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In this thesis a novel approach in generating 3D IGP is applied using shape 

grammar, an effective pattern generation method. The particular emphasis here 

is to generate the motifs (repeat unit) in 3D using parameterization, which can 

then be manipulated within 3D space to construct architectural structures. Three 

unique distinctive shape grammar algorithms were developed in 3D; 

Parameterized Shape Grammar (PSG), Auto-Parameterized Shape Grammar 

(APSG) and Volumetric Shell Shape Grammar (VSSG). 

 

Firstly, the PSG generates the motifs in 3D. It allows one to use a single 

changeable regular 3D polygon, and forms a motif by given grammar rules 

including, Euclidean transformations and Boolean operations. Next, APSG was 

used to construct the architectural structures that manipulates the motif by 

automating the grammar rules. The APSG forms a wall, a column, a self-similarity 

star and a dome, the main features of Islamic architecture. However, applying 

Euclidean transformations to create non-Euclidean surfaces resulted in gaps and 

or overlaps which does not form a perfect tessellation.  This is improved upon by 
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Abstract 

the VSSM, which integrates two key methods, shell mapping and coherent point 

drift, to map an aesthetically accurate 3D IGM on a given surface. 

 

This work has successfully presented methods for creating complex intricate 3D 

Islamic Geometric Motifs (IGM), and provided an efficient mapping technique to 

form visually appealing decorated structures. 
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Introduction 

1. Introduction 

 

“Research is creating new knowledge.”1 

 

Islamic art is a distinctive art form that is not restricted to religious work, but 

instead is formed from traditional Muslim cultures [1]. It features the art and 

architecture that was historically created in the land that was ruled by Muslims. 

Islamic art is usually classified by the dynasty reigning at the time the art work 

was produced. The formation of Islamic art emerged during the reign of the 

Ummayad dynasty (661-750 AD) and historically concluded with smaller yet 

powerful regional dynasties, the Safavids, the Ottamons and the Mughals [2]. A 

timeline of all the dynasties is shown in Appendix A. Due to the geographic spread 

and history, Islamic art is formed by a wide range of styles and influences. There 

are three main categories in Islamic art [3]–[5]: 

 

1. Arabic Calligraphy 

2. Arabesque (Floral Decoration) 

3. Islamic Geometric Patterns (IGP) 

 

Arabic Calligraphy is an art form of scripting Qur'anic verses on different 

mediums, from architectural walls to book covers and paper with different Arabic 

                                            
1 Neil Armstrong. 
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fonts. It is known as the 'Jewel' of Islamic Art [6]. The floral decoration that is 

usually decorated around the Arabic script is known as Arabesque. It represents 

rhythm and growth of life prominently by the use of spirals [7]. Islamic Geometric 

Patterns (IGP) are based on geometry and geometric shapes. They are a unique 

category in Islamic art functioning as a major element of adorning architectural 

surfaces.  

 

Figure 1.1 shows examples of all three categories of Islamic art. The ‘incipit’ page 

(left) and the ‘carpet’ page (right) is from a part of the Sultan Faraj ibn Barquq’s 

thirty volume Qur’an [8]. An incipit page is a page followed immediately after the 

front cover of the Qur’anic manuscript that includes both calligraphy and 

decoration of either or both arabesque and IGP. The carpet page on the other 

hand is a page that is fully decorated and is known as a ‘carpet’ page as it 

resembles oriental carpets that are placed at the entrance of an architectural 

building [8]. The creativity of 2-Dimensional (2D) and 3-Dimensional (3D) 

expressions can also be seen clearly in Islamic art and architecture [3] see Figure 

1.2. 

 

Much research has been carried out in IGP in the computer graphics field, from 

forming classifications of IGP [9] to creating algorithms for constructing IGP [10], 

[11]. It is also been done commercially, using 3D software and through the use 

of fabrication methods [12]. Methods of constructing IGP will be discussed in 

chapter 2, discussing their advantages and disadvantages, along with the state 
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Figure 1.1 Example of the application of calligraphy, arabesque and IGP [8].

CALLIGRAPHY

ARABESQUE

GEOMETRIC
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of Art. A historical background is briefly stated in the next section, for the reader 

to gain insight and understanding of IGP, including a detailed definition on how 

to define a pattern as ‘Islamic’.  

 

 

Figure 1.2 Exterior view of the entrance of Sayyeda Fatima al-Ma’suma mausoleum, 
Qom, Iran [Photography by Ali Reza Sarvdalir]. 
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1.1 Historical Background 

 

Geometric patterns are one of the major categories of Islamic Art. They adorn 

everything from architectural structures to decorated hand crafted calligraphy. 

There are many different types of IGP. Some are simple, like a repetition of 

regular polygons and some more complex. These patterns are mainly referred to  

as ‘Medieval Islamic tiles’ as they were produced by Medieval Islamic Artisans 

[13]. 

 

To define a pattern ‘Islamic’ is not as simple as there is no definitive answer. The 

criteria stated below by Abas [6] however argues how an IGP can be interpreted 

as ‘Islamic’ within reason. 

 

“Definition: An Islamic pattern is one which satisfies one or more of the following 

criteria: 

1. The pattern is transcribed with Arabic Calligraphy from the Qur’an. 

2. The pattern was invented between 900 A.D and 1500 A.D and was used to 

decorate architectural surfaces or other works of art for Muslims, in a culture 

where the majority of the population, or at least the ruling element, professed the 

faith of Islam. 

3. The pattern is derived from one or more patterns which satisfy criterion 2 and is 

such that the characteristic shapes from the original (or originals) are 

recognizable.” [6] 
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The first criterion is the true fact that in Islam the word of God, which is the Holy 

Qur’an, is of great value, and any object that adorns its verses will be known to 

be Islamic. Secondly, Abas [6] claims IGP were first constructed between 900AD 

up until 1500 A.D,  although other researchers have claimed the formation to be 

earlier [2]. However, this criterion explains that any pattern constructed during 

that period which was also adorned on an architectural surface, in a land where 

the majority of the population were Muslims of the faith of Islam, can be named 

Islamic. This however does not imply that the pattern formed was actually 

constructed by a Muslim. Artists from various religions, like Christians, Jews & 

Hindus, also lived in the Islamic world at that time and were also inventing 

geometrical patterns [6]. For example, the Jalis (screens) in the Mughal Era were 

crafted by Hindu craftsmen. Lastly, the third criterion, in this modern day, if a 

pattern is derived from an original IGP, which resembles it closely through its form 

of shape can also be named ‘Islamic’. Hence, this above criteria can be used to 

distinguish if a pattern can be considered Islamic or not. 

 

Although a definition is provided by Abas, it only defines IGPs in historical and 

geographical terms. Researchers have interpreted IGPs being based on Greek 

geometry, where the formation of regular polygons are constructed through 

Greek mathematical theory (explained in chapter 2). Generally the IGPs are 

formed of four basic shapes: 

 

- Circle/interlaced circles 

- Squares/ 4-sided polygons 
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- Regular pointed stars (derived from squares and triangles inscribed in a 

circle) 

- Multi-sided polygons 

 

The main feature of IGP is symmetry. Symmetry plays a vital role in IGP and how 

they are formed. It unifies the patterns by creating a sense of balance and unity. 

Complex IGP which are constructed by the overlapping of shapes 

create an emergence. Emergence is another key characteristic in IGP. It can be 

defined as emerging shapes, which are identified either during a pattern 

generation or when the final pattern is generated [5]. Self-Similarity is where the 

shape is scaled proportionally exhibiting the same form, this is also a 

characteristic employed in IGP. 

 

Islamic art is depicted by having a non-figurative approach. It is a way of showing 

unity of God, replacing as many figurative images of God to a single perception 

of God, 'Light' [6]. Light is what embodies and guides a Muslim, and is a means 

to shine, as it is mentioned in the Holy Qur'an, 

 

“God is the Light of the Heavens and the earth. (24:35)” 

[14] 

 

Geometry was seen to be of a unifying structure, an art form of the unseen. 

Jowers el al. [5] describes how visual statements of the Islamic religion are 
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created by the use of geometry in Islamic Art. For example, the famous 8-pointed 

star, which is known as the Khatemi Sulemani (Seal of Solomon) [6], symbolizes 

the eight bearers of God's throne. As it states in the Holy Qur'an, 

 

“And the angels will be on the sides thereof, and eight will upload the Throne of thy 

Lord that day, above them. (69:17)” 

[14] 

Tessellations within IGP is a technique that was adapted from weaving carpets 

and rugs. The most popular art form in the rise of Islam was carpet weaving [15]. 

Carpets were applied for many purposes, both for a nomad who was travelling 

the earth and as an adornment for the rich. They were used as floor coverings, 

prayer mats, tent decorations and canopies [16]. The carpet also has significant 

importance in the Qur’an, one as a metaphorical use of the earth and also a 

symbol of richness that a believer will be rewarded with, as it states in the Holy 

Qur’an, 

 

“Reclining on green cushions and beautiful fine carpets.” (55:76) 

[14] 

 

Carpet weaving is formed by interlacing and intertwining yarns of thread, which 

creates repetition within the woven carpet. By adopting this traditional method, 

interlacing and repetition was adapted in the Islamic art form, applying it onto 

different mediums.  
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1.1 Aim and Objectives 

 

This research aims to develop an efficient 3D mapping technique for mapping 3D 

Islamic Geometric Motifs (IGM) onto any given surface. The novel technique 

applies Euclidean geometry onto Non-Euclidean surfaces, overcoming the 

problem of gap formations and overlaps. To achieve the aim, the following 

objectives need to be carried out:   

 

- To review construction methods of Islamic Geometric Patterns (IGP), both 

traditional and computerized, concluding to one that can support the 

generation of 3D IGM.  

- To form a Parameterized Shape Grammar (PSG) that creates n-fold 3D 

IGM with the use of a single changeable initial shape.  

- To automate the PSG, which will automatically apply the generated 3D 

IGM to form architectural structures, by the use of algorithms.  

- To investigate the state-of-art in volumetric surface mapping, and how it 

can be adapted within the PSG. 

- To design, develop and implement the Volumetric Shell Shape Grammar 

(VSSM) algorithm that can map 3D IGM efficiently onto point cloud 

surfaces.  

- Extend the VSSM algorithm to map 3D IGM onto given surfaces. 

- To validate the proposed mapping technique and investigate the 

limitations within it thus outlining future directions of research. 
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1.2 Research Contributions 

 

This research has resulted in a number of novel contributions extending the 

current state-of-art. These are presented in detail in Chapters 4-6.  

 

1. 3D Islamic Geometric Motifs (3D IGM) – the formation of 3D Islamic 

geometric motifs with the use of a single initial regular polygon through 

shape grammar.  

2. Islamic Geometric Motif Based Structures (IGMBS) - Automating a 

parameterized shape grammar to create four Islamic architectural 

structural surfaces with a generated 3D motif. 

3. Volumetric Shell Shape Mapping (VSSM) – Map the 3D motif on a point 

cloud of a parametric surface through integration of CPD and shell 

mapping.  

 

1.3 Thesis Overview 

 

The thesis is structured as follows: 

Chapter 2: Islamic Geometric Patterns. This chapter reviews the construction 

methods of IGP, both traditional and computerized.  

Chapter 3: Mapping Techniques. This chapter provides a discussion on the 

literature on 3D mapping techniques from the different types of texture maps, 

categories of scale of a geometry and volumetric texture storage and mapping 

techniques. 
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Chapter 4: 3D Islamic Geometric Motifs.  The initial part of the research is 

described in this chapter, including the methodology and implementation of 

creating 3D IGM with parametric shape grammar. It initiates the chapter with 

theory on parametric shape grammar and algebra of shapes, describing how the 

initial shape is formed with the shape grammar definition. Once the methodology 

of the initial shape and rules are described, the method is implemented and the 

results are presented and analysed. 

Chapter 5: Architectural Structures. The next step is to manipulate the motifs 

to form an architectural structure. A theoretical background on shape grammar 

implementation within the architectural field is discussed, with a detailed 

explanation of the theory of tessellations within IGP. 

Chapter 6: Point Cloud Mapping. This chapter explains the final part of the 

research, where shape grammar is integrated within shell mapping, forming the 

‘Volumetric Shell Shape Grammar’ (VSSM).  The point set registration techniques 

are explained with a detailed description of the Coherent Point Drift (CPD). 

VSSM, a generalized mapping technique, adapts the CPD method, to form the 

mapping function.  

Chapter 7: Conclusion. This is the concluding chapter in this thesis, containing 

the concluding remarks of the proposed algorithm, with its limitations and future 

work. 
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2. Islamic Geometric Patterns (IGP) 

 

“God is beautiful and He loves beauty.”2 

 

The following chapter introduces the reader to the construction methods of IGP, 

traditional and computerized. The chapter initiates with a brief insight in the 

historical documentation preserved, following onto a technique for categorizing 

IGP. It is concluded with a summary of the methods described with an explanation 

of the optimal method that will be applied in this research, ‘shape grammar’.  

 

2.1 Historical Documentation 

 

There are very few manuals that have documented proof behind constructing 

IGP. Construction methods were trade secrets among the craftsmen [6].  

However, templates and aides-memoire for pattern generation were recorded on 

scrolls [17]. Theoretical mathematicians in the likes of Al-Sijzi, Anu-Nasr al-

Farabi, Abu’l-Wafa’ al-Buzjani, Al-Kashi, Umar al-Khayyami and Abu Bakr al-

Khalid al-Tajir al-Rassadi, among many others, wrote manuals on construction 

techniques that could be applied by the artisan, who formed the IGP [18], [19]. 

The geometrical texts are described in the next section. 

 

                                            
2 Prophet Muhammad. 
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2.1.1 Theoretical Texts 

 

“Kitāb fīmā yahtāju ilayhi al-sāni‘ min a‘māl al-handasa” (About that which 

the artisan needs to know of geometric constructions) [20] 

A theoretical book written by Abu’l-Wafa’ al-Buzjani, is a ‘how to guide’ for 

artisans on using the three mathematical tools that were adopted by the Romans, 

the straightedge (ruler), qonia (set square) and the compass [20]. It is a 

compilation of Euclidean constructions that are the foundation of generating 

many of the geometric patterns. It includes [21]: 

 

- Construction and a division of a right angle into equal parts.  

- Circle geometry including the bisection of a circle, the division of the 

circumference of a circle and intersecting the circle with a tangent.  

- Creating regular polygons and polygonal figures within the circle. 

 

The circle is used in al-Buzjani’s treatise to generate all of the regular polygons in a 

plane.” [18] 

 

“Fī tadākhul al-ashkāl al-mutashābiha aw almutawāfiqa” (On Interlocking 

Similar and Congruent Figures) [20] 

This is an anonymous manuscript written between the 11th and 13th century. It is 

a 20 page long Persian manuscript containing 61 2D repeat unit patterns.  
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2.1.2 Pattern Scrolls 

Alongside the theoretical texts there were architectural scrolls used in workshops 

for craftsmen and master builders. 

 

Topkapi Scroll 

The Topkapi scroll, preserved in the Topkapi Palace Meseum in Istanbul, is an 

undated architectural scroll [22]. However, it has been presumed to be produced 

in the 15th century. It is made up of several pages which have been stuck together 

at both ends. The scroll is approximately 33cm high and 30m long [17]. It does 

not contain any text, but each figure shows its construction lines. The scroll 

contains a mix of different types of Islamic Art, from Arabic calligraphy to 2D 

geometrical patterns. It also contains 2D architectural plans for muqarnas 

(stalictiles) and domes. The Topkapi scroll is the best preserved of its kind [2]. 

 

Tashkent Scroll  

The Tashkent scroll is a fragmented scroll preserved in the Institute of Oriental 

Studies, at the Academy of Sciences of Tashkent. It was a scroll attributed to an 

Ukbek builder from Bukhara in the 16th century [21]. Like the Topkapi scroll, it 

also contains geometric patterns for the use of Banna’i (Persian for builder’s 

technique) brick masonry [22]. 

 

Both scrolls contain patterns formed from square and triangular grids for 

brickwork and calligraphy, and polygonal and radial grids formed from concentric 



 

15 
 

Islamic Geometric Patterns (IGP) 

circles for 2D and 3D patterns. A detailed description about the theory of grids 

will be discussed in Chapter 5.  

 

2.2 Categories of IGP 
 

"Star patterns are a harmonious fusion of mathematics, art and spirituality, and 

expressions of symmetry, balance, and ingenuity." 

[11] 

  

Astronomy was a major subject studied by the Arabs. Stars were taken as an 

object of guidance as it guided one through the desert travels. Furthermore, they 

were important in guiding one to the direction of prayer that is offered five times 

a day by a Muslim, to this day. The Qur'an relates: 

 

 

Figure 2.1 8-Pointed Star [8]. 

 

 

 

 

 

“And He it is Who hath set for you the 

stars that ye may guide your course by 

them amid the darkness of the land and 

the sea.”(6:97) 

 [14]
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One of the unique characteristics of IGP are the stars that centralize the pattern. 

Many IGP contain stars which create complexity in the pattern. The rare few 

without the stars are not as complex and are known as field patterns 

[10][23].  IGP usually contain 5-, 6-, 8-, 10- or 12-pointed stars, but it is not rare 

to see odd number point stars like 7- or 9-pointed stars or large number of points 

such as a 20-point star. However, all stars have the characteristic of being 

symmetrical as symmetry is an important factor in IGP [10].  

 

IGP can be categorized into n-fold categories where n stands for the lowest 

number of rotational symmetry within the patterns. As every regular polygonal 

shape is derived from a circle, dividing a circle equally into n parts forms the n-

fold. There are three main categories Figure 2.2 [2], [24]: 

 

 

Figure 2.2 Main categories of IGP. 

 

- 4-fold (derived from a square) 

- 5-fold (derived from a pentagon) 

- 6-fold (derived from a hexagon) 
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2.2.1 4-fold 

The 4-fold patterns have the lowest number of symmetry, 4. These patterns are 

usually formed from two regular polygons, the square and the octagon, which 

form common star shapes (Figure 2.3). The 8-pointed stars widely represent the 

4-fold category [24]. They are found in all parts of the Islamic world, regardless 

of the era. The earliest appearance of the 4-fold patterns were formed by the 

Ghaznavid and Qurakhanid artists, dated to the 11th century [2]. Figure 2.3 shows 

examples of different types of 4-fold patterns from one monument, Masjid-i-Jami 

ceiling in Iran. 

