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Modelling power flow in a hoist motor of a Rubber
Tyred Gantry crane
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and Victor M. Becerra, Senior Member, IEEE

Abstract—A method for calculating the power demand of the
hoist motor in Rubber-Tyred Gantry (RTG) cranes with non-
parallel cables has been developed in order to measure the energy
consumption in a typical lift cycle. From measurements taken at
the Port of Felixstowe, it has been observed that the peculiar
geometrical characteristics of the hoisting mechanism causes the
power demand to increase with the container height in constant
rotor speed conditions. The change in the angle of the hoisting
ropes cause an increase in torque load and power consumption.
By using information extracted from the crane’s geometry, it has
been possible to calculate the potential energy increase given the
weight and vertical position of the container. The load torque on
the hoist motor and the vertical speed of the mass have also been
calculated, allowing for the modelling of the hoist motor power
consumption when lifting containers with constant rotational
speed. The proposed model has been compared to a constant
power demand approximation, showing a higher accuracy for
masses below 40 t.

Index Terms—Load flow analysis, Load modeling, Mathemat-
ical model, Mechanical systems, Power system modeling.

I. INTRODUCTION

THE stacking of cargo containers inside shipping ports is
handled by Rubber-Tyred Gantry (RTG) cranes, whose

role is to lift containers from a terminal tractor and stack them
in the port area waiting to be moved to a train or to a ship. RTG
cranes are usually diesel-powered, account for a significant
quantity of the energy consumption inside the port, and are a
major contributor to greenhouse gases emissions [1]. Shipping
ports are now considering reducing the energy consumption
by increasing efficiency, improving operations, and recovering
energy that is otherwise wasted. The hoist motor of a crane,
with a power rating of up to 400 kW, accounts for the majority
of the consumed energy and offers opportunities to recover
potential energy when lowering a container [2]. Modelling
the power flow of this element is crucial for increasing the
efficiency and enabling the utilization of stored energy via a
control methodology.

The hoist geometry of a gantry crane has been historically
modelled as a single rope lifting a mass whose dynamic equa-
tion were used to control the swinging [3]. Later, the research
problem moved towards multi-cable spreaders with parallel
cables [4], [5] which result in a constant power consumption in
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the steady state phase with constant rotor speed. By analysing
data acquired on RTG cranes at the Port of Felixstowe it
was observed that the shape of the power waveform cannot
be modelled only by calculating the power required to move
a mass vertically at a constant speed, as it is shown in
Figure 1, since the power demand increases in the phase
when the container is being lifted at a constant motor speed.
The same behaviour, reversed, also occurs when lowering the
container. This is due to the peculiar geometry of the crane
hoisting mechanism that uses non-parallel cables, causing an
increase in power demand with container height because of the
changing vertical angle of the ropes: when the container is at
the top, the power consumption (per unit of time) is higher
due to the different rope angle. In [6] the authors find that the
vertical speed of the spreader changes with the angle between
the ropes and the vertical line passing through it. In order
to facilitate the suppression of oscillations [7], the crane in
study is equipped with non-parallel ropes, resulting in a similar
geometry as the one presented in this paper. The geometry of
hoisting cables has been primarily studied with the objective
to reduce sway and oscillations, while the benefits are also
found when modelling the power demand of a hoist motor.
Accounting for non-parallel cables and the resulting change
in power demand in steady state can expand the work done
on RTG cranes, including the control of energy storage [8],
[9], particularly in works that explicitly assume constant power
demand in steady state [2], [10], [11]. Due to the unexpected
increase in power demand during the constant speed phase, it is
difficult to implement a control strategy designed specifically
for cranes with parallel cables to cranes with non-parallel ones.
Other types of cranes present a similar distinctive trait where
the power load changes during the lift, like harbor portal cranes
which have been the subject of a study [12], but to date an
exhaustive analysis of the power consumption of an RTG with
non-parallel ropes is still missing.

