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ABSTRACT 

Marni B. Siegel: Genetic Drivers and Clonal Heterogeneity of Metastatic Breast Cancer 
(Under the direction Charles M. Perou and Carey K. Anders) 

 

Breast cancer remains the second leading cause of cancer related death in women in 

the United States. Despite great advances in both early detection and treatment for primary 

breast cancer, 40,000 women die of breast cancer each year. Metastasis, namely when cancer 

spreads beyond the original site, is the main cause of breast cancer mortality. A lack of 

understanding of metastasis continues to thwart prevention and treatment of lethal breast 

cancer. Genome-wide comparisons of both the genetic composition (DNA) and expression 

(RNA) of primaries and metastases in multiple patients could help elucidate the underlying 

mechanisms causing breast cancer metastasis. 

In this thesis, next-generation sequencing was performed on a dataset of patients with 

both primary breast cancers and multiple distant metastases. DNA and RNA sequencing were 

performed on 16 breast cancer patients with 86 matched tumors (primary + multiple 

metastases). We confirmed previous work that the primary cancer is extremely diverse with 

multiple distinct populations of cells. Comparisons of these populations in the original tumor and 

the distant metastases demonstrates that in some instances, it is likely that a clump of cells 

containing multiple different genetic populations together leave the breast and seed distant 

sites. Finally, a novel computational method integrating RNA gene expression, somatic copy 

number alterations, and somatic mutations identifies drivers of breast cancer in matched 

primaries, metastases, and in the broader context of breast cancer as a whole. We show that a 
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majority of the drivers of breast cancer are established in the original cancer and maintained in 

metastasis. 

This work asks clinically impactful questions of the biology of breast cancer metastasis 

through multiple genomic approaches. The body of knowledge presented here demonstrates 

that the complex heterogeneity in primary breast cancer is maintained throughout metastasis 

while also proving that the majority of genetic drivers in metastasis are established in the 

original breast cancer. Finally, we demonstrate that common mechanisms driving breast cancer 

are utilized across the previously-described molecular and clinical subgroups of breast cancer, 

offering novel, tractable therapeutic targets. These findings contribute significantly to our 

understanding of the genetic diversity and drivers of lethal breast cancer metastasis. 
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CHAPTER 1 – INTRODUCTION 

Breast cancer is the second leading cause of cancer-related death in women, 

accounting for 40,000 deaths each year in the United States. Progression to metastasis is the 

predominant cause of breast cancer mortality. Brain metastases represent a particularly dire 

consequence of advanced breast cancer with no approved systemic therapeutics and limited 

survival. Understanding the underlying biology driving the metastatic phenotype (i.e. molecular 

drivers of seeding, invasion, and growth at a distant site) could provide novel therapeutic targets 

to prevent and treat metastatic breast cancer.  

 

Breast Cancer Heterogeneity 

Breast cancer is not a single disease but rather a collection of diseases having unique 

morphologies, gene expression profiles, DNA mutation profiles, DNA copy number alterations, 

widely varying clinical responses, differences in hormone receptor expression, and variations in 

patterns of metastasis. Systemic treatment of breast cancer begins with identifying hormone 

receptor positivity based on the estrogen receptor (ER), progesterone receptor (PR), and 

epidermal growth factor receptor 2 (HER2) expression coming from tumor cells. RNA gene 

expression studies define four dominant subgroups of breast cancer: Luminal A, Luminal B, 

HER2-enriched, and Basal-like breast cancer (Perou et al., 2000). Luminal A breast cancers are 

typically ER positive and have lower proliferation rates than the Luminal B tumors. Luminal B 

tumors have poorer overall survival and tend to relapse predominantly in the bone. HER2E 

tumors have increased expression of the HER2 DNA amplicon genes. Finally, the basal-like 

breast cancers are the most poorly differentiated and typically lack expression of ER, PR, and 
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HER2.  Patients with basal-like tumors represent the greatest clinic need, with a paucity of 

targeted therapies clinically available and the worst 5-year overall survival.  

Breast cancer subtype captures some of the clinical heterogeneity including first site of 

metastasis. Luminal tumors often first metastasize to the bone, HER2E tumors to the liver, and 

basal-like tumors to the lung and brain. Furthermore, the timeline for recurrence is dramatically 

different: basal-likes typically recur within three years following diagnosis but highly unlikely to be 

past 5 years, while the hormone-positive tumors often may not recur until closer to 10 years after 

diagnosis. This has been shown to be a result of both treatment differences and the underlying 

biology. 

There is substantial heterogeneity even within the subtypes of breast cancer. Luminal A 

breast cancers can have highly variable responses to current therapies. Molecular studies of the 

copy number landscape of luminal breast cancers have further shown 5 subtypes of these 

tumors: a copy number neutral subgroup which lack TP53 mutation and have the best prognosis, 

three intermediate groups, and one highly copy number altered subgroup which harbor TP53 

mutations and have the worst overall prognosis (Ciriello et al., 2013). These two extremes are 

also reflected in the METABRIC cohort, which defined subgroups of breast cancer based on 

copy number and gene expression (Curtis et al., 2012). RNA gene expression of these luminal 

tumors further defined drivers of the tumors with increased proliferation rates, including MYC 

amplification and RB loss (Gatza et al., 2014).  

Not only is there substantial DNA alteration heterogeneity within subtypes of breast 

cancer, but there is also differences in the stromal response to these tumors. Immune infiltrate 

has been shown to have prognostic value in the HER2E and Basal-like breast cancer subtypes, 

indicating that variability across this subtype is present (Iglesia et al., 2014). Additionally, 

cancer-cell associated fibroblasts behave differently around basal-like breast cancers in 



 
 

3 

comparison to luminal breast cancers (Camp et al., 2011). Finally, a distinct host-wound 

response varies by subtype (Troester et al., 2009), with increased hypoxia and altered 

metabolic program around basal-like breast cancers (Harrell et al., 2012). 

