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On the rigorous justification of b-modulation

method and inclusion of discrete eigenvalues

Dmitry Shepelsky, Anastasiia Vasylchenkova, Jaroslaw E. Prilepsky, and Iryna Karpenko

Abstract—Addressing the optical communication sys-

tems employing the nonlinear Fourier transform (NFT)

for the data modulation/demodulation, we provide the

explicit proof for the properties of the signals emerging

in the so-called b-modulation method, the nonlinear signal

modulation technique that provides the explicit control

over the signal extent. Our approach ensures that the

time-domain profile corresponding to the b-modulated data

has a limited duration, including the cases when the

bound states (discrete solitonic eigenvalues) are present.

In particular, in contrast to the previous approaches, we

show that it is possible to include the discrete eigenvalues

with the specially chosen parameters into the b-modulation

concept while keeping the signal localization property

exactly.

Index Terms—Optical fibre communication, optical soli-

tons

I. INTRODUCTION

IN a multitude of different physical areas, and,

notably, in fibre optics, the signal’s evolution

can often be well approximated by the nonlinear

Schrödinger equation (NLS) [1], [2]. In particular,

the latter serves as a leading order model that

describes the propagation of light envelope in fibre-

optic communication channels under some simplify-

ing conditions [1], [3]. The normalised lossless and

noiseless NLS for the slow varying complex elec-

tromagnetic field envelope function q(z, t), where z
is the distance along the fibre and t is the retarded

time (in the fibre optics context), is given as follows

iqz + qtt + 2|q|2q = 0 , (1)

i is the imaginary unity; for the explicit normalisa-

tions pertaining to single-mode optical fibres, see,
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e.g., [3]. The important property of NLS (1) is that

it belongs to the class of the so-called integrable

equations, meaning that the initial-value problem

for this equation can be solved by means of inverse

scattering technique [2], [4], given some constraints

on the “initial conditions”, q(0, t) in our notations.

The signal processing operations participating in

this method are often referred to as the NFT, and the

multiplexing technique dealing with the nonlinear

Fourier (NF) domain data was coined nonlinear

frequency division multiplexing [5]. In a nutshell,

the NFT maps the solution of NLS (i.e. our sig-

nal) onto the space of the complex-valued spec-

tral parameter k, playing the role of a “nonlinear

frequency”, such that the NFT operation, Eq. (2)

below, decomposes our space-time profile into the

nonlinear modes evolving inside the NF domain.

The nonlinear spectrum (i.e. the “NFT image”) that

corresponds to the initial profile with a finite first

norm, q(0, t) ∈ L1(R), contains, in the general case:

(i) two scattering coefficients a(k), b(k) for k ∈
R describing the dispersive radiation compo-

nents of our pulse;

(ii) the discrete (solitonic) spectrum, consisting

of two complex parameters for each discrete

(soliton) mode: the eigenvalue kj and the

respective spectral amplitude cj .

Either discrete or continuous part of the NF spec-

trum can be absent in some specific situations. See

more explicit details in [2], [3], [4], [5].

Insofar as the NF modes evolve linearly inside the

NF domain, the NFT-based optical signal process-

ing and the usage of the parameters of nonlinear

modes as data carriers have been considered as

an efficacious method for the nonlinearity mitiga-

tion in optical fibre links [3], [5], [6], [7]. The

recently introduced b-modulation NFT technique

[8], operating with the band-limited b(k) profiles,

has been aimed at resolving one of the principal

challenges in the NFT-based communication: to
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attain the explicit control over the temporal duration

of NFT-generated signals at the transmitter side [9],

[10], [11], [12]. The latter property allows us to

pack our data better inside a given time-bandwidth

volume and, thus, to reach higher spectral efficiency

numbers. In particular, the highest data rate reported

so far for the NFT-based transmission method was

achieved with the modified variant of b-modulation

(in the dual-polarisation case) [13] and has very

recently been confirmed experimentally [14]. In the

case of b-modulation, we map our data on the

function b(k), which is chosen to be band-limited,

and further adjust the function a(k) accordingly, see

the explanations and definitions below in Sec. II.

Then, the ensuing signal q(t), obtained through the

inverse NFT operation, has a finite duration in time

domain [8]. It is exactly the latter feature that allows

us to get a higher spectral efficiency compared to

“conventional” NFT-based systems employing the

continuous NF spectrum modulation [3], [6], see the

explicit comparison in [12].

