TABLE I. CONFUSION MATRIX.

Analysis Results
Malicious C’ an
Actual Malicious | True Positive(TP) | " alse Negative (FN)
Sample — T -
State Clean False Positive (FP) | True Negative (TN)

The options in the confusi .n matr'x result obtained from the
similarity matches lead to »eing aile to calculate various
detection rates by using differc. « me’ ics, shown in Table II.

IV. DESIGN ( F THE Pt DPOSED METHOD

During the design pha. ~ w- cevisited and extended the PE
format and our prev .. —~rk [31].

A. Design Choice of Hashes

Table III shows the reasons as to why the various hashes
were chosen. The resource section (rsrc) of a PE file is known
to contain the information about any names and types of
embedded resources. By combining the various aspects of the
file sample using 4 various has} :s, the overall achieved score
is intended to represent the f.e's ~imilarity with respect to
already known malware samples.

TABLEIIT = ALC JRITHM NOTATIONS.

Notation Meaning

Ha Database of he “es

Imp H Imphash

Pe H PeHash

Sd H Ssdee; Hash f the tile

RSd H Ssdeep Ha. of the file’s Resource Section
Ni Se’ o1 elements of attribute, i

MD5 N D5 sum

HFlag set (H)| Ti ~flag sett ag function for hash type, H

PopHap, Popu.. ~ . Malicious files Hash Database Function
HbDR H> ~ ased Comparison Detection Rates Function
i “.ash ¢ ‘type, I, e.g., Imp H,Pe H,Sd H,RSd H

CFli Com- .on Factor Index of an attribute, i
ESFi Evidence Support Factor of Attribute, i

-ue Detection Rate calculated by:
TDR TP+TN

Total_Sample
False Positive Rate: a measure of the negative samples
flagged as positive. This is given by:
FP

. "R

TN+ FP

| Based on thefollowing equation it calculates the number
" .ecall of actual positive files being detected:

‘ TP

TP+ FN

[ Precision/ Positive Predictive Value (PPV) is measured:
PPV Ll

TP +FP

This is a measure of Accuracy of true detections, which
ACC is calculated as

TP+TN
TP+FP+TN+FN
The harmonic mean of precision and recall is calculated:
F, 2.PPV.Recall

PPV + Recall

CHA Combined Hashing Approach
TLBSA Traffic Light Based Scoring Assessor
FLM Fuzzy Logic Method
CFM Common Factor Model Method
GTP Green Threshold Percentage
ATP Amber Threshold Percentage
TABLE III. ARGUMENT FOR IN SCOPE HASHES.
Hash Type Reason
PeHash Overcoming Malware
Obfuscation
Imphash Classification by API

File Ssdeep Hash

Resource section Ssdeep PE Resource section file
Hash similarity.

Opverall File similarity




File Ssdeep Hash

Resource Section

T T —
— , ) .
\\ """" "IF : Cryptographic Hashes | ! |
i | L(MDS5, SHA1, SHA256) | | !
; ; o
Bataset | : : PeHash : [ l Hdb
! ! i
' | Hashes I i Detection Rates
\ I —> ImpHash P Hashes Generation
\ | [Generator o o
. I — — —»| Compari- =
! i
! L
! L
! Li
S

¥

-

. Ssdeep Hash < CFi Generator
N - — R — Evidence ~ bina. "1
\ N e 4 Detecti n me¢ =" "nism
— = File Malicious
Dataset Il1 metric (%)
..... +» Populating Database of hashes Algorithm > & .
Recommendation
Populate True Detection Rates Algorithm | ™
— —» Combination of Evidence based Detectior "'gor.. |L
—— Combination of 2 or all algorithms. )

Fig. 3. The architectural representation of the p. ~oseu wuethod

TABLE IV. DATASETS FORMATION AND WHERE THEY ARE USED IN THE
METHOD.