Unfortunately, this heterogeneity extends even within a single patient’s tumor. An 

elegant study of multiregional sequencing of breast cancer demonstrated that primary breast 

cancers have spatial heterogeneity (Yates et al., 2015). In almost all patients, mutations were 

observed in one part of the tumor but not another. Thus, there were multiple populations of 

cancer cells within a single tumor. Heterogeneity by point mutation was shown in 9/12 patients. 

This is contrast to heterogeneity measured by copy number alteration, which was shown only in 

3/12 patients.  

 

Monoclonal vs Polyclonal Seeding of Metastasis 

It is currently unknown what portion of the heterogeneity elucidated from Yates et al. 

leaves the original breast cancer and causes distant metastasis. Two possibilities may occur: 

monoclonal vs polyclonal seeding of metastasis. In the first instance, a single cell may escape 

the original tumor, representing one distinct population of cells from the original breast cancer, 

that then seeds a distant site. In contrast, possibly a chunk of the primary breast cancer moves 

into the circulation and together seeds a distant site. Thus, the distant site of metastasis would 

reflect the heterogeneity measured in the original breast cancer. 

To better understand the process of clonal evolution in metastasis, many groups have 

studied matched primaries and single sites of metastasis. The seminal work in renal cell 

carcinoma hypothesized that metastasis is a result of a single clone escaping the primary cancer 

followed by clonal expansion (Gerlinger et al., 2012). Few mutations from the primary were 

observed in the distant metastasis. Recently, multi-metastatic sequencing compared prostate 
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cancer metastases to the matched primary, demonstrating both mechanisms of seeding 

(Gundem et al., 2015). The authors hypothesize metastasis-to-metastasis seeding in which a 

chunk of tumor from one metastasis breaks off and seeds another site. 

In an ovarian cancer study, multiple primary tumors were compared to later time points 

following recurrence (Castellarin et al., 2013). Their results demonstrate multiple clones in the 

primary that are maintained through metastasis, indicating polyclonal seeding of metastasis. This 

in contrast to AML in which clonal expansion of a therapy-resistant clone was observed following 

treatment (Ding et al., 2012). 

In breast cancer, Nik-Zainal and colleagues published whole genome sequencing of 21 

breast cancers and later 560 whole genome sequences of breast cancers (Nik-Zainal et al., 

2016). Sequencing of a matched basal-like breast cancer normal, primary, metastasis, and 

xenograft demonstrated that all of the original mutations were maintained in metastasis to the 

brain with continued evolution in the brain metastasis (Ding et al., 2010). In addition, the overall 

copy number structure was extremely similar to the original tumor (Ding et al., 2010). In array 

CGH comparisons of 23 primary breast cancers and matched metastases, copy number was 

shown to be highly concordant – 92% for recurrent variants and 73% for non-recurrent variants.  

22/23 patients would have similar targeted therapy based on sequencing, further providing 

evidence of the genetic similarity of primary and metastatic disease (Bertucci et al., 2014). 

Whole exome sequencing of matched normal tissue, ductal carcinoma in situ(DCIS), a 

primary tumor, and a loco-regional lymph node metastasis demonstrate linear progression and 

monoclonal seeding (Krøigård et al., 2015). Importantly, genetic alterations were stable: if the 

alteration was observed in the primary, it was also observed in the metastasis. The complete 

events maintained in the primary and observed in the metastasis argue for a single cell to be the 

ancestor with a relatively late occurrence of metastasis in this patient. 
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Single cell sequencing of breast cancer found single clonal expansion from the primary to 

the liver metastasis as shown in mutations; however, they also showed that a very similar copy 

number profile was observed in all cells sequenced (Navin et al., 2011). This was done in only 

one patient and only one site of metastasis. Sequencing of matched brain metastases and 

primary breast cancers argued that clinically actionable mutations were acquired during spread 

of disease and not previously observed in the primary tumor (Brastianos et al., 2015).  

DNA from cancer cells identified in the blood offer another glimpse into the clonal 

evolutionary process of breast cancer. In a study of two patients with metastatic breast cancer, 

whole exome sequencing of both the tumor and cell free DNA were compared (Butler et al., 

2015). Both ESR1 mutations and PIK3CA mutations were identified in the metastatic and primary 

tumors, respectively, but not observed in the others. Authors showed that the cell free DNA 

(cfDNA) more closely reflects the metastases rather than the primary tumor.  

Three elegant in vivo study of the actual physiologic process of breast cancer metastasis 

demonstrate how polyclonal seeding is physically possible. Circulating tumor cell clusters in vivo 

demonstrated that clusters of CTCs have much greater metastatic potential than single CTCs, 

although both were observed (Aceto et al., 2014). A combined red and green fluorescent 

transgenic mouse breast cancer was injected into the mammary fat pad of mice and then 

analyzed lung metastases (Cheung et al., 2016). Cheung and colleagues demonstrate that 

metastases were between 2 to >1000 cells and all composed of at least red and green tumor 

cells. They further demonstrate that the extravasation process itself is a bulk tumor process 

(Cheung et al., 2016). Au and colleagues utilized microfluidic devices that mimic human capillary 

to study the fluid dynamics and extravasation of tumor cells (Au et al., 2016). Tumor cells were 

observed to squeeze through as small as 5 um spaces in single file before rounding up once 

through the passage and continuing their progress.  
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Timing of Metastatic Drivers  

RNA gene expression of a metastasis is 82% identical to the primary breast cancer from 

which it originated (Harrell et al., 2012; Hoadley et al., 2016), and subtype is generally 

maintained throughout the metastatic process (Weigelt et al., 2003). This provides evidence that 

the metastatic potential is likely in the original, primary breast cancer. The underlying biology 

responsible for successful metastatic seeding and growth are likely present in the primary 

breast cancer but remain unknown. Understanding genetic features driving metastasis, both in 

the primary breast cancer and in distant metastasis, could provide prognostic information as 

well as future, novel therapeutic targets. 

