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ABSTRACT 

Yun-Zhao Xing: New NMR Methods for Characterizing  

Nanoporous Structures and Nanoconfined Shale Gas 

(Under the direction of Yue Wu) 

 

Nanoporous materials, such as activated carbons and gas shale rocks, play crucial roles 

in both industry and daily life. Activated carbons have been used in various areas, such as 

water filtration, supercapacitors, and catalysis carriers, and shale gas has contributed more 

than 50% of the annual natural gas production in the United States. In all those areas, the 

performance of nanoporous materials is controlled by the properties of nanopores. However, 

both accurate characterization of micropores in activated carbons and evaluation of 

adsorption capability of high-pressure nature gas in shale rocks are challenging problems. 

We first introduce a room temperature method for determining micropore size 

distribution of activated carbons based on 
1
H nuclear magnetic resonance (NMR) of adsorbed 

water under magic angle spinning (MAS). The observed NMR peak shift comes from the 

nucleus-independent chemical shift (NICS). The density functional theory computation of 

NICS yields a quantitative relationship between the observed peak shift and the micropore 

size. This relationship provides a direct link between the 
1
H MAS NMR lineshape and 

micropore size distribution. The NICS NMR porometry technique is shown to be useful for 

characterizing micropore structures of highly carbonized activated carbons.  

In the second part, we develop a novel method for the evaluation of the gas storage 

capability of gas shale based on NMR T2 contrast. The FT-NMR spectral lineshape of gas 

stored inside pores, which reveal the properties of nanopores, are also studied by experiments. 

The combined information from spectra, longitudinal relaxation, and transverse relaxation not 
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only offers a powerful tool for the evaluation of gas storage quantity but also provides 

valuable information for gas storage mechanisms. 
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CHAPTER 1. INTRODUCTION 

1.1 Dissertation Outline 

In Chapter 1, Section 1.2 explains the motivations of my research. Section 1.3 

introduces the mechanisms of conventional adsorption methods based on different models 

and different pore size and discusses the issues of various models and approaches. Section 1.4 

briefly introduces the NMR theory and some experimental details. 

In Chapter 2, a simple room temperature method is presented for determining micropore 

size distribution of activated carbons. Section 2.1 explains the origin of the NICS effect and 

the NICS effect in AC samples. Section 2.2 uses DFT simulation to study NICS effect in AC 

samples. Section 2.3 introduces the models and the equations of the method, which is 

developed for the characterization of micropores in activated carbons. Section 2.4 provides 

the experimental details. Section 2.5 is a brief summary of the NICS NMR porometry 

technique introduced in the chapter. 

In Chapter 3, a novel method for evaluation of the gas storage capability of gas shale is 

introduced. Section 3.1 covers a brief introduction to shale gas systems and their properties. It 

also includes some background information, such as the diffusion of high-pressure methane, 

the magnetic field inside a packed solid system, et cetera. Section 3.2 explains the primary 

NMR relaxation mechanisms of methane gas in the gas shale packing system. Section 3.3 

introduces the core concept of the method for evaluating the gas storage. Section 3.4 provides 

the experimental details. Section 3.5 discusses the issues with the experiments. 

In Chapter 4, the method introduced in Chapter 3 is used to study several different gas 

shale samples. Section 4.1 gives a brief introduction to several standard characterization 
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parameters used in the oil industry and those parameters values of the samples that we have 

studied by NMR. Section 4.2 presents and analyzes the experimental NMR results. Section 

4.3 discusses several possible ways to correlate NMR results with the standard parameters. 

Section 4.4 discusses several possible parameters to predict methane storage capability. 

Chapter 5 summarizes the whole dissertation and also puts the significance of my 

research into a broader context.  

1.2 Motivations 

1.2.1 Activated Carbon 

Activated carbons (ACs) are widely used in many applications, such as filtration and 

adsorption, chemical recovery and purification, catalysis, and fuel cells [1]. All these 

applications of ACs depend strongly on their porous structural features, characterized by a 

complex porous network consisting of micropores (pore size of less than 2 nm), mesopores 

(pore size between 2 and 50 nm), and macropores (pore size greater than 50 nm) [2]. In 

particular, the micropore network of ACs plays a crucial role in most of their applications. 

For measurements of pore size and pore size distribution (PSD) of ACs, simple 

characterization methods are highly desirable.  

The conventional way to characterize the PSD is adsorption isotherm measurements of 

probe molecules (He, Ar, N2, CO2, etc.). Among these, N2 adsorption at 77 K is the most 

widely used technique for ACs characterization [3]. Several idealized theoretical models have 

been employed to interpret such adsorption isotherms and to derive the surface area and the 

PSD. Here, the most well-known is the Brunauer-Emmett-Teller (BET) equation for the 

interpretation of N2 adsorption isotherm. However, this method faces problems when applied 

to micropores. There, micropore filling is an important mechanism of adsorption, which 

violates the assumptions of BET [2]. Alternative methods have also been proposed for 

determining the PSD of micropores such as the Dubinin-Stoeckli equation [4]. However, this 
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equation is semi-empirical, requires knowledge of the binding energy, and assumes a 

Gaussian pore size distribution [4]. Recently, using density functional theory (DFT) 

computations, the relationship between N2 or Ar isotherms and pore size has been predicted 

[5-7]. This method needs information on interaction potentials and requires isotherms 

measured at extremely low relative pressure 
5

0 10P P   ( 0P  is the saturated vapor 

pressure), which is very time-consuming. More details of conventional adsorption 

characterization methods are introduced in Section 1.3.  

In Chapter 2, a simple room temperature method is presented for determining micropore 

size distribution of activated carbons based on 
1
H nuclear magnetic resonance (NMR) of 

adsorbed water under magic angle spinning (MAS). The observed NMR peak shift is 

determined by nucleus-independent chemical shift (NICS). The Density Functional Theory 

computation of NICS yields a quantitative relationship between the observed peak shift and 

the micropore size. This relationship provides a direct link between the 
1
H MAS NMR 

lineshape and micropore size distribution. The NICS NMR porometry technique is shown to 

be useful for characterizing micropore structures of highly carbonized activated carbons. 

1.2.2 Gas Shale 

In recent years, shale gas has become one of the most valuable natural gas resources. 

Due to technological improvements in hydraulic fracturing, the production of shale gas has 

grown from only 1% to over 20% of U.S. natural gas production and been predicted to reach 

46% by 2035 [8]. Gas shale is considered an unconventional resource since the gas stored in 

the rock is inaccessible by conventional production methods. The majority of gas in shale is 

well sealed and stored in the organic kerogen nano- and micro-pores [9]. The porosity and 

gas permeability in gas shale are usually very low, which makes the estimation of storage 

challenging. More details of unconventional petroleum resources and gas shale system are 

introduced in Chapter 3. 
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Conventionally, gravimetric or volumetric methods are used to characterize shale gas 

storage. They are well-developed lab techniques for probing the adsorption quantity and 

mechanism. However, the low porosity and resulting low gas adsorption rate in gas shale 

introduce significant relative uncertainty into the results of conventional methods. Meanwhile, 

to estimate the total gas in place, other techniques such as volume and/or density 

measurements need to be involved, which introduces, even more, uncertainties [10]. 

Although by using extracted kerogen as a substitute of original gas shale may increase the 

adsorption in a unit mass of the testing sample, it‘s in doubt if the extraction procedure would 

change the nanopores volume or structure in kerogen. The mechanisms and disadvantages of 

conventional methods are introduced in Section 1.3. 

In Chapter 3, a novel method for evaluation of the gas storage capability of gas shale 

based on NMR T2 contrast is introduced. The Fourier transform NMR spectra of gas stored 

inside pores, which reveal the information of the pore space, are also studied in these 

experiments. The combined information from spectra, longitudinal relaxation, and transverse 

relaxation not only offers a powerful tool for evaluating the gas storage but also provides 

valuable information about the gas storage mechanism.  

1.3 Gas Adsorption Method 

Gas adsorption measurement is the most widely used characterization methods for 

determining the surface area and pore size distribution in a variety of solid materials. 

Nitrogen (at 77K) is the most common adsorbate used for the characterization of porous 

materials. The Brunauer-Emmett-Teller (BET) method [11], although it is based on an 

over-simplified model of multilayer adsorption, has been used as a standard procedure for the 

determination of surface area. However, M. M. Dubinin reported that adsorption in 

micropores is dominated by a volumetric micropore filling process, which could be described 

by an empirical equation [12, 13]. With the development of scientific computations, Density 
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Functional Theory (DFT) approaches are also used for the characterization of micropore size 

and PSD [5, 7, 14]. A brief introduction to the procedure, theory, and issues of the gas 

adsorption method is provided in this chapter. 

1.3.1 Experimental Methods 

The many different experimental systems used to determine the amount of gas adsorbed 

may be divided into two groups: volumetric methods and gravimetric methods. Gravimetric 

methods provide a high degree of accuracy, but can only be used with small sample sizes. On 

the contrary, the volumetric methods can be used with much larger samples, which can better 

account for the heterogeneity of certain samples, such as gas shale rock [15].  

A schematic arrangement of a simultaneous volumetric and gravimetric adsorption 

experiment is shown in Figure 1.1 

 
Figure 1.1 Schematic diagram of volumetric and gravimetric methods. 

The pressure in the system is controlled precisely. In the volumetric method, the quantity 

of gas injected into the sample chamber can be measured. In the gravimetric method, the 

weight of the sample is measured by a high-precision balance. The adsorption isotherm can 

be acquired through either method. 

1.3.2 Classification of Pores and Adsorption Isotherms 

As it is mentioned at the beginning of this chapter, the classification of pores depends on 

the pore sizes [2]: 
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1. Pores with widths exceeding about 50 nm are defined as macropores; 

2. Pores with widths between 2 nm and 50 nm are defined as mesopores; 

3. Pores with widths not exceeding about 2 nm are defined as micropores;  

Some literature [5, 16] also refined the micropores into two categories:   

A. Ultramicropores for the pores with widths not exceeding about two molecular diameters 

( 0.7 nm ); 

B. Supermicropores for the pores in the range of approximately two to five molecular 

diameters ( 0.7 nm  to 2 nm ). 

According to the International Union of Pure and Applied Chemistry (IUPAC), the 

majority of physisorption isotherms may be grouped into the six types of isotherms, as shown 

in Figure 1.2 [2]. 

 
Figure 1.2 Types of physisorption isotherms [2]. 
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Type I isotherms are given by microporous solids with relatively small external surfaces, 

the limiting uptake being governed by the accessible micropore volume. 

Type II isotherms are the typical isotherm obtained from a non-porous or macroporous 

adsorbent. 

Type III isotherms are convex over the entire 0p p  axis. It can be observed in the 

system where adsorbate-adsorbate interactions play a significant role. 

Type IV isotherms have a hysteresis loop from the capillary condensation taking place in 

mesopores. The initial part of the Type IV isotherm is attributed to monolayer-multilayer 

adsorption which follows the same paths as the corresponding part of a Type II isotherm.  

Type V isotherms may be found in a certain porous system where adsorbent-adsorbate 

interaction is weak. 

Type VI isotherms represent multilayer adsorption on a uniform non-porous surface. 

1.3.3 Langmuir Adsorption Model 

In 1916, Langmuir developed a model of adsorption leading to a conception of 

adsorption as a monolayer [17]. He made two assumptions: first, he assumed that the heat of 

adsorption would be the same for every molecule which strikes the bare surface and that this 

heat of adsorption is independent of the other molecules which are held there; second, he 

assumed that every molecule which hits a molecule already adsorbed, returns immediately to 

the gas phase. The first assumption implies that the interactions among adsorbate molecules 

on the adsorbent surface are ignored. The second assumption means the adsorption energy 

between the molecules adsorbed on the surface and molecules striking it are ignored and 

leads to the concept of monolayer adsorption. The Langmuir adsorption model is illustrated 

in Figure 1.3. 
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Figure 1.3 An illustration of Langmuir adsorption model. 

The equation of Langmuir adsorption is given as following 

 
1

u

u

k p

k p
 


                              (1.1) 

where   is the fractional occupancy of adsorption sites, and uk  is the associated 

equilibrium constant, which depends on the temperature, the molar mass of adsorbate, and the 

adsorption energy. A plot of equation 1.1 is the same shape as a Type I isotherm.  

Although the adsorption of fatty acids or fatty alcohols on surfaces of inorganic salts 

tends to obey the Langmuir adsorption isotherm [18], for most other adsorption systems, 

when the degree of occupation increases, the adsorbed molecules influence each other not 

only because of the space they occupy but also because of the mutual van der Waals 

interaction between them. Moreover, if molecules, when striking a layer of already adsorbed 

molecules, are attracted by sufficiently great forces, multilayer adsorption needs to be 

considered.   

1.3.4 BET Theory 

The most successful model for multilayer adsorption is that published by Brunauer, 

Emmett, and Teller in 1938 [11], which has become a standard method for characterization of 

surface area in porous materials. BET theory still uses the simplified assumption that the 

molecules of one layer do not mutually influence one other while this layer is being built up. 

It also has the condition that the adsorption energy of the molecules of the first layer is 

constant and the heat of adsorption for the molecules in each following layers is constant. The 
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equation for adsorption in BET theory is given as following: 

 
   1 1

mkpn
n

q p k p q


    
                         (1.2) 

where n  is the molar number of adsorbed molecules, mn  is the molar number required for 

full monolayer coverage, q  is a constant depending on the adsorption heat for the adsorbate 

molecules in each of the layers following the first layer, and k  is a constant depending on 

the adsorption heat of both the first layer and further layers.  

With the further simplifying assumption that the heat of adsorption and the probability 

of evaporation of molecules adsorbed on top of other adsorbed molecules equals the heat of 

evaporation and the probability of evaporation of the molecules from their liquid state, k  

can be given as following: 

 
 0

exp
aQ Q

k
RT

 
  

 
                           (1.3) 

where R  is the ideal gas constant, T  is temperature, and aQ  and 0Q  are the adsorption 

heat of the first layer and following layers respectively. 0Q  equals the latent heat of 

evaporation of the adsorbate in liquid form. Meanwhile, the assumptions also implicitly 

require q  is 0p , which is the saturated pressure of adsorbate. The equation 1.3 can thus be 

further simplified: 

 
   0 01 1

mkpn
n

p p k p p


    
                    (1.4) 

The model and assumptions of BET theory are illustrated in Figure 1.4. 
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Figure 1.4 An illustration of BET model. 

In order to characterize the surface area of adsorbent materials, the nitrogen adsorption 

isotherms of type II or type IV at 77 K need to be fitted by the BET equation in the 0p p  

range of 0.05 ~ 0.35 . The fitting range limitation is due to the influence of active spots and 

restricted adsorption [18]. Point B in Figure 1.2 represents the molar number of nitrogen 

required to completely cover the monolayer ( mn ). It is usually assumed that the BET 

monolayer is close-packed, giving the molecular cross-sectional area of nitrogen in the 

completed packed monolayer as   2

2N 0.162 nmma   at 77 K  [2]. Then the surface area 

can be calculated by m mS n a  . 

1.3.5 Kelvin Equation 

The Barrett-Joyner-Halenda (BJH) method [19], which is based on a modified Kelvin 

equation, has been widely used to characterize the pore size and PSD of mesopores. As 

discussed in Section 1.3.2, materials with mesopores show a type IV adsorption isotherm; the 

apparent hysteresis is due to capillary condensation inside mesopores. The pore size 

calculation is given by the Kelvin equation of the form  

 
lg l

1 2 0

1 1
ln

RT p

r r v p

 
    

 
                       (1.5) 

where 1r  and 2r  are the principle radii of curvature of the liquid meniscus in the pore, 

0p p  is the relative pressure, 
lg  is the surface tension of the liquid condensate, and 

lv  
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is its molar volume. In a slit-shaped pore model, as shown in Figure 1.5, the meniscus is 

hemicylindrical, where 1  width of slitr  , and 2r   . 

 
Figure 1.5 Capillary condensation inside slip-shaped pore model. 

Capillary condensation is a first order phase transition. The vapor pressure of capillary 

condensation ( cp ) is lower than the saturation pressure ( 0p ) due to the surface tension at the 

interfacial meniscus. The Kelvin equation can be deduced from the equilibrium of those 

pressures. 

1.3.6 Micropore Filling 

Generally, the adsorption of microporous AC samples shows a typical type I isotherms, 

however, it cannot be simply described by the Langmuir model. Although the BET theory and 

the BJH method provide characterizations of the surface area and the pose distribution of 

mesopores respectively, they fail to characterize micropores due to the micropore filling [2, 

12]. Unlike the surface adsorption models discussed in previous sections covering mesopores, 

the adsorption mechanisms of micropores are volume filling processes [20].  

The micropore filling processes of AC sample can be broadly divided into two groups. 

Ultramicroporous carbons exhibit high adsorption affinity, their isotherms generally having a 

steep initial increment with a plateau approached at very low 0p p . The enhanced 

adsorption energy is due to the significant overlap of the adsorption forces since the pore 

widths are not much larger than two molecular diameters. This process is also called ‗primary 

micropore filling‘ [21]. The second group occurs in many supermicroporous AC samples 

which have pore width in the range of approximately two to five molecular diameters. The 
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supermicropores are filled by a combination of surface coverage at low 0p p  and a 

cooperative process at higher 0p p . It is not a first order phase transition as is the case in 

capillary condensation since it involves two overlapping stages. Figure 1.6 illustrates 

‗primary micropore filling‘ and the cooperative process. 

 
Figure 1.6 Illustration of micropore filling models. 

1.3.7 Characterization of Micropores 

In order to characterize micropores, in the 1950s, M. M. Dubinin and his co-works 

developed Dubinin-Radushkevich (DR) equation to described the micropore filling process 

empirically [12, 22]:  

 

2

0

0

exp
A

W W
E

  
   
   

                           (1.6) 

where W  is the amount of gas adsorbed at 0p p , 0W  is the micropore volume, and 

 0lnA RT p p . The affinity coefficient,  , is a shifting factor related to the adsorbate. 

0E  is the characteristic adsorption energy, and is associated with the isosteric heat of 

adsorption.   

However, there are two principle drawbacks: first, since only the pore volume can be 

acquired from the DR equation, an arbitrarily chosen functional form of PSD—such as 

Gaussian distribution—is required for the characterization of pore size and surface area; 

second, it requires the use of empirical energy parameters to solve for the PSD. Thus, fitting 
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the isotherm using the DR equation provides insufficient evidence to validate the underlying 

theory. 

