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Abstract 

Tool use leads to plastic changes in sensorimotor body representations underlying tactile 

perception. The neural correlates of this tool-induced plasticity in humans have not been ad-

equately characterized. The present study used event-related brain potentials to investigate 

the stage of sensory processing modulated by tool use. Somatosensory evoked potentials, 

elicited by median nerve stimulation, were recorded before and after two forms of object-

interaction: tool use and hand use. Compared to baseline, tool use—but not use of the hand 

alone—modulated the amplitude of the P100. The P100 is a mid-latency component that in-

dexes the construction of multisensory models of the body and has generators in secondary 

somatosensory and posterior parietal cortices. These results mark one of the first demon-

strations of the neural correlates of tool-induced plasticity in humans and suggest that tool 

use modulates relatively late stages of somatosensory processing outside of primary soma-

tosensory cortex. This finding is consistent with what has been observed in tool-trained 

monkeys and suggests that the mechanisms underlying tool-induced plasticity have been 

preserved across primate evolution. 

Keywords: body representation, electroencephalography, embodiment, event-related poten-

tials, touch  
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The primate sensorimotor system is highly sensitive to how the body is used to act on the 

world (Buonomano and Merzenich 1998). For example, body representations in primary so-

matosensory (SI) and motor (MI) cortices are shaped by long-term behavioral use (Jenkins 

et al. 1990; Elbert et al. 1995) and can change when learning a new sensorimotor skill 

(Pascual-Leone and Torres 1993; Gindrat et al. 2015). On the other hand, successfully 

completing many daily activities requires quick adjustments be made to sensorimotor mod-

els of the body. For example, primates often use tools to extend what they can reach 

(Lacquaniti et al. 1982) and sense (Miller et al. 2018). Doing so, however, means that the 

sensorimotor system must compensate for how the tool changes the physical and geometric 

properties of the arm and hand (Imamizu 2003), making tool use a good case study for in-

vestigating mechanisms of short-term sensorimotor plasticity.  

Several decades of research have found that sensorimotor models of the body adjust 

their parameters to account for the extended reach of the limb-tool system (for reviews, see 

Maravita and Iriki 2004; Martel et al. 2016). This leads to lasting and measurable changes in 

how the user controls their limb (Kluzik et al. 2008; Cardinali et al. 2009; Baccarini et al. 

2014; Cardinali, Brozzoli, Finos, et al. 2016; Day et al. 2017), perceives tactile stimuli im-

pinging on its surface (Cardinali et al. 2011; Canzoneri et al. 2013; Miller et al. 2014; Miller, 

Cawley-Bennett, et al. 2017), and judges its spatial extent (Sposito et al. 2012; Garbarini et 

al. 2015). These modulations are often taken as evidence that tool use has modulated the 

represented size of the limb (Martel et al. 2016). Both visual (Miller, Longo, et al. 2017; 

Guerraz et al. 2018) and proprioceptive (Sengül et al. 2013; Cardinali, Brozzoli, Luauté, et 

al. 2016; Martel et al. 2019) feedback during tool use appear to play a critical role in the tool-

induced plasticity of sensorimotor body representations. 

At the neural level, studies with macaques have identified significant functional and 

structural changes in somatosensory regions following tool use learning, specifically in the 

secondary somatosensory cortex (SII; Quallo et al. 2009) and the anterolateral portion of 

area 5V (aIPS; Iriki et al. 1996; Hihara et al. 2006). It remains unclear, however, how these 
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findings map onto the aforementioned behavioral changes in humans, as the neural corre-

lates of tool-induced sensorimotor plasticity have received little attention in humans. 

To our knowledge, only a single study has measured how using a tool modulates 

somatosensory processing in the human brain. Schaefer and colleagues (2004) used mag-

netoencephalography (MEG) to record primary somatosensory responses to puffs of air ap-

plied to the fingers during tool use, hand use, and rest. They found that tool use (but not 

hand use) increased the distance between the representations of D1 and D5 in primary so-

matosensory cortex, as measured from the dipoles of the M60 evoked-field. However, since 

these measurements were made during tool use, it is unclear how they relate to the lasting 

recalibration of sensorimotor models observed in the aforementioned behavioral experi-

ments. We aimed to begin filling this gap in the literature. 

In the present study, we used event-related brain potentials (ERPs) to identify the 

stage(s) of somatosensory processing modulated by tool use in humans. ERPs are an ideal 

method for this research question given their good temporal resolution. Further, the cortical 

generators of several somatosensory evoked potentials (SEP) in humans have been 

mapped using intracranial recordings (Allison et al. 1991) and MEG (Kakigi 1994). Short-

latency SEPs (e.g., P45, N60) are thought to reflect activity in primary somatosensory cortex 

(SI; Allison et al. 1992), whereas mid-latency SEPs (e.g., P100, N140) index activity within 

SII, PPC, and regions of the frontal cortex (Forss et al. 1994; Mauguière et al. 1997; Barba 

et al. 2004).  