Prognostic signatures of metastasis based on genetic features in the primary breast 

cancer have been developed within our laboratory and independently by others as well. Clinical 

tools (i.e. PAM50 (Parker et al., 2009), Oncotype Dx (Paik et al., 2004), and MammaPrint (Glas 

et al., 2006)) stratify patients into high versus low risk of recurrence and are routinely employed 

in the clinic (Cardoso et al., 2016). In order for these to be prognostic, there must be some 

amount of metastatic potential in the primary breast cancer. Further research with primary 

breast cancers and multiple matched sites of metastasis are needed to elucidate the genetics 

causing these metastases. 

 

Metastasis-Specific Events 

Some genetic features specifically enriched in metastasis have been identified through 

RNA gene expression studies of small cohorts of human breast cancer metastases (Zhang et 

al., 2009). In human metastases, up-regulation of the hypoxia/VEGF signature (Hu et al., 2009) 

and down-regulation of extracellular matrix (ECM) signatures are differentially expressed in 
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metastasis as compared to primary breast cancers, suggesting alteration in the VEGF pathway 

and remodeling of the ECM must occur for successful metastasis. Organ-specific drivers of 

breast cancer metastasis were identified in in vivo mouse models of lung, bone, and brain 

metastases (Bos et al., 2009; Minn et al., 2005; Sevenich et al., 2014; Valiente et al., 2014; 

Zhang et al., 2009). In these preclinical studies, overexpression of SRC and COX2 are critical 

for bone metastasis, MTDH is sufficient for lung metastasis, and neuroserpin expression is 

necessary for brain metastasis. The specific DNA alterations that drive these gene expression 

changes in metastases, and the order in which they occur, remain unknown. Moreover, 

reproducibility in the human condition has yet to be described.  

While some genetic drivers of metastasis are inherent to tumor cells themselves, the 

tumor microenvironment also plays a vital role in successful tumor cell seeding and survival 

(Fidler, 2001). Recent literature suggests that some primary breast cancer cells already express 

proteins essential for the establishment of breast cancer brain metastases (BCBMs), including 

serpins (Valiente et al., 2014), cathepsin S (Sevenich et al., 2014), matrix metalloproteases 

(Romagnoli et al., 2014; Wang et al., 2013), and αB-crystallin (Malin et al., 2014). Once in the 

brain, BCBMs up-regulate proteins to enable transport and metabolism of GABA, increasing 

tumor cell proliferation (Neman et al., 2014). Targeting reactive astrocytes in the tumor 

microenvironment with drugs decreases brain seeding and growth in vivo (Gril et al., 2013), 

signifying a reliance of BCBMs on the brain microenvironment. Identification of key drivers of 

breast cancer metastases, both within the tumor and its surrounding microenvironment, will be 

critical to acquire a comprehensive understanding metastatic biology. 

Breast cancer brain metastases have an extremely poor survival with median survival 

from CNS recurrence at 4.9 months. Within the triple negative breast cancer classification, 46% 

of patients with metastases will develop brain recurrence and subsequently have a median 
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survival of 13.3 months following CNS recurrence (Lin et al., 2008). We must put our resources 

towards understanding the biology of this lethal form of breast cancer in order to develop a cure 

and save lives. 

 

Genetic Drivers of Breast Cancer  

Large-scale sequencing efforts have afforded the opportunity to identify recurrent 

mutations and copy number alterations. Uncovering the incredible genetic diversity within breast 

cancer, The Cancer Genome Atlas (TCGA) demonstrated very few recurrent mutations in the 

most aggressive form of breast cancer, basal-like breast cancer, other than TP53 (Cancer 

Genome Atlas, 2012). A recent study of 560 breast cancers with whole genome sequencing 

identified very few recurrent drivers other than those previously described (Nik-Zainal et al., 

2016). Interestingly, in ER+ breast cancer, the mutation burden is often much lower; however, 

there are more recurrently mutated genes in ER+ positive breast cancer including PIK3CA, 

GATA3, and FOXA1. With the decreasing cost of high-throughput sequencing, the ability to 

integrate multiple platforms of genetic data provides a unique opportunity to better identify 

genetic drivers. Computational predictions of the impact of a mutation on the cancer cell 

development, growth, and metastatic potential typically incorporate both the location of the 

mutation on the protein and the number of mutations in a dataset (Dees et al., 2012b; Lawrence 

et al., 2013). 

Breast cancer is a highly copy number altered disease; however, the large spans of 

genomic space altered makes identifying the actual driver(s) difficult. Several computational 

approaches have been previously described to narrow the candidate drivers.  

Gatza and colleagues integrated a small interfering RNA screen, with gene expression-

based pathway signatures, and copy number data (Gatza et al., 2014). By comparing the most 
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proliferative ER+ luminal A breast cancers to those with lower proliferation scores, MYC and RB 

were identified as the most likely candidates driving this proliferative phenotype (Gatza et al., 

2014). Silva and colleagues took a different approach by comparing cross-species conserved 

regions of basal-like breast cancer (Silva et al., 2015). Comparing known mouse models that 

faithfully recapitulate human breast cancer and integrating copy number analyses, RNA gene 

expression, and DawnRank driver analysis, they identified that NCSTN and IKBKE are critical 

drivers amplified at the 1q amplicon in basal-like breast cancer (Silva et al., 2015). Finally, 

integration of known protein-protein interaction networks, RNA gene expression, and DNA 

alterations allows for ranked candidate drivers (Hou and Ma, 2014). 

 

Tumor Microenvironment in Primary and Metastatic Breast Cancer 

Breast cancers develop in a milieu of cell types including epithelial fibroblasts, immune 

cells, and organ-specific cell types at the final sites of metastasis. Previous publications both by 

our group and others have demonstrated faithful measurement of tumor-infiltrating immune cells 

from both microarray data and RNA sequencing (Bindea et al., 2013; Iglesia et al., 2014). 

Increased immune infiltrate in basal-like and HER2-enriched breast cancer are known to be 

positively prognostic (Iglesia et al., 2014). Immune infiltrate also predicts response to 

immunotherapy in melanoma (Daud et al., 2016).  

