
Effpi:
Verified Message-Passing Programs in Dotty
Alceste Scalas

Imperial College London
and Aston University, Birmingham

UK
a.scalas@aston.ac.uk

Nobuko Yoshida
Imperial College London

UK
n.yoshida@imperial.ac.uk

Elias Benussi
Imperial College London
and Faculty Science Ltd.

UK
elias@faculty.ai

Abstract
We present Effpi: an experimental toolkit for strongly-typed
concurrent and distributed programming in Dotty, with veri-
fication capabilities based on type-level model checking.
Effpi addresses a main challenge in creating and main-

taining concurrent programs: errors like protocol violations,
deadlocks, and livelocks are often spotted late, at run-time,
when applications are tested or (worse) deployed. Effpi aims
at finding them early, when code is written and compiled.

Effpi provides: (1) a set of Dotty classes for describing
communication protocols as types; (2) an embedded DSL for
concurrent programming, with process-based and actor–
based abstractions; (3) a Dotty compiler plugin to verify
whether protocols and programs enjoy desirable properties,
such as deadlock-freedom; and (4) an efficient run-time sys-
tem for executing Effpi’s DSL-based programs. The com-
bination of (1) and (2) allows the Dotty compiler to check
whether an Effpi program implements a desired protocol/-
type; and this, together with (3), means that many typical
concurrent programming errors are found and ruled out at
compile-time. Further, (4) allows to run highly concurrent
Effpi programs with millions of interacting processes/act-
ors, by scheduling them on a limited number of CPU cores.

In this paper, we give an overview of Effpi, illustrate its
design and main features, and discuss its future.

CCS Concepts • Theory of computation → Type struc-
tures; Verification by model checking; • Software and its
engineering→ Concurrent programming languages.

Keywords behavioural types, dependent types, processes,
actors, Dotty, Scala, temporal logic, model checking

ACM Reference Format:
Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Effpi: Veri-
fied Message-Passing Programs in Dotty. In Tenth ACM SIGPLAN
Scala Symposium (Scala ’19), July 17, 2019, London, United Kingdom.

Scala ’19, July 17, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Tenth ACM SIGPLAN Scala Symposium (Scala ’19), July 17, 2019, London,
United Kingdom, https://doi.org/10.1145/3337932.3338812.

ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3337932.
3338812

1 Introduction
Concurrent and distributed programming is hard. Modern
programming languages and toolkits provide high-level con-
currency abstractions (such as processes and actors) to sim-
plify reasoning, and make software developers’ life easier:
e.g., Erlang [9], Go [11], Orleans [23], Akka [20]. Recent de-
velopments leverage types to rule out (some) concurrency
errors early, at compile-time. E.g., the Akka Typed toolkit
[21] introduces typed mailboxes and actor references (remin-
iscent of [13]): an actor reference r of type ActorRef[Int]
points to an actor handling messages of type Int, and the
Scala compiler raises an error if a program tries to use r to
send, e.g., a String. Typed actor references allow to approx-
imate protocols [17], i.e., sequences of message exchanges;
this prompted experiments on checking sessions at compile-
time [15], with informal inspiration from session types [1, 14].

Effpi is our contribution to this line of work: an experi-
mental, formally-grounded toolkit allowing to define proto-
cols as types, with verification capabilities based on a com-
bination of type checking plus type-level model checking. The
theory behind Effpi is illustrated in [32]. Its website is:

https://alcestes.github.io/effpi
It includes Effpi’s source code, instructions, and a ready-to-
use virtual machine. In this paper, we provide an example-
driven overview, and discuss future research directions.

2 Fundamentals
Unlike the toolkits cited in §1, Effpi is designed on a formal
foundation: λπ⩽ , a functional concurrent message-passing cal-
culus blending behavioural types (from π -calculus literature)
[1, 26] and dependent function types (from Dotty) [4]. This
theory, its related work, and some implementation details
are presented in [32]; here we give an informal summary.