 

 

Figure 2.3 The common types of shapes formed in a 4-fold pattern [25]. 

 

2.2.2 6-fold 

The majority of IGP are 6-fold patterns with a symmetry of 6. The triangle, square, 

hexagon and dodecagon are regular polygons forming the 6-fold patterns. The 

common shapes formed with this category are the hexagon or the 6-pointed star. 

Applying a small change within an IGP construction produces a different and 

unique IGP. With this in mind, the craftsmen were able to build upon their 

creativity of 6-fold patterns, taking the example of the variety of 6-pointed stars 

that can be formed within the 6-fold patterns ( Figure 2.4). The common type of 
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a 6-pointed star is the overlapping of two regular triangles ( Figure 2.4 (a)). 

This is an IGP from Al-Salil Tala’I Mosque in Egypt. When the circle is divided 

into 12 equal parts, one can form 6-pointed stars of the other two types in Figure 

2.4 (b-c).  Figure 2.4 (b) is from a panel found in Sultan Han, Turkey and (c) 

from the mausoleum of Sultan al-Ashraf in Egypt.  

 

 

 Figure 2.4 The different types of 6-pointed stars [25]. 

 

2.2.3 5-fold 

All the patterns with a 5-fold symmetry form 10-pointed stars that are created 

from ether pentagons or decagons. They are a unique category within IGP as 

they are difficult to replicate periodically just by their individual shape. 

Overlapping two pentagons can create a 10-pointed star, an original Islamic motif. 

They are however applied on diverse ornamental mediums throughout history. 

Extending the points of a 10-pointed star creates kites which forms the rays, 

creating diverse 5-fold patterns. The earliest example of a 5-fold pattern is the 

Ghurid Soffit of the Taq-i-Bust arch, found in Bust, Afghanistan (1149 AD).  Figure 

2.5 shows an example of a 5-fold pattern, found in Imam Mosque in Iran. 
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Figure 2.5 5-fold pattern, Imam Mosque in Iran [25]. 

 

With the diverse range and categories within IGP, various traditional methods 

were adopted to construct IGP, these methods are described in the next section.  
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2.3 Traditional Construction Methods of IGP 

 

The intricacy and complexity of IGP show how mathematicians and craftsmen of 

that time were very skilled and learned people. The skill to construct an IGP is 

still however unknown, due to the secrecy of the skill being passed onto the 

student of the learned only [17]. Although historical documents exist, theoretical 

books and pattern scrolls, they do not provide a complete ‘how-to guide’ to form 

IGP. Many scholars recently have however discovered methods for constructing 

IGP from mere evaluation of them [11]. Despite not knowing the exact method, 

the curiosities of the construction methods are still researched upon today. The 

literature research reviewed the following traditional methods, in no particular 

order: 

 

- Strapwork method 

- Hasba method 

- Modular Systems 

- Polygons-in-Contact 

 

2.3.1 Strapwork Method 

Until recently, research in constructing IGP was proposed by the theory of using 

the 'Strapwork' method. The Strapwork approach uses two simple tools, a 

straightedge (ruler) and a compass. IGP are mainly made out of shapes such as 

triangles, squares, circles and polygons [13]. By using these two tools, one can 

create these shapes which are then transformed into stars and overlapping 
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lattices [13]. Figure 2.6-Figure 2.8 shows how an IGP is constructed using the 

Strapwork method in three stages. 

 

The Strapwork method usually forms a repeat unit that can be repeated in a 

periodic fashion.  

- Initiated with a circle, drawn by a compass, creates the central part of the 

pattern. 

- The circle is divided equally by straight lines, using the straightedge.  

- The lines are intersected by arcs/circles to develop the pattern, through 

the artist’s knowledge, forming the basic regular polygons. 

 

Figure 2.6 Stage 1 of Strapwork method [7].  

 

- The pattern is then formed. 

 

Figure 2.7 Stage 2 of Strapwork method [7].  
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- The underlying gridlines are removed and the resulting tile can be 

repeated over an infinite plane or even decorated. 

 

 

Figure 2.8 Stage 3 of Strapwork method [7].  

 

Although the use of a straightedge and a compass seems relatively simple, the 

process can become cumbersome and errors can accumulate, for instance 

angular distortions [26]. Even repairing a damaged section with the Strapwork 

method can create errors.  

 

2.3.2 Hasba Method 

Hasba, meaning ‘measure’, is a method adopted by craftsmen who were situated 

in the Moroccan region [27]. It is a method used for applying geometric patterns 

by carving and painting on wood. The Hasba method is known as the measured 

method as it calculates four important components when creating an underlying 

grid to form the pattern, Hasba (measure), qassma (empirical unit division), laqtib 

(ribbon) and zaqaq (alley) [27]. The Hasba (ℎ) defines and initiates the pattern 

formation, ℎ either being an integer or rational number greater than or equal to 8. 

The qassma is the unit division calculated from the length of the side of the frame 
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where 𝐿 =  ℎ𝑞. The laqtib is a feature with important properties. The width, or 

thickness, of the laqtib is equal to 𝑞; it is created from the gap between the shapes 

that are formed from the zaqaq area. The laqtib are however only acceptable if 

they have a continuous journey throughout, with the intersection of two ribbons 

with an up and under formation, like weaving a thread (see Figure 2.9).  

 

 

Figure 2.9 The (left) correct and (right) incorrect formations of laqtib [27]. 

 

The Zaqaq is the area where shapes are formed to create the pattern; the pattern 

has a width equal to 4𝑞. To form the underlying grid one can follow the method 

described below (see Figure 2.10). 

 

Underlying grid algorithm [27]: 

- Define Hasba, ℎ. 

- Define Qasma, 𝑞, empirical unit division. 

- Draw a general frame with side length, 𝐿 = ℎ𝑞. 

- Draw 8 pairs of concentric circles with diameter 4𝑞 and 2𝑞 at the corners 

and the middles of the sides of the frame.  
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- Draw parallel lines that cross the centres of the circles and tangents to all 

the circles.  

 

The pattern is then formed by drawing the repeating template (Figure 2.11 left) 

and then later applying the point group symmetry, 4𝑚, (Figure 2.11 right).  

 

 

Figure 2.10 Hasba Method, underlying grid formation (Reproduced [27]). 
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Figure 2.11 (Left) Repeating template (right) complete pattern [27]. 

 

With the same underlying grid, which was formed from ℎ =  16, a variety of 

patterns can be formed (Figure 2.12). 

 

 

Figure 2.12 Variation of patterns formed from same underying grid [27]. 
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Although this method is strategically calculated and the repeating template helps 

in the pattern formation, it is a long process. Identifying shapes within the grid, 

like the Strapwork method, is difficult for someone who is new in creating IGP.    

 

2.3.3 Modular Systems 

A modular design is a pattern made up of smaller sets of modules or shapes [23]. 

Bricks are one of the simplest forms of modular systems; they are arranged 

periodically, with just one module, a brick [23]. Modular systems are known to be 

one of the famous traditional methods of creating IGP in the western part of the 

Islamic world [23]. They are usually placed to create a square or rectangular 

motif, creating a tessellation when repeated periodically. There are many benefits 

in using this method; firstly, the ease of producing a large number of motifs and 

secondly, the simplicity through the use of a set of modules. This simplicity also 

has an aesthetic appeal to the viewer [23]. 

 

Zellij Tiles 

One of the main modular design systems in Islamic Art is the ‘Zillij’ tile work. It is 

one of the distinctive forms of Islamic art in Spain and Morocco [5]. The tile work 

is created by small bright coloured hand-cut tiles known as ‘furnah’ [5], bringing 

it into the mosaic category. They are cut from large square pieces 

of enamelled terracotta [10]. The number of furnah is unknown to this date, but 

there are approximately 360 furnah  in common use today [5]. Every Zellij pattern 

is made up of sets of furnah (Figure 2.13 left) and are transformed accordingly 

with simple Euclidean transformations [5].  
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The Zellij tile work has no distinctive generative procedure, due to secrecy of this 

art form. However, one approach is described by Abas [6] by means of the 

geometric study of Zellij patterns [5]. The craftsmen of Zellij patterns, known 

as Mallerns, are known to make use of a piece of graph paper to design their 

patterns (Figure 2.13 right), using the grids as a guide [10]. It is a technique of 

packing space, hence leaving no gaps or holes, similar to completing a jigsaw 

puzzle [10].  

 

     

Figure 2.13 (Left) A Set of furnah. (right) Initial construction of the Zillij design [6]. 

 

Girih Tiles 

Girih patterns, interwoven IGP, are complex geometric patterns. In 2007, Peter 

Lu and Paul Steinhardt proposed the use of five polygonal tiles to construct the 

Girih patterns [26]. They named the tiles, ‘Girih’ tiles; Girih meaning interlock in 

the Persian language [28]. The five polygonal tiles are a rhombus, a bowtie, a 

bobbin, a pentagon and a decagon (Figure 2.14) [26]. 
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Figure 2.14 Girih Tiles with decorated lines [26]. 

 

The Girih tiles are special in the way that all the edges of the five different 

polygonal tiles have the same length [26]. Furthermore, they have decorating 

lines printed on them,  creating a continuous pattern when joined together [13]. 

For the pattern to flow continuously, the mid-point of every edge is intersected 

with the decorating lines at 72⁰ and 108⁰ [26]. The pentagon has five-fold 

symmetry and the decagon ten-fold symmetry, leaving the bowtie, bobbin and the 

rhombus all with a two-fold symmetry. Hence, this tiling is not periodic due to the 

5-fold and 10-fold symmetries by the pentagon and decagon. Due to being non-

periodic, the tiling is connected through decorating lines, causing the IGP to flow 

continuously without the need of being periodic. Girih tiles can form a large variety 

of decagonal motifs, which do not appear naturally through the Strapwork method 

[26]. 

 

The use of Girih tiles creates minimal errors and speeds up the process of 

creating a complex tiled plane [26]. Although the Girih tiles are only used as a 

template purpose, the transformation from tile to design is very rapid. Figure 2.15 

shows how the Girih tiles are transformed into the complex IGP [13].  
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Figure 2.15 The Girih tiles (right) transformed into design [26]. 

 

 

2.3.4 Polygons-in-Contact 

Polygons-In-Contact (PIC) is another method for constructing IGP. It was first 

initiated in the West by E.H.Hankin [11], [29], who discovered a polygonal grid 

under one of the original IGP on a momunent in India [29].  

 

This method uses a network of polygons, which acts like a base to generate the 

IGP; the polygons are connected by their edges to form a polygonal network. 

Regular tiling and semi-regular tiling usually make up the polygonal networks. 

The IGP are then generated within the network base.  

 

The polygonal networks are simple in the way that the central stars can be 

constructed easily. The stars that are constructed inside the polygons produce a 

base for extending the IGP [11] to form both simple and complex patterns. After 

the completion of the IGP, the underlying polygonal network is removed to 

present the final pattern [30]. The PIC method produces a variety of patterns but 

it is not an approach that can be applied universally throughout every IGP that is 
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historically documented [29]. The PIC approach limits one to create only Islamic 

Geometric ‘Star’ Patterns.  It is however the only method that has documented 

proof and is used widely amongst many artisans in the Islamic world to this day 

[30].  

 

The IGP that are generated using the PIC method can be categorized into four 

categories as devised by Bonner  [30]: 

 

1. Accute 

2. Obtuse 

3. Middle 

4. Two-Point 

 

 

Figure 2.16 Star Patterns generated from polygonal networks [30]. 
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The naming convention is determined by varying the angle of contact on the mid-

point of each edge of the polygon on the polygonal network. An example of how 

a single polygonal network can produce various IGP is shown above, Figure 2.16. 

The accute pattern has a crossing angle of 36⁰, the obtuse with 108⁰ and the 

middle being 72⁰, as it is in between 36⁰ and 108⁰. The two-point pattern is derived 

from using two points, a given distance from the mid-point on each polygonal 

edge rather than just the one mid-point.  

 

Both the strapwork and hasba methods form IGP by the initiation of straight lines 

and or circles and are built systematically  by finidng the point where the line 

intersects with the other line and or circle. The pattern is formed using these two 

elements of shapes. As there are a vast amount of IGP with formed of various 

polygonal shapes to form a generalized algorithm would be complex as the 

system would need to calculate the correct position of where the line and or circle 

needs to be placed with correct intersections. The PIC method is simpler than the 

strapwork and the hasba method as the IGP is formed from a grid of polygons. 

However this method also applies the use of intersections with lines. The final 

method, Modular systems, is a method that generates the pattern with a set of 

shapes. As the objective of this research is to form IGPs with a single polygonal 

shape, modular systems is the closest. 
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2.4 Computerized Construction Methods of IGP    

 

Computer generating traditional geometric patterns were initiated by Lalvani [31] 

who presented a method to form different kinds of traditional patterns by the use 

of coding. The method formed the central fundamental unit of the given pattern 

by applying the rules of symmetry, which was multiplied to form the pattern.  

 

Aljamali and Banissi [32] applied the Lalvani approach of generating 

computerized IGP, but defined the central unit of the pattern by controlling the 

radius of the shape and the angle of rotation. The method forms the pattern by 

sub-motif grid based patterns, where a part of the central motif is analyzed and 

reproduced by symmetry rules.  

 

Kaplan [11] derived a computerized algorithm  by integrating the PIC method to 

form automated 2D IGP. The algorithm determined the mid-points of all the edges 

of the polygons on the given polgonal network, placing a ‘X’ at each point. This 

‘X’ was then grown to create ‘arms’ which were extended to the point where the 

the pair of ‘arms’ were in contact with another set of ‘arms’ (Figure 2.18, left). This 

then formed the pattern. The pattern was visible after the removal of the polygonal 

network, as shown in Figure 2.18, right). 

 

One advantage of this algorithm is the user can change the ‘contact angle’, (the 

angle of the ‘X’ at the midpoint), (Figure 2.17 (a)) therefore determining the 

possibility of creating a variety of IGP. It used the approach of Bonner’s 

conventional IGP categorization, creating different patterns from a single 

polygonal network, for the pattern to be known as Islamic. Figure 2.19 shows how 
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the mid-point on the Archimedian (semi-regular) tiling is found, and how the 

contact angles are derived, to form the acute, middle and obtuse patterns. The 

two-point is formed by calculating a distance, given by the user, from the mid-

point on the polygonal edge, (Figure 2.17(b)), showing two contact points, 

creating two ‘X’ points on the polygonal edge.  

 

 

Figure 2.17 Contact points [11]. 

 

 

Figure 2.18 (Left) Mid-points on polygons (right) corresponding pattern [11]. 
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Figure 2.19 (Top) Underlying grid. (Bottom) IGP generated by varying contact angles 
[11]. 

 

2.4.1 Shape Grammars 

Shape grammars were initialized by Stiny & Gips [33]. It is a method based on 

shape rules [4]. This method is used to create both original and new designs. 

Stiny devised shape grammars as mathematics, describing the final design 

formation as a calculation of shapes and rules, hence calculating them in 

algebras of shapes [3].  

 

 

 

 

2-Point 



 

35 
 

Islamic Geometric Patterns (IGP) 

A shape grammar is defined by the following 4-tuple: SG = (VT, VM, R, I) [33] 

where: 

1. VT is a finite set of shapes. Its elements are known as terminals.  

2. VM is also a finite set of shapes but the elements here are non-terminal or 

markers such that VT*∩ VM = ∅. VT * is a set of elements formed by the 

arrangement of either an element or elements of VT. 

3. R is a finite set of ordered pairs (u,v) where u is a shape made of an 

element of VT * and VM and v is a shape made of either: 

a) An element of VT * from u 

b) A combination of an element of VT * from u and an element of VM   

c) A combination of an element of VT * and VM with an additional 

element of VT * from u.  

The elements of R are known as shape rules. 

4. I is the initial shape which is made up of elements of VT * and VM.  

 

An initial seed shape forms the final design [5] and can be anything from floral to 

straightedge. The rules however are the key to forming the end design. Varying 

the rules on the same initial shape forms various different designs. The amount 

of times the rules are used varies the complexity of the final design, which causes 

emergence in designs [3].  

 

Emergence is a key characteristic in IGP. It can be defined as emerging shapes, 

which are identified either during a pattern generation or when the final pattern is 

generated [5]. These processes are known as ‘Emergence as process,’ and 
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‘Emergence as product’. These processes can be further divided into types of 

emergence; Gross [34] discovered three main types of emergence: 

 

1. Intersection of two or more shapes to create an unintentional shape with 

the intersection marks. 

2. Alternative configurations where a part of the shape is viewed in a different 

way to what it was initially perceived as. 

3. Figure ground reversal, which creates a shape from the edges of the 

surrounding shapes. 

 

Every traditional construction method explained above has an emergence type. 

Starting with the Strapwork method, produced by a straightedge and a compass, 

the emergence is shown during the process of creating the pattern whilst the 

straight lines intersect with the circular arcs. Hence, the most prominent type 

would be type 1 [5], intersection of shapes as shown in Figure 2.20. This also 

occurs in the Hasba method as the lines either interact with each other or with 

the circle. 

 

Modular design systems involving Zilij tiles, Girih tiles and other modular systems, 

create an ‘Emergence as product’ structure [5]. As the designer is limited to only 

a set of tiles, type 3, figure-ground reversal, is the most suitable as edge shapes 

are created when joining the tiles together (see Figure 2.21). 
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Figure 2.20 Compass & ruler construction of an Islamic geometric pattern [5]. 

 

 

 

Figure 2.21 Examples of patterns generated by Modular systems [5]. 

 

Emergence is also generated in the process of the PIC method. Each polygonal 

edge of the polygon on the polygonal grid is intersected in the middle with a mark 

‘X’.  Hence type 1, intersection of lines, is the most relevant. 

 

Lastly, the shape grammar method can be defined as a “..two stage process” 

[34]. First stage would be that of the construction of the motif or star and secondly, 
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for it to be repeated under symmetry transformations. The star pattern here is an 

‘Emergence as product’, but it would come under type 2, alternative 

configurations, because of the unlimited ways it can viewed.  

 

Shape grammar allows transformation rules consisting of Euclidean 

transformations (translation, rotation and reflection), scaling proportionally, 

emergence rules and Boolean operations. Emergence rules are applied to the 

designs generated from previous shape grammar rules [35].  The use of the rules 

depends on the designer and how they create the grammar and arrange the rules. 