  Over the past few years, the DFT simulation method, usually in the refined form of 

nonlocal density functional theory (NLDFT), has become more and more important for the 

characterization of microporous AC samples [5-7, 14]. However, the DFT method highly 

depends on the pore structure models, so it requires the solid and surface structures are well 

known, and the pores are all of a similar, well-defined shape. Moreover, very precise 

measurements at an ultra-low relative pressure, as low as 
5

0 10p p 
, are required to 

characterize the micropore filling processes. It is very time-consuming to wait for the system 

to reach equilibrium at such low pressures.  

1.3.8 Adsorption of High-Pressure Gas 

Adsorption methods have also been used to evaluate gas storage capacity of gas shale 

samples. In contrast to the adsorption measurements discussed previously, the measurements 

of gas shale adsorption are usually taken at a relatively high temperature and high pressure, 

such as measuring the adsorption of methane gas at room temperature and 4500 PSI. In this 

case, the density of gas needs to take into account. The process and principle of a 

conventional volumetric method for measuring high-pressure gas adsorption are illustrated in 

Figure 1.7. 
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Figure 1.7 An illustration of the volumetric adsorption method process. The brown 

patterns are porous sample chunks; the purple filled dots are helium atoms (for void 

volume measurement); red filled dots are ‗free gas‘ probe (methane) molecules; green 

filled dots are adsorbed probe molecules; empty red circles are the part over-subtracted 

from adsorbed probe molecules.  

The sample is ground into particles and loaded into a vacuum chamber. The 

measurement steps are listed: 

A.  The void volume of the chamber ( voidV ), excluding the volume occupied by the 

solid part of samples, is measured by gas which does not adsorb (e.g. helium). The 

voidV  includes both the volume of the inter-particle space and the volume of pores. 

B.  The non-adsorptive gas is pumped out of the chamber and replaced with the 

probe gas, such as methane. The total molar number of probe gas ( totaln ) is 
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measured and also includes both the gas at the inter-particle space and inside the 

pores. 

C.  If there is no adsorption, the molar number of probe gas ( freen ) required to reach 

the current pressure can be calculated as 
cal

free void cham chamn V V n  , where chamV  is 

the chamber volume without any samples, and 
cal

chamn  is the calibration molar 

number of probe gas at the current pressure, which is measured before loading 

samples.  

D.   Then the excess gas due to adsorption can be calculated by  

 excess total freen n n                         (1.7) 

For adsorption measurements of low-pressure gas, excessn  can be directly used as 

the amount of adsorption. 

E.  For adsorption measurements of high-pressure gas, the density of gas needs to 

take into account, so the absolute adsorbed amount absoluten  is calculated by 

 
super1

excess
absolute

ads

n
n

 



                      (1.8) 

where super  is the density of the gas, and ads  is the density of adsorption state. 

As such, the volumetric method can only measure the number of adsorbed particles 

(green dots in Figure 1.7E) rather than the total number stored inside pores. Therefore, some 

other techniques—such as NMR—are desired to determine the total amount of high-pressure 

gas stored inside pores. 

1.4 NMR Principles 

Nuclear Magnetic Resonance is a versatile and noninvasive analytical technic, which is 

suitable for characterizing porous materials. It can provide both the total quantity and the 

dynamic information of the molecules adsorbed inside the pores. The intensity of NMR 
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signal provides the total adsorption amount, and the relaxation measurements offer the 

dynamics information of molecules. Therefore, in the following sections, we briefly 

introduced the NMR theory.  

1.4.1 1/2 Spin Ensemble System 

Due to the Zeeman Effect, a single spin 1 2  has two Zeeman eigenstates which obey 

the following eigenequations [23]: 

 

1ˆ
2

1ˆ
2

z

z

I

I

 

 

 

 

                          (1.9) 

Equation 1.9 indicates that the state   is an eigenstate of angular momentum along the 

z-axis, with eigenvalue 1 2 . A spin that is in the state   is called polarized along the 

z-axis. Similarly, the state   is called polarized along the –z-axis as shown in Figure 1.8. 

 
Figure 1.8 The two Zeeman eigenstates of a single spin 1/2. 

If there is a magnetic field with magnitude 
0B  along the z-axis, the spin Hamiltonian is 

proportional to ˆ
zI  as shown in equation 1.10. 

 
0 0ˆ ˆ

zIH                                (1.10) 

where the (chemical shifted) Larmor frequency is given by  0 0 1B     . The 
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eigenvalues and energies of states   and   are 
01

2
 . The energy level splitting 

between the two states in a magnetic field is known as the Zeeman splitting and is equal to 

the Larmor frequency 
0  (in units of ) as shown in Figure 1.9. 

 
Figure 1.9 Energy levels for a spin 1/2 in a magnetic field. 

Consider a 1/2 spin system under thermal equilibrium at temperature T , there is no 

transition between two states, the populations of the state r  obey the Boltzmann 

distribution: 

 
 

   
eq

exp

exp exp

r B

r

B B

k T

k T k T 




 




  
               (1.11) 

where 
23 -11.38066 10 JKBk    is the Boltzmann constant. At room temperature, 

214.1 10 JBk T   , and the energy difference between the Zeeman states of protons in a field 

of 4.7T  ( 200MHz  resonance frequency for protons) is 
0 251.3 10 J   . Since the 

difference in energy between the Zeeman eigenstates is four orders of magnitude smaller than 

the available thermal energy, the thermal equilibrium population difference between the states 

is possible to estimate by an approximation of equation 1.11. The thermal equilibrium 

populations of the two states under high-temperature approximation are: 
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eq

eq

1 1

2 4

1 1

2 4









  

  

                           (1.12) 

where   is the gyromagnetic ratio, 
0

BB k T  is defined as Boltzmann factor. For 

positive  , the low-energy   state is populated slightly more than the high-energy   

state, though the population difference is only about 1 part in 
510 . 

1.4.2 Effects of (π/2)x and πx Pulses 

 Under the rotation frame of reference frequency rot , the spin states are related to the 

fixed-frame states through the transformation equation; 

   ˆ
zR t                            (1.13) 

where  

  ref reft t                               (1.14) 

and ref  is the reference frequency, equal to the frequency of the rotating frame. The 

operator  ˆ
zR   generates a rotation around the z-axis, through the angle  . 

Spin can be flipped by a strong radio frequency (RF) pulse of Larmor frequency, the 

spin-flip angle P  is given by P nut P   , where the nutation frequency nut  is a measure 

of the amplitude of the RF field, and P  is the pulse duration. The spin ensemble average 

before  after the RF pulse P  can be expressed as: 

    
P Pafter P before P

ˆ ˆˆ ˆR R                        (1.15) 

where P  is the phase of the pulse. 

The effect of a strong  2
x

  pulse on an ensemble of non-interaction spins 1/2 in a 

state of thermal equilibrium can be expressed as (See Levitt‘s book for more details [24]): 
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eq

before

after

1 1ˆ ˆˆ ˆ 1
2 2

1 1ˆ ˆˆ 1
2 2

z

y

I

I

 



   

  

                       (1.16) 

The  2
x

  pulse rotates the magnetization vector from the z-axis to –y-axis. 

In terms of the matrix representations, the action of the pulse is as follows: 

 
 

before after

1 1 1 1
0 22 4 2 4iˆ ˆ

1 1 1 1
0

2 4 4i 2

x


 

   
      

     
        
   

          (1.17) 

Therefore the  2
x


 
pulse equalizes the populations of the two states and converts the 

population difference into coherences. 

Similarly, the effect of a x  pulse on the thermal equilibrium state can be expressed as: 

 
after

1 1ˆ ˆˆ 1
2 2

zI                             (1.18) 

Therefore, the x  pulse accomplishes an inversion of the magnetization vector. In 

terms of population and coherence, it exchanges the populations of the two states as the 

transformation: 

 before after

1 1 1 1
0 0

2 4 2 4ˆ ˆ
1 1 1 1

0 0
2 4 2 4

x 

   
      

     
         
   

         (1.19) 

1.4.3 Relaxation Theory 

As mentioned in previous sections, RF pulses can disturb the equilibrium of the spin 

system. Relaxation is the process by which equilibrium is regained, through the interaction of 

the spin system with the thermal molecular environment. It can be divided into two types: 

longitudinal relaxation which is concerned with the movement of spin populations back to 

their Boltzmann distribution values and transverse relaxation which is concerned with the 
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decay of coherences.  

In an ensemble of isolated spins 1 2 , there are only two time constants for the 

relaxation processes: spin-lattice relaxation time constant 1T  and transverse relaxation time 

constant 2T . Relaxations can be caused by fluctuating magnetic fields at the sites of the 

nuclear spins, which caused by thermal motion of the molecules. The autocorrelation 

function is introduced to define how rapidly the local magnetic fields are fluctuating as 

follow: 

       0x xB t B t                         (1.20) 

Here,   is a time interval which is chosen on time scale of the local fluctuating 

magnetic field  xB t . Generally, a simple exponential form is assumed for the 

autocorrelation function: 

   2 e C

xB
 




                           (1.21) 

An important parameter in the relaxation theory is the spectral density  J  which is 

defined as: 

  

 
     

 

0

2

2 exp i d

2 xB J

   





 



J
                    (1.22) 

where a normalized spectral density  J   is defined as: 

   21

C

C

J



 




                             (1.23) 

The transition probabilities between states   and   for a single 1 2  spin under the 

random field model are expressed by spectral density as following: 
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  2 2 01

2
xW W B J                           (1.24) 

where W  is the transition probabilities from state   to state  , vice versa. The transition 

probabilities in the two directions are predicted to be equal and are proportional to the 

spectral density of the random field at the Larmor frequency 
0 .   

For a two spins system, the problem gets more complicated, and the detail of derivation 

is omitted here. It can be found in Levitt‘s book [23]. In summary, there are four quantum 

states, eight single-quantum transition probabilities, four double- and four zero- quantum 

transition probabilities as following: 
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                  (1.25) 

Here 1W  , 2W  and 0W  are the single-, double- and zero-quantum transition 

probabilities, which are shown as following: 
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                        (1.26) 

If the vibrational motions are ignored, the dipole-dipole coupling constant is given by 

 
2

0

34
b

r

 


                            (1.27) 

where the distance between the spins is denoted as r .  

For a two spins ensemble system, the longitudinal relaxation time and transverse 
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relaxation time are given by: 

 

    
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 
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              (1.28) 

According to Equation 1.28, the 2T  relaxation times are dominated by the  0J  and 

are therefore very sensitive to the low frequency or slow motion while the 1T  relaxation 

times are sensitive to the much higher Larmor frequency (  0J 
 
and  02J  ). 

1.4.4 NMR Spectrum 

When the ensemble of spins is excited by an RF pulse, the precessing nuclear transverse 

magnetization will induce an oscillating electric current which is called NMR signal or 

free-induction decay (FID) as shown in Figure 1.10 (A). The transverse magnetization 

components have the following form: 

 
   

   

nuc nuc 0

eq 2

nuc nuc 0

eq 2

cos exp

sin exp

y

x

M M t t T

M M t t T





  

 
                   (1.29) 

The decay rates of both components are determined by transverse relaxation time 2T . 

The oscillating frequencies of both components are Larmor frequency 
0 . After Fourier 

transform, the FID signal can be transferred into the spectrum as shown in Figure 1.10 (B). 

 
Figure 1.10 (A) The NMR FID signal and (B) The NMR spectrum. 
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The function of spectrum can be written as  

  
 

2
2 0

S



  


 

                       (1.30) 

where the value of S  is at a maximum when the frequency coordinate   is equal to the 

Larmor frequency 
0 . The parameter   is called the coherence decay rate constant. The 

Full width at half maximum (FWHM) 
FWHMf  is given as following: 

 FWHM

2

1
f

T



 
                           (1.31) 

However, the precise Larmor frequency of a given nucleus in the sample depends on a 

lot of factors in practice. Generally, if the Larmor frequency difference among the probing 

nucleus is caused by macroscopic factors, such as imperfect external magnetic field, field 

distortion from the bulk magnetic susceptibility of sample, and gradient field, it is called 

inhomogeneous broadening, as shown in Figure 1.11.  

 
Figure 1.11 An illustration of inhomogeneous broadening.  

The nuclear Larmor frequency also depends on the local electronic environment. This 

effect is called the chemical shift. The frequency difference can be observed in the spectrum 

as shown in Figure 1.12.  
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Figure 1.12 An illustration of chemical shift. 

Because of the difference of Larmor frequency among the nucleus in the sample, the 

spin ensemble will lose the coherence faster and the decay time constant of FID, which is 

defined as 
*

2T , generally is shorter than transverse relaxation time 2T  as shown in Figure 

1.13. 

 
Figure 1.13 Illustrations of T2

*
 and spectrum under broadening. 

The FWHM of the spectrum 
*

FWHMf  is 

   
FWHM 2

* *1f T                          (1.32)
 

1.4.5 NMR Pulse Sequences 

In the FID experiment, a single 90  pulse is applied, as shown in Figure 1.13. After the 

90  pulse, spin coherence on the x-y plane is generated. The FID signal is detected by RF 

coil and processed by the receiver. The ―dead time‖ issues in FID measurements are 
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discussed in Section 3.5.1. 

In the longitudinal relaxation time measurement, both the inversion recovery pulse 

sequence and the saturation recovery pulse sequence can be applied [25]. The pulse 

sequences are shown in Figure 1.14.  

 
Figure 1.14 The inversion recovery pulse sequence and the saturation recovery pulse 

sequence 

The magnetizations after waiting time   are given by equation 1.33 for inversion 

recovery pulse and equation 1.34 for saturation recovery pulse.  

     0 11 2expM M T                         (1.33) 

    0 11 expM M T   
                      (1.34) 

where 0M  is the amplitude of NMR signal.  

In the transverse relaxation time measurement, there are also two common pulse 

sequences: the Hahn Echo pulse sequence and the Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequence as shown in Figure 1.15. 
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Figure 1.15 (A) The Hahn Echo pulse sequence and (B) The CPMG pulse sequence. 

If the transverse relaxation is induced by diffusion through magnetic field gradient, it is 

given as 

    
2

3

2

2 2
2 0 exp exp

3

H
M M D

T z


  

    
          

            (1.35) 

where D  is the diffusion coefficient and H z   is the gradient in a static field. 

1.4.6 Magic-Angle Spinning 

Mechanical sample rotation can be applied to reduce anisotropic spin interactions 

(quadrupole couplings, chemical shift anisotropies, and direct dipole-dipole couplings) [24]. 

In magic-angle spinning (MAS), the solid sample is rotated fast (several kHz to tens kHz) 

around an axis which subtends the ‘magic angle‘ ( 54.74 ) with respect to the static field, as 

shown in Figure 1.16. 
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Figure 1.16 An illustration of MAS. 

Considering a pair of spins with direct dipole-dipole coupling i  and k , the secular part 

of the dipole-dipole coupling spin Hamiltonian is given by  

    DDˆ ˆ ˆ ˆ ˆ3      (homonuclear case)jk jk jk jz kzd I I   j kH I I        (1.36) 

where ikd  is the secular dipole-dipole coupling  

  21
3cos 1

2
jk jk jkd b                             (1.37) 

where is dipole-dipole the coupling constant. cos jk jk z  e e  is the angle between the 

vector joining the spins and the external magnetic field 0B  (along the z-axis). Therefore, in 

order to have the secular dipole-dipole coupling jkd  equal to zero, the magic angle can be 

calculated as: 

 
23cos 1 0jk                             (1.38) 

magic arctan 2 54.74                         (1.39) 
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CHAPTER 2. CHARACTERIZATION OF ACTIVATED CARBON 

NANOPOROUS STRUCTURES BASED ON NUCLEUS-INDEPENDENT 

CHEMICAL SHIFT 

 

2.1 Introduction 

Accurate determination of micropore size distribution is a challenging problem, 

especially of subnanometer-sized micropores. Besides the adsorption isotherm measurements, 

which have been discussed in Chapter 1, several NMR methods for characterizing PSD of 

ACs were also introduced, including NMR cryoporometry [1], relaxometry [2], and 

diffusometry [3]. NMR cryoporometry is based on the size-dependent depression of the 

melting temperature as described by the Gibbs-Thomson equation; this thermodynamic 

theory uses the macroscopic concept of surface tension and is applicable for pore sizes of a 

few nanometers and larger [4]. NMR relaxometry is based on separating the confined liquid 

into a bulk phase and a surface phase and is applicable to mesopores rather than micropores 

unless detailed information of the micropore geometry is available [5]. NMR diffusometry 

sheds light on the pore architectures related to the nature of the pore surface, diameter, and 

tortuosity and is not a technique exclusively for pore size determination [3, 6]. 

In this work, a quantitative NMR method is introduced based on taking a room 

temperature 
1
H MAS NMR spectrum of a well-known quantity of water added to the ACs 

sample. This approach is made possible by DFT calculation of nucleus-independent chemical 

shift (NICS) [7], which establishes a quantitative relationship between the micropore size and 

NICS in ACs. This NICS NMR porometry technique applies to local internal surfaces that are 

graphitic-like and is particularly useful for determining pore size and pore size distribution of 

micropores (diameter less than 2 nm). It only requires taking one 
1
H MAS spectrum of added 
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water and involves no additional knowledge such as interaction potentials or adsorption 

mechanisms. 

2.1.1 Nucleus-Independent Chemical Shift  

NICS is an aromatic ring current effect on the local magnetic field experienced by the 

nuclear spin of the probe atom. It is not related to any chemical bond and is thus nucleus 

independent. This chemical shift mechanism resulting from interatomic ring currents was 

known for a long time [8, 9], such as that of a benzene molecule [10]. The benzene molecule 

with cyclic conjugated π electrons has an induced ring current in the external magnetic field 

and gives rise to a diamagnetic response to the field above the plane of the benzene ring as 

shown in Figure 2.1, inducing an upfield chemical shift [9, 10]. 

 
Figure 2.1 Illustration of diamagnetic response induced by Benzene molecule under 

external magnetic field. 