Given the behavioral results discussed above, it is often assumed that tool use recal-

ibrates higher-order sensorimotor models of the body outside of SI. Along these lines, we 

hypothesized that tool use would modulate the amplitude of mid-latency SEPs (e.g., P100, 

N140) that have sources which are consistent with what is found in tool-trained macaques 

(Iriki et al. 1996; Hihara et al. 2006; Quallo et al. 2009). However, the findings by Schaefer 

and colleagues (2004) leave open the possibility that even low-level stages of processing in 

SI may be modulated by tool use. To foreshadow our results, we found significant evidence 
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that tool use (but not hand use) modulates the amplitude of the mid-latency P100 compo-

nent, an index of multisensory models of the body (Cardini and Longo 2016). 

Methods & Materials 

Participants 

Twenty-two healthy right-handed participants (12 females) between the ages of 19 and 39 

years old (Mean: 29.1; SD: 4.2) took part in the present study. One participant was removed 

due to equipment failure and another was removed due to excessive eye blinks (almost eve-

ry trial). Two additional participants opted to discontinue the experimental session midway 

through because they found the stimulation uncomfortable. The remaining eighteen partici-

pants were further analyzed. All participants had normal or corrected-to-normal vision and 

no history of neurological problems. Each gave informed consent before participating. The 

experiment was approved by the local ethics committee at Birkbeck, University of London. 

Stimuli and Apparatus 

Electric shocks (0.2 ms in duration) were delivered to the right median nerve at the wrist with 

a Digitimer DS7A constant current high-voltage stimulator (Digitimer, Welwyn Garden City, 

UK). Median nerve stimulation was chosen because it is known to elicit robust and well-

studied SEPs (Allison et al. 1991). Each participant’s median nerve was located and the 

stimulation intensity was set using two criteria: 1) a single electric shock produced noticeable 

tingling sensations in the right thumb, index, and middle fingers, but not in the two remaining 

digits; 2) an involuntary thumb twitch could be elicited. The stimulation intensity used 

throughout the experiment was set to an average of 121% (SD: 11) of each participant’s mo-

tor threshold (Mean: 8.33 mA; SD: 2.19). The position and orientation of the stimulation elec-

trodes was monitored throughout the experiment to ensure that they did not change. 

Experimental Procedure 

The experiment consisted of two main blocks, one for each object-interaction task (tool use 

and hand use; Fig. 1a). Each block was further subdivided into three sub-blocks (see below): 
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a baseline EEG block, an object interaction block, and a post-interaction EEG block. The two 

main blocks were separated by an eight-minute break. 

During each EEG recording block, participants sat in a dimly lit room with both arms 

resting comfortably on a table and covered with a black smock. They were asked to maintain 

their gaze to the location of their right hand, which was completely hidden from view. Partici-

pants performed a somatosensory target-detection task (Sambo and Forster 2009), a com-

mon task that forces participants to continually monitor the sensory state of their hand as 

well as maintain attention and vigilance. On each trial, the participant’s job was to distinguish 

between a non-target single shock (90% probability) and infrequent target double shocks 

(two shocks separated by 50 ms; 10% probability), randomized across trials. Non-targets 

were ignored and required no overt response. When a target was detected, participants re-

sponded by lifting their left foot off of a foot pedal as quickly as possible within a set time 

window of 1600 ms. This long time-window was chosen to minimize the probability that the 

proceeding trial would be contaminated by residual motor activity. The inter-trial interval was 

randomly chosen from a uniform distribution between 400 to 600 ms. Each of the four EEG 

blocks (two per object-interaction block) consisted of 800 trials, 720 non-targets and 80 tar-

gets, for a total of 3200 trials for the entire experiment. 

Object-interaction Procedure 

The experiment was composed of two object-interaction conditions: tool use and hand use 

(order counterbalanced across participants). The participant’s task was to pick a balloon up 

to eye-level and place it back down on a table. They were instructed to comfortably perform 

the action self-paced for a total of 8 minutes. This task was identical in both object-

interaction conditions, differing only in the means by which the balloons were picked up.   

In the tool use condition, participants used a hand-shaped exoskeleton (Fig. 1a). This 

tool was used in the present study because it has been previously shown to reliably modu-

late tactile perception on the user’s hand (Miller et al. 2014), an important methodological 

consideration since we are stimulating the median nerve. More conventional tools (e.g., a 
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mechanical grabber), in contrast, instead modulate tactile perception on the arm but not the 

hand (Cardinali et al. 2009; Miller et al. 2014). Each finger of the tool was composed of three 

plastic “bones” connected via fully adjustable rubber “joints”. The tool was strapped to the 

participant’s forearm with Velcro and their fingers rested in leather straps attached to the 

tool’s fingers, allowing for their individual control; movement of each strap led to a concur-

rent movement of the corresponding finger of the tool. This ensured that the functionality of 

the user’s own fingers and the fingers of the tool were comparable. The tool was approxi-

mately 21 cm wide, as measured from the base of the index finger to the base of the little 

finger, and 45 cm long, as measured from the base of the tool to the tip of the middle finger. 

The hand use condition served as a control for general modulations of SEPs by sustained 

object interaction. This condition does not lead to changes in tactile perception (Miller, 

Longo, et al. 2017) and is a common control in the literature (Anelli et al. 2015; Guterstam et 

al. 2018). Participants used their own fingers to grasp the balloon and lift it to eye-level in a 

similar manner as the tool use condition.  