Behavioural Types Inπ -calculus literature, types are dubbed
behavioural if they describe the interactions of a program,
i.e., its protocol: a type like “?int; !string” means “receive an
integer; then, send a string.” Behavioural type systems ensure
that, if program P type-checks vs. type/protocol T , then run-
ning P will yield the interactions inT ; if P does not abide by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/222826332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3337932.3338812
https://doi.org/10.1145/3337932.3338812
https://doi.org/10.1145/3337932.3338812
https://alcestes.github.io/effpi

Scala ’19, July 17, 2019, London, United Kingdom Alceste Scalas, Nobuko Yoshida, and Elias Benussi

T , type-checking fails. To model programs interacting via
multiple channels, one can use finer behavioural types, e.g.:

c1?int; c2!string (1)
which means “receive an integer from channel c1; then, send
a string over channel c2.” Many works try to bridge the gap
from π -calculus theory to practice, by creating new program-
ming languages, or seeking ways to represent types like (1)
in general-purpose languages. This is not easy: some proper-
ties (e.g., static linearity checks) are tricky, and often lost in
the translation to existing languages. For a survey, see [10];
works on Scala [27–30] resort to run-time linearity checks.

Behavioural Types in Dotty Effpi provides types for de-
scribing the desired behaviour of concurrent programs:
• Chan[A] is the type of a channel that can be used to
send/receive values of type A;

• Out[A, B] is the type of a program that uses a channel of
type A to send a value of type B;

• In[A, B, C] is the type of a program that uses a channel
of type A to receive a value of type B, and pass it to a
continuation of type C (which is a function type taking B);

• A >>: B is the type of a program that performs the com-
munications of A, followed by those of B;

• Par[A, B] is the type of a program that executes two sub-
programs of type A and B in parallel, letting them interact;

• Rec[X, A] is the type of a program that executes a sub-
program of type A, possibly looping;

• Loop[X] is the type of a program that loops;1
• Proc is the abstract supertype of all types above (except
Chan): it represents a program that may interact (or not).
These types become quite powerful when combined with

one of Dotty’s distinguishing features: dependent function
types [4]. In fact, Effpi builds upon a novel, fundamental
insight: dependent function types can be used to track chan-
nel usage in programs. E.g., the type of a function taking two
channels c1 and c2, and using them according to (1), is:
type T = (c1: Chan[Int], c2: Chan[String]) =>

In[c1.type, Int, (x: Int) => Out[c2.type, String]]

To produce programs with such a type, Effpi provides a
DSL that looks like the following code snippet:
1 val f: T = (c1: Chan[Int], c2: Chan[String]) => {
2 receive(c1) { x => // Use c1 to receive x
3 println(s"Received: ${x}")
4 if (x > 42) send(c2, "OK") // Send "OK" via c2
5 else send(c2, "KO") // Send "KO" via c2
6 } }

The key intuition is that Effpi’s DSL provides methods
(such as receive() / send() above) to construct objects that
describe a program performing structured sequences of input-
s/outputs. E.g., receive() takes two arguments: a channel
1It requires X “bound” by Rec[X, A], and Loop[X] occurring in A: a work-
around to type recursive programs, as Dotty lacks recursive type aliases.

used to receive a value x, and a function that takes x and per-
forms the continuation of the input; the object returned by
receive() has type In. Similarly, send() returns an object
of type Out. Such objects are interpreted and executed by
Effpi’s runtime system (discussed in §4), which performs
the actual input/output operations.
The Effpi DSL allows to write programs performing ar-

bitrary communications; to restrict them, a programmer can
add type annotations, to statically enforce desired protocols.
E.g., the type annotation “f: T” (line 1 above) restricts the
possible implementations of f, ensuring that f realises the
protocol described by T: hence, f uses a channel of type
“c1.type” (that is only inhabited by f’s argument c1) to re-
ceive an Integer, and then uses a channel of type “c2.type”
(only inhabited by f’s argument c2) to send a String. Con-
sequently, any violation of the type/protocol T is found at
compile-time: if, e.g., the “else” branch on line 5 is forgotten,
or f uses channels c1 and c2 in other ways, or in a differ-
ent order, or tries to interact via some channel c3 defined
elsewhere, the Dotty compiler raises a type mismatch error.
Notably, several Dotty features play a crucial role in the

design of Effpi. E.g., the union type “|” [7] allows to model
choices in a protocol: Out[C1, Int] | Out[C2, String]
is the type of a process that can either send an Integer on
channel C1, or a String on C2. In the next sections, we show
how Effpi takes advantage of other characteristics of Dotty.

