
Accepted Manuscript

Similarity hash based scoring of portable executable files for efficient
malware detection in IoT

Anitta Patience Namanya, Irfan U. Awan, Jules Pagna Disso,
Muhammad Younas

PII: S0167-739X(18)32591-3
DOI: https://doi.org/10.1016/j.future.2019.04.044
Reference: FUTURE 4925

To appear in: Future Generation Computer Systems

Received date : 24 October 2018
Revised date : 1 April 2019
Accepted date : 19 April 2019

Please cite this article as:, Similarity hash based scoring of portable executable files for efficient
malware detection in IoT, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.04.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/222827969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.future.2019.04.044

Similarity Hash based Scoring of Portable Executable
Files for Efficient Malware Detection in IoT

Anitta Patience Namanya,
Irfan U. Awan

School of Electrical Engineering and
Computer Science, University of

Bradford, UK
apnamany, i.u.awan@bradford.ac.uk

 Jules Pagna Disso,
Cyber Risk Intelligence,

BNP Paribas, London, UK
jules.pagnadisso@uk.bnpparibas.com

Muhammad Younas,
School of Engineering, Computing
and Mathematics, Oxford Brookes

University,
UK.

m.younas@brookes.ac.uk

Abstract—The current rise in malicious attacks shows that
existing security systems are bypassed by malicious files.
Similarity hashing has been adopted for sample triaging in
malware analysis and detection. File similarity is used to cluster
malware into families such that their common signature can be
designed. This paper explores four hash types currently used in
malware analysis for portable executable (PE) files. Although each
hashing technique produces interesting results, when applied
independently, they have high false detection rates. This paper
investigates into a central issue of how different hashing
techniques can be combined to provide a quantitative malware
score and to achieve better detection rates. We design and develop
a novel approach for malware scoring based on the hashes results.
The proposed approach is evaluated through a number of
experiments. Evaluation clearly demonstrates a significant
improvement (> 90%) in true detection rates of malware.

Keywords: Malware, Static Analysis, detection, hashes, Internet
of Things,

I. INTRODUCTION
Internet of Things (IoT) offer new and exciting opportunities

such as smart homes, smart devices, smart cities and smart
transportation, to name but a few. IoT is growing at enormous
scale and is expected to be used in connecting billion of devices
in the near future. But as the market, scope and application areas
of IoT increase, it becomes more vulnerable to various kinds of
security breaches, such as malware, spoofing, jamming, etc. —
these issues been surveyed in related work [33]. This paper
focuses on the issue of malware in the IoT. With the growth of
IoT, the types of malware are continuously evolving. Having
various devices connected to the IoT changes not only the attack
target landscape, but also supplies criminals with resources that
were previously not available. IoT security challenges have
made the IoT devices a vector for powerful DDoS attack in
recent years [1]. Malware target IoT devices vulnerabilities so
that exploited devices can become part of a botnet. The longer
the malware is not detected, the more devices it can exploit.
Thwarting analysis implies that the malware samples have
become more complex over time, therefore, the evolution of
malware is two sided: the growth in numbers collected daily and
the complexity of the samples being discovered. For instance,
according to AV-Test Institute, over 856.62 million malware
were collected in 2018. Only 13% (113.78 million) of these were
new malware samples. The statistics from AV-test Institute

show an exponential growth in the number of malware seen each
year. The growth in complexity of malware is shown by the
ever-evolving complex methods discovered in collected
malware samples that are used to evade and/or disable malware
prevention and detection systems.

 It is therefore crucial to generate new methods that can
isolate files that are variations of malware which have already
been known. On one hand, this can shorten the time spent on
analysing malware, and on other hand, it can o detect malware
in different stages. Detection of malware in stages reduces the
impact of sample analysis on system performance as less
number of malware is needed to be analysed [2]. The need for
secure, trustworthy and high-performance devices [3] in IoT
devices and other fast systems automatically limits the use of
dynamic analysis-based detection methods. Dynamic analysis
requires more resources and more time to execute and observe
the behaviour of the file. However, this is not feasible in the
IoT environment given the scarcity of resources.

An efficient strategy is to utilise existing static feature-
evaluation methods and to design new approaches for better
detection rates. Evaluating static features of a sample can be
constrained by the structure of the file. In this paper, we
therefore focus on the Microsoft portable executable (PE) files.
The rationale is that 90% of computer users in the world
currently use Windows operating systems [4]. Moreover, with
the multiplatform Windows 10, PE files are expected to continue
being a possible threat vector as Windows systems are used in
or interact with IoT devices.

The first crucial stage of triaging malware and clustering
samples based on similarity matching normally uses hashing.
Given that malware authors change internal structure/value to
defeat basic hashing, a more complex hashing structure is
needed. Therefore, we propose a combinational approach
which is believed to lead to better results. If file similarities
detected by the hashes as used as attribute similarity factors for
a sample dataset, multiple attribute decision making, and
evidence combination mathematical models are applicable to
automate the decision-making process of malware detection.
Various uncertainty-based reasoning models have been
designed to assist expert systems in decision making based on
unreliable data. This paper exploits this theory in order to
propose and design a new approach that synthesises different
hashing techniques to provide a quantitative malware score and

to achieve better detection rates. The main contributions of the
proposed method are:

• We combined tried and tested similarity matching
hashes that are provided in almost all automated static
analysis tools like Peframe and Virustotal. This implies
that the deployment cost and manual effort required for
dynamic analysis and advanced static analysis are
avoided.

• The proposed method is scalable which can be
customised to the needs of a malware analyst.

• Considering different hashes as file attributes reduces
the storage capacity required by the system. This makes
the proposed method light weight and more efficient.

The rest of this paper is structured as follows. Section 2
explores related work. Section 3 provides an overview of the
background topics such as hashes, combination methods, and the
evaluation approach used in the study. Section 4 describes
design and modelling of the proposed method. Evaluation and
results are presented in Section 5. Section 6 presents conclusion
of the paper.