The same effect was also observed in 
1
H NMR spectrum by several different adsorbates 

on the surface of aromatic systems, such as hydrogen [11], water [12], ammonia [13] and so 

on. Since the chemical shift is from the diamagnetic and paramagnetic effects of the ring 

currents associated with aromatic and antiaromatic compounds, it is independent of the probe 

atoms. The substantial negative NICS values indicate the existence of a diatropic ring current 

[14]. Therefore the so-called NICS index is widely used for characterizing aromaticity and 

antiaromaticity [7, 14, 15]. 
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2.1.2 Observation of NICS in ACs 

As expected, there is also a large NICS effect in ACs. Figure 2.2 shows 
1
H, 

19
F, and 

23
Na 

MAS spectra of a P-32 AC sample (see Section 2.4.2 for nomination rules) with added 1M 

NaBF4 aqueous solution. Two well-resolved peaks are clearly observed in all three spectra. 

The 
1
H chemical shift of the left peak, peak A, is due to water stored in large mesopores and 

macropores. It is slightly upfield shifted by -0.1 ppm compared to that of bulk water due to 

the isotropic bulk magnetic susceptibility effect. Since the whole sample space is 

experiencing the identical isotropic bulk magnetic susceptibility effect, it is suitable to use 

peak A as a reference for measuring the value of NICS. Setting the left peak chemical shift of 

all three nuclei as 0 ppm, the right peaks of all three nuclei exhibit the same chemical shift of 

-7.7 ppm. The right peak B is associated with water adsorbed inside micropores [12]. The 

upfield shift of peak B with respect to that of peak A is due to the NICS effect of ACs [8-10]. 

It is not related to any effect of chemical bonding as all three nuclei exhibit the same 

chemical shift.  

4 0 -4 -8 -12 -16 -20 -24
Chemical Shift (ppm)

7.7ppm

Peak B

Peak A

1
H

19
F

23
Na

4 2 0 -2 -4 -6 -8 -10 -12 -14

 1H

 19F

 
Figure 2.2 

1
H, 

19
F, 

23
Na MAS spectra of a P-32 AC sample filled with 1M NaBF4 

solution. The left peak A is set at 0 ppm, and the right peaks of all three nuclei exhibit the 
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same chemical shift of -7.7 ppm. Inset: 
1
H and 

19
F spectra were stacked together scaled in 

intensity according to peak B. 

2.2 DFT Simulation of NICS 

2.2.1 The Simulation Approach 

All the DFT computation results were obtained by Gaussian version 09-b01[16]. 

Gaussian is an advanced computational chemistry software, which has been widely used in a 

lot of scientific areas [17]. It was initially released in 1970 by John Pople and his research 

group at Carnegie Mellow University [18]. It is a powerful tool to achieve first principle 

calculations [19] based on quantum mechanics.  

Different from molecular mechanics methods which rely on force fields [20], first 

principle calculation solves the Schrödinger Equations usually under the assumption that 

nuclei are stationary. To achieve first principle calculations, Gaussian approximates the 

electron orbital shapes and electron orbital energies of a given molecular geometry by a 

model consisting of two parts: a basis set and a method.  

The basis set applied in this work is 6-311G(d) [21]. The first number ―6‖ indicates the 

number of primitive Gaussians basis functions used for each core (inner) electron orbital; the 

following three digits ―311‖ indicate how many sub-orbitals each valence atomic orbital is 

split into; and the character ―(d)‖ indicates adding polarization basis functions. According to 

the online manual of Gaussian, 6-311G(d) is sufficient for both 
1
H and 

12
C simulations.  

The method used for geometry optimization is B3LYP (Becke, three-parameter, 

Lee-Yang-Parr) [22, 23], which is one of the most popular DFT methods used in 

computational chemistry. NICS values were computed by the Gauge-Independent Atomic 

Orbital method, which has been used a lot in previous studies [24-28].  

A sample code of Gaussian is shown in Figure 2.3 as below: 
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Figure 2.3 A sample code of the Gaussian software. 

All the computational tasks are finished on “KillDevil” clusters supported by the 

Information Technology Services department of UNC.  

2.2.2 The Simulation Model 

The internal surface structure of ACs was mimicked by the central carbon ring of a 

circumcoronene molecule (as shown in Figure 2.4). The NICS probe atom (ghost atom [29]) 

was placed at three different locations, namely, over the center of the central carbon ring, 

over the top of the carbon atom of the central carbon ring, and over the middle point of the 

carbon-carbon bond of the central carbon ring, as illustrated in Figure 2.4 In each location, 

the NICS value is evaluated as a function of distance along the line perpendicular to the 

carbon surface.  
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Figure 2.4 Molecular structure of circumcoronene. Gray atoms are carbon; white 

atoms are hydrogen. Purple dots are NICS probe atoms at three different locations. 

2.2.3 The Simulation Scripts 

The Gaussian script of geometry optimization is shown as below: 

%nprocshared=4 

%mem=20GB 

%chk=circumcoronene.chk 

# opt freq b3lyp/6-311g(d) 

 

Circumcoronene_opt 

 

0 1 

 C                 -0.02875967   -1.44714823    0.00000000 

 C                 -1.21615756   -0.80932756    0.00000000 

 C                 -1.25638248    0.71508659    0.00000000 

 C                 -0.09556602    1.42597309    0.00000000 

 C                  1.25896766    0.69631033    0.00000000 

 C                  1.27701089   -0.66810344    0.00000000 

 C                  2.58076382   -1.48017055    0.00000000 

 C                  2.54300326   -2.84052536    0.00000000 

 C                  1.21201991   -3.61120499    0.00000000 

 C                  0.02932816   -2.96572048    0.00000000 

 C                 -1.28035576   -3.73365568    0.00000000 

 C                 -2.57492264   -2.93088024    0.00000000 

 C                 -2.54447119   -1.57953704    0.00000000 

 C                 -3.85017493   -0.78019704    0.00000000 

 C                 -3.79277561    0.75840543    0.00000000 

 C                 -2.61225533    1.43562444    0.00000000 

 C                 -2.60346578    2.95858981    0.00000000 

 C                 -1.25316198    3.66869797    0.00000000 
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 C                 -0.09684700    2.96266835    0.00000000 

 C                  1.25079557    3.69581040    0.00000000 

 C                  2.56253387    2.88442417    0.00000000 

 C                  2.57392073    1.51813903    0.00000000 

 C                  3.92119588    0.77592411    0.00000000 

 C                  3.92132154   -0.75238956    0.00000000 

 C                  5.07923016   -1.44724888    0.00000000 

 C                  5.04367451   -2.99390177    0.00000000 

 C                  3.84716120   -3.64653917    0.00000000 

 C                  3.79205267   -5.19562563    0.00000000 

 C                  2.60166242   -5.87920702    0.00000000 

 C                  1.23937433   -5.14321269    0.00000000 

 C                  0.06371972   -5.84261120    0.00000000 

 C                 -1.29098386   -5.08701969    0.00000000 

 C                 -2.63795586   -5.86762143    0.00000000 

 C                 -3.84631123   -5.21702949    0.00000000 

 C                 -3.89649166   -3.67715573    0.00000000 

 C                 -5.06850909   -2.98334586    0.00000000 

 C                 -5.04784738   -1.43136238    0.00000000 

 C                 -6.38737462   -0.64248169    0.00000000 

 C                 -6.41824975    0.72462902    0.00000000 

 C                 -5.10816833    1.53021613    0.00000000 

 C                 -5.10696970    2.89272559    0.00000000 

 C                 -3.76422559    3.66238594    0.00000000 

 C                 -3.75370814    5.21732070    0.00000000 

 C                 -2.58306423    5.92635081    0.00000000 

 C                 -1.23302599    5.18815859    0.00000000 

 C                 -0.04872485    5.85288446    0.00000000 

 C                  1.28158968    5.06073544    0.00000000 

 C                  2.62586802    5.83733346    0.00000000 

 C                  3.82725411    5.19249380    0.00000000 

 C                  3.88208770    3.65752183    0.00000000 

 C                  5.07026031    2.99806880    0.00000000 

 C                  5.08820462    1.45626376    0.00000000 

 C                  6.42258136    0.67948390    0.00000000 

 C                  6.41861212   -0.68220017    0.00000000 

 H                  5.95742693   -3.55063776    0.00000000 

 H                  4.70839866   -5.74808222    0.00000000 

 H                  2.61553707   -6.94911670    0.00000000 

 H                  0.07864047   -6.91250891    0.00000000 

 H                 -2.62119862   -6.93749046    0.00000000 

 H                 -4.75585399   -5.78061805    0.00000000 

 H                 -6.00156478   -3.50708467    0.00000000 

 H                 -7.31026769   -1.18392788    0.00000000 

 H                 -7.35805635    1.23615939    0.00000000 

 H                 -6.03254401    3.42957763    0.00000000 

 H                 -4.68413451    5.74571851    0.00000000 

 H                 -2.60671215    6.99608996    0.00000000 

 H                 -0.03502157    6.92279669    0.00000000 

 H                  2.60914698    6.90720177    0.00000000 
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 H                  4.73554720    5.75809236    0.00000000 

 H                  5.98917249    3.54624336    0.00000000 

 H                  7.35096000    1.21147371    0.00000000 

 H                  7.34323589   -1.22068975    0.00000000 

 

The Gaussian script of NMR calculation is shown as below: 

%nprocshared=4 

%mem=20GB 

%chk=circumcoronene_NMR_ghost_lr2.chk 

# nmr=giao b3lyp/6-311g(d) 

 

Circumcoronene_NMR_ghost_lr2 

 

0 1 

 C                 -0.00006700   -1.41780800    0.00000000 

 C                  1.22793800   -0.70886200    0.00000000 

 C                  1.22803400    0.70868400    0.00000000 

 C                 -0.00003200    1.41758700    0.00000000 

 C                 -1.22775200    0.70874200    0.00000000 

 C                 -1.22781900   -0.70896900    0.00000000 

 C                 -2.46385900   -1.42259100    0.00000000 

 C                 -2.46270900   -2.84080900    0.00000000 

 C                 -1.22902400   -3.55300400    0.00000000 

 C                 -0.00007900   -2.84484100    0.00000000 

 C                  1.22907400   -3.55309900    0.00000000 

 C                  2.46262100   -2.84089200    0.00000000 

 C                  2.46399300   -1.42242700    0.00000000 

 C                  3.69182400   -0.71218300    0.00000000 

 C                  3.69183200    0.71229600    0.00000000 

 C                  2.46399300    1.42249000    0.00000000 

 C                  2.46280300    2.84096900    0.00000000 

 C                  1.22907600    3.55306200    0.00000000 

 C                 -0.00002500    2.84478000    0.00000000 

 C                 -1.22914700    3.55302200    0.00000000 

 C                 -2.46277500    2.84068400    0.00000000 

 C                 -2.46402400    1.42252800    0.00000000 

 C                 -3.69184500    0.71210700    0.00000000 

 C                 -3.69182400   -0.71225500    0.00000000 

 C                 -4.92579700   -1.43113700    0.00000000 

 C                 -4.90201000   -2.82986600    0.00000000 

 C                 -3.70277800   -3.55020500    0.00000000 

 C                 -3.66388100   -4.98568100    0.00000000 

 C                 -2.48591000   -5.66562600    0.00000000 

 C                 -1.22326700   -4.98144100    0.00000000 

 C                  0.00036500   -5.65982700    0.00000000 

 C                  1.22345000   -4.98114000    0.00000000 

 C                  2.48560000   -5.66544100    0.00000000 

 C                  3.66368000   -4.98541100    0.00000000 
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 C                  3.70237500   -3.55017800    0.00000000 

 C                  4.90209400   -2.82956300    0.00000000 

 C                  4.92605000   -1.43126000    0.00000000 

 C                  6.14968400   -0.68009600    0.00000000 

 C                  6.14978000    0.68005500    0.00000000 

 C                  4.92611300    1.43135000    0.00000000 

 C                  4.90202400    2.83042600    0.00000000 

 C                  3.70250700    3.55038500    0.00000000 

 C                  3.66385600    4.98562300    0.00000000 

 C                  2.48580500    5.66565000    0.00000000 

 C                  1.22355700    4.98136300    0.00000000 

 C                 -0.00039800    5.66005300    0.00000000 

 C                 -1.22344700    4.98132600    0.00000000 

 C                 -2.48591000    5.66548700    0.00000000 

 C                 -3.66379000    4.98555900    0.00000000 

 C                 -3.70277100    3.55014500    0.00000000 

 C                 -4.90219000    2.82981800    0.00000000 

 C                 -4.92616900    1.43097000    0.00000000 

 C                 -6.14951500    0.67979900    0.00000000 

 C                 -6.14931500   -0.68040100    0.00000000 

 H                 -5.84345800   -3.37278000    0.00000000 

 H                 -4.60537500   -5.52702100    0.00000000 

 H                 -2.48403100   -6.75165500    0.00000000 

 H                  0.00075000   -6.74656300    0.00000000 

 H                  2.48350400   -6.75141600    0.00000000 

 H                  4.60511800   -5.52679300    0.00000000 

 H                  5.84327000   -3.37291600    0.00000000 

 H                  7.08928700   -1.22470800    0.00000000 

 H                  7.08938300    1.22465700    0.00000000 

 H                  5.84317100    3.37381700    0.00000000 

 H                  4.60537400    5.52685200    0.00000000 

 H                  2.48385300    6.75166000    0.00000000 

 H                 -0.00029100    6.74681000    0.00000000 

 H                 -2.48385500    6.75150300    0.00000000 

 H                 -4.60524500    5.52698100    0.00000000 

 H                 -5.84352600    3.37297000    0.00000000 

 H                 -7.08921000    1.22419100    0.00000000 

 H                 -7.08872600   -1.22526100    0.00000000 

 Bq                 0.00000000    0.00000000    0.00000000 

 Bq                 0.00000000    0.00000000    0.50000000 

 Bq                 0.00000000    0.00000000    1.00000000 

 Bq                 0.00000000    0.00000000    1.50000000 

 Bq                 0.00000000    0.00000000    2.00000000 

 Bq                 0.00000000    0.00000000    2.50000000 

 Bq                 0.00000000    0.00000000    3.00000000 

 Bq                 0.00000000    0.00000000    3.50000000 

 Bq                 0.00000000    0.00000000    4.00000000 

 Bq                 0.00000000    0.00000000    4.50000000 

 Bq                 0.00000000    0.00000000    5.00000000 

 Bq                 0.00000000    0.00000000    5.50000000 



 

39 

 Bq                 0.00000000    0.00000000    6.00000000 

 Bq                 0.00000000    0.00000000    6.50000000 

 Bq                 0.00000000    0.00000000    7.00000000 

 Bq                 0.00000000    0.00000000    7.50000000 

 Bq                 0.00000000    0.00000000    8.00000000 

 Bq                 0.00000000    0.00000000    8.50000000 

 Bq                 0.00000000    0.00000000    9.00000000 

 Bq                 0.00000000    0.00000000    9.50000000 

 Bq                 0.00000000    0.00000000    10.00000000 

 Bq                 0.00000000    0.00000000    11.00000000 

 Bq                 0.00000000    0.00000000    12.00000000 

 Bq                 0.00000000    0.00000000    13.00000000 

 Bq                 0.00000000    0.00000000    14.00000000 

 Bq                 0.00000000    0.00000000    15.00000000 

 Bq                 0.00000000    0.00000000    16.00000000 

 Bq                 0.00000000    0.00000000    17.00000000 

 Bq                 0.00000000    0.00000000    18.00000000 

 Bq                 0.00000000    0.00000000    19.00000000 

 Bq                 0.00000000    0.00000000    20.00000000 

 Bq                 0.00000000    0.00000000    25.00000000 

 Bq                 0.00000000    0.00000000    30.00000000 

 Bq                 0.00000000    0.00000000    35.00000000 

 Bq                 0.00000000    0.00000000    40.00000000 

 Bq                 0.00000000    0.00000000    45.00000000 

 Bq                 0.00000000    0.00000000    50.00000000 

 Bq                -0.00006700   -1.41780800    3.00000000 

 Bq                -0.00006700   -1.41780800    3.50000000 

 Bq                -0.00006700   -1.41780800    4.00000000 

 Bq                -0.00006700   -1.41780800    4.50000000 

 Bq                -0.00006700   -1.41780800    5.00000000 

 Bq                -0.00006700   -1.41780800    5.50000000 

 Bq                -0.00006700   -1.41780800    6.00000000 

 Bq                -0.00006700   -1.41780800    6.50000000 

 Bq                -0.00006700   -1.41780800    7.00000000 

 Bq                -0.00006700   -1.41780800    7.50000000 

 Bq                -0.00006700   -1.41780800    8.00000000 

 Bq                -0.00006700   -1.41780800    8.50000000 

 Bq                -0.00006700   -1.41780800    9.00000000 

 Bq                -0.00006700   -1.41780800    9.50000000 

 Bq                -0.00006700   -1.41780800    10.00000000 

 Bq                -0.00006700   -1.41780800    11.00000000 

 Bq                -0.00006700   -1.41780800    12.00000000 

 Bq                -0.00006700   -1.41780800    13.00000000 

 Bq                -0.00006700   -1.41780800    14.00000000 

 Bq                -0.00006700   -1.41780800    15.00000000 

 Bq                -0.00006700   -1.41780800    16.00000000 

 Bq                -0.00006700   -1.41780800    17.00000000 

 Bq                -0.00006700   -1.41780800    18.00000000 

 Bq                -0.00006700   -1.41780800    19.00000000 

 Bq                -0.00006700   -1.41780800    20.00000000 
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 Bq                -0.00006700   -1.41780800    25.00000000 

 Bq                -0.00006700   -1.41780800    30.00000000 

 Bq                -0.00006700   -1.41780800    35.00000000 

 Bq                -0.00006700   -1.41780800    40.00000000 

 Bq                -0.00006700   -1.41780800    45.00000000 

 Bq                -0.00006700   -1.41780800    50.00000000 

 Bq                 0.61393550   -1.06333500    2.00000000 

 Bq                 0.61393550   -1.06333500    2.50000000 

 Bq                 0.61393550   -1.06333500    3.00000000 

 Bq                 0.61393550   -1.06333500    3.50000000 

 Bq                 0.61393550   -1.06333500    4.00000000 

 Bq                 0.61393550   -1.06333500    4.50000000 

 Bq                 0.61393550   -1.06333500    5.00000000 

 Bq                 0.61393550   -1.06333500    5.50000000 

 Bq                 0.61393550   -1.06333500    6.00000000 

 Bq                 0.61393550   -1.06333500    6.50000000 

 Bq                 0.61393550   -1.06333500    7.00000000 

 Bq                 0.61393550   -1.06333500    7.50000000 

 Bq                 0.61393550   -1.06333500    8.00000000 

 Bq                 0.61393550   -1.06333500    8.50000000 

 Bq                 0.61393550   -1.06333500    9.00000000 

 Bq                 0.61393550   -1.06333500    9.50000000 

 Bq                 0.61393550   -1.06333500    10.00000000 

 Bq                 0.61393550   -1.06333500    11.00000000 

 Bq                 0.61393550   -1.06333500    12.00000000 

 Bq                 0.61393550   -1.06333500    13.00000000 

 Bq                 0.61393550   -1.06333500    14.00000000 

 Bq                 0.61393550   -1.06333500    15.00000000 

 Bq                 0.61393550   -1.06333500    16.00000000 

 Bq                 0.61393550   -1.06333500    17.00000000 

 Bq                 0.61393550   -1.06333500    18.00000000 

 Bq                 0.61393550   -1.06333500    19.00000000 

 Bq                 0.61393550   -1.06333500    20.00000000 

 Bq                 0.61393550   -1.06333500    25.00000000 

 Bq                 0.61393550   -1.06333500    30.00000000 

 Bq                 0.61393550   -1.06333500    35.00000000 

 Bq                 0.61393550   -1.06333500    40.00000000 

 Bq                 0.61393550   -1.06333500    45.00000000 

 Bq                 0.61393550   -1.06333500    50.00000000 

 

2.2.4 The Simulation Results 

The function  r  is the NICS value as a function of the distance between the probe 

atom center and the surface of carbons (atomic center to center). This function can be 

obtained from the DFT calculation [29-31]. Here we use the central carbon ring of the 

circumcoronene molecule to model the effect of AC micropore surface (Figure 2.4). The 
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shielding tensor of NICS can then be calculated using the DFT method at the position 

specified by the NICS probe atom. The calculated result of  r  is shown in Figure 2.5. 