However, the rules designed are the only rules that can be applied throughout 

the design formation. Shape grammar acts as an algorithmic system; it creates 

its algorithm automatically with the rules designed by the designer [5]. 

 

Shape Grammar Implementation in Pattern Generation 

Shape grammar has been applied in various areas, such as architecture, 

historical ornaments, product design and many works in pattern generation [4]. 

Ismail et al. [35] implemented shape grammar in generating Songket designs 

using a ‘Bunga Cabit’ (a traditional Malay Songket motif), using both Euclidean 

and emergence rules. Repeating the rules many times in a different order thus 

creating various patterns.   

 

Additionally, shape grammar has been implemented in designing IGP. Ulu & 

Senar [4] produced IGP from using a decagon as an initial shape. However, the 

generated pattern produced a base grid for IGP (Figure 2.22 top). The final 
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pattern was formed using Lu & Steinhardt’s Girih tiles and Prof. Metin Arik and 

Mustafa Sancak’s covering tiles, (Figure 2.22 bottom). The derived pattern is in 

Appendix B with the decagon design template covered with the three tile 

coverings. 

 

 

Figure 2.22 (Top) The generated IGP design template with a decagon. (bottom) Three 
groups of covering tiles of the decagon, tie and the bowtie [3]. 

 

Jowers et al. [5] described the three construction methods for IGP, one being 

shape grammar. By analysing eight different IGP corpuses (motifs), they came to 

the conclusion of using a triangular structure as an initial shape, as all the 
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corpuses had an eight-fold rotational symmetry. The rules designed produced the 

inner content of the motif first (Rules 1-8), and then took the use of emergent 

rules (Rules 9-10) (Figure 2.24), for replicating under symmetry transformations. 

The grammar was formed of the following rules as shown in Figure 2.23. 

 

Rule 1 – Addition of the grid. 

Rules 2-6 – Line elements of the motif by recognition and replacement of grid 

lines. 

Rules 7-8 – Removal of grid lines and their associated end points. 

Rules 9-10 – Symmetry transformations where the ‘F’ represents a generated 

motif.  

 

Figure 2.23 Grammar rules. 
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Figure 2.24 Shape Grammar construction of an Islamic geometric pattern [4]. 

 

However these rules are not generalised to create any type of IGP as analysing 

another set of corpuses would form a different set of rules within the formed 

grammar.  

 

Shape grammar and architecture 

Shape grammar has also been implemented in the fields including architecture 

widely [36]. The table of implementation of shape grammar can be seen in 

Appendix C [37]. The main contributions of shape grammar in architecture are 

analyzed below. 
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The Palladian Grammar [38] 

The Palladian grammar is formed from a parametric shape grammar which was 

designed by Stiny. It creates the 2D ground architectural plans of Palladio’s villas 

that are defined by the Palladian style. The grammar is formed of two stages, the 

initial stage of creating the basic ground plan and latter of the details within the 

plan. The complete definition of the Palladian grammar is not governed within the 

grammar, hence a partial plan of the villa is generated.  

 

The Grammar of Paradise [39] 

Stiny has formed the grammar of paradise which produces Mughal garden plans, 

examples are applied from four corpuses that include Indo-Pak char-bagh (four 

gardens). The char-bagh are formed from the geometry of a garden, site parti, 

canals, pathways and borders. These 4 elements of the garden are formed 

individually with the use of a parametric shape grammar. The char-bagh is formed 

of a 2D architectural ground plan.  

 

Frank Lloyd Wright’s Prairie Houses [40] 

The Frank Lloyd grammar is formed of a parametric shape grammar that has an 

initial shape of a 3D shape but the transformations are in 2D. Again this grammar 

is formed of two main stages, the basic outline of the house, which is split into 

five different features that are separately formed with the fireplace being the focal 

point of the grammar. The latter stage creates the ornamentation of the basic 

outline which includes porches, terraces and balconies.  
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Grammar of Queen Anne houses [41] 

The grammar of Queen Anne Houses once again does not define the entirety of 

the design. Only a few parts of the Queen Anne house were applied as the corpus 

of the grammar formation. Splitting the grammar into two stages, the interior and 

exterior, this grammar actually is formed in two different dimensions. The interior 

is a 2D plan, forming a 2D shape grammar and the exterior is extrusion of the 2D 

shapes within the plan which creates the 3D buildings. This is the only grammar 

which is formed in two different dimensions; the other applications all form in one 

dimension, either 2D or 3D.  

 

Vitruvian Shape Grammar [42] 

This grammar is based on the writings of the Roman architect Vitruvius. The rules 

of the grammar form the procedural modelling of the Vitruvian temple. Different 

elements within this grammar create the complete temple including the base, 

cellar, stairs and columns. Although the grammar forms a complete 3D model, its 

transformation is with a 2 dimensional axis.  

 

From all the examples described above it can be seen that none of the grammars 

are actually applied as a mapping technique, and each of the architectural plans 

or buildings are formed in 2D space, with the use of the translation transformation 

as the most common rule adapted.  

 

 



 

44 
 

Islamic Geometric Patterns (IGP) 

2.5 Summary 

 

As it has been shown in this chapter, IGP are a diverse group of patterns that are 

categorized into different groups, 4-, 5- and 6-fold patterns. From all the traditional 

methods described none can construct  all the types of IGP that are archived up 

to date [24], [25].  The computerized method that was formed by  Kaplan [11] only 

creates  star patterns, which singles out the small category of field patterns. 

Although shape grammar has been applied to create original and new IGP [4], 

[43], [5], the methods either form a tiling base, where a set of modular tiles can 

be placed or the rules are not generalized.  

 

Hence none of the pattern generated works described above can create an IGP 

which has generalized shape grammar rules.  As the initial aim of this research 

is primarily to form 3D IGM, shape grammar is the optimal method. Shape 

grammar is formed of shapes and not symbols hence it allows one to visually 

create the patterns step by step. The addition of depth, the third dimension, which 

was lacking in the previous construction methods can be implemented within 

shape grammar.  



 

45 
 

Mapping Techniques 

3. Mapping Techniques 

 

“Colours speak all languages.”3 

 

3.1 Introduction 

 

A mapping function that applies a texture onto the surface of a 3D object or 

surface is known as texture mapping [44]. The texture map can be either 1D, 2D 

or 3D and are represented by an array or mathematical function [45]. For example 

a rock strata represents a 1D map, waves and surface bumps are 2D and clouds, 

wood or marble represent 3D texture maps. Texture space is known as the 

coordinate system that represents texture data, usually spanning from a range 

between [0,1] [44]. The coordinates (𝑢, 𝑣, 𝑤), denotes the texture coordinates in 

texture space. To convert from object space coordinates (𝑥, 𝑦, 𝑧) to texture 

coordinates the tangent space of the given surface is calculated and normalized. 

For a 2D parametrized surface, 𝑆(𝑢, 𝑣), 𝑆: ℝ2  → ℝ3, [46], 

 

 
𝑇⃗⃗(𝑢, 𝑣) =  

𝜕𝑆

𝜕𝑢
  , 

𝐵⃗⃗(𝑢, 𝑣) =  
𝜕𝑆

𝜕𝑣
  , 

𝑁̂(𝑢, 𝑣) =  
𝑇⃗⃗(𝑢, 𝑣) × 𝐵⃗⃗(𝑢, 𝑣) 

‖𝑇⃗⃗(𝑢, 𝑣) × 𝐵⃗⃗(𝑢, 𝑣)‖
  . 

 

 

(3.1) 

                                            
3 Joseph Addison. 
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The tangent, 𝑇⃗⃗(𝑢, 𝑣), bitangent, 𝐵⃗⃗(𝑢, 𝑣), and the normal vectors, 𝑁̂(𝑢, 𝑣), form the 

tangent space [47]. The conversion matrix is obtained from normalising the 

tangent and bitangent [46], 

 

 

𝑻𝑩𝑵(𝑢, 𝑣) =  

𝑇⃗⃗(𝑢, 𝑣)

𝐵⃗⃗(𝑢, 𝑣)

𝑁̂(𝑢, 𝑣)

 . 
(3.2) 

 

The following chapter describes the definition of a mesostructure, the detail that 

is formed on a surface. Also the different types of textures that form 

mesostructure and the techniques of storing them through texture maps, 

procedural methods and actual 3D geometry.  Volumetric mapping methods are 

then described in detail with a survey of the implementation of the shell mapping 

method.  

 

3.2 Size of Geometry 

 

Geometric scale can be categorized into three categories [48]: 

 

- Macrostructure 

- Mesostructure 

- Microstructure 
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The largest geometric object is known as a macrostructure. It is usually 

represented by 3D primitives for example a cube, cone, sphere etc. or surface 

patches [49]. Macrostructures are the geometric type that apply fine scale detail 

on their surface. The fine scale detail are known as texture maps, 2D or 3D, that 

are stored in texture space, and these represent mesostructures [46]. 

Mesostructures are high frequency detail that can be distinguished clearly when 

seen at a close distance. The size of a mesostructure is larger than a pixel.  When 

the geometric detail is less than 1mm in size, this type of geometry is a 

microstructure. Microstructures are invisible to the human eye, hence their implicit 

representation is through light scattering properties formed by ‘Bi-directional 

Reflectance Distribution Reflectance’ (BRDFs) [50].  Figure 3.1 shows examples 

of the three categories of geometric scale in terms of realistic rendering within 

computer graphics, with approximate scale ranges. The geometrical size applied 

in this research will be based upon mesostructures as they form the surface 

detail.  

 

Figure 3.1 Different categories of geometric scale [48]. 
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3.3 Representation of Surface Detail 

Texturing on a 3D surface, on a mesostructure level can be categorised into three 

techniques; 2D textures, displacement mapping and 3D textures, all of whom 

represent surface detail [51].  

 

3.3.1 2D Textures 

The most common technique applied in CG to texture a surface is through 2D 

colour [52] or bump maps [53] . These two types of mappings are found in many 

of the 3D software packages. A colour map, sometimes referred as a diffuse map, 

defines all the surface colour which does not include any lighting or shading 

information.  

 

A bump map is a greyscale image that acts as a pseudo height map [53]. The 

map does not create any additional geometry but creates an illusion of surface 

detail, with either raising or lowering the surface. For a lowered detail 

representation, the greyscale image is darker than 50%, and lighter parts 

represent heights [54]. 

 

A normal map is another type of 2D texture map. It is a map that indicates the 

direction of a surface normal [55]. These maps can affect the lightings within a 

scene which again creates an illusion of surface detail. A normal map applies the 

information of RBG, which corresponds directly with the texture space co-

ordinates (𝑥, 𝑦, 𝑧). There are two different types of normal maps; tangent space 

normal maps and object space normal maps. A tangent normal map is relatively 
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common to the latter and is applied on deformable objects which is made up of a 

mixture of blues and purples. On the other hand an object space normal map is 

equipped for non-deformable surfaces, which are formed of a rainbow 

assortment. 

 

3.3.2 Displacement Mapping 

Displacement mapping, introduced by Cook [56], is a type of texturing technique 

that actually adds fine scale detail to the surface in contact to the illusion of bump 

and normal maps. The points of the geometry of the surface move or displace 

forming a sense of depth and detail [57]. This is applied through either height or 

vector fields. Height fields, or height maps, are formed by displacing the geometry 

points towards the surface normal. With the height field, ℎ(𝑢, 𝑣), the point in object 

space would be calculated as [46], 

 

 𝑝⃗(𝑢, 𝑣) =  𝑆(𝑢, 𝑣) + ℎ(𝑢, 𝑣)𝑁⃗⃗⃗(𝑢, 𝑣). (3.3) 

 

The other type of application, vector field, is where the geometric point is 

displaced to an arbitrary direction. The surface displacement point can be 

calculated in object space, with the given vector displacement 𝑑(𝑢, 𝑣), 

 

 𝑝⃗(𝑢, 𝑣) =  𝑆(𝑢, 𝑣) + 𝑴(𝑢, 𝑣)𝑑(𝑢, 𝑣), (3.4) 

 



 

50 
 

Mapping Techniques 

where the matrix 𝑴 converts the vector displacement from texture to object space 

or vice versa.  

 

Figure 3.2 (a) Height fields (b) Vector fields [46]. 

 

Two types of displacement mappings that are commonly applied are ‘Parallax’ 

and ‘Relief’ mappings. 

 

Parallax mapping  

Kaneko et.al [58] introduced parallax mapping, a mapping that displaces the 

individual pixel heights of a surface. When the surface is viewed from a particular 

angle within a scene the high points on the surface conceals the low points 

allowing it to have a 3D effect. The height of the surface points that are displaced 

is formed through the greyscale height field. Although parallax mapping is cost 

efficient, the quality is poor. This sort of mapping works well on curves that allow 

a few centimetres of height, like texturing a brick or stone wall. There are different 
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versions of parallax mapping such as coon step [59], steep parallax [60] and 

iterative parallax [61]. 

 

Relief Mapping 

Relief mapping is a root-finding approach on a height field, introduced by Oliviera 

.et.al [62]. The process initiates with a viewing ray that is transformed into texture 

space and then locates an intersection on the given surface by performing a linear 

search. A binary search follows on from the linear search to locate a precise 

intersection point. A disadvantage however with the liner search is that a fixed 

step size is required, which is a process to create fine detail by increasing the 

number of steps to do so. Hence this accounts for accuracy but is poor in regards 

to performance.  

 

3.3.3 3D Textures 

3D textures can be categorised into three categories [63]: 

 

- Volumetric textures 

- 2.5D textures 

- Dynamic textures 

 

Volumetric textures 

Volumetric textures are solid textures which define texture densities in a volume, 

𝑉𝑥,𝑦,𝑧. They exist as a volumetric object in the form of, {𝑉: 𝑥, 𝑦, 𝑧 ∈  𝑉𝑥,𝑦,𝑧  ⊂  ℝ3}. 
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A volumetric texture is usually generated by a data acquisition device, for 

example tomography or confocal imaging, mainly applied in the medical field.   

 

2.5D textures  

Textures that are placed on surfaces of ‘hollow’ objects or open surfaces are 

known as 2.5D textures which are represented as: {𝑇: 𝑥, 𝑦, 𝑧 ∈  𝑇𝑢,𝑣  ⊂  ℝ3}. 3D 

geometry is added onto a surface as in Kajiya and Kay [64] , Neyret [65] and 

Porumbescu et.al [66], through various storage techniques (explained in the next 

section).  

 

Dynamic textures  

Dynamic textures introduced by Polana and Nelson [67] are fluid motions, for 

example motions of rivers, foliages, flames, etc. They are represented in the form 

of 2D time sequences as  {𝑆: 𝑥, 𝑦, 𝑡 ∈  𝑆𝑥,𝑦,𝑡  ⊂  ℝ3}. A dynamic texture is usually 

viewed as a 3D data cube where the individual slice cuts preserves the texture 

motion. For example Figure 3.3 shows parts of two dynamic textures, where each 

part is sliced from the origin voxel 𝑂(𝑥, 𝑦, 𝑡), creating three planes (𝑥⃗ 𝑂 𝑦⃗), (𝑥⃗ 𝑂 𝑡) 

and (𝑦⃗ 𝑂 𝑡).   

 

Figure 3.3 Dynamic texture of (a) flappig flag (b) grass [68]. 
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As this research is on creating a mapping technique to map 3D geometry to form 

a surface or architectural structure, a 2.5D texture that is categorized under 3D 

textures, will be applied. A 2.5D texture forms a textured surface when it is placed 

on a surface. Applying this theory on a given point cloud will give a similar result. 

 

3.4 Storage of Textures 

 

Mesotructures can be stored in various forms, three of which are; texture maps, 

procedural textures or geometry itself [46].  These three techniques are explained 

in the following section with given implementation details.  

 

3.4.1 Texture Maps 

Most common form of storage of textures is through texture maps. They are 

usually generalized to either discrete or vector valued functions [46]. Texture 

maps can be categorized into three main categories; dense, hierarchical and high 

dimension textures: 

 

Dense Textures  

Dense textures are formed from multiple maps which can include colour maps, 

bumps maps, shadow maps, normal maps, relief maps, displacement maps etc. 

The layers are compressed. An example of a dense texture is presented by 

Policarpo.et.al [69] who extended 2D relief maps. The relief mapping method is 

generalized and can accumulate multiple layers. As in a normal relief map, both 

normal and depth maps are applied, in this extension however multiple layers of 
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both these map types are used. For example with a four layer relief map, three 

textures need to be applied, firstly an RGBA texture that stores a depth layer in 

each channel, red, blue, green and alpha channels. Secoundly, for the surface 

normals, two RGBA textures [69].  

 

Hierarchical Textures 

A hierarchical data structure is a data structure with many levels that are arranged 

as a treelike structure. One type of hierarchical data structure is an octree. An 

octree can store texture data efficiently. It is formed up with nodes, where the 

initial node of the tree is a cube. The octree is partitioned recursively by dividing 

each node into 8 octants, see Figure 3.4 . Octrees were initially applied to texture 

data by Neyret [65], where every texel (volumetric texture) was stored as a 3D 

dataset, as a reference volume. Storing the texel in this manner formed 

compression within the texture data, allowing for lower computation time and 

inheriting a high level of detail (LOD). Octrees are applied widely in computer 

graphics with the recent advent for volumetric data rendering [70]. 

 

 

Figure 3.4  Example of an octree (Left) Volumetric model with (right) corresponding 
tree representation [71]. 
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High Dimension Compressed textures 

Volumetric materials can be represented by defining their appearance, or 

structure, as a function of many variables creating high dimensional compressed 

textures. Variables such as texture coordinates and viewing directions are 

compressed and stored within a function. One of the first types of high dimension 

textures is the Bidirectional Texture Function (BTF), which was introduced by 

Dana et.al [72]. BTF is a 6D function that models the structure and appearance 

of a material by its position (𝑢, 𝑣), illumination (𝜗𝑖, 𝜑𝑖) and viewing angles (𝜗𝑗 , 𝜑𝑗),  

 

 𝐵𝑇𝐹 (𝑢, 𝑣, 𝜗𝑖 , 𝜑𝑖, 𝜗𝑗 , 𝜑𝑗). (3.5) 

 

A variety of lighting and shading effects like shadows, translucency and texture 

inter-reflections can be calculated with BTF. The main application of the BTF is 

the appearance of the mesostructure hence small patches of the content are 

optimal in this case. Deforming or modifying the surface with the texture map can 

create artefacts which can change the local curvature or scale of the surface.  