EEG Recording and Preprocessing 

EEG Recording 

Electroencephalography was recorded with a BioSemi ActiveTwo EEG system (Biosemi 

B.V., Amsterdam, The Netherlands) that had 64 active electrodes whose layout followed the 

international 10/10 system. Horizontal and vertical electrooculograms (EOG) were used to 

measure and detect horizontal eye movements and eye blinks, respectively. During data ac-

quisition, EEG and EOG signals were amplified and digitized at 2048 Hz, and low-pass fil-

tered at 100 Hz.  

EEG Preprocessing 

All data was pre-processed with EEGLAB (Delorme and Makeig 2004). The electric shock 

creates a large ~2 ms artifact in the EEG and EOG signal. This artifact was removed from 

each trial in every channel by linearly interpolating the signal from 0 to 6 ms following the 

shock (Cardini et al. 2011). The data was then re-referenced to the average of the left and 
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right mastoids, band-pass filtered between 0.1 and 40 Hz, and down sampled to 500 Hz. 

EEG and EOG signals were epoched into periods of 450 ms, starting 150 ms before and 

ending 300 ms after each non-target shock. We removed target trials from the analysis as 

well as any non-target trials containing a response.  

Data cleaning had two steps: First, we removed large artifacts—eye movements, eye 

blinks, and muscle activity—using independent components analysis (Makeig et al. 1996). 

Before performing ICA, we first combined every condition into a single continuous dataset in 

order to prevent any possibility of bias when removing components; next we removed 

stretches of time that contained disruptive events (i.e., amplifier saturation) as they are 

known to affect the decomposition. After ICA, independent components relating to the 

aforementioned artifacts were identified by visual inspection and removed. Following this 

procedure, trials with activity still exceeding ±80 μV (relative to baseline) were discarded 

(Mean: 62.8 trials; Range: 4–124 trials). A 2 (time: pre, post) x 2 (effector: tool, hand) re-

peated measures ANOVA demonstrated that the experimental conditions did not differ in the 

number of trials removed during this procedure (all Fs < 0.6, all Ps > .5)  

Data Analysis 

Behavioral Analysis 

All statistical analysis were conducted using JASP version 0.8.5 (JASP Team 2018). To de-

termine whether either object-interaction condition modulated behavioral performance we 

performed 2 (time: pre, post) x 2 (effector: tool, hand) repeated measures ANOVAs on both 

the accuracy and reaction times in the somatosensory target-detection task (see above). 

The main statistic of interest is the interaction between the two factors, as this would indicate 

that the two object-interaction conditions had unequal effects on target detection.  

ERP Analyses 

We took two approaches to analyze our EEG data: First, we performed a traditional compo-

nent-dependent ERP analysis where distinct SEPs were identified by their time windows and 

scalp distributions. Second, we performed a component-independent cluster-based analysis 
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in order to ensure that any effects observed in the first analysis were not due to our choices 

for identifying SEPs (Maris and Oostenveld 2007). 

Component-dependent analysis: As the main aim of our study was to investigate how tool 

use modulates somatosensory processing, we focused on electrode sites over and close to 

somatosensory areas contralateral to stimulation (Fz, F1, F3, F5, F7, FCz, FC1, FC3, FC5, 

FT7, Cz, C1, C3, C5, T7, CP1, CP3, CP5, TP7, P1, P3, P5, P7; Fig. 1b). It is often not pos-

sible to know the time-windows and scalp distributions of ERP components a priori. We 

therefore identified this information post-hoc using visual inspection on a collapsed localizer 

(Luck and Gaspelin 2017), where the data from all participants and experimental conditions 

was averaged into a single waveform. Statistical analysis of each SEP component was re-

stricted to electrodes where the magnitude of its signed amplitude in the waveform was larg-

est. As this approach hides any differences between conditions, since they are all averaged 

together, it is an ideal approach for choosing electrodes-of-interest when they are not known 

before collecting the data. Importantly, it is typically free of experimenter bias when the data 

is collected using a within-subjects design (Luck and Gaspelin 2017). 

The time window of each component was also determined using the aforementioned 

collapsed localizer. For each SEP, we drew a temporally symmetric window around its peak 

amplitude. The temporal boundaries of the components were chosen to be consistent with 

what has been used in the literature previously (Allison et al. 1992). 

Based on previous studies investigating electrophysiological signatures of soma-

tosensory processing, we focused our analysis on five main components of interest: the 

P45, N60, P100, N140, and P200. The short-latency P45 component was calculated as the 

mean amplitude at C3, C5, CP3, and CP5 between 34 and 54 ms post-shock. The short-

latency N60 component was calculated as the mean amplitude at F1, F3, FC1, and FC3 be-

tween 54 and 70 ms post-shock. Both the P45 and N60 reflect stages of sensory processing 

in SI (Allison et al. 1992). The mid-latency P100 component was calculated as the mean 

amplitude at CP1, CP3, P1, and P3 between 70 and 110 ms post-shock. The P100 is the 
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earliest component to index visual-tactile integration (Sambo) and reflects the maintenance 

of a multisensory model of the body (Cardini and Longo 2016). It has known generators in 

SII and PPC (Forss et al. 1994; Barba et al. 2004). The long-latency N140 component was 

calculated as the mean amplitude at C5, T7, CP5, and TP7, between 110 and 170 ms post-

shock. Modulations of the N140 are the most common index of the effects of early tactile 

spatial attention (Garcia-Larrea et al. 1995; Macaluso and Driver 2001). Lastly, the vertex 

P200 was calculated as the mean amplitude at Cz, FCz, and Fz between 170 and 260 ms 

post-shock. The P200 is a common index of perceptual saliency across all sensory modali-

ties (Mouraux and Iannetti 2009).  

