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ABSTRACT 

Nathan David Markiewitz: The Ordinal Count Factor Model: An Improved Latent Variable 
Model for Ordinal Count Items 

(Under the direction of Daniel J. Bauer) 

 Much of the measurement of human behaviors relies on the reporting of a rate of 

behavior. Common measures use items that ask participants to select between given intervals of 

counts—these items are called ordinal count items.   

I present the ordinal count factor model (OCFM) as a latent variable model for ordinal 

count item responses in a single population and across multiple groups. OCFMs represent the 

underlying latent response as a count, instead of the logistic or normal distribution used by 

current latent variable models for ordinal data. In addition to representing the data generating 

process more faithfully, OCFMs allow for inferences on the metric of the underlying rate of 

behavior. 

I evaluate the OCFM through two empirical examples using the Rutgers Alcohol Problem 

Index. These studies demonstrate that OCFMs may fit better than standard models, produce more 

precise factor scores, and may be fit using widely available, open-source software. 
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Introduction 

 Psychology, education, and the allied health and social sciences regularly seek to explain 

the presence and frequency of behaviors through the constructs that underlie them.  To this end, 

our models often include counts of behaviors—symptoms, correct responses, or peer 

interactions—that are related to an underlying construct of interest—disorder, ability, or social 

support. Thus measurement models in the behavioral sciences necessarily rely on observations of 

behavior.  

Yet to observe a behavior is not as easy as it sounds, motivating the use of self-reports. 

Some behavioral phenomena may simply be impossible to observe directly, like cognition. 

Ethical concerns may render other behaviors impossible to observe directly without compelling 

the observer to intervene, such as substance abuse. Financial concerns also compel researchers to 

consider indirect measures of behavior. Perhaps most importantly, sometimes observing a 

behavior affects it, threatening internal validity. For these reasons and more, social and 

behavioral scientists often ask participants to report their behavior. 

 Many research questions concern the rate of a behavior, and the problems with self-

reported rates are well documented. A researcher could instruct participants to report whether or 

not they have engaged in that behavior, to report a subjective rate of that behavior (e.g. never, 

sometimes, rarely), or to report the exact number, or raw count, of times they engaged in a 

behavior.1 Unfortunately, self-reported raw counts of behavior often prove problematic to 

                                                
1 Of course, this exact number can only be reported if the behavior is discrete. 
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analyze in psychological research. In addition to sources of bias endemic to self-report, such as 

self-enhancement and pro-social responding, raw count items often display heaping, in which 

there are more reports of nice, round numbers than one would expect (Camarda, Eilers, & 

Gampe, 2008; Roberts & Brewer, 2001; Wright & Bray, 2003). For example, self-reported 

counts of drinks per night may have heaping around six because beer is often purchased in six-

packs. The demographic literature is rife with examples, such as heaping of self-reported age 

around multiples of five. On one hand, the presence of heaping may reflect a true feature of the 

process under study that is not well-accounted for in traditional count models. On the other, one 

might wonder whether the heaping is an artifact of poor attention or memory. All these 

phenomena threaten the feasibility of using raw counts in behavioral and social science research. 

 Using ordinal count items allows researchers to avoid many of the problems posed by 

obtaining raw counts through self-report, at the potential expense of precision. An ordinal count 

item asks participants to select between given intervals of counts (e.g. 0, 1-2, 3-5, etc.).  These 

items sidestep heaping by never allowing it to occur in the first place. In addition, ordinal count 

items can be placed alongside Likert-type items without changing the general layout of a survey. 

Given these advantages, ordinal count items have become widespread in the literature, with their 

use in large-scale longitudinal studies such as Monitoring the Future (Johnston, O’Malley, & 

Bachman, 2012) and their promotion by funding agencies such as the NIAAA (2003). 

The most appropriate statistical model for analyzing ordinal count items remains unclear, 

even in regression.  One approach is to treat the category numbers or interval midpoints as 

metrical and model them directly using ordinary least squares. However, McGinley & Curran 

noted a key problem with this approach is that neither the category numbers nor the midpoints of 

the intervals are continuous (2014). Additionally, count distributions can easily be skewed, while 
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the linear model assumes that errors are normally distributed. These two qualities of an ordinal 

count response make it likely that the errors will be heteroscedastic, rendering standard errors 

and hypothesis tests unreliable without a robust estimator. Moreover, the use of a linear model 

can result in a model-implied negative count—an impossibility. Another option that is 

sometimes used is hypothesizing the existence of a continuous distribution underlying the ordinal 

responses. Current practice is to assume that the underlying distribution is normally distributed, 

and thresholds are estimated on the normal curve to demarcate the points at which the observed 

ordinal responses display a category shift (Bollen, 1989; Embretson & Reise, 2000). Yet a clear 

critique of these approaches is that normal and logistic distributions are continuous and 

symmetric whereas count distributions are discrete and usually skewed. That does not mean 

these models cannot generate ordinal count data—they could generate it and can approximate 

it—but they clearly lack full fidelity with the most plausible underlying structure for the data. In 

sum, the current underlying distributions used in modeling ordinal counts do not match our 

theory and prior knowledge that a count distribution, rather than a continuous distribution, 

actually underlies the responses. Despite the number of modeling options available for ordinal 

counts, none directly models an underlying count process, rendering it impossible to test whether 

an underlying count fits the data. 

Past work by McGinley and collaborators proposed a solution for ordinal counts in 

regression models (2015). Paralleling the logic of cumulative logit and probit models, they 

specified an underlying distribution for the observed ordinal responses, but an underlying 

distribution that would be appropriate for a count variable rather than the normal or logistic 

curve. Since the underlying distribution is by definition unobserved, the observed data must 

provide sufficient information with which to estimate uniquely optimal parameter values. To 
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identify the latent count distribution, they set the thresholds to be equal to those specified by the 

response options. For example, given the options 0, 1-2, 3-5, and 5+, the thresholds would be 

constrained to equal 1, 3, and 5.  This assumption allows for the estimation of a count 

distribution underlying an ordinal outcome, more faithfully modeling the underlying process than 

using a linear, logit, or probit link function. By better specifying the latent process, ordinal count 

regression model allows researchers to make inferences on the metric of the underlying count. 

Previous approaches only allow researchers to make inferences on the latent logistic or normal 

distribution, which may or may not be easily interpretable with respect to the phenomena of 

interest. Thus, the use of an ordinal count response function allows practitioners to make more 

precise, grounded inferences on their actual outcome of interest: the count.  

Although on its face an ordinal count model appears to have greater fidelity to the 

underlying process driving the observed response, this may not always be the case in practice. 

Cognitive psychology, however, has raised concerns regarding the validity of treating ordinal 

count items as if participants respond with a count. Research has identified a number of different 

strategies people use to respond to an item. Most relevant of these strategies to ordinal count 

items is enumeration. When using enumeration, participants count the number of times they 

remember having performed the behavior within the interval (or within a smaller interval, and 

then multiply). People are more likely to use other heuristics (e.g. rate-based estimation) when 

the behavior or experience, occurs often, is perceived as unimportant, or is vaguely defined in the 

item (Burton & Blair, 1991). It therefore is only sensible to use an underlying count model for 

ordinal count items if they are about infrequent, significant, and clearly defined behaviors. 

Domains in which ordinal count models are likely to be particularly useful include 

developmental psychopathology. For example, researchers of alcohol use disorders often ask 
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about serious consequences of alcohol use, which are often infrequent, significant, and clearly 

defined. Thus, underlying count models for ordinal count items in psychology remain a 

theoretically grounded and potentially useful methodological contribution. 

Although past work provides elegant methodology and well-tested theoretical framework 

to the problem of how best to analyze a single ordinal count outcome, many theories in 

psychology describe relationships between underlying constructs rather than a single outcome. 

The use of a multiple-item scale allows one to define the construct precisely through its different 

like its different observed manifestations, to partial out measurement error, and to more reliably 

measure the construct  (Bollen, 1989). For example, researchers regularly conceptualize problem 

drinking as more than just the number of drinks one has on the average night. Problem drinking 

as a construct often refers to increased intake, both in frequency and quantity, as well as 

increased alcohol-related consequences and impairment (White & Labouvie, 1989). It is difficult 

to imagine a single item that incorporates all these aspects of problem drinking whereas it is easy 

to imagine a scale that does so. Even when a single item seems to represent the construct domain 

adequately, using only one item necessarily implies that it perfectly measures the construct. 

Using multiple items allows one to decompose the variability of the item responses into that of 

the construct and that of the error of measurement. Finally, the more items used to generate a 

person’s measurement on the construct, in general, the more reliable the measurement becomes. 

For these reasons, it is best practice in the social and behavioral sciences to make use of multi-

item scales for construct measurement.  

Despite the clear utility of ordinal count models for multiple item scales, no one has yet 

extended the single outcome model. In this thesis, I do just that. I began by reviewing the current 

approaches to latent variable modeling with ordinal count items. I then introduce the ordinal 
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count factor model (OCFM) as a novel model for scales that consist of ordinal items that are 

coarsened versions of either bounded or unbounded underlying counts. I will then compare the 

performance of OCFMs with that of the linear factor model and the graded response model, 

which is an ordinal factor model, in analyzing a common measure of problem alcohol use, the 

Rutgers Alcohol Problem Index (RAPI).   Next, I extend the model to accommodate multiple 

groups, with a particular interest in how the model could facilitate multi-study integrative data 

analysis. As the thresholds are defined by the response options, the OCFM does not explicitly 

require the same response options to be used across studies—a significant advantage over 

traditional methods.  To that end, I compare the results of using an OCFM to get commensurate 

measures of the RAPI for groups receiving different, experimentally perturbed variations of this 

measure, again as compared to the linear factor analysis and the graded response model. This 

work aims to evaluate whether these models, although useful in and for theory, have practical 

utility in behavior research. 

Motivating Example 

 Counts of behavior are often a concern in the study of alcohol use and alcohol use 

disorders (AUDs). Whether it is the number of drinks one has a night or the number of times 

someone has blacked out, the rate of alcohol-related consequences is intimately connected to 

impairment and pathology (White & Labouvie, 1989). Consequences take on a special role in the 

study of alcohol use in adolescence. Given that AUD diagnostic criteria were developed for 

adults, the study of consequences might provide a more precise and developmentally appropriate 

measure of problem use than diagnosis (Winters, 1997; Martin & Winters, 1998). Focusing on 

consequences instead of diagnoses also allows researchers to chart the various pathways to being 

diagnosed with an AUD. Thus, the accurate measurement of alcohol-related consequences is 
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vital not just for studying the development of alcohol use disorders across adolescence, but also 

for the early detection and intervention of pathological alcohol use. 

The Rutgers Alcohol Problem Index 

 The first and most commonly used measure of the severity of consequences, the Rutgers 

Alcohol Problem Index (RAPI; White and Labouvie, 1989) might be best modeled using an 

OCFM. Through a series of 23 items, the RAPI assesses the overall severity of the consequences 

stemming from the participant’s alcohol use over the past year.2 Each item represents a potential 

consequence of alcohol use and has four response options: never, once or twice, between three 

and five times, and more than five times. Prior classical test theory research has demonstrated 

that this scale has high internal consistency (!=.92) and high test-retest reliability in paper and 

online administrations (r=.88) (Miller, 2002). Although work has been done on the RAPI using 

an item response theory framework, a non-systematic review suggests that items have always 

been collapsed to binary responses (i.e. never vs. at least once; Cohn, Hagman, Graff, & Noel, 

2011; Earleywine, LaBrie, & Pedersen, 2008; Martens, Neighbors, Dams-O’Connor, Lee, & 

Larimer, 2007; Neal, Corbin, & Fromme, 2006). RAPI items are often collapsed in this way 

because endorsement of the upper categories tends to be low for severe consequences, rendering 

ordinal models difficult to estimate.  Thus, considering its wide use in the literature and the 

dearth of research on its psychometric properties as an ordinal scale, the RAPI could be better 

understood through the use of an ordinal count factor model. 

The Real Experiences and Lives in the University Study 

The data for this evaluation come from the Real Experiences and Lives in the University 

Study (REAL-U) that focused on college student mental health and its measurement. Data was 

                                                
2It is an open debate whether these behaviors are effect indicators or causal indicators (Arterberry, Chen, Vergés, 
Bollen, & Martens, 2015). I treat the RAPI items as effect indicators, consistent with much of the literature. 
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collected from a non-probability sample of undergraduate students at a major southeastern 

research university who had reported alcohol consumption at least once in their lifetime (N=854) 

over two visits. Every participant received a version of the RAPI at each visit.  

I will use the lifetime RAPI (Scenario 1) in my empirical example of a single population 

OCFM, and a modified version of the lifetime RAPI (Scenario 4) for the evaluation of the 

multiple groups OCFM.  In comparing the results from an OCFM to those of a linear factor 

model and a graded response model, I aim to not determine whether the OCFM produces a better 

measure of the intensity of alcohol use related consequences, but also demonstrate how the use 

of different models leads to similar or dissimilar inferences. 
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Ordinal Count Factor Models in a Single Population 

 To model an ordinal count, one must first relate the ordinal response options to an 

underlying count distribution. For simplicity’s sake, one can divide underlying count 

distributions into two different types—unbounded and bounded. For example, classes missed due 

to alcohol use could be modeled as unbounded because the limit is large and, for some subjects, 

potentially unknowable3. However, number of days one drank alcohol in the past thirty days is 

bounded between zero and thirty. As it is straightforward to see that Psychology and behavioral 

sciences are concerned with both types of counts, I present an OCFM that can accommodate 

either kind of process.  I first give the general specification of the OCFM, then note specific 

forms for particular bounded and unbounded count distributions with and without zero-inflation.  