In addition to bulk tumor-infiltrated immune cell measurements from gene expression 

data, novel computational methods can rebuild both the adaptive T cell receptor (Nazarov et al., 

2015), the B cell receptor repertoires (Mose et al., 2016), and predict neoantigens (Kardos et 

al., 2016). By integrating both DNA sequencing mutation calls with RNA sequencing, expression 

of the adaptive immune receptors and neoantigens can be computationally determined. The 

bioinformatics capacity to have further insight into the interaction of the immune and tumor 
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interface provide new opportunities in cancer research. 

The role of the immune system and metastasis is not well understood. Recent research 

provided evidence of a down-regulation of macrophages, T, B, and NK cells in the ‘metastasis’ 

relative to the ‘parental’ cell lines in vivo, hypothesizing that metastases achieve an immune-

escape mechanism mediated by Wnt signaling (Malladi et al., 2016); however, these studies 

were performed only in an immune-comprised mouse model with one human patient-derived 

xenograft from breast cancer. Therefore, further rigorous research in both immune-competent 

mouse models and human tissues are needed to understand the interaction of metastasis and 

the immune system. 

Not only is it currently unknown what type and level of immune infiltrate exists in 

metastasis, but we also do not know if it varies in different organ sites. Certainly, immune 

surveillance in normal lung, liver, and brain vary widely, with the brain typically thought of as an 

immune privileged organ. As we move into an era of immune modulatory agents, it will be 

critical to better understand the role of the immune system in metastasis.  

 

Research Introduction 

 Research elucidating the underlying mechanisms of metastasis is a great clinical need. 

Through this thesis, we sought to address three critical questions: (1) is breast cancer 

metastasis a monoclonal or polyclonal event (Chapters 2 and 3); (2) when are the genetic 

drivers of metastasis established (Chapters 2 and 3); and (3) what are the genetic drivers of 

metastasis (Chapter 3). We then explore the heterogeneity of genetic drivers across breast 

cancer in Chapter 4. Through this research, we hope to contribute to the field’s continued effort 

to find therapeutic targets to prevent and treat breast cancer metastasis. 
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CHAPTER 2 – TUMOR EVOLUTION IN TWO PATIENTS WITH BASAL-LIKE BREAST 
CANCER: A RETROSPECTIVE GENOMICS STUDY OF MULTIPLE METASTASES1 

Preface 

This work was previously published in PLOS Medicine as a co-first-authorship effort 

among Dr. Katherine Hoadley, Krishna Kanchi, and myself. I aided in the analysis of the 

expression of mutations in the RNA, identifying the timing with which DNA mutations were 

established, and interpreted the clonality studies performed by Chris Miller. In addition, I 

completed the figures, supplemental material, the writing of the manuscript, and all revisions. 

RNA sequencing was performed at UNC by Dr. Xiaping He and initially analyzed by Dr. Joel 

Parker and Dr. Hoadley. The DNA sequencing, mapping, validation, and structural variation 

calls were performed at the Washington University of St. Louis McDonnell Genome Institute by 

Krishna Kachni, Chris Miller, Li Ding, Ryan Demeter, Robert Fulton, and Michael Wendl. Chris 

Miller led the clonality analyses. Dr. Lisa Carey, Dr. Chuck Perou, and Dr. Elaine Mardis 

conceived, funded, and oversaw the project.  

Introduction 

Breast cancer patients who die from their disease typically succumb to a metastatic 

rather than primary tumor. Metastasis is a complex process likely involving many potentially 

                                                
1 This chapter previously appeared as an article in PLOS Medicine. The original citation is as follows: 
Hoadley KA*, Siegel MB*, Kanchi KL*, Miller CA, Ding L, Zhao W, He X, Parker JS, Wendl MC, Fulton 
RS, Demeter RT, Wilson RK, Carey LA, Perou CM†, Mardis ER†. “Tumor Evolution in Two Patients with 
Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases.” PLoS Medicine 13, 
no. 12 (January 2017): e1002174. 
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distinct mechanistic steps. Biologically similar tumors vary in their ability to seed distant 

metastatic sites. Indeed, different molecular intrinsic subtypes of breast cancer as determined 

by the PAM50 subtype classifier vary markedly in their preferred sites for metastasis (Harrell et 

al., 2012; Sihto et al., 2011; Smid et al., 2008). The luminal subtypes often metastasize to the 

bone, HER2-enriched tumors to the lung and liver, and basal-like and claudin-low tumors to the 

brain, lung, and liver (Harrell et al., 2012; Sihto et al., 2011). The metastatic process is often 

described as a slow and continuous process of tumor evolution and acquisition of traits such as 

increased genomic instability, motility, and the epithelial-to-mesenchymal transition. Recent 

work in renal, prostate, ovarian, and lung cancer has identified significant amounts of intratumor 

variability in the primary tumor, as well as identifying new driver mutations that arose in 

metastases (de Bruin et al., 2014; Gerlinger et al., 2012; Gundem et al., 2015; Schwarz et al., 

2015; Zhang et al., 2014). In several breast cancer analyses of targeted gene panel, there was 

considerable concordance of mutations observed between primary tumors and matched 

metastases (Brastianos et al., 2015; Cummings et al., 2014; Meric-Bernstam et al., 2014; 

Moelans et al., 2014). This finding, combined with our increasing understanding that a particular 

intrinsic subtype predicts the future site(s) of metastasis, suggests that in breast cancer at least 

some of the metastatic potential already exists within the primary tumor (Harrell et al., 2012; 

Meric-Bernstam et al., 2014; Sihto et al., 2011; Smid et al., 2008). To examine this further, we 

studied the genomic relationship between the primary tumors and multiple matched metastases 

of two patients with triple-negative breast cancer (TNBC), with both cases also of the basal-like 

breast cancer intrinsic subtype. 