For the completeness of our exposition here,

we note that in the original work by Wahls [8],

where the b-modulation concept was introduced,

the problem of a complete characterization of b(k)
in the case of time-limited signals q(t) supporting

bound states (i.e. containing a non-zero discrete NF

spectrum part) was formulated as an open question.

In the follow-up study [12], a necessary condition

for the possibility to have bound states keeping the

same b(k) was stated and the analogy with the

linear operator of the Lax pair representation for

the Korteweg–de Vries equation was mentioned. In

the latter case we deal with the bound states of one-

dimensional Schrödinger equation (written here for

some function ψ(t, k)),

ψtt + k2ψ = V (t)ψ.

See works [15], [16], where the necessary condi-

tions for b(k) to generate a finitely supported V (t),
which serves in this context the role of q(t) from

Zakharov-Shabat system (2), are discussed in pres-

ence of non-zero discrete spectrum (bound states).

We also mention Ref. [17], where the uniqueness of

the determination of a time-limited q(t) in (2) from

b(k) is discussed in the absence of bound states. At

this place we would like to emphasize that the recent

work [18] proposes to put an arbitrary additional

solitary mode atop the b-modulated profile, but to

keep the width of the solitary component in time

domain sufficiently thin (actually only one soliton

was embedded in that work). Such a composi-

tion ensures that the considerable portion of the

signal does not spread beyond the initial extent

of the b-modulation-generated profile. Importantly,

this approach does not provide the truly localised

signals, and in our current study we require the strict

localisation of the time-domain signal, similarly to

the initial definition of b-modulation [8].

In this paper, we analyse the b-modulated sig-

nals making an emphasis on the sufficiency aspect.

Namely, applying the Riemann–Hilbert approach

[5], [19], [20] for solving the inverse scattering

problem for Zakharov-Shabat system (2), we char-

acterize the time-limited signals having the same

scattering coefficient b(k) showing, in particular,

that it is possible to include the discrete nonlinear

spectral components (solitons) into the b-modulation

without violating the complete localisation of re-

spective time-domain profile.

II. DERIVATION OF THE PROPERTIES FOR

b-MODULATED SIGNALS

A. Direct problem for the Zakharov-Shabat system

attributed to q(t) with a finite extent.

The forward NFT for the signals q(t, z) evolving

according to Eq. (1), is performed by consider-

ing the Zakharov-Shabat system for two-component

function ϕ(t, k) [4], where here and in the following

we drop the dependencies of all quantities on z for

simplicity:

ϕt + ikσ3ϕ = Q(t)ϕ, Q(t) =

(

0 q(t)
−q̄(t) 0

)

.

(2)

Here and in the sequel the overbar means the

complex conjugate, and σ3 = ( 1 0
0 −1 ). We assume

that for t ∈ R, q ∈ L1(R) and q(t) = 0 for |t| > L
2

for some positive quantity L > 0, which is our

localisation extent.

Let us define the two-component Jost solutions

Φ(j)(t, k) and Ψ(j)(t, k), j = 1, 2, of Eq. (2), for

k ∈ R, fixed by their asymptotic behaviour:

Φ(1)(t, k) ≡ [φ1, φ2]
T → [e−ikt, 0]T as t→ −∞,

Ψ(2)(t, k) ≡ [ψ1, ψ2]
T → [0, eikt]T as t→ ∞,

and Φ(2) = [−φ̄2, φ̄1]
T , Ψ(1) = [ψ̄2,−ψ̄1]

T . The

scattering coefficients a(k) and b(k) associated with
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a given q(t), are defined through the scattering

relation:

Φ(t, k) = Ψ(t, k)

(

a(k) −b̄(k)
b(k) ā(k)

)

, k ∈ R, (3)

with

|a(k)|2 + |b(k)|2 ≡ 1.

In Eq. (3) Φ = (Φ(1),Φ(2)), and similarly for Ψ.

Now notice that for finite-extent q(t), Φ(t, k) and

Ψ(t, k) are the entire analytic functions of k ∈ C.