I also discuss identification conditions for OCFMs. I then outline different options for fitting the 

model via maximum likelihood. I show that the OCFM performs well when fit to simulated data 

before testing the utility of the model in analyzing empirical data. 

The General Ordinal Count Factor Model 

Specification.  There are two parts of an OCFM: the auxiliary threshold model and the 

latent factor model. The auxiliary threshold model includes the underlying count distribution and 

the function by which this probability mass function (PMF) is collapsed to an ordinal response. 

The latent factor model includes the latent factor(s) in the model and the link function that relates 

the latent factor(s) to the auxiliary threshold model. As I will show that the ideal link function 

                                                
3 This justification stems from the fact that a poison distribution can be derived from a binomial distribution where 
the number of trials approaches infinity (Ross, 2009). 
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depends on the auxiliary threshold model chosen, it is necessary to specify the threshold model 

before the factor model. 

The first step in specifying the auxiliary threshold model is to decide what the underlying 

count distribution should be. Then one specifies that underlying distribution using its PMF: 

 
(2) 

where i indexes people, j indexes items, "# ∙   is the probability mass function of the underlying 

count, %&#∗  is the underlying count random variable, (&#∗  is a unobserved realization of that random 

variable,	*&# is the mean of the underlying random count distribution for that person i on item j, 

and  +# is a vector containing any other item parameters needed to specify that item’s probability 

mass function, where (for simplicity) these parameters are assumed to be invariant over persons.   

With the count distribution specified, I now connect the known item thresholds to the 

count distribution.  Each of the ordinal options is an interval of counts, so the probability of a 

response is the sum of the probability of each count in that interval. This relationship is 

represented graphically in Figure 2. 

",%&#∗ = (&#∗ .*&# , +#0	
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Figure 1: the situation where an underlying count is binned into categories of 0=never, 1=once or twice, 2=3-5 
times, and 3 = 6 or more times. 

 

The relationship can also be represented mathematically as 

 

(3) 

where %&# is the observed ordinal count variable, cj is a response category representing an interval 

of counts, min{⋅}	is a function that returns the minimum count in the interval, and max	{⋅} 

returns the maximum count in the interval, which may be infinity.  The maximum and minimum 

count of each interval are known, having been determined through the selection of response 

options for the scale. That is, I do not estimate the thresholds; rather, I set them to be equal to the 

thresholds presented in the item. This approach departs from conventional IRT and FA models 

for categorical items, in which thresholds fall along an underlying normal or logistic distribution 

and their locations must be estimated (Bollen, 1989; Embretson & Reise, 2000).  Having 

",%&# = 9#.*&#0 = : ",%&#∗ = ;.*&#, +#0

<=>	{?@}

A	B	<CD	{?@}
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described the summation of the probabilities of each individual count, the auxiliary threshold 

model is now fully specified. 

Given an auxiliary threshold model, it is possible to specify the latent factor model. This 

model may be written as 

 

ℎ *&# = FG# + IJKLMN (1) 

 

where ℎ ∙  is a link function,	I&	is a vector of the k latent variables, FG&# is the item specific 

intercept, and LO# is a vector of item specific factor loadings. Since count distributions are 

strictly non-negative, a key aspect of the model specification is to select a link function that will 

return non-negative values over the domain of the linear combination of latent variables.  

Examples will be provided for specific versions of the OCFM below. As is typical of many latent 

variable models, the latent variables are assumed to be normally distributed , IJ~Q(S,T), 

where	V is the mean vector and T is the covariance matrix of the latent variables. The 

assumption of an underlying normal latent variable is considered reasonable regardless of the 

response distribution (Embretson & Reise, 2000). In this document, I scale the latent factors so 

that the means are zero and the diagonal elements of phi are one.   

     

The Ordinal Negative Binomial Factor Model 

With the general model as a reference, it is straightforward to specify an example of 

where the underlying count is unbounded. Unbounded count models are especially useful when 

the upper limit is unknown and could either vary across individuals or be likely much larger than 
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the counts routinely observed. For example, there is theoretically a limit for the number of 

people someone calls in a week, but there is no way of knowing it. 

The simplest unbounded count distribution is the Poisson distribution, which is described 

by a single rate parameter which is equal to both the random variable’s mean and variance. A 

model based on an underlying Poisson distribution then cannot represent distributions where the 

variance is greater than the mean, a condition referred to as overdispersion. In behavioral data, 

the variance is often much greater than the mean, making the Poisson distribution rarely 

appropriate for modeling raw counts (McGinley et al., 2015). Given that one would expect an 

overdispersed count distribution if one collected a raw count, one should use an underlying 

overdispersed count distribution to model self-reported ordinal count data. The most common 

overdispersed, unbounded count distribution is the negative binomial, which I use below (Hilbe, 

2011). 

Specification. As with all OCFMs, I first specify the auxiliary threshold model and then 

specify the latent factor model. For the auxiliary threshold model, I select a negative binomial 

distribution4, which includes a parameter	! to model overdispersion. The PMF for each item can 

be represented as  

 

(4) 

 

where ! > 0 is the dispersion parameter, and *&# is the mean of the underlying random count 

distribution for that person and that item. To ensure that the mean is always positive, a log link 

function is used to connect the latent variable to each item: 

                                                
4 Specifically, we select an NB2 model, which does not force overdispersion to be constant (Hilbe, 2011) 

",%&#∗ = (&#∗ .Y&0 =
		,(&#∗ + !#ZO0

Γ,!#ZO0Γ,(&#
∗ + 10

,!#*&#0
]^_
∗

,1 + !#*&#0
Z(]^_

∗ `a_bc)	 
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de *&# = FG# + IJKLMN 

 

(5) 

One significant advantage of the OCFM model is that one can interpret the parameters on the 

metric of the raw variable, just as one would in a typical negative binomial regression model. 

The exponentiated intercept, exp	(FG#), is the expected value of the underlying count for the 

typical person (with I = h). The exponentiated slope for the kth latent variable, exp	(FO#,i), is 

the predicted multiplicative increase of the underlying count of the jth item for a one unit increase 

in that latent variable, holding the other latent variables constant. It is also possible to interpret !, 

although it is difficult to do so precisely. It is often sufficient to interpret it as simply a measure 

of how much larger the variance is than the mean.   

 

Ordinal Beta Binomial Factor Model 

 Although some counts may have indeterminate bounds, others have clear ones. These 

bounds are often temporal (i.e. how many days in the past month). However, they could also be 

bounded for other reasons. For example, the count of a teen’s classmates that have had a drink of 

alcohol is bounded by their total number of classmates.  Although such bounds might vary across 

people, for simplicity’s sake I only present models where the upper bound is invariant and 

known across subjects. 

Specification. The most basic bounded count distribution is the binomial. However, 

much like the Poisson distribution, the binomial’s mean and variance are constrained.5 To model 

overdispersion with a raw bounded count, most methodologists use a beta binomial model, 

                                                
5 For the binomial, * = ej and kl = ej(1 − j), so the mean and variance are related such that kl = * 1 − n

o
. 



 15 

which uses a parameter q, bounded between zero and one, to quantify overdispersion (Hilbe, 

2013). The closer q is to one, the more the mass of the distribution is pushed towards zero and 

the maximum count. The closer q is to zero, the more the distribution resembles the standard 

binomial. Thus, I use a beta binomial for the underlying count, the PMF of which is 

 

 

 

(6) 

 

In the above equation, B(.) is the beta function, r&# is the mean of the underlying beta 

distribution for that person and item, q# is the overdispersion parameter for that item, e# is the 

upper bound of the count6, and all other symbols have the same meanings as they did for the 

negative binomial model. As r&# is bounded between zero and one, I use a logit link function to 

specify the latent factor model: 

 

dstuv r&# = FG# + IJKLMN 

 

(7) 

In the beta binomial OCFM, the parameters are again expressed in the metric of the underlying 

count, so r&# can be interpreted as the probability of participating in a behavior (e.g. probability 

of drinking alcohol during a given day). For a given item j, the typical person will endorse 

                                                
6 so *&# = e#r&#. 

",%&#∗ = (&#∗ .IJ0 = w
e#
(&#∗
x
yz]^_

∗ `{^_z
c
q_
ZO|,z

c
q_
ZO|,OZ{^_0`o_Z]^_

∗ |

y}{^_z
c
q_
ZO|,z

c
q_
ZO|,OZ{^_0~

 ,	(&#∗ = 0, … , e#    
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participating in that behavior 
D@

O`Ä>Å ZÇÉ@ 	
 times. Each entry in LO# represents the predicted 

increase of the log-odds of performing the given behavior during a given occasion for a one unit 

increase of the corresponding latent variable. Finally,	+#  can be interpreted as a measure of the 

inertia of the behavior—that is, how much does having performed the behavior previously 

increase the probability of performing the behavior during a subsequent occasion. For example, 

one would expect that the probability of drinking another day of the week would be greater for 

someone who had already drank that week than someone who had not drank. 

 

Zero-Inflated Ordinal Count Factor Models 

 Researchers fit zero-inflated models for multiple reasons (Hilbe, 2011). On one hand, one 

might note an extreme preponderance of zeroes in the responses. On the other hand, a theory 

might suggest that there are two groups in the population: those that never participate in the 

behavior and those that participate at various rates. To use fighting with relatives due to alcohol 

consumption as an example, there may be one group of people who never consume alcohol 

around relatives, and another group that regularly consumes alcohol around relatives, putting 

them at risk.  

Specification. The PMF for a general zero-inflated OCFM is straightforward to represent 

as a mixture model: 

 

(8) 

 

(9) 

",%&#∗ = 0.I&0 = (1 − Ñ#) + Ñ#"#,%uÖ
∗ = 0.Iu0  
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where Pj is the probability mass function for the risk group, which might be a negative binomial 

or beta binomial distribution, as discussed above, and Ñ# is the probability for being in the at-risk 

group.  Thus, zero-inflation models introduce one extra parameter for the underlying latent count 

distribution relative to their non-inflated counterparts, the mixing probability. 

 

Identification of Ordinal Count Factor Models 

It is vital to consider under what conditions an OCFM is identified; that is, how much 

information is needed and which assumptions are required to get unique estimates of the model 

parameters. For an OCFM to be identified, both the auxiliary threshold model and the latent 

variable model must be identified.  

To identify the auxiliary threshold model, one needs to have enough information and 

adequate assumptions to uniquely estimate the parameters of the underlying count distribution. 

As I am only considering models with known thresholds, it is the number of intervals that 

determines which count distributions can be modeled. Through past work on ordinal factor 

analysis it is possible to exactly identify a response distribution with q parameters given q known 

response thresholds for the ordinal item  (Bollen & Curran, 2006). Thus a sufficient, but not 

necessary condition to identify the auxiliary threshold model is for there to be no more than q 

parameters in its PMF. As such, the negative binomial and the beta binomial OCFM require three 

known thresholds, while their zero-inflated counterparts require four.   

The identification of the latent variable model requires the usual constraints to set a scale 

for the factor. This can be done in one of two ways: set a scaling indicator or standardize the 

latent variable. Setting a scaling indicator means constraining the intercept of an item to zero and 

the loading of that item to one. Doing so allows for the mean and the variance of the latent 
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variable to be directly estimated. Moreover, in the linear factor model, the scale of the latent 

variable is set such that a one unit increase of the latent variable corresponds to a one unit 

increase in the scaling indicator. However, in the case of the OCFM, these parameters are 

exponentiated, and that meaning is lost. As such, while one might use the scaling indicator 

approach to identify the latent factor model, it does not provide same interpretational clarity as in 

a linear factor model. Standardizing the latent variable to have a mean of zero and a variance of 

one makes interpreting OCFM parameters straightforward. This approach allows one to freely 

estimate every slope (FO#) parameter.  In doing so, one could interpret the slope parameter as the 

predicted increase in the transformed mean of the underlying response function for a one 

standard deviation increase in the latent variable. Moreover, one can freely estimate every 

intercept (FG#) parameter, which is the transformed mean of the underlying response function for 

the typical person (i.e. Y = 0). A potential drawback of this approach includes the potential for 

inadvertently constraining means and variances to be equal across time or groups. Nevertheless, 

given that the nonlinearity of the model complicates the scaling indicator approach, I implement 

this standardized latent variable constraint throughout the thesis.   

 

Estimation of Ordinal Count Factor Models 

 The likelihood for an OCFM is 

  

(11) 

where Φ(⋅) is the multivariate normal probability density function, and Iàâ@Bä is an indicator 

function.  The log-likelihood follows clearly: 
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(12) 

To calculate the log likelihood for estimation, one must integrate over the range of the latent 

factor(s), a computationally demanding task for even a single latent variable. Instead of 

analytically solving for the integral, an approximation to the integral can be obtained using 

quadrature.  Quadrature is available in many popular statistical software programs, although here 

I will focus on R as it allows users to easily define their own models (R Core Team, 2015). In 

SAS software, users can specify novel latent variable models using PROC NLMIXED, although 

I do not explore this option in depth. In R, the mirt package can be used to specify novel item 

response functions (Chalmers, 2012). All analyses for this thesis are done in R, and sample code 

for OCFMs in a single population can be found in Appendix B.  