All statistical analysis were conducted using JASP version 0.8.5 (JASP Team 2018). 

To determine whether either object-interaction condition modulated somatosensory cortical 

processing, we performed a 2 (time: pre, post) x 2 (effector: tool, hand) repeated measures 

ANOVA on the mean amplitude of each component. The main statistic of interest is the in-

teraction between the two factors, as this would indicate that the two object-interaction con-

ditions modulated the specific component differently. To account for the five interaction tests, 

we set our alpha level to .01 (i.e., Bonferroni correction). Significant interactions were fol-

lowed up with paired t-tests.  

The inferences one can draw from frequentist statistics are limited by the fact that p-

values quantify the probability of your data given the null hypothesis. However, scientists 

often wish to know the opposite—the likelihood of a hypothesis given the data—in order to 

derive stronger inferences about what the data might mean. The likelihood of a hypothesis 

given the data can be quantified using Bayesian statistical approaches. Therefore, to further 

quantify the effect of object interaction on each evoked potential, we compared the pre and 

post amplitudes for both tool and hand using an analogous Bayesian repeated measures 

ANOVA. As with our frequentist analysis, the interaction between time and effector was the 

main statistic of interest. The Cauchy prior width was set to 0.707, the default prior in JASP. 
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Component-independent analysis: The high-dimensional nature of EEG data means that it 

suffers from a multiple comparisons problem (Kilner 2013). In our case, this could amount to 

14,440 comparisons (64 channels x 225 timepoints). The previous analysis goes some way 

towards alleviating this problem, but does so at the expense of potentially introducing biases 

and circularity into the analysis. We therefore performed a data-driven component-

independent analysis to verify that results from the prior analysis were independent of our 

chosen electrodes and timepoints. Specifically, we used a non-parametric permutation test 

(10,000 permutations) with cluster-based correction (Maris and Oostenveld 2007) as imple-

mented by the Mass Univariate Toolbox (Groppe et al. 2011). To isolate the interaction (our 

main statistic of interest), we performed the cluster-based analysis on the difference waves 

between pre- and post-conditions for tool use and hand use. The analysis included all elec-

trodes and targeted all timepoints between 30 and 230 ms, ensuring that we captured the 

peaks of all components of interest in every participant’s dataset. Importantly, the clusters 

returned by the analysis are component-independent and merely reflect spatio-temporal re-

gions of elevated significance. 

 Cluster-based tests use soft-correction to control for Type-II error rates (Groppe et al. 

2011). It is therefore a known problem that time points at the edge of a cluster have an ele-

vated false-positive rate and therefore these regions should be treated with caution 

(Sassenhagen and Draschkow 2019). We took two extra steps to ensure that time points in 

the clusters reflected robust results: First, we re-ran the permutation test using the compo-

nent-specific time windows that matched the timespan of any observed cluster. For example, 

if we observed a cluster spanning 62 to 100 milliseconds, we would re-run the permutation 

test on two time-windows: 54 to 70 (N60) and 70 to 110 (P100) milliseconds. Second, we re-

ran the permutation test with the more conservative alpha level used in the component-

based analysis (i.e., .01).  

 

Results 

Neither tool use or hand use influenced target detection 
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All participants performed a target detection task that required them to keep their spatial at-

tention constant throughout each block. Their task was to detect infrequent targets (double 

shocks separated by 50 ms) among frequent non-targets (single shocks). When targets 

were detected, participants responded by lifting their left foot off of a foot pedal as quickly as 

possible. Table 1 shows the results for each experimental condition for two dependent 

measures of behavioral performance: accuracy and reaction time. We did not find any statis-

tical evidence that target detection accuracy (all Fs < 0.7, Ps > .4) or reaction time (all 

Fs < 1, Ps > .3) varied across blocks. This suggests that the ability to maintain spatial atten-

tion to the location of the electric shocks was not affected by our experimental manipula-

tions. Therefore, any modulation we see in SEP components are not likely due to effects of 

spatial attention. 

Tool use modulates the amplitude of the P100 

Median nerve stimulation leads to several well-defined somatosensory evoked potentials 

(Allison et al. 1991). Consistent with previous studies, we observed five prominent compo-

nents within the first 300 ms post-shock in all experimental conditions: P45, N60, P100, 

N140, and P200. Figure 2 shows the grand average collapsed across conditions for the 

electrode site C3 as well as the scalp topography of each component. The time course and 

scalp topography of each component is consistent with prior studies.   