3 A Whirlwind Tour of Effpi
We now give an overview of Effpi’s main features, proceed-
ing by examples. First, we focus on its core (channel-based)
communication model, by showing how to implement (§3.1)
and verify (§3.2) a well-known concurrency problem. Then,
we illustrate Effpi’s higher-level, actor-like API (§3.3).

3.1 Defining, Composing & Implementing Protocols
Effpi allows to define and compose protocols using Dotty’s
type aliases and parameters. E.g., consider the well-known
Dijkstra’s dining philosopher problem: two processes (philo-
sophers) share two resources (forks), and want to acquire
both (to eat), then release them. Philosophers eat after acquir-
ing two forks, and drop the first only after picking the second.
The goal is: let both philosophers eat, without deadlocks. A
behavioural type for the desired fork behaviour is:

type Fork[Acq <: Chan[Unit], Rel <: Chan[Unit]] =
Rec[RecX, Out[Acq, Unit] >>:

In[Rel, Unit, (_x: Unit) => Loop[RecX]]]

i.e.: given two channel types Acq and Rel, use a channel of
type Acq to send a message of type Unit (signalling that the
fork is available for Acquisition), and then (>>:) use a channel
of type Rel to receive a message (signalling that the fork is
Released); repeat infinitely (Rec[RecX, ...Loop[RecX]]).

Here is an implementation of the Fork protocol:

Effpi: Verified Message-Passing Programs in Dotty Scala ’19, July 17, 2019, London, United Kingdom

def fork(id: Int, acq: Chan[Unit],
rel: Chan[Unit]): Fork[acq.type, rel.type] = {

rec(RecX) {
println(s"Fork ${id}: available")
send(acquire, ()) >> {
println(s"Fork ${id}: picked")
receive(release) { _ =>
loop(RecX) } } } }

The type annotation fork(. . .): Fork[acq.type, rel.type]

ensures that fork() uses exactly its arguments acq and
rel; if the fork’s code tries, e.g., to use acq / rel in the
wrong order, then it will not compile. Similarly, we can write
the behavioural type of a philosopher, whose parameters are
channel types to signal when forks are Picked /Dropped:
type Philo[Pick1 <: Chan[Unit], Drop1 <: Chan[Unit],

Pick2 <: Chan[Unit], Drop2 <: Chan[Unit]] =
Rec[RecX,
In[Pick1, Unit, (_f1: Unit) =>
In[Pick2, Unit, (_f2: Unit) =>
(Out[Drop1, Unit] >>: Out[Drop2, Unit]) >>: Loop[RecX]]]]

Then, we can write a philosopher implementation, and
type-annotate it, to ensure it picks/drops the forks as desired:
def philo(name: String, pick1: Chan[Unit], drop1: Chan[Unit],

pick2: Chan[Unit],
drop2: Chan[Unit]): Philo[pick1.type, drop1.type,

pick2.type, drop2.type] = {
rec(RecX) {
println(s"${name}: picking first fork...")
receive(pick1) { _ =>
println(s"${name}: picking second fork...")
receive(pick2) { _ =>
println(s"${name}: eating, then dropping forks...")
send(drop1, ()) >> send(drop2, ()) >> {
println(s"${name}: Thinking...")
loop(RecX) } } } } }

We can also write and implement a type describing a de-
sired composition of philosophers and forks (below): the type
annotation enforces the desired interconnection of channels.
type Dining[C1pick <: Chan[Unit], C1drop <: Chan[Unit],

C2pick <: Chan[Unit], C2drop <: Chan[Unit]] =
Par4[Philo[C2pick, C2drop, C1pick, C1drop], Fork[C1pick, C1drop],