 Feasibility Study 

The feasibility study presented here demonstrates that, given data generated by an 

OCFM, one can recover the original parameters.  The feasibility study consists of generating data 

from four different OCFMs: negative binomial, beta binomial, zero-inflated negative binomial, 

and zero-inflated beta binomial. The parameters for the generating model were obtained using 

real data to get plausible values. For the negative binomial model and the zero-inflated negative 

binomial model, I used seven items from the RAPI from REAL-U, and for the beta-binomial 

model and the zero-inflated beta-binomial model, I used four items from the CES-D depression 

scale from the 1994 wave of the National Longitudinal Survey of Youth  (Bureau of Labor 

Statistics, U.S. Department of Labor., 2012; Radloff, 1977).  I first fit the model to the real data 

to get the parameter estimates. I then examined the estimated values to rule out improper 

solutions. 
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Figure 2: Parameter recovery plots for the four OCFMs described. 
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The parameter estimates were then used to generate a sample of 1,000 cases for each model, 

which were then fit with the correct model using random starting values.  The results are 

represented in Figure 2, and relative bias is reported in Table 1 

 These results demonstrate that the OCFM can be successfully fit to data generated from 

an OCFM. Specifically, it shows that the estimation of an OCFM can be performed 

successfully—a nontrivial finding.  Of course, this finding has little external validity, as it does 

not show that the OCFM is suitable to real data, but this feasibility study constitutes an important 

first step. Looking more closely, one can see that the parameter recovery for the, NB and ZINB 

model looks adequate. However, the zero-inflation parameter Ñ seems to be severely negatively 

biased. As such, it seems like one should be cautious about interpreting the zero-inflation 

parameter in these models. 

Table 1: Mean Relative Bias by Parameter and Model in Feasibility Study 

Parameter Negative Binomial Zero-Inflated 

Negative Binomial 

Beta Binomial Zero-Inflated 

Beta Binomial 

FG <0.01 -0.11  0.03 -0.70 

FO -0.03  0.02  0.11 -0.26 

! <0.01 -0.14   

Ñ  -0.52   1.16 

†   -0.02  4.02 

 

This result should not dissuade one from using an OCFM, although it may lead one to consider a 

NB model over a ZINB model. Now focusing on the BB and ZIBB models, it seems as if 

parameter recovery was excellent for the BB model, but less so for the ZIBB model—similar to 

the results of the unbounded count models. Nevertheless, the ZIBB model produced terribly 
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biased estimates, which is deeply concerning. Given the small maximum count of seven, perhaps 

the ZIBB model was over-parametrized. Remember that the overdispersion parameter in a BB 

model pushes the responses towards the maximum and the minimum—potentially making the 

zero-inflation parameter difficult to estimate. Regardless of the relative bias of the parameters, I 

find that the coverage rates of the score confidence intervals were close to nominal levels 

(NB=0.96; ZINB=0.97; BB=0.96; ZIBB=0.94). Moreover, the correlations between the true 

scores and the estimated scores were acceptable (NB=0.79; ZINB=0.85; BB=0.86; ZIBB=0.76), 

especially considering the limited number of items. These results suggest that the OCFM can 

adequately reproduce the generating scores, as well as quantify the uncertainty in the scoring 

process. It should be clear that a single replication does not generalize to an entire family of 

models. Nevertheless, this simulation shows that OCFMs can be fit using readily available 

statistical software and, given a properly specified model, can adequately recover the generating 

parameters. Yet this simulation also suggests that one should not take specifying zero-inflation 

lightly—as it can lead to meaningfully biased parameter estimates.  

Study 1 

 For the empirical demonstration, I will return to our motivating example of the RAPI in 

the REAL-U Study. I will focus our attention on the selection and interpretation of an 

appropriate OCFM for the original (unperturbed) version of the RAPI. Despite the theoretical 

benefits of OCFMs, it is important to consider whether they produce tangible benefits above and 

beyond the currently available methods. Through this empirical demonstration, I seek to 

accomplish two aims: to demonstrate how one should select between and interpret OCFMs and 

to compare the OCFM to traditional item response and factor analytic models. In addition, I 

hypothesize that: 
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1. the GRM, CFA, and OCFM will all produce scores that are highly correlated, but not to 

such an extent that model choice is trivial; 

2. the OCFM will fit better than the GRM due to the fewer parameters that are estimated;  

3. the OCFM scores will have smaller standard errors compared the standard errors of the 

GRM score for that person due to its increased parsimony. 

Data 

 I use the lifetime version of the original RAPI from the REAL-U study. In both Study 1 

and Study 2, I omit the fifth item: “Relatives avoided me.” Across all four items and visit 

scenarios, no more than two people endorsed a category higher than the second. For the original 

RAPI specifically, no one endorsed category three, and only two people endorsed category two. 

Given this sparseness and the potential inapplicability of this item in a college population, this 

item was dropped for purposes of the empirical analysis. 

Method 

 Fitting the Comparison Models. To provide a basis for comparison, I begin by fitting 

the graded response model and the linear normal model to the data. For the linear normal model, 

I recode the responses to represent the midpoint of the selected interval. As the final interval (5+) 

does not have a finite midpoint, there is no obvious number to which to recode the response. 

Acknowledging this limitation, I recode those responses as 7.5 so the interval between responses 

options increases by one each time (0, 1.5, 4, 7.5). 

Selecting an Optimal Ordinal Count Factor Model. After the model converged, I 

reviewed the parameter estimates. As a logit larger than three indicates a probability close to 1, 

noticeably large zero-inflation model parameters indicate that the item does not support a 
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sensible representation of zero-inflation. To that end, those items7 were then fit with a standard 

negative binomial distribution. After inspection, this model was then selected as the OCFM for 

comparison.  

 Comparing the Models. The final section of our empirical demonstration compares the 

two traditional models and the final OCFM. All models were fit with N(0,1) scaling of latent 

factor and all item parameters estimated. After presenting the estimation results from all three 

models, I will compare the fit of the GRM and the OCFM using information criteria. As I cannot 

compare the fit of the linear CFA to either the GRM and the OCFM8, I will report only the 

overall fit of the linear CFA. In addition to the fit of the model, I will also compare the quality of 

the scores generated for the factor.  As EAPs are often preferred, (Thissen & Orlando, 2001), I 

will compare the correlation of EAPs across models. Finally, I will compare the precision of 

EAPS by examining the standard errors of scores across models. I will do this by testing whether 

the difference between a participant’s OCFM score’s standard error and their GRM standard 

error is less than zero. This approach takes into account that specific response patterns may have 

unique effects on scores. As such, while the standard errors may be produced by different 

models, they were produced by the same response patterns, and are thus at least roughly 

comparable. 

Results 

 Estimation Results and Model Fit. The linear CFA was estimated using lavaan 

(Rosseel, 2011). The parameter estimates for the linear CFA are reported below. The overall chi-

square test was rejected (X2=1718, df=209, p<0.001). The CFI of 0.62 and the RMSEA of 0.133 

indicate poor overall fit.  

                                                
7 Items 1, 2, 3, 4, 6, 7, 8, 9, 10, 16, 18, 19, 20, and 22 
8 A single polytomous item is represented as multiple dichotomous variables for the OCFM and the GRM. 
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The GRM was successfully estimated using mirt.  Finally, a ZINB OCFM was estimated, 

and then items with Ñ > 3, which suggested a lack of zero inflation, were dropped. The more 

parsimonious model did not fit significantly worse (LRT here), so it was retained. 

Turning our attention to the information criteria, I can note that the AIC and the BIC for 

the OCFM is smaller than the GRM. Considering that the linear CFA did not fit well, and the 

OCFM (AIC=10901.87, BIC=11199.43) fit better than the GRM (AIC=10944.95, 

BIC=11298.8), selecting the OCFM is justifiable. 

Interpretation. To demonstrate the interpretational clarity afforded by this model, I 

examine the item parameters of two items, item one “Got into fights with other people (friends, 

relatives, strangers)”, and item eleven “Wanted to stop drinking but couldn’t”. 

For the linear CFA models, we can interpret the intercepts to say that the typical person 

has gotten into 0.97 fights with other people because of their drinking and tried to stop drinking, 

but could not 0.06 times. For a one standard deviation increase in the latent variable we expect to 

observe an increase of 1.11 fights and 0.21 failed attempts to quit drinking. This model also 

improperly implies that the typical person one standard deviation below the mean on the latent 

variable should have negative fights and failed quit attempts. The linear model estimates and 

interpretation also may differ depending on the arbitrary selection of the final category midpoint 

score. As such, sensitivity analyses were performed, and I found that the choice of a smaller final 

category score (5.5) did not meaningfully change the results.  For the GRM, we can interpret the 

thresholds to say that a typical person has around a 72% chance of having never been in a fight 

due to drinking, a 23% chance of having one or two fights, a 3% chance of having three to five 

fights, and a 2% chance of having more than five. 
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Table 2    
Linear CFA Item Parameter Estimates    

Item Stems Loading Intercepts Residual 
Variance 

1. Got into fights with other people (friends, relatives, 
strangers) 

1.112 0.972 2.098 

2. Went to work or school high or drunk 1.167 1.01 2.806 
3. Caused shame or embarrassment to someone 1.24 1.058 1.631 
4. Neglected your responsibilities 1.398 1.493 2.985 
6. Felt that you needed more alcohol than you used to in 
order to get the same effect 

1.129 1.172 3.489 

7. Tried to control your drinking (tried to drink only at 
certain times of the day or in certain places, that is, tried 
to change your pattern of drinking) 

1.06 0.861 2.893 

8. Had withdrawal symptoms, that is, felt sick because 
you stopped or cut down on drinking 

0.204 0.128 0.645 

9. Noticed a change in your personality 0.513 0.476 1.66 

10. Felt that you had a problem with alcohol 0.482 0.247 0.503 

11. Wanted to stop drinking but couldn’t 0.206 0.064 0.184 

12. Suddenly found yourself in a place that you could not 
remember getting to 

1.344 1.08 2.187 

13. Passed out or fainted suddenly  0.554 0.405 0.977 

14. Had a fight, argument, or bad feeling with a friend 1.141 0.978 1.69 

15. Kept drinking when you promised yourself not to 0.622 0.416 0.976 

16. Felt you were going crazy 0.692 0.269 0.789 

17. Felt physically or psychologically dependent on 
alcohol 

0.43 0.133 0.373 

18. Was told by a friend, neighbor or relative to stop or 
cut down drinking 

0.736 0.376 0.975 

19. Not able to do your homework or study for a test 1.255 1.232 2.72 

20. Missed out on other things because you spent too 
much money on alcohol 

0.627 0.594 1.738 

21. Missed a day (or part of a day) of school or work 1.048 0.923 2.136 

22. Had a fight, argument, or bad feeling with a family 
member 

0.347 0.17 0.386 

23. Had a bad time 1.535 1.672 2.429 
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Table 3     
Graded Response Model Parameter Estimates     

Item Steps Slope First 
Threshold 

Second 
Threshold 

Third 
Threshold 

1. Got into fights with other people (friends, relatives, 
strangers) 

1.834 -0.96 -3.007 -4.21 

2. Went to work or school high or drunk 1.913 -1.362 -2.928 -3.865 
3. Caused shame or embarrassment to someone 2.231 -0.648 -3.246 -4.71 
4. Neglected your responsibilities 1.994 -0.216 -2.265 -3.597 
6. Felt that you needed more alcohol than you used to in 
order to get the same effect 

1.489 -1.013 -2.178 -3.251 

7. Tried to control your drinking (tried to drink only at 
certain times of the day or in certain places, that is, tried 
to change your pattern of drinking) 

1.606 -1.758 -2.793 -3.581 

8. Had withdrawal symptoms, that is, felt sick because 
you stopped or cut down on drinking 

1.139 -3.898 -4.636 -5.224 

9. Noticed a change in your personality 1.041 -1.947 -3.206 -4.177 
10. Felt that you had a problem with alcohol 2.129 -3.208 -5.898 -6.97 
11. Wanted to stop drinking but couldn’t 2.030 -5.068 -7.127 -7.936 
12. Suddenly found yourself in a place that you could not 
remember getting to 

2.435 -1.172 -3.142 -4.557 

13. Passed out or fainted suddenly  1.203 -1.925 -3.679 -5.052 
14. Had a fight, argument, or bad feeling with a friend 1.828 -0.766 -2.95 -4.399 
15. Kept drinking when you promised yourself not to 1.154 -1.93 -3.466 -5.029 
16. Felt you were going crazy 2.00 -3.597 -4.783 -5.73 
17. Felt physically or psychologically dependent on 
alcohol 

2.318 -4.656 -6.569 -7.289 

18. Was told by a friend, neighbor or relative to stop or 
cut down drinking 

1.912 -2.793 -4.502 -5.49 

19. Not able to do your homework or study for a test 1.844 -0.539 -2.712 -3.683 
20. Missed out on other things because you spent too 
much money on alcohol 

1.594 -1.932 -3.311 -4.9 

21. Missed a day (or part of a day) of school or work 1.848 -1.162 -2.972 -4.346 
22. Had a fight, argument, or bad feeling with a family 
member 

2.002 -3.823 -5.551 -7.82 

23. Had a bad time 2.029 0.358 -1.899 -3.689 
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Table 4     
Ordinal Count Factor Model Parameter Estimates     
Item Stems Loading Intercept Overdispersion 

parameter 
Zero-
Inflation 
parameter 

1. Got into fights with other people (friends, 
relatives, strangers) 

1.623 0.979 0.976  

2. Went to work or school high or drunk 2.075 1.141 2.002  
3. Caused shame or embarrassment to 
someone 

1.547 0.873 0.4  

4. Neglected your responsibilities 1.512 0.352 0.676  
6. Felt that you needed more alcohol than you 
used to in order to get the same effect 

1.821 0.595 2.627  

7. Tried to control your drinking (tried to 
drink only at certain times of the day or in 
certain places, that is, tried to change your 
pattern of drinking) 

2.17 1.015 5.153  

8. Had withdrawal symptoms, that is, felt sick 
because you stopped or cut down on drinking 

2.509 3.086 47.693  

9. Noticed a change in your personality 1.317 1.272 6.7  
10. Felt that you had a problem with alcohol 2.001 3.021 1.687  
11. Wanted to stop drinking but couldn’t 2.515 4.021 0.001 0.955 
12. Suddenly found yourself in a place that 
you could not remember getting to 

2.04 1.132 0.525 -2.374 

13. Passed out or fainted suddenly  1.356 1.017 0.393 0.099 
14. Had a fight, argument, or bad feeling with 
a friend 

1.495 0.814 0.397 -2.319 

15. Kept drinking when you promised yourself 
not to 

1.152 0.684 0.271 0.429 

16. Felt you were going crazy 2.621 3.454 6.047  
17. Felt physically or psychologically 
dependent on alcohol 

2.423 3.501 0.001 0.526 

18. Was told by a friend, neighbor or relative 
to stop or cut down drinking 

2.157 2.626 3.039  

19. Not able to do your homework or study for 
a test 

1.595 0.653 0.879  

20. Missed out on other things because you 
spent too much money on alcohol 

1.796 1.598 2.902  

21. Missed a day (or part of a day) of school 
or work 

1.712 1.096 1.092 -3.613 

22. Had a fight, argument, or bad feeling with 
a family member 

2.415 3.921 2.741  

23. Had a bad time 1.246 0.008 0.148 -2.412 
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Similarly, the typical person has a 99.3% chance of never failing a quit attempt, a 0.6% chance 

of failing once or twice, a 0.06% chance of failing three to five times, and around a 0.04% 

chance of failing more than five times. A one standard deviation increase in the latent variable 

leads to an increase in the underlying propensity to get into more fights due to drinking by 1.834 

and the propensity to have more failed quit attempt by 2.03. As noted before, this model does not 

allow us to make inferences on the exact count of the behavior, but rather its underlying 

propensity.  