II. RELATED WORK
 Although a lot of developments have been made in anti-

malware research, most of the them have focused on behavioural
analysis and dynamic heuristic analysis [6], [7]. Static analysis-
based research has a limited scope. Existing research work
around similarity matching hash functions has been limited to
malware clustering as discussed herein. Since the proposed
approach in this paper investigates into how multiple feature-
based decision making has been utilised to improve malware
detection rates in various scenarios, we discuss related work that
has used multiple feature-based methods to improve malware
detection. However, readers interested in general IoT security
issues are referred to related work, such as [33] and [34], which
provide surveys of challenges and open issues in IoT security.

DigitalNinjas [8] is a technical report that shows an initial
work in the use of fuzzy hashing similarity to detect malware.
Using only Ssdeep hash to detect different malware families, the
work achieves a level of confidence of 67%. French and Casey
[9] extended this work by conducting a study using different
fuzzy hashing methods. A comparative study of popular
similarity hashes used in malware clustering has been carried
out in [10]. This study shows that fuzzy hashing outperforms
cryptographic hashing. A methodology that clusters malware
using Imphash based similarity checking was first introduced by
Mandiant. This is now known as FireEye and is analysed in [11].
Although the results in [12] show higher sensitivity matching,
the functionality of hashing in malware detection is still
restricted to malware clustering. Similary, in other related work
[8], [9], [11]–[15], one hash is used in each study.

Multiple features-based decision making is applied in
heuristic engines which use algorithms that do not necessarily
provide an optimum solution. Unlike the old signature-based
detection methods, heuristics utilise different features in
malware and have proven to be better at unknown malware
detection. Combination of file features and file relations
improve malware detection results. This was introduced in [16]

which developed a file verdict system called “Valkyrie”. The
authors build a semi-parametric classifier model to perform the
combination and test the model against a dataset of 39,138
malware samples. This model is reported to have been applied
in the Comodo Anti-Malware software.

Kolter & Maloof in [17] examine the results of various
classifiers on malware detection through a simple heuristic
based technique of text classification, which is known as n-
grams. The proposed approach tests techniques which include,
Naïve Bayes, decision trees, support vector machines and
boosted variants. This approach not only uses multiple
methodologies to train and test the algorithm, it also gives good
detection rates of 95%-98%. However, this approach used a
very limited dataset of 1971 malware which is a rather small
dataset and thus it may not be applicable to the enormous
malware samples being collected nowadays.

The MaTR [6] approach combines static heuristic file
features and decision-tree machine learning algorithms to
design a method for improving malware detection. This work
initially recreates the experimental environment
[17], highlights its weaknesses which are then used to build a a
different detection algorithm. Experimentation using a dataset
of 31193 malicious and 25195 clean files leads to 99.9 accuracy
in the detection rates.

Xinjian et al, [18] propose to combine both static and
dynamic features in order to improve malware classification.
This method uses classifiers and adopts the prediction when
the output is the same. This work tested the proposed method
on 282 samples which is a very small sized test dataset and thus
has very limits the scope.

The authors in [19] propose combining features using
evidence combination methods in the detection of android
malware. This work treats each feature statically which is
extracted from android applications as information sources. It
uses Dempster-Shafer theory of evidence combination to
combine the information sources. Using a dataset of 1580
malware samples, the method achieves a detection accuracy of
97% and a false positive rate of 1.9%. The results show that
combining different features improve malware detection rates.
In our work, we apply this method to PE files and use static
based hashes as representatives of heuristic features. These are
believed to reduce resources, cost and efforts as compared to
existing the method proposed in [19].

Studies towards attaching a malicious score to a file as a
method of malware detection have been an evolving topic in
security research. Taking the approach of the CVSS (Common
Vulnerability Scoring System), MAEC project introduces the
concept of a malware threat scoring system. It uses predefined
categories to attach a threat score to a file [20]. RSA, the
security division of EMC has introduced the RSA Security
Analytics Malware Analysis scoring categories [21]. Both the
MAEC and RSA categories look at static analysis as a required
category. Kumar et al [22] propose to attach a heuristic score to
a PE file which is based on the features extracted from PE file
itself. Using 10 static features and a dataset of 1360 malware
and 1230 clean files, the proposed model achieves an accuracy
detection rate of 85%. Although the detection rates are not high,

the scoring approach proposes a method of allowing a malware
analyst in classifying malware based on urgency. In the quest
to build a more resilient cyber space, this work further explores
and expands the approach introduced in [22] and is an extension
of our previous work presented in [23].

The work in this paper focuses on calculating a malicious file
score from combining different hashing techniques (e.g.,
cryptographic hash, ImHash, SSDEP, PeHash) for malware
detection purposes. Mathematical theories rooted in uncertainty
reasoning are explored. It also explores the hashes as heuristic
feature representatives and investigates into the effect of
similarity hashes in relation to malware detection.

III. OVERVEIW OF THE BUILDING BLOCKS OF THE PROPOSED
METHOD

Existing malware detection methods rely on the expertise of
malware researchers and analysts. However, it is difficult (if not
impossible) to provide such expertise that can effectively and
timely handle the massive numbers of newly discovered
malware. This motivates the need for the design and
development of new automated analysis methods that can use
uncertain data to make decisions and fight malware. Many
expert systems exhibit low errors in decisions making using
uncertain data as they employ mathematical theories [24]. Thus
as foundational information to our study, this section discusses
the identified building blocks; the known and tested hash
functions used in malware analysis, and uncertainty based
cognitive approaches, and the methods used to evaluate the
proposed approach.

A. Hashing Functions
Hashing functions are mathematical computations which

take input (messages) and produce output (message digests)
according to the contents of a file [12]. Some of the common
hashes are illustrated as follows.

1) Cryptographic Hashes: These are the popular
cryptographic hashes which include, MD5 sum, SHA1 and
SHA256. These are mainly used for file integrity checks. With
respect to similarity matching, these are limited in scope and
efficiency due to the fact, that a minor change in the file can have
a negative influence on the overall computed hash digest.
However, these are useful in malware analysis at the initial
identification and classification stage [13] as an immediate
match means that the file is an exact copy of a known malicious
file.