Moreover, in this case (3) holds for all k ∈ C with

ā, b̄ replaced by a∗, b∗, where the asterisk means the

Schwarz reflection: ϕ∗(k) := ϕ(k̄). Consequently,

a∗(k)a(k) + b∗(k)b(k) ≡ 1, k ∈ C. (4)

It is well-known that if q(t) = 0 for |t| > L
2

with

some L > 0, then the associated spectral functions

a(k) and b(k) can be expressed via the Fourier

transforms of some finitely supported functions.

For the consistency of presentation, we give here

a simple proof of this property using the integral

representations for the Jost solutions (cf. [17]).

Theorem 2.1: Let q ∈ L1(R) be such that q(t) =
0 for |t| > L

2
for some L > 0. Then

• Φ(t, k) = e−iktσ3 for t < −L
2

, and

Φ(t, k) = e−iktσ3+

∫ t

−L−t

K1(t, τ)e
−ikτσ3dτ, t > −

L

2
;

(5)

• Ψ(x, k) = e−iktσ3 for t > L
2

, and

Ψ(t, k) = e−iktσ3+

∫ L−t

t

K2(t, τ)e
−ikτσ3dτ, t <

L

2
.

(6)

Here Kj(t, ·) ∈ L1, j = 1, 2, are some 2×2 matrix

functions.

Proof of Theorem 2.1: For any q(t) ∈ L1(R),
the integral representation for Φ has the form [4]:

Φ(t, k) = e−iktσ3 +

∫ t

−∞

K1(t, τ)e
−ikτσ3dτ. (7)

Assuming for a moment that q(t) is smooth (q(t) ∈
C1(R)) and substituting (7) into (2), it follows that

K1(t, τ) satisfies the system of equations:

K1(t, t)− σ3K1(t, t)σ3 = Q(t),

K1t(t, τ) + σ3K1τ (t, τ)σ3 −Q(t)K1(t, τ) = 0, τ < t,
(8)

where Q(t) is given in Eq. (2). Decomposing K1

into the diagonal and off-diagonal parts, Kd
1 and

Ko
1 , respectively,

K1 = Ko
1 +Kd

1 ,

Eq. (8) then reduces to

Ko
1(t, t) =

1

2
Q(t),

Ko
1t(t, τ)−Ko

1τ (t, τ)−Q(t)Kd
1 (t, τ) = 0, τ < t,

Kd
1t(t, τ) +Kd

1τ (t, τ)−Q(t)Ko
1(t, τ) = 0, τ < t.

(9)

Now changing the variables as ξ = t + τ , η = t −
τ , and K̃(ξ, η) := K1(t, τ), with K̃ξ = 1

2
(K1t +

K1τ ), K̃η = 1
2
(K1t − K1τ ), system (9) reduces to

the following one:

K̃o(ξ, 0) =
1

2
Q

(

ξ

2

)

,

K̃o
η(ξ, η) =

1

2
Q

(

ξ + η

2

)

K̃d(ξ, η), η > 0,

K̃d
ξ (ξ, η) =

1

2
Q

(

ξ + η

2

)

K̃o(ξ, η), η > 0.

(10)

In turn, Eq. (10) reduces to an integral equation of

Volterra type. Indeed, integrating (10) we have:

K̃o(ξ, η) = K̃o(ξ, 0) +
1

2

∫ η

0

Q

(

ξ + η′

2

)

K̃d(ξ, η′)dη′

=
1

2
Q

(

ξ

2

)

+
1

2

∫ η

0

Q

(

ξ + η′

2

)

K̃d(ξ, η′)dη′,

K̃d(ξ, η) =
1

2

∫ ξ

−∞

Q

(

ξ′ + η

2

)

K̃o(ξ′, η)dξ′.

(11)

Substituting the second expression from Eq. (11)

into the first one, we arrive at a single integral

equation:

K̃o(ξ, η) =
1

2
Q

(

ξ

2

)

+
1

4

∫ η

0

Q

(

ξ + η′

2

)

×

×

∫ ξ

−∞

Q

(

ξ′ + η′

2

)

K̃o(ξ′, η′) dξ′ dη′.