Only the P100 showed a significant change in its mean amplitude following tool use 

(Table 2; Fig. 3). We observed a significant interaction between time (pre, post) and type of 

object interaction (F1,17 = 12.62, P = .002, 2
p = .43). Follow-up t-tests revealed that tool use 

led to a significant increase in P100 amplitude in electrodes over the contralateral sen-

sorimotor cortex (0.82 v   0.15; paired t-test: t17 = 5.06, P < .001, dz = 1.19; Fig. 3a). An 

increase in P100 amplitude was observed, to some extent, in the majority of our participants 

(15 out of 18; Fig. 3b). In contrast, and as expected, we did not observe a significant modu-

lation in P100 amplitude following hand use (–0.01 v   0.12; t17 = –0.05, P = .96, 

dz = 0.01).  
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As can be seen in Figure 3a, we observed a qualitative difference in the P100’s 

baseline (i.e., ‘pre’ condition) for tool use and hand use. One potential explanation for this is 

that effects of tool use last longer than the eight-minute break that separated each block. We 

would therefore expect that when tool use was performed first, the baseline amplitude in the 

‘hand use’ block would not have returned fully to the baseline amplitude in the ‘tool use’ 

block. To test this assertion, we performed an exploratory 2 (order: hand-first; tool-first) x 2 

(block number: one; two) mixed-ANOVA with ‘order’ as a between-subjects factor and ‘block 

number’ as a within-subjects factor (Figure 4). We observed a significant interaction between 

factors (F1,16 = 6.56, P = .02, 2
p = .21) but no other main effects (all Fs < 1.7, all Ps > .21). 

As expected, when participants performed tool use first, the baseline of the hand-use block 

(2.65 v ± 0.52) remained significantly elevated relative to the baseline of the tool-use block 

(2.06 v ± 0.44; t8 = 3.33, P = .01, dz = 1.11). This pattern was not observed for participants 

who performed hand use first (pre-hand vs. pre-tool: 1.77 v ± 0.49 vs. 1.42 v ± 0.25; 

t8 = 1.09, P = .31, dz = 0.36); if anything, we observed a numerical decrease in the amplitude 

of the pre-tool use baseline.  

Furthermore, repeating the original ANOVA with ‘order’ as a between-subjects factor 

found the same time x effector interaction but no additional effects including the factor ‘or-

der’. Tool use led to an increase in the amplitude of the P100, regardless of whether the first 

block was for tool use (Figure 4a) or hand use (Figure 4b).  Therefore, the magnitude of the 

observed P100 effect did not depend on the order of the object-interaction tasks, even if 

there were minor differences in baselines.  

No effects of tool use or hand use were observed in any of the other four compo-

nents (Fig. 5). We did not find a significant interaction for either early SEPs: P45 

(F1,17 = 1.37, P = .26, 2
p = .07); N60 (F1,17 = 2.48, P = .13, 2

p = .13). We also did not find a 

significant interaction for the later SEPs: N140 (F1,17 = 0.22, P = .65, 2
p = .01); P200 

(F1,17 = 0.05, P = .83, 2
p < .01). The full statistical details for each component can be seen 

in Table 2. As with the P100, these results did not change when we performed an explorato-
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ry ANOVA that included the between-subjects factor ‘order’ (all Fs < 3, all Ps > .1, for all 

components). 

Our Bayesian analyses converged to a similar picture. We found strong evidence for 

an interaction between effector and time in the P100 component. Namely, the interaction 

results were BF10 = 136.57 times more likely to be explained by the experimental hypothesis 

than the null hypothesis. In contrast, evidence for or against the null hypothesis was ambig-

uous for the P45 (BF01 = 1.54) and N60 (BF01 = 1.22). We did, however, find weak evidence 

in favor of the null hypothesis for the N140 (BF01 = 3.03) and the P200 (BF01 = 3.14). 

A data-driven analysis reveals the robustness of the P100 modulation 

We next performed a data-driven cluster-based analysis that did not depend on the a priori 

spatio-temporal selection of SEP components. This analysis compared the pre-post differ-

ence waves for each condition and is equivalent to the above interaction. As with the prior 

analyses, we found a significant difference between the effect of tool use and hand use (all 

Ps < .05). These clusters spanned the time period of 58 to 128 ms post-shock and covered 

the centro-posterior portions of the scalp bilaterally (Figure 6). Noticeably different from our 

prior analysis, this cluster included the majority of the time window for the N60. However, the 

significant effects were in channels over the positive portion of its dipole (see the scalp to-

pography in Figure 2).  

 We followed up these findings with two additional approaches: First, we performed 

cluster-based analysis on the component-specific time windows of the N60 and P100. If the 

significant effect in either component reflects a real difference and not a false positive, the 

same results should be observed in an analysis targeting their time window. As expected, 

we observed significant clusters in the P100 time window (all Ps < .05). In contrast, no signif-

icant clusters were found in the N60 time window. Second, we lowered the alpha level to 

.01, as was used in our component-dependent analysis. This revealed a significant cluster 

from 76 to 118 ms post-shock covering the centro-posterior portions of the scalp bilaterally. 

Noticeably absent were time points in the time window of the N60. 
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Discussion 

In the present study, we used ERPs to investigate how using a tool modulates somatosen-

sory cortical processing. SEPs were measured before and after two object-interaction condi-

tions—tool use and hand use—in which participants picked up balloons for 8 minutes. To 

successfully use a tool, sensorimotor models of the body must adapt to its weight and ge-

ometry, a recalibration that is not necessary when only the hand is being used. As expected, 

sustained use of the hands to pick up the balloons did not modulate the amplitude of any 

SEP. Using a tool, conversely, led to a bilateral modulation of the amplitude of the P100 at 

posterior recording sites around sensorimotor areas. This modulation was observed in both 

our component-dependent and component-independent analyses. Our component-

independent analysis also found a significant modulation within the time window of the N60, 

though the evidence for this effect was weak. The implications of these findings are dis-

cussed in more detail below. 