Philo[C1pick, C1drop, C2pick, C2drop], Fork[C2pick, C2drop]]

def dining(p1: Chan[Unit], d1: Chan[Unit],
p2: Chan[Unit], d2: Chan[Unit]): Dining[p1.type, d1.type,

p2.type, d2.type] = {
par(philo("Socrates", p2, d2, p1, d1), fork(1, p1, d1),

philo("Aristotle", p1, d1, p2, d2), fork(2, p2, d2)) }

3.2 Verifying Protocols, and Their Implementations
The dining() program above type-checks and compiles.
But if we run it, we may get the execution below: the applica-
tion deadlocks. This is a typical
case of a concurrency error spot-
ted late, at run-time, during test-
ing (or in production). Can we
find the error at compile-time?
The problem here is that the type

Fork 1: available
Fork 2: available
Socrates: picking first fork...
Fork 1: picked
Aristotle: picking first fork...
Fork 2: picked
Socrates: picking second fork...
Aristotle: picking second fork...

Dining itself is “wrong,” asit does not guarantee a desired

property: deadlock freedom. In general, when types/proto-
cols are composed, and interact, they may exhibit unwanted
behaviours. To avoid this issue, Effpi provides a compiler
plugin to verify if a set of desired run-time properties hold.
E.g., if we add the following annotation to dining() above. . .

@verify(property = "deadlock_free()") // The compile-time check fails
def dining(p1:..., d1:..., p2:..., d2:...): Dining[p1.type, d1.type,

p2.type, d2.type] = ...

. . . then, Effpi’s compiler plugin verifies deadlock freedom,
via type-level model checking: it takes the type of the annot-
ated function definition, translates it to a format supported
by the mCRL2 model checker [3, 8, 12], and analyses its po-
tential behaviours against the property in the @verify(...)
annotation. If verification succeeds, then the implementation
enjoys the property. In the example above, verification fails:
deadlock freedom does not hold for dining()’s type, hence
dining() might deadlock (and indeed, it does: see the exe-
cution above). We can fix Dining by letting one philosopher
pick the forks in the opposite order w.r.t. the other(s), by just
swapping the arguments of the first Philo type, i.e.:

type Dining2[C1pick <: Chan[Unit], C1drop <: Chan[Unit],
C2pick <: Chan[Unit], C2drop <: Chan[Unit]] =

Par4[Philo[C1pick, C1drop, C2pick, C2drop], Fork[C1pick, C1drop],
Philo[C1pick, C1drop, C2pick, C2drop], Fork[C2pick, C2drop]]

And to verify whether the solution is correct, we can try:
@verify(property = "deadlock_free()") // The verification succeeds
def dining2(p1:..., d1:..., p2:..., d2:...): Dining2[p1.type, d1.type,

p2.type, d2.type] = ???

Since the verification succeeds, we know that if we re-
place “???” with any implementation that type-checks, then
dining2()will never deadlock. One such implementations is
obtained from dining() above, by swapping the arguments
of the first philo(): their correct order is enforced by the
type annotation dining2(...): Dining2[...]. Moreover, the
verification result means that we can implement and deploy
the program components (forks and philosophers) separately,
and they will not deadlock — provided that they have types
Fork / Philo, and are interconnected as per Dining2.

Effpi allows to verifymore properties: some are discussed
in §3.3 below; for an (incomplete) list, see [32, Fig. 7]; for an
evaluation of the verification performance, see [32, Fig. 9].

3.3 Actor-Like DSL
The overview above covers the “low-level” channel-based
API of Effpi, based on the λπ⩽ calculus [32]). On top of
it, Effpi provides higher-level abstractions and extensions,
aiming at a more developer-friendly API. One such exten-
sions uses Dotty’s implicit function types [5, 25] to hide a
“default” input channel, yielding an actor-like DSL reminis-
cent of Akka Typed [21]. E.g., from [32, §1], this is an Effpi
actor that receives payments requests, and either accepts or
rejects them — reporting accepted payments to an auditor
(scenario distilled from a use case for Akka Typed [16, 21]):

Scala ’19, July 17, 2019, London, United Kingdom Alceste Scalas, Nobuko Yoshida, and Elias Benussi