The NICS at locations over the center of the central aromatic ring, over the carbon atom, and 

over the middle of the carbon-carbon bond are nearly identical when the distance r is larger 

than 0.32 nm. Since atoms of water molecules would not approach the surface closer than this 

distance, we assume  r  to be the independence of the horizontal position over a 

graphitic-like surface. For the purpose of convenience for future usage of the calculated 

 r , we fit the calculated  r  in the region of 0.3 nm 3.0 nmr   with a stretched 

exponential function    0exp /r A r r


   
 

. There is no any physical meaning in this 

functional form of the fitting. It is simply for the purpose of reading off the values of the DFT 

computational result. A very good fit is obtained with 24.5 ppmA  , 0 0.227 nmr  , and 

0.754   as shown in Figure 2.5.  
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Figure 2.5 Calculated NICS  r  by DFT with the probe atom over the ring center, 
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over the carbon atom, and over the bond center of the central carbon ring of 

circumcoronene. The solid line is an empirical fit of the numerical  r  with 

   0exp /r A r r


   
 

. 

2.3 Probing Microporous ACs 

2.3.1 Slit-Shaped Pore Model and Average NICS  

A simple exchange model is assumed to correlate NICS-related isotropic chemical shift 

with the pore size. As it is shown in Figure 2.6, inside a slit-shaped pore [32], water 

molecules are distributed throughout the internal space. On the NMR timescale of 600 μs, a 

water molecule moves rapidly inside the micropore and spends time both close to (small r) 

and away from (large r) the surface. Therefore, the measured NMR spectrum is determined 

by the time-averaged effect of motion. Since the NICS is a function of distance from the 

surface, as shown in Figure 2.5, the measured NICS-related isotropic chemical shift of a fully 

filled micropore is NICS averaged over the pore space and can be calculated as 

  
     

2

d w d w d w

w w w
avg d w d w d w

w w w

r dr d r dr r dr

d

dr dr dr

  



  

  



  
  

  

            (2.1) 

where  avg  is the averaged NICS, d is the pore width between the two layers of carbon 

atoms (atom center to center), and w is the closest distance between hydrogen and carbon 

atoms chosen as w=0.32 nm [11]. NICS contributions from both surfaces are taken into 

account in Equation (2.1). 
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Figure 2.6 Illustration of water molecules inside a slit-shaped pore of width d (atom 

center to center). 

2.3.2 Correlation of Isotropic Chemical Shift and Pore Size 

By plugging    0exp /r A r r


   
 

 with 24.5 ppmA  , 0 0.227 nmr  , and 

0.754   into Equation 2.1 and with w=0.32 nm, the averaged NICS 𝛿    can then be 

calculated as a function of pore size d by 

    0/2

2

d w
r r

avg

w

A
d e dr

d w









                       (2.2) 

The function in Equation 2.2 can be inverted numerically to obtain the function of pore 

size d versus 𝛿    and this numerical result is shown in Figure 2.7. Again, for convenience 

of future usage, the numerical result of d versus 𝛿    is fitted empirically with the following 

function 

    1 1 2 2 0exp / exp /avg avgd A A d                    (2.3) 

with the fitting parameters 1 0.53 ppm   , 2 3.7 ppm   , 1 16.15 nmA  , 

2 3.82 nmA  , and 0 0.57 nmd  . As shown in Figure 2.7, this fit is excellent. Figure 2.7 

shows that water contained in mesopores larger than 3 nm would contribute to peak A rather 

than peak B. Peak B belongs predominantly to water contained in micropores ( 2 nmd  ). 
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Figure 2.7 For a slit-shaped pore of width d (atom center to center), the deduced 

function of d versus the averaged NICS avg  based on Equation 2.2.  The solid line is an 

empirical fit of the numerical result with a function given by Equation 2.3. 

2.3.3 Micropore Filling 

Complete micropore filling is essential for the application of this model, especially for 

large micropores. Figure 2.8a compares 
1
H MAS NMR spectrum of a P-0 sample with 

adsorbed water under saturated water vapor for 20 hours with that by syringe water injection. 

The mass ratio of adsorbed water to AC after 20 hours exposure to saturated water vapor is 

0.19. Its spectrum shows a single peak B and water is only adsorbed into micropores. The 

external surface is hydrophobic, and no significant water condensation happens. The internal 

surfaces of all accessible micropores have graphitic-like surface structures giving rise to 

nearly identical NICS. After the mass ratio of water to carbon is increased to 0.39 by further 

water addition with syringe water injection into the P-0 sample that already has 0.19 water to 

AC mass ratio, Peak A emerges, but peak B remains identical. Therefore, the micropores have 

already been fully filled with water by 20 hours exposure to saturated water vapor. The 

additionally injected water only goes to large mesopores and macropores giving rise to Peak 
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A. For comparison, water is also injected into a dry P-0 AC sample directly, and the spectrum 

shown in Figure 2.8a shows an identical peak B as that after 20 hours exposure to saturated 

water vapor. Thus, the water injection method also provides fully filled micropores with 

water. Figure 2.8b shows 
1
H MAS NMR spectra of a P-92 AC sample filled with different 

amount of water by syringe water injection. Here, peak B appears first and grows in intensity 

as the amount of adsorbed water increases. After the mass ratio of water to carbon reaches 

1.42, peak A starts to emerge while peak B stops growing. Notice in Figure 2.8b that peak B 

shifts gradually toward the lower field as its intensity increases with increasing water filling. 

The difference of chemical shifts between initial water filling and pore saturation is about 0.7 

ppm. When a small amount of water is initially added into micropores, water molecules 

preferentially adsorb on the surface and spend, on average, more time near the surface where 

the NICS effect is large. With more water added, the pore space is gradually filled up and 

water distribution averaged over time is close to that of the volume average used in Equation 

2.1. Therefore, the measured NICS-related isotropic chemical shift (shift of peak B with 

respect to the shift of peak A) of a fully filled micropore would have a less negative value 

(lower field) compared to that of a partially filled micropore, as shown in Figure 2.8b.  
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Figure 2.8 (a) 

1
H MAS spectra of water in a P-0 AC sample with different water 

filling condition: Adsorption in saturate water vapor (square) followed by further water 

addition with syringe water injection (circle); adsorption by syringe injection into a dry AC 

sample (triangle). All three spectra have identical Peak B certifying the micropores were 

fully filled by each method. (b) 
1
H MAS spectra of water in a P-92 AC sample at different 

water filling level with water/carbon mass ratio ranging from 0.38 to 1.83. The chemical 

shift of peak B at low filling level (0.38) differs by 0.7 ppm from that of saturated 

micropores (mass ratio 1.42 and above).  
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2.3.4 Micropore Volume in ACs 

The amount of water adsorbed inside micropores can be measured quantitatively by 

NMR and can be used to calculate the micropore volume. Since 
1
H MAS NMR spectra 

(Figures 2.2 and 2.8) clearly resolve the peak associated with micropores from the peak 

associated with the rest of the water, the amount of water inside micropores can be easily 

determined from the known amount of added water and the ratio of peak B intensity versus 

the total spectral intensity. The total micropore volume per unit mass of AC sample, /B sV m , 

can be calculated by  

 
1 wB B

s w total s

mV A

m A m
                             (2.4) 

where wm  and sm  are the mass of water and AC sample, respectively, 
30.9 g/cmw   is 

the density of water inside micropores [33], totalA  is the total spectral intensity, and BA  is 

the intensity of peak B. 

Since the pore size d as a function of 𝛿    is established, it is straightforward to obtain 

the dominant pore size of micropores in an AC sample by determining 𝛿    of peak B. 
1
H 

spectra of water filled ACs samples derived from PEEK with different BO values are shown 

in Figure 2.9. Table 2.1 summarizes the information extracted from the spectra including the 

measured avg  and the corresponding pore size d, as well as the micropore volume and 

micropore surface area. The pore width defined as the surface to surface distance 
*d  is 

determined by 
* 0.34 nmd d  where the carbon atom diameter of 0.34 nm is from the 

solid-solid Lennard-Jones interaction parameter [34]. The micropore internal surface area is 

calculated from pore volume and pore width 
*d by 

 
*

2 B

s

V
S

m d



                              (2.5)          

The 92% and 0% BO AC samples were also characterized by nitrogen adsorption 
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isotherm and showed a typical Type I adsorption isotherm (Section 2.4.4) which indicated the 

dominated pore type is micropores.  

4 2 0 -2 -4 -6 -8 -10 -12 -14

BO 

(wt% )

0
15

29
42
54
65
74

82

Chemical Shift (ppm)

89

 
Figure 2.9 

1
H MAS spectra of water-filled AC samples derived from PEEK with 

different BO values as indicated in the figure. 

The BET area and total pore volume of 92% BO sample are 
22888 m g and

31.55 cm g

(at P/P0=0.99), respectively (Section 2.4.4). The 0% BO sample has 
30.18 cm g  total pore 

volume (at P/P0=0.99). The micropore volume calculated by the MAS NMR method matches 

very well with nitrogen adsorption method in both 92% and 0% BO samples as shown in 

Table 2.1. As discussed in Section 2.3.3, the internal surfaces of all accessible micropores 

have graphitic-like surface structures. Thus the specific surface area of AC sample should be 

smaller than the theoretical specific surface area of graphene which is 
22630  m g . 

Therefore, the surface area of 92% BO sample calculated by the present method (
21912  m g  

) is quite reasonable.   
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BO (%) 
Measured  

(ppm) 

Pore size 

d (nm) 

Pore size  d* 

(nm) 

Micropore 

Volume (cm
3
/g) 

Micropore 

surface area 

(m
2
/g) 

0 -9.3 0.92 0.58 0.19 642 

15 -8.3 1.02 0.68 0.25 747 

29 -7.2 1.15 0.81 0.38 928 

42 -6.5 1.25 0.91 0.51 1117 

54 -5.8 1.38 1.04 0.67 1290 

65 -5.3 1.47 1.13 0.88 1553 

74 -4.8 1.59 1.25 1.00 1603 

82 -4.4 1.71 1.37 1.18 1719 

89 -4.3 1.74 1.40 1.39 1992 

92 -3.9 1.89 1.55 1.48 1912 

Table 2.1 AC samples with different BO values and the 
1
H NMR derived avg , pore 

size d and d*, micropore volume, and micropore surface area. 

2.3.5 PSD and Peak Broadening 

Comparing with the static spectra, the full width at half maximum (FWHM) of 
1
H 

spectra is significantly reduced under MAS from 4.6 ppm down to 1.3 ppm, as shown in 

Figure 2.10 Although the peaks of both the static and MAS spectra have the same average 

chemical shifts, the large anisotropic broadening of the static spectra obscures the 

contribution of intrinsic NICS distribution associated with PSD. In MAS spectra, the 

anisotropic broadening is removed [35], and the linewidth of peak B is dominated by 

micropore size distribution. The spin-lattice relaxation time T1 under MAS is about 0.7 s, 

which contributes to an intrinsic line broadening of 3

1

1 1
(ppm) 1.1 10

400 T




     at 400 

MHz. This is negligible compared to the observed FWHM of 1.3 ppm, which is determined 

by NICS distribution. Therefore, it is possible to derive the PSD from the MAS spectrum. 
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Figure 2.10 

1
H spectra of water in a P-92 AC sample. The static spectrum (dashed line, 

red) has a FWHM of 4.6 ppm, and the MAS spectrum (solid, black) has a FWHM of 1.3 

ppm. 

The function of pore volume versus pore size  V d  is needed to calculate the PSD. 

The pore volume distribution function  V d  can be calculated from the MAS NMR 

lineshape  I   by 

                  d d ' dV V d d I d I d d                       (2.6) 

Therefore,      'V d I d  . This relates the micropore size distribution  V d  with 

the MAS NMR lineshape  I   and  ' d , which can be obtained directly by taking the 

derivative of the function in Equation 2.2 to d. The NMR spectra in Figure 2.9 can then be 

translated into pore size distributions, and are shown in Figure 2.11. The distributions are 

scaled so that the areas are proportional to the total pore volumes listed in Table 2.1.  
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Figure 2.11 PSD obtained from 

1
H MAS NMR spectra. 

2.3.6 Effect of Carbonization Domain Size 

Since the NICS effect is a local effect, it does not require the surface to be graphitic-like 

continuously on a large scale. It is important to realize that the NICS NMR porometry 

technique is not an atomic scale structural imaging technique. It probes local structures 

averaged over a certain length scale and measures the average pore size over such a length 

scale. Carbonization temperature is the crucial parameter in sample preparation for making 

the surface locally graphitic-like. All the AC samples discussed in this work were carbonized 

at 900°C. Graphitic crystalline domains can be clearly observed by transmission electron 

microscope in samples carbonized at temperatures above 1000°C as shown in Figure 2.18 

(Section 2.4.4).  

High carbonization temperature makes atomic hybrid orbitals predominantly sp
2
-like 

rather than sp
3
-like and makes the graphitic-like domain larger; the degree of carbonization is 

also high (1 at% H in this work). The structural model employed in this work for NICS 

calculation is circumcoronene. Larger graphitic-like domain sizes than this could give rise to 
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slightly larger NICS effect on the order of 1 ppm [30]. Assuming an uncertainty of 1 ppm in 

the NICS effect due to local structure variations, this would give rise to an uncertainty in the 

determined pore size of approximately 0.08 nm (or 8%) for an average pore size of 1 nm 

(carbon atom center to center) and 0.36 nm (or 18%) for an average pore size of 2 nm (carbon 

atom center to center).  

2.3.7 Diffusion Effect 

As mentioned above, NICS NMR porometry measures the average pore size over a 

certain length scale. This length scale of averaging is determined by the diffusion length l of 

the probing molecule (H2O in the current experiment) over the NMR time scale determined 

by the linewidth. From *

2 1/ (1.3 ppm 400 Hz )T    , this time scale is about 600 μs. The 

water and BF4
-
 diffusion coefficients inside ACs were reported to be on the order of 

10 210 m s  [36] and 12 210 m s

 [37], respectively. From 6l Dt , l is estimated to be 600 

nm for water and 60 nm for BF4
-
. As shown inset of Figure 2.2, the lineshapes of 

1
H and 

19
F 

spectra are nearly identical. The only difference is the tiny bump at the far right of peak B, 

and this is not surprising since hydrated BF4
-
 cannot enter very small pores while H2O can. 

The similar lineshapes of 
1
H and 

19
F spectra indicate that the length scale of averaging in the 

NICS NMR porometry technique is around 60 nm or less. Diffusion of water molecules can 

be restricted within micropores by barriers such as at pore throat. As it was reported [2] when 

probe molecules enter the microporous space, they tend to stay in this space, and the 

diffusion coefficient of probe molecules confined inside micropores of ACs can be very small 

( 13 24 10 m s  for ethanol), and the length scale of averaging can be even smaller than 60 

nm. Nevertheless, the PSD measured by NICS NMR porometry is a coarse-grained one over 

the length scale of averaging. In AC samples where micropores and mesopores are mixed in 

close proximity over a very short length scale much smaller than l, the NICS NMR porometry 

would then provide a pore size averaged over micropores and mesopores. In this case, peak B 
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will merge with peak A, and this could occur in our samples activated at the very high degree 

of burn off [11]. Figure 2.12 compares the water 
1
H spectra in P-89 and P-94 AC samples. 

There is clearly a qualitative change in the 
1
H spectrum of P-94 AC. Here, peak B nearly 

collapsed and merged with peak A. The high degree of activation creates very open structures 

where water molecules can effectively go through micropores and mesopores over the time 

scale of *

2T  causing the merge of peaks A and B. This averaging effect gives rise to a 

seeming smaller micropore volume in P-94 even though the burn-off is higher. In this case, 

the present technique is no longer effective in quantitative pore structure characterization. 

6 4 2 0 -2 -4 -6 -8 -10

Chemical Shift (ppm)

 P-94

 P-89

 
Figure 2.12 

1
H spectra of water in P-89 (dash-dotted line) and P-94 (solid line) AC 

samples. The intensity (spectral area) is scaled by water/AC weight ratio. 

Other evidence also shows that water diffusion is extremely slow in our samples (except 

P-94). According to the SEM image of P-60 (Figure 2.17 in Section 2.4.4), the particle size is 

several hundred micrometers. It will take about 100 s for water molecules inside AC particles 

to diffuse to the surface assuming diffusion coefficient of 10
-10

 m
2
/s. As a result, the sample 

should dry very quickly in a desiccator. In reality, it took at least two days to dry an AC 

sample loaded with water in a desiccator. 
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2.4 Experimental Details 

2.4.1 High-Temperature Activation System 

A high-temperature activation system is designed and constructed specifically for AC 

samples preparation, as shown in Figure 2.13. It consists of a LINDBERG/NLUE Mini-Mite
TM

 

tube furnace, a 2.5cm diameter and 100cm length quartz tube, two argon gas flow meters 

with built-in valves, a sealed water chamber with two outlets, and a high-pressure argon gas 

cylinder with a regulator and a valve. Samples can be heated up to 1100 C  by the tube 

furnace through programmed temperature steps and well controlled heating rate. The gas flow 

in the quartz tube can be switched between dry argon gas and wet argon gas (pass through the 

water chamber). The gas flow rate is monitored and well controlled. 