Based on these problems, another technique that applies higher dimension 

textures is the ‘Generalized Displacement Mapping’ (GDM) which improves on 

the BTF. GDM is a 5D texture map that defines the distance of every viewing 

direction nearest to the surface of the mesostructure.  For every point p (𝑥, 𝑦, 𝑧), 

a ray is cast in the direction it is viewed in V (𝜃, 𝜑) forming 𝑑𝐺𝐷𝑀(𝑥, 𝑦, 𝑧, 𝜃, 𝜑).  
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3.4.2 Procedural 

Creating and storing complex textures is a manually tedious task. This is where 

the advantage of procedural textures takes place. A procedural texture is formed 

of algorithms, introduced by Perlin [73], who formed procedural noise functions 

to create stochastic effects. It is a widely applied noise function, as noise 

functions create randomness and fractals to form a more realistic textured image. 

Perlin and Hoffert [74] applied the Perlin noise function to create ‘hypertexture’, 

a volumetric mesostruture. The hypertexture was formed by applying Density 

Modulation Function (DMF), a function which modulates the density of a given 

point in ℝ3, to the object’s Object Density Function (ODF), which is the function 

representing the density of a 3D shape in ℝ3.  These functions are applied 

through given primitive functions such as gain, bias, noise, turbulence with the 

addition of arithmetic functions. Although procedural textures can be difficult to 

build and the outcome is revealed after the texture is produced it has the 

advantage of covering an arbitrary large area, as they are not limited in size and 

the LOD is high as the resolution is not fixed. 

 

3.4.3 Geometry 

The final and basic storage category is actual geometry. Textures can be stored 

as mesostructures of geometry in texture space that can be mapped onto the 

macrostructure. The geometry is mapped through a shell that contains the 

geometry. It can be attached onto the surface of the macrostructure in three 

different ways; point attachment, area attachment and curve attachment (Figure 

3.5). For a point attachment, the geometry is directly positioned onto the given 

point on the surface with the aligned orientation according to the axis of the 

surface by the transformation computed. Texture coordinates of the area are 
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determined for the area attachment by projecting the geometric detail on the 

surface. The curved area is followed by the geometry defining the distance of the 

geometry by the 𝑦-axis. The geometry is attached on a curve by defining the 

texture coordinates of the user-defined curve function on the surface. From the 

source points of the geometry, one point is taken as a parameter for the given 

curve with the remaining curve points being determined by the final position of 

the surface that is orthogonal to the curve.  

 

 

Figure 3.5 Geometry attached through a (a) Point (b) area (c) curve [75]. 

 

Storage wise, the method of shape grammar that will be used to construct 3D 

IGM, is a procedural technique as the shape rules act as algorithms to form a 

pattern. However at the stage of manipulating and mapping the 3D IGM, the 2.5D 

textures will be in the form of actual geometry. The reason being is that forming 

the 3D IGM is a separate step from mapping it. Hence the next section will provide 

a mapping method that implements actual geometry. 
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3.5 Volumetric Mapping Methods 

 

Many of the volumetric methods for applying mesostructure on surfaces is 

through texture and shell space. Shell space is defined as a layer that covers the 

base of a surface and is calculated as, 

 

 𝐺⃗(𝑢, 𝑣, 𝑤) =  𝑆(𝑢, 𝑣) + 𝑤𝐻(𝑢, 𝑣)𝑑̂(𝑢, 𝑣), (3.6) 

 

where 𝑆(𝑢, 𝑣) is a 2D parameterized surface, 𝐻(𝑢, 𝑣), defines the scalar thickness 

per surface point and 𝑑̂(𝑢, 𝑣) represents the surface normal. Shell space was 

introduced by Kajiya and Kay [64], as they created texels, 3D volumes that 

contain parameters in a 3D array approximating to the visual properties of micro-

surfaces, which were mapped onto bilinear patches. The next section introduces 

the reader to shell maps, a technique that integrates texture space and shell 

maps.  

 

3.5.1 Shell Maps 

A shell map is a bijective mapping between two spaces, shell space and texture 

space, defined by Porumbescu et.al. [66]. It is a mapping technique that applies 

volumetric detail onto a given surface, employing both texture and geometric 

methods. The mapping is initiated with the formation of the shell space. With a 

given triangulated base surface, 𝑆 (a textural surface) and 𝑆0, (an offset surface), 

are created;  the shell space then forms between these two surfaces.  
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There are properties that are conditional in forming an offset surface are: 

- Both surfaces, 𝑆 and 𝑆0, must acquire identical mesh topology, that is the 

same number of triangles, connectivity and assigned texture co-ordinates.  

- Every triangle (𝑇), 𝑇 𝜖 𝑆 corresponds with a 𝑇0 𝜖 𝑆0. 

- Every vertex (𝑉), 𝑉 𝜖 𝑆 corresponds with a 𝑉0 𝜖 𝑆0. 

- Offset surface should not intersect or have any self-intersections with the 

base surface. 

 

The shell within the shell space is created when vertices of the associated 

triangles between the two surfaces are connected. The addition of three non-

planar quadrilaterals alongside the two corresponding triangles, 𝑇 and 𝑇0, forms 

a prism, 𝑃. Like the triangles and vertices, every 𝑃 corresponds with a texture 

space prism, 𝑃𝑡.   

 

In shell space, 

 

 𝑃 = 𝑇 + 𝑇0, (3.7) 

 

where 𝑇 is formed of vertices v1, v2, v3, and 𝑇0 is formed of v01, v02, v03, . 
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In texture space, 

 

 𝑃𝑡 = 𝑇𝑡 + 𝑇0𝑡 , (3.8) 

 

where the vertices, (𝑢𝑖 , 𝑣𝑖 , 0) and (𝑢𝑖, 𝑣𝑖, 𝑘) (𝑖 = 1,2,3) forms 𝑇𝑡 and 𝑇0𝑡, 

respectively. The height, 𝑘, is calculated by averaging the triangle edge lengths 

in 𝑆 in both spaces, and multiplying it by the maximum offset height, ℎ, 

 

 𝑘 =
𝑎𝑡

𝑎
∗ ℎ. (3.9) 

 

 

Figure 3.6 Shell space region and texture space in shell mapping [66]. 

 

For consistency and forming a robust mapping, the two corresponding prisms in 

the two spaces are each split into three tetrahedrons by triangulating the 

quadrilateral planes connecting the two triangles. This is done through the rippling 

algorithm that was formed by Erleben and Dolhmann [76]. Each quadrilateral 
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edge is labelled either rising (R) or falling (F), where each configuration has two 

Fs and one R, or vice versa, but none of the configurations are either (FFF) or 

(RRR) as they are not validated tetrahedrons. Once again, each tetrahedron in 

both spaces are associated with each other to map the volumetric texture 

correctly.  

 

 

Figure 3.7 Prisms split into tetrahedrons through rippling algorithm [66]. 

 

With the shell space formed, the points from the texture space are mapped to the 

shell space by the combination of the point location algorithm [77] and Barycentric 

coordinates.  
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The shell mapping function is, 

 

 𝒑𝑡 =  𝜑 (𝑇𝑡, 𝐵(𝑇, 𝒑)), 

𝒑 =  𝜑 (𝑇, 𝐵(𝑇, 𝒑𝑡), 

(3.10) 

 

where 𝒑 and 𝒑𝑡 are points in tetrahedrons in shell and texture spaces, 

respectively. 𝐵 defines the Barycentric coordinates of the points and 𝜑 defines a 

point with Barycentric coordinates. 

 

 

Figure 3.8 Correpondence of prisms in shell and texture spaces [66]. 

 

The texture space within shell maps allows various content storage including 

geometry and procedural volumetric textures, creating flexibility. The formed shell 

maps on the surface also coincide with existing rendering techniques, which 

enables one to render a shell mapped surface effectively.  As shell maps allows 

the addition of volumetric detail within the shell map region, this does not distort 

the original surface like displacement mapping. For attaching overhanging 

volumetric geometry onto a surface, shell maps are the ideal choice.  
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3.5.2 Shell Mapping Implementation 

Although shell mapping was defined by Porumbescu, the formation and mapping 

in shell space was applied earlier than its stated development. Texels that were 

formed by Kajiya and Kay [64] were applied and stored in shell space by extruding 

a bilinear patch towards the surface normal. To avoid self-intersections of the 

surface extruded, Peng. et.al [78] applied the use of multiple layers within each 

shell space volume. The layers were either interior, exterior or envelope, layers 

that are above or below the surface. The height of the extrusion was however 

followed by vectors known as line directors.   

 

The use of applying a shell map on a triangulated surface was introduced by 

Wang.et.al. [79]. The prisms were however triangulated by their fins (outer shell 

of prism), into two triangles per fin. The splitting of the prism into three 

tetrahedrons was proposed and applied by Hirche.et al [80], which applied the 

Barycentric mapping.  

 

A similar technique to Porumbescu [66], was applied by Dufort et.al [51]  who 

used the shell mapping technique to render semi-transparent volumetric detail. 

The shell space was formed from an extruded triangular mesh that directed the 

offset surface to the base surface normal. The prisms were also spit into 

tetrahedrons. Applying volumetric data into prisms that are later split results in a 

piecewise problem, where artifacts can be formed. To solve this problem, 

Jeschke et.al [81] used a triangular mesh which was extruded, but instead of 

splitting the prism, a coons patch was added at the intersection of w –coordinate 

in the (u,v,w) texture space, which formed the corresponding world space 
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triangle. There are a number of other implementations of shell mapping by [82], 

[83]. 

 

The initial step in every implemented technique described above was forming the 

shell space. However, there is one particular method that follows the technique 

of shell mapping without a shell map. Brodersen et.al [84] used a particle tracker 

known as Lagrangian tracker particles. The particle tracker distributes particles 

evenly at texture coordinates over the given surface patch. The particles create 

2D grids to form a 3D lattice.  

 

3.6 Summary 

 

The main aim of this research is to manipulate the 3D IGM to form architectural 

structures as a mapping technique. With the various methods and techniques 

described in this chapter it is clear that the scale of the geometry should be of 

mesostructure size, as this forms fine detail.  The procedural technique of shape 

grammar generates the 3D IGM but the 2.5D texture, the generated 3D motif, is 

stored as actual geometry.  

 

As shell maps are an efficient method for mapping geometry onto surfaces, shell 

mapping is the optimal method that will be applied in this research. However the 

method is formed of different techniques which include; geometrical techniques 

of forming shell and texture space, triangulation of prisms; the use of a 

triangulated mesh and the Barycentric mapping. With all these techniques, the 

mapping is very costly, storage wise. Eliminating the fact that the surface (formed) 
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is not triangulated, can ideally map any shaped motif. Also triangulating the shell 

and texture space is an additional process. Hence in this research the process of 

triangulation and triangulated surfaces will not be applied. 
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4. 3D Islamic Geometric Motifs 

 

“To understand is to perceive patterns.”4 

 

4.1 Introduction 

 

A number of techniques have been applied in tackling the problem of pattern 

generation resulting in various computer graphic toolkits for diverse pattern 

formations.  

 

IGP are very similar to fractals [85] as both are characterised with self-similarity, 

and therefore, methods like the Lindenmayer System (L-system)   and Iterated 

Functions could be applied. However, literature on both traditional and 

computerized construction techniques of IGP, showed the relevance of shape 

grammar, as the method only applied the use of a single shape throughout the 

entire pattern formation. 

 

Although shape grammar is a method that was previously utilized to form IGP [4] 

it did not create complete forms, or even a numerous amount of IGP [43]. None 

of the techniques described in chapter 2, which applied shape grammar as a 

pattern formation method, were able to create a 3D IGP with generalized shape 

                                            
4 Isaiah Berlin. 
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grammar rules. In this research the shape grammar is devised to create complete 

forms of n-fold IGM in 3D. Additionally, novel forms are generated with these 

rules, by the use of parameterization, formally by a parametric shape grammar. 

 

4.1.1 Parametric Shape Grammar 

Parametric shape grammar is an extension to shape grammar [39]. It is more 

flexible and the rules in the grammar create a diverse group within itself. The 

shape rule, 

 

 𝐴 → 𝐵, (4.1) 

becomes, 

 𝑔(𝐴) → 𝑔(𝐵), (4.2) 

 

where 𝑔 is the parameterized function. To illustrate the use of parameterization, 

an example is given below. 

 

A translational shape rule of +1cm in the standard shape grammar, which takes 

a shape from its original position and translates it in the 𝑥-axis by 1 unit up, would 

simply translate it. But if this rule was parameterized, one could translate the 

shape x amount in the 𝑥-axis in either the positive or negative 𝑥-axis with 

parameters of 0.1, 02, 0.3…etc., see Figure 4.1. 
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Figure 4.1(a) Shape grammar rule. (b) Parameterized shape grammar rule. 

 

4.1.2 Algebra of Shapes 

In shape grammar, the shape is the important feature. The spatial dimension is 

the relationship between the grammar and the shape [86]. To define a shape, 

one can deconstruct it to its basic elements that form the algebra of a shape, 

which are the points, the lines, the planes and the solids. To illustrate this, a 2x2x2 

cube is formed of 8 solids, 36 planes, 54 lines and 27 points (Figure 4.2).  

 

 

Figure 4.2 Deconstruction of a cube into its’ basic elements. 
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These elements are converted from shape algebras (SA) definitions to computer 

graphic (CG) definitions as: 

 

SA 

 

POINTS LINES PLANES SOLIDS 

 

CG VERTICIES EDGES FACES OBJECTS 

 

The algebraic theory of shape grammar is defined by 5 important concepts [86].  

 

Elements. The basic elements, points, lines, planes and solids. 

Properties. The properties of the elements are; dimension, boundary, content 

and 3D Medium. 

Spatial dimension. Each element has a corresponding dimension, point being 

zero dimension (0D) and a solid, 3D.  

Shape boundaries. Boundaries create the shape, for example a line is bounded 

by two points and a solid is bounded by a minimum of 4 planes.  

Relationship. How the element relates to the properties. 

 

Table 4.1 summarises the properties of the basic elements. In regards to a point, 

it is the smallest element with zero dimension and no boundary or content, hence 

it is indivisible. The line (1D), the plane (2D) and the solid (3D) are all divisible 

elements; the line into points, plane into lines and the solid into planes.  
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A non-zero dimension is essential for shape formation, from 1D that represents 

a line to 3D that forms a solid. The algebras of shape are broken down into 3 

categories: 

 

1. The shape itself 

2. Part relationships 

3. Euclidean Transformations 

 

Table 4.1 Properties of Basic Elements (Reproduced from [86]).  

 

 

The shape is essential as it contains all the basic elementary properties. Part 

relationships are formed when shapes interact with each other during the process 

of the shape grammar, this includes the Boolean operations, and the Euclidean 

transformations that transform the shape.  

 

The 𝑈𝑖𝑗 is the algebraic numerical form of a shape [86]. The index 𝑖 defines the 

dimension of the basic element and the index 𝑗 is the resulting transformed shape 

dimension. From Table 4.2 it can be seen that 𝑈0𝑗 forms point-based shapes, 𝑈1𝑗 
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are line-based shapes, 𝑈2𝑗 are plane-based shapes and 𝑈3𝑗 are solid-based 

shapes. When two shapes are formed the indices, 𝑖 and 𝑗 should follow the 

criterion, 

 

 𝑖 ≥ 0, 𝑗 ≥ 𝑖. (4.3) 

 

This is because when manipulating a shape within the grammar, the dimension 

of the resulting shape should be greater than or equal to the basic element that 

initiates the shape formation process. The algebras is this research are 

enumerated up to 3 dimensions as the objective is to form, 3D IGM, however the 

enumeration can increase with added dimensions [86]. In Table 4.2 the 

enumeration of the algebra of shapes is formalised with given illustrated 

examples below them.  

 

Table 4.2 Properties of Shapes (Reproduced from [86]). 
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In this chapter, the methodology undertaken in this research to create 3D IGM, 

using the parametric shape grammar approach, is presented. The proposed 

framework, the IGMBS framework, is discussed providing detailed descriptions 

on the use and change of the initial shape whilst the importance of parameterizing 

the grammar rules are also reasoned. Lastly, the methodology to create 3D IGM 

is provided, producing good aesthetic results in the implementation section. The 

results are then analyzed, concluding the chapter with next steps to further the 

research.  

 

4.2 Proposed Framework – IGMBS 

 

The IGMBS framework is based on creating both the 3D motifs and motif-based 

structures. However, in this chapter the initiation and generation of the 3D motifs 

is the main discussion. The IGMBS framework is made up of three important 

steps which are: 

 

- Select IS 

- Apply PSG rules to generate motif 

- Apply APSG rules to generate motifs 

 

4.2.1 Initial Shape 

The IS is the starting point for constructing 3D IGM; it is the shape that forms the 

motif. For example, to construct a 6-pointed star the first step would be to start 

off with a regular polygon, n-gon, e.g. a hexagon. In the shape grammar methods 
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described in chapter 2, only one initial shape was adopted throughout the pattern 

generation, allowing the grammar to produce patterns with a single shape. In this 

grammar, the initial shape can be changed. The changeability will create flexibility 

in the shape grammar to produce various categories of IGM. For example, with a 

hexagon as an IS, one is limited to generate only 6- or 12-fold motifs whereas 

changing the IS from a hexagon to an octagon, the grammar can create 4-, 6-, 8- 

and 12-fold motifs. The initial shape is however constrained to a regular polygon 

of n-sides, as IGP are created with regular polygons [4]. The circle, although it is 

not a polygon, is included in the set of initial shapes as every polygonal shape 

initiates its form from it. Figure 4.3 shows a few examples of IGP with proposed 

initial shapes indicated in red.    

 

 

 

Figure 4.3 Examples of proposed initial shapes in various IGP [25]. 

 

(a) (b) 

(c) 

(d) 
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Figure 4.3 (a) is a lattice screen from the Great Mosque in Damascus, Syria, 

which was built in 715 AD during the Ummayad dynasty. A part of the minbar 

(pulpit) decoration is shown in (b) from Al-Salih Tala’I Mosque in Cairo, Egypt. 

This mosque was built in 1160 AD during the Fatimid dynasty. The decorative 4-

fold patterned panel (c) is situated in Alhambra Palace in Granada, Spain; a well-

known historical monument built by the Nasrid dynasty between 13th- 15th AD. 