A common means of studying intratumor heterogeneity is to sample multiple parts of the 

same tumor and then perform genetic or genomic assays on these different regions. A more 

extreme approach to intratumor heterogeneity is to study a primary tumor and its associated 
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metastases to determine the extent to which the metastatic tumor genome was derived from the 

primary tumor cells as opposed to being an independent tumor (de Bruin et al., 2014; Gundem 

et al., 2015; McCreery et al., 2015; Shain et al., 2015; Zhang et al., 2014). Whether metastases 

can develop from the primary tumor or require continued evolution and gain of additional 

mutations in order to metastasize remains unknown in basal-like breast cancers, and 

addressing this issue may have important implications for therapy. In order to study the genomic 

evolution of basal-like breast cancer, we performed DNA whole genome and mRNA sequencing 

on two patients with matched primary tumors and multiple distant metastases.  
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Methods 

Patient Consent and Tissue Processing 

Tumor tissue was obtained from metastatic breast cancer patients who consented to a 

rapid autopsy at the University of North Carolina prior to death. Patient consent for the autopsy 

was obtained in accordance with the UNC Office for Human Research Ethics (OHRE) and 

criteria established by the US Department of HHS, but was not IRB regulated. There was no 

prospective analysis plan for this study. Primary, metastatic, and adjacent normal tissues were 

taken within 6 h of death for all metastatic sites identified prior to death and at time of autopsy. 

Tissues were frozen in liquid nitrogen, and RNA and DNA were isolated from each tissue using 

Qiagen RNAeasy and DNAeasy kits, respectively, according to manufacturer protocol (Qiagen, 

Valencia, California).  

Sequencing Methods 

RNA was isolated with RNeasy Mini Kit (Qiagen), and sequencing libraries were 

prepared with Illumina TruSeq RNA Sample Prep Kit (CAT #RS-122-2001) with the polyA select 

protocol, except for the A7-Brain, which was first prepared using the Epicentre’s Ribo-Zero 

rRNA Removal kit (Cat #RZH11042) (Zhao et al., 2014). RNA-seq was mapped with MapSplice 

(Wang et al., 2010) and quantified with RSEM (Li and Dewey, 2011). Upper-quantile normalized 

counts, log2 transformed, were combined with the Cancer Genome Atlas (TCGA) breast RNA-

seq data (Ciriello et al., 2015). Samples were median centered and clustered using the human 

breast cancer intrinsic gene set list (Parker et al., 2009), in Cluster 3.0 (Hoon et al., 2004) and 

visualized with Java TreeView v. 1.1.6r4 (Saldanha, 2004). 

 A previously described procedure was followed for library construction and sequencing 

(Mardis et al., 2009). Briefly, DNA was sheared (Covaris), end repaired (Lucigen), 

polyadenylated (Lucigen), and ligated to adapters (Illumina) for paired-end data generation. 



 
 

15 

DNA sequencing was performed on the Illumina Genome Analyzer II and generated between 

114 and 260 Gbp of sequence data for each tissue studied and haploid coverage ranging from 

29.24 to 72.17.  

 

Somatic Alteration Detection Pipeline 

Reads were aligned to human reference build 36 

(ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.36.3/special_requests/assembly_va

riants/; BWA 0.5.5, http://sourceforge.net/projects/bio-bwa/), merged into a single binary 

alignment map (BAM) file, with duplicate reads removed using Picard 1.07 

(http://broadinstitute.github.io/picard/) by the established pipeline, as previously reported 

(Govindan et al., 2012). To determine somatic variants, we utilized samtools (Li et al., 2009) 

followed by SomaticSniper using a somatic score ≥40 and mapping quality ≥40 (Larson et al., 

2012, 2014). Additional screening against dbSNP was used to remove probable germline 

variants (Ley et al., 2008; Sherry et al., 2001). Indels were identified with Pindel (Ye et al., 2009) 

and GATK (McKenna et al., 2010). All variants were further annotated as previously described 

(Ley et al., 2008; Mardis et al., 2009) using VarScan2 (Koboldt et al., 2012) (parameters: --min-

coverage = 30, --min-var-freq = 0.08, --normal-purity = 1, --p-value = 0.10, --somatic-p-value = 

0.001, --validation = 1) to classify mutations as reference, germline, somatic, or resulting from 

loss of heterozygosity (LOH). A Bayesian classifier was applied to retain the somatic variants 

with a binomial log-likelihood of at least 3 (parameters: --llr-cutoff = 3, --tumor-purity = 0.95). 

False positives, as determined by strand specificity, consistent positions near the ends of reads, 

and poorly mapped qualities, were removed. 

Mutations were assigned to four tiers: (1) coding, (2) conserved or regulatory, (3) unique 

noncoding, and (4) repetitive noncoding regions.  
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Structural variants (SVs) were called with BreakDancer (Chen et al., 2009) and filtered 

using TIGRA_SV (Chen et al., 2014). Somatic copy number alterations were detected using 

CopyCat v1.6.9 (https://github.com/chrisamiller/copycat), with 10,000 bp windows and default 

parameters.  

 

Experimental Validation of Mutations 

 Genotypes from Illumina Human OmniExpress BeadChip SNP arrays were used to 

compare and confirm the heterozygous SNPs detected in the analyzed WGS data.  

 Putative indels of 1-2bp were converted to BED format and provided as target intervals for 

the GATK IndelRealigner (DePristo et al., 2011; McKenna et al., 2010). The primary, 

metastases, and matched normal breast tissue for each patient were then realigned to these 

BED files independently. To validate the original predictions, we developed a matching 

algorithm that attempts to match Varscan validation calls with the original indel predictions, as 

described (Govindan et al., 2012). All validated somatic indels were then manually reviewed 

using Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al., 2013). 

 Indels of 3–100 bp were assembled using TIGRA (Chen et al., 2014) and validated as 

previously described (Govindan et al., 2012). Variants that passed the strict validation were 

manually reviewed. 

 Custom sequence capture validation was performed with Roche NimbleGen arrays for 

97.3% of the Tier 1–3 somatic alterations and 68.6% of the SVs. Whole genome amplified DNA 

was prepared for Illumina sequencing according to the manufacturer’s protocol (Illumina, San 

Diego, California). DNA was fragmented with the Covaris S2 DNA Sonicator (Covaris, Woburn, 

Massachusetts), adapter-ligated, SPRI-bead cleaned, and PCR amplified. One µg of the 300–

500 bp fragments was hybridized to the NimbleGen HD2 probe set according to the 
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manufacturer’s protocol (Nimblegen, Madison, Wisconsin). Following hybridization, the library 

was PCR amplified for 16 cycles and quantified with the KAPA SYBR FAST qPCR Kit (KAPA 

Biosystems, Woburn, Massachusetts) such that 180,000 clusters were sequenced per lane of 

the Illumina GAIIx. 