 
Figure 2.13 Schematic dagram of high-temperature activation system. 

2.4.2 Sample Preparation and Nomination 

Polyether ether ketone (PEEK) is used to prepare ACs by a method slightly modified 

from the procedure reported previously [38]. The process of sample preparation is divided 
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into two steps, carbonization and activation, where carbonization creates very small 

micropores and provides seeds for further micropore growth upon activation. Activation 

creates and enlarges micropores by reacting with weak bonds in the carbonized sample. 

During carbonization, pellets of PEEK were heated up under argon flow to 900°C with a 

ramp rate of 45°C/min and carbonized at 900°C for 30 min. The carbonized chunks were 

cooled down to room temperature under an argon flow and then ground into fine particles of 

approximately 0.5 mm in diameter. The ground material was heated up again to 900°C and 

activated under water vapor carried by the Ar gas flow for a chosen period before cooling 

down to room temperature. An illustration and photos of sample preparation procedure are 

shown in Figure 2.14 

 
Figure 2.14 An illustration and photos of AC samples preparation procedure. 

  Activation for longer times leads to bigger micropores and larger burn off value (BO) 

which is defined as the ratio of mass reduction caused by the activation step with the mass of 

the sample before activation but after carbonization:  BO /c a cm m m  , where am  is the 

mass after activation, and cm  is the mass before activation but after carbonization. Samples 

lose approximately 50% of the precursor mass in the carbonization step. The adopted sample 

label is based on its BO percentage such as sample P-92 represents an AC sample with BO of 
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92%. 

2.4.3 NMR Experiment Details 

The 
1
H MAS NMR spectra were recorded at 400 MHz (9.4 T) on a TECMAG APOLLO 

spectrometer using a Chemagnetics MAS probe. About 10 mg AC powder was sealed in a 4 

mm MAS rotor with an O-ring plug. The 
1
H MAS NMR spectrum was acquired at a spinning 

speed of 8 kHz (all NMR spectra in this article were taken under 8 kHz MAS condition 

unless specified). A background 
1
H MAS spectrum of the dry sample stored in a desiccator 

was first recorded. It is a weak featureless broad peak of 5 ppm, containing typically of 

204 10  protons/gram (1 at% H) and is subtracted in all spectra presented in this work as 

shown in Figure 2.15.  

40 20 0 -20 -40

Chemical Shift (ppm)

 P47 9.0mg (Dry)

 P47 9.0mg (5.0mg Water)

Protons on Carbon Surface

 
Figure 2.15 

1
H NMR background of AC samples carbonized at 900°C. 

After that, a quantitative amount of distilled water was injected into the 

sample-containing MAS rotor using a syringe, sealed, and then waited till NMR spectra 

reaches equilibrium (typically less than 30 min). The amount of added water is determined 

both by the volume of injected water and by measuring the weight change of the MAS rotor. 
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All samples with adsorbed water were prepared by injection except some cases where vapor 

adsorption method is employed and will be mentioned specifically. An illustration of typical 

NMR measurements of AC samples loaded with water is shown in Figure 2.16. 

 
Figure 2.16 An illustration of typical NMR measurements of AC samples loaded with 

water 

For verification, the sample was dried again in a desiccator for 48 hours, and the 

background spectrum was then taken again. The background spectra before and after adding 

water are identical for all samples, indicating that no permanent chemical bonds are formed 

in the process of the experiment. For further evaluation, water loading was also implemented 

by placing AC samples in saturated water vapor at room temperature for 20 hours. The 
1
H 

MAS spectra of water adsorbed via saturated vapor and by syringe, injection were compared. 

2.4.4 Other Characterization Results 

Figure 2.17 is a scanning electron microscope (SEM) image of a P-60 AC sample. It 

shows the particle size of samples is several hundred micrometers. 
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Figure 2.17 SEM image of an activated carbon sample of BO=60%. The scale bar is 

400 μm, and each subdivision is 40 μm.  

Figure 2.18a is the TEM result of the P-92 sample. It shows that after carbonization and 

activation at 900°C AC, samples are amorphous carbon without significant crystallization. 

Figure 2.18b is the TEM result of AC sample after carbonization at 1000°C for half an hour. 

Graphitic crystalline domains can be clearly observed.  

  
Figure 2.18 a (left) TEM result of the P-92 sample after carbonization and activation 

at 900°C; b (right) TEM result of AC sample after carbonization at 1000°C for half hour. 
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The 92% and 0% BO AC samples are also characterized by nitrogen adsorption. The 

results are typical Type I adsorption isotherms, which indicate the dominant pore types are 

micropores in both samples, as shown in Figure 2.19.  
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Figure 2.19 Nitrogen gas adsorption isotherms of 92% BO and 0% BO AC samples. 
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The BET area (5 points fitting at a relative pressure of range 0.05~0.3) and the total pore 

volume of 92% BO sample are 
22888 m g and

31.55 cm g (at P/P0=0.99), respectively. The 

0% BO sample has 
30.18 cm g  total pore volume (at P/P0=0.99). 

2.5 Conclusion 

NMR is a powerful tool for studying porous media. The NICS NMR porometry 

technique introduced here is suited for investigating pore structures of ACs smaller than 2 nm, 

which is traditionally the challenging pore size range for characterization. This technique is 

simple and offers information on pore size and PSD, pore volume, and surface area. It is 

based on room temperature 
1
H MAS NMR spectrum of H2O adsorbed in micropores. 

Because of the NICS effect, a distinct chemical shift is identified for H2O molecules adsorbed 

inside micropores. The total micropore volume of ACs can be calculated from the intensity of 

the peak associated with micropores and the total amount of added water in the sample. A 

straightforward relationship between the PSD and the MAS NMR lineshape is established 

allowing the determination of the micropore size distribution from the lineshape of the 
1
H 

MAS NMR spectrum. All these are made possible by DFT calculations which established the 

function of NICS versus the distance between the probe atom and the graphitic surface. 

Assuming this function is widely applicable for materials with local surface structures similar 

to graphitic materials, the only remaining task in future usage of this method is to take a room 

temperature 
1
H MAS spectrum with known quantity of water added to the sample. From this, 

the micropore size distribution can be derived in a straightforward way.  
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CHAPTER 3. A NOVEL NMR-BASED METHOD TO EVALUATE 

HIGH-PRESSURE METHANE STORAGE CAPABILITY IN GAS SHALE 

 

3.1 Introduction 

In this chapter, a novel method to evaluate the methane gas storage capability of shale 

samples based on NMR T2 contrast and the Hahn Echo pulse sequence is introduced. Because 

the method utilizes the Hahn Echo pulse sequence, for the first time in a gas shale study, the 

Fourier-transform spectra signature of gas stored inside the shale rock is observed 

experimentally. Combining information from both the Fourier-transform spectra and the 

transverse relaxation mechanism allows the quantity of gas stored in shale to be estimated 

directly, without introducing uncertainty from other measurements. This method requires 

much shorter equilibrium time since it can be applied to gas shale particles instead of core 

plugs. Moreover, combining spectral, longitudinal relaxation, and transverse relaxation 

information not only offers more direct evidence for the stored gas, it also provides valuable 

information related to the storage mechanism and is a foundation for further research.  

3.1.1 Unconventional Petroleum Systems 

Petroleum systems are usually categorized as conventional resources or unconventional 

resources. In the early stages of the petroleum industry in United States, the distinctions 

between these two types were mainly based on economic considerations. Petroleum systems 

which had commercial value were called conventional resources, and those with no 

commercial value were called unconventional. With the increase of oil price and 

improvement in technology, however, some resources previously designated as 

unconventional were seen as conventional by certain exploration companies.  

Although there are different perceptions of what is conventional or not for the economic 
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purposes, there is a fundamentally important distinction under geological view: conventional 

gas resources occur as discrete accumulations in structural and/or stratigraphic traps which 

are driven by buoyancy, but unconventional gas resources, which are generally not 

accumulated because of buoyancy, are regionally pervasive accumulations and commonly 

independent from structural and stratigraphic traps [1].  

Unconventional petroleum resources generally consist of tight oil/gas, shale oil/gas, and 

sand oil. They are becoming more important to the annual oil/gas production in the United 

States. For example, the production of shale gas has grown from only 1% to over 20% of U.S. 

natural gas production and been predicted to reach 46% by 2035 [2].  

3.1.2 Gas Shale 

One of the important unconventional petroleum resources is gas shale, which is both the 

source of and the reservoir for natural gasses. Nature gas stored in gas shale systems is 

derived from the organic matter within the shale through biogenic and/or thermogenic 

processes. It is suggested that organic-rich shale, which is defined as fine-textured 

sedimentary rock containing 5 ~ 56  percent combustible organic matter [3], could contain 

sufficient natural gas for commercial production according to the annual production 

distribution of shale gas in the United States [4].  

Natural gas in organic-rich shale may be stored in three different locations in the 

material: matrix pores, organic matter (OM)-hosted pores, and fractures, as shown in Figure 

3.1. OM-hosted pores, which have nanometer-scale pore size, are generally the most 

important contributors of nature gas storage in organic-rich shale formations. An example is 

the Marcellus Formation of Pennsylvania, of which average OM-hosted pore sizes are about 

10~40 nm [5]. Therefore it is crucial to develop a method to characterize and estimate the 

natural gas stored in those pores.  
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Figure 3.1 An illustration of gas shale porous system. 

3.1.3 Application of NMR in Oil Industry 

Nuclear Magnetic Resonance (NMR) is a versatile and noninvasive analytical technique 

which is suitable for characterizing fluid adsorbed inside porous materials. It has been widely 

adopted for well-logging in oil industry [6, 7]. Because of the complexity of the real well 

environment underground and the low signal-noise ratio of the downhole probes used onsite, 

the NMR well-logging analysis method commonly uses T1/T2 contrast and/or 2D mapping 

with the help of Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence [8, 9] and 

Inverse-Laplace transforms techniques [10, 11]. 

Recently NMR has been employed to studies of shale gas systems using both 

well-logging tools and high field magnets [12-14]. Both artificial porous materials [15] and 

shale core plugs [16-18] have been used to study the storage mechanism and to determine the 

amount of methane stored inside the pores. The conventional NMR well-logging analysis 

methods based on T2 contrast and Inverse-Laplace transformation have been introduced to 

shale gas systems too [13, 14, 19]. However, the extremely low permeability of methane 

inside shale rock dramatically slows down the measurement on shale core plug experiments 

[20, 21]. Generally, it may take up to several days for the system to reach equilibrium at each 

pressure for a core plug sample, but much less time is required when using small particles 
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(hundreds of micrometer of diameter). The conventional CPMG combined with 

Inverse-Laplace transformation methods, however, can fail to obtain the methane storage 

information in some gas shale samples due to an intrinsic property which reduces the 

molecular diffusion effect through field gradient space. More details will be introduced in 

Section 3.5.6. 

3.1.4 Diffusion of Methane 

The self-diffusion behavior of methane gas is introduced briefly in this section for a 

better understanding of the NMR methods and data analysis in the following sections which 

rely on the self-diffusion coefficient of methane under experimental conditions and 

environments.  

The diffusion coefficient of gas at a certain temperature depends on the density. For a 

rough estimation of the density and pressure dependence of the diffusion coefficient of gas, 

the following empirical equation has been suggested [22]: 

 1 2

2 1

P P

P P

D

D




                               (3.1) 

where D  is diffusion coefficient,   is the gas mass density, and 1P  and 2P  are the 

corresponding pressures. Equation 3.1 shows that at high pressure/density the molecular 

diffusion of gas will slow down due to the smaller self-diffusion coefficient.   

The classic Chapman-Enskog theory for a dense gas sphere [23] describes the diffusion 

behavior of high-density gas. It gives a reasonable prediction of viscosity but fails to predict 

the diffusion coefficient [24]. K.R.Harris reported an empirical polynomial fitting of the real 

experimental data of self-coefficient of methane gas based on an NMR spin-echo technique 

[25]. It is expressed: 

 
2 2

1 2 3 4 lnD b b b b                              (3.2) 

where D  is diffusion coefficient,   is the gas mass density, and 1b  : 4b  are fitting 
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parameters. At 25 C , the fitting parameters are 1 0.6800b  , 
2

210 0.57770b   , 

2

310 0.09324b  , and 
3

410 0.42106b   . The experimental value of the self-diffusion 

coefficient of methane at 4500PSI and 25 C  is about
8 2 -15.9 10 m s .  

The diffusion length provides a measure of how far the gas molecules have propagated 

during a certain time duration t  and it is useful for analyzing the relaxation mechanism of 

NMR results. It can be estimated by solving Fick‘s law in one dimension [26]: 

 2diffL Dt                               (3.3) 

where D  is self-diffusion coefficient. 

3.1.5 Surface Relaxation  

Surface relaxation is one of the major mechanisms of T1 and T2 relaxations in the shale 

gas system mentioned in the following sections. A simplified illustration of surface relaxation 

inside planar geometry pores is shown in Figure 3.2. When the molecules (red circle) diffuse 

through the pore space and get close to the relaxation center (purple half disk), relaxation can 

occur. As K. R. Brownstein and C.E. Tarr discuss [27], the general relaxation problem can be 

described: 

  D
t


 


   


                          (3.4) 

   0
S

n D                                (3.5) 

    ,0 0r m V                             (3.6) 

Equation (3.4) is the diffusion equation allowing for bulk relaxations due to volume-like 

sink. Equation (3.5) is a boundary condition on the bounding surface S  taking into account 

surface relaxations due to surface-like sink. Equation (3.6) is the presumed initial condition 

corresponding to an initial uniform magnetization of the sample.  ,0r is the magnetic 

moment per unit volume (
3cm
), V is the sample volume (

3cm ), S is the sample surface (
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2cm ),  r
 
is the volume sink strength density (

1s ), which is assume to be 0, since only 

the surface relaxation are considered,  r  is the surface sink strength density (
1cm s ), 

 0m is the total nuclear magnetization of sample at initial state,  D r
 
is the diffusion 

coefficient tensor (
2 -1cm s ), and n̂  is the unit outward normal at the bounding surface. The 

equations can be solved with a sum of ―normal modes‖ which has eigenvalues that can be 

ordered:  

 0 1 2 3 0T T T T                             (3.7) 

 

     
Figure 3.2 An illustration of surface relaxation procedure. 

The details of solving these equations are presented in Brownstein and Tarr‘s paper [27], 

so it is omitted here. The solution is determined by the value of Ma D , where M  is the 

surface sink strength density, which depends on surface properties, a  is the characteristic 

length, which is pore size in planar pore model, and D  is diffusion coefficient of the 

probing molecules [27]. When 1Ma D is satisfied, ―fast-diffusion‖, the surface relaxation 

time is dominated by the zero-order solution, which in the planar pore model is  
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 0

a
T

M
                               (3.8) 

In this case, the surface relaxation time is proportional to the pore size and is not 

correlated to diffusion coefficient. For ―slow-diffusion‖ ( 10Ma D ), however, the solution 

of the planar pore model is: 
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                       (3.10) 

Both zero-order and higher order parts of solution need to be considered and the 

relaxation times depend on diffusion coefficient instead. The higher order terms will 

contribute about 19% of total intensity [27]. 

3.1.6 Magnetic Field in a Packed System 

There is a lot of interest in understanding the effect of magnetic inhomogeneity on the 

NMR response and how this affects the magnetic resonance image, chemical shift, relaxation 

mechanism and so on [28-30]. A packed system of gas shale particles filled by methane gas, 

which is studied in this chapter, is a typical solid matrix system that can induce significant 

magnetic field inhomogeneity. A simplified model which consists a system of packed solid 

spheres with magnetic susceptibility s  and fluid media with magnetic susceptibility m  

filling in the empty space is used for a basic study [31]. The magnetic moment m  of a 

single sphere can be expressed as: 

 
3

2

s m

s m

R
 

 





0m B                            (3.11) 

where the s  and m  are the magnetic permeability for the sphere and fluid media 

respectively. Since only the isotropic susceptibilities are considered, 
34 δ 3R    0m B  
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which is along the 
0B  direction. The origin of the non-uniform internal field is the contrast 

in susceptibilities, 
s m    . 

The magnetic field generated by a magnetic dipolar moment m  at position r  can be 

expressed as   

 




2

i

5

3(m r)r - r m
B

r
                        (3.12) 

Then the total magnetic field contribution of the packed system of spheres can be 

calculated by a superposition of fields from each dipole:   

  i

z z

k

B B kr - r                         (3.13) 

where kr  is the center of the dipole k .  

Though, in principle, the method described above can be used to calculate the magnetic 

field inhomogeneity in and field gradient in any system, the complexity of the shape and the 

susceptibility distribution of packed solids in the real sample will alter the result significantly 

[32], and is beyond the discussion scope here.    

3.1.7 Magnetic Field inside Pores 

Since the pore size ( 100 nm ) of gas shale samples is much smaller than the size (

100 μm ) of sample particles used in the following experiments, only the contribution of the 

particle containing the pore is necessary to estimate the magnetic field response inside the 

pore. The classic model of magnetic shielding by a spherical shell of permeable material in a 

uniform field [33] can be used, as shown in Figure 3.3.  
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Figure 3.3 An illustration of magnetic shielding by a spherical shell of permeable 

material in a uniform field. 

A hollow spherical shell with an inner radius a  and an outer radius b  is placed in a 

homogeneous external magnetic field 00 0B H . 0  is the magnetic permeability of the 

outer and inner space, and   is the magnetic permeability of the spherical shell. Since there 

are no currents present, a scalar potential M  is used to derive the magnetic field 

M H . Since 0 B  and B H , 0 H  is satisfied in the various regions. 

Thus the potential M  satisfies the Laplace equation everywhere and the problem reduces 

to finding the proper solutions in the different regions to satisfy the boundary conditions. 