1 @verify(property = "reactive(mb_)(aud) &&
2 responsive(mb_)(aud) &&
3 output_ev_followed(aud)(Accepted)(mb_)")
4 def payment(aud: ActorRef[Audit[_]]): Actor[Pay, ...] =
5 forever {
6 read { pay: Pay =>
7 if (pay.amount > 42000) {
8 send(pay.replyTo, Rejected("Too high!"))
9 } else {
10 send(aud, Audit(pay)) >>
11 send(pay.replyTo, Accepted) } } }

On line 4, the type annotation Actor[Pay, ...] says that
payment() returns an actor accepting messages of type Pay,
and behaving according to the (omitted) protocol specifica-
tion “...” (see [32, §1] for its details). On line 6, read is just a
disguised receive() (cf. §2) that awaits inputs from an im-
plicit channel of type Chan[Pay]. In this case, each received
message pay has a replyTo field: it is an actor reference
allowing to send a response (lines 8, 11). As in Akka Typed,
actor references are type-constrained: e.g., in line 1, the type
of aud ensures that aud can only be used to send messages
of type Audit. Under the hood, aud is just a channel of
type Chan[Audit[_]]. This actor-like DSL is a thin layer
on top of the DSL illustrated in the previous sections, and is
executed by the same interpreter and runtime system.

The Effpi compiler plugin can verify such actor-like pro-
grams. The annotation on lines 1–3 verifies that payment()
is always eventually ready to receive messages from its mail-
box (mb_), will always send back a response, and will send
Accepted whenever it outputs something on aud.

4 Design and Implementation
Core DSL As noted in §2, the process/channel-based API
of Effpi is an internal embedding of the λπ⩽ calculus [32]
in Dotty (with minimal adaptations): this leverages Dotty’s
type system features (e.g., dependent function types, union
types), and allows for easy interoperability with libraries and
toolkits running on the Java Virtual Machine. E.g., Effpi pro-
cesses/actors can easily interoperate with Akka Typed, via
“bridges” that forwardmessages between Effpi channels and
Akka ActorRefs; the same trick lets Effpi processes/actors
interact across a network, via Akka Remoting [19].

Actor-Like DSL The actor-like DSL discussed in §3.3 is
inspired by Akka Typed [21]; in particular, we used the “pay-
ment with audit” use case [16, 21] as a reference for DSL
design, trying to make the use case implementation simple
and developer-friendly. Its full implementation in Effpi is
provided as an example with Effpi’s source code, and uses
various features and extensions not shown here (e.g., an “ask
pattern” [22], or sub-actors yielding values to their creator).
Such features are covered by the compile-time check of pro-
gram/protocol conformance (§2, §3.1, §3.3), but are not yet
supported by the verification plugin (§3.2).

Runtime System The λπ⩽ embedding yields a DSL where
the continuations of I/O actions are functions (closures). We
took advantage of this fact to implement a runtime system
with a (non-preemptive) scheduler, decoupling Effpi pro-
cesses/actors from system threads, similarly to Akka Dis-
patchers [18]: i.e., processes/actors are run in an interleaved
fashion, unscheduled when waiting for input, and resumed
when an input is available. A difference is that Akka can
only interrupt actors waiting for input, whereas Effpi’s also
interrupts output operations. From our benchmarks, Effpi’s
performance is not too far from Akka, and supports highly
concurrent programs: for measurements, see [32, Fig. 8].

5 Conclusion, Vision, and Future Work
We gave an overview of Effpi, a toolkit for strongly-typed
message-passing programs in Dotty. Effpi allows to spot
concurrency errors (e.g., protocol violations, deadlocks) at
compile-time, with a recipe that mixes behavioural types,
Dotty’s dependent function types, and model checking.