Dataset Use in the system

1 To populate the database of hashes

Used to calculate the True detection rated
of the Hashes and the respective CFL

To validate the proposed approach

1l {IIm, Ilc}

1 — {I1Im, TIc}

ALGORITHM I: ALGORITHM FOR GENERATING THE DATABASE OF HASHES

Input: Malware Dataset /

Output: Signature Hashes Database H,
1:  procedure: PopHg,

2: for file fin I do

3 Extract the file hashes

4: Hashes (f) «— {MDS5, Imp_H, Pe H, Sd_H,.."1 H}
5: If Hashes(f) & Hqp then
6:

7

8

add Hashes(f) to Hap
end for
end procedure

B. Architecture of the Proposed Method

Architecture of the proposed method is shown in Fig. 3. It
considers the notations and metrics <.1ow in Table II. The
proposed method is divided into six .“ffe ent steps which are
explained as follows.

Step 1: The Initial Single File St fv

This initial study was performea « ~ ,ne randomly chosen
clean file (arp.exe) from a Wi «dows-! 1sed system. The original
file was analysed and the (fferent iashes of interest were
computed. The file was th=n e..' =" asing Radare and the file
hashes were recomputer . The ! “shes from the two files were

compared.

Step2: Collecting t} NMntasets

Datasets in Table "V and Table VII are collected using the
methods described below -

a) This - udy gathers dataset of malicious PE files from
variou. sources such as malware from online malware
=~~~ '__, our own honeypots and the malware repository of
New“nde Ltd, UK.

h) Clean files from various types of Windows systems
‘e 2., Windows XP , Win 7, Win 8 and Win 10) were collected.
k. ~h file was saved as its MD5 sum to ensure that there was no
“le duplication in the dataset. As shown in Table IV, malicious
files were split into 3 sub-datasets, I, IIm and IIIm, and Clean
files were split into 2 sub-datasets, IIc and Illc.

Step 3: Populating the Database of Hashes Signatures

The database of hashes (Hap) for the malicious files that are
used as the initial signatures are calculated from random
malware samples. These are collected in dataset I using the
process of Algorithm I.

Step 4: Hashes Similarity Based Criteria Factor Index (CFI)
Formulation.

Dataset IT which has both malicious files and clean files is
used at this stage. This step is broken down into 2 sub-steps;

a) Determine the individual performance of the hashes in
relation to malware detection.

This involves comparing the hashes calculated for files in
dataset II against the Hg, by formulating the HFlag_set, where
each of the 4 hashes has a specific position. For each file in
Dataset 11, five respective hashes are computed. Four different
queries are run against the database. Each query returns a set of
tuples;

Xui — {md5, {Imp_H, Pe H, Sd_H, RSd_H}} (4

During the comparison of PeHash and Imphash, only the
hashes, which are the same as the calculated hash, are pulled
from the database. The HFlag_set position corresponding to the



hash of type i is not a set if the set Xj; is @ (null) and is a set
otherwise. For resource Ssdeep hash and file Ssdeep hash, all
the hashes are pulled from the database. A Ssdeep similarity
match is done for the file hashes and the respective database
populated hashes. If the maximum similarity percentage
calculated is greater than zero, the HFlag set position
corresponding to the hash of type i is set. It is not set otherwise.
Each file corresponds to one set of HFlag set. The total count
to achieve the confusion matrix parameters is populated for
each hash as shown in Algorithm II.

ALGORITHM II: ALGORITHM FOR CALCULATING DETECTION RATES.

Input: Ds «—Dataset II , Hgy
Output: Det_Rates

Overall Hash Based Detection Rate Phase

1: procedure: HbDR
2: for file (f) in Ds do

3: HFlag set

4: fori=1-4 >Loop through all the hashes flags
5 if f € IIm then

6: if HFlag_set ; then

7: TP;=+1

8: else

9: FNi=+1

10: end if

11: end if

12: if f € Ilc then

13: if HFlag_set 5 then

14: FP;=+1

15: else

16: TN; =+1

17: end if

18: end if

19: Update DetectionRates; «—{TP; FN; FP; TN;}
20:  end for

21: return Det_Rates
22: end procedure

b) Calculate the CFI of all the individual hashe~

The detection rates obtained in sub-step (a) < ce usea to
calculate the CFI of each hash which is used as a b *~f fac or
for each hash. To minimise the error in the belie . factors, ~ rue
detection rates are used to calculate the fr_tors Th~ true
detection rates are normalised to the uniferm. ~nge (0, 1].
Simple Additive weighting [32] is applied * » the detc. tion rate
so that the degree of belief/ Criteria Factor ma. - (CFI) for each
Hash method is defined as:

CFl, = [$%_, TDR,]"*.TDR; (5)

These CFI values are used a- the beun.f{ factors for the
respective hashing techniques. Tt s su' port the hypothesis that
the file is indeed malicious. The va. ~s ¢ .lculated are applied
in the next step in order to ob* .in an everall malicious score for
the file under test.

7

Step 5: Application of Evi " ice C...bination Theory.

The values of Criter a Factor 'ndex (CFI) are used as inputs
to the combinational 4appros:h application. The MDS5
comparison phase is » redunuancy step, which is introduced to
avoid replication ot ‘he -.a..vare samples in the experiment.
The Hashes compariso. phase uses the file calculated hashes
and compares them agan 5t Hg,. The query in equation (4) is

used in this phase too. The belief factors for the hashes are
computed from the results obtained from the respective queries.
For PeHash and Imphash, if the resulted set is not null, then the
corresponding ESF is equivalent to the CFI of the respective
hash. Otherwise the hash’s ESF is set to zero. For Resource
Section Ssdeep hash and file Ssc zep hash, the corresponding
ESF is equivalent to the CFI - ~ltiplied with the maximum
similarity percentage, which i< achic ~d by comparing the file
and the hashes in the databa-  The Calculated ESF values of
the wvarious hashes are con oined using the evidence
combinational models detai.. 1 a Section III. This is to get the
algebraic sum for the ove -1l hy, ~thesis which is fed into the
TLBSA (Traffic Light P~sed . ~oring Assessor).

Step 6: TLBSA Thre nold .

The resultant perc. ‘tages from the combined hashing
technique are co .pared ‘o add an overall TLBSA that evaluates
the score attache 1to the 1 le. It gives the user a recommendation
based on Tahle S ce the system does not completely
guarantee t' at th- “le is safe, the final decision on how the file
analysis is “2- uled. is left to the system user or analyst.

ABLE V. THE TLBSA COLOUR DEFINITIONS

Colou. | Dedv .ed file intent System Recommendation
Red | Lenitely malicious | Do not Install
! Highly encouraged to submit it for
. mber | Medium Suspicion | further analysis
Green Low Suspicion Submit it for further analysis
TABLE VI. TEST BENCH SPECIFICATIONS
r 100l Specifications/ Details

Computer system Dell T1700, CPU — Intel Xeon@ 3.1GHz,
RAM 32GB. Hard Disk — 500GB

Linux Mint 17.1 ( #64 — Ubuntu SMP)

Machine OS

Static Analysis tool Study specific Static Analysis Tool
— calculates the Ssdeep, Resource Section
Ssdeep hash, PeHash, and Imphash
SQLite Studio version 3.0.6.

Python IDLE version 2.7.9

Data management tools

TABLE VII. THE EXPERIMENTAL DATASET

Dataset 1 11 111 Total Files
Malicious files 34224 | 32844 37460 104528
Clean files 698 940 1638

TABLE VIII. MALWARE TYPE DISTRIBUTION IN THE MALWARE DATASET

Malware Type Percentage Malware Type | Percentage

Trojan 66.84% | Dropper 0.65%
Adware 22.30% | Virus 0.29%
Worm 9.03% | Spyware 0.11%
Downloader 0.71% | Exploit 0.08%

V. EVALUATION OF THE PROPOSED METHOD

This section presents the evaluation of the proposed method.
It first describes the dataset preparation process and the test
environment. It then provides an analysis and discussion of the
results.