Effects of tool use on somatosensory evoked potentials 

The effect of tool use on somatosensory perception is well-documented. Brief training with a 

tool has been found to modulate the perceived locations of touches in space (Cardinali et al. 

2011), the space between two tactile points (Canzoneri et al. 2013; Miller et al. 2014; Miller, 

Cawley-Bennett, et al. 2017; Miller, Longo, et al. 2017), and where user’s judge the midpoint 

of their arm (Sposito et al. 2012; Garbarini et al. 2015; Romano et al. 2019). These results 

have been taken as evidence that tool use affects the represented size of body parts by the 

sensorimotor system.  However, it has been unclear whether this reflects a change in early 

or late stages of somatosensory processing. This was our main motivation for using ERPs to 

measure tool-induced somatosensory plasticity.  

We found strong evidence that tool use modulated the P100, an SEP that has been 

implicated in mapping somatosensory inputs within a sensorimotor coordinate system (Heed 

and Röder 2010) and aligning tactile and visual maps of space (Sambo and Forster 2009; 
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Cardini and Longo 2016). For example, a recent study by Cardini and Longo (2016) found 

that incongruent visual and tactile feedback disrupted intracortical inhibition within the time 

window of the P100. Specifically, incongruent multisensory stimulation led to a “blurring” be-

tween finger representations. In this context, our finding suggests that tool use modulated a 

stage of processing where touch is mapped within a coherent model of the body. 

The present results can provide some insight as where tool-induced sensorimotor 

plasticity happens in the human brain. Studies using intracranial recordings and MEG have 

identified generators of the P100 in SII (Barba et al. 2004) and PPC (Forss et al. 1994; 

Mauguière et al. 1997). Further, monkey neurophysiology (Avillac et al. 2007) and human 

transcranial magnetic stimulation (Konen and Haggard 2012) studies demonstrate that mul-

tisensory parietal regions are activated within the time window of the P100 used in the pre-

sent study. The generators of the P100 are also consistent with two decades of work that 

has implicated the parietal lobe in several important functions for tool use (Johnson-Frey 

2004; Maravita and Romano 2018), such as planning tool use actions (Johnson-Frey et al. 

2005) and performing visuo-motor transformations (Stark and Zohary 2008).  Many of these 

regions also have overlapping tool and hand representations (Peeters et al. 2009; Gallivan 

et al. 2013). Taken at face value, these studies suggest that using a tool modulates sensory 

processing in SII and/or PPC in humans, consistent with previous findings in macaques (Iriki 

et al. 1996; Hihara et al. 2006; Quallo et al. 2009). The mechanisms underlying the influence 

of tools on sensorimotor models of the body may have been preserved across primate evo-

lution. 

It is unclear from the present results whether tool use modulates early stages of pro-

cessing linked to activity in primary somatosensory cortex (Allison et al. 1992). Our Bayesian 

analysis found that the evidence was ambiguous as to whether tool use modulated the am-

plitudes of the P45 and N60. Our data-driven analysis, on the other hand, did find some evi-

dence that tool use modulated the N60. At first glance, this finding appears consistent with 

Schaefer and colleagues (2004), who found that tool use changes the dipoles of the M60 

(the evoked-field equivalent of the N60). However, the evidence for a modulation of the N60 
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in our dataset was rather weak, given that the effect was absent in two follow-up analyses. It 

is therefore still an open question as to whether tool use has lasting effects on activity in 

primary somatosensory cortex. 

Factors constraining tool-induced somatosensory plasticity 

The factors contributing to tool-induced somatosensory plasticity are an important topic of 

research that has recently begun receiving substantial attention. Changing the spatial as-

pects of (multi)sensory feedback modulates tactile perception in a similar manner as has 

been shown following tool use (Taylor-Clarke et al. 2004; De Vignemont et al. 2005; 

Tajadura-Jiménez et al. 2012). For this reason, several authors have hypothesized that 

changes in sensory feedback during tool use are a primary driver of its effects on body rep-

resentations (Miller et al. 2014; Serino et al. 2015). For example, we have previously shown 

that a visual illusion of tool use can modulate tactile distance perception on an arm that is 

stationary (Miller, Longo, et al. 2017). Furthermore, the hand-shaped exoskeleton used by 

participants in the current study specifically modulates tactile perception on the hand but 

leaves tactile perception on the arm unaffected (Miller et al. 2014). Congruency between the 

shape of a body part and the tool may constrain where plasticity takes place. In all, these 

findings suggest that tool-induced plasticity is a multisensory process, consistent with the 

functional profile of the P100 component (Sambo and Forster 2009; Cardini and Longo 

2016).  

It is well-established that tool-induced plasticity requires the user to actively wield the 

tool (Maravita et al. 2002; Witt et al. 2005), though how much tool use is needed likely de-

pends on how the tool is being used. Several studies have found the wielding a tool modu-

lates sensorimotor processing almost immediately (Holmes et al. 2007) or within minutes 

(Cardinali et al. 2009; Miller, Cawley-Bennett, et al. 2017; Miller, Longo, et al. 2017). The 

rapid effects of tool use are even found with unfamiliar tools (Baugh et al. 2012), such as in 

the present study. However, a recent study that did not require active lifting during tool use 

only found effects after several weeks of training (Marini et al. 2014). In this study, partici-
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pants were trained to grasp objects using a functional robotic hand that was controlled via 

the participant’s own electromyographic signals. The necessary length of training suggests 

that proprioceptive feedback during active tool use is a critical driver of sensorimotor plastici-

ty on a short timescale (Martel et al. 2019). Proprioception conveys information about the 

physical characteristics of the tool, such as its inertial properties (Turvey and Carello 2011). 