2) Ssdeep Hash: It is used to detect similarity in files and is
usually known as Context Triggered Piecewise Hashing
(CTPH) [25] or fuzzy hashing, It was initially used for anti-
spam research (called Spamsum). It is a non-cryptographic
hash based on a combination of the piecewise hashing
(Fowler/Noll/Vo –FNV hash) and rolling hashing as shown
in Fig. 1, which uses an example of a 5 byte hexadecimal block.

Fig. 1. Calculating the Ssdeep Signature

Fig. 2. Ssdeep Signature Form

Without considering the 64 signature length requirement of
the algorithm, the FNV hashes are computed after setting a
rolling window of a byte blocksize. The resulting CTPH
signature is a concatenation of one string from the FNV hashes.
A comparison algorithm then uses CTPH signature and
Levenshtein Distance to calculate the sequence similarity
between any 2 hashes. The score is normalised such that 50
score is considered as a reasonable threshold for a good
detection. Kornblum [25] adopted Spamsum for forensic science
resulting into a function called Ssdeep. It was applied to
malware analysis by FireEye [26]. An Ssdeep signature of a file
takes the form shown in Fig. 2 ̶ which also includes an extract
of an Ssdeep hash of a file. It has a very high confidence of 99%
for the return similarity match score for any 2 files. and is
therefore considered a critical step in static analysis of files.

3) Imphash: Designed by cybersecurity firm - FireEye [9],
Imphash is used to compute the digest of the import section of
portable executable files in three stages:

− Extract the structure of the PE file,
− Populate the imports in the order {API, Function (dll or sys

or ocx)} for each API being found.
− Return the MD5 digest of the populated strings.

Similarity matching using Imphash allows for clustering of
malware based on the contents and order of the executables’
import tables. This hash is easily compromised by a change in
the imports table order. Since malware can sometimes share
some common system interaction behaviours, Imphash still
plays a role in malware clustering.

4) PeHash: It represents a binary cryptographic hash value
[14] which is related to the structure of a executable’s file. In
addition to the structure of the file, PeHash algorithm uses bzip2
compression ratio as an approximation for Kolmogorov
complexity to get obfuscated data in file’s sections. With the
possibility that some malware repeat the use of specific
encryption techniques, different instances of the malware
sample can result in the same Kolmogorov complexity, thus
creating a clustering mechanism. The algorithm first creates 2
classes of hash buffers: global properties and section hashes

Blocksize: Block_Signature:Double-Block_Signature
6144:tkDtqNp95Ltuj5K2…aJq1DWBEU/e:utUpDtqKmw/LqJWa

buffer. The PeHash is the SHA1 value of the overall hash buffer
of the file and is noted to provide efficient clustering for
polymorphic malware.

B. Evidence Combinational Methods
These are mathematical approaches that combine various

belief factors which are determined based on different degrees
of uncertainty in order to make the best effort decision [27].
Assuming two pieces of evidence defined by different degrees,
e.g., A and B are respectively defined with degrees a and b. If
these supports the hypothesis (M), then the resultant decision
mainly relies on the degree of belief gathered from the
evidences. We use the strict Archimedean t-conorms (as with
logical connectives) to design combinational decision making
methods [28]. The degree of belief in Maliciousness hypothesis
(M) is defined by the function:

 in M (1)

1) Fuzzy logic: It is used in situations when deterministic
data is not available. It states that the accurary or truth of end
result depends on the accuracy of the support evidence [29].
According to [28], the algebraic sum is given by the following
equation:

𝑎𝑎 ∗ 𝑏𝑏 = 𝑎𝑎 + 𝑏𝑏 − 𝑎𝑎. 𝑏𝑏 (2)

2) The Certainty Factor model: This model is used in rule
based systems such as MYCIN expert system that is used to
diagnose bacterial infections. In this model, the overall belief in
the hypothesis is calculated by taking into account the
uncertainty in a rule and a single common factor. Using the T-
conorms, given two pieces of supporting evidence, the overall
degree of belief (O-DoB) ≥ (DoB-SE); which is the degree of
belief in single evidence [30]. This is computed as:

𝑎𝑎 ∗ 𝑏𝑏 = 𝑎𝑎+𝑏𝑏
1+𝑎𝑎.𝑏𝑏

 (3)

C. Method Evaluation Approach
Evaluating the malware detection performance of the

proposed method requires the use of the binary classification of
the confusion matrix, as shown in Table I.

TABLE I. CONFUSION MATRIX.
 Analysis Results

Actual
Sample
State

 Malicious Clean
Malicious True Positive(TP) False Negative (FN)

Clean False Positive (FP) True Negative (TN)

The options in the confusion matrix result obtained from the
similarity matches lead to being able to calculate various
detection rates by using different metrics, shown in Table II.

IV. DESIGN OF THE PROPOSED METHOD
During the design phase we revisited and extended the PE

format and our previous work [31].

A. Design Choice of Hashes
Table III shows the reasons as to why the various hashes

were chosen. The resource section (rsrc) of a PE file is known
to contain the information about any names and types of
embedded resources. By combining the various aspects of the
file sample using 4 various hashes, the overall achieved score
is intended to represent the file’s similarity with respect to
already known malware samples.

TABLE II THE ALGORITHM NOTATIONS.