A. Dataset Preparation and Test Environment

For the experiment, we collected 104528 malicious files.
All these were investigated using ClamAv engine version
0.99.2 in order to ensure that they were indeed known malicious
files. As shown in Table VII, the total dataset was prepared so
as to have different sets for the different steps in the experiment.
The malware family distribution of the used dataset is shown in
Table VIII. The algorithms were implemented in Python and
the database of Hashes was managed using SQLite in a Linux
box. The specifications are shown in Table VI. We use the
Linux as a safe environment since the malware are all PE files
and therefore ensuring that the results are not corrupted by
unknown self- infection.

B. Results and Analysis.

Table IX shows the similarity matching based results
achieved in the first phase of the study with the single file
analysis. Some hashes are heavily affected by a small change in
a file while there is possibility of a small or no effect in other
hashing functions. This justifies the reason of further exploring

hash-based similarity matching for a possibility of efficient
malware detection.

In the second phase, Dataset II is used to compute the CFI
metric values of the four hashing techniques which are shown
Table X. The results obtained are also used to evaluate detection
rates of the different hashing ter iniques, as shown in Fig. 4.
Dataset III is used to calculate .~ overall percentage of file
maliciousness in order to validate the p. posed framework. The
results achieved for the r op.sed approach are compared
against the results achieve for .ach individual hash in Fig. 6.
Fig. 5 represents the file scor.. ~ area curves of each adopted
method which shows that n.. -t of the malicious files’ score is
higher than the clea'. t.:s We compare the two proposed
methods and the ins -vid» al hashes in Fig. 6. Since the aim of
this study is to dev.= an optimum malware detection
methodology, w rturther investigate the true positive and false
negative trade-c Tofthe wo methods in Fig. 7. Fig. 8 is used to
determine TLBS. thre- j0ld percentages. We then present the
detection rz .es of ~~ch family of malware achieved in Fig. 9.

TABLE IX. COMPARISON OF HASHES FROM THE Sui. ™ E FILE STUDY

Hash Type | Original File Value } “dited Fil« Value Match
(%)
MD5 3319b0e02d9d931920605d02fb53f3fd | av 16591b8b8dad5f7£1470c90971e75 0
SHALI 4a22e401ad5adb7b3de8f819e86d8461d764d195 ; vouyse35c1921844b57376ee467ee977cc074bd 0
SHA256 1f4c090dfa389b3c6b16eb422991b815f24efac7ca541bb60821e3dall | ~441056223439e83f2fftbe3c463e178da8465fabeb51243c04 | 0
31b8f6 a3d2922de8fa2
Ssdeep- 384:5u3Smmq6aYaBpYFAfjhXrToHWS4mW4sme9V:Avmqb6e. Y 384:5u3Smmq6aYaBpYFmfjhXrToHWS4mW4sme9V:Av 99
File FAfjhr8sgE mq6affYFmfjhr8sgE
PeHash 5515f8e47661c7el170aee948cca7c8dc6198c08f 5515£8e47661c7e170aee948cca7c8dc6198c08f 100
Imph 880bb6799a6e1a5{f7b41022{f4003a9 — 880bb6799a6e1a5ff7b4£022f4003a9 100
Ssdeep - 96:8EWS1pEmWwOh/VsBgtAb88caS5Ur915fa9VWPBL. VsmrCOV | 96:8EWS1pEmWwOh/VsBgtAb88caS5Ur915fa9VWPBM 100
Resources NWS4mWNIXCu6Xsme9V XsmrCOV:NWS4mWNIXCu6Xsme9V
TABLL X. COMPUTED METRICS
Malware detection performa.. ~ of tb individual in-scope Hashes and calculation of the CFI
Detection Rates CFI
o, v (O o, - o,
Recall (%) P_P (%) ACC (%) F-score (%) TRUE (%) FALSE (%) (%)
ImpH 85.6 93.5 89.7 89.3 85.7 14.3 27
PeH 82.8 100 91.4 90.6 83.1 16.9 26.2
FuzH 76.2 | .00 88.1 86.5 76.7 23.3 24.1
ResFH 717 [ 99 85.5 83.2 723 277 227
TN EN FP
T 305 — 8%
4
= 6%
& 0%
§ %
g
g 10% b 2%
8
% o ||
ImpH Pet SdH  5dFH Imp-H Pe-H Sd_H RSd_FH ImpH Pe-H SdH RSd_FH ImpH Pe-H 5d H RSd_FH