(12)

Now notice that for ξ < −L, we have Q
(

ξ

2

)

= 0,

and, thus, Eq. (12) becomes a homogeneous Volterra

integral equation (in the domain ξ < −L, η >
0), the unique solution of which is 0. Therefore,

K̃(ξ, η) ≡ 0 for ξ < −L, η > 0, and, thus,

K1(t, τ) = 0 for t + τ < −L. The general case

of q ∈ L1 follows further by approximating Q in

(12) by smooth functions.
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Similarly, Ψ(t, k) has the representation

Ψ(t, k) = e−iktσ3 +

∫

∞

t

K2(t, τ)e
−ikτσ3dτ,

where, actually, K2(t, τ) = 0 for t + τ > L, which

can be proven by following the similar arguments

as above and taking into account that Q (ξ/2) = 0
for ξ > L.

Corollary 2.2: 1) In this case, the associated

scattering functions a(k) and b(k) have the

following integral representations:

a(k) = 1+

∫ 2L

0

α(τ)eikτdτ, b(k) =

∫ L

−L

β(τ)eikτdτ,

(13)

with some α(τ) ∈ L1(0, 2L), β(τ) ∈
L1(−L, L).

2) For t > L/2, b(k)e2ikt → 0 as k → ∞ for

k ∈ C+, and b∗(k)e−2ikt → 0 as k → ∞ for

k ∈ C−.

Here and below, C± = {k ∈ C : ±ℑk > 0}.

3) For t < −L/2, b∗(k)e−2ikt → 0 as k → ∞
for k ∈ C+, and b(k)e2ikt → 0 as k → ∞ for

k ∈ C−.

Indeed, setting t = −L/2 in the scattering

relation (3), and using Eq. (6) and the fact that

Φ(−L
2
, k) = eik

L
2
σ3 , it follows that a and b

have the representations in form of Eq. (13),

where α(τ) = (K2)22
(

−L
2
, τ − L

2

)

and β(τ) =
−(K2)21

(

−L
2
, L
2
− τ
)

. Here the double subscript

(·)ij stands for the corresponding matrix entry. Items

2) and 3) directly follow from Eq. (13).

B. Inverse problem attributed to band-limited b(k).

In the general case q(t) ∈ L1(R), we have

[2]: a(k) = 1 +
∫

∞

0
α(τ)eikτdτ and b(k) =

∫

∞

−∞
β(τ)eikτdτ with α(τ) ∈ L1(0,∞) and β(τ) ∈

L1(−∞,∞), and the set of spectral data determin-

ing uniquely q(t), is conventionally characterised

assuming that a(k) 6= 0 for k ∈ R and all zeros

of a(k) in C+ are simple; consequently, the number

of these zeros is finite, and |b(k)| < 1 for all k ∈ R.

With this assumption, the characteristic spectral

data consist of b(k), k ∈ R and the discrete set

{kj, cj}
N
1 (possibly empty), where kj with ℑkj > 0,

j = 1, . . . , N , are the zeros of a(k), and {cj}
N
1

are the associated norming constants. Moreover, the

inverse mapping can be described as follows [2]:

1) Given b(k) and {kj}
N
1 , construct a(k) in ac-

cordance with (4) for k ∈ R:

a(k) =
N
∏

j=1

k − kj
k − k̄j

exp

{

1

2πi

∫

R

log(1− |b(s)|2)

s− k
ds

}

;

(14)

2) Define the reflection coefficient

r(k) := b(k)/a(k), k ∈ R; (15)

3) Solve the Riemann–Hilbert problem (RHP):

find a 2 × 2 function M(t, k) satisfying the

following conditions:

• As a function of k, M is meromorphic in

C \ R.

• The limiting values M±(t, k), k ∈ R of

M(t, k) as k approaches the real line from

C± are related by

M+(t, k) =M−(t, k)J(t, k), k ∈ R,
(16)

where

J(t, k) =

(

1 + |r(k)|2 r∗(k)e−2ikt

r(k)e2ikt 1

)

.

(17)

• M(t, k) → I as k → ∞.

• The singularities of M are characterised

as follows: M (1)(t, k) has simple poles

at {kj}
N
1 and M (2)(t, k) has simple poles

at {k̄j}
N
1 such that the following residue

conditions hold:

ResM (1)(t, k)
∣

∣

∣

k=kj

= cje
2ikjtM (2)(t, kj),

(18)

ResM (2)(t, k)
∣

∣

∣

k=k̄j

= −c̄je
−2ik̄jtM (1)(t, k̄j).