This paper intends to address this problem by calculating
the vertical speed and acceleration of the container when the
hoist motor is rotating at a constant speed it is possible to
accurately measure the mechanical power provided by the
motor, assuming it is possible to measure the weight of the
load. The output of the calculation can be compared with the
measured electric power flow to validate the proposed model.
It is then now possible to estimate the energy consumption
and recovery for any container movement without the need of
any measurement on board the crane. This paper is an updated
version of [13].
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II. METHODS

Figure 2 shows the crane, manufactured by ZPMC, which
is the objective of this research. The headblock mechanism,
or spreader is suspended from eight ropes and it locks to
containers allowing the safe displacement of the load. The
hoist motor is connected to the hoist drum through a reducer
with a ratio of 122.8:1, which is then attached to the eight wire
ropes that pass across sheaves; the ropes are then connected
to the headblock, each rope forming the same angle with
respect to the vertical axis. For the purposes of calculating
container position and speed, only one rope is considered in
the simplified geometry (Figure 3), assuming that the ropes
contribute evenly to transfer the forces (due to gravity and
inertia) from the container to the hoist drum and that the mass
is restricted to only move vertically. A logging device recorded
the rotational speed of the hoist motor, as well as electric
quantities including currents and voltages, with a sampling
rate of 100 Hz. The hoist motor is a 8-poles induction motor
rated at 200 kW. Controlled tests have been performed using
containers of known mass which have been lifted and lowered
while logging measurements. A total of 5 test were conducted
with container of the following weights: 0, 5, 10, 25 and
40 tonne. Motor speed data have been used to calculate the
mechanical power while the power consumption has been used
to validate the model.

1) Kinematics: Defining c(t) as the length of a hoist rope at
time t in meters, we assume that we only have the knowledge
of the speed ċ(t), calculated as:

ċ(t) = −ωhoist(t)

nred

ddrum
2π

(1)

where ωhoist [rad/s] is the angular speed of the hoist motor
(known), nred = 122.8 is the gear ratio of the reducer and
ddrum = 1.285 [m] is the diameter of the drum; ċ(t) is
integrated to obtain the value of the rope length at time t.
From the crane’s schematics the range of values of c(t), b(t)
and θ have been extracted and are presented in Table I. The
initial condition c(0) is unknown so it initially chosen from
the range of admissible values and then during the integration
of ċ(t) the value of θ is calculated at each interval verifying
that it does not steps out of the boundaries, in which case the
initial condition c(0) is changed accordingly. The integration
is then restarted and the cycle is repeated until a suitable initial
condition is found.

From the geometry in Figure 3 it can be seen that the value
of c(t) is linked to the values of lengths a and b(t):

c(t)2 = a2 + b(t)2.

The value of a measured from the schematics is approximately
2.640 m. Knowing that c(t) > a∀t, the vertical position b(t)
is the following:

b(t) =
√
c(t)2 − a2 (2)
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Fig. 1. Hoist motor speed (dashed blue line) and hoist motor power
consumption (red) when lifting a 25 t container.

TABLE I
MEASURED RANGES OF ROPE LENGTH c, CONTAINER VERTICAL POSITION

b AND ROPE ANGLE θ.

∀t Maximum height Minimum height
c(t) 4.200 m 19.908 m
b(t) 3.643 m 19.732 m
θ(t) ≈ 39◦ ≈ 7.4◦

and speed of the container ḃ(t) is then:

ḃ(t) =
d

dt

√
c(t)2 − a2 (3)

=
1

2
√
c(t)2 − a2

2c(t)ċ(t) (4)

=
c(t)√

c(t)2 − a2
ċ(t). (5)

Equation (5) implies that when the hoist motor speed is
constant (and ċ(t) is constant) the vertical speed of the
container changes with the length of the rope c(t). The vertical
speed of the container and the rope speed have a ratio which
then depends on c(t):

ḃ(t)

ċ(t)
=

c(t)√
c(t)2 − a2

. (6)

The ratio in (6) is plotted in Figure 4 and it can be noticed that,
with constant hoist motor speed, the vertical container speed
ḃ(t) increases as c(t) decreases. The angle θ(t) varies as the
container moves vertically, and it can be easily calculated from
a and c(t):

θ(t) = arcsin

(
a

c(t)

)
.

The vertical acceleration can be calculated by further dif-
ferentiating the speed:

b̈(t) =
d

dt

(
c(t)ċ(t)√
c(t)2 − a2

)
(7)

=
c(t)c̈(t) + ċ(t)2√

c(t)2 − a2
− c(t)2ċ(t)2

(c(t)2 − a2)3/2
(8)
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Fig. 2. Rubber-Tyred Gantry crane in use at the Port of Felixstowe.
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Fig. 3. Simplified 1-rope geometry of the hoisting mechanism. At time t1 the
container vertical position is lower so b(t1) and c(t1) are higher, therefore
angle θ(t1) is smaller. At time t2 the vertical position is higher.