For the OCFM, we can interpret the exponentiated intercept to say that the typical person 

will have gotten into 0.39 fights in their lifetime due to alcohol. The exponentiated slope 4.8 

means that for a one standard deviation increase in problem alcohol use, we expect an increase in 

the number of lifetime fights by a factor of 4.8. For instance, for a person one standard deviation 

above the mean, we could expect .39*4.8 = 1.87 fights in their lifetime related to alcohol use. By 

the same reasoning, for a person one standard deviation below the mean we would expect .39/4.8 

= .08 fights. The overdispersion parameter implies that there are likely other predictors of the 

number of reported fights than the latent variable of problem alcohol use. We cannot be sure 

whether that other source of variability is a specific factor or solely measurement error. 

Turning our attention to the eleventh item, we can interpret its transformed zero-inflation 

parameter to say that the typical person has a 28% chance to be at risk for a failed quit attempt. 

Taking that risk into account, we interpret the exponentiated intercept to say we expect the 

typical person at-risk person to have failed a quit attempt 0.005 times. Each increase of one unit 

of the latent variable results in an increase in the expected count by a factor of exp(2.515) = 12.2, 

suggesting that this behavior, if a person is at risk for it, is extremely sensitive, but given the 

small intercept, is probably not sensitive in substantive terms. So, for a person one standard 
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deviation above the mean, we expect them to have failed a quit attempt 0.06 times.  An important 

observation to make with this item is that even though it may seem highly discriminating, it is 

only discriminating for those people at risk for the behavior. This caveat is not found in 

traditional ordinal models because zero inflation is not modeled. 

Factor Score Correlations. EAPs were obtained through the respective R packages and 

then compared. Plots demonstrating the relationships between scores can be found in Figure 2. 

The curvilinear relationship between the scores from the CFA and those from the GRM and the 

OCFM is noticeable. This suggests that the CFA was not as capable9 of modeling the nonlinear 

relationship between the factor and the responses as were the GRM and the OCFM. Furthermore, 

the linear relationship between the GRM and the OCFM suggests that the item response model 

of the GRM can approximate that of the OCFM.  

 

Figure 2: Plots of EAPs across models. The outlier is marked with a triangle.   

                                                
9 I performed a sensitivity analysis by coding the responses 0, 1.5, 3.5, and 5.5 as well as 0, 1, 2, and 3—the 
curvilinear trend remained in both cases. 
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These relationships are reflected in the correlations between scores. The scores are highly 

correlated between all three models but most correlated between GRM and OCFM. However, 

care should be taken with assuming that these scores approximate each other, even between the 

OCFM and the GRM. One might notice a small outlier, marked with a triangle, around the 

middle of the CFA vs. OCFM score plot, but conclude that the rest of the plots seem 

straightforward. 

Table 5   

Factor Score Correlations   
 Linear CFA GRM 
GRM 0.860  
OCFM 0.833 0.982 

Score Precision. Turning our attention to the standard errors, we can note that the GRM and the 

OCFM do not always provide smaller standard errors than the CFA (Figure 3, SE=0.31). For 

reference, the mean of the standard errors for the GRM is 0.36, and the mean of the standard 

errors for the OCFM is 0.35. When evaluating the difference in the standard errors using a t-test, 

the OCFM provided significantly smaller SEs than the GRM, but significantly larger SEs than 

the CFA. 

An outlier is also clearly noted, the same from the OCFM vs CFA score scatterplot. This 

person responded that they had no consequences besides being told to cut down their drinking, 

which occurred more than five times, a highly unusual response pattern. Removing this outlier 

from the t-tests did not affect the results.  

As the standard errors of the GRM and the OCFM vary across the level of the latent 

variable, I plotted them against the EAPs calculated from the OCFM in Figure 4. Here I find that 

the OCFM tends to provide more precise scores than the GRM as the level of the latent variable 

increases. 
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Figure 3: Plots of the standard errors of the GRM and the OCFM by their EAPs. The line at 0.31 
in each of the models represent the standard errors of the CFA EAPs. Note the same outlier as 
before marked with a triangle. 

 

   

 

 

Figure 4: The difference between a participant’s OCFM and GRM standard errors are plotted against 
their OCFM EAP. A loess line with its 95% confidence interval is included. 
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Discussion 

This empirical example served two purposes. The first was to demonstrate that it is 

possible to fit an OCFM to real data. The second was to evaluate whether it is possible to get 

better fit with the OCFM than with a GRM. 

 The example clearly demonstrated that an OCFM can be fit to real data, with a flexible 

model for unbounded counts, the zero-inflated negative binomial, serving as the starting point in 

the model selection process. It was possible to select the most parsimonious underlying count for 

that specific item using an ad-hoc stepwise process. That said, even with an overdispersion 

parameter and many items being zero-inflated, the OCFM fit better than the GRM. Thus, one 

must weigh fit against parsimony and relative bias for the OCFM, at least when overdispersion is 

concerned. Future simulation studies should be performed to determine whether the model 

selection strategy I implemented here can lead to correct identification of the simplest possible 

count distribution for the data, and if so, whether the gain in parsimony is worth potential 

misspecification through improper constraints. 

 The model fit results suggest that the OCFM can fit better than the less restrictive GRM. 

This finding has larger implications than simply supporting the use of the OCFM. It 

demonstrates that measures that have been successfully modeled with a GRM may show 

improved fit under an OCFM. One might argue that the ability of the GRM to approximate the 

OCFM renders it unnecessary. On the contrary, this result suggests that a justifiable assumption 

can produce a measurement model that is not only more parsimonious, but is also more directly 

interpretable. Additional studies could reexamine these inventories to determine whether this 

result generalizes. Moreover, a simulation study should be performed to evaluate how well data 

generated under a GRM is fit by an OCFM. A variety of potential OCFM thresholds could be 



 34 

tested against the same generating GRM. On one hand, such a study may serve as a cautionary 

note against using an OCFM for all collapsed count inventories. On the other hand, it may 

demonstrate that despite the misspecified measurement model, the scores produced were still 

comparable. Those findings would provide the fitting propensity, and thus the specificity of the 

OCFM to an underlying count.  

 The emergence of the outlier in only the OCFM must be seriously considered—either as 

a sign of person misfit or model misspecification. Given the relatively narrow range of the other 

standard errors, its standard error suggests serious uncertainty. A reasonable hypothesis would be 

that the participant’s response pattern did fit the GRM but did not fit the OCFM due to the 

additional constraints of the OCFM. From a substantive angle, it does seem odd that someone 

reports no observable negative consequences of alcohol use, but has been told to cut down on 

their drinking. On one hand, the participant’s family may strongly discourage any use of alcohol. 

On the other hand, the participant may simply be in denial about the consequences of their 

alcohol use. That said, another explanation of this outlier may be that OCFM is misspecified—

perhaps many these consequences should be seen as causal indicators. No matter what one 

believes is driving this outlier, its presence suggests that the OCFM may be used to detect 

aberrant response patterns and to make risky predictions that can be falsified. 

 The results of the first empirical demonstration clearly show the utility of the OCFM. It is 

straightforward to fit in open source, widely-distributed software. Real data is fit easily with an 

OCFM, providing interpretable parameters in the metric of the underlying count. The OCFM fits 

the data better than other models when evaluated with information criteria. Although the scores 

are similar to those produced by the GRM, they were generated using a theoretically motivated 
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distribution and have greater precision in the OCFM. For all these reasons, I can support the use 

of an OCFM in the analysis of real data from a single population. 
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Ordinal Count Factor Models across Multiple Groups 

Contemporary research in psychology, the social sciences, and allied health fields often 

tests whether the properties of a scale differ across multiple groups. For example, Ramirez and 

colleagues tested whether responses to items on the Mini-Mental State Examination differed as a 

function of the language the test was administered (2006). Most of these studies are concerned 

with whether item responses are independent of group membership after conditioning on the 

latent variable. That is, people at the same level of the latent variable may respond to an item 

differently based on other personal attributes. In the factor analysis literature, this phenomenon is 

referred to as a violation of measurement invariance (MI), and in the item response literature, it 

is known as differential item functioning (DIF).  

A classic example of the need to examine measurement invariance comes from the 

measurement of depression (Steinberg & Thissen, 2006). Perhaps our research question was 

whether there was a difference in the means of depression for men and women. One would then 

encounter a hurdle: Given the same level of depression, women report more crying than men. 

Thus, for men, the crying item is more “difficult” to endorse than it is for women. Regardless of 

the source of this difference, if one does not allow for differences in that item’s parameters 

across men and women, then one would overestimate the depression scores of women and 

underestimate those of men. As the example demonstrates, if the performance of the scale 

depends on one’s group, then it is difficult to make meaningful comparisons across groups. The 

difference in one’s score could come from differential item functioning as surely as it could 

come from true underlying differences in the measured construct. These true underlying 



 37 

differences in the construct are often referred to as mean or variance impact. This limitation 

clearly threatens the internal validity of inferences made using those scores. It is critical then to 

consider testing for measurement invariance any time there are multiple groups under 

consideration. 

Measurement invariance must also be considered when one wishes to integrate data 

across studies, as each study represents a distinct population and measures of the same constructs 

may differ to some degree between studies. Recently, modern demands for a more cumulative 

science of psychology have motivated the development of Integrative Data Analysis (IDA) to 

make inferences across multiple samples (Curran & Hussong, 2009). To ensure construct 

validity, the meaning of a construct must be constant across studies. This assumption implies 

measurement invariance, which is testable, most flexibly by moderated nonlinear factor analysis 

(MNLFA; Bauer, 2016; Bauer & Hussong 2009).  

Measurement invariance requires that all item parameters are equivalent for score values 

to be directly comparable across groups (or in this case, studies). Only when the latent variables 

are on the same scale can one make inferences on group differences in the mean and variance or 

compare individual scores. With the GRM, assuming equality of the threshold parameters that 

separate the ordinal responses is really only sensible if each study uses the same response 

options. In the context of IDA, the use of identical measures is rare (Hussong, Curran, & Bauer, 

2013a). Even if the measures are identical, differences in history, location, and other personal 

characteristics could violate the assumed equality of the thresholds of the same items across 

groups. To obtain the same response options across studies for these models, researchers often 

have to collapse the items into binary responses (no behavior vs. some behavior). Collapsing 

responses throws away valuable information and may reduce the power and the precision of our 
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estimates. Thus, although current methods allow for IDA, the necessity of invariant response 

categories forces suboptimal analyses. 

In addition to more faithfully modeling the underlying data generating process, OCFMs 

do not require invariant thresholds. First, it stands to note that the traditional multiple group 

approach used to fit latent variable models simply involves constraining and freeing 

parameters—something that is easily done for OCFMs. More importantly, under an OCFM, I 

treat the thresholds as known, which results in two important properties. First, I do not need to 

constrain the thresholds to be invariant across groups to identify the PMF. Second, as the PMFs 

of the items from both groups reference an underlying count, the use of an OCFM naturally 

results in the items having the same scale across populations. Thus, OCFMs are estimable and 

interpretable even when response options for the same item differ across studies. In preserving 

all available response options, the researcher stands to gain precision and power over traditional 

methods. 

Given the advantages afforded by the use of a multiple groups OCFM, it is vital that such 

a model is formulated. I proceed by detailing how one can specify, identify, and estimate a 

multiple group OCFM. I then conclude with an empirical example which returns to the REAL-U 

data set to perform a mock integrative data analysis. I intend to demonstrate that the multiple 

groups OCFM can be fit in line with current psychometric methods, while at the same time 

determining whether there are advantages to the OCFMs unique specification.  

Multiple Groups Ordinal Count Factor Model 

A multiple groups model can be specified for groups given the same response scale or 

similar response scales with different ordinal count options. As such, the general approach will 

allow for thresholds to vary across populations, although the former case can be obtained by 



 39 

setting the thresholds to be the same across populations. As in the single population case, the 

general model for a multiple group OCFM consists of the auxiliary threshold model and the 

latent factor model. However, in the multiple group model, I allow each of these to vary as a 

function of population membership. 