Taking these properties into account is necessary for accurately using tool and is likely a 

main reason why tool use leads to sensorimotor plasticity in the first place. 

Germane to the present discussion is whether or not the exoskeleton used in the 

present study is indeed a “tool”. According to a popular set of criteria for distinguishing be-

tween tools and non-tool objects (Holmes and Spence 2006), a “tool” must be unattached 

from its user, held/carried in the hand, and have the possibility of being oriented inde-

pendently of the body. Though it was not permanently attached to the user, use of the exo-

skeleton in our task required it to be strapped to user’s forearm. Furthermore, its orientation 

in space was strongly coupled with the arm and hand. One could therefore argue that the 

exoskeleton failed to meet the criteria of a “tool”. However, by this definition, the exoskeleton 

qualifies as a tool if it is wielded in hand but stops being a tool the moment it is strapped to 

the arm, even if it is used in the same goal-directed manner. It is likely in both cases that 

similar plasticity is required to perform the task. We therefore believe that the aforemen-

tioned criteria may be too restrictive. Perhaps a more informative approach to addressing 

this question is determining whether the brain would treat the exoskeleton any differently 

than a tool that fulfilled the above criteria. 

Along similar lines, the exoskeleton used in the present study is considerably differ-

ent than tools typically used to study tool-induced plasticity (e.g., rakes, mechanical grab-

bers), which often extend the user’s reaching space. Several studies have reported that 

short tools (e.g., 20 cm in length) do not lead to significant plasticity in the represented 

length of arm (Sposito et al. 2012; Patané et al. 2017). However, the representation of the 

hand can indeed be updated by tools whose functions and shape are more ‘hand-like’, such 

as pliers (Umiltà et al. 2008; Cardinali, Brozzoli, Finos, et al. 2016) or the exoskeleton used 
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in the present study (Miller et al. 2014). Nevertheless, it raises that important question as to 

whether the observed modulation in the P100 would be found in other tools and in other 

tasks. Addressing this question is beyond the scope of the current study.  

The relationship between tool-induced plasticity and motor learning 

It is currently a matter of debate as to whether tool-induced plasticity reflects the effects of 

general sensorimotor learning mechanisms (Franklin and Wolpert 2011) or mechanisms 

specific to tool use (Martel et al. 2016). How the sensorimotor system recalibrates its model 

of the arm during tool use appears to be dependent on what is necessary to complete the 

goal of a task. In a recent study, Romano and colleagues (2019) found that reach-to-grasp 

movements led to a distalization of the perceived midpoint of the arm whereas swing-to-hit 

movements led to a proximalization. Furthermore, several studies have found that force-field 

adaptation—like tool use—leads to lasting effects on the perceived position of the arm 

(Ostry et al. 2010) and movement kinematics (Ohashi et al. 2019). These studies suggest 

that the effects of tool use reflect general mechanisms of motor learning. However, whether 

force-field adaptation—or other classic motor learning paradigms—modulates the repre-

sented size of body parts has to our knowledge not been addressed. Thus, the link between 

motor learning and sensorimotor plasticity following tool use is at present incomplete.    

It is possible that the modulation we observed in the P100 was driven by general mo-

tor learning and not mechanisms specific to tool use. We may therefore have expected to 

see a P100 modulation in our hand use condition had it been more difficult. Relevant to this 

possibility, a recent study by Nasir and colleagues measured SEPs before and after force-

field adaptation (Nasir et al. 2013). They observed a significant change in the amplitude of a 

positive-going SEP within the time window of 70 to 90 ms that was significantly correlated 

with the magnitude of the adaptation. However, given that it was the earliest component ob-

served in their dataset, it is unclear whether this activity reflects an early P100 or a late P50. 

Regardless, the direction of their modulation was in the opposite direction as ours (i.e., a de-

crease in amplitude), making it unlikely that it was driven by similar underlying mechanisms 
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as our tool use effect. That being said, the specificity of our P100 effect to tool use is unclear 

from the results of our study. Whether motor learning mechanisms underlie tool-induced 

plasticity requires more attention in future research. 

Limitations of the current study 

The current study suffers from at least two limitations in its experimental design. First, we left 

a relatively short time between experimental blocks. It is currently unknown how long the ef-

fects of tool-induced somatosensory plasticity last, though some research suggests that it 

lasts equally as long as the tool use itself (Iriki et al. 1996). In contrast, we found significant 

carry-over effects from the tool use into the hand use block. Thus, eight minutes of tool use 

was sufficient to lead to an effect on the P100 that lasted at least twice as long. There is 

some evidence that a short period of motor learning can lead to changes in somatosensory 

perception that last for 24 hours (Ostry et al. 2010). In the context of these findings, we may 

have expected that the effects of tool use also last a considerable period of time. Future 

studies should take this into account when deciding how long to separate the tool use and 

control conditions. Second, we did not record any behavioral or neural measures while par-

ticipants used the tool or their hands to lift the balloons. Doing so would have allowed us to 

characterize the observed P100 effect in more detail and is crucial for understanding what 

drives the sensorimotor system to update its internal models in response to the demands of 

tool use. 