= −
c(t)

(
a2 − c(t)2

)
c̈(t) + a2ċ(t)2

(c(t)2 − a2)3/2
. (9)

Limiting the calculations in the constant hoist motor speed
phase, i.e. c̈(t) = 0, Equation (9) can be simplified:

b̈(t) = − a2ċ(t)2

(c(t)2 − a2)3/2
. (10)

The vertical acceleration, which varies depending on the
height of the container, will be used to calculate the load torque
on the motor.

2) Dynamics: To calculate the hoist motor power flow a
load torque input is needed as well. As already stated, the
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Fig. 4. Ratio between vertical speed and rope speed in function of rope
length.

θ

Fb

F2F1

T

y

x

Container

Hoist drum

Fig. 5. Forces imposed by the hoist motor on the container when lifting.

power consumption increases with the container height when
the speed is constant. The motor mechanical power Pm is
proportional to the torque T times the rotational speed ω; it is
then evident that the variable that changes with height is the
torque. In Figure 5 it can be seen that a torque T is applied
to the hoist drum causing it to lift the container by applying
equal forces ~F1 and ~F2 whose sum results in the vector ~Fb.
By calculating the magnitude of ~Fb and the value of the angle
θ it is possible to calculate the torque which the motor needs
to apply to the drum (of known diameter). The vector ~Fb is
the sum of two symmetrical components:

~Fb = ~F1 + ~F2

and the modulus depends on the vertical components as the
horizontal components cancel out:

| ~Fb| = F1,y + F2,y = 2F1,y
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with Fn,y being the component on the y-axis of ~Fn. The
component F1,y can be calculated from the values of θ(t),
a and c(t) (from Figure 3):

sin(θ(t)) =
a

c(t)

cos(θ(t)) =

√
1− a2

c(t)2

F1,y(t) = | ~F1(t)| cos(θ(t)) = | ~F1(t)|

√
1− a2

c(t)2
.

The magnitude of the force vector ~F1 that needs to be applied
to generate a vertical force ~Fb on the container is then:

| ~F1(t)| =
| ~Fb(t)|

2
√
1− a2

c(t)2

. (11)

At rest, the only force that the hoist motor needs to compensate
is gravity. However, when the container is moved the sum of
forces acting on the mass is:

~F = (ms +mc)(~g + b̈(t) ~uy) + ~Fb = ~0

| ~Fb| = (ms +mc)(|~g|+ b̈(t))

where ms = 13000 is the mass (in kg) of headblock and
spreader, mc is the mass of the container, ~g is the acceleration
given by gravity, ~uy is the unit vector in the positive y direction
and b̈(t) is the instantaneous vertical acceleration imposed by
the hoist motor as calculated in (10). Given the diameter ddrum
of the drum, the torque | ~Td| that needs to be applied to the
drum is then:

| ~Td| = | ~Fb|
ddrum

2

and, taking into account the presence of a reducer with ratio
nred, the hoist motor must provide the following instantaneous
load torque T :

T (t) =
1

nred

(ms +mc)(g + ac(t))√
1− a2

c(t)2

ddrum
2

. (12)

When the container is at rest, b̈(t) = 0 and the only accelera-
tion acting on the container is gravity:

T (t) =
ddrum
2nred

g(ms +mc)√
1− a2

c(t)2

. (13)

The calculated torque and speed values can be validated by
comparing them to the measurement of consumed electric
power.

III. RESULTS AND DISCUSSION

Measurements taken on a crane at the Port of Felixstowe
were used to extract the container speed and acceleration. The
hoist motor rotational speed was used to calculate the hoist
rope position and speed using equation (1), as well as torque
using equation (12).

Figure 6 shows the results of calculating the position of the
container during a controlled test of hoist movement with a
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Fig. 6. Calculated rope position and container vertical position (origin at the
headblock) for a controlled test when hoisting a 10 t container.
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Fig. 7. Rope and container speed superimposed to the power flow of the
hoist motor when lifting and lowering a 10 t container. Note the lower power
magnitude when the motor is regenerating (negative speed).

10 t container, using (1) and integrating. Figure 7 shows the
speeds calculated by differentiating the vertical position; it can
be noticed that the speeds are very close to the rated value of
50 meters per minute (provided by the manufacturer); it can
also be verified that the power flow in the hoist motor (in
red) changes with the calculated vertical position, albeit with
constant motor speed and load mass.