Notation Meaning
Hdb Database of Hashes
Imp_H Imphash
Pe_H PeHash
Sd_H Ssdeep Hash of the file
RSd_H Ssdeep Hash of the file’s Resource Section
Ni Set of elements of attribute, i
MD5 MD5 sum
HFlag_set (H) The flag setting function for hash type, H
PopHdb Populating Malicious files Hash Database Function
HbDR Hash Based Comparison Detection Rates Function
ic Hash of type, I, e.g., Imp_H, Pe_H, Sd_H, RSd_H
CFIi Common Factor Index of an attribute, i
ESFi Evidence Support Factor of Attribute, i

TDR
True Detection Rate calculated by:

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇_𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆

FPR

False Positive Rate: a measure of the negative samples
flagged as positive. This is given by:

𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

Recall

Based on thefollowing equation it calculates the number
of actual positive files being detected:

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

PPV
Precision/ Positive Predictive Value (PPV) is measured:

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

ACC
This is a measure of Accuracy of true detections, which
is calculated as

TP+TN
TP+FP+TN+FN

F1
The harmonic mean of precision and recall is calculated:

2. 𝑇𝑇𝑇𝑇𝑃𝑃. 𝑅𝑅𝑆𝑆𝑅𝑅𝑎𝑎𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑃𝑃 + 𝑅𝑅𝑆𝑆𝑅𝑅𝑎𝑎𝑇𝑇𝑇𝑇

CHA Combined Hashing Approach
TLBSA Traffic Light Based Scoring Assessor
FLM Fuzzy Logic Method
CFM Common Factor Model Method
GTP Green Threshold Percentage
ATP Amber Threshold Percentage

TABLE III. ARGUMENT FOR IN SCOPE HASHES.
Hash Type Reason
PeHash Overcoming Malware

Obfuscation
Imphash Classification by API
File Ssdeep Hash Overall File similarity
Resource section Ssdeep
Hash

PE Resource section file
similarity.

ba∗

Fig. 3. The architectural representation of the proposed method

TABLE IV. DATASETS FORMATION AND WHERE THEY ARE USED IN THE
METHOD.

Dataset Use in the system
I To populate the database of hashes

II⟵{IIm, IIc} Used to calculate the True detection rated
of the Hashes and the respective CFI.

III ⟵{IIIm, IIIc} To validate the proposed approach

ALGORITHM I: ALGORITHM FOR GENERATING THE DATABASE OF HASHES
Input: Malware Dataset I
Output: Signature Hashes Database Hdb

1: procedure: PopHdb
2: for file f in I do
3: Extract the file hashes
4: Hashes (f) ⟵ {MD5, Imp_H, Pe_H, Sd_H, RSd_H}
5: If Hashes(f) ∉ Hdb then
6: add Hashes(f) to Hdb
7: end for
8: end procedure

B. Architecture of the Proposed Method
Architecture of the proposed method is shown in Fig. 3. It

considers the notations and metrics shown in Table II. The
proposed method is divided into six different steps which are
explained as follows.

Step 1: The Initial Single File Study
This initial study was performed on one randomly chosen

clean file (arp.exe) from a Windows-based system. The original
file was analysed and the different hashes of interest were
computed. The file was then edited using Radare and the file
hashes were recomputed. The hashes from the two files were
compared.

Step2: Collecting the Datasets
 Datasets in Table IV and Table VII are collected using the

methods described below:

a) This study gathers dataset of malicious PE files from
various sources such as malware from online malware
repositories, our own honeypots and the malware repository of
Nettitude Ltd, UK.

b) Clean files from various types of Windows systems
(e.g., Windows XP , Win 7, Win 8 and Win 10) were collected.
Each file was saved as its MD5 sum to ensure that there was no
file duplication in the dataset. As shown in Table IV, malicious
files were split into 3 sub-datasets, I, IIm and IIIm, and Clean
files were split into 2 sub-datasets, IIc and IIIc.

Step 3: Populating the Database of Hashes Signatures
The database of hashes (Hdb) for the malicious files that are

used as the initial signatures are calculated from random
malware samples. These are collected in dataset I using the
process of Algorithm I.

Step 4: Hashes Similarity Based Criteria Factor Index (CFI)
Formulation.
Dataset II which has both malicious files and clean files is

used at this stage. This step is broken down into 2 sub-steps;
a) Determine the individual performance of the hashes in

relation to malware detection.
This involves comparing the hashes calculated for files in

dataset II against the Hdb by formulating the HFlag_set, where
each of the 4 hashes has a specific position. For each file in
Dataset II, five respective hashes are computed. Four different
queries are run against the database. Each query returns a set of
tuples;

 XHi ← {md5, {Imp_H, Pe_H, Sd_H, RSd_H}} (4)

During the comparison of PeHash and Imphash, only the

hashes, which are the same as the calculated hash, are pulled
from the database. The HFlag_set position corresponding to the

Dataset II

Hashes
Comparison

CFi Generator

Dataset I

Dataset III

Hashes
Generator

Hdb

Detection Rates
Generation

Evidence Combination
Detection mechanism

File Malicious
metric (%)

&
Recommendation

PeHash

ImpHash

File Ssdeep Hash

Resource Section
 Ssdeep Hash

Cryptographic Hashes
(MD5, SHA1, SHA256)

Populating Database of hashes Algorithm

Populate True Detection Rates Algorithm
Combination of Evidence based Detection Algorithm
Combination of 2 or all algorithms.

hash of type i is not a set if the set Xhi is Ø (null) and is a set
otherwise. For resource Ssdeep hash and file Ssdeep hash, all
the hashes are pulled from the database. A Ssdeep similarity
match is done for the file hashes and the respective database
populated hashes. If the maximum similarity percentage
calculated is greater than zero, the HFlag_set position
corresponding to the hash of type i is set. It is not set otherwise.
Each file corresponds to one set of HFlag_set. The total count
to achieve the confusion matrix parameters is populated for
each hash as shown in Algorithm II.

ALGORITHM II: ALGORITHM FOR CALCULATING DETECTION RATES.
Input: Ds ⟵Dataset II , Hdb
Output: Det_Rates
Overall Hash Based Detection Rate Phase

1: procedure: HbDR
2: for file (f) in Ds do
3: HFlag_set f
4: for i = 1 → 4 ⊳Loop through all the hashes flags
5: if f ∈ IIm then
6: if HFlag_set fi then
7: TPi = +1
8: else
9: FNi = +1
10: end if
11: end if
12: if f ∈ IIc then
13: if HFlag_set fi then
14: FPi = +1
15: else
16: TNi = +1
17: end if
18: end if
19: Update DetectionRatesi ⟵{TPi, FNi, FPi, TNi}
20: end for
21: return Det_Rates
22: end procedure

b) Calculate the CFI of all the individual hashes.