Fig. 4. The Hashes Detection Rates using Dataset I1.
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C. Analysis and Observations

This study designe. and evaluated two methods for
combining the individu: hashes esults for malware detection.
Table IX results, achieved ~* t+_ first stage of the study, show
that similarity hask > . -~ ~ffective in matching similar files,
which have slight difi\ e ices in their content. Using dataset B,
the introduced resourc. section hash matching gives the
second-best precision value in the 4 hashes in which PeHash is

—k—Fuz7 = zicMeti. * —&— Common Factor Model Method
1.00 T T T T
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Fig. 9. Malware type detection ratios for the dataset used.

the best performing of the 4 hashes as shown in Fig. 4. Imphash
gives the highest false positive detection but also provides the
lowest false negative detection. The different levels in the
detection rates provide an argument for combining them to
achieve a more efficient detection approach. Analysis of the
logs to validate the Combined hashing methodology results into
achieving an overall false detection rate of 6.8% and a true
detection rate of 93.2%. These are the best performance values



in comparison to the results achieved by the individual hashing
algorithms as shown in Fig. 6. We analysed the dataset clean
file scores vs malicious file scores for the two evidence
combination methods. Both curves in Fig. 5 show that 83% of
the malicious files obtain a malicious score above 50% while
78% of the clean files have a malicious score less than 50%.
However, reviewing the true positive to false positive detection
trade-off in Fig. 7, the proposed methods shows that this
technique is susceptible to very high false positive of 60%, thus
requiring an evaluation of the model to achieve a better trade
off.

TABLE XI. COMPARING DETECTION RATED FOR THE TLBSA THRESHOLDS

Comparative analysis of the performance of the proposed method
after application of the TLBSA.

Prec | Recall | Acc ScFo-re
) | (%) | (%) (%)
Fuz?y (FLM_GTP (>25%) 99.2 | 922 91.6 | 955
ll\j;)egtllfod (FLM_ATP (>75%) 99.9 | 70.5 712 | 82.7
Common | (CFM_ GTP (>25%) 99.2 92.1 91.6 | 955
if?ecttl?;d (CFM_ATP (=70%) 100 69.8 704 | 82.1

We therefore introduced the TLBSA assessor at this stage,
as described earlier by creating the percentage thresholds for
the 3 zones. With the thresholds obtained, we evaluated how
well our methods work against the individual hashing
algorithms in Fig. 8. ATP outperforms all the individual hash
techniques. However, since this percentage creates a very lo™ -
True Positive rate of 70% for the Fuzzy logic method and 62%
for the Common Factor Model method, there is a need to
analyse the needed GTP. It creates a much-needed rise in ."e
True Positive rate of 92% for both the proposed techniques. The
use of TLBSA increases the detection efficiency of t+ 'stem
as shown in Table XI. The threshold percent ges alh w
optimum trade-offs and enable the system to provide . *ser w th
information that helps protect their system with .n accura. y of
at least 92% that has been achieved in this stu y. F'2. 9 hows
the overall detection ratios for the malware type. in t.e used
dataset. Of the 8 types collected, the desigr 1 methoa provides
efficient malware detection for 6 types.