For r b ,  

                   0 1
0
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
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For a r b  , 
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For r a ,  
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M l l
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The boundary condition at r a  and r b  requires H  and 
rB  to be continuous, 

so it can be expressed by the potential 
M  as, 

( ) ( )M Mb b
 

 

 


 
                               (3.17) 

(a ) (a )M M
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 
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                               (3.18) 

0 ( ) ( )M Mb b
r r
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                              (3.19) 

0(a ) (a )M M

r r
  

 


 
                             (3.20) 

The solution of the magnetic field inside the hollow space of the shell ( r a ) is: 

 

    
1 03

2

3

9

2 1 2 2 1

H
a

b




  

 
 

   
      
  

                     (3.21) 

where 0    . 

Since a b  and 1 0 1B    , the solution can be simplified as, 
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When 1  , the ratio of magnetic field shielding can be estimated as, 
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where 1    is the magnetic susceptibility of the spherical shell. 



 

74 

3.1.8 Relaxation Mechanisms of Free Methane Gas 

Methane is complicated by the fact that it has four protons (spin 1 2 ) in a molecule, 

therefore, there are three nuclear spin isomers 0,1,2I  . At relative low pressure, the 

longitudinal relaxation mechanism of methane is dominated by spin-rotational relaxation. It 

is given as [34] 

  1 2 2 2

1 1n cT H J J H                       (3.24) 

where J  is the rotational quantum number of molecular states, n  is the magnetic 

susceptibility of a proton nucleus, c  is the correlation time of molecular reorientation, H   

is the field at a proton arising from rotation of the molecule, and H   is the corresponding 

dipolar field at one proton arising from the others. In the equation there are two major 

interactions in the spin system of a methane molecule: spin-rotational interactions and direct 

dipolar interactions among proton spins. However, in methane molecules, the contribution of 

the latter part is much smaller than the former. Therefore, the spin-rotation interaction 

provides the dominant relaxation mechanism in methane. The probability per unit time of a 

transition between rotational states induced by molecular colliding can be described roughly 

as [34] 

 
2

2 2

0 1J JW t m V m Z
 
 
 

                    (3.25) 

where Z  is the number of collisions per second made by a molecule, d  is the molecular 

diameter, v  is the relative velocity, 0t d v  is the duration of a collision, and 1V  is the 

anisotropic intermolecular potential leading to a transition. In a kinetic model of gasses, the 

pressure is equal to the force exerted by the atoms hitting and rebounding from a unit area of 

the container wall [35], therefore, the collision rate Z  is proportional to the pressure of the 

gas. At room temperature, the correlation time of spin-rotational interaction of methane 

molecule is in the fast limit regime of protons T1 relaxation [36], so a higher transition rate of 
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molecular rotational states will induce a longer T1. 

  At sufficiently high pressure, intermolecular dipolar couplings during collisions 

should become important as the collision frequency increases. This induces a deviation from 

the linear increase of 1T  with pressure. However, the dipolar couplings are very weak and it 

is not clear that other transient relaxation mechanisms can be neglected [37]. The details will 

not be discussed here.  

3.2 Relaxation Mechanisms of Methane Gas in a Packed Sample System 

3.2.1 Model of a Packed Gas Shale System 

A packed system with high-pressure methane gas is shown in Figure 3.4. The 
1
H NMR 

signal from the system consists of three parts: protons of organic matters in gas shale sample, 

methane gas in the inter-particle space, and methane gas stored inside pores. The sample 
1
H 

NMR signal has been measured under vacuum and then been subtracted from the signal after 

loading methane to eliminate the signal from organic matters. The empty space among 

sample particles is comparable to the particle size, which is 150 ~ 400μm . The pore size of 

gas shale is generally less than 100nm [5], it is possible to distinguish the signal of methane 

gas stored in pores from the methane in the inter-particle space based on dynamic properties. 

 
Figure 3.4 Schematic representation of gas shale sample particles packing system.  
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3.2.2 Longitudinal Relaxation (T1) 

As discussed in Section 3.1.8, the longitudinal relaxation mechanism of free gas in the 

empty sample tube is dominated by the spin-rotation mechanism at low-to-moderate 

pressures; at high pressures, intermolecular dipolar interactions play a role [15, 34]. The T1 

pressure dependences of both free methane gas in an empty sample tube and methane with 

gas shale samples have been measured (Figure 3.5). The free gas result is consistent with 

existing literature[38].  
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Figure 3.5 Pressure dependence of longitudinal relaxation time. 

The difference in T1 times between free gas in an empty sample tube and gas in the 

inter-particle space of gas shale sample is due to the surface relaxation (Section 3.1.5) 

induced by paramagnetic impurities in the mineral composition of gas shale samples [13, 27]. 

As discussed in Section 3.1.4, the diffusion length L  can be calculated by Equation 3.3: 

2diffL Dt . The diffusion coefficient of methane gas at 4500 PSI is 8 25.9 10  m s , and 

the measured T1 time in Figure 3.5 is 1.3s. Plugging this into Equation 3.3, the estimated 
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diffusion displacement 0.55 mmdiffL  , which is comparable to the space dimension among 

sample particles ( ~ 300 μm ). From this we understand the molecular diffusion is fast enough 

for a significant increment of longitudinal relaxation rate by surface relaxation.  

3.2.3 Transverse Relaxation (T2) 

In contrast to T1, the transverse relaxation time (T2) is sensitive to slow motions [36]. 

For the free gas in the empty sample tube, the collision between gas molecules and the 

sample tube walls dominates the T2 relaxation mechanism [15]. For the packed gas shale 

system, the presence of paramagnetic impurity from gas shale sample induces field gradients 

under high static field, as shown in Figure 3.6.  

 
Figure 3.6 An illustration of methane diffusion under magnetic field gradient induced 

by paramagnetic impurities. 

Molecular diffusion through field gradient dominates the transverse relaxation and it can 

be expressed as  

   0 2

int int ,

int

1
exp

B S
M t M a t t

T

  
        

  
                 (3.26) 

where 
0

intM  is the NMR amplitude of methane molecules in the inter-particle space, 
,

int

B ST  is 

the relaxation time from bulk and surface relaxation, and  
2

12a D G   where D is the 

self-diffusion coefficient of gas molecules,  is gyromagnetic ratio, and G is the magnetic 

field gradient [39].  
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Since the majority of the pores in gas shale are less than 100nm, the molecular diffusion 

of gas inside pores is negligible. The transverse relaxation mechanism of gas stored inside 

pores is dominated by surface relaxation [27] and can be expressed as  

  0

stor stor ,

stor

exp
B S

t
M t M

T

 
   

 
                       (3.27) 

where 
0

storM  is the NMR amplitude from the gas stored inside pores, and 
,

stor

B ST  is the 

relaxation time from bulk and surface relaxation inside pores. 

3.3 Estimation of High-Pressure Methane Gas Storage 

3.3.1 Hahn Echo-Spectra Correlation 

Use of the HahnEcho pulse sequence provides information regarding the evolution of 

NMR Fourier-transform spectra as a function of 2 . The Fourier-transform spectra of 

methane gas at 4520PSI are presented as a function of 2  in a 3-D figure as Figure 3.7.  
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Figure 3.7 3-D plot of spectra evolution in 2  space at 4520PSI. The x-axis is 

chemical shift in ppm (parts per million), the y-axis is 2 in ms (microsecond) and the 

z-axis is the height of NMR spectra in arbitrary units.  
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The peak widths and centers of spectra change continuously with the 2  value, which 

reflects the environmental difference of the inter-particle space and pore space. Meanwhile, 

the integration area of each spectrum is proportional to the amplitude of NMR signal at that 

2  position. The transeverse relaxation mechanism information can be acquired by the 

decay of NMR amplitude depending on 2 , as shown in Figure 3.8.  

3.3.2 NMR Amplitude vs. 𝟐𝛕 Space 

 
Figure 3.8 NMR amplitude vs. 2 at 4520PSI. The y-axis is NMR amplitude with 

arbitrary units presented in a logarithm scale. The x-axis is 2 in units of ms. Black 

hollow circles are experimental data points; blue dash line is the fit from Equation 3.28; the 

green line is the gas in the inter-particle space (Equation 3.26), which is dominated by 

diffusion; the red line indicates the gas stored inside the pores (Equation 3.27). 

The data in Figure 3.8 can be separated into three regions based on relaxation 

mechanisms. From 0 to 3ms, the relaxation is dominated by diffusion of the gas in the 

inter-particle space. Then it follows an intermediate region from 3 to 8ms where the 

contributions of the gas in the inter-particle space and inside pores are comparable. For 

2 8ms  , the diffusion part is negligible and only the gas stored inside pores is observable. 
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The data can be fitted by Equation 3.28, which is a combination of Equation 3.26 and 

Equation 3.27: 

   int stor

0 2 0

int stor, ,

int stor

(t)

1
exp exp

B S B S

M M t M t

t
M a t t M

T T

 

    
             

    

           (3.28)  

where  M t is the sum of the magnetization from the gas in the inter-particle space and inside 

the pores. The fitting result is 
0 5

int 1.24 10  a.u.M   ; 
0 5

stor 0.30 10  a.u.M   ; 

3 35.4 10  sa    ; 
,

int 2.0 msB ST   and 
,

stor 3.2 msB ST  . By plugging in the probe calibration 

result  63.51 10  mmol NMR a.u.  (Section 3.4.4), the absolute molar number of methane 

gas in the inter-particle space and inside the pores can be estimated as int 0.434 mmoln 
 

and stor 0.100 mmoln  . The volume ratio of empty space among gas shale particles to the 

total volume of the sample tube can be estimated as: 

 int

free

n

n
                                (3.29) 

where freen  is the molar number of free methane gas. According to the calibration results of 

free methane gas in an empty sample tube (Section 3.4.4), this is 0.934 mmol . Therefore the 

ratio of the volume occupied by shale sample is 46.4%  .  

Since the packing ratio of the system is independent of pressure, the isotherm of gas 

stored inside pores can be obtained by Equation 3.30: 

 
     

   

stor total int

total free

n p n p n p

n p n p

 

  
                     (3.30) 

where  totaln p is the total molar number of methane, which can be measured by FID at each 

pressure. The isotherm result is shown in Figure 3.9: 
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Figure 3.9 Pressure dependence of total methane (black square), inter-particle 

methane (red circle) and stored inside pores (green triangle). The amount of methane 

stored inside pores is normalized by gas shale sample mass. 

A kink developed from pressure 3000 to 3500 PSI in the isotherm. One possible cause is 

the dissolution of methane molecules into the kerogen, which makes them undetectable due 

to strong dipolar interaction. The other possible cause is deformation of the OM-hosted pores 

at high pressure. There is a more detailed discussion in Section 4.3.4. 

3.3.3 NMR Spectra vs. 𝟐𝛕 Space 

As shown in Figure 3.10 (A), the NMR spectra at different 2  show different features. 

The green spectrum ( 2 10 ms  ) is from the gas stored inside the pores, and the red 

spectrum ( 2 50 μs  ) is dominated by the gas in the inter-particle space. Comparing these 

two spectra, both the peak center and the peak width are different. That is due to the two 

different local environments. For a detailed analysis, both the peak center and the peak width, 

at different 2 values, are presented in Figure 3.10 (B). Based on the curvature trends, both 

the peak width and peak center can be separated into two parts: the gas in the inter-particle 

space and the gas inside the pores.  
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The transverse relaxation mechanism of gas in the inter-particle space is dominated by 

the molecular diffusion through field gradients, so spins experiencing a stronger field 

gradient will relax faster and have a more positive chemical shift due to the higher 

environmental magnetic field. Consequently, both the chemical shift and the peak width of 

spectra will decrease dramatically when the NMR signal is dominated by inter-particle gas, as 

shown in Figure 3.10 (B). However, the spectra of gas stored inside pores are not sensitive to 

field gradient due to confinement, so only minor changes in peak center and width can be 

observed. 

As discussed in Section 3.1.6, it is very difficult to precisely evaluate the magnetic field 

and field gradient in a packed shale sample due to the complexity of the real system. The 

NMR spectra, however, can provide valuable information about the magnetic field in the 

inter-particle space. Certain mineral components of the shale sample may produce 

paramagnetic centers, which can generate a strong magnetic field inhomogeneity in the high 

field of NMR system. The space closer to paramagnetic center has both a higher local 

magnetic field and a stronger field gradient. The spectrum for 2 0.05ms  is dominated by 

the gas in the inter-particles space as has been discussed. The peak width is about 7.7 ppm, so 

the NMR detecting duration can be estimated by  *

2 1 7.7 200 0.2 msT     for our 

200MHz magnet system [36], as introduced in Section 1.4.4. During the 
*

2T time, according 

to Section 3.1.4, the diffusion length of the gas molecules is only about 3.4 μm , which is 

much smaller than the inter-particle diameter. Therefore the peak width of the 0.05ms 

spectrum is dominated by the inhomogeneous broadening induced by gas shale particles, and 

the peak shape represents the distribution of magnetic field in the inter-particle space. 

There is about a 2.5 ppm  chemical shift between the peak of inter-particle space and 

the peak of pores. This is due to shielding, as discussed in Section 3.1.7. The ratio of 
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magnetic field shielding is 2 3  , where   is the magnetic susceptibility of gas shale. 

Therefore the estimated magnetic susceptibility of the sample tested is 32.7 10   , which is 

consistent with the literature vale   30.01~15 10 .   
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Figure 3.10 (A) is three selected spectra in 2 space. (B) The evolution of spectra peak 

center and full width at half maximum (FWHM) in 2 space.           
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3.3.4 In-Situ Pressure of Gas Shale 

The HahnEcho measurement of the gas shale sample under vacuum (Figure 3.11) shows 

obvious long T2 components. This is possible from the shale gas sealed in unopened pores 

[14].  
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Figure 3.11 Hahn Echo Int. of gas shale sample under vacuum condition. 

The longitudinal relaxation times for gas both sealed inside unopened pores and gas 

stored inside opened pores at different pressures are obtained by a T1-T2 correlation 

measurement (Section 3.4.3). The results are shown in Figure 3.12. A monotonous pressure 

dependence of T1 is observed. With the assumption that the opened and unopened pores have 

similar environments, the pressure of sealed gas can be estimated to be below 1500PSI. More 

reliable results can be obtained by considering other components of shale gas in the real case, 

such as ethane, which may also effect on T1 of methane. Since this part of the gas is sealed 

and well maintained inside pores, the pressure can provide valuable information related to gas 

generation and geologic evolution of the gas shale sample.  
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Figure 3.12 T1 of gas stored inside pores (black square) and gas sealed inside gas 

shale sample (red dash line). 

3.4 Experimental Details 

3.4.1 High-Pressure NMR System 

All NMR measurements are performed on a 200 MHz OXFORD magnet with a 

high-pressure system, as shown in Figure 3.13. The NMR spectrometer is from Tecmag and 

the amplifier is from AMT. The high-pressure system consists of a gas cylinder, a HiP 

high-pressure generator, an Edwards oil pump and a ceramic sample tube. The gas cylinder 

provides high purity methane gas (Air gas, 99.999%) whose pressure can be finely controlled 

by a regulator up to 1600 PSI. The system pressure can be further increased by the HiP 

high-pressure generator up to 5000PSI. The sample tube is made from zirconia with 2.96mm 

inner diameter, 5mm outer diameter, and 100mm length. It is well sealed within the 

high-pressure system by a rubber O-ring which is designed to hold pressure up to 10,000 PSI. 

 



 

86 

 
Figure 3.13 Schematic diagram of a high-pressure system used in this work. The up 

limit pressure of this system is 5000 PSI.  

3.4.2 Sample Preparation 

Gas shale samples are ground into particles and loaded into the ceramic sample tube. 

The loaded particle size is controlled around 150 ~ 400μm  by sieves. After being connected 

and well-sealed into the high-pressure system, the sample tube is heated up to 
o85 C  under 

vacuum condition overnight to remove adsorbed air and water. Figure 3.14 shows the photos 

of gas shale samples before and after grinding. 

 
Figure 3.14 Photos of the gas shale sample before and after grinding. 
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3.4.3 NMR Pulse Sequence 

Besides the general pulse sequences introduced in Chapter 1, such as FID, CPMG and 

Hahn Echo pulse sequences, a T1-T2 correlation pulse sequence also has been applied. The 

pulse sequence is shown in Figure 3.15. 

 
Figure 3.15 T1-T2 correlation pulse sequence. 

The saturation comb pulse is composed of 16 2  pulses with certain phase cycling to 

eliminate both the longitudinal transverse components of magnetization [40]. After the T1 

spacing time 1 , it follows a sequence which is similar to a Hahn Echo pulse. 

3.4.4 NMR System Calibration 

The sample tube volume and the inner diameter are calibrated by water loading 

measurements and the result is shown in Figure 3.16. 
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Figure 3.16 Calibration data of tube volume by water loading. 

The data is fitted well by a line with a slope 
20.00697 ml/mm = 6.97 mmk  . Since the 

loading length is measured from the outer bottom surface of the sample tube, the crossing 

point between the fitting line and the x-axis indicates the thickness of bottom wall which is

2.5 mm . The inner diameter of sample tube can be calculated according to slope by equation 

3.31,  

 
4

2.98 mm
k

d


                          (3.31) 

Since the length of probe coil is 10.1 mml  , the detection volume of the coil is 

370.7 mmv  .   

In order to acquire the absolute molar number of methane gas and protons in gas shale 

samples, the NMR system is calibrated by the measurement of free methane gas in the empty 

tube. The data is shown in Figure 3.17 (A) 
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Figure 3.17 (A) NMR intensity of free methane gas in the empty sample tube. The 

label of Y-axis on the left is the NMR intensity and on the right is calculated based on the 

calibration data acquired in this section. (B) Zooming in on the data at low pressure for a 

linear fitting. 

A linear fitting result is also shown in Figure 3.17(B). The slope is 

0.00922 NMR Int./Pak  . The intercept is from the probe background at 0 Pa. The 
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calibration ratio can be calculated by equation (3.32), 

 
v

RTk
                                  (3.32) 

where 
370.7 mmv  is the coil detecting volume, R is ideal gas constant, 285KT  is 

environmental temperature, and k  is the fitting slope. The calculated ratio is 

63.24 10  mmol NMR Int.    

3.5 Uncertainty Analysis and Discussion 

As introduced in Chapter 1, the intensity of the NMR signal is proportional to the total 

number of nuclei detected by the probe coil. The ratio of NMR signal intensity to nucleus 

number can be calibrated by the method mentioned in Section 3.4.4. However, the real 

experimental conditions generally are different from ideal assumptions, so several 

experimental and data processing issues, and also the uncertainty analysis, will be discussed 

in this chapter.  