(19)

4) Having the RHP solved, q(t) can be obtained

by

q(t) = 2iM1
12(t),

where M1(t) emerges from the large-k
asymptotic of M(t, k):

M(t, k) = I+
M1(t)

k
+O(k−2), k → ∞.

Our main result consists in the characterisation

of the spectral data in the case of finitely supported

q(t), and is given in the following theorem.

Theorem 2.3: Let b(k) be given such that

(i) b(k) =
∫ L

−L
β(τ)eikτdτ with some β(τ) ∈

L1(−L, L), and
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(ii) the function G(k) := 1 − b∗(k)b(k) has no

zeros for k ∈ R (or, equivalently, G(k) > 0
for k ∈ R).

Denote by Ab the set of all zeros of G(k). Then:

1) The set Fb of all q ∈ L1 such that b(k) is the

spectral function associated to q by the direct

mapping, is infinite;

2) q(t) = 0 for |t| > L/2, for any q ∈ Fb.

3) Given b(k), each q ∈ Fb is characterized by a

finite subset of Ab∩C+. The latter constitutes

the set of simple zeros of the spectral function

a(k) associated to this q.

Remark 2.4: M(t, k) is related to the Jost solu-

tions of Zakharov-Shabat problem (2) as follows

M(t, k) =







(

Φ(1)(t,k)
a(k)

,Ψ(2)(t, k)
)

eiktσ3 , k ∈ C+,
(

Ψ(1)(t, k), Φ
(2)(t,k)
a∗(k)

)

eiktσ3 , k ∈ C−.

Proof of Theorem 2.3. The proof is based on using

the flexibility of RHP formalism: (i) the same q(t)
can be retrieved from the solutions of different

RHPs; (ii) we can proceed from one RHP to another

(that produces the same q(t)) by appropriately “de-

forming” the original RHP, i.e. deforming the jump

contour and the associated jump matrices entering

the definition of RHP.

First, notice that in our case b(k) is analytic in C

and, thus, the norming constants are determined by

b(k) and a(k):

cj =
b(kj)

ȧ(kj)
, (20)

where the overdot means the derivative with re-

spect to k. Also, G(k), as well as b(k), is an

entire function of exponential type. It follows from

the Hadamard factorisation theorem [21] combined,

e.g., with the evaluation of G(k) for large real k, that

the number of zeros of G(k) is infinite. In turn, it

follows from (4) that the set Ab (determined by b(k)
and symmetric w.r.t. the real axis) is a union of zeros

of a(k) and a∗(k). Consequently, all zeros of a(k)
in C+ (the eigenvalues of (2)) must be contained in

Ab ∩ C+.

Let us choose any finite (particularly, it can be

empty) subset {kj}
N
1 from Ab ∩ C+ and construct

a(k) according to (14). Our main point is that using

b(k), a(k), and {kj, cj}
N
1 , specified above, as the

spectral data and the input to RHP, Eqs. (16)–(19),

one always arrives at such q(t) that q(t) = 0 for

|t| > L/2.

Proof that q(t) = 0 for t > L/2: The

proof is based on the deformation of RHP (16)–(19)

suggested by the following algebraic factorization of

J in (17):

J(t, k) =

(

1 r∗(k)e−2ikt

0 1

)(

1 0
r(k)e2ikt 1

)

, k ∈ R.

Introduce

M̂(t, k) :=























M(t, k)

(

1 0

−r(k)e2ikt 1

)

, k ∈ C+,

M(t, k)

(

1 r∗(k)e−2ikt

0 1

)

, k ∈ C−.

(21)

Notice that the triangular matrix factors in (21) are

such that (i) they are meromorphic in the respective

half-planes and (ii) they approach I as k → ∞.

The latter follows from Corollary 2.2, item 2, and

the fact that a(k) → 1 as k → ∞ for k ∈ C+.

Moreover, the off-diagonal entries of these factors

decay to 0 exponentially fast for each fixed t > L/2.

The latter means that for the large-k asymptotics of

M̂(t, k), we have M̂1
12(t) = M1

12(t) for t > L/2.