Works [27–30] implement session types in Scala. Effpi’s
types and session types are related, but have different design
and capabilities (cf. [32, §6]); moreover, [27–30] resort to run-
time linearity checks, whereas Effpi does not need them.
The broader goal behind Effpi is providing lightweight

software verification capabilities that (1) can be used by
programmers who are not expert in, e.g., theorem proving
or model checking; and (2) do not require the adoption of
entirely new programming languages and toolchains. We
found that Dotty can help achieving this goal, thanks to its
features, and to its interoperability with the JVM ecosystem.
Much future work lies ahead: some is discussed in [32,

§6]. We are particularly interested in finding more ways to
leverage Dotty features for behavioural verification. We be-
lieve that match types [6] can be used to represent (a limited
form of) data-dependent choices: e.g., a channel allows to
receive A or B, and the protocol continues as T in the first
case, or T’ in the second. This would allow to represent and
verify more protocols, possibly covering the whole range
of multiparty session types [2, 31]. Effpi supports mobile
code (i.e., sending/receiving program thunks) [32, Example
3.4]: we will investigate distributed implementations of the
feature, that may benefit from the work on Spores [24].

Acknowledgments
Work partially supported by EPSRC projects EP/K034413/1,
EP/K011715/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1.

References
[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Gi-

useppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert,
Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Mar-
tins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas
Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2017.
Behavioral Types in Programming Languages. Foundations and Trends

Effpi: Verified Message-Passing Programs in Dotty Scala ’19, July 17, 2019, London, United Kingdom

in Programming Languages 3(2-3) (2017). https://doi.org/10.1561/
2500000031

[2] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asyn-
chronous Session Types. In Formal Methods for Multicore Programming.
https://doi.org/10.1007/978-3-319-18941-3_4

[3] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stap-
pers, Erik P. de Vink, Wieger Wesselink, and Tim A. C. Willemse.
2013. An Overview of the mCRL2 Toolset and Its Recent Advances.
In Tools and Algorithms for the Construction and Analysis of Systems.
https://doi.org/10.1007/978-3-642-36742-7_15

[4] Dotty developers. 2019. Dotty documentation: dependent function
types. https://dotty.epfl.ch/docs/reference/new-types/dependent-
function-types.html.

[5] Dotty developers. 2019. Dotty documentation: implicit function
types. https://dotty.epfl.ch/docs/reference/new-types/implicit-
function-types-spec.html.

[6] Dotty developers. 2019. Dotty documentation: match types. http:
//dotty.epfl.ch/docs/reference/new-types/match-types.html.

[7] Dotty developers. 2019. Dotty documentation: union types. https:
//dotty.epfl.ch/docs/reference/new-types/union-types.html.

[8] Technische Universiteit Eindhoven. 2019. mCRL2 website. https:
//mcrl2.org/.

[9] Ericsson. 2019. The Erlang/OTP Programming Language and Toolkit.
http://erlang.org/.

[10] Simon Gay and António Ravara. 2017. Behavioural Types: From Theory
to Tools. River Publishers, Series in Automation, Control and Robotics.
https://doi.org/10.13052/rp-9788793519817

[11] Google. 2019. The Go Programming Language. https://golang.org/.
[12] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and

Analysis of Communicating Systems. The MIT Press.
[13] Jiansen He, Philip Wadler, and Philip W. Trinder. 2014. Typecasting

actors: from Akka to TAkka. In SCALA@ECOOP. https://doi.org/10.
1145/2637647.2637651

[14] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR. https:
//doi.org/10.1007/3-540-57208-2_35

[15] Roland Kuhn. 2017. Akka Typed Session. https://github.com/rkuhn/
akka-typed-session.

[16] Roland Kuhn. 2017. Akka Typed Session: audit example. https://github.
com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/
rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala.

[17] Lightbend, Inc. 2017. Akka Typed: Protocols. https://akka.io/blog/
2017/05/12/typed-protocols.

[18] Lightbend, Inc. 2019. Akka Dispatchers documentation. https:
//doc.akka.io/docs/akka/2.5/dispatchers.html.

[19] Lightbend, Inc. 2019. Akka remoting documentation. https://doc.akka.
io/docs/akka/2.5/remoting.html.