Reads were mapped to the NCBI Build 36 reference WUGSC Variant, a subset of the 

NCBI36 sequences from Ensembl Release 46 

(ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.36.3/special_requests/assembly_va

riants/). 

  The validation sequence was aligned with BWA v0.5.9, and duplicate reads were marked 

using Picard (v1.29). Updated versions of BWA and Picard were used for increased alignment 

speed and variant detection efficiency. The RefCov package was used to evaluate the coverage 

of target sequences (http://gmt.genome.wustl.edu/packages/refcov/).  

Capture validation reads and mates were mapped to both the assembled SV contigs and 

the reference with CrossMatch (version 1.080721). The threshold for an acceptable alignment is 

≤1 mismatch at either end, ≤1% substitutions, 1% indels and a CrossMatch score ≥ 50.  An SV-

supporting read is required to span the breakpoint on the SV contig,  align to 10 bases flanking 

on each side of the breakpoint, and have no alignment to the reference above the minimum 

alignment criteria. The somatic status of each SV was determined using Fisher’s exact test 

between the matched tumor and normal sample. All validated calls were manually reviewed.  

UNCeqR (Wilkerson et al., 2014) was run on validation mode: the algorithm accepts as 

input a set of predetermined mutations, such as a list of mutations generated from WGS/WES, 

and then looks within the RNA-seq data for expression evidence of the variants. Tier 1 

mutations were input into UNCeqR along with the RNA-seq BAM files aligned with MapSplice 

(Wang et al., 2010). UNCeqR then calculated the number of reads of the reference and variant 
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alleles at each position interrogated. Mutations with less than 5 reads were considered as 0. 

RNA variant allele fraction (VAF) was calculated as variant allele reads/total reads.  

 

Clonality Analyses  

 The clonal structure of each tumor was inferred with SciClone (version 1.0.7) (Miller et al., 

2014), with parameters minDepth = 75, copyNumberMargins = 0.25, and maximumClusters = 

20. Single nucleotide variants (SNVs) in copy number altered regions or with evidence of 

complete or partial LOH were reviewed and excluded. Phylogeny was inferred using the 

clonevol R package (https://github.com/hdng/clonevol) with default parameters. 
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Results 

Case Histories  

Patient A1 was a 65-y-old white woman who presented with stage IV TNBC and synchronous 

metastases to the bone of the vertebral column (spinal), lung, adrenal gland, liver, and lymph 

nodes. She was treated with radiation therapy to the breast, whole brain, and C3/T2 of the 

spine, had one cycle of palliative paclitaxel without response, and died of disease 2-mo post-

diagnosis. Patient A7 was a 60-y-old African-American woman diagnosed with a 5-cm stage IIIA 

TNBC. A pretreatment primary tumor biopsy was collected as a part of an existing tissue 

collection protocol (LCCC 9819, NCT01000883), and she subsequently received neoadjuvant 

doxorubicin plus cyclophosphamide followed by paclitaxel. She underwent mastectomy with 

T2N2 residual disease, followed by adjuvant radiation therapy to the chest wall (SCV fossa and 

axillary nodes). Patient A7 remained without evidence of disease recurrence for 17 months 

before presenting with metastases to the brain, kidney, liver, lung, and ribs. She received single-

agent capecitabine for 4 months, with an initial minimal response and then progression both 

systemically and in the central nervous system (CNS), followed by a single cycle of carboplatin 

that was discontinued because of poor tolerability and evidence of rapid progression. Patient A7 

died of disease 8 months after her metastatic progression. For both patients, fresh frozen tissue 

was collected at autopsy from primary tumor, distant metastases, and adjacent normal 

(nonmalignant breast) tissue, except for the primary tumor specimen that was obtained before 

neoadjuvant treatment was initiated in patient A7 (Figure 2.1).  
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Figure 2.1. Clinical history and distribution of metastases from patients A1 and A7. 
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Whole Genome Sequencing Coverage and Mutation 

 For the matched normal tissues, primary tumor (pre-treatment biopsy for A7), and distant 

metastases from patients A1 and A7, we performed DNA whole genome paired-end 

sequencing. For A7, we derived 138.38, 118.76, 260.93, 128.69, 204.34, 201.66, and 156.82 

Gbp of sequencing data from normal tissue, primary tumor, liver, lung, rib, kidney, and brain 

metastases, respectively, with corresponding haploid coverages ranging from 33.17X to 70.19X. 

For A1, we generated 265.53, 134.07, 115.85, 210.45, 114.31, and 131.03 Gbp of data from 

normal tissue, primary tumor, liver, lung, adrenal, and spinal cord metastases, respectively, with 

haploid coverage ranging from 30X to 72.16X. 

 Candidate somatic changes were predicted using multiple algorithms. Confirmatory testing 

of heterozygous mutations with genotype arrays confirmed bi-allelic detection of 80.47% to 

89.63% in all samples. Candidate mutations were further validated with capture probes 

corresponding to all putative somatic SNVs and small insertions/deletions (indels) that overlap 

with coding exons, splice sites, and RNA genes (Tier 1), a number of high-confidence SNVs and 

indels in noncoding conserved or regulatory regions (Tier 2), and nonrepetitive regions of the 

human genome (Tier 3). In addition, we included predicted somatic SVs for validation. We 

obtained 40X haploid reference coverage for 87.48% to 94.02% of the targeted sites. For A1, 73 

Tier 1 point mutations, 1 Tier 1 indel, and 53 somatic SVs were confirmed across the primary 

tumor and metastases. For A7, there were 150 Tier 1 point mutations, 47 indels, and 40 SVs 

confirmed in the primary tumor and five metastatic samples.  
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Genomic Relatedness of Primary Tumors and Metastases 

Common gene expression patterns throughout metastasis. In order to study the degree of 

relatedness between a primary tumor and its metastases, we performed mRNA-seq gene 

expression analyses followed by hierarchical clustering analysis using a breast cancer “intrinsic” 

gene list (Parker et al., 2009) including data from the 11 specimens studied here and 1,100 

breast tumors from the Cancer Genome Atlas (TCGA) (Ciriello et al., 2015). Regardless of 

physical or temporal distance between the primary and its metastases, all tumors from these 

two patients clustered tightly together by patient (Figure 2.2). By gene expression analysis using 

the PAM50 intrinsic breast cancer subtype predictor (Parker et al., 2009), the primary tumors 

and metastases all maintained a basal-like subtype phenotype and clustered with the basal-like 

samples from TCGA (Figure 2.2B); previous research has demonstrated a high correlation 

among primaries and matched metastases by microarray gene expression (Bertucci et al., 

2016; Harrell et al., 2012).  