3.5.1 Solving the “Dead Time” Problem of FID Results 

As introduced in Chapter 1, the NMR signals are generally acquired as the FID process. 

The single pulse is the most common pulse sequence to detect FID. It is composed by a 90  

pulse immediately followed by an acquisition-time (AQ) during which the electronic receiver 

records the NMR signal. In the real case, however, a ring-down (RD) delay time between the 

pulse time and acquisition time is necessary to avoid receiver overloading [41] as shown in 

Figure 3.18. 
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Figure 3.18 FID pulse sequence in a real case. 

Therefore in order to retrieve the intensity of the NMR signal at the beginning of FID, it 

is important to extrapolate the FID data back to the zero point in the time domain. The 

extrapolation is shown in Figure 3.19. The y-axis is the NMR intensity, which is plotted as in 

a logarithm scale, and the x-axis is the FID time, which includes a 14.5 μs  RD delay time at 

the beginning. A linear fit of the first 20 points is used to estimate the NMR intensity at the 

beginning of time domain. The log(  .) vs. NMR Int t  plot is based on the assumption that the 

decay rate of FID at the start is a single component exponential decay and it will induce a 

Lorentz-shaped spectrum in the frequency domain, which is usually seen in a gas or liquid 

system [42].  
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Figure 3.19 Extrapolation of FID data by linear fitting on log(  .) vs. NMR Int t .  

When the proton signal from the background of the gas shale sample dominates the start 

of FID, it will show a Gaussian-shaped spectrum. A plot of 2log(  .) vs. NMR Int t  is required 

for a precise extrapolation, as shown in Figure 3.20. 
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Figure 3.20 Extrapolation of FID data by linear fitting on 2log(  .) vs. NMR Int t . 
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3.5.2 Solving the Fitting Issues of HahnEcho Results 

As mentioned in Section 3.3.2, the NMR intensity of the HahnEcho data vs. 2 can be fit 

with by Equation 3.28, which is the sum of a diffusion term (Equation 3.26) and a pore 

storage term (Equation 3.27). Because the y-axis is plotted on a logarithm scale, it is difficult 

to fit both parts precisely over the whole 2 region. The diffusion part will dominate the 

overall fitting result since it is almost one order of magnitude larger than the pore storage part. 

Therefore a linear fit is applied to the long decay time region (red color area in Figure 3.8) 

and extrapolated back to estimate the storage part at short times. After this part has been 

subtracted from the original data, what remains is fitted with Equation 3.26 as shown in 

Figure 3.21. 
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Figure 3.21 Fitting the Hahn Echo result of diffusion part. 

There is a divergence of the fitting curve at the decay time longer than 6ms. One 

possible reason for this is the exchange of methane gas between the inter-particle space and 

the pore space. Since it is two orders of magnitude less than the value at short decay times, 

the divergence is negligible. 
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3.5.3 Calibration between FID and HahnEcho Results 

As introduced in Chapter 1, the intensity of the NMR signal is proportional to the total 

number of probing nucleus spins. This means the intensity of the NMR signal should be 

independent of specific pulse sequence, as long as the system is fully excited. However, in 

the real experimental case, the number of spins detected may depend on specific pulse 

sequence for several reasons including molecular diffusion and imperfect coil.  

Both the FID and the HahnEcho pulse sequences have been applied to the gas shale 

system as a function of pressure. The isotherms are shown in Figure 3.22. 
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Figure 3.22 Comparison of FID and Hahn Echo intensity. 

The ratio of the FID and the HahnEcho is shown in Figure 3.23. 
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Figure 3.23 Ratio of FID intensity to Hahn Echo intensity. 

It remains at a constant value for pressures greater than 1500PSI and increase slightly at 

lower pressure. The average value from 1500 ~ 4520 PSI  is 1.08, which is used for data 

processing in previous sections.  

One possible explanation of the ratio is the ―imperfect pulse space‖ of the probe coil, 

illustrated in Figure 3.24. 
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Figure 3.24 ―Imperfect pulse space‖ of probe coil. 

The NMR intensities measured in experiments are the sum of the signals from both the 

―perfect pulse space‖ and the ―imperfect pulse space‖. The signals intensities of the FID and 

the HahnEcho should be identical in the ―perfect pulsing space‖. However, in the ―imperfect 

pulse space‖, since the pulse field is weaker than the pulse field inside the coil space, the 

echoes in the Hahn Echo pulse signal cannot be refocused perfectly and, therefore, are 

reduced. The FID signal doesn‘t have this part of reduction, so the intensity of the FID is 

larger than the intensity of the Hahn Echo pulse. Since this difference is only related to the 

geometry of the ―imperfect pulse space‖ and the packed sample system, it is independent of 

pressure at the high pressure region, as shown in Figure 3.23.  

When the system pressure is low enough, the self-diffusion coefficient of the methane 

gas will increase dramatically (Section 3.1.4), so the exchange of gas molecules between the 

―perfect pulse space‖ and the ―imperfect pulse space‖ needs to be taken into account. In this 

case, the intensity of Hahn Echo sequence is further reduced due to the exchange of methane 

molecules, so the ratio of the FID intensity to the Hahn Echo intensity will increase at low 

pressure region, as shown in Figure 3.23. 
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3.5.4 Uncertainty Analysis 

There are two main sources of uncertainty in the isotherm of gas stored in pores: the 

extrapolation of the FID data, and the extrapolation of the Hahn Echo data.  

For the FID, the data is extrapolated back to the beginning in the time domain to acquire 

the total amount of methane in the system, as mentioned in Section 3.5.1. The uncertainty of 

extrapolation provides a part of the uncertainty in the amount of gas stored at each pressure, 

as shown in Figure 3.25. 
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Figure 3.25 Uncertainty from FID extrapolation. 

For the Hahn Echo data, as discussed in Section 3.3.2 and Section 3.5.2, a linear 

extrapolation is used to estimate the amount of methane stored in the pores and the packing 

ratio of the sample system. Due to the broad pore size distribution and the exchange of 

methane gas between the inter-particle space and the pore space, there is some discretion 

involved in determining the linear fitting range. Our method is as follows. Three continuous 

points around the boundary of the transition region and surface relaxation region (Figure 3.8) 

are extrapolated linearly. The average of three extrapolation results is used to estimate the gas 
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storage amount and the packing ratio of the sample. The difference among the results is used 

as the uncertainty of the packing ratio, as shown in Figure 3.26. 
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Figure 3.26 (A) Three linear fitting to evaluate the uncertainty of Hahn Echo 

extrapolation. (B) Zooming in to show the uncertainty due to the different fitting results. 

The packing ratio result with uncertainty is 53.6% 0.6%  . The isotherm including 

both uncertainties for the FID extrapolation and the Hahn Echo extrapolation are shown in 

Figure 3.27. 
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Figure 3.27 Isotherm with both uncertainties from FID and Hahn Echo extrapolations. 

The uncertainty in the FID extrapolation describes the fluctuation of each point 

independently, so it needs to be taken into account when studying the details of the isotherm, 

such as the kinks at certain pressures. However, the uncertainty in the Hahn Echo 

extrapolation provides the upper and lower bounds, and it only effects on the overall data as it 

is from the multiplication of the packing ratio. 

3.5.5 Effect of Methane Diffusion 

The self-diffusion coefficient of methane gas strongly depends on the density and 

pressure, as introduced in Section 3.1.4. The larger self-diffusion coefficient of methane gas 

at lower pressure will also induce an enhancement of molecular exchange between the gas in 

the inter-particle space and the gas inside the pores. This can be observed in the pressure 

dependence of the Hahn Echo intensity, shown in Figure 3.28. 
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Figure 3.28 Pressure dependence of Hahn Echo intensity. 

As the pressure decreases, the intensity of methane in the inter-particle space decays 

more quickly. This is most apparent in the region of 0 ~ 3 ms  in Figure 3.28. The 

enhancement of the self-diffusion coefficient of methane gas at a lower pressure induces 

faster relaxation according to Equation 3.26. Meanwhile, as the pressure gets lower, the Hahn 

Echo responses of methane in the inter-particle space and inside the pores are getting closer 

to each other. This makes it more difficult to distinguish these two species and to estimate the 

amount of methane storage. 

Additional evidence of exchange enhancement is provided by the T2 of the methane gas 

stored inside the pores. This can be calculated based on the slope of the linear fit, as 

discussed in Section 3.5.2. The results are shown in Figure 3.29. The pressure dependence of 

T2 is observed clearly.  
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Figure 3.29 Pressure dependence of T2 inside pores. 

Under the fast-diffusion assumption, as discussed in Section 3.1.5, the surface relaxation 

rate does not depend on the self-diffusion coefficient of the probing molecules. One of the 

possible explanations is that the fast-diffusion assumption is not satisfied inside the gas shale 

pores system under the experimental conditions. This allows the surface relaxation rate to 

depend on the diffusion coefficient. But there are two pieces of evidence that prove this is not 

the case. First, as discussed in Section 3.1.4, when the density of methane gas increases at 

higher pressure, the self-diffusion coefficient will decrease, which should make the relaxation 

model diverge more strongly from the fast-diffusion assumption than the case at lower 

pressure. But the pressure dependence of the T2 values, shown in Figure 3.29, only occurs at 

lower pressure, which is a contradiction of the prediction. Second, the packing ratio of the gas 

shale system should be independent of both the pressure and self-diffusion coefficient, so the 

estimated packing ratio should be a constant during the whole pressure region. However, the 

packing ratio data shows obvious pressure dependence at low pressures (Figure 3.30). 
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Figure 3.30 Pressure dependence of estimated solid packing ratio based on Hahn Echo 

intensity. 

The pressure dependence of the estimated sample packing ratio indicates that, at low 

pressure, the Hahn Echo intensity of methane in the inter-particle space is overestimated and 

a partial signal of the gas inside the pores is underestimated due to exchange. The relatively 

large uncertainties, which occur at the low pressures, are also due to the enhanced molecular 

exchange which causes greater overlap in the Hahn Echo signals and makes the linear 

extrapolation more difficult. The exchange of molecules at low pressure also provides an 

explanation of the pressure dependence of T2 in Figure 3.29 without violating the 

fast-diffusion assumption.   

3.5.6 Issues of CPMG method 

As discussed previously, in order to probe methane stored inside pores, it is crucial to 

distinguish the NMR signals of methane stored inside the pores from the signal of methane in 

the inter-particle space. The conventional CPMG Inverse-Laplace transformation method 

fails to distinguish the NMR signal accurately due to the reduction of the molecular diffusion 

effect.  
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The CPMG pulse sequence consists of a 90  excitation pulse and a train of 180  

pulses, as discussed in Chapter 1. Each 180  pulse will reduce the diffusion effect during the 

interval time TE  by refocusing the echo. The relaxation time of molecular diffusion 

through a magnetic field gradient as measured by the CPMG pulse sequence can be expressed 

[39]: 

                 

    
20

int ,

1
exp TEInt B S

Inter

M t M a t
T

  
        

  
            (3.33) 

where 
0

intM  is the NMR amplitude of methane molecules in the inter-particle space, 
,

int

B ST  is 

relaxation time based on bulk and surface relaxation, and  
2

12a D G  , where D is 

self-diffusion coefficient of gas molecular,   is the gyromagnetic ratio, and G is the 

magnetic field gradient. By comparing Equation 3.33 with the Equation 3. 26 in Section 3.2.3, 

it is clear that the former decays more slowly since decay rate depends on t , but the latter 

one depends on 
3t . The slower decay rate of the CPMG data causes the NMR signals of the 

inter-particle methane and the methane inside pores to mix together. This makes it too 

difficult to distinguish the storage part, as shown in Figure 3.31.   



 

104 

0.00 0.05 0.10 0.15 0.20

1x10
2

1x10
3

1x10
4

 

 

L
o
g
 (

C
P

M
G

 I
n
t.
) 

(a
.u

.)

Time (sec)

Mixing 

 
Figure 3.31 CPMG of gas shale sample. 

3.5.7 Density Measurement Method and Issues 

As mentioned earlier, the sample packing ratio is critical for the estimation of isotherms. 

Besides using the Hahn Echo method disscussed in Section 3.3.2, the packing ratio can also 

be estimated based on the sample density. Since the inner diameter of sample tube has been 

determined (Section 3.4.4), the packing ratio of the sample can be estimated: 

 
2

4sample sample

total sample

V m

V d l 
  


                       (3.34) 

where sampleV  and totalV  are the volumes of sample and sample tube respectively, samplem  is 

the mass of the sample loaded into the sample tube, sample  is the density of the gas shale 

sample, d  is the inner diameter of sample tube, and l  is the length of the packed sample 

system. In order to measure the sample density without filling the pores, 4-steps method is 

followed, shown in Figure 3.32. 
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Figure 3.32 Glass beads filling method for density evaluation. 

A sample bottle with cap is used in the density measurement. First, the bottle is fully 

filled with water. The volume of the bottle can be calculated by bottle water waterV m  , where 

waterm  and water  are the mass and density of water respectively. Second, the bottle is fully 

filled with glass beads (diameter 38 ~ 45 μm). The mass of the glass beads is measured (

1glassm ). Third, two big sample chunks are loaded into the bottle and then the empty space is 

filled by glass beads again. The mass of filled glass beads without a sample is measured (

2glassm ). Fourth, the mass of sample chunks is measured ( samplem ). The density of sample can 

be calculated:                     

 
1

1 2

glasswater
sample sample

water glass glass

m
m

m m m


   


                (3.35) 

The whole measurement is repeated 5 times independently to evaluate the uncertainty. 

The estimated density is 32.30 0.09 g cm ; the relative uncertainty is about 4% . The 

packing ratio, based on the density measurement, is  47 2 %density  
 
(Equation 3.34). 

Compared with the packing ratio estimated by the Hahn Echo method, which is 

 53.6 0.6 %HahnEcho   , the result from density measurement is under-estimated and has 

much larger uncertainty, as shown in Figure 3.33.  
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Figure 3.33 Comparison of Hahn Echo method and Density method. 

One possible reason for the underestimation of storage gas using the density method is 

that the size of glass beads is too large for an accurate result. However, the method is difficult 

to execute when the size of glass beads gets smaller. The large uncertainty in the density is 

because most likely of the difficulty in packing the glass beads consistently. In light of these 

issues and disadvantages, we consider the density method to be unreliable.    
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CHAPTER 4. NMR STUDY OF GAS SHALE SAMPLES 

4.1 Introduction 

The NMR method introduced in Chapter 3 is applied to test several different gas shale 

samples. The results are presented and analyzed in this chapter.  

In petrophysics, there are several specific parameters and measurements which are used 

to evaluate gas shale samples. In order to understand that preliminary information, these 

parameters are introduced at first. 

4.1.1 Standard Measurement Methods   

The total organic carbon (TOC) is the amount of carbon in an organic compound. It is 

usually presented as a weight percentage and quantifies the amount of organic material in gas 

shale samples.  

The Rock-Eval (RE) pyrolysis experiment is used as a standard characterization method 

for petroleum samples. There are four basic parameters obtained: 

1. 1S  is the amount of free hydrocarbons (gas and oil) in the sample. It is presented in 

milligrams of hydrocarbon per gram of rock.  

2. 2S  is the amount of hydrocarbons generated through thermal cracking of 

nonvolatile organic matter. 2S  is an indication of the potential for producing oil 

and/or gas. 

3. 3S  is the amount of CO2 produced during pyrolysis of kerogen. The unit is 

milligrams of CO2 per gram of rock. 3S  is also an indication of the amount of 

oxygen in the kerogen and it can be used to calculate the oxygen index.  

4. Tmax is the kerogen cracking temperature at which the maximum release of 
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hydrocarbons from cracking of kerogen occurs during pyrolysis (S2 peak). Tmax is 

an indication of the stage of maturation of the organic matter. 

There are four more parameters derived from those mentioned above. These are 

generally used to characterize the type and maturity of organic matter in petroleum source 

rocks: 

1. HI is the hydrogen index. (  HI = 100 S2 /TOC ). HI is a parameter used to 

characterize the origin of the organic matter. Marine organic matter generally has 

higher HI than terrestrial. The typical range of HI values in geological samples is 

from ~100 to 600. 

2. OI is the oxygen index. (  OI = 100 S3 /TOC ). OI is a parameter that correlates 

with the ratio of O to C. Generally OI is high for land plants. OI values range from 

near 0 to ~150. 

3. PI is the production index. (  PI = S1/ S1 + S2 ). PI generally is used to characterize 

the evolution level of the organic matter. 

4. PC is pyrolyzable carbon. (  PC = 0.083 S1 + S2 ). PC corresponds to the carbon 

content of hydrocarbons volatilized and pyrolyzed during the analysis.  

Generally, there are two measures to evaluate the maturation of the organic matter based 

on Rock-Eval (RE) pyrolysis: 

1. The ratio of HI to OI, as shown in Figure 4.1[1]. 
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Figure 4.1 Hydrogen index/oxygen index plot from Rock-Eval pyrolysis data.  

2. Tmax range. maxT 400 430  represents immature organic matter; 

maxT 435 450  represents mature or an oil zone; maxT 450 C  represents the 

overmature organic matters. 

The Ro value, also called Vitrinite reflectance, is a measure of the percentage of incident 

light reflected from the surface of vitrinite particles in a sedimentary rock. It is also referred 

to as %Ro. Generally, the Ro value results are presented as a mean value of all vitrinite 

particles measured in an individual sample. 

4.1.2 Sample Information 

All measured samples are listed in table 4.1. The source information of most is also 
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provided. 

Sample Name Sample Source 

CN-SH-5-2 China-Sichuan-Changning-Longmaxi (Outcrop) 

CN-SH-6-2 China-Sichuan-Changning-Longmaxi (Outcrop) 

Marcellus 3-4 US-Marcellus (Outcrop) 

T1 China-Liaohe-Shitan-Permian (well) 

T9 China-Liaohe-Shitan-Permian (well) 

ZET-1 Eerduosi-paleozoic (core) 

DST-1 China-Sichuan-Doushantuo (Outcrop) 

QZS China-Sichuan-Qiongzhusi (Outcrop) 

YS108 China-Sichuan-Zhaotong-Longmaxi (well) 

Pyrolysis Lab Aging 

JY1# China-Jiaoshiba-Jiaoye#1-Longmaxi 

Coal   

SDTL-2014   

Table 4.1 Sample names and source information. 