Finally, another lattice screen was found in the Tilya-Kan Madrassa, which was 

built in 1660 AD by the Shaybanid dynasty in Samarkand, Transoxiana.  

 

4.2.2 Parameterized Shape Grammar (PSG) 

Following the example of the 6-pointed star, the shape requires rules to transform 

it into a derived design or pattern. To form the 6-pointed star, rules of translation 

and rotation need to be applied. These rules are in fact parameterized in this 

shape grammar to form the parametric shape grammar rules. The 

parameterization gives the advantage of generating numerous patterns with the 

single initial shape. For example, this can be achieved by varying its size (using 

the scale rule), or changing the parameter of the translation rule. 

 

4.3 Methodology: Generating the Motif 

 

In accordance to the shape grammar definition, I is a regular polygon, e.g. 

triangle, quadrilateral, pentagon, hexagon, heptagon, octagon etc., with the 

exception of the circle, in this grammar. VT is the terminal shape (IS without the 

marker), VM is the spatial marker which positions the successive assemblage of 
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the shape by its given shape rule (example shown in Figure 4.4) and lastly, the 

shape rules, R, are the rules generated to construct n-fold geometry. 

 

 

Figure 4.4 Shape grammar notation. 

 

4.3.1 Analyzing IGP 

The circle is a symbolic shape in Islamic art. It symbolizes one God and also 

Mecca as it is the central place for Muslims as they face towards it during prayer. 

Hence it is the shape that forms the initiation of all the IGP, the central point.  

Three fundamental shapes are derived from the circle; the triangle, the square 

and the hexagon. These three shapes symbolize [87]: 

 

- Harmony (triangle) 

- Materiality (square) 

- Heaven (hexagon) 

 

It is these shapes that derive the complexity and represent symbolism within IGP. 

With this in mind, analyzing the IGP was initiated with these three fundamental 

shapes.  
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As the IS is changeable in this grammar, the category of IGP will be of n-fold 

geometry. From [88] many 4-, 5-, 6- and 7-fold patterns of varying complexity, 

containing both stars and polygons, were analyzed to derive the grammar rules. 

The central motif of every pattern was extracted and deconstructed, to visualize 

how it could be constructed with a single regular polygon; the extraction process 

was done visually.  As many of the patterns are formed by repetition of regions 

within the pattern, it was a clear observation that the central motif would be 

suitable to analyze and create. Also, as it was mentioned previously, the same 

motif is applied in different patterns that are found in different regions.  

Figure 4.5 shows two examples, one that is bounded by a hexagon and the other 

by a decagonal motif.  

 

 

 

Figure 4.5 Examples of motifs bounded by a regular (a) hexagon (b) decagon [8]. 

 

Both examples in Figure 4.5 are from Qur’anic manuscripts. Figure 4.5(a) is a 

carpet page taken from the 25th volume of the Uljatu Qur’an from Iraq, produced 

in the 13th century. The carpet page with the decagonal motif (b) is from the 8th 

(a) (b) 
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volume of the Sultan Faraj ibn Barquq’s 30 volume Qur’an. This Qur’anic 

manuscript was produced in 14th century, in Egypt. 

  

There are however some patterns that contain more than one motif. The pattern 

in Figure 4.6 is one case. Visualizing how many motifs and the type of motif (n-

fold) the pattern contains can be done by the central polygon or star polygon. In 

this pattern, one can see both a polygon, which is a regular octagon that is rotated 

at an angle, and a star polygon. To create the motif containing the octagon at its 

centre, the motif initiates with the square, which is rotated approximately at a 

given angle. It is then reflected or rotated at its centre of origin by 180⁰.  Next, it 

is rotated at the centre origin four times to complete the motif. When the motif is 

tessellated to form the pattern, the motif is overlapped. 

 

For the star polygon, again the same initial shape, the square, is applied by 

translating and overlapping when rotated (blue parts in motif 2) to form the motif.  

The motif is then tessellated to create the 2D IGP. The motif is tessellated by 

overlapping a part of the motif onto the next consecutive motif. The overlapping 

creates a Boolean operation. Both motifs tessellate in the Cartesian grid, creating 

a periodic pattern. 

 

From analyzing the patterns, it was seen that geometric transformations, 

translation, rotation and scale were the most common transformations to create 

the motif. Constructive Solid Geometry (CSG) was also in play in the generation 

of the motifs.



 

 
 

7
8

 

Figure 4.6 Analyzing a pattern created from two different motifs both generated from a square. 

Initial Shape 

(IS) 

(a)  Motif 1 (b) Motif 2 

Grammar 

Rules 

Grammar 

Rules 

Plate 44 [88] 
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CSG is a method for creating solid objects from other solids. It has 3 operators; 

union, intersection and difference. These operators are known as Boolean 

operations. The union unites the two solid objects at the given position, the 

intersection creates the part that is included in both the objects and the difference 

subtracts one object from another. Hence, when the IS or the motif is overlapped 

in any kind of manner, the Boolean operations occur. The grammar rules are 

discussed in detail in the next section.  

 

4.3.2 Parameterized Shape Grammar (PSG) Rules 

The PSG rules were derived from analyzing patterns from [88] with reference to 

the three distinct features of IGP; symmetry, emergence and self-similarity. The 

symmetry and emergence features both generate the rules of translation and 

rotation. A star emerges by translating and rotating (from the centre) a single 

hexagon generating a symmetrical 6-pointed star with an order of symmetry 6 

(Figure 4.7). Scaling the hexagon proportionally retains the original state of the 

shape and is a cause for generating self-similarity within the derived pattern. 

Furthermore, Boolean operations are also utilized to generate emergence as it 

produces new emergent designs. 
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Figure 4.7 6-Pointed Star formed from a) translating and b) rotating the hexagon.  

 

 

Figure 4.8 shows the grammar rules generated from numerous patterns. Rule 1 

(R1) translates in either x- or y- axis. Rule 2 (R2) rotates the shape with parameter 

r, where r  is calculated as, 

 

 𝑟 = 360/𝑛. (4.4) 

 



 

 
 

8
1

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Parameterized Shape Grammar (PSG) rules. 
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As symmetry is a very important feature, to distinguish the n-fold in a motif, the 

user is restricted to the parameterization of this rule, which can only be computed 

by equation (4.4). For example, to create a 4-fold motif, the angle of each fold 

has to be a quarter of 2π, to create a regular 4-fold motif. Hence, the user would 

simply specify the n-fold. The scale transformation is rule 3, (R3), with parameter, 

m, and lastly the Boolean operation of uniting and intersecting with or without the 

IS, is rule 4 (R4). The grammar also includes an Add and Duplicate rule. By 

definition this is now a Parameterized Shape Grammar (PSG).  

 

4.4 Implementation 

 

The implementation of the PSG was processed within Autodesk Maya, a 3D 

software package, as it visualized the IGM from the written code. The three 

dimensionality of the motif was initiated from the IS, the IS being 3D.  This was 

created through a piece of code which was written in Python, an integrated 

programming language within Maya.  The algorithm to create the 3D IS is : 

 

1. Create the shape with depth (x,y,z). 

2. Duplicate, scale down and Boolean operator (Difference) to create the 

shape outline. 

3. Extrude and scale the front face of the shape to create the third dimension. 
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The Python code is: 

 

 

Figure 4.9 shows the process of converting a regular polygon into a 3D polygon, 

creating the 3D IS to initiate the motif formation. 

 

 

 

Figure 4.9 Process for creating a 3D IS. 

 

To illustrate the methodology to generate the motifs, a few examples are shown 

in Figure 4.10 -Figure 4.13 with the given Python code. Each code is provided 

with comments written in red. Figure 4.10 is an example of how an original IGP 

can be generated by applying the PSG rules.  

n = 6

cmds.polyPrism(n = 'shape', l=0.5, w=1, ns=n)
cmds.rotate (90,0,30)

cmds.duplicate('shape')
cmds.select('shape1')
cmds.scale(0.9,1,0.9)
cmds.polyBoolOp( 'shape', 'shape1', op=2, n='IS' )
cmds.delete(ch=True)
cmds.select(‘IS.f[n] ', r=True)

cmds.polyExtrudeFacet( 'IS.f[n]',kft=True, ltz=0.2, ls=(.8, .8, 0))
cmds.selectMode(object=True)

Number of sides of the initial shape

Create the shape with depth (x,y,z)

Duplicate, scale down and Boolean 
operator (Difference) to create the 
shape outline.

Extrude and scale the front face of 
the shape to create the third 
dimension.

Step 1 Step 2 Step 3 
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Figure 4.10 Formation of an orginal IGP with its’ rules.  

 

If the translation parameter is changed in the previous example, leaving the rest 

of the other rules and parameters the same, another original IGP can be derived, 

as shown in Figure 4.11. 

 

bbox = cmds.exactWorldBoundingBox( 'motif')
c = bbox[0] 
d = bbox[3]
w = (d-c) 

r = (n*w)/(2*pi)

for i in range(n):
cmds.move(0,r/1.5,0)
cmds.xform(ws=True, piv=(0,0,0))
cmds.rotate (0,0,(i*(360/n)))
cmds.select('motif')
cmds.duplicate('motif')

cmds.delete()

cmds.select(all=True, r = True)
cmds.polyUnite(n='pattern')
cmds.delete(ch=True)

cmds.polyPrism(n = 'shape', l=0.5, w=1, ns=n)
cmds.rotate (90,0,30)
cmds.select('shape.f[n+1]', r=True)
cmds.polyExtrudeFacet( 'shape.f[n+1]',kft=True, ltz=0.2, ls=(.8, .8, 0))
cmds.selectMode(object=True)

cmds.polyBoolOp( 'shape', ‘motif', op=2, n='IS' )
cmds.delete(ch=True)

Calculating the size of the initial 
shape

The radius of the Initial Shape

Application of the rules of 
translation, rotation and duplicate

Uniting of the pattern

Addition of an initial shape

Intersecting the pattern including 
the initial shape
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Figure 4.11 Translation parameter changed to form an original pattern. 

 

By changing the initial shape from a hexagon to a decagon, this also generates 

an original motif (see Figure 4.12). 

 

 

 

Figure 4.12 Initial shape changed to form an original pattern.  

 

 

 

for i in range(n):
cmds.move(0,r/1.25,0)
cmds.xform(ws=True, piv=(0,0,0))
cmds.rotate (0,0,(i*(360/n)))
cmds.select('motif')
cmds.duplicate('motif')

cmds.delete()

Translation parameter changed

n = 10

cmds.polyPrism(n = 'shape', l=0.5, w=1, ns=n)

Changing the initial shape
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Finally, Figure 4.13 demonstrates how removing a rule and changing the initial 

shape again produces an original motif. 

 

 

Figure 4.13 Initial shape changed and rule removed to form an original pattern.  

 

4.4.1 3D IGM 

Figure 4.14 shows the Graphical User Interface (GUI) of a set of 3D motifs 

implemented in Maya Python. The rendered 3D generated motifs are shown in 

Figure 4.15. The motifs are generated using various initial shapes from a triangle 

to a dodecagon. The PSG can create over 50 different 3D IGM.  

 

 

Figure 4.14 GUI of the selection of 3D IGM.  
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Figure 4.15 Rendered set of 3D IGM .
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The PSG can create over 50 different motifs of varying categories, 4-6 fold, with 

the use of a single changeable initial shape. With shape grammar one can see 

how a pattern is formed throughout the entire generation and parameterizing the 

rules created flexibility in generating a variety of motifs, applying the same rules 

as seen in Figure 4.10Figure 4.13. By the addition of an extra dimension, the 

grammar is not restricted to form 2D motifs, but it can create 3D motifs, with a 

carved appearance. 

 

4.5 Summary 

 

The first objective in this research has been achieved. The PSG successfully 

shows how parameterization within a shape grammar, with the use of the 

changeable initial shape, can create numerous 3D IGM in reference to [88]. The 

3D IGM are now ready to be manipulated to form architectural structures by 

adopting the same transformational rules from the PSG. In the next chapter, the 

final step in the proposed framework, IGMBS, will be discussed with detailed 

theory on the importance of tessellations with regularity within a pattern and the 

applications of shape grammar in the architectural world.  
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5. Architectural Structures 

 

“Form follows function.”5 

 

5.1 Introduction 

 

In the previous chapter, the generated PSG showed how a variety of 3D n-fold 

IGM can be formed without the use of a grid, with Euclidean transformations. The 

question now is: What are the motifs used for? A motif is a repeat unit, and when 

tessellated creates a pattern, like a brick, the layering of which forms a brick wall. 

Islamic architectural surfaces are adorned with IGP, the patterns are either 

engraved or carved out. The applications of shape grammar go beyond creating 

patterns and designs to forming architectural building plans [38], [39], [42], [89]. 

In this modern age, 2D plans lack visual appeal in comparison to complete 3D 

models. Applying the two principles, the methodology here will not only apply the 

3D motif as a volumetric texture but it will use the single 3D motif to form a 3D 

architectural structure through given rules.  

 

In the following chapter, the final step of the IGMBS framework is discussed in 

detail.  This is the step that forms the architectural structures with an automated 

parameterized shape grammar. The chapter introduces the reader to the 

                                            
5 Louis Sullivan. 



 

90 
 

 

Architectural Structures 

importance of tessellations within Islamic patterns continuing onto the main 

features of Islamic architecture. An accurate description of application of the 

APSG rules is provided with the methodology, later described in detail, providing 

algorithms for each architectural structure. It is then concluded by implementing 

the methodology and visualizing 3D IGMBS. 

 

5.2 Tessellations within Islamic patterns 

 

When a surface, 𝑆, is covered with tiles that form no gaps or overlaps it is known 

as a tiling or tessellation in mathematical terms, in 2D. Tessellations can be 

extended to higher dimensions that are then known as space-filling, like a 

honeycomb. The mathematical definition of a tessellation, 𝑇, is [90], 

 

 𝑇 = {𝑇1, 𝑇2, … . . 𝑇𝑛} , (5.1) 

 

where 𝑇1, 𝑇2,…. 𝑇𝑛, are tiles that form 𝑇. For the tile to tessellate, it has to be 

enclosed with a boundary to abide with the closed set condition. The union of all 

the closed sets, i.e. the tiles, forms the ‘no gaps’ where, 

 

 {𝑇1 ∪ 𝑇2, … . .∪ 𝑇𝑛} = 𝑆. (5.2) 
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The interior of the sets are disjoint and therefore they do not form overlaps in the 

surface [90], 

 

 {𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑓 𝑇𝑖 ∩ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑓 𝑇𝑗} = 𝜑, (5.3) 

 

where 𝑖 and 𝑗 are the tile numbers and 𝑖 ≠ 𝑗 and 𝜑 is the disjoint set of a pair of 

tiles.  

 

5.2.1 Periodicity in IGP 

A variety of shapes can form a tessellation. However, to produce periodicity within 

a tessellation, the tiles/shapes should transform periodically restricting it to the 

condition of applying rigid Euclidean transformations. As the research applies the 

use of regular polygons, including the exception of the circle, as the initial shape 

that forms the 3D motif, the tessellations will be produced with this set of shapes.  

 

Mathematical Proof of regular tessellations 

The interior angle of the regular polygon 
180(𝑝−2)

𝑝
 , where 𝑝 is the number of sides 

of the regular polygon should equal to a whole number that is divisible by 

360˚[91]. Multiplying this by 𝑞, which is number of polygons meeting at a point 

thus results in 360˚, 

 180(𝑝 − 2)

𝑝
(𝑞) = 360 . 

(5.4) 
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Hence the only possible values are, {3,6},{4,4} and {6,3}, these are written in the 

form of Schläfli symbol { 𝑝, 𝑞 } (see Figure 5.1). 

 

 

Figure 5.1 Regular tessellations of triangle, square and hexagon.  

 

Other than the regular tessellations, the semi-regular or Archemidean tiling, 

tessellates a plane with 2 or more regular polygons such that the same polygons 

surround the same vertex, which forms a periodic tessellation. However, in this 

research, the aim is to apply only one motif to map and construct the architectural 

structures. Hence, the regular tessellations will be implemented. From analyzing 

the IGP, it was also seen that all the IGP that had a periodic tessellation, either 

tessellated in the Cartesian (square) Figure 5.2 or the hexagonal grids Figure 5.3. 

The reason why a triangle is not applied as a tessellation, is firstly, six regular 

triangles form a hexagon and second, the triangle has the smallest area 

compared to the square and hexagon [24]. For this reason, the Cartesian and 

hexagonal grid will be used as a mapping template.  
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Figure 5.2 Tessellation in the Cartsian grid [25]. 

 

Figure 5.3 Tessellation in the hexagonal grid [25]. 
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5.3 Features of Islamic Architecture 

 

The most common features in Islamic architecture are: 

 

Jali, meaning ‘net’, is a lattice formed from either calligraphy or geometry and is 

used in producing windows or arches. They were commonly found in the Indian 

region during the time of the 

Mughal Empire. Originally 

formed from carving stone, 

they act as air vaults, 

lowering the temperature 

inside a building. The air is 

compressed through the 

holes [24]. 

 

A pillar or a column is a cylindrical 

architectural feature used to support a roof or 

an entire building. Many architectural 

buildings in early Islam were built with 

classical columns that were spolia, 

architectural elements that were reused from 

earlier Christian buildings.  

 

 Figure 5.5 Shakh-i-Zindeh 
complex (Transoxiana) [25]. 

Figure 5.4 Monument – Red Fort (India) [25]. 
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The dome is the striking hemisphere 

that stands out as a central feature 

found on mosques and mausoleums. 

Domes in the Islamic era were first 

formed during the Fatimid dynasty in 

the 10th century. The domes found in 

Cairo, or otherwise known as the 

‘Domes of Mamluk Mausolea’ are the 

certain type of domes that have been 

lavishly decorated with either 

arabesque or geometric patterns. 

 

 

Figure 5.6 Dome of Mosque of Barsbey 
(Egypt)  [24].

 

The Mamluk sultuns who ruled about 250 years between 1250 and 1517 AD were 

prominently known by their tombs, which were built during their lifetime [92]. 

Every proceeding ruler exceeded the size of the dome of the mausoleum who 

ruled before them, forming twice or three times the size of the earlier domes. The 

decoration style of the Mamluk domes was formed through repeat units, i.e. 

patterned tiles that created a sphere. The usual shape of the tiles were square, 

hence following on from the multiples of 4 (8, 16, 32, 64) that based their design 

[92]. 