The detection rates obtained in sub-step (a) are used to
calculate the CFI of each hash which is used as a belief factor
for each hash. To minimise the error in the belief factors, True
detection rates are used to calculate the factors. The true
detection rates are normalised to the uniform range [0, 1].
Simple Additive weighting [32] is applied to the detection rate
so that the degree of belief/ Criteria Factor Index (CFI) for each
Hash method is defined as:

𝐶𝐶𝐹𝐹𝐶𝐶𝑎𝑎 = [∑ 𝑇𝑇𝑇𝑇𝑅𝑅𝑛𝑛
4
𝑛𝑛=1]−1. 𝑇𝑇𝑇𝑇𝑅𝑅𝑖𝑖 (5)

These CFI values are used as the belief factors for the

respective hashing techniques. This supports the hypothesis that
the file is indeed malicious. The values calculated are applied
in the next step in order to obtain an overall malicious score for
the file under test.

Step 5: Application of Evidence Combination Theory.
 The values of Criteria Factor Index (CFI) are used as inputs

to the combinational approach application. The MD5
comparison phase is a redundancy step, which is introduced to
avoid replication of the malware samples in the experiment.
The Hashes comparison phase uses the file calculated hashes
and compares them against Hdb. The query in equation (4) is

used in this phase too. The belief factors for the hashes are
computed from the results obtained from the respective queries.
For PeHash and Imphash, if the resulted set is not null, then the
corresponding ESF is equivalent to the CFI of the respective
hash. Otherwise the hash’s ESF is set to zero. For Resource
Section Ssdeep hash and file Ssdeep hash, the corresponding
ESF is equivalent to the CFI multiplied with the maximum
similarity percentage, which is achieved by comparing the file
and the hashes in the database. The Calculated ESF values of
the various hashes are combined using the evidence
combinational models detailed in Section III. This is to get the
algebraic sum for the overall hypothesis which is fed into the
TLBSA (Traffic Light Based Scoring Assessor).

Step 6: TLBSA Thresholds.
 The resultant percentages from the combined hashing

technique are compared to add an overall TLBSA that evaluates
the score attached to the file. It gives the user a recommendation
based on Table V. Since the system does not completely
guarantee that the file is safe, the final decision on how the file
analysis is handled, is left to the system user or analyst.

TABLE V. THE TLBSA COLOUR DEFINITIONS

Colours Deduced file intent System Recommendation
Red Definitely malicious Do not Install

Amber Medium Suspicion
Highly encouraged to submit it for
further analysis

Green Low Suspicion Submit it for further analysis

TABLE VI. TEST BENCH SPECIFICATIONS

Tool Specifications/ Details

Computer system Dell T1700, CPU – Intel Xeon@ 3.1GHz,
RAM 32GB. Hard Disk – 500GB

Machine OS Linux Mint 17.1 (#64 – Ubuntu SMP)

Static Analysis tool Study specific Static Analysis Tool
− calculates the Ssdeep, Resource Section

Ssdeep hash, PeHash, and Imphash
Data management tools SQLite Studio version 3.0.6.

Python IDLE version 2.7.9

TABLE VII. THE EXPERIMENTAL DATASET
Dataset I II III Total Files
Malicious files 34224 32844 37460 104528
Clean files 698 940 1638

TABLE VIII. MALWARE TYPE DISTRIBUTION IN THE MALWARE DATASET

Malware Type Percentage Malware Type Percentage
Trojan 66.84% Dropper 0.65%
Adware 22.30% Virus 0.29%
Worm 9.03% Spyware 0.11%
Downloader 0.71% Exploit 0.08%

V. EVALUATION OF THE PROPOSED METHOD
This section presents the evaluation of the proposed method.

It first describes the dataset preparation process and the test
environment. It then provides an analysis and discussion of the
results.

A. Dataset Preparation and Test Environment
For the experiment, we collected 104528 malicious files.

All these were investigated using ClamAv engine version
0.99.2 in order to ensure that they were indeed known malicious
files. As shown in Table VII, the total dataset was prepared so
as to have different sets for the different steps in the experiment.
The malware family distribution of the used dataset is shown in
Table VIII. The algorithms were implemented in Python and
the database of Hashes was managed using SQLite in a Linux
box. The specifications are shown in Table VI. We use the
Linux as a safe environment since the malware are all PE files
and therefore ensuring that the results are not corrupted by
unknown self- infection.

B. Results and Analysis.
Table IX shows the similarity matching based results

achieved in the first phase of the study with the single file
analysis. Some hashes are heavily affected by a small change in
a file while there is possibility of a small or no effect in other
hashing functions. This justifies the reason of further exploring

hash-based similarity matching for a possibility of efficient
malware detection.

In the second phase, Dataset II is used to compute the CFI
metric values of the four hashing techniques which are shown
Table X. The results obtained are also used to evaluate detection
rates of the different hashing techniques, as shown in Fig. 4.
Dataset III is used to calculate the overall percentage of file
maliciousness in order to validate the proposed framework. The
results achieved for the proposed approach are compared
against the results achieved for each individual hash in Fig. 6.
Fig. 5 represents the file scoring area curves of each adopted
method which shows that most of the malicious files’ score is
higher than the clean files. We compare the two proposed
methods and the individual hashes in Fig. 6. Since the aim of
this study is to devise an optimum malware detection
methodology, we further investigate the true positive and false
negative trade-off of the two methods in Fig. 7. Fig. 8 is used to
determine TLBSA threshold percentages. We then present the
detection rates of each family of malware achieved in Fig. 9.