Consequently, for q̂(t) obtained from the large-k
asymptotics of M̂(t, k), we have:

q̂(t) = q(t), t > L/2. (22)

On the other hand, M̂(t, k) can be characterized

as the solution of the RHP with the trivial jump

conditions: M̂(t, k) is analytic C \ R such that

M̂+(t, k) = M̂−(t, k), k ∈ R,

M̂(t, k) → I, k → ∞. (23)

Indeed, this is obvious in the case when a(k) has

no zeros in C+. If a(kj) = 0 for some kj ∈ C+, we

evaluate M̂ (1)(t, k) as k → kj by using

M̂ (1)(t, k) =M (1)(t, k)−
b(k)

a(k)
e2iktM (2)(t, k)

that follows from Eq. (21). Taking into account (18),

it then follows that, as k → kj ,

M̂ (1)(t, k) =
1

k − kj

b(kj)

ȧ(kj)
e2ikjtM (2)(t, kj) +O(1)

−

(

b(kj)

ȧ(kj)(k − kj)
e2ikjtM (2)(t, kj) +O(1)

)

= O(1).

Therefore, M̂ (1)(t, k) has no singularity at k = kj .
Similarly for M̂ (2)(t, k) at k = k̄j .
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Since the (unique) solution of RHP (23) is the

trivial one: M̂(t, k) ≡ I for all t, it follows that

M̂1
12(t) = 0. Consequently, q̂(t) ≡ 0 and thus, in

view of Eq. (22), q(t) = 0 for t > L/2.

Proof that q(t) = 0 for t < −L/2: Like

above, the proof is based on the deformations of

the (original) RHP, Eqs. (16)–(19). But now it is

convenient to split the appropriate deformation into

two steps.

Step 1. Define

M̃(t, k) :=























M(t, k)

(

a(k) 0

0 1
a(k)

)

, k ∈ C+,

M(t, k)

(

1
a∗(k)

0

0 a∗(k)

)

, k ∈ C−.

(24)

Then, it follows from Eqs. (16) and (17) that

M̃(t, k) satisfies the following jump conditions for

k ∈ R: M̃+(t, k) = M̃−(t, k)J̃(t, k), where

J̃(t, k) =

(

a∗(k) 0
0 1

a∗(k)

)(

1 + |r(k)|2 r∗(k)e−2ikt

r(k)e2ikt 1

)

×

(

a(k) 0
0 1

a(k)

)

=

(

1 0
b(k)
a∗(k)

e2ikt 1

)(

1 b∗(k)
a(k)

e−2ikt

0 1

)

.

(25)

Step 2. The triangular factorization in (25) sug-

gests introducing the second RHP deformation step,

defining M̌ by

M̌(t, k) :=























M̃(t, k)

(

1 − b∗(k)
a(k)

e−2ikt

0 1

)

, k ∈ C+,

M̃(t, k)

(

1 0
b(k)
a∗(k)

e2ikt 1

)

, k ∈ C−.

(26)

Now notice that the triangular factors in (26) are

again meromorphic in the respective half-planes

and, in view of Corollary 2.2, item 3, they approach

I as k → ∞, if t < −L/2. Consequently, for q̌(t)
obtained from the large-k asymptotics of M̌(t, k)
we have:

q̌(t) = q(t), t < −L/2. (27)

On the other hand, by using the reasoning as in

the case t > L/2, we can show that M̌(t, k) has

no singularities in C \ R and, thus, M̌(t, k) can

be characterised as the solution of the (piecewise

analytic) RHP with the trivial jump conditions,

which implies that M̌(t, k) ≡ I and thus q̌(t) ≡ 0.

In view of Eq. (27), q(t) = 0 for t < −L/2, which

completes the proof of Theorem 2.3.

III. GENERATION OF LOCALISED B-MODULATED

PROFILES CONTAINING SOLITONS

According to the discussion above, in order to

embed the discrete spectrum components to the sig-

nal generated via the b-modulation, which would not

destroy the localisation of the signal in time domain,

the embedded discrete eigenvalues, keig ∈ {kj}
N
1 ,

must satisfy the condition, following from Eq. (4)

and item 3 of Theorem 2.3:

b∗(keig)b(keig) = 1. (28)

For the known analytical expression for b(k), as it

occurs in the optical transmission tasks employing

b-modulation, we can numerically seek for such

points in the upper complex half-plane of parameter

k. Then, this points give us the location where we

can place our solitary modes without destroying the

complete localisation of the time domain signal.