Most of the samples are from China. Marcellus 3-4 is from the US and Houston 

pyrolysis is thermally aged in the lab. 

The RE pyrolysis experiment results, TOC and Ro values of several samples are also 

provided and listed in Table 4.2. According to Section 4.1.1, HI, OI, PI, and PC are 

calculated based on the results in Table 4.2 and listed together with TOC and Ro values in 

table 4.3.  

The pyrolysis results of several particular samples, such as YS108, Z101-131, ZET-1, 

CH-SH-5-2, only have one significant figure, which induce a large relative uncertainty. The 

Ro values are only provided for a few samples.  
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  Tmax (C
o
) S1 (mg/g) S2 (mg/g) S3 (mg/g) TOC (%) Ro 

ZET-1 591 0.01  0.02  0.01  10.00    

DST-1 607 0.02  0.09  0.09  13.00    

T1 563 0.02  0.55  0.22  3.44    

T9 576 0.01  0.06  0.10  3.90  2.00  

CN-SH-5-2 607 0.01  0.02  0.11  3.55    

Z101-131 
 

0.01  0.01  0.01      

YS108 607 0.00  0.01  0.06  4.10  4.70  

Marcellus 3-4 468 0.09  0.19  0.11  9.00  1.77  

JY1H 602 0.01  0.02  0.00  6.20    

CN-SH-6-2         6.7   

QZS         2   

pyrolysis         3.30    

Table 4.2 RE pyrolysis results, TOC and Ro values of several samples. 

  Tmax (C
o
) TOC (%) Ro HI OI PI PC 

ZET-1 591.00  10.00    20.00  10.00  0.33  0.00  

DST-1 607.00  13.00    69.23  69.23  0.11  0.01  

T1 563.00  3.44    1598.84  639.53  0.03  0.05  

T9 576.00  3.90  2.00  153.85  256.41  0.06  0.01  

CN-SH-5-2 607.00  3.55    56.34  309.86  0.08  0.00  

Z101-131 
 

        0.50  0.00  

YS108 607.00  4.10  4.70  24.39  146.34  0.00  0.00  

Marcellus 3-4 468.00  9.00  1.77  211.11  122.22  0.30  0.02  

JY1H 602.00  6.20    32.26  0.00  0.50  0.00  

CN-SH-6-2   6.70            

QZS   2.00            

pyrolysis   3.30            

Table 4.3 Calculated RE pyrolysis results, TOC and Ro values of several samples. 

According to the maxT  value, the organic matters of all the samples are overmatured, 

which is expected for gas shale samples. 

4.2 NMR Experimental Results 

4.2.1 Spectra under Vacuum 

Several samples were tested by NMR under vacuum conditions and the 
1
H spectra are 

shown in Figure 4.2. 
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Figure 4.2 1

H NMR spectra of gas shale samples under vacuum condition. 

Since the intensity of the NMR signal is proportional to the total number of spins, the 

concentration of protons in a sample can be estimated through the integration area of the 

NMR spectra. The results are shown in Table 4.4.  

Sample 
Protons/Mass 

(mmol/g) 

TOC          

(%) 

Ratio 

(TOC/Protons) 

CN-SH-5-2 2.55  3.55  1.39  

CN-SH-6-2 2.28  6.70  2.94  

JY1 3.31  6.20  1.88  

Marcellus 2.89  9.00  3.11  

QZS-1 0.34  2.00  5.86  

pyrolysis 1.86  3.30  1.77  

YS108 2.90  4.10  1.42  

ZET-1 1.74  10.00  5.74  

Table 4.4 Proton concentration of gas shale samples. 

Each spectrum in Figure 4.2 can be separated into two peaks with different peak widths, 

as shown in Figure 4.3.  
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Figure 4.3 An illustration of peaks separation fitting of sample Marcellus 3-4 

It is possible that the narrow peak is from the protons on aliphatic carbons and the broad 

one is from protons on aromatic carbons. The stronger mobility of aliphatic carbons may 

reduce the peak width [2]. However, the longitudinal relaxation time measurement argues 

against the two peak components. The protons on aromatic carbons generally have a longer 

T1 time than those on aliphatic carbons [3, 4]. According to the experimental results shown in 

Table 4.5, the narrow peak has a longer longitudinal relaxation time ( 1T 0.4s ) than the 

broad peak ( 1T 0.05s ). The measurement result is shown in Figure 4.4.  
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Figure 4.4 The measurement result of Marcellus 3-4. 

All the spectra have been processed and the results are listed in Table 4.5.  

  Narrow Peak  Broad Peak  

  
Amplitude 

(a.u.) 

Width 

(ppm) 

Center 

(ppm) 

Amplitude 

(a.u.) 

Width 

(ppm) 

Center 

(ppm) 

CN-SH-5-2 234719 50 6.4 833644 199 -3.2 

CN-SH-6-2 267739 26 2 1.25E+06 174 4.3 

JY1 335413 64 3.3 1.20E+06 267 8.4 

Marcellus 251245 18 2.6 1.23E+06 161 2.6 

QZS-1 34427 21 -4.7 1.79E+05 143 -4.7 

Ro733.55 104023 42 -11 7.33E+05 301 -20 

YS108 206921 55 -7.3 1.20E+06 267 -12 

ZET-1 139475 17 -2.2 1.44E+06 116 -6.6 

Table 4.5 Vacuum spectra analyzed results. 

4.2.2 Hahn Echo Data under Vacuum 

Several samples are also measured with a Hahn Echo pulse under vacuum. The data is 

shown in Figure 4.5. 
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Figure 4.5 Hahn Echo data of gas shale samples under vacuum. 

An empirical fitting with three exponential components is used to primarily analyze the 

Hahn Echo data and the results are listed in Table 4.6.  

  

Short T2 

NMR Amp. 

(a.u.) 

Short T2 

(ms) 

Medium T2 

NMR Amp. 

(a.u.) 

Medium T2 

(ms) 

Long T2 

NMR Amp. 

(a.u.) 

Long T2 

(ms) 

Marcellus 3-4 7631 0.041 738 1.5 360 10.1 

CN-SH-5-2 8164 0.038 525 0.22 236 2.4 

JY1 9531 0.04 962 0.21 462 2.2 

pyrolysis 15728 0.03 1105 0.6 202 24 

YS108 10512 0.037 828 0.19 241 2.2 

Table 4.6 Empirical fitting results of Hahn Echo data.  

These components may be from protons in different chemical environments. The short 

T2 components may be from the protons in kerogen, and the long T2 components are possibly 

from the gas trapped inside the shale samples. However, the previous studies of the Hahn 

Echo measures of gas shale samples under a high magnetic field are rare, so there isn‘t a 

confirmed conclusion at the current stage. 
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4.2.3 Spectra under High Pressure 

Spectra of gas shale samples with high-pressure methane at 3500 PSI except for the 

Coal (175 PSI) and T1M (1600 PSI) are presented in Figure 4.6.  
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 CN-SH-5-2

 Coal

 T1M

 ZET-1

 CN-SH-6-2

 Marcellus 3-4

 SDTL-2014

 
Figure 4.6 1

H spectra of high-pressure methane-loaded gas shale samples at 3500 PSI 

except Coal (175 PSI) and T1M (1600 PSI) 

As discussed in Section 3.3.3, the widths of the spectra reflect the magnetic field 

inhomogeneity, which is induced by the paramagnetic impurities in the gas shale samples. 

Therefore, it is possible to evaluate the strength of paramagnetic impurities inside gas shale 

samples. 

4.2.4 Hahn Echo Data under High Pressure 

The Hahn Echo data of several high pressure (4520 PSI) methane gas-loaded shale 

samples are shown in Figure 4.7. 
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Figure 4.7 Hahn Echo data of high pressure (4520 PSI) methane gas loaded into 

several shale samples. 

Based on the method introduced in Chapter 3, the Hahn Echo decay curves of each 

sample can be separated into two components. The longer component is from methane stored 

inside the pores. The T2 values of the longer components are listed in Table 4.7.  

Samples 
Methane in pores 

T2 (ms) Uncertainty (ms) 

Marcellus 3-4 3.15 0.05 

CN-SH-5-2 2.3 0.2 

JY1 1.46 0.04 

Pyrolysis 4.6 0.4 

YS108 1.51 0.03 

CN-SH-6-2 3.34 0.05 

ZET 7.2 0.2 

Table 4.7 T2 values of methane (4520 PSI) stored in pores of gas shale samples. 

4.2.5 Isotherms of Gas Shale Samples 

The isotherms of samples are shown in Figure 4.8. 
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Figure 4.8 Isotherms of shale samples. 

The isotherms of each sample with uncertainties from both the FID extrapolation and the 

Hahn Echo data fitting are also listed below (the isotherm of Marcellus 3-4 has been provided 

in Chapter 3). The error bar shown at each data point is the uncertainty from the FID 

extrapolation. The red and green lines are the upper and lower bonds derived from the Hahn 

Echo data fitting. The   value shown in each isotherm is the empty space packing ratio 

estimated from the Hahn Echo data.  



 

122 

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

 

 



 Adsorption

 Adsorption_Upper

 Adsorption_LowerC
H

4
 S

to
ra

g
e
 (

m
m

o
l/
g
)

Pressure (PSI)

CN-SH-5-2

 
Figure 4.9 Isotherm and uncertainty of shale sample CN-SH-5-2.  
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Figure 4.10 Isotherm and uncertainty of shale sample CN-SH-6-2.  
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Figure 4.11 Isotherm and uncertainty of shale sample JY1.  
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Figure 4.12 Isotherm and uncertainty of shale sample YS-108.  
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Figure 4.13 Isotherm and uncertainty of shale sample ZET-1.  

4.3 Discussions 

4.3.1 TOC/ Protons vs. Maturity 

The ratio of carbon to protons ( TOC/protons ) is expected to relate to the maturities of 

samples. Generally, a higher maturity will result in a higher carbon to proton ratio. In order to 

check for a the correlation, a plot of maxT  vs. TOC/protons , which is based on the data in 

Table 4.3 and 4.4, is shown in Figure 4.14. 
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Figure 4.14 Plotting of Tmax vs. TOC/protons. 

If we treat Marcellus 3-4 as an outlier and focus on the other samples, a good linear 

correlation can be observed, as shown in Figure 4.15. 
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Figure 4.15 Correlation of Tmax vs. TOC/protons. 

The difference between Marcellus 3-4 and the other samples is most likely due to 



 

126 

differences in the geological evolution of the formation.  

4.3.2 Protons vs. HI 

The HI parameter is expected to relate to the proton number tested by NMR. The plot of 

HI vs. Protons is shown in Figure 4.16. 
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Figure 4.16 Plot of HI vs. protons. 

Again, the Marcellus 3-4 is an outlier due to the much higher HI value. 

4.3.3 Hahn Echo Data under Vacuum 

As discussed in Chapter 3, the transverse relaxation mechanism of the methane stored 

inside the pores of shale samples is dominated by surface relaxation. It highly depends on the 

pore surface properties (the surface relaxation sink strength). If it‘s assumed that the pore 

surface properties are affected by the prontons of the narrow peak in Figure 4.2, there may be 

a correlation between the T2 values in Table 4.7 and the properties of the narrow peak shown. 

A plot of the high-pressure long component T2 vs. vacuum narrow peak T2
*
 is shown in 

Figure 4.17. 
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Figure 4.17 High-pressure long component T2 vs. vacuum sample narrow peak T2

*
  

There are two outliers: the pyrolysis and Marcellus 3-4. This is reasonable because the 

Pyrolysis is not real shale but a synthetic lab-aged sample; Marcellus 3-4 is shale from the US, 

so it could be much different from all other samples which are from China. 

4.3.4 Kinks in Isotherms 

There are several kinks in the isotherms of Figure 4.13. They are summarized in Table 

4.8.  

Sample name Kinks pressure (PSI) 

Marcellus 3-4 3500     

CN-SH-5-2 3000 4000   

CN-SH-6-2 1000 3500   

YS108 1750 3000 3750 

ZET-1 2000 3250 4520 

Table 4.8 Summary of kinks on isotherms. 

These kinks are not normally observed in other measurements, therefore, some 

discussion is necessary. 

The kinks are repeatable. For the same sample batch, if the high-pressure measurements 
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are repeated, the results show an identical isotherm. Therefore, these are not random errors 

from uncontrolled factors. 

The kinks also depend on certain properties of samples which are different in various 

samples. According to Table 4.8, the kinks occur at different pressures in different samples. 

Therefore, they do not arise from any systematic flaws in the experimental method or set up. 

One possible reason for this is that, at high pressure, methane may dissolve into kerogen 

and we lose some of the NMR signal due to much stronger dipolar interactions with the 

kerogen molecules. 

The other possible reason is the deformation of the OM-hosted pores [5-8]. Kerogen is 

an organic material which is relatively ‗soft‘ and can be deformed under high-pressure 

conditions. These deformations are reversible since the identical isotherm is achieved by 

multiple times of high-pressure measurements on the same batch of samples. 

4.4 Correlation between Isotherms and other parameters 

It would be very helpful in real applications if a parameter can be found to predict the 

methane storage capability. Several potential parameters were tested for any correlations.  

4.4.1 TOC 

TOC is one of the more popular controls when determining the storage capability of 

shale samples. The correlation between the methane storage at 4520 PSI and TOC is shown in 

Figure 4.18. 
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Figure 4.18 Methane storage at 4520 PSI vs. TOC.  

According to the result, except for the ZET-1 sample, the other samples show that the 

TOC has a positive correlation with the methane stored inside pores. 

4.4.2 Total Protons Concentration 

The correlation between the proton concentration in each sample and the methane 

storage amount at 4520 PSI is shown in Figure 4.19. 
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Figure 4.19 Methane storage at 4520 PSI vs. proton concentration. 

4.4.3 Maturity 

We don‘t have sufficient Ro  data for the shale samples, so only the methane storage at 

4520 PSI vs. Tmax is shown in Figure 4.20. 
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Figure 4.20 Methane storage at 4520 PSI vs. Tmax. 

As discussed in Section 4.3.1, the ratio of TOC to protons is also a parameter to evaluate 
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the maturity of samples, so the correlation between methane storage and TOC/protons is 

shown in Figure 4.21. 
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Figure 4.21 Methane storage at 4520 PSI vs. TOC/protons 

According to the result, the samples (CN-SH-6-2 and Marcellus) which are in the region 

of TOC protons ~ 3  show the highest methane storage. The CN-SH-5-2, JY1, YS108 and the 

pyrolysis samples are sub-mature. The ZET-1 sample is overmature.   

4.4.4 Narrow Peak of Spectrum 

Since there is a possible correlation between the high-pressure long component T2 

(Section 4.2.4) and the T2
*
 of the narrow peak in the 

1
H spectra of samples (Section 4.2.1), 

the storage properties may depend on the narrow peak. Therefore, both the proton 

concentration and T2
*
 from the narrow peak are plotted as a function of methane storage at 

4520 PSI to study the correlation.  

The correlation between the concentration of the narrow peak protons and methane 

storage is shown in Figure 4.22. 
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Figure 4.22 Methane storage at 4520 PSI vs. narrow peak proton concentration. 

The correlation between the T2
*
 value from the narrow peak and methane storage is 

shown in Figure 4.23. 
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Figure 4.23 Methane storage at 4520 PSI vs. T2

∗ of the narrow peak in spectra.   

According to the results shown in Figure 4.22 and Figure 4.23, the narrow peak in the 
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1
H spectrum is possibly an indicator of methane storage capability in shale samples. The 

―best regions‖ are about 0.6 ~ 0.7 mmol/g  of the proton concentration and 0.6 ~ 0.9 ms  of 

the T2
*
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CHAPTER 5. CONCLUSIONS 

5.1 Conclusions 

As discussed in Section 1.3, although adsorption is the conventional characterization 

method of porous materials, it has two significant disadvantages: first, it can only produce an 

adsorption isotherm, without any direct dynamic information. Therefore, the result highly 

relies on the specific assumptions of adsorption models. Second, in evaluating the adsorption 

of high-pressure gas, such as methane at 4500 PSI, it can only provide the information on the 

adsorption, nothing about the whole pore space. This is because the adsorption measurement, 

whether it is the volumetric method or the gravimetric method, can only observe the 

adsorbate through the density difference between the vapor and the adsorption/condensation 

states. This information is generally not sufficient to solve complicated problems with 

multiple interaction mechanisms, such as micropore filling in a complex pore system. Once 

there is no density difference, such as occurs in high-pressure gas adsorption, the adsorption 

method cannot provide any useful information. 

On the contrary, NMR is a much more powerful technique. It can probe materials 

through the chemical shift, which is based on the ‗contrast‘ of the local magnetic field, and by 

the longitudinal and transverse relaxations, which provide information about system 

dynamics at different time scales. 

In contrast to conventional NMR methods that study the nucleus of target material itself, 

the methods introduced in Chapter 2 and Chapter 3 are based on the detection of probe 

molecules loaded into the pores to reflect the properties of pore space. In Chapter 2, water is 

used as the probe molecule and the porous properties of ACs are detected based on the 
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chemical shift information. In Chapter 3, methane is used as a probe molecule and the porous 

properties of gas shale are studied according to information from both the chemical shift and 

the relaxation times. 

Although the direct application of the method introduced in Chapter 2 is to characterize 

the pore size and PSD of AC samples, it also offers a powerful technique to study the 

properties of materials confined inside micropores. According to the DFT simulation result in 

Chapter 2, the NICS effect is very sensitive to the distance between probe nucleus and carbon 

surface when the distance is smaller than 2nm. That provides a nanometer scale spatial 

contrast inside micropores. Using these advantages, Zhi-Xiang Luo has studied the 

dehydration properties of ions [1]. By combining spatial information and dynamics 

information, Yan Song studies works on the water adsorption processes [2]. Meanwhile, ACs 

synthesized in our lab is a very useful conductive material with tunable pore size and 

relatively narrow PSD. It is a good material for the study of supercapacitor mechanisms [3].  

The method introduced in Chapter 3 provides not only a reliable tool for the evaluation 

of gas shale samples but also a powerful technique to study the storage mechanism of nature 

gas in shale samples. As discussed in Chapter 4, there are several parameters can be acquired 

from NMR measurements. Correlation of these parameters with those from conventional 

industry measurements would provide a better understanding of the properties of shale 

samples. Moreover, the study of the dynamics of methane inside pores is crucial for 

understanding of the storage mechanisms of nature gas.  
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