TABLE IX. COMPARISON OF HASHES FROM THE SINGLE FILE STUDY

Hash Type Original File Value Edited File Value Match
(%)

MD5 33f9b0e02d9d93f920605d02fb53f3fd accd6591b8b8dad5f7f1470c90971e75 0
SHA1 4a22e401ad5adb7b3de8f819e86d8461d764d195 06b98e35c1f92f844b57376ee467ee977cc074bd 0
SHA256 1f4c090dfa389b3c6b16eb42299fb815f24efac7ca541bb60821e3da01

31b8f6
bd4f056223439e83f2fffbe3c463e178da8465fabeb51243c04
a3d2922de8fa2

0

Ssdeep-
File

384:5u3Smmq6aYaBpYFAfjhXrToHWS4mW4sme9V:Avmq6affY
FAfjhr8sgE

384:5u3Smmq6aYaBpYFmfjhXrToHWS4mW4sme9V:Av
mq6affYFmfjhr8sgE

99

PeHash 5515f8e47661c7e170aee948cca7c8dc6198c08f 5515f8e47661c7e170aee948cca7c8dc6198c08f 100
Imph 880bb6799a6e1a5ff7b4f022ff4003a9 880bb6799a6e1a5ff7b4f022ff4003a9 100
Ssdeep -
Resources

96:8EWS1pEmWwOh/VsBgtAb88caS5Ur9I5fa9VWPBMXsmrC9V
:NWS4mWNJXCu6Xsme9V

96:8EWS1pEmWwOh/VsBgtAb88caS5Ur9I5fa9VWPBM
XsmrC9V:NWS4mWNJXCu6Xsme9V

100

TABLE X. COMPUTED METRICS

Malware detection performance of the individual in-scope Hashes and calculation of the CFI

 Recall (%) PPV (%) ACC (%) F-score (%) Detection Rates CFI
(%) TRUE (%) FALSE (%)

ImpH 85.6 93.3 89.7 89.3 85.7 14.3 27
PeH 82.8 100 91.4 90.6 83.1 16.9 26.2
FuzH 76.2 100 88.1 86.5 76.7 23.3 24.1
ResFH 71.7 99 85.5 83.2 72.3 27.7 22.7

Fig. 4. The Hashes Detection Rates using Dataset II.

Fig. 5. The Clean and Malware file Score Area curves (a) Common Factor method and (b) Fuzzy Logic Method.

Fig. 6. Comparison of the Hashes and the Evidence Combination methods

Fig. 7. TP rate vs FP rate curves for the Combination methods.

Fig. 8. Recall, Precision, Accuracy and F-score Comparison for the

proposed methodology percentage thresholds.

Fig. 9. Malware type detection ratios for the dataset used.

C. Analysis and Observations
This study designed and evaluated two methods for

combining the individual hashes results for malware detection.
Table IX results, achieved at the first stage of the study, show
that similarity hashes are effective in matching similar files,
which have slight differences in their content. Using dataset B,
the introduced resource section hash matching gives the
second-best precision value in the 4 hashes in which PeHash is

the best performing of the 4 hashes as shown in Fig. 4. Imphash
gives the highest false positive detection but also provides the
lowest false negative detection. The different levels in the
detection rates provide an argument for combining them to
achieve a more efficient detection approach. Analysis of the
logs to validate the Combined hashing methodology results into
achieving an overall false detection rate of 6.8% and a true
detection rate of 93.2%. These are the best performance values

in comparison to the results achieved by the individual hashing
algorithms as shown in Fig. 6. We analysed the dataset clean
file scores vs malicious file scores for the two evidence
combination methods. Both curves in Fig. 5 show that 83% of
the malicious files obtain a malicious score above 50% while
78% of the clean files have a malicious score less than 50%.
However, reviewing the true positive to false positive detection
trade-off in Fig. 7, the proposed methods shows that this
technique is susceptible to very high false positive of 60%, thus
requiring an evaluation of the model to achieve a better trade
off.

TABLE XI. COMPARING DETECTION RATED FOR THE TLBSA THRESHOLDS

Comparative analysis of the performance of the proposed method
after application of the TLBSA.

 Prec
(%)

Recall
(%)

Acc
(%)

F-
Score
(%)

Fuzzy
Logic
Method

 (FLM_GTP (≥25%) 99.2 92.2 91.6 95.5

(FLM_ATP (≥75%) 99.9 70.5 71.2 82.7
Common
Factor
Method

(CFM_ GTP (≥25%) 99.2 92.1 91.6 95.5

(CFM_ATP (≥70%) 100 69.8 70.4 82.1

We therefore introduced the TLBSA assessor at this stage,

as described earlier by creating the percentage thresholds for
the 3 zones. With the thresholds obtained, we evaluated how
well our methods work against the individual hashing
algorithms in Fig. 8. ATP outperforms all the individual hash
techniques. However, since this percentage creates a very low
True Positive rate of 70% for the Fuzzy logic method and 62%
for the Common Factor Model method, there is a need to
analyse the needed GTP. It creates a much-needed rise in the
True Positive rate of 92% for both the proposed techniques. The
use of TLBSA increases the detection efficiency of the system
as shown in Table XI. The threshold percentages allow
optimum trade-offs and enable the system to provide a user with
information that helps protect their system with an accuracy of
at least 92% that has been achieved in this study. Fig. 9 shows
the overall detection ratios for the malware types in the used
dataset. Of the 8 types collected, the designed method provides
efficient malware detection for 6 types.

VI. CONCLUSION
This study developed a new approach to combine the results

from individual similarity hashes to demonstrate an overall best
performing recall of 92%, a system accuracy of 91%, a
precision of 99%, and an F-score of 96%. These results
significantly outweigh the results when one considers the
detection rates of the existing individual hashes. Our approach
is flexible and it can be customised and extended by malware
analysts for the analysis of other file types. Our approach is safe
against sandbox and dynamic analysis environment evading
malware since it uses static analysis. It simplifies the
identification of malicious files by providing a quantitative
value that indicates how malicious a file is. It also optimises the
storage required for database of hashes. Furthermore, it allows
for an easy update of signatures so that performance can be

increased with the increase in number of hash signatures. Our
system design used light weight tools that makes it significantly
efficient. The results achieved in this study show that the
proposed method provides a way of building an efficient,
integrated malware detection system for IoT devices. .