 

Fountains are a source where water can be found. They are also used to an 

ornamental place, where the fountain was decorated by the craftsmen who built 

the architecture building.  Romans were the first to decorate their fountain areas 

with bronze or stone masks of animals. This decorative style was then adopted 
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by Moorish and Muslim garden designers who applied it to form smaller versions 

of the gardens of paradise. The decoration on a fountain is of concentric circle 

repetition where the pattern is radially repeated (Figure 5.7).  

 

 

Figure 5.7 Rabat Mosque (Morocco) [25]. 

 

Deconstructing each feature, we can derive the common shape grammar rules, 

i.e. translation, rotation and scale in all three axes, 𝑥 -, 𝑦- and 𝑧 -axis. 

 

5.4 Proposed Framework: IGMBS continued  

 

5.4.1 Auto-Parameterized Shape Grammar (APSG) 

The APSG rules are applied to construct the 3D IGMBS. These structures are 

constructed from the motifs by manipulating them in a 3D space, generating a 

structural surface; flat or curved. These rules are auto-parameterized. This 

means that the parameters of the rules are calculated automatically according to 
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the user’s requirements. Again, the rules are based on Euclidean transformations 

including translation, rotation and scaling. In general, the more complex the 

structure the more rules are applied. 

 

5.4.2 Hierarchy of features 

The tree diagram (Figure 5.8) shows the relationship between the two grammars, 

and the hierarchy of each structure. The more rules applied, the more complex 

the structure. For a user to construct structures of a required size, specific 

algorithms are applied to model them. Each algorithm has a number of equations 

associated with it.  

 

5.5 Methodology 

 

The next section consists of the methodology that forms the wall, the column, the 

dome and the self-similarity star with given algorithms. 

 

5.5.1 The Wall 

As the shape grammar rules are designed to create n-fold geometry, with an IS 

of a regular polygon, both the square and hexagonal grids are used to tessellate 

the generated motifs in 3D space. The use of both grids allow a variety of 

structural designs of varying pattern complexity. For the square grid, a simple 

translation in the 𝑥- and 𝑦-axis is applied, multiplying the number of motifs 

translating horizontally and vertically by their width (𝑤1) and height (ℎ1).(vector 

equations ((5.5), (5.6)), respectively (Figure 5.9).  
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INITIAL SHAPE

PARAMETERIZED 
SHAPE GRAMMAR 
RULES

GENERATE A MOTIF

AUTO-
PARAMETERIZED 
SHAPE GRAMMAR 
RULES

TRANSLATIONAL 
RULE ONLY

TRANSLATIONAL & 
ROTATIONAL RULE 
ONLY

TRANSLATIONAL, 
ROTATIONAL & 
SCALE RULE ONLY

CREAT A SELF-
SIMILARITY STAR

CREATE A DOME

CREATE A COLUMN

CREATE A WALL

PSG 

APSG 

Figure 5.8 Hierarchy of Motif-Based Structures. 
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The motif is translated in the square grid horizontally, 𝑆𝑥, by vector equation (5.7) 

and vertically, 𝑆𝑦, by vector equation (5.7), (Figure 5.9).

 

 

 𝑆𝑥 = (𝑛𝑥(𝑤1, 0)), (5.5) 

 𝑆𝑦 = (𝑛𝑦(0, ℎ1)), (5.6) 

 

where 𝑛𝑥 and 𝑛𝑦 denote the number of motifs used to tessellate in the 𝑥 - and 𝑦-

axis respectively. 

 

Figure 5.9 Translation in the square grid.

The hexagonal grid is however slightly complex. The hexagons are positioned in 

a staggered fashion, creating a diagonal line as shown in Figure 5.10 (right).  The 

tessellation creates no gaps generating a periodic pattern as the hexagon is one 

of the fundamental shapes. For a motif to tessellate in the hexagonal grid, the 

offset translation is applied by vector equation (5.8) for the vertical translation in 
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the 𝑦-axis with the following coordinates where 𝑥 =
𝑤2

2
  and 𝑦 = (𝑓 + 𝑑). The 

shape parameters are defined as (Figure 5.10 (right)): 

 

- ℎ2 is the height of the hexagon 

- 𝑤2 is the width of the hexagon 

- 𝑓 is the length of the side of the hexagon = ½ (ℎ2) 

- 𝑑 is the height difference from the length = ½ (ℎ2 − 𝑓) 

 

The motif is translated horizontally by vector equation (5.7). 

 

 𝑇𝑥 = (𝑤2(𝑛𝑥, 0)), (5.7) 

 𝑇𝑦 = (𝑥(−1)𝑛𝑦 , 𝑦), (5.8) 

 

 

Figure 5.10 (Left) Parameters of the hexagon (Right) Hexagonal grid. 
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Figure 5.11 Translating the motifs to tessellate periodically in a hexagonal grid, 
creating a wall. 

 

5.5.2 The Column 

The column is of cylindrical shape, hence the structure has depth as well as 

height and width. Again, there is a difference in creating a square and hexagonal 

grid to form the column shape but the underlying principles are the same. Like 

the wall, the motif is tessellated vertically for the square grid, with the fixed 

translation, vector equation (5.6), but it is also translated in the 𝑧 -axis, equation 

(5.9). This forms the radius of the column which is calculated from the equation 

of the circumference of a circle, 

 

 𝑟𝑐 = 𝑤𝑖(𝑛𝑥)/2. (5.9) 

 

To create the curvature of the column a rotational angle is applied to the stack of 

vertical motifs. This is calculated by dividing 360⁰ by the number of motifs 
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translated horizontally (equation (5.10)). The stack is then rotated and duplicated 

accordingly (Figure 5.13 (left)), 

 

 𝜃 = 360/𝑛𝑥. (5.10) 

 

To create the hexagonal grid, the initial steps are the same, taking the height of 

the motif as the calculated coordinate 𝑦. However, to follow the periodic 

tessellation of the motifs to tessellate in the hexagonal grid, another rotational 

rule is applied for the motifs to tessellate offset vertically, where the rotation is 

half of 𝜃, 𝜇 (equation (5.11)), 

 

 𝜇 = 180/𝑛𝑥. (5.11) 

 

This creates a spiral of 𝑛𝑦 motifs tessellated vertically offset, which are then 

combined and duplicated 𝑛𝑥 times to tessellate horizontally (Figure 5.13, right). 

 

The algorithm to create the column is: 

1) Translate the motif in the 𝑧-axis; this creates the radius of the column. 

2) Translate and duplicate the motif in the 𝑦-axis, to tessellate the motifs 

vertically. 

i) Rotate in the 𝑦-axis from the centre, for the motifs to tessellate the 

offset (hexagonal grid). 

3) Combine, duplicate and rotate in the 𝑦-axis from the centre to form the 

complete column. 
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Figure 5.12 Translation and rotation of the motifs to tessellate periodically to 
construct a column. 

 

 

Figure 5.13 (Left) Square grid (Right) Hexagonal grid applied to form the column 
struture. 
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5.5.3 The Dome 

There are various types of domes constructed in Islamic Architecture. In this 

research the construction of a simple dome, a hemisphere, will be analyzed. This 

will generate a foundational algorithm which can be varied in the future to 

construct different styles of domes.  

 

The special characteristic of a dome that is adorned by IGP is the central star that 

is generated at its apex (Figure 5.6). This is a key aspect that is applied in this 

algorithm. The approach taken to construct the dome is different to the wall and 

the column. The wall and the column had a linear progression horizontally and 

vertically, whereas the dome varies from the top to the bottom. To generate the 

algorithm for the dome two methods were approached, firstly the packing of 

space and secondly proportionally scaling to fill space. The packing of space 

required the use of additional generated motifs to fill in the gaps, as seen in Figure 

5.14 (left), whereas the proportional scaling method, scales the motifs to fill in the 

gaps Figure 5.14 (right). For the purpose of using the same number of motifs, the 

latter method was adopted. Proportionally scaling the motifs will in theory create 

self-similarity, which is a feature in IGP. 

 

Figure 5.14  (Top) Packing of space method (Bottom) Proportionally scaling method. 
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Using the design of the apex star of the dome as an initial starting point, translate, 

rotate and scale transformations can be applied to the motifs. The motifs however 

tessellate from a single radial point (centre (0, 0, 0)), to create periodicity. This 

generates radial symmetry within the structure. The algorithm for the dome 

structure uses a number of radii, all of which are calculated using the equation of 

the circumference. Figure 5.15 refers to the algorithm described below.   

 

The algorithm to construct a dome is initiated with the radius of the initial star, 𝑟𝑠, 

that is generated at the apex of the dome, 

 

 𝑟𝑠 = 𝑤𝑛𝑠/2𝜋, (5.12) 

 

where 𝑛𝑠 is associated with the number of star-points of the initial star, i.e. the 

number of motifs to create the star at the apex of the dome and 𝑤 is the width of 

the motif. This applies to both the square and hexagonal grid. The scale factor to 

proportionally scale the motif, in the 𝑥- and 𝑧-axis, is calculated using the following 

equation, 

 

 𝑠 = 𝜋(2𝑟𝑠 + 𝑦)/𝑤𝑛𝑠 − 𝑦𝜋, (5.13) 

 

where 𝑦 is the height of the motif that was calculated previously for the 

construction of the wall and the column.  
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Figure 5.15 (Centre) The structure of the dome. (Outside) Flowchart to construct a dome in the hexagonal grid.
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As the motifs are rotated and scaled 90° from the top to the bottom, this portion 

of the dome only covers a quarter of the complete sphere, hence the ratio of the 

number of levels, 𝐿, in a dome in relation with the number of star-points, 𝑛𝑠, is 

1:4. This gives the equation, 

 

 𝐿 =  𝑛𝑠/4. (5.14) 

 

The motif is translated in the 𝑦-axis to the top of the dome, i.e. by a distance 

equivalent to the radius of the dome (Figure 5.15, yellow arrow), 𝑟𝐷 , which is the 

same as the radius of circle of motifs generated at the bottom level of the dome, 

hence, 

 

 
𝑟𝐷 = (

𝑛𝑤

2𝜋
) 𝑠𝐿−1. (5.15) 

 

Lastly, the initial angle,𝛼 (Figure 5.15, green arrow), of the first motif is calculated 

by the cosine rule, 

 
cos(𝛼) =

2𝑟𝐷
2 − 𝑟𝑠

2

2𝑟𝐷
2 , (5.16) 

 

which is rotated about the 𝑥-axis. The scale factor is multiplied with the angle, 𝛼, 

to generate proportionally scaled motifs as it is rotated from the top to the bottom 

of the dome (Figure 5.15, purple arrow). With the rotation in the 𝑥-axis, which 
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forms the curvature of the dome, 𝜇 (Figure 5.15, yellow arrow), which was 

calculated previously for the column, is again applied in the 𝑦-axis, to create the 

offset position in the hexagonal grid for the motifs to form the dome. This would 

fit the motifs in proportion to each other. To complete the dome, the last rule of 

rotation, 𝜃 (Figure 5.15, brown arrow), described previously is applied. This 

algorithm creates a similar spiral to the column but the motifs are scaled to 

proportion and rotated away from the centre to form the complete dome for the 

hexagonal grid. 

 

The algorithm to create the dome is: 

 

1) Rotate 90⁰ (motif faces the top view) 

2) Translate in the 𝑦-axis to form the radius 

3) Rotate in the 𝑥-axis with the initial angle from the centre. 

4) Scale, rotate and duplicate to form a curved edge of the dome. 

i) Additional rotation in 𝑦-axis to form offset (hexagonal grid). 

5) Combine, duplicate and rotate in the 𝑦-axis from the centre to form the 

complete dome. 

 

The flowchart shown in Figure 5.15, describes the steps taken to construct a 

dome in the hexagonal grid, where 𝑁 and 𝑀 calculate the motifs tessellating 

vertically and horizontally, respectively. 
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5.5.4 Self-Similarity Star 

Self-similarity is a key characteristic in IGP. It generates the same shape by 

enlarging or shrinking it proportionally. The self-similarity star which is generated 

uses a similar algorithm to the dome. It scales the motifs to show the self-similar 

characteristic, using the equation of 𝑠, as described for the dome, but it scales in 

the 𝑥- and 𝑦-axis. The radius, 𝑟𝑠 is taken as the radius of the inner star. Also, 𝜃 

and 𝜇 (described previously) are the rotations used to create the star and offset 

position of the motifs for the hexagonal grid, respectively. However both rotations 

are rotated about the 𝑧-axis, as shown in Figure 5.16. 

 

The algorithm to create the self-similarity star is: 

1) Translate in the 𝑦-axis to form the radius of the inner star. 

2) Scale and duplicate to form a strand of motifs. 

i) Additional rotation in 𝑧-axis to form offset position (hexagonal grid). 

3) Combine, duplicate and rotate in the 𝑧-axis from the centre to form the 

complete star. 
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Figure 5.16 Transformations to construct self-similarity star in hexagonal grid. 
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5.6 Implementation 

 

Using the generated motifs and applying them to the construction algorithms of 

their structures, one can construct motif-based structures. Figure 5.17 shows the 

GUI of forming 3D IGMBS.  

 

Figure 5.17 GUI to construct motif based structures.  
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Figure 5.19Figure 5.30, illustrates how the four structural algorithms are applied 

to a 3D generated motif to create the structures. Each structure has been 

rendered in three different views, either front, back, top, bottom or perspective.  

Figure 5.19Figure 5.21 shows the renders of a wall in front, perspective and back 

views respectively. The wall structure is formed from a hexagonal motif and the 

tessellation is done in a hexagonal grid. The same motif (Figure 5.18) has been 

applied to form each of the other three architectural structures, the column (Figure 

5.22Figure 5.24), the dome (Figure 5.25Figure 5.27) and the self-similarity star 

(Figure 5.28Figure 5.30). Figure 5.22Figure 5.30 also shows the analytical view 

through zoomed areas of the renders. This will be explained in the Section 5.7.  

 

 

Figure 5.18 The 3D motif applied to form all the architectural structures (Left) Front 
view render. (Right) Perspective view render.  
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Figure 5.19 Front view render of the wall. 
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Figure 5.20 Perspective view render of the wall. 
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Figure 5.21 Back view render of the wall. 
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Figure 5.22 Front View renders of 3, 4,5 and 6 motif point columns. 
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Figure 5.23 Perspective view renders of 3, 4,5 and 6 motif point columns. 
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Figure 5.24 Top View renders of 3, 4,5 and 6 motif point columns. 



 

 
 

1
1

9
 

 

Figure 5.25 (Left) Top view render of the dome. (Right) Enlarged analysis image. 
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Figure 5.26 (Left) Perspective  view render of the dome. (Right) Enlarged analysis image. 
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Figure 5.27 (Left) Bottom  view render of the dome. (Right) Enlarged analysis image. 
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Figure 5.28 (Left) Front view render of the star. (Right) Enlarged analysis image. 
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Figure 5.29 (Left) Perspective  view render of the star. (Right) Enlarged analysis image. 
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Figure 5.30 (Left) Back  view render of the star. (Right) Enlarged analysis image.
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5.7 Analysis 

 

Previous methods that implemented shape grammar to form architectural 

building or ground plans, all methods worked in 2D space, with translation as their 

main transformation. The results shown in the previous section it can be seen 

that shape grammar can be used as a mapping method, and can form 3D 

surfaces without the use of underlying grids or surfaces. The methodology 

applied allows one to form four different structures, with two styles of grid 

mappings, either in the square grid or the hexagonal grid.  

 

Although shape grammar has been seen as a mapping technique, the rules that 

are permitted within the grammar do not adhere with the definition of a 

tessellation. For a surface to be tessellated, the tessellation cannot form any gaps 

or overlaps. Figures 5.22-5.24 shows the renders of a column in the front, 

perspective and top views respectively. The algorithm to form the column was 

initiated by using the smallest number of motifs, 3, that would form a complete 

closed polygonal shape, i.e a triangle. However in each of the three different 

views, one can see huge gaps between each motif (red arrows). The figures also 

show renders of columns formed of 4, 5 and 6 motifs (the circumference of the 

column). The column formed of 6 motifs is the closest to forming a complete 

column as each of the other renders formed massive gaps between each other, 

lessening as the motif number increased. However the column formed of 6 motifs 

still has gaps as the edges do not join completely, forming rigid polygonal 

columns rather than a smooth curved column, as seen in the top view (Figure 

5.23).  
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The dome renders, Figures 5.25-5.27, shows renders in top, perspective and the 

bottom view respectively. The smallest number of motifs that can be applied to 

form a dome is 12, which creates a three layer dome by the formed dome 

algorithm. However by enlarging parts of the complete structural renders, 

alongside gaps between motifs (circled in yellow), the algorithm also forms 

overlaps (circled in red). The gaps and overlaps can be seen in each of the 

different view renders of the dome. Also as the motif increases in size within each 

layer by the scale factor, the dome formed isn’t a complete smooth curved 

structure.  

 

Finally Figures 5.28-5.30 shows the renders of the self-similarity star in the front, 

perspective and back views respectively. A larger number of motifs was applied 

to form the star structure to see if there was any difference in the number of motifs 

used. This structure is formed of 20 motifs (circumference) with 4 layers. Although 

the tessellation is more dense and concise, the gaps and overlaps are lessened 

however they are still formed within the structure as highlighted within the red and 

yellow circles.  

 

In the four architectural structures it was seen that the curved surfaces, the 

column resulted in gaps and the dome and the self-similarity star, formed both 

gaps and overlaps. The algorithm to form these curved structures is created of 

rigid transformations, hence the artefacts. The other limitation of this grammar is 

that it only forms four specific features, hence it is not generalized.  
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5.8 Summary 

 

To overcome the gaps and or overlaps with the shape grammar rules within the 

Cartesian and hexagonal grid, the grammar needs to be extended by integrating 

mapping and transformation methods.  To do this a more generalized mapping 

grammar will be formed that will be adapted within the current APSG. In the next 

chapter, a Point Set Registration (PSR) technique, which will create an accurate 

transformation and a mapping method that will map the 3D IGM in the correct 

position will be integrated in the APSG. A theoretical background of the different 

PSR methods will be described with a detailed description of the chosen method, 

Coherent Point Drift (CPD). The integration of the two techniques of mapping and 

transformation will be discussed in the methodology that will form the Volumetric 

Shell Shape Grammar (VSSM). 
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6. Mapping on Point Clouds 

 

“Pure mathematics is, in its way, the poetry of logical ideas.”6 

 

6.1 Introduction 

 

In the previous chapter shape grammar was applied to form architectural 

structures. However, it was seen that the method only allowed rigid 

transformations which were defined by the shape grammar rules.  This created 

gaps or overlaps between the motifs when they were tessellated on curved 

surfaces like the dome.  From researching the different methods on mapping 

volumetric textures in chapter 3, shell mapping was seen to be the most efficient 

in applying geometry within a shell space. Finding the optimal transformation in 

a mapping technique is however the important aspect. As the mapping of motifs 

is not applied onto any given surface, but formed within the mapping itself, the 

underlying grid to work best on was point clouds formed of parametric equations. 