From (13), the torque Trest that a hoist motor needs to
provide to keep a 10 tonne container at rest can be calculated
as:

Trest =
ddrumg(10 +ms)

2nred
(14)

=
9.81m/s2 · (10e3kg + 13e3kg) · 1.285m

2 · 122.8
(15)

= 1180Nm. (16)

Given the values of ċ(t) (and, by integration, c(t)) it was
possible to apply (12) in order to calculate the load torque
on the motor. The result is shown in Figure 8. The gray
signal of the calculated torque is highly sensible to noise in
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Fig. 8. Load torque on the hoist motor calculated from mass and acceleration
of the container and the geometry of the system. A 10 t container is lowered
(first 23 seconds) and later it is raised again to approximately the same height.
The boundaries (in red) are the theoretical maximum and minimum values
for the calculated torque.

the hoist rotor speed measurement; for this reason it is also
shown the moving average of the torque value. To mitigate
the noise problem it is possible to use a constant motor
speed as the input; in this work it was chosen to use the
measurement in order to show the accuracy of the calculation.
Assuming no vertical acceleration beside gravity and rope
length spanning the whole admissible range, equation (12)
indicates an expected torque range of approximately 1191 to
1518 Nm during the whole movement, confirming the validity
of the results shown in Figure 8.

Instantaneous power consumption of the hoist motor when
lifting containers of known masses has been recorded at
the Port of Felixstowe and it can be used to validate the
results. The electric power consumption of an induction motor
increases with the mechanical power required to lift the
containers, the latter being the multiplication between the load
torque T (t), and rotational speed ω(t):

Pm(t) = ω(t)T (t).

where Pm(t) is the instantaneous mechanical power that the
motor need to produce in order to move a container at a certain
speed, excluding electrical losses and mechanical losses. By
dividing the losses into three categories, it is possible to link
the mechanical power Pm(t) to the electric power Pe(t):

Pm(t) = aPe(t) + b1ω(t) + b2 + ε(t) (17)

where a is a multiplicative factor that accounts for losses
which depend on the electric power magnitude (e.g. copper
losses), b1 is linked to losses which depend on the speed (e.g.
friction) and b2 is a bias term which does not depend on speed
or power. The function ε(t) includes the mechanical power
modelling error and the higher-order approximations of the
losses. By comparing the norm of ε(t) of the proposed model
with respect to a constant-power approximation it is possible
to demonstrate the validity of the model. The values of the

TABLE II
VALUES CHOSEN FOR APPROXIMATING THE CONVERSION LOSSES FROM

MECHANICAL TO ELECTRIC POWER.

Proposed model Constant power approximation
a 0.62 0.49
b1 -0.28 -0.33
b2 47.44 77.25

TABLE III
RMSD VALUES OF THE PROPOSED MODEL AND THE CONSTANT POWER

APPROXIMATION.

Weight Proposed model Constant power approximation
0 t 65.92 106.98
5 t 97.71 98.85
10 t 95.59 171.19
25 t 155.35 222.62
40 t 339.27 175.75

parameters a, b1 and b2, shown in Table II, have been chosen
as to minimize the normalized Root-Mean-Square Deviation
(RMSD) ||ε(t)||2 of both the model and the approximation.

The resulting values of ||ε(t)||2 for each test are presented
in Table III, and Figure 9 shows examples of the proposed
model output compared with the approximation. It can be
seen that the only test in which the proposed model has a
worse performance than the approximation is the 40 tonne
container, as reflected by both the high error (Table III) and
profile (shown in Figure 9d). In the remaining tests the RMSD
is lower than the approximation and the model tracks the
power demand. The noisy output of the proposed model is
due to the hoist rotor speed measurements and the calculations
which accentuated the issue. As already stated in Section III,
using constant speeds as inputs for the model instead of
measurements will eliminate this problem.

IV. CONCLUSION

Measurements of the power flow in a hoist motor of a
Rubber-Tyred Gantry crane showed an unexpected increase in
power consumption in constant speed movement. By analysing
the geometry of the crane it had been possible to model the
mechanical power required by a hoist motor to lift a container,
including the variations in load torque and accelerations due to
the geometry of the crane. A comparison of the model output
and measurements taken at the Port of Felixstowe showed
high model accuracy for loads up to 25 t. These results can
lead to a more accurate model of the power flow of the hoist
motor and the crane itself, allowing for the analysis of the
energy consumption and the study of recoverable energy when
lowering a container of known weight. A thorough knowledge
on the amount of energy used in each lift may lead to energy
savings techniques, including the use of energy storage, that
can reduce the impact on the environment and the fuel cost
of one of the most energy-intensive industries which is cargo
container handling.

Future research could include the modelling of the dynamics
of the electrical system, including the inevitable losses, leading
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Fig. 9. Measured mechanical power compensated for losses (in black)
compared to the output of the proposed model (in light blue).

to a more accurate representation of the power consumption
of the main electric motor.
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