Specification for multiple groups. One first specifies the auxiliary threshold model by 

defining the underlying count random variable using its PMF: 

 

(14) 

where g indexes population membership. As before, the probability of the response option is the 

sum the probabilities for the counts in the corresponding interval 

 

(15) 

It should be mentioned that it is possible to include items which prompted responses in the form 

of raw counts. In that case, one needs to only model ordinal responses for those items without 

raw counts. For the raw count, the model still holds—it is as if each interval only includes a 

single count. 

Then one specifies a non-negative link function from the latent variable to the mean of 

the underlying response function for each item.  
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where G is the total number of groups,	I&
(¢)~Q(S ¢ ,T(¢)),  FG#

(¢) is the jth item’s intercept for the 

gth group,  LO#
(¢) is the item’s factor loadings for people in group g, û¢ is an indicator function that 

is one for group g and zero for all other groups. 

Turning our attention to OCFMs specifically, there are a number of ways DIF can 

manifest itself in these models. For example, in a ZINB OCFM, measurement invariance may be 

violated if the location, loading, or zero-inflation parameter differ across groups. To compare, 

complications arise with testing for DIF in a GRM with more than two categories because there 

are multiple location parameters. DIF testing in an OCFM does not require considering those 

issues, as there is only a single location parameter no matter the number of categories. This 

difference means that DIF testing in OCFMs does not become more onerous as the number of 

categories increases. 

There are a number of ways to test for DIF in the general psychometric literature, and the 

uncertainty about the best method also applies to the OCFM. On one hand, one might start with a 

fully constrained model and use modification indices to free parameters between groups 

(Millsap, 2012). On the other hand, one might start with by freely estimated the parameters not 

constrained for identification and use Wald tests to select the invariant ones (Woods, Cai, & 

Wang, 2013). Thissen and colleagues would suggest constraining all items but one to be 

invariant across groups using LRTs to compare each item’s model to the fully constrained model 

(Thissen, Steinberg, & Wainer, 1988).  

These methods heretofore presented are not iterative, but iterative approaches exist and 

are often used when DIF may be widespread (Oort, 1998; Woods, 2009). One may begin with all 

items constrained to be equal across groups, fit models where one only frees one additional item, 

and test the models using an LRT. One would then select the item with the largest significant test 
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statistic, free it in the next stage of the model, and repeat the process. The process ends when no 

new model rejects the LRT. I will implement this DIF selection procedure in my second 

empirical study. Of course, one can perform this process in the other direction: freeing all but a 

set of invariant items, and selecting an additional invariant item each time. Nevertheless, the 

relative benefits of different approaches to DIF testing continue to be the subject of debate and 

research in traditional psychometric models. Presumably, the relative performance of these 

approaches with the OCFM would not greatly differ from other contexts, such as linear CFA or 

GRM. 

Identification for multiple groups. To properly identify OCFMs for multiple groups, 

one needs to ensure that one can obtain unique parameter estimates without using assumptions 

that incorrectly imply measurement invariance across the populations. Faced with these 

additional demands, one can still rely on the sufficient, but not necessary condition that the 

auxiliary threshold model and the latent factor model must be identified for the full model to be 

identified.   

 For the auxiliary threshold model to be identified, the rules for the single population 

model can be used. That is, one need at least q known thresholds to obtain unique estimates for 

q-1 parameters.  

 For the latent factor model to be identified, one needs to make sure that the scale for each 

latent variable is set. As mentioned earlier, I standardize the latent variable for the reference 

group to identify the model. Provided there is at least one invariant item, this constraint allows 

the mean and variance for the other two groups to be freely estimated. Moreover, this constraint 

does not require the user to specify a priori a specific invariant item—a necessary assumption 
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made in the scaling indicator approach. Instead, this invariant item may be determined via data-

driven DIF testing. 

Although these conditions are necessary for the model to be identified, an identified 

model does not imply that the latent factors are comparable. For the latent variables to represent 

the same construct, measurement invariance is required. The necessary extent of this invariance 

is hotly debated. For direct comparison of factor means or scores across groups to be valid, 

invariance of both the factor loadings and intercepts is required (Millsap, 2012). It is possible, 

however, to make these comparisons under partial invariance, that is, when this factor loadings 

and intercepts are invariant for only a subset of the items (Byrne, Shavelson, & Muthén, 1989). 

In principal, only a single invariant item is necessary, but many find it unlikely that this item 

would be known a priori (Bollen, 1989). Without that knowledge, it is difficult to empirically 

select a single invariant item among a large number of items with DIF.  As such, I agree that the 

presence of more invariant items is best to ensure measurement invariance and thus the 

comparability of factor means, variances, and scores (Kolen & Brennan, 2004).  In practice, this 

implies that the fewer items that are identified as having DIF, the greater confidence one can 

have in the comparability of the factor means and scores across groups. 

Estimation for multiple groups. As in the single population case, it is possible to 

estimate the model using maximum likelihood with the following likelihood: 
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(17) 

 

Although the estimation of the model for multiple groups is more complex, it remains a direct 

extension of that for a single population, so researchers can use R to estimate the multiple groups 

OCFM. Code that demonstrates how to estimate such a model can be found in Appendix C. 

 

Study 2 

 To demonstrate the utility of this approach, I return to the REAL-U study and the RAPI. 

In REAL-U, three perturbed versions of the RAPI were created with different stems. The original 

scale and the three perturbations were grouped into two batteries, Battery A and Battery B. Each 

participant was assigned a battery for each visit, resulting in four measurement conditions (i.e. 

first received A then received B, B then A, A then A, or B then B). Although there is a large 

number of potential comparisons, I will perform a mock integrative data analysis using two 

perturbed versions of the RAPI (Scenario 1, Battery A and Scenario 4, Battery B) from the first 

visit. As participants necessarily received either Battery A or Battery B, all participants can be 

included in this empirical example, maximizing the possible power (N=854). Compared to the 

Scenario 1 RAPI, the Scenario 4 RAPI has different instructions, but more importantly, different 

response options and item stems for all eighteen items common to both scenarios that can be 

found in Table 6. Note that all but one of the 23 original items were used in the Study 1. I 

continue to omit item 5 in Study 2. In addition, there are two different sets of response options 

used in Scenario 4. Of the six possible comparisons of the four versions of the RAPI collected, 
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this comparison is the most extreme. Thus, generating commensurate measures across these two 

versions should be a challenge for both models. 

  Not only will this empirical example evaluate the potential benefits of OCFMs in 

integrative data analysis, but it will also investigate the sensitivity of young adults to the 

presentation of questions regarding the consequences of their alcohol use. In addition to the 

various perturbed item scales, the REAL-U data set uniquely provides us the opportunity to 

compare participants’ scores across scales and time points. Unlike in a real integrative data 

analysis, I can estimate the test-retest reliability across measurement condition. For those who 

received the same battery at both visits, the correlation between their scores is a true test-retest 

reliability. For those who did not, and thus received different batteries, the correlation is an 

estimate of the stability of the scores after being perturbed by measurement.  Comparing the two 

perturbed conditions to the two unperturbed conditions allows me to test whether the 

perturbation actually resulted in less reliable scores. Juxtaposing those comparisons across model 

allows me to determine whether the OCFM produces more reliable scores and whether the 

OCFM is more resistant to those perturbations than the GRM. 

 Finally, this study will allow for the evaluation of the precision of each model’s scores. 

This precision, considered in the form of standard errors, should result in more power to detect 

meaningful relationship between the construct and others. As IDA is rarely the last modeling 

step, a scoring model that produces precise scores is valued. The ability of an OCFM to 

incorporate more information than a GRM should result in smaller standard errors. If so, that 

additional precision would underscore the utility of OCFMs in integrative data analysis.  

Here I do not consider the linear factor analysis given its demonstrably inferior performance 

in Study 1. Thus, through this empirical demonstration, I seek to accomplish three aims: to 
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demonstrate DIF detection in an OCFM, to assess the stability of each model’s scores across 

time, RAPI version, and DIF modeling, and to determine whether the full data OCFM provides 

more precise factor scores than the harmonized data GRM. Specifically, I hypothesize that 

1. there will be more DIF detected in the OCFM because the categories were not collapsed, 

thus providing more power than the binary outcomes of the GRM; 

2. the DIF corrected models under each measurement condition will produce highly 

correlated scores, but these scores will not be similar enough to justify using the GRM 

over the OCFM; 

3. even when DIF is included in both models, the OCFM scores will show higher test-retest 

reliability than the GRM scores due to the additional information in the model; 

4. the OCFM score correlations will be more stable across different measurement occasions 

than those of the GRM due to the additional information in the model; and 

5. the OCFM scores will have smaller standard errors than the GRM scores due to the 

additional information in the model. 

Methods 

Fitting the Graded Response Model. As data for a GRM must have ostensibly the same 

thresholds across groups for interpretable results, to use a GRM the response options must be 

collapsed into categories that have equal ranges, a process referred to as item harmonization 

(Hussong, Curran, & Bauer, 2013b). For the two RAPI scenarios under consideration, some but 

not all items can be harmonized in this way, and so I allow for imperfect harmonization to retain 

these items.  To do so, I collapse the items from the first response scale into never vs. at least 

once. Those items from the second response scale cannot be collapsed as such, so I collapse them 

into less than twice vs. more than twice. This clearly suboptimal solution is detailed in Table 6. 
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Table 6    

Response Options by Scenario 
  Scenario 1 

Response Options  
Scenario 4  
Response Options 

Harmonized 
Response Options 

Items 1, 4, 6, 7, 8, 
14, 15, and 17 

None  
1-2 times 
3-5 times 
More than 5 Times 

 

Never   
Once 
Twice 
3-5 times 
6-9 times  
10 or more times 
 

 

None  
1 or more times 

 

Items 2, 3, 9, 10, 
11, 12, 13, 16, 
and 18 

None  
1-2 times 
3-5 times 
More than 5 Times 

 

0-2 times  
3-4 times 
5-9 times 
10 or more times 

 

0-2 times  
3 or more times 

 

 
 

 

 However, if these items had non-count response options, even such undesirable 

harmonization would be impossible. For example, if Scenario 4 had options from “strongly 

agree” to “strongly disagree”, it would be impossible to harmonize that scale with options from 

“not at all like me” to “almost exactly like me”. With the outcomes (imperfectly) harmonized, I 

fit the GRM. I then use sequential likelihood ratio tests to detect DIF across the two scenarios.  

 Fitting the Ordinal Count Factor Model. As the OCFM can be fit to groups with 

different known thresholds, the analysis proceeds without collapsing any response options. 

Given that the ZINB model was selected in Study 1, I refit that model in this study as well. I do 

not prune the zero-inflation component for any of the items so as to allow for differences across 

study. I perform sequential likelihood ratio tests to detect DIF. To do this, I begin with a 

completely invariant model. I then free each item and compare each model with the invariant 

model. If more than one model was significantly different, the item which produces the greatest 

improvement in log-likelihood is freed. This process continues until freeing an item does not 

significantly improve fit.  
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 Scoring. After both models have been specified, I obtain EAPs from the models with DIF 

and without DIF. I score the second visit data using the estimates obtained from the models fit to 

the first visit data; that is, I do not re-estimate the model for the second visit. In total, I will score 

participants using four models (i.e. DIF included/excluded and OCFM/GRM).  

 Comparison. I begin by evaluating the first hypothesis—that the OCFM will detect more 

DIF than the GRM. I perform no test, given the exploratory nature of this study. Nevertheless, I 

will report which items demonstrate DIF for both items and comment on the result qualitatively. 

Note that there is no comparison of goodness-of-fit between the models. The collapsing of the 

data necessary to fit the GRM (but not OCFM) means that the two models are fit to different 

data. Yet if the OCFM has more items with DIF, then the first hypothesis is supported. 

 To evaluate my second hypothesis, I then calculate correlations between the DIF 

corrected OCFM and GRM scores across all four measurement scenarios and two visits for a 

total of eight correlations. If the correlations are extremely high (i.e. ~.98) then perhaps one 

might argue that the scores are roughly equivalent. If the correlations are not high at all (i.e. 

<.70) then the validity of either model may be thrown into question. For my hypothesis to be 

supported, the majority of the correlations should lie between .70 and .98, suggesting that, 

although the scores linearly approximate each other, they do not approximate each other well 

enough to render the choice of the model inconsequential. 

  I then consider whether the correlations across visits are the same for the DIF-corrected 

GRM and OCFM. For the measurement conditions of the same battery across both visits, this 

correlation estimates the test-retest reliability, and thus this comparison tests whether the test-

retest reliability is higher for the OCFM than the GRM. For those conditions with different 
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batteries, this comparison tests whether test-retest reliability is higher when the measurement 

changes. This procedure will test my third hypothesis.  

 Having considered the effect of model on test-retest reliability, I move on to consider 

whether the OCFM is more resistant to measurement perturbations than the GRM, the fourth 

hypothesis. To test this, I compare the test-retest correlations of the perturbed measurement 

conditions to that of the unperturbed measurement conditions for each DIF-corrected model. If 

the correlations are significantly different for the scores from the GRM but not for the scores 

from the OCFM, then my fourth hypothesis will be supported. Otherwise, if both are significant, 

then the measurement perturbation significantly worsened the reliability of the scores. If both are 

non-significant, then it is possible that both models adequately controlled for the measurement 

perturbations. 