One technique that maps a point set to another is Point Set registration (PSR).  

 

PSR is usually applied to large point cloud data, and data that inherits outliers. 

Having such data does make the mapping complex. However in the data required 

to map the motifs, the point clouds that have been formed do not include outliers. 

                                            
6 Albert Einstein. 
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In the following chapter, the PSR is described with different algorithms that have 

been implemented within it. The generalised algorithm for mapping 3D motifs will 

be discussed. A flowchart is initially provided, with detailed descriptions of each 

step following on from it. Firstly, the formation of the point cloud of data is 

described, including the process of how the data has been obtained and why it is 

accurate to use. Following on, the formation of the volumetric texture is 

discussed. Later, the method of Coherent Point Drift (CPD) is described in detail. 

The chapter is concluded by a set of results produced from the mapping 

algorithm. 

 

6.2 Point Set Registration 

 

PSR is divided into two main categories, rigid and non-rigid, depending on the 

transformation. Rigid transformations, as previously stated, preserve all the 

distances of the given object. Rigid transformations include translation, rotation, 

scale or a combination of all three. Deformations such as bending or non-linear 

scaling is what causes non-rigidity within an object, it mainly consists of 

transformations applied on curves. The simplest non-rigid transformation is 

affine.  

 

Many algorithms exists for both rigid and non-rigid PSR. Methods like Iterative 

Closest Point (ICP) are applied to calculate rigid transformations [93].  ICP is a 

technique that iteratively defines the correspondences between points that are 

close to each other, providing a least-square rigid transformation. The method 
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continues until it reaches its optimal transformation. However, the limitation within 

ICP is that the point sets should be close to each other.  

 

With this limitation within ICP, methods developed by [94], [95] propose to 

overcome it by probabilistic techniques. One popular method is the Robust Point 

Matching (RPM) algorithm that was initialised by [96]. RPM applies soft 

assignment of correspondences between the two point sets allowing global to 

local search. However, this method is improved on by [97] relating the RPM 

method to the Expectation Maximisation (EM) algorithm for mixture models. This 

is formulated through calculating the centroids of mixture models. A probabilistic 

method similar to this is known as the Coherent Point Drift (CPD).  

 

6.2.1 Coherent Point Drift 

Coherent Point Drift (CPD) allows both rigid and non-rigid point registrations. It is 

formed through the Motion Coherence Theorem which allows the points to move 

coherently to the target. CPD is a probabilistic technique that is taken as an 

assumption of a Maximum Likelihood (ML) approximation problem. With two 

given point sets, one set is defined by the Gaussian Mixture Model (GMM) 

centroids that are placed onto the second set by maximising the likelihood. This 

is iteratively calculated until the posterior GMM probability reaches its optimum 

level. The centroids flow in a coherent fashion as a whole set of points to preserve 

the topological structure of the set of points. CPD has the advantage of 

approximating non-rigid transformations within highly complex point sets that 

include both outliers and randomly placed points. 
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With two given point sets: 

 

𝑋𝑁×𝐷 (The reference point set or the target set) in a matrix form where 𝑁 is the 

number of points in the set 𝑋 and 𝐷 represents the dimension of the point.   

𝑌𝑀×𝐷 (The template point set or source set), where 𝑀 is the number of points in 

the set 𝑌 these points are considered as centroids of GMM.  

 

The GMM Probability Density Function (PDF) is defined as, 

 

 
𝑝(𝑥) =  ∑ 𝑃(𝑚)𝑝(𝑥|𝑚)

𝑀+1

𝑚=1

, 
(6.1) 

 

where 𝑃(𝑚) = 1/𝑀 for 𝑚 𝜖 {1, … , 𝑀} and, 

 

 𝑝(𝑥|𝑚) =
1

(2𝜋𝜎2)𝐷/2 𝑒(∥𝑥−𝑦𝑛∥)/2𝜎2
. (6.2) 

 

The maximum value of the mixture model is calculated through the GMM centroid 

location, 𝜃, which is the equivalent to minimizing the log function 𝐸, 

 

 𝐸(𝜃, 𝜎2) = − ∑ 𝑙𝑜𝑔𝑁
𝑛=1  ∑ 𝑃(𝑚)𝑝(𝑥|𝑚)𝑀+1

𝑚=1 . (6.3) 
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The Expectation Maximization (EM) is then applied to calculate the optimal 

transformation, 𝜏, through iterations. Every iteration improves the objective 

function 𝑄 that was previously calculated, 

 

𝑄(𝜃, 𝜎2) =
1

2𝜎2  ∑ ∑ 𝑝𝑝𝑟𝑒𝑣 (𝑚|𝑥𝑛) ∥ 𝑥𝑛 − 𝜏(𝑦𝑚, 𝜃) ∥2+
𝑁𝑝𝐷

2
log (𝜎2)𝑀+1

𝑚=1
𝑁
𝑛=1 . (6.4) 

 

For non-rigid registration the transformation is represented by the velocity 

function 𝑣 where 𝜏(𝑌, 𝑣) = 𝑌 + 𝑣(𝑌). Equation (6.10) is minimized by function 𝑣: 

 
𝑣(𝑧) =  ∑ 𝑤𝑚𝐺(𝑧 − 𝑦𝑚

𝑀

𝑚=1

), 
(6.5) 

 

where 𝐺 is the Gaussian kernel and 𝑤𝑚 =  ∑ 𝑝𝑝𝑟𝑒𝑣(𝑚|𝑥𝑛)(𝑥𝑛 − (𝑦𝑚 +𝑁
𝑛,𝑚=1

𝑣(𝑦𝑚))). The value of 𝜎2 is recalculated before the completion of the EM step by 

adding the derivative of 𝑄 with the new transformation 𝜏 of 𝑦𝑚 to zero, 

 

 

𝜎2 =
1

𝑁𝑃𝐷
∑ ∥ 𝑥𝑛 − 𝜏(𝑦, 𝑊) ∥2

𝑀,𝑁

𝑚,𝑛=1

, 
(6.6) 

 

where 𝑊 is the 𝑀 × 𝐷 matrix of the coefficients. Figure 6.1 shows how one point 

set (blue point set) is registered onto the target (red) point set. 
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Figure 6.1 CPD, the blue point set are being registered to red point set. 

 

The next section explains how CPD is implemented into the PSG, to form a shape 

grammar mapping technique.  

 

6.3  Proposed Framework: Volumetric Shell Shape Grammar 

(VSSG) 

 

The Volumetric Shall Mapping (VSM) algorithm is formed of four crucial steps. 

1. Texture space  

2. Volumetric Texture  

3. Transformation 

4. Map 

 

 In the next section each of the four steps will be described in detail. Figure 6.1 

shows the VSSG algorithm in a flowchart.  
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Figure 6.2 Flowchart for mapping onto point clouds. 

1. The motif is formed in Autodesk Maya 

through the python code (Section 4.4.1). 

2. The lattice is predefined within Maya, 

however the control points/lattice points are 

formed in Python, Maya (Section 6.4.1). 

3. The lattice points are stored from Maya 

(Section 6.4.1). 

4. Point cloud is formed by parametric 

equations in Maya Python (Sections 6.4.2-

6.4.3). 

5. Rigid coherent point 

drift transformation 

mapping calculated in 

Matlab. (Section 6.4.4). 

6. Mapping of motif to 

given point cloud in 

Maya. (Section 6.4.4). 
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6.4 Methodology 

 

6.4.1 Volumetric Texture 

For the motif to map, the ideal way to store the motif is as a volumetric texture. 

This is done through the use of a lattice deformer. A deformer manipulates a set 

of vertices and forms new vertex positions for the same exact vertex. A deformer 

is usually in the form of a vector-valued function 𝑓(𝑥, 𝑦, 𝑧) where the function 𝑓 is 

formed with the combination of three scalar component functions, 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧, 

 

 𝑓(𝑥, 𝑦, 𝑧) =  (𝑓𝑥(𝑥, 𝑦, 𝑧), 𝑓𝑦(𝑥, 𝑦, 𝑧), 𝑓𝑧(𝑥, 𝑦, 𝑧)). 

 

(6.7) 

Translation deformers are the simplest forms of deformers as it creates a new 

translated vertex coordinate from the original vertex, 

 

 (𝑓𝑥, 𝑓𝑦, 𝑓𝑧)  =  (𝑥, 𝑦 + 2, 𝑧). 

 

(6.8) 

Many CG software applications, including Autodesk Maya, contain different types 

of deformers that are already embedded in the software. With the variety of 

deformers in Maya, the best deformer to use for the purpose of mapping motifs 

was the lattice deformer. As many of the deformers are controlled by user-defined 

parameters, the lattice deformer has lattice control points that can be controlled. 

The structure of the lattice is formed of points in a cage like structure. As the 

motifs are of a mesostructure scale, the lattice deformer is efficient to return a 
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distinguishable Level of detail (LOD) of the motif after it has been mapped or in 

this case deformed to the correct positions.  

 

Following on from the previous chapter, both the square and hexagonal tiling 

systems will be applied, hence lattices of both shapes are formed. The square 

and hexagonal lattices are both written in Maya python as the lattice deformer is 

included in the Maya software. Figure 6.3 shows how both the lattices enclose 

the same motif; the red points represent the lattice control points. 

 

 

Figure 6.3 Lattice for (Left) Square grid mapping (Right) Hexagonal grid mapping. 

 

6.4.2 Texture Space formation 

The point cloud is formed of architectural structures that were defined in the 

previous chapter. The structures were previously formed by rigid transformations 

going through a certain algorithm step by step. In this chapter the structures will 

be created by analytical representations of the structural surfaces. The point 

clouds will be derived by implementing parametric equations of the surface. 
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Mathematical representation of a surface 

There are three ways a surface can represented mathematically, either implicitly, 

explicitly or through parametric equations. Implicit representation is in the form of 

𝑓(𝑥, 𝑦, 𝑧) = 𝐶, where 𝑥, 𝑦, 𝑧 are Cartesian coordinates and 𝐶 is any constant in 3D 

space, forming a function 𝑓.  For a function to represent a plane, the function 

must be linear in the form of 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. If the function is of order 2, 

which is a quadratic function, for example, 𝑥2 + 𝑦2 + 𝑧2 =  𝑟2, this represents a 

surface, the surface of a sphere in this case. One can easily test if a point lies 

inside, outside or on the surface by the following conditions: 

 

- 𝑓(𝑥, 𝑦, 𝑧) < 0 (inside the surface), 

- 𝑓(𝑥, 𝑦, 𝑧) = 0 (on the surface), 

- 𝑓(𝑥, 𝑦, 𝑧) > 0 (outside the surface). 

 

This gives the advantage of determining if a point is on the surface or not. 

 

Explicit functions are coordinate system dependent. An explicit surface 

representation is in the form of 𝑧 =  𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are both independent 

variables and  𝑧 a dependent variable. They are usually used to determine height 

fields as the function determines the 3rd dimension, 𝑧.  They cannot represent a 

full sphere, 𝑧 = √(𝑟2 − 𝑥2 − 𝑦2). Due to these implications explicit surface 

representations are rarely used in CG. 
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Parametric equations on the other hand cannot determine if a point is on a 

surface easily. However it does have the advantage of defining a set of control 

points by its parameters.  Parametric equations are the most common type of 

surface representation in CG. They can create complex geometries that are 

defined by a set of control points. They also have the advantage of easily 

manipulating a surface.  Parametric representation maps from a domain ℝ2 to 

range ℝ3, mapping two parameters 𝑢, 𝑣 to three functions in the general 3D form 

of, 

 

 

𝑓(𝑢, 𝑣) = (

𝑥(𝑢, 𝑣)
𝑦(𝑢, 𝑣)
𝑧(𝑢, 𝑣)

). 

 

(6.9) 

A polygonal surface can be formed by parametric equations as it approximates a 

surface efficiently and systematically generates the points.  As the inverse of the 

function, (𝑢, 𝑣) = 𝑓−1(𝑥), can be computed easily, parameters 𝑢 and 𝑣 can define 

an index of a texture map. Due to these advantages the structural surfaces will 

be represented parametrically in this research as the parametric surface points 

will act as point clouds. 

 

A given point cloud as described earlier are points that form a surface, they do 

not however create a volumetric shell of cloud points, which is the texture space 

for mapping the motifs in. One way to form a volumetric point cloud shell, for 

example imagine a hollow cylinder, would be to compute an interior and exterior 

surface of data points using parametric equations of the cylinder. However, this 
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will return a mathematically complex computation. A simpler yet effective method 

would be to duplicate and combine two parametric surfaces. To do this one can 

create a surface of the cylinder and extrude it in or out, from the origin (0,0),  to 

form the volumetric shell. Another method would be to create two solid cylinders, 

both with the same centres but with varying radii, forming concentric cylinders 

and then applying the Boolean operation of intersection, forming a hollow 

cylinder. Using the initial process of the latter method, a volumetric point cloud 

shell can be generated, by forming and combining two data sets with the same 

parametric representation but with varying radii. 

 

For example taking the parametric equations of a cylinder, one would compute 

the equations with radius, 𝑟1 (see Figure 6.4): 

 

𝑥 = 𝑟1𝑐𝑜𝑠(𝑥)

𝑦 = 𝑟1𝑠𝑖𝑛(𝑥)
𝑧 = ℎ

 

 

And a second set of parametric equations 

with a radius, 𝑟2 (see Figure 6.4): 

𝑥 = 𝑟2𝑐𝑜𝑠(𝑥)

𝑦 = 𝑟2𝑠𝑖𝑛(𝑥)
𝑧 = ℎ

 

 

 

Figure 6.4 Parametric representation of 
the two cylinders with radius of 3cm 

(cyan points) and radius of 3.5cm (purple 
points). 
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The difference between the two radii of the parametric representation of the 

cylinders is 5mm in this example, this is just enough texture space between the 

two point cloud surfaces to map the motifs in the individual volumetric blocks. 

However the difference is dimensionless and can be set by the user forming the 

parametric surface in this initial stage of the mapping. 

 

 

Figure 6.5 (Left) Parametric surface representation with volumetric shell (Right) 
Volumetric block of the texture space for mapping a motif. 

 

As there is a point cloud with data points representing a surface with a shell, the 

next step is to calculate the texture space, where each of the individual motifs will 

be mapped to.  

 

6.4.3 Grid formations 

As parametric equations by default map the points in a consecutive manner in 

the Cartesian grid, they automatically form the square shape boundary within the 

grid. Hence it is simple to form the quad texture space.  
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For the quad volumes, the volumes can be created by grouping the data points 

into groups of 8 points with 𝑥, 𝑦 and 𝑧 coordinates of the parametric equations. 

This would be 4 points from the 1st set of parametric equations of the surface and 

the rest of the points from the 2nd set. The procedure to form a square grid is, 

 

 𝑎 =  𝑖 + 𝑗(𝑛), 

𝑏 = 𝑖 + 𝑗(𝑛) + 1, 

𝑐 = 𝑖 + (𝑗 + 1)𝑛 + 1, 

𝑑 = 𝑖 + (𝑗 + 1)𝑛, 

 

 

(6.10) 

 

where 𝑖, 𝑗 = 0,1,2 … 𝑟, 𝑛 is the number of points and 𝑟 = 𝑛 − 1. Figure 6.6 shows 

an example of how the quad volumetric space is formed with equation 6.4, by 

grouping the points together. 

 

 

Figure 6.6 (Right) Quad volumetric space (left) enlarged.  

d 

a 
b 

c 

a’ b’ 

c’ d’ 
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The UV map of the cylinder is shown below, Figure 6.7. For any open surface, 

like a cylinder, where the surface is joined from only one side, an extra set of 

equations, equation 6.11, are calculated (indicated in purple), to join the surface.  

 

 

Figure 6.7 UV map of an open surface, cylinder.  

 

 

 𝑒 =  𝑗, 

𝑓 = 𝑛𝑟 + 𝑗, 

𝑔 = 𝑛𝑟 + 𝑗 + 1, 

ℎ = 𝑗 + 1. 

 

 

(6.11) 

 

As this research is on mapping and forming tessellations without gaps and 

overlaps, the Cartesian co-ordinate system will not be altered, hence the 

hexagonal grid will be created within the square grid. Altering a grid system is a 

case of remeshing a surface, which is a problem that can be dealt with in the 

future. So to form the hexagonal grid, the following set of equations are applied, 
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equation 6.6. Each hexagon is contained within a 2x3 (pointy top) or 3x2 (flat top) 

square grid.  

 

For the pointy top hexagonal grid, 

 

 
𝑎 = (

1

2
+

(−1)𝑗+1

2
) 𝑛 + 2𝑗 + (2𝑖 + 1)𝑛 

𝑏 = (
1

2
+

(−1)𝑗+1

2
) 𝑛 + (2𝑗 + 1) + (2𝑖 + 2)𝑛 

𝑐 = (
1

2
+

(−1)𝑗+1

2
) 𝑛 + (2𝑗 + 2) + (2𝑖 + 2)𝑛 

𝑑 = (
1

2
+

(−1)𝑗+1

2
) 𝑛 + (2𝑗 + 3) + (2𝑖 + 1)𝑛 

𝑒 = (
1

2
+

(−1)𝑗+1

2
) 𝑛 + (2𝑗 + 2) + (2𝑖)𝑛 

𝑓 = (
1

2
+

(−1)𝑗+1

2
) 𝑛 + (2𝑗 + 1) + (2𝑖)𝑛 

 

 

 

 

 

 

(6.12) 

 

where 𝑖, 𝑗 = 0,1,2 … 𝑠 and 𝑠 = (𝑛/2) − 1 
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Figure 6.8 An example of the pointy top hexagonal grid. 