In the b-modulation approach, the signal power

is manipulated by scaling of the modulated wave-

forms. However, this adjustment is typically per-

formed numerically because of the non-trivial de-

pendency between b(k) and q(t) scalings. In partic-

ular, let b(k) = Au(k), where u(k) is the waveform

modulated in a known way independently of desired

signal power, and assume that we do not have

discrete spectrum. The signal energy, given by the

expression through the nonlinear spectrum functions

as [12]

ǫ = −1/π

∫

∞

−∞

log
(

1−A2|u(k)|2
)

dk,

together with the desired time support value L,

define the average signal power P = ǫ/L (in nor-

malised units). Thus, having defined the particular

signal power and modulation type, we can calculate

the scaling factor A and, therefore, further define

the locus of “allowed” eigenvalues, i.e. the eigen-

values that would not destroy the exact localisation,

exploiting the theoretical results from Sec. II.

Here we present the procedure of generation

of the b-modulated signal with discrete NF eigen-

modes, which conserves the signal localisation,

employing two simple carrier waveforms that are
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commonly used within b-modulation approach [8],

[12]: the Nyquist shape, i.e. the sinc function in k-

domain and rectangular profile in the corresponding

Fourier-conjugated domain, and the flat-top window

carrier function, introduced in [12] as a way of over-

coming the b-modulated signal power constraint.

The studied waveforms used for the b(k) modulation

with their corresponding Fourier images are given

in Fig. 1.

sinc

flat top

-40 -20 0 20 40 60

0.0

0.5

1.0

1.5

2.0

k

Fig. 1: The waveforms used in our work as an

example for the illustration of b-modulation method

with their Fourier transforms in the inset.

Depending on the value of scaling factor A, these

functions have the points in the complex plane of

k, which can be used to implant our eigenvalues at,

while keeping the exact localisation of the resulting

q(t) profile. Of course, the numerical search cannot

guarantee that we have identified all appropriate

points, but at the moment we just need to find some

of them to illustrate the idea. Typically, for the com-

munication purposes we do not use the eigenvalues

with large real and/or imaginary parts. This occurs

in view of the numerical issues associated with

the inverse NFT computation for high-amplitude

solitons, or since, e.g., the nonlinear eigenmode

with the large real part of its keig would rapidly

escape from the dedicated time-window during the

signal propagation. The numerically found set of

points, which can be used as an eigenvalue locus

for our studied b(k) waveforms and different scaling

factors, are given in Fig. 2. Note that according to

Theorem 2.3 for any band-limited b(k) we always

have an infinite number of such points.

The procedure of adding the eigenmodes to the

b-modulated signal while keeping its exact localisa-

tion that can be used in optical communications to

●
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● sinc ▲ flat top

A=0.2 A=0.7

-30 -20 -10 0 10 20 30

2
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6
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10

Re k

Im
k

Fig. 2: The points in the complex k-plane, available

for out placing the eigenvalues at, when keeping

the exact localisation. These soliton modes atop the

continuous b-modulated NF spectrum can be used

as additional degrees of freedom bearing encoded

data in b-modulated signal. The transparency scale

is used for different A values. As we see, the points

depend on the scaling parameter A used for signal

power manipulation.

improve the effectiveness of b-modulation method,

is the following.

(i) Modulate the waveform u(k) with the given

information and according to desired temporal

support L of the signal.

(ii) Choose the desired signal power (without

eigenvalues, as in [12]) and find the appro-

priate scaling factor A. Further define the b-
function as b(k) = Au(k).

(iii) For this b(k), find point(s) keig ∈ C+, which

satisfy b∗(keig)b(keig) = 1.

(iv) Derive corresponding a(k) via Eq. (14), and

calculate the resulting r(k) via Eq. (15);

(v) For each eigenvalue, calculate corresponding

beig := b(keig), which uniquely defines the

respective norming constant ceig via Eq. (20).

(vi) Generate the signal from the scattering data

r(k) and set of {keig, ceig} via any inverse NFT

procedure[3], e.g. through the Darboux trans-

form [7] or by solving the inverse problem

directly with the account of discrete modes.