 Finally, I turn to the standard errors. I first plot the standard errors of the GRM scores and 

those of the OCFM against the OCFM scores. I then fit a linear meta-model to the difference 

between a participant’s OCFM standard error and their GRM standard error, using the OCFM 

score as a predictor. This model allows me to test whether the OCFM standard errors for this 

model are meaningfully smaller than those of the GRM, and whether that difference depends on 

the person’s level of the latent variable. If average difference between the OCFM and the GRM 

standard errors is significant, then I find support for my fifth and final hypothesis.  

 

Results: 

 I completed sequential DIF testing for both the ZINB OCFM and GRM to evaluate my 

first hypothesis. Consistent with my hypothesis, the OCFM identified more items with DIF than 

the GRM.  Although both models identified DIF in items 1, 2, 3, 4, 7, 12, 14, and 15, the GRM 
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also indicated DIF in items 16 and 18, whereas the OCFM also indicated DIF in items 9, 11, and 

12. This widespread DIF should not be seen as surprising in an integrative data analytic setting. 

Nevertheless, both of the models shared four invariant items (6, 8, 10, 17) and a few items 

unique to that model. This number of invariant items is considered sufficient to provide partial 

measurement invariance across the two studies (Kolen & Brennan, 2004). The difference in DIF 

identification, though in the direction predicted, does not seem large enough to support the first 

hypothesis. As such, although sequential DIF testing identified enough invariant items to link the 

two mock studies, it did not provide enough evidence to make a claim that the OCFM identifies 

more DIF items than the GRM in general.  

Before considering the rest of my hypotheses, I present the model estimates. Final 

parameter estimates for the OCFM can be found in Tables 7 and those for the GRM can be found 

in Table 8. As the mean and variance of Scenario 1 was standardized in both models, I can 

examine whether the mock study design resulted in mean or variance impact. Note that because 

the subjects were randomly assigned to a measurement battery, there should be no impact. The 

OCFM estimate of the mean and variance of those in Scenario 4 is -0.237 and 1.257, and the 

GRM was similar at -0.195 and 1.357, respectively. Although I had no hypothesis about the 

result of this manipulation, the fact that it exists even when correcting for DIF is potentially 

concerning. Yet the purpose of this study is not to evaluate the internal validity of IDA; rather, it 

is to evaluate the efficacy of the multiple group OCFM as compared to traditional methods. 

Moreover, this mean and variance impact could be successfully modeled, and thus adjusted for, 

by including study impact—a common practice (Curran & Hussong, 2009). As both models 

found similar mean and variance impact, the validity of the model comparison is not threatened.  
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With the models estimated and described, I turn my attention to the factor scores, the 

focus of hypotheses 2, 3, and 4. I estimated EAPs for the eight models, using the visit 1 model 

estimates to estimate scores at each visit. Correlations between the scores pooled across 

measurement conditions can be found in Table 9. Tables for each measurement condition can be 

found in Appendix D.  

Table 9          

Multiple Group Factor Score Correlations Pooled over Scenarios          

 Visit 1   Visit 2      

   GRM  OCFM  GRM  OCFM 

   No DIF DIF No DIF DIF No DIF DIF No DIF 

Visit 1 GRM DIF 0.934       
 OCFM No DIF 0.909 0.964      
  DIF 0.924 0.961 0.996     

Visit 2 GRM No DIF 0.684 0.764 0.755 0.749    
  DIF 0.637 0.709 0.700 0.696 0.949   
 OCFM No DIF 0.694 0.780 0.807 0.797 0.938 0.859  
  DIF 0.662 0.744 0.782 0.772 0.857 0.729 0.965 

Test-retest correlations within model are bolded  
 

 

 

 



 

 51 

Table 7       

Multiple Group Ordinal Count Factor Model Estimates      

Item Stems Loading   Intercept Overdispersion 
parameter 

Zero-Inflation 
parameter 

Scenario S1 S4 S1 S4 S1 S4 S1 S4 

1. Got into fights with other people (friends, relatives, strangers) -0.9 -1.94 1.56 1.44 1.15 0.37 -10.76 -0.20 
2. Went to work or school high or drunk -1.0 -0.93 2.01 1.07 2.26 0.83 -11.26 -7.36 
3. Caused shame or embarrassment to someone -0.83 -0.49 1.50 0.79 0.45 0.26 -11.40 -9.77 
4. Neglected your responsibilities -0.17 -1.42 1.32 1.64 0.97 1.74 -11.98 -0.70 
6. Felt that you needed more alcohol than you used to in order to get 
the same effect 

-0.50 -0.50 1.62 1.62 1.70 1.70 -2.08 -2.08 

7. Tried to control your drinking (tried to drink only at certain times 
of the day or in certain places, that is, tried to change your pattern of 
drinking) 

-1.33 -1.39 2.39 1.49 4.20 0.05 -10.1 -0.45 

8. Had withdrawal symptoms, that is, felt sick because you stopped 
or cut down on drinking 

-3.89 -3.89 2.43 2.44 20.07 20.07 -7.64 -7.64 

9. Noticed a change in your personality -1.42 0.10 1.44 1.04 5.85 0.80 -8.88 -8.52 
10. Felt that you had a problem with alcohol -2.97 -2.98 2.09 2.09 0.43 0.43 -1.84 -1.84 
11. Wanted to stop drinking but couldn’t -4.54 -2.51 2.60 1.88 0.00 0.00 0.55 -9.07 

12. Suddenly found yourself in a place that you could not remember 
getting to 

-1.24 0.57 2.08 1.07 0.46 0.21 -2.82 -2.11 

13. Passed out or fainted suddenly  -1.0 -0.01 1.42 1.21 0.34 0.19 0.07 -1.23 
14. Had a fight, argument, or bad feeling with a friend -0.80 -2.49 1.46 1.77 0.50 2.48 -2.58 -6.61 
15. Kept drinking when you promised yourself not to -0.94 -3.45 1.20 2.64 0.55 1.67 0.08 -0.37 
16. Felt you were going crazy -2.9 -2.96 2.42 2.42 1.58 1.59 -0.28 -0.28 
17. Felt physically or psychologically dependent on alcohol -4.72 -4.72 3.03 3.04 0.62 0.62 -0.55 -0.55 
18. Was told by a friend, neighbor or relative to stop or cut down 
drinking 

-3.02 -3.03 2.20 2.21 1.89 1.89 -8.70 -8.70 
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Table 8     

Multiple Group Graded Response Model Parameter Estimates      
Item Stems Loading  Intercept  
Scenario S1 S4 S1 S4 
1. Got into fights with other people (friends, relatives, 
strangers) 

1.531 1.421 -0.905 -2.795 

2. Went to work or school high or drunk 1.764 1.637 -1.326 -3.615 
3. Caused shame or embarrassment to someone 1.97 1.786 -0.633 -3.508 
4. Neglected your responsibilities 1.502 1.338 -0.177 -2.24 
6. Felt that you needed more alcohol than you used to 
in order to get the same effect 

1.465 1.465 -1.086 -1.086 

7. Tried to control your drinking (tried to drink only at 
certain times of the day or in certain places, that is, 
tried to change your pattern of drinking) 

2.052 1.395 -2.045 -2.028 

8. Had withdrawal symptoms, that is, felt sick because 
you stopped or cut down on drinking 

1.634 1.634 -4.367 -4.367 

9. Noticed a change in your personality 1.336 1.336 -1.959 -1.959 
10. Felt that you had a problem with alcohol 2.298 2.298 -3.355 -3.355 
11. Wanted to stop drinking but couldn’t 3.317 3.317 -7.028 -7.028 
12. Suddenly found yourself in a place that you could 
not remember getting to 

2.199 2.199 -1.225 -1.225 

13. Passed out or fainted suddenly  1.187 2.056 -1.963 -2.551 
14. Had a fight, argument, or bad feeling with a friend 1.464 1.566 -0.725 -2.766 
15. Kept drinking when you promised yourself not to 1.164 2.138 -1.99 -4.252 
16. Felt you were going crazy 1.919 2.313 -3.585 -5.871 
17. Felt physically or psychologically dependent on 
alcohol 

2.653 2.653 -5.149 -5.149 

18. Was told by a friend, neighbor or relative to stop 
or cut down drinking 

2.152 2.621 -3.037 -6.671 
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Let us first consider my second hypothesis, the one focused on whether the GRM and the 

OCFM would produce meaningfully different score estimates. The DIF-adjusted score 

correlations range from .94 to .97 at the first visit to 0.73 to .94 at the second. These correlations 

are large for the first visit, and thus may suggest that the scores are roughly comparable. 

However, the lack of a very strong correlation at the second visit suggests that such a claim is 

tenuous. Thus, the OCFM and the GRM, although highly correlated at the first visit, may 

produce scores that may lead to different inferences when included in models—in accordance 

with my second hypothesis.  

Next, I examine the stability of the factor score estimates across time as affected by 

model and condition, the stability of which I predicted to be higher for the OCFM as compared 

to the GRM. To do so, for each measurement condition I tested whether the OCFM’s test-retest 

reliability was higher than the GRM’s test-retest reliability (Steiger, 1980). All differences 

favored the OCFM, and all differences besides that for those who received Scenario four twice 

were insignificant (	"## = 	0.93, "#* = 0.1, "*# = 0.08, "** = 0.01). Although the OCFM scores 

were more highly correlated than the GRM scores, only when one battery was presented twice 

was that difference significant. Thus, I do not find strong support for my third hypothesis. 

Having considered whether the OCFM results in higher test-retest reliability across all 

measurement conditions relative to the GRM, I now turn my attention to whether the reliability 

of the OCFM scores were more resistant to measurement perturbations. I performed the same 

tests for the correlations before, comparing each perturbed condition (i.e. received Scenario 1 

then Scenario 4 and received Scenario 4 then Scenario 1) to each unperturbed one (i.e. only 

received Scenario 1 and only received Scenario 4) fit with the same model. Thus, I compared the 

correlation of each model’s scores between visit one and visit two for people who received the 
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same battery to those who received different batteries. None of the comparisons made were 

significant (min(p)=.68). A lack of a significant difference does not imply that the model 

perturbation had the same effect for both models. However, it does suggest that accounting for 

DIF in the multiple group model successfully represented those measurement differences. Given 

this performance from both models, I do not find support for my fourth hypothesis. 

 Finally, I turn my attention to the standard errors of the scores for both models. A plot of 

the standard errors by OCFM EAPs (Figure 5) suggests that the OCFM produces scores with 

smaller standard errors, regardless of the visit or measurement condition. Plotting the standard 

errors against the GRM EAPs result in a similar pattern, although the GRM EAPs demonstrate a 

clear ceiling for scores that are either all zeros or all ones.  

  

 

Figure 5: Standard errors plotted against the EAP from the DIF-corrected OCFM. Squares represent standard 

errors from the OCFM; triangles represent standard errors from the GRM. Battery A means participants received 

Scenario 1 and Battery B means participants received Scenario 2.  

A linear regression meta-model supports these suspicions with the outcome as the 

difference in standard error between the OCFM and the GRM pooled across condition. I fit two 

meta-models—one for each visit. Not only is there a significant difference between the standard 
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errors of the OCFM and GRM (./ = −0.036, " < 0.001), but this difference increases as 

OCFM EAP increases in level (.# = −0.066, " < 0.001) at visit one. In the model for the 

second visit, the OCFM EAP predicts a decrease in the difference between the standard errors 

(.# = 0.024, " < 0.001) at visit 2. The result for visit one should not be surprising, as the 

OCFM incorporates more information on those with more extreme values on the scale. However, 

the result for visit 2 complicates that interpretation. The OCFM scores for visit 1 were 0.4 larger 

than those at visit 2 (6 = 20.8, " < 0.001). As such, it still might hold that the OFM 

incorporates more information at higher levels of the latent variable, but the second visit simply 

does not have the range to detect it. Therefore, this result not only supports the fifth hypothesis, 

that the OCFM produces more precise scores overall, but also suggests that this increase in 

precision can be magnified at higher levels of the latent variable.  

Discussion 

The results of the second empirical example supports the use of the multiple groups 

OCFM, especially in integrative data analytic settings. This support comes from three main 

findings: the ability to fit the model, the relative similarity of OCFM scores to GRM scores, and 

the significant gains in precision that result from using an OCFM over a GRM. 

Regardless of a model’s properties, it is vital that one can fit it in a straightforward way 

using accessible software. The second empirical example demonstrates just that. Although the 

estimation was computationally demanding, it is possible to fit such a model in R. As such, there 

is little reason why researchers who already use psychometric models cannot use an OCFM. The 

results that support the first hypothesis, that the multiple group OCFM may provide more power 

to detect DIF, should also make the OCFM attractive to psychometricians.  
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The second main finding lies in the similarity of OCFM scores to GRM scores. It may 

seem counterintuitive that the strong correlation between OCFM scores and GRM scores 

supports the use of the OCFM. The results that support of the second hypothesis, that the scores 

would be highly, but not perfectly related, might lead the reader to assume that the OCFM does 

not really change the scores. Moreover, the results contrary to hypotheses three and four suggest 

that the OCFM does not produce significantly more stable scores across time (i.e. higher test-

retest reliability) or across measurement condition than a GRM, although the correlations 

between OCFM scores remain consistently higher. That said, let us consider a counterfactual 

situation: that in which the OCFM scores at the same visit and measurement condition were only 

weakly related to the GRM scores. Such a result would imply that OCFM orders people in a 

meaningfully different way than the GRM does. One would then have to be cautious about using 

an OCFM, because it could produce different results than a GRM. Yet the OCFM produces 

scores that are very similar to the GRM, generating confidence that the additional assumption 

does not meaningfully change the ordering of participants. That said, the correlation is not 

perfect, which means that the use of an OCFM still may change inferences, albeit potentially in a 

less dramatic way. This balance, between perfect resemblance and noticeable divergence, 

manages both to validate the multiple group OCFM and to support its use. 