In patient A1, in whom the primary tumor and distant metastases were found 

synchronously and who had limited exposure to chemotherapy and radiation prior to death, the 

gene expression hierarchical cluster node correlation for the primary and the four metastases 

was 0.77 (Figure 2.2C).  In patient A7, who received neoadjuvant chemotherapy and radiation 

and had a 17-mo interval separating the discovery of the primary tumor and distant metastases, 

the node correlation for the six samples was 0.79 (Figure 2.2C). This demonstrates that subtype 

was maintained throughout metastasis in these two patients and that, as we and others have 

shown (Bertucci et al., 2016; Harrell et al., 2012), distant metastases are typically much more 

similar to their original primary than they are to other primary tumors or metastases from other 

patients.  
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Figure 2.2. Molecular relatedness of matched primary and metastases. (A) Hierarchical 
clustering of patient A1 and A7’s tumors with 1,100 TCGA Primary samples and 98 normal 
breast samples analyzed using a breast cancer intrinsic gene list. The color bars under the 
dendrogram indicate (i) where A1 (red) and A7 (blue) specimens are clustered and (ii) the 
PAM50 subtype of each sample (basal-like, red; HER2-enriched, pink; luminal A, dark blue; 
luminal B, light blue; and normal-like, green). (B) The position of A1 (red) and the position of A7 
(blue) within the basal-like cluster are highlighted. (C) The relationship of the primary and 
metastases for each patient based upon gene expression patterns. 
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Functional mutations are maintained and enriched during metastasis. We next studied 

DNA-based data from each primary tumor and its multiple distant metastases. In patient A1, 54 

genes were mutated with a VAF greater than 0.5% in the primary tumor (13 non-silent mutations 

were in the Catalogue of Somatic Mutations in Cancer [COSMIC] (Forbes et al., 2015)) (S4 

Table). Almost every Tier 1 mutation present in the A1 primary tumor was identified in one or 

more of the metastases (52/54), and in many cases the VAF was enriched in the metastasis 

(median: 5-fold enrichment, average: 8.8-fold, range: 1- to 38-fold; Figure 2.3A). Eleven mutated 

genes were shared among the primary and all matched metastases: TARBP1, FCRL1, XIRP1, 

TRMT1, PANX3, MYSM1, PHLDB3, TBC1D25, LOC284288, MDS2, and TP53. The adrenal 

metastasis and spinal metastasis contained the most unique SNVs, with seven and nine, 

respectively. The liver metastasis and lung metastasis did not have any private mutations at a 

VAF > 1%, although the lung metastasis did share two mutations with the adrenal metastasis 

that were not observed in the primary.   

In patient A7, 75 Tier 1 genes were mutated with a VAF ≥ 0.4% in the primary tumor (14 

of these non-silent mutations were in COSMIC) (Figure 2.3B). The VAF in all of the metastases 

had a median enrichment of 1.4-fold, closer to the primary tumor than in patient A1. All of the 

mutations identified in the primary tumor were detected in at least one metastasis, and 65 

mutations, including mutations in RUNX1T1, ADGRB2, KMT2C, RP1, TP53, and AKT3, were 

shared across the primary and all matched metastases. There were 75 mutations identified in 

one or more of the metastases that were not observed in the primary tumor (8 of these nonsilent 

mutations also were in COSMIC). The majority of these metastasis-specific mutations (54/75) 

were present in two or more metastases. Of the 21 mutations private to a single metastasis, the 

liver and kidney metastases had the most, with 7 and 8 private mutations, respectively. The rib 

metastasis contained no unique mutations.  
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Figure 2.3. Heat map of the DNA variant allele frequency of Tier 1 mutations in patients A1 
and A7. The vertical bar to the left of each heat map designates genes shared with the primary 
and metastases (black), genes mutated in metastases but not in the primary (blue), and genes 
private to a single individual metastasis (red) in (A) Patient A1 and (B) Patient A7. 
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TP53 as a common driver of metastasis. TP53 alterations are frequently observed in basal-

like breast cancers (Cancer Genome Atlas, 2012). TP53 was the only shared somatic mutated 

gene between the two patients and was present in every tumor specimen sequenced. Close 

examination of patient A1 data identified an 11 bp deletion in TP53 that was common to all 

samples (Figure 2.4). In patient A7, the TP53 missense mutation H168R had a greater than 

68% VAF in all tumors except the brain metastasis (31%). While this exact mutation was not 

observed in the TCGA breast cohort, a missense mutation was identified at the same position in 

one case (H168P) (Cerami et al., 2012; Gao et al., 2013), supporting the likelihood that 

alteration of TP53 is a founding event critical for the development of basal-like breast cancer 

(Shah et al., 2012) and subsequent metastasis.  

 

Mutations established early tend to be expressed and enriched in metastasis. We 

examined the mRNA expression data for evidence of expression of the somatic point mutations 

in primary tumors and metastases. Interestingly, mutations shared between the primary and 

metastatic tumors were more likely to be expressed (Figure 2.5, black dots) and were 

expressed at higher levels than mutations unique to metastasis (Figure 2.5, blue dots). In 

patient A1, 21/52 (40%) of the mutations established in the primary were expressed in the 

metastases (Figure 2.5A, black dots). In patient A7, 47/75 (63%) of the mutations established in 

the primary were expressed both in the primary and metastases (Figure 2.5B, black dots). 