[20] Lightbend, Inc. 2019. The Akka toolkit and runtime. http://akka.io/.
[21] Lightbend, Inc. 2019. Akka Typed documentation. https://doc.akka.

io/docs/akka/2.5/typed/index.html.
[22] Lightbend, Inc. 2019. Commonly used patterns with Akka. https:

//doc.akka.io/api/akka/2.5/akka/pattern/index.html.
[23] Microsoft. 2019. The Orleans Framework. https://dotnet.github.io/

orleans/.
[24] Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A

Type-Based Foundation for Closures in the Age of Concurrency and
Distribution. In ECOOP. https://doi.org/10.1007/978-3-662-44202-9_13

[25] Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis,
Heather Miller, and Sandro Stucki. 2017. Simplicitly: Foundations and
Applications of Implicit Function Types. Proc. ACM Program. Lang. 2,
POPL, Article 42 (2017). https://doi.org/10.1145/3158130

[26] Davide Sangiorgi and David Walker. 2001. The π -calculus: a Theory of
Mobile Processes. Cambridge University Press.

[27] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.
2017. A Linear Decomposition of Multiparty Sessions for Safe Distrib-
uted Programming. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.
2017.24

[28] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.
2017. A Linear Decomposition of Multiparty Sessions for Safe Dis-
tributed Programming (Artifact). Dagstuhl Artifacts Series 3, 1 (2017).
https://doi.org/10.4230/DARTS.3.2.3

[29] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-
gramming in Scala. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.
2016.21

[30] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-
gramming in Scala (Artifact). Dagstuhl Artifacts Series 2, 1 (2016).
https://doi.org/10.4230/DARTS.2.1.11

[31] Alceste Scalas and Nobuko Yoshida. 2019. Less is More: Multiparty
Session Types Revisited. Proc. ACM Program. Lang. 3, POPL, Article
30 (Jan. 2019). https://doi.org/10.1145/3290343

[32] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verify-
ing Message-Passing Programs with Dependent Behavioural Types.
In PLDI. https://doi.org/10.1145/3314221.3322484 To appear. Pre-
print: http://mrg.doc.ic.ac.uk/publications/verifying-message-passing-
programs-with-dependent-behavioural-types/pldi19-preprint.pdf.

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-642-36742-7_15
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html
https://dotty.epfl.ch/docs/reference/new-types/implicit-function-types-spec.html
https://dotty.epfl.ch/docs/reference/new-types/implicit-function-types-spec.html
http://dotty.epfl.ch/docs/reference/new-types/match-types.html
http://dotty.epfl.ch/docs/reference/new-types/match-types.html
https://dotty.epfl.ch/docs/reference/new-types/union-types.html
https://dotty.epfl.ch/docs/reference/new-types/union-types.html
https://mcrl2.org/
https://mcrl2.org/
http://erlang.org/
https://doi.org/10.13052/rp-9788793519817
https://golang.org/
https://doi.org/10.1145/2637647.2637651
https://doi.org/10.1145/2637647.2637651
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://github.com/rkuhn/akka-typed-session
https://github.com/rkuhn/akka-typed-session
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://akka.io/blog/2017/05/12/typed-protocols
https://akka.io/blog/2017/05/12/typed-protocols
https://doc.akka.io/docs/akka/2.5/dispatchers.html
https://doc.akka.io/docs/akka/2.5/dispatchers.html
https://doc.akka.io/docs/akka/2.5/remoting.html
https://doc.akka.io/docs/akka/2.5/remoting.html
http://akka.io/
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://doc.akka.io/api/akka/2.5/akka/pattern/index.html
https://doc.akka.io/api/akka/2.5/akka/pattern/index.html
https://dotnet.github.io/orleans/
https://dotnet.github.io/orleans/
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1145/3158130
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/DARTS.2.1.11
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3314221.3322484
http://mrg.doc.ic.ac.uk/publications/verifying-message-passing-programs-with-dependent-behavioural-types/pldi19-preprint.pdf
http://mrg.doc.ic.ac.uk/publications/verifying-message-passing-programs-with-dependent-behavioural-types/pldi19-preprint.pdf

	Abstract
	1 Introduction
	2 Fundamentals
	3 A Whirlwind Tour of Effpi
	3.1 Defining, Composing & Implementing Protocols
	3.2 Verifying Protocols, and Their Implementations
	3.3 Actor-Like DSL

	4 Design and Implementation
	5 Conclusion, Vision, and Future Work
	Acknowledgments
	References