The third major finding, that of the increased precision of scores in the OCFM, cannot be 

overstated. The smaller standard errors of the OCFM scores, supporting the fifth hypothesis, 

underscore its potential utility in traditional multiple group analysis and in integrative data 

analysis. It seems probable that the additional response categories allow the multiple groups 

OCFM to produce smaller standard errors than the GRM. It should be noted that these additional 

responses do not require an assumption beyond those made by a single group OCFM. Rather, the 
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ability to incorporate these additional assumptions follow from the very definition of an OCFM. 

Thus, the added precision not only supports the use of OCFMs in integrative data analysis, but 

also in traditional multiple group models.  

Nevertheless, a key question in multiple group OCFMs is in how to interpret DIF, which 

remains ambiguous, but more interpretable than in the GRM. If one group has a larger intercept, 

it could mean that group engages in more of that behavior than the other. On the other hand, it 

could also mean that group interpreted the description of that behavior differently, which led 

them to count additional instances as that behavior. A larger slope may mean that the behavior 

increases faster for that group, or that as the latent variable increases, people in that group simply 

remember more instances of that behavior. Either interpretation is valid, underscoring the need to 

explore such results through additional qualitative and quantitative research. This ambiguity does 

not threaten the utility of OCFMs, rather it underscores the relative utility of an OCFM over a 

GRM. Different thresholds for groups are difficult to interpret, especially if those thresholds are 

counts. One might say that it is simply more difficult for one group to endorse higher levels of 

that behavior, but what does that mean substantively, let alone clinically? Thus, the question of 

DIF in a multiple group OCFM demonstrates how the OCFM produces more interpretable 

inferences than traditional approaches.  
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Conclusion 

Ordinal Count Factor Models represent a next step in advancing the measurement of 

behavioral counts. Not only do they more faithfully represent the data generating process, they 

require as many parameters as a linear CFA and often fewer parameters than a GRM with the 

same number of response options. Of course, such a model is not the cure-all. Fitting certain 

models may produce extremely biased parameter estimates, and the use of an OCFM does 

nothing beyond traditional psychometric models in illuminating the latent structure of the 

indicators. However, their ability to model DIF in traditional and integrative data analysis 

settings represents a clear advantage for the type of research being currently performed in the 

behavioral and health sciences. Moreover, the code developed through the course of this 

document aims to make these modeling approaches available to applied researchers across 

disciplines. Yet the impact of this thesis can be summarized in its two main results: theoretical 

development of the general single group and multiple group OCFMs, and empirical evaluation of 

the single group OCFM through Studies 1 and 2.  

In this paper, I theoretically develop the OCFM while grounding it in both cognitive 

psychology and psychometrics. Cognitive psychology has shown that under certain conditions, 

people respond to ordinal count items by counting up past incidents. These conditions match 

many experiences and behaviors researched in developmental psychopathology. Psychometrics 

provides a framework to model these behaviors or experiences as being caused by a set of latent 

variables. With the introduction of an ordinal count response function, this framework provides a 

set of tests and approaches that render the OCFM usable in myriad ways. This general form of 
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the OCFM thus represents a novel extension to the latent variable modeling literature while 

remaining motivated by it. 

In Studies 1 and 2, I interrogate the utility of the single and multiple groups OCFM. First 

and foremost, the ability to fit these models in open-source, widely available software cannot be 

understated. This convenience, in combination with their parsimony, suggests that these models 

can used in applied research. Moreover, in these studies the OCFM fit better than standard 

methods and generated smaller standard errors. Finally, in the multiple groups case, I 

demonstrate just how powerful the assumption of a latent count is in integrative data analysis. 

The OCFM creates invariance where there previously was not, and allows for sparse or empty 

categories too, all from the assumption of a latent count. To review, the invariance comes from 

the assumption that the responses are on the metric of the underlying count, allowing for the 

estimation of the model without collapsing categories. As the thresholds for each category are 

known through the assumption of a count, we do not need to collapse thresholds for the model to 

be identified, unlike in a GRM (Ostini & Nering, 2006). For these reasons, the empirical studies 

provide clear evidence that the OCFM should be strongly considered—if not preferred—when 

fitting ordinal count items. 

The use of empirical data examples clearly limits the generalizability of these inferences. 

First, the generating models and their parameter values are unknown. As such, it is impossible to 

estimate relative bias and other finite sample properties under a variety of conditions, including a 

misspecified model. Using the aforementioned model fit statistics as standards is weak, as it tells 

us not whether the data comes from the model, or even whether the model fits in an absolute 

sense—barring those statistics used to evaluate the linear CFA. Nevertheless, these findings 

remain a promising first step in understanding and applying the OCFM to real data.  
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Of course, more work should be done on the OCFM to broaden its utility and determine 

its properties. A primary issue is generating standard errors for the model parameters analytically 

or through another method like the bootstrap. I conducted a preliminary evaluation of the profile 

likelihood confidence intervals within mirt using the feasibility study models. The approach 

within mirt was not sufficient, and often generated confidence intervals with coverage rates of 

less than 50%. Given such a poor outcome, I did not use the profile likelihood confidence 

intervals. A more theoretical issue is the performance of the OCFM when there is, in fact, an 

underlying GRM. On one hand, OCFM may generate roughly equivalent scores with smaller 

standard errors. On the other hand, the OCFM may lead to biased inferences—regardless if the 

goal is only to obtain factor scores and not necessarily interpret the measurement model. Other 

finite sample properties, such as the benefits of treating counts as bounded or using a Poisson 

instead of a negative binomial PMF may also prove useful. Finally, determining the best 

practices for fitting an OCFM in PROC NLMIXED remains an open and important question. 

The OCFM represents a clear extension to psychometrics, one that can improve research 

from public health to psychology. An assumption that there is an underlying count distribution, 

one congruent with the data and psychological theory, empowers the user to fit more 

parsimonious models and find invariance in places traditionally deemed hopeless. For those 

reasons and more, such an assumption may be not only justifiable, but also prudent.   
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APPENDIX A:  REAL-U CROSSWALK FOR THE RAPI (FROM REAL-U CODEBOOK) 

 Scenario 1 (Battery A) Scenario 4 (Battery B) 

D
ire

ct
io

ns
 

Different things happen to people while 
they are drinking ALCOHOL or because 
of their drinking. Indicate how many 
times each of the following things happen 
to you WITHIN THE PAST YEAR/ AT 
SOME POINT IN YOUR LIFE. 

Different things happen to people while they are 
drinking ALCOHOL or because of their 
drinking. Indicate how many times each of the 
following things happen to you WITHIN THE 
PAST YEAR/ AT SOME POINT IN YOUR 
LIFE. 

R
es

po
ns

e 
Sc

al
e 

 

None (0), 1-2 times (1),  3-5 times (2), 
More than 5 Times (3) 

Never (0), Once (1), Twice (2), 3-5 times (3), 6-
9 times (4), 10 or more times (5)  (for 
unhighlighted items); 0-2 times (0), 3-4 times 
(1), 5-9 times (2), 10 or more times (3) (for 
highlighted items) 

#   
1 Got into fights with other people (friends, 

relatives, strangers) 
Gotten into physical fights when drinking 

2 Went to work or school high or drunk Gone to class or a job when drunk 

3 Caused shame or embarrassment to 
someone 

Made others ashamed by your drinking behavior 
or something you did when drinking 

4 Neglected your responsibilities Neglected your obligations, your family, or your 
work for two or more days in a row because you 
were drinking  

5 Relatives avoided you Family members rejected you because of your 
drinking  

6 Felt that you needed more alcohol than 
you used to in order to get the same effect 

Needed to drink more and more to get the effect 
you want  

7 Tried to control your drinking (tried to 
drink only at certain times of the day or in 
certain places, that is, tried to change your 
pattern of drinking) 

Tried to cut down or quit drinking or using 
alcohol Have you tried to cut down or quit 
drinking or using alcohol or other drugs?   

8 Had withdrawal symptoms, that is, felt 
sick because you stopped or cut down on 
drinking 

Felt sick, shaky or depressed when you stopped 
drinking 
 

9 Noticed a change in your personality Acted in a very different way or did things you 
normally would not do because of your drinking  

10 Felt that you had a problem with alcohol Thought you might have a drinking problem  

11 Wanted to stop drinking but couldn’t Tried unsuccessfully to stop drinking  

12 Suddenly found yourself in a place that 
you could not remember getting to 

Awakened the morning after some drinking the 
night before and could not remember a part of 
the evening.  

13 Passed out or fainted suddenly  Passed out after drinking  
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14 Had a fight, argument, or bad feeling with 
a friend 

Drinking created problems between you and a 
near relative or close friend  

15 Kept drinking when you promised 
yourself not to 

Could not stop drinking without difficulty after 
one or two drinks  

16 Felt you were going crazy Your drinking made you feel out of control even 
when you were sober 

17 Felt physically or psychologically 
dependent on alcohol 

Thought you were dependent on alcohol  

18 Was told by a friend, neighbor or relative 
to stop or cut down drinking 

Near relative or close friend worried or 
complained about your drinking   

19 Not able to do your homework or study 
for a test 

 

20 Missed out on other things because you 
spent too much money on alcohol 

 

21 Missed a day (or part of a day) of school 
or work 

 

22 Had a fight, argument, or bad feeling with 
a family member 

 

23 Had a bad time  
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APPENDIX B: ORDINAL COUNT FACTOR MODELS IN A SINGLE POPULATION 

 

Loading Packages 

library(mirt)	
library(ggplot2)	

Making the Item Responses 

# NB2	
	
name <- 'NB'	
par  <- c(b0=1, b1=0, alpha=1)	
est  <- c(T,T,T)	
P_nb_rapi <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3]	
  mu    <- exp(b0 + b1*Theta)	
  P0 <- pnbinom(0, size=1/alpha, mu=mu)	
  P1 <- pnbinom(2, size=1/alpha, mu=mu) - pnbinom(0, size=1/alpha, mu=mu)	
  P2 <- pnbinom(5, size=1/alpha, mu=mu) - pnbinom(2, size=1/alpha, mu=mu)	
  P3 <- 1 - pnbinom(5, size=1/alpha, mu=mu)	
  return(cbind(P0, P1, P2, P3))	
}	
	
NB <- createItem(name, par=par,est=est,P=P_nb_rapi,   lbound=c(-Inf,-Inf,0.00
001))	
	
	
# OZINB	
	
name <- 'ZINB'	
par  <- c(b0=1, b1=1, alpha=1, gam0=0)	
est  <- c(T,T,T,T)	
P_zinb <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3]	
  gam0  <- par[4]		
  	
  mu    <- exp(b0 + b1*Theta)	
  pp    <- 1 / (1+exp(gam0))	
  	
  P1 <- pp * (pnbinom(2, size=1/alpha, mu=mu) - pnbinom(0, size=1/alpha, mu=m
u)) 
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  P2 <- pp * (pnbinom(5, size=1/alpha, mu=mu) - pnbinom(2, size=1/alpha, mu=m
u)) 

	
  P3 <- pp * (1 - pnbinom(5, size=1/alpha, mu=mu))	
  	
  ret <- cbind(1-P1-P2-P3, P1, P2, P3)	
  ret <- ifelse(ret > (1-1e-7), (1-1e-7), ret) 	
  ret <- ifelse(ret < 1e-7, 1e-7, ret)	
  return(ret)	
}	
	
ZINB <- createItem(name, par=par, est=est, P=P_zinb, lbound=c(-Inf,-Inf,0.000
01,-Inf))	
  	
# Beta Binomial	
  	
name <- 'BB'	
par  <- c(b0=1, b1=1, gamma=.5)	
est  <- c(T,T,T)	
P_bb <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  gamma <- par[3]	
  mu    <- 1 / (1+exp(-1 *(b1*Theta + b0)))	
  ig    <- 1/gamma	
  #0, 1-2, 3-4, 5-7	
  	
  P0 <- beta((0 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 0))/beta((mu*(ig-1)), ((1-
mu)*(ig-1))) 

	
  P1 <- 7  * beta((1 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 1))/beta((mu*(ig-1)), 
((1-mu)*(ig-1))) +	
        21 * beta((2 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 2))/beta((mu*(ig-1)), 
((1-mu)*(ig-1))) 

	
  P2 <- 35 * beta((3 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 3))/beta((mu*(ig-1)), 
((1-mu)*(ig-1))) +	
        35 * beta((4 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 4))/beta((mu*(ig-1)), 
((1-mu)*(ig-1)))	
	
  ret <- cbind(P0, P1, P2, 1-P0-P1-P2)  	
  ret <- ifelse(ret > (1-1e-8), (1-1e-8), ret)  	
  ret <- ifelse(ret < 1e-8, 1e-8, ret) 	
  return(ret)	
}	
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BB <- createItem(name, par=par, est=est, P=P_bb, lbound=c(-Inf,-Inf,0.00001))	
	
# Zero-Inflated Beta Binomial	
name <- 'ZIBB'	
par  <- c(b0=1, b1=1, gamma=.5, d0=0)	
est  <- c(T,T,T,T)	
P_zibb <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  gamma <- par[3]	
  d0    <- par[4]		
  	
  mu    <- 1 / (1+exp(-1 *(b1*Theta + b0)))	
  pp    <- 1 / (1+exp(d0))	
  ig    <- 1/gamma	
  #0, 1-2, 3-4, 5-7	
  	
  P0 <- (1-pp)+(pp * beta((0 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 0))/beta((mu*
(ig-1)), ((1-mu)*(ig-1))))	
  P1 <- pp * (7  * beta((1 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 1))/beta((mu*(i
g-1)), ((1-mu)*(ig-1))) +	
              21 * beta((2 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 2))/beta((mu*(i
g-1)), ((1-mu)*(ig-1)))) 	
  P2 <- pp * (35 * beta((3 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 3))/beta((mu*(i
g-1)), ((1-mu)*(ig-1))) +	
              35 * beta((4 + mu*(ig-1)), ((1-mu)*(ig-1) + 7 - 4))/beta((mu*(i
g-1)), ((1-mu)*(ig-1))))  	
  	
  ret <- cbind(P0, P1, P2, 1-P0-P1-P2)  	
  ret <- ifelse(ret > (1-1e-8), (1-1e-8), ret)  	
  ret <- ifelse(ret < 1e-8, 1e-8, ret) 	
  return(ret)	
} 	
	
ZIBB <- createItem(name, par=par, est=est, P=P_zibb, lbound=c(-Inf,-Inf,0.000
01,-Inf)) 

#Fitting the model	
fit <- mirt(data,	
            number of factors,	
            rep('Name', number of items) ,	
            customItems=list(Name=Name))	
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APPENDIX C: ORDINAL COUNT FACTOR MODELS IN MULTIPLE GROUPS 

The changes in the code from Appendix B are easily applied across different types of count 

model. As such, I only demonstrate how to fit models for the unbounded count, using the cut-

points for Scenario 1 and Scenario 3 from REAL-U. 