REFERENCES

[1] “IoT botnets responsible for more powerful DDoS attacks - Bitdefender
BOX Blog,” Bitdefender. [Online]. Available:
https://www.bitdefender.com/box/blog/iot-news/iot-botnets-responsible-
powerful-ddos-attacks/. [Accessed: 26-Mar-2019].

[2] Y.-D. Lin, Y.-C. Lai, C.-N. Lu, P.-K. Hsu, and C.-Y. Lee, “Three-phase
behavior-based detection and classification of known and unknown
malware,” Secur. Commun. Netw., p. n/a-n/a, Jan. 2015.

[3] A. B. Waluyo, D. Taniar, W. Rahayu, and B. Srinivasan, “Trustworthy
data delivery in mobile P2P network,” J. Comput. Syst. Sci., vol. 86, no.
Supplement C, pp. 33–48, Jun. 2017.

[4] “Operating system market share.” [Online]. Available:
http://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=10&qpcustomd=0. [Accessed: 27-Dec-2017].

[5] “Triage Analysis,” Malware Unicorn. [Online]. Available:
/RE101/section4/. [Accessed: 08-Jan-2018].

[6] T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers,
“Malware target recognition via static heuristics,” Comput. Secur., vol.
31, no. 1, pp. 137–147, Feb. 2012.

[7] Z. Cui, F. Xue, X. Cai, Y. Cao, G. g Wang, and J. Chen, “Detection of
Malicious Code Variants Based on Deep Learning,” IEEE Trans. Ind.
Inform., pp. 1–1, 2018.

[8] DigitalNinja., “Using Fuzzy Hashing Techniques to Identify Malicious
Code,” Apr. 2007.

[9] David French, “Beyond Section Hashing,” 2010 CERT Research Report
CMU/SEI-2012-TR-004, 2011.

[10] N. Sarantinos, C. Benzaïd, O. Arabiat, and A. Al-Nemrat, “Forensic
Malware Analysis: The Value of Fuzzy Hashing Algorithms in
Identifying Similarities,” in 2016 IEEE Trustcom/BigDataSE/ISPA,
2016, pp. 1782–1787.

[11] S. Arik, T. Huang, W. K. Lai, and Q. Liu, Neural Information Processing:
22nd International Conference, ICONIP 2015, Istanbul, Turkey,
November 9-12, 2015, Proceedings. Springer, 2015.

[12] Y. Li et al., “Experimental Study of Fuzzy Hashing in Malware
Clustering Analysis,” presented at the 8th Workshop on Cyber Security
Experimentation and Test (CSET 15), 2015.

[13] C. Oprisa, M. Checiches, and A. Nandrean, “Locality-sensitive hashing
optimizations for fast malware clustering,” in 2014 IEEE International
Conference on Intelligent Computer Communication and Processing
(ICCP), 2014, pp. 97–104.

[14] Georg Wicherski, “peHash: a novel approach to fast malware clustering,”
in LEET’09 Proceedings of the 2nd USENIX conference on Large-scale
exploits and emergent threats: botnets, spyware, worms, and more, 2009,
vol. 1–1.

[15] “Tracking Malware with Import Hashing,” M-unition. [Online].
Available: https://www.mandiant.com/blog/tracking-malware-import-
hashing/. [Accessed: 14-Jul-2015].

[16] Y. Ye et al., “Combining File Content and File Relations for Cloud Based
Malware Detection,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
New York, NY, USA, 2011, pp. 222–230.

[17] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify
Malicious Executables in the Wild,” J Mach Learn Res, vol. 7, pp. 2721–
2744, Dec. 2006.

[18] X. Ma, Q. Biao, W. Yang, and J. Jiang, “Using multi-features to reduce
false positive in malware classification,” in 2016 IEEE Information
Technology, Networking, Electronic and Automation Control
Conference, 2016, pp. 361–365.

[19] Y. Du, X. Wang, and J. Wang, “A static Android malicious code detection
method based on multi-source fusion,” Secur. Commun. Netw., vol. 8, no.
17, pp. 3238–3246, Nov. 2015.

[20] “Malware Threat Scoring System | MAEC Project Documentation.”
[Online]. Available:

http://maecproject.github.io/documentation/use_cases/cyber_threat_anal
ysis/malware_threat_scoring_system/. [Accessed: 04-Nov-2016].

[21] “Malware Scoring Modules,” RSA Security Analytics Documentation, 05-
Mar-2014. [Online]. Available: https://sadocs.emc.com/0_en-
us/090_10.4_User_Guide/40_InvestigAnalysis/00_Investig_Flo/MaScor
Mod. [Accessed: 04-Nov-2016].

[22] A. Kumar and G. Aghila, “Portable executable scoring: What is your
malicious score?,” in 2014 International Conference on Science
Engineering and Management Research (ICSEMR), 2014, pp. 1–5.

[23] A. P. Namanya, Q. K. A. Mirza, H. Al-Mohannadi, I. U. Awan, and J. F.
P. Disso, “Detection of Malicious Portable Executables Using Evidence
Combinational Theory with Fuzzy Hashing,” in 2016 IEEE 4th
International Conference on Future Internet of Things and Cloud
(FiCloud), 2016, pp. 91–98.

[24] S. Salicone and M. Prioli, “Mathematical Methods to Handle
Measurement Uncertainty,” in Measuring Uncertainty within the Theory
of Evidence, Springer, Cham, 2018, pp. 17–36.

[25] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digit. Investig., vol. 3, Supplement, pp. 91–97, Sep.
2006.

[26] Dunham Ken, “A fuzzy future in malware research,” The ISSA J., vol. 11,
no. 8, pp. 17–18, 2003.

[27] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[28] B. Wiȩckowski, “Review of Proof theory for fuzzy logics. Applied Logic
Series, vol. 36,” Bull. Symb. Log., vol. 16, no. 3, pp. 415–419, 2010.

[29] S. Salicone and M. Prioli, “Basic Definitions of the Theory of Evidence,”
in Measuring Uncertainty within the Theory of Evidence, Springer,
Cham, 2018, pp. 93–105.