Conclusion 

In sum, we found significant evidence that using a hand-shaped exoskeleton modulated a 

mid-latency somatosensory evoked potential called the P100. This component likely indexes 

the maintenance of an internal model of the body. This pattern of plasticity is therefore con-

sistent with human behavioral studies that have implicated tool use in updating a sensorimo-

tor representation of the body, often called the body schema. Furthermore, the neural gen-

erators of the P100—SII and PPC—are consistent with monkey studies that have implicated 
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these regions in tool-use learning. Future work is need to fully characterize the neural corre-

lates of tool-induced somatosensory plasticity. 
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Table 1. Effect of tool use and hand use on behavior 

Means.e.m. 

  

 Tool Use Hand Use ANOVA 

 Pre Post Pre Post Tests F P 

Accuracy (%) 96.41.23 96.51.12 96.51.23 97.21.08 Effector 0.69 .42 

     Time 0.21 .65 

     Effector * Time 0.38 .55 

Mean RT (ms) 42016 42718 43318 42016 Effector 0.05 .83 

     Time 0.12 .73 

     Effector * Time 0.97 .34 



 29 

 

Table 2. Effect of tool use and hand use on all components 

Means.e.m. *significant with an alpha of .01; SEP = somatosensory evoked potential 

  

SEP Tool Use Hand Use ANOVA 

 Pre Post Pre Post Tests F P 

P45 1.280.21 1.430.26 1.370.28 1.270.26 Effector 0.13 .73 

     Time 0.31 .59 

     Effector * Time 1.37 .26 

N60 -1.040.36 -0.850.44 -1.110.43 -1.040.36 Effector 0.25 .63 

     Time >0.01 .96 

     Effector * Time 2.48 .13 

P100 1.740.26 2.560.36 2.210.36 2.210.34 Effector 0.32 .58 

     Time 22.54 <.001* 

     Effector * Time 12.62 .002* 

N140 -0.790.29 -0.688.33 -0.790.29 -0.740.27 Effector 0.06 .81 

     Time 0.72 .41 

     Effector * Time 0.22 .65 

P200 1.880.49 1.980.40 1.740.34 1.900.38 Effector 0.36 .56 

     Time 1.44 .25 

     Effector * Time 0.05 .83 
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Figure 1. Experimental procedures 

(a) Participants picked up balloons in two object-interaction conditions. In the ‘tool use condi-

tion’, they used a hand-shaped tool that has been previously shown to modulate tactile per-

ception on the hand (Miller et al. 2014). In the ‘hand use condition’, participants picked up 

balloons with their hands; this condition served as our control. (b) Scalp map of the 64-

channel EEG system used in the present study. Channels included in the component-

dependent analysis are presented in gray. All channels were included in the component-

independent analysis. 
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Figure 2. Scalp topography of all SEP components 

The current figure illustrates the scalp topographies of each of the five SEP components in-

cluded in our analyses: the P45, N60, P100, N140, and P200. These components are evi-

dent in the grand average SEP waveform for channel C3, which is presented here because 

it contained electrical volleys relating to all five components. 
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Figure 3. Component-dependent results for the P100 

(a) Tool use led to a significant modulation in P100 amplitude. Grand average SEP wave-

forms before (solid lines) and after (dashed lines) each object-interaction condition: tool use 

(blue) and hand use (red). The time window of the P100 component is highlighted by the 

light gray rectangle. As is evident, tool use led to a large increase in the P100 amplitude. 

Hand use had no effect on the amplitude. (b) The change in the mean amplitude of the P100 

following tool use (blue dots) and hand use (red dots) for each participant. The amplitude of 

the P100 increased following tool use in the majority of participants. 
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Figure 4. Effects of block order on the P100 

(a) SEPs when the first block was tool use (blue lines) and the second block was hand use 

(red lines). As shown in Figure 3, tool use led to an increase in the amplitude of the P100 

(grey rectangle). The baseline for the hand use block (dashed red line) did not return to the 

amplitude level of the baseline for the tool use block (dashed blue line), likely because 20 

minutes was not sufficient for the tool-induced plasticity to completely wash out. (b) SEPs 

when the first block was hand use (red lines) and the second block was tool use (blue lines). 

Tool use led to an increase in the amplitude of the P100 (grey rectangle) whereas hand use 

did not. Thus, the effect of tool use on the P100 was independent of block order. 
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Figure 5. Component-dependent results for all other components 

Results for the four remaining components: (a) P45; (b) N60; (c) N140; and, (d) P200. The 

grand average SEP waveforms (Left panel) for each condition; the time window used in the 

analysis is highlighted by a gray rectangle. No significant effects of object interaction were 

found for any component. This is supported by inspecting the results for each individual par-

ticipant (Right panel), where the modulations following tool use (blue dots) and hand use 

(red dots) are centered close to zero. 
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Figure 6. Cluster-based analyses replicate the P100 effect 

A cluster-based non-parametric permutation test revealed a significant interaction within the 

time range of the N60 and P100 (56-128 ms). Significant temporal clusters (red) were found 

in a subset of channels over bilateral parietal regions. It should be noted that two follow-up 

analyses (not shown) failed to find effects within the time range of the N60, whereas the ef-

fects within the time range of the P100 were always found (see Main Text for details). 

 