Loading Packages and Formatting Data 

library(mirt)	
library(ggplot2) 

data <-merge(data_studya,data_studyb,all=T)	

I merge the data so that I can estimate both measurement models at the same time. In creating 
our items, I need to do two additional things. The first is create two types of items with different 
cut points. The second is to specify which latent variable loads on which item. The mirt package 
automatically constrains the covariance of these latent variables to be zero, thus identifying the 
latent variable model. It also constrains the mean and variance of eta for both groups to one and 
zero—one can change this by directly editing the model object, which we do below.  
Making the Item Responses Never (0), Once (1), Twice (2), 3-5 times (3), 6-9 times (4), 10 or more times (5)  
(for unhighlighted items); 0-2 times (0), 3-4 times (1), 5-9 times (2), 10 or more times (3) (for highlighted items) 
 

# NB2_pop1	
	
name <- 'NB'	
par  <- c(b0=1, b1=0, alpha=1)	
est  <- c(T,T,T)	
P_nb_rapi_1 <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3] 

 Theta <- Theta[1] 

	
  mu    <- exp(b0 + b1*Theta)	
  P0 <- pnbinom(0, size=1/alpha, mu=mu) 

  P1 <- pnbinom(1, size=1/alpha, mu=mu)	
  P2 <- pnbinom(2, size=1/alpha, mu=mu) - pnbinom(0, size=1/alpha, mu=mu)	
  P3 <- pnbinom(5, size=1/alpha, mu=mu) - pnbinom(2, size=1/alpha, mu=mu) 

  P5 <- pnbinom(9, size=1/alpha, mu=mu) - pnbinom(5, size=1/alpha, mu=mu)	
  P6 <- 1 - pnbinom(9, size=1/alpha, mu=mu)	
  return(cbind(P0, P1, P2, P3, P4, P5, P6))	
}	
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NB_1 <- createItem(name, par=par,est=est,P=P_nb_rapi_1,   lbound=c(-Inf,-Inf,
0.00001))	
	
# NB2_pop2_highlighted	
	
name <- 'NB'	
par  <- c(b0=1, b1=0, alpha=1)	
est  <- c(T,T,T)	
P_nb_rapi_2_h <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3] 

Theta <- Theta[2] 

	
  mu    <- exp(b0 + b1*Theta)	
  P0 <- pnbinom(2, size=1/alpha, mu=mu)	
  P1 <- pnbinom(4, size=1/alpha, mu=mu) - pnbinom(0, size=1/alpha, mu=mu)	
  P2 <- pnbinom(9, size=1/alpha, mu=mu) - pnbinom(4, size=1/alpha, mu=mu)	
  P3 <- 1 - pnbinom(9, size=1/alpha, mu=mu)	
  return(cbind(P0, P1, P2, P3))	
}	
	
NB_2_h <- createItem(name, par=par,est=est,P=P_nb_rapi_2_h,   lbound=c(-Inf,-
Inf,0.00001)) 

# NB2_pop2_unhighlighted	
	
name <- 'NB'	
par  <- c(b0=1, b1=0, alpha=1)	
est  <- c(T,T,T)	
P_nb_rapi_2_u <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3] 

 Theta <- Theta[2] 

	
  mu    <- exp(b0 + b1*Theta)	
  P0 <- pnbinom(0, size=1/alpha, mu=mu) 

  P1 <- pnbinom(1, size=1/alpha, mu=mu)	
  P2 <- pnbinom(2, size=1/alpha, mu=mu) - pnbinom(0, size=1/alpha, mu=mu)	
  P3 <- pnbinom(5, size=1/alpha, mu=mu) - pnbinom(2, size=1/alpha, mu=mu) 

  P5 <- pnbinom(9, size=1/alpha, mu=mu) - pnbinom(5, size=1/alpha, mu=mu)	
  P6 <- 1 - pnbinom(9, size=1/alpha, mu=mu)	
  return(cbind(P0, P1, P2, P3, P4, P5, P6))	
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}	
	
NB_2_u <- createItem(name, par=par,est=est,P=P_nb_rapi_2_u,   lbound=c(-Inf,-
Inf,0.00001)) 

	
	
# OZINB_pop1	
	
name <- 'ZINB'	
par  <- c(b0=1, b1=1, alpha=1, gam0=0)	
est  <- c(T,T,T,T)	
P_zinb_1 <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3]	
  gam0  <- par[4]	
	
  Theta <- Theta[1] 

	
  mu    <- exp(b0 + b1*Theta)	
  pp    <- 1 / (1+exp(gam0)))	
  	
  P1 <- pp*(pnbinom(1, size=1/alpha, mu=mu))	
  P2 <- pp*(pnbinom(2, size=1/alpha, mu=mu) -pnbinom(0, size=1/alpha, mu=mu))	
  P3 <- pp*(pnbinom(5, size=1/alpha, mu=mu) -pnbinom(2, size=1/alpha, mu=mu)) 

  P5 <- pp*(pnbinom(9, size=1/alpha, mu=mu) -pnbinom(5, size=1/alpha, mu=mu))	
  P6 <- pp*(1 - pnbinom(9, size=1/alpha, mu=mu))	
  ret <- cbind(1-P1-P2-P3-P4-P5-P6, P1, P2, P3, P4, P5, P6))	
  ret <- ifelse(ret > (1-1e-7), (1-1e-7), ret) 	
  ret <- ifelse(ret < 1e-7, 1e-7, ret)	
  return(ret)	
} 

	
# OZINB_pop2_h	
	
name <- 'ZINB'	
par  <- c(b0=1, b1=1, alpha=1, gam0=0)	
est  <- c(T,T,T,T)	
P_zinb_2_h <- function(par, Theta, ncat){	
  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3]	
  gam0  <- par[4] 

Theta <- Theta[2]	
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  mu    <- exp(b0 + b1*Theta)	
  pp    <- 1 / (1+exp(gam0))	
  	
  P1 <- pp * (pnbinom(4, size=1/alpha, mu=mu) - pnbinom(2, size=1/alpha, mu=m
u)) 

	
  P2 <- pp * (pnbinom(9, size=1/alpha, mu=mu) - pnbinom(4, size=1/alpha, mu=m
u)) 

	
  P3 <- pp * (1 - pnbinom(9, size=1/alpha, mu=mu))	
  	
  ret <- cbind(1-P1-P2-P3, P1, P2, P3)	
  ret <- ifelse(ret > (1-1e-7), (1-1e-7), ret) 	
  ret <- ifelse(ret < 1e-7, 1e-7, ret)	
  return(ret)	
} 

# OZINB_pop2_h	
	
name <- 'ZINB'	
par  <- c(b0=1, b1=1, alpha=1, gam0=0)	
est  <- c(T,T,T,T)	
P_zinb_2_u <- function(par, Theta, ncat){ 

  b0    <- par[1]	
  b1    <- par[2]	
  alpha <- par[3]	
  gam0  <- par[4]		
  Theta <- Theta[2] 

	
  mu    <- exp(b0 + b1*Theta)	
  pp    <- 1 / (1+exp(gam0))	
  	
  P1 <- pp*(pnbinom(1, size=1/alpha, mu=mu))	
  P2 <- pp*(pnbinom(2, size=1/alpha, mu=mu) -pnbinom(0, size=1/alpha, mu=mu))	
  P3 <- pp*(pnbinom(5, size=1/alpha, mu=mu) -pnbinom(2, size=1/alpha, mu=mu)) 

  P5 <- pp*(pnbinom(9, size=1/alpha, mu=mu) -pnbinom(5, size=1/alpha, mu=mu))	
  P6 <- pp*(1 - pnbinom(9, size=1/alpha, mu=mu))	
  ret <- cbind(1-P1-P2-P3-P4-P5-P6, P1, P2, P3, P4, P5, P6))	
  ret <- ifelse(ret > (1-1e-7), (1-1e-7), ret) 	
  ret <- ifelse(ret < 1e-7, 1e-7, ret)	
  return(ret)	
} 

 

ZINB_1 <- createItem(name, par=par, est=est, P=P_zinb_1, lbound=c(-Inf,-Inf,0
.00001,-Inf))	
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ZINB_2_h <- createItem(name, par=par, est=est, P=P_zinb_2_h, lbound=c(-Inf,-I
nf,0.00001,-Inf)) 

ZINB_2_u <- createItem(name, par=par, est=est, P=P_zinb_2_u, lbound=c(-Inf,-I
nf,0.00001,-Inf))	
 

#This is the same in both models 

IDA_Model <-mirt(data, mirt(dep[,4:10], 

            2, 

           c( rep('NB_1',7), rep('NB_2',7))  , 

            customItems=list(NB_1=NB_1, NB_2=NB_2), 

pars=”values” 

            technical=list( 

            removeEmptyRows=TRUE)) 

# Freeing the Mean and Variance of Eta for Study 2 

IDA_Model[23,9] <-TRUE 

IDA_Model[26,9] <-TRUE 

mirt(data, mirt(dep[,4:10], 

            model= IDA_Model, 

           c( rep('NB_1',7), rep('NB_2',7))  , 

            customItems=list(NB_1=NB_1, NB_2=NB_2), 

            technical=list( 

            removeEmptyRows=TRUE)) 
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APPENDIX D:  SCORE CORRELATIONS FOR ALL FOUR MEASUREMENT 
CONDITIONS 

Table 10          

Multiple Group Factor Score Correlations for Participants Who Received Scenario 1 Twice          

 Visit 1   Visit 2      

   GRM  OCFM  GRM  OCFM 

   No DIF DIF No DIF DIF No DIF DIF No DIF 

Visit 1 GRM DIF 0.936       
 OCFM No DIF 0.920 0.962      
  DIF 0.934 0.958 0.997     

Visit 2 GRM No DIF 0.651 0.735 0.725 0.709    
  DIF 0.624 0.695 0.682 0.669 0.942   
 OCFM No DIF 0.653 0.732 0.744 0.726 0.944 0.856  
  DIF 0.618 0.696 0.719 0.700 0.861 0.714 0.965 

Test-retest correlations within model are bolded. 
 

Table 11          

Multiple Group Factor Score Correlations for Participants Who Received Scenario 1 then 
Scenario 4 

  
       

 Visit 1   Visit 2      

   GRM  OCFM  GRM  OCFM 

   No DIF DIF No DIF DIF No DIF DIF No DIF 

Visit 1 GRM DIF 0.930       
 OCFM No DIF 0.920 0.974      
  DIF 0.933 0.968 0.996     

Visit 2 GRM No DIF 0.674 0.758 0.771 0.763    
  DIF 0.625 0.702 0.714 0.706 0.953   
 OCFM No DIF 0.703 0.795 0.810 0.801 0.956 0.878  
  DIF 0.680 0.771 0.786 0.778 0.898 0.770 0.970 

Test-retest correlations within model are bolded. 
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Table 12          

Multiple Group Factor Score Correlations for Participants Who Received Scenario 4 then 
Scenario 1 

  
       

 Visit 1   Visit 2      

   GRM  OCFM  GRM  OCFM 

   No DIF DIF No DIF DIF No DIF DIF No DIF 

Visit 1 GRM DIF 0.941       
 OCFM No DIF 0.923 0.976      
  DIF 0.937 0.972 0.996     

Visit 2 GRM No DIF 0.715 0.792 0.785 0.782    
  DIF 0.640 0.716 0.707 0.705 0.956   
 OCFM No DIF 0.712 0.794 0.816 0.812 0.941 0.860  
  DIF 0.700 0.768 0.792 0.790 0.863 0.739 0.962 

Test-retest correlations within model are bolded.  
 

Table 13          

Multiple Group Factor Score Correlations for Participants Who Received Scenario 4 Twice          

 Visit 1   Visit 2      

   GRM  OCFM  GRM  OCFM 

   No DIF DIF No DIF DIF No DIF DIF No DIF 

Visit 1 GRM DIF 0.932       
 OCFM No DIF 0.875 0.945      
  DIF 0.896 0.945 0.995     

Visit 2 GRM No DIF 0.688 0.759 0.739 0.740    
  DIF 0.641 0.705 0.692 0.695 0.946   
 OCFM No DIF 0.695 0.783 0.847 0.839 0.912 0.838  
  DIF 0.640 0.726 0.819 0.808 0.805 0.682 0.962 

Test-retest correlations within model are bolded.  
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