 

For the flat top hexagonal grid, 

 

 
𝑎 = (

1

2
+

(−1)𝑗+1

2
) + (2𝑗)𝑛 + (2𝑖 + 1) 

𝑏 = (
1

2
+

(−1)𝑗+1

2
) + (2𝑗 + 1)𝑛 + (2𝑖 + 2) 

𝑐 = (
1

2
+

(−1)𝑗+1

2
) + (2𝑗 + 2)𝑛 + (2𝑖 + 2) 

𝑑 = (
1

2
+

(−1)𝑗+1

2
) + (2𝑗 + 3)𝑛 + (2𝑖 + 1) 

𝑒 = (
1

2
+

(−1)𝑗+1

2
) + (2𝑗 + 2)𝑛 + (2𝑖) 

𝑓 = (
1

2
+

(−1)𝑗+1

2
) + (2𝑗 + 1)𝑛 + (2𝑖) 

 

 

 

 

 

 

(6.13) 
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Hence, the point cloud data for either of the hexagonal grids is grouped with 12 

points.  

 

6.4.4 Mapping transformation 

With the lattice points defined and the volumetric index shell formed, it is now 

time to apply the PSR method. The transformation is the key component of 

mapping a 3D volume onto a volumetric point cloud. The data points in both 

source and target point clouds should correspond correctly ideally, forming a one-

to-one correspondence, for the motif to map without any deformation or distortion. 

This can be checked by the formation of the data set and how the points are 

aligned to each other. For example the 2 data sets data sets below, 

 

P1 = (0,0,0) P1’ = (2,2,0) 

P2 = (1,0,0)  P2’ = (3,2,0) 

P3 = (1,1,0) P3’ = (3,3,0) 

P4 = (0,1,0) P4’ = (2,3,0) 

P5 = (0,0,1) P5’ = (2,2,1) 

P6 = (1,0,1) P6’ = (3,2,1) 

P7 = (1,1,1) P7’ = (3,3,1) 

P8 = (0,1,1) P8’ = (2,3,1) 
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Mapping on Point Clouds 

This set corresponds correctly, with a smooth transformation of translation (2, 2, 

0) in the 𝑥- and 𝑦-axis. However the ideal situation will not always be as smooth. 

If the points are not ordered correctly, the motif will be distorted after the 

transformation will occur.  

 

Figure 6.9 gives an example of two data sets, the data points from the lattice 

deformer (left) that contains the motif and the data points of the volumetric texture 

space (right). The points are in the form of, 

 

Source (lattice) = [0, 1, 2, 3, 4, 5, 6, 7] 

Target (Volumetric Shell) = [1, 0, 2, 3, 4, 5, 7, 6] 

 

As it can be seen, points 2, 3, 4 and 5 correspond correctly, but points 0, 1, 6 and 

7 are not.  

 

 

Figure 6.9 Correspondence of points in (left) texture space (right) shell space. 
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Mapping on Point Clouds 

Hence to align the points, the CPD registration will be applied. CPD has both rigid 

and non-rigid point set registration algorithms. As the research is applying motifs 

through Euclidean transformations onto non-Euclidean surfaces, the rigid 

algorithm will be applied to register all the mapping transformations between the 

volumetric texture and shell space.  

 

To apply the algorithm the Matlab code that is produced by [97] is implemented. 

The CPD Matlab code will only register the points, the mapping will be formed in 

Maya with the transformation matrix, which then calculates the result from the 

code. The transformation matrix will be calculated result after the input of the two 

datasets X and Y.  

 

The next section describes the implementation of the VSSM algorithm, including 

both registration and mapping results.  

 

6.5 Implementation  

 

To Implement the VSSM algorithm the mapping occurs between the volumetric 

texture and the texture space. With the formation of the lattice deformer that 

encloses the 3D IGM and the parametric equations which creates the texture 

space, the corresponding data sets of the two spaces are exported from Maya 

and implemented into the Matlab code.  After running the code the following 

registration results were formed to show the accuracy of the technique.  
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Figure 6.10 Registration of motifs (a) before (b) after in a wall. 

 

Figure 6.11 Registration of motifs (a) before (b) after in a column. 
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Figure 6.12 Registration of (a) 8 motifs (b) 16 motifs (c) 24 motifs (d) 32 motifs in a dome. 
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Figure 6.13 Registration of (a) 8 motifs (b) 16 motifs (c) 24 motifs (d) 32 motifs in a self-similarity star. 
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Figure 6.14 Registration of (a) 8 motifs (b) 16 motifs (c) 24 motifs (d) 32 motifs in a column (hexagonal grid). 
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Figure 6.15 Registration of (a) 8 motifs (b) 16 motifs (c) 24 motifs (d) 32 motifs in a dome (hexagonal grid).
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Figures 6.10 - 6.13 shows the registration results of a single 3D motif that is 

mapped to form a wall, a column, a dome and self-similarity star respectively, 

within a square grid with a set number of motifs. Figure 6.10 (a) - 6.11 (a) 

illustrates the two datasets, X (blue points, target set) and Y (red points, source 

set) before registration for a wall and a column. Figures 6.10 (b) – 6.11 (b) shows 

the correspondence after the registration. Figures 6.12 – 6.13 are registrations   

of the dome and the self-similarity star. Each figure contains four graphs, where 

each graph corresponds to a registered data set applying mapping onto a surface 

created by (a) 8 motifs (b) 16 motifs (c) 24 motifs and (d) 32 motifs. The same 

registration technique is applied to motifs that are mapped onto the hexagonal 

grid as well.  Figures 6.14 – 6.15 show the registration of datasets of a motif 

mapped onto a column and a dome. Like previously each figure contains four 

graphs of whom correspond to the application of (a) 8 motifs (b) 16 motifs (c) 24 

motifs and (d) 32 motifs.  

 

Figures 6.16-6.19 shows the complete renders applying the VSSG method. 

Renders of perspective view of a column (Figures 6.16), dome (Figures 6.17) and 

the self-similarity star (Figures 6.19). To see the internal view of the dome, a 

bottom view render of the dome can be seen in Figures 6.18.  

 

 

 



 

154 
 

 

 

Figure 6.16 A perspective view VSSG render of a column. 
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Figure 6.17 A perspective view VSSG render of a dome. 

 

Figure 6.18 A bottom view VSSG render of a dome. 
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Figure 6.19 A perspective view VSSG render of a self-similarity star. 
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6.6 Analysis 

 

From the registration graphs and renders of the architectural structures, shown 

in the previous section, it can be seen that the use of Euclidean transformations 

on both flat and curved surfaces, has produced better results. Firstly, looking at 

the motifs mapping on a square grid, the wall and the column resulted in perfect 

registration correspondence. As in the previous chapter, to form these structures 

the application of translation and or rotation need to be applied. Going onto the 

curved surfaces like the dome and the self-similarity star shown in Figures 6.12 

– 6.13 the registration resulted with a difference. As the number of motifs applied 

to form the structure is a vital part in this research, the registration of the datasets 

between the two spaces was implemented by varying the use of the motifs, 

starting from 8 motifs and incrementing it with additional of 8 motifs.  

 

From the dome registrations it was seen that the registration was better by 

increasing the number of motifs. The reason for this can be due to the large 

polygonal spaces that the motif has to map to. In the dome the less motifs used 

caused larger spaces, creating a very rigid registration. As the dome is formed of 

incremental circular surfaces, the more motifs applied creates a more curved 

surface.  

 

However it was the opposite for the self-similarity star, but with a smaller 

difference. The motifs tessellate radially in the star, and as the motifs are packed 

compactly with a larger number of motifs hence the registration of datasets 

resulted in minor artefacts.  
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When the registration of datasets occurred between motifs mapping onto the 

hexagonal grid, the results varied from structure to structure. The 

correspondence of the wall resulted in a perfect registration, which was predicted 

as translation is the only transformation applied. The column however did not 

generate a perfect correspondence compared to the wall. Figure 6.15 shows that 

increasing the number of motifs produces better registration. As the shape of both 

the lattice deformer and the shell space is hexagonal, the correspondence is 

limited to only 12 data points. The lack of points could be a reason, as CPD 

produces optimal results on larger datasets.  

 

The dome on the other hand resulted in minor difference between the 

registrations of the datasets, but again the correspondence is optimal with larger 

number of motifs used to form the structure.  

 

The following figures, Figure 6.20Figure 6.27, shows the renders of the column, 

dome and the star. Each figures has a render of the structure in the two methods 

formed, APSG (in purple) and VSSG (in green), to see the comparison between 

the two. They also contain zoomed parts of each render to analyse the render. 

Figure 6.20Figure 6.22 shows the renders of the column in the front, perspective 

and top views respectively. Figure 6.23Figure 6.25 shows the renders of the 

dome in the top, perspective and bottom views respectively and finally Figure 

6.26-Figure 6.27 are the star renders in the front and perspective views 

respectively. 



 

 
 

1
5

9
 

 

 

Figure 6.20 Column renders (front view) of (Left) APSG (Right) VSSG. 

APSG Render VSSG Render
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Figure 6.21 Column renders (perspective view) of (Left) APSG (Right) VSSG. 

 

APSG Render VSSG Render
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Figure 6.22 Column renders (top view) of (Left) APSG (Right) VSSG. 

APSG Render VSSG Render
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Figure 6.23 Dome renders (top  view) of (Left) APSG (Right) VSSG. 

APSG Render VSSG Render
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Figure 6.24 Dome renders (perspective view) of (Left) APSG (Right) VSSG. 

APSG Render VSSG Render
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Figure 6.25 Dome renders (bottom  view) of (Left) APSG (Right) VSSG. 

APSG Render
VSSG Render
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Figure 6.26 Star renders (front  view) of (Left) APSG (Right) VSSG. 

 

APSG Render VSSG Render
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Figure 6.27 Star renders (perspective  view) of (Left) APSG (Right) VSSG.

APSG Render VSSG Render
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Looking at the renders in Figure 6.20Figure 6.27, firstly it can be seen that 

integrating the CPD and shell mapping has produced efficient results, as the gaps 

and overlaps have reduced vastly. The mapping of the motifs has resulted with a 

smooth mapping on a curved surface. The artefacts have only occurred by the 

use of the number of motifs. The limitation here is the amount of data points 

applied for the registration.  

 

6.7 Application on Surfaces 

 

This section describes how one can extend the VSSM algorithm to map the motifs 

onto any given 3D surface. It only provides a methodology of how it can be 

adapted. 

 

The VSSM algorithm has been applied to form a wall, a column, a dome and the 

self-similarity star from point clouds. However by extending the algorithm it can 

be applicable for a given surface. With the provided 3D surface in form of 

polygons, applying the geometric technique of extrusion within the shell mapping 

method, the motifs can be mapped onto the surface.  

 

The algorithm is extended in the initial stage of the texture space as shown in the 

flowchart in Figure 6.7. For a surface, to create the texture space data set the 

surface is separated into individual polygons and each polygonal face is extruded 

out to form the texture space. As the texture space is formed, the coordinates of 

each point of the texture space is taken as the registration points.  
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Figure 6.28 Flowchart for mapping onto  given surface. 
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Collecting all the data points from the texture space, the surface can then be 

removed. The data points collected will form as an invisible point cloud and the 

process of mapping the motifs can be applied as normal. 

 

6.8 Summary 

 

This chapter has described the technique of integrating geometric modelling and 

registration methods into shape grammar, and has produced an efficient 3D 

mapping technique.  
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7. Conclusion and Future Works 

 

“Education is the most powerful weapon which you can use to 

change the world.”7 

 

The aim of this research was to find an efficient 3D mapping technique to map 

3D IGM onto any given surface with the use of Euclidean transformations, 

overcoming the problem of gap formations and overlaps. Furthermore, the 

method should be twofold, a) create a 3D IGM and b) apply as a mapping 

technique. From reviewing the construction methods of IGP, both traditional and 

computerized, it was seen that the shape grammar method had been applied 

previously to generate IGP. However, the implementations exhibited limitations 

such as producing a base (to tile) or only allowing a limited range of patterns to 

be generated. Additionally, it only produced 2D patterns.  

 

The shape grammar method has many advantages: 

 

- It can be parameterized, parameters which allow flexibility in forming 

shapes or patterns. 

- It is not restricted to a given dimension, can be 1D, 2D or 3D.  

                                            
7 Nelson Mandela. 
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- Results are shown as the grammar is producing the patterns and therefore 

the formation of the pattern can be visualised at every step. 

 

Hence, due to these advantages, the shape grammar technique was applied 

throughout this research from generating the 3D IGM to mapping techniques. To 

clarify, one can see the steps of the grammar producing the 3D motifs be running 

the python code in individual steps as shown in section 4.4.1. 

 

The 3D IGM are produced by the PSG, allowing parameterization of the rules 

within the shape grammar, including Euclidean transformations and emergence 

rules. The rules were parameterized to create variations within the formation of 

the motifs. As mentioned previously, the unique feature of IGP is how symmetry 

plays a huge role; this provides the advantage of applying Euclidean 

transformations to form an IGM. The emergence rules are applied within the 

grammar, during the process of generating the patterns, hence both sets of rules 

coincide with each other. Previous methods that implemented shape grammar 

formed 2D IGP. Adding an extra dimension to the initial shape by extruding the 

front faces of the polygonal shape at a given angel, which is the initial pattern 

formation step, produced 3D IGM with a carved effect, eliminating the shape to 

look like a visualized extruded block. The PSG is an efficient grammar as it can 

produce more than 50 3D IGM of different categories from 4-6 fold 3D IGM. This 

is attributed to the changing of the initial shape, a method which has not been 

adopted previously. 
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IGP are adorned on architectural structures in a repetitive manner, with self-

similarity; methods to generate such structures were analysed. A number of 

algorithms were formed to create simple structures like a wall, column, dome and 

a self-similarity star, using the shape grammar approach. The automated 

parameterized shape grammar (APSG) forms architectural structures by 

manipulating and mapping 3D IGM. The algorithm to form each structure was 

applied through the use of Euclidean transformations, initiating from translation 

and adding rotation and scale step by step. As the wall is a flat surface, the motifs 

translated in either the 𝑥- or 𝑦-axis. Adding the rotation with the translation formed 

the column, and finally the dome, which is a combination of translation, rotation 

and scale. An algorithm for a self-similarity star was also created, as tessellating 

motifs radially is a traditional characteristic in IGP. The APSG has shown that the 

shape grammar can also be applied as a mapping technique in 3D and not just 

for forming patterns in a restrictive manner. 

 

The results showed how the APSG formed gaps and overlaps after generating 

curved structures like the dome. To improve upon this, geometric modelling and 

point registration methods were integrated into the shape grammar. The 

geometric modelling technique of shell mapping, enabled the formation of a shell 

space that can correspond with the texture space. This correspondence forms a 

direct transformation between the two spaces hence allowing a motif to be 

mapped into its correct position. The integration of CPD, a PSR technique, 

facilitated the application of the transformation matrix to the texture space. 

Working with only Euclidean transformations, the rigid CPD was applied to 

register the points between the two spaces. The VSSG, which is formed of the 
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two integrated methods with shape grammar, produced efficient results through 

forming a curved structural surface, with very little gaps or overlaps.  

 

7.1 Limitations 

 

Although the grammars PSG, APSG and VSSG successfully generate motifs and 

motif based-structures, there are however some limitations.  

Limitation 1 

In generating the 3D motifs, a user is limited to creating a complete built motif as 

it is built motif from the GUI provided as it is built from the code produced in 

chapter 4. This allows one to visualize the generated result. However as 

mentioned previously, running the individual lines of the python code, one can 

see the pattern generation step by step. To overcome this limitation forming a 

GUI that will allow a user to visualize the steps taken to create an IGM, will show 

the simplicity behind forming complex islamic patterns. 

Limitation 2 

As the research was on forming individual 3D motifs and overcoming the problem 

of ‘overlaps’ when tessellating them on curved surfaces. There are however many 

IGP that are formed of motifs that are actually overlapped at a given distance. 

Overlapping motifs is a special feature in IGP as it forms motifs that cannot be 

distinguished at first glance, creating an illusion for the viewer. As the research 

applied the mathematical tessellation rule of ‘no gaps’ or overlaps, the 

overlapping of the motifs was not considered. The overlapping at a given distance 

of translation, rotation or scale, can add an extra complexity within a generated 
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3D IGM, resulting in a larger variety of tessellations on the given surface. Hence 

this limitation limits in the amount of tessellated patterns formed. Figure 7.1 

shows a few examples of how the individual motif (in purple) is overlapped to 

form the pattern.  

 

 

Figure 7.1 Overlapping of motifs. 

 

 

Limitation 3 

Although VSSM produced efficient mapping results, it still formed a few artefacts 

from the use of lower number of motifs on curved surfaces. For example from the 

registration results of the motifs in Figure. 6.2 (a) for an 8x8 square grid 

tessellation there was a larger gap in registering the point sets. The registration 

of the points was very rigid compared to a higher number of tessellated motifs. If 

the number of data points were increased, on both the lattice that encloses the 
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motif and the provided point cloud, it may have given better results due to the 

flexibility and less rigidity.  

 

7.2 Future Work 

 

Although the results presented have demonstrated the effectiveness of the 

integration of geometric modelling and registration techniques into shape 

grammar, the research can be further developed by improving the existing 

research methodology and generating an improved 3D generalized procedural 

mapping technique. The research methodology can be enhanced in the following 

ways: 

- To generate a methodology which would allow constructing a structure 

formed by more than one 3D motif. The beauty of Islamic geometric 

patterns is the complex interwoven patterns of a number of different motifs, 

where the interlocking of each motif is a visual illusion for the viewer.  

- Creating extended patterns that do not restrict one to forming a central 3D 

motif. 

- To allow one to map in a variety of polygonal grids, without the restriction 

of only the square and hexagonal grid. 

- Expand the mapping to other types of genric geometric patterns, to form 

generalized mapping for any type of pattern.  

 

Nonetheless , this research has taken full advantage of the shape grammar 

technique by forming grammars to generate both motifs and architectural 
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structures. Thereby, producing a large variety of 3D IGM and a generalized 

mapping technique that can also be applied onto any given surface to map 3D 

IGM.  
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Appendix A – Timeline of the Dynasties 
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Appendix B – Template Covered by 3 

Groups of Covering Tiles (Derivative). 
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Appendix C – Shape Grammar 

Implementation  
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