[30] R. R. Yager and L. Liu, Classic Works of the Dempster-Shafer Theory of
Belief Functions. Springer Science & Business Media, 2008.

[31] A.P. Namanya, J. P,Diss and I.Awan “Evaluation of automated static
analysis tools for malware detection in Portable Executable files,” in 2015
31st UKPEW, University of Leeds, 2015, pp. 81–95.

[32] “Simple Additive Weighting Method,” in Multiple Attribute Decision
Making, 0 vols., Chapman and Hall/CRC, 2011, pp. 55–67.

[33] M. A. Khan and K. Salah "IoT security: Review, blockchain solutions, and

open challenges", Future Generation Computer Systems, Vol 82, May
2018, pp. 395-411

[34] K. Sha, W. Wei, T.A. Yang, Z. Wang and W. Shi "On security challenges

and open issues in Internet of Things" Future Generation Computer
Systems, Vol. 83, June 2018, pp. 326-33

Dr. Anitta Patience Namanya completed her PhD with the Cyber Security Research Group at the University
of Bradford. She obtained her Master’s degree in Network and Performance Engineering from the University
of Bradford and holds a bachelor’s in Telecommunication Engineering. Her research interests include
malware analysis, intrusion detection, honeypots, cyber security policy, mobile security and network
performance. She is a member of IEEE and ACM.

Prof. Irfan Awan is a Professor of Computer Science and the Head of the School of Electical Engineering
and Computer Science at the University Of Bradford, UK. He holds a PhD in Computer Science from the
University of Bradford. His research interests include network security, communication systems and
performance modelling. He has chaired and organised various international conferences and workshops and
served as a technical programme committee member for several international conferences. He is a steering
committee member of UKPEW workshop series, IEEE PMECT workshop series and an associate editor of
several internal journals and has edited several special issues of international journals. He is a member of
IEEE, BCS and fellow of HEA.

Dr. Jules Pagna Disso is the Group Head of Cyber Risk Intelligence at BNP Paribas. He has extensive
knowledge in malware analysis, protocol analysis, threat intelligence gathering and vulnerability
discovery. Jules holds a PhD in Intrusion Detection System as well as many cyber security related
certifications. His research interests include but not limited to cyber related security for Industrial Control
Systems, honeypots, botnet, cloud security, forensics, threat analysis, and vulnerability identification. He is a
member of IEEE and ACM.

Muhammad Younas is a Reader/ (Associate Professor) in Computer Science at the School Engineering,
Computing and Mathematics, Oxford Brookes University, UK. His research interests include Web
technologies, Big Data, IoT and Cloud computing. He received a Ph.D. in Computer Science from the
University of Sheffield, UK. He has published more than hundred papers in international journals and
conferences. He is on the editorial and advisory boards of international journals and is also involved in the
steering, organizing and program committees of refereed international conferences and workshops

Similarity Hash based Scoring of PE Files for Efficient

Malware Detection in IoT

Paper – Highlights

a) This paper explores four hash types (PeHash, Ssdeep, ImpHash and Resource Section

Ssdeep Hash) currently used in malware analysis for portable executable (PE) files. We

use evidence combinational mathematical methods to combine the results from the

four hashes; Fuzzy logic and the Certainty Factor Model.

b) Similarity hashing has been adopted for sample triaging in malware analysis and

detection. File similarity is used to cluster malware into families such that their

common signature can be designed.

c) We design and develop a novel approach for malware scoring based on the hashes

results. The proposed approach is evaluated through a number of experiments.

Evaluation clearly demonstrates a significant improvement (> 90%) the in true

detection rates of malware.

d) The main contributions of this work are to improve detection rate of malware and to

provide a quantitative malware scoring mechanism for achieving improved confidence

level in decision making.

e) Hash functions are easily calculated during the basic static analysis of a malware
sample. This implies that the deployment cost and manual effort required for dynamic
analysis and advanced static analysis are avoided.

f) It is scalable and can be customised to the needs of a malware analyst. The algorithms
can also be adapted to other file types using file similarity matching hashes.

g) Considering the different hashes as file attributes reduces the storage capacity
required by the system. This makes it lightweight and therefore the method does not
impact system resources heavily.

h) We combined most popular similarity matching hashes that are provided in almost all
automated static analysis tools like Peframe and Virustotal.

i) A dataset of 104528 malicious files which were used against 1638 clean files collected
from fresh windows installs. The experiment was run in a Linux box to avoid self-
infection. All scripts were written in python and the database created was managed
using SQLite.

j) This initial study was performed on one randomly chosen clean file (arp.exe) from a
Windows-based system. The original file was analysed and the different hashes of
interest computed. The file was then edited using Radare and the file hashes were
recomputed. Similarity matching based results showed that some hashes are heavily
affected by a small change in a file while there is possibility of a small or no effect in
other hashing functions.

k) In the second phase of the study, the introduced resource section hash matching gives the
second-best precision value in the 4 algorithms and PeHash is the best performing of the 4

hashes. ImpHash gives the highest false positive detection but also provides the lowest false
negative detection.

l) In the third phase, the Combined hashing methodology results into achieving an overall false
detection rate of 6.8% and a true detection rate of 93.2 %, which are the best performance
values in comparison to the results achieved by the individual hashing algorithms.

m) However, reviewing the true positive to false positive detection trade-off for the proposed
method shows that this technique is susceptible to very high false positive of 60%, thus
requiring an evaluation of the model to achieve a better trade off. We therefore introduced
the TLBSA (Traffic Light Based Traffic Light Based Scoring Assessor) at this stage. It creates a
much-needed rise in the True Positive rate of 92% for both the proposed techniques.

n) This study developed a new approach to combine the results from individual similarity hashes
to demonstrate an overall best performing recall of 92%, a system accuracy of 91%, a
precision of 99%, and an F-score of 96%. These are better figures than when one considers
the detection rates of the existing individual hashes.

o) Our approach can be customised and extended by malware analysts for the analysis of other
file types.