VI. CONCLUSIOM

This study developed a new approac. t, combine the results
from individual similarity hashes tc demons.. ~te an overall best
performing recall of 92%, a s/ster. ac~uracy of 91%, a
precision of 99%, and an F-sco.. of €,%. These results
significantly outweigh the r .uits wiu.a one considers the
detection rates of the existin; indivia al hashes. Our approach
is flexible and it can be custc nised ¢ 1d extended by malware
analysts for the analysis 0¢ _ ‘her 1.« types. Our approach is safe
against sandbox and d' namic . nalysis environment evading
malware since it uses static nalysis. It simplifies the
identification of malicious ZI.s by providing a quantitative
value that indicates 1. "w 1, .." ious a file is. It also optimises the
storage required for da ~sase of hashes. Furthermore, it allows
for an easy update of si_matures so that performance can be

increased with the increase in number of hash signatures. Our
system design used light weight tools that makes it significantly
efficient. The results achieved in this study show that the
proposed method provides a way of building an efficient,
integrated malware detection system for IoT devices. .
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Paper — Highlights

This paper explores four hash types (PeHash, Ssder », Imohush and Resource Section
Ssdeep Hash) currently used in malware analysis fc * portal le executable (PE) files. We
use evidence combinational mathematical met'.cds .. combine the results from the
four hashes; Fuzzy logic and the Certainty Facir ".100 :l.

Similarity hashing has been adopted for sa.”ole “.i1aging in malware analysis and
detection. File similarity is used to cluster mal sare into families such that their
common signature can be designed.

We design and develop a novel approarh f~ malware scoring based on the hashes
results. The proposed approach is eva.'ated through a number of experiments.
Evaluation clearly demonstrates < sig .."zant improvement (> 90%) the in true
detection rates of malware.

The main contributions of this wo. k o= to improve detection rate of malware and to
provide a quantitative malwa, ~ scc* 2 mechanism for achieving improved confidence
level in decision making.

Hash functions are easi', ca.-ulated during the basic static analysis of a malware
sample. This implies tha the de Jloyment cost and manual effort required for dynamic
analysis and advancer static . ialysis are avoided.

It is scalable and car he _ust ;mised to the needs of a malware analyst. The algorithms
can also be adaptr d to .- zr file types using file similarity matching hashes.
Considering the ai.“=rent hashes as file attributes reduces the storage capacity
required by th~ -/stem. This makes it lightweight and therefore the method does not
impact syste' 1 re .ources heavily.

We combir ad n.. <t popular similarity matching hashes that are provided in almost all
automatr d st .tic analysis tools like Peframe and Virustotal.

A dataset 0. 07528 malicious files which were used against 1638 clean files collected
from resh indows installs. The experiment was run in a Linux box to avoid self-
infect. »n. All scripts were written in python and the database created was managed
usag SOLite.

T.is initi. | study was performed on one randomly chosen clean file (arp.exe) from a
Winu. .wvs-based system. The original file was analysed and the different hashes of
int :rest computed. The file was then edited using Radare and the file hashes were
re ~omputed. Similarity matching based results showed that some hashes are heavily
affected by a small change in a file while there is possibility of a small or no effect in
other hashing functions.

In the second phase of the study, the introduced resource section hash matching gives the
second-best precision value in the 4 algorithms and PeHash is the best performing of the 4



hashes. ImpHash gives the highest false positive detection but also p v« ides the lowest false
negative detection.

In the third phase, the Combined hashing methodology results ir .o ar 1ieving an overall false
detection rate of 6.8% and a true detection rate of 93.2 %, whicn ' 2 the best performance
values in comparison to the results achieved by the individual ha.“~ing aigorithms.

However, reviewing the true positive to false positive dete .tic 1 trace-off for the proposed
method shows that this technique is susceptible to ver, hig'. false positive of 60%, thus
requiring an evaluation of the model to achieve a better *rade ~ff. We therefore introduced
the TLBSA (Traffic Light Based Traffic Light Based Scori 1g Asse “sor) at this stage. It creates a
much-needed rise in the True Positive rate of 92% for b. th the proposed techniques.

This study developed a new approach to combine t} e restlts from individual similarity hashes
to demonstrate an overall best performing rece' <« 92 4, a system accuracy of 91%, a
precision of 99%, and an F-score of 96%. These . -e be** _r figures than when one considers
the detection rates of the existing individual hashes.

Our approach can be customised and extendea . * m-.ware analysts for the analysis of other
file types.