We perform the numerical mapping to the time do-

main from the scattering data using the layer-peeling

algorithm (in particular, its fast implementation [22],

[23]) with the subsequent Darboux transform [7],

[24] that adds discrete nonlinear modes to the
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continuous ones without affecting the latter. The

whole procedure follows the scheme given above.

The results of the signal generation for both ini-

tial waveforms used for b-modulation and different

scaling factor A values are given in Figs. 3–4.

w/o keig w/ keig=3.58i

w/ keig=2����+5����

-0.5 0.0 0.5 1.0

0

2

4

6

8

10

t

|q
(t
)|

-1.0-0.5 0.0 0.5 1.0

10-6

10-4

0.01

1

t

|q
(t
)|

(a)
w/o keig w/ keig=-1�	
+3.7i

w/ keig=7��+3����
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0

2

4

6

8

t

|q
(t
)|

-1.0-0.5 0.0 0.5 1.0

0.001

0.010

0.100

1

10

t

|q
(t
)|

(b)

Fig. 3: The signals, generated from the Nyquist

waveform via INFT with (dashed) and without

(solid) additional eigenvalues embedded, for scaling

factors (a) A = 0.2 and (b) A = 0.7, and different

eigenvalues keig, marked in the figure.

We observe that the signals with additional solitonic

eigenvalues have at least not worth localisation than

the initial b-modulated signal without discrete eigen-

modes, in accordance to our theory. However, the

numerical algorithms introduce the additional error,

which somewhat deteriorates the expected perfect

localisation of the resulting q(t) profile. It can be

better seen from the logarithmically scaled plots,

given at the insets, that the signal tails decay rates

for the profiles with and without additional discrete

eigenmodes coincide almost exactly. In spite of the

observed insignificant numerical errors, the results

w/o keig w/ keig=�����+������

w/ keig=-3.2+��� !" w/ keig=-9#$+20.26i

-0.4 -0.2 0.0 0.2 0.4 0.6

0

10

20

%&

40

t

|q
(t
)|

-0.4-0'( 0.0 )*+ 0.4

10-8

10-4

1

t

|q
(t
)|

(a)
w/o keig w/ keig=-9.18+17.89i

w/ keig=-3.01+19.08i

-0.4 -0.2 0.0 0.2 0.4 0.6

0

10

20

,-

40

t

|q
(t
)|

-0.4-./4 0.0 68: 0.4

10-6

0.001

1

t

|q
(t
)|

(b)

Fig. 4: The signals, generated from the flat-top

waveform via INFT with (dashed) and without

(solid) additional eigenvalues embedded, for scaling

factors (a) A = 0.2 and (b) A = 0.7, and different

eigenvalues keig, marked in the figure.

in Figs. 3–4 evidently confirm the correctness of the

analytical statements presented in our work.

IV. CONCLUSION

In this work, we filled the gap in the rigor-

ous mathematical formulation of the b-modulation

method, constituting the most efficient up to date

technique within the NFT-based communications.

We presented the explicit proofs providing the

one-to-one correspondence between the nonlinear

spectrum, which satisfies the requirements of b-
modulation, and the optical signal with finite pre-

defined time support. In addition, we presented the

full procedure and the mathematical proofs related

to uttely important open question: how to implant

the discrete solitary modes into the b-modulation

concept without violating the condition of the exact

localisation of the time-domain profile. Our results
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were eventually illustrated and satisfactory validated

through the direct numerical analysis. The addi-

tional solitonic modes can be used to reach higher

signal powers providing, as a result, the better per-

formance and flexibility for b-modulated long-haul

optical transmission systems. There also emerges an

interesting question of whether the solitonic modes

embedded in b-modulation can be used as additional

data carriers.
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[7] S. T. Le, V. Aref, and H. Bülow, “Nonlinear signal multiplexing

for communication beyond the Kerr nonlinearity limit.” Nat.

Photon., vol. 11, no. 9, pp. 570–577, 2017.

[8] S. Wahls, “Generation of Time-Limited Signals in the Nonlinear

Fourier Domain via b-Modulation,” in Proc. 2017 European

Conference on Optical Communication (ECOC), Sweden, 2017.

[9] S. T. Le, K. Schuh, F. Buchali, and H. Bülow, “100 Gbps b-
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