Fewer mutations were detected only in the metastases, and those mutated transcripts 

had lower RNA expression than mutations shared with the primary (Figure 2.5, blue dots). In 

patient A1, 2/3 mutations shared among more than one metastasis but not in the primary tumor 

were expressed (Figure 2.5A, blue dots), while only 4/18 private mutations (detected only in one 

tumor) were expressed (Figure 2.5A, red dots). In patient A7, 23/54 (43%) of the mutations that 
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were shared across the metastases but not with the primary tumor were expressed, and 8/21 

(38%) of the private mutations were expressed (Figure 2.5B). 

Interestingly, many of the expressed metastasis-specific mutations occur in genes that 

are involved in DNA damage responses, RNA processing, and degradation of the extracellular 

matrix (ECM). In patient A1, metastasis-specific mutations included FANCF and SMC6 (DNA 

double-stranded break repair), DDX6 (promotes mRNA degradation), and HYAL3 (degrades 

hyaluronan in the ECM) (Rebhan et al., 1997). In patient A7, AQR, DOCK6, and HLTF were 

shared across metastases and expressed. Metastasis-specific mutations in patient A7 included 

CASC3 (the core of the exon junction complex), TIMP3 (degrades ECM), and LAMA5 (part of 

the ECM) (Rebhan et al., 1997). These could represent convergent evolutionary paths to the 

resistance of DNA damaging agents and promotion of cell mobility and survival.  
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Figure 2.4. TP53 Deletion in A1. Genome view of the 11 bp deletion of TP53 in Patient A1 at 
chr17:7,579,474 to chr17:7,579,485, present in the primary tumor and all of the metastases. 

 
 

  



 
 

29 

 

Figure 2.5. Gene expression of variant alleles. Variant allele fractions (VAFs) of each point 
mutation were determined from mRNA-sequencing data and compared to those from combined 
whole genome sequencing (WGS) and validation sequencing data. Gene variants shared in the 
primary and metastases (shared mutations, black), metastases but not primaries (metastases 
specific, blue), or only in one metastasis (private, red) in patients A1 (A) and A7 (B) are shown. 
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Structural variations tend to be established early in metastasis. To further explore the 

development of larger genomic alterations during metastasis, Circos plots were generated to 

illustrate the combined Tier 1 somatic mutations, DNA copy number alterations, and SVs for 

each sequenced tumor (patient A1: Figure 2.6; patient A7: Figure 2.7). These illustrate that, 

overall, SVs were mostly established in the primary tumor and maintained through the different 

metastatic processes. 

In patient A1, all 8 of the SVs in the primary tumor were shared with the metastases 

(Figure 2.6), including one that was specifically shared with the adrenal and liver metastases. 

The metastases had few additional interchromosomal SVs, and these were shared, except in 

the spinal metastasis. Interestingly, the spinal metastasis evolved to have many more 

rearrangements between chromosomes 2 and either 3, 8, 12, or 16. 

In patient A7, the brain and kidney metastases shared most interchromosomal SVs with 

the primary (Figure 2.7). The rib and liver metastases had three private SV alterations each (of 

a total of six and eight alterations, respectively), while the lung metastasis showed many more 

private interchromosomal SVs than the other metastatic samples. 
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Figure 2.6. DNA alterations of matched primary and metastases of patient A1. (A–F): Circos plot 
displays mutations, copy number, and structural rearrangements in the (A) primary, (B) spinal, 
(C) lung, (D) liver, and (E) adrenal metastases. Translocations with significant read coverage 
include shared (green) and private (red) interchromosomal and shared (purple) and private 
(blue) intrachromosomal translocations. 

 
Figure 2.7. Circos plots of matched primary and metastases of patient A7. Circos plots 
displaying mutations, copy number landscape, and structural rearrangements (order starting 
from outside) in the (A) primary, (B) rib, (C) kidney, (D) liver, (E) brain, and (F) lung metastases. 
Translocations with significant read coverage include shared (green) and private (red) 
interchromosomal and shared (purple) and private (blue) intrachromosomal translocations.  
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FBXW7-INPP4B fusion in patient A7. To confirm SVs, we created a modified genome that 

represented the possible new alignments in RNA space. Realigning A7 data to this map 

demonstrated expression of an FBXW7-RNF150 fusion gene observed in all A7 samples, 

indicating early fusion of this gene in the development of this patient’s breast cancer (Figure 

2.8). Interestingly, deletion of the last ten exons of FBXW7 was previously reported as a 

founding event in a basal-like breast cancer (Ding et al., 2010). The 5′ end of the fusion in 

patient A7 began at exon 3 or 4 of FBXW7, which likely inactivated FBXW7. The 3′ end of the 

fusion occurred just before RNF150, resulting in deletion of INPP4B. There was decreased RNA 

expression of INPP4B in this patient, further supporting the deletion of INPP4B by the FBXW7-

RNF150 fusion gene event. INPP4B has important implications in breast cancer that include 

DNA repair defects (Ip et al., 2015), increased genomic instability (Weigman et al., 2012), and 

inhibition of the PI3K pathway (Gewinner et al., 2009). 

  



 
 

33 

 
Figure 2.8. FBXW7 fusion. Representative illustration of FBXW7 fusion and INPP4B deletion in 
all tumors from A7. 

  



 
 

34 

Multiclonal Evolution of Metastasis in Two Patients with TNBC 

To understand the Darwinian evolution occurring in the primary tumor and throughout 

metastasis (Campbell et al., 2008), we established the subclonal relationships and phylogenetic 

trees for patient A1 (Figure 2.9, S6–S8 Figs) and patient A7 (Fig 5, S9–S10 Figs).  

Subclonality analysis using SciClone of the A1 patient samples demonstrates that the 

primary tumor predominantly contained clones 1, 3, 5, and 8, with very low allele fractions of 

minor clones 2, 4, and 7 (Figure 2.9,Figure 2.10A). Clone 1, established in the primary tumor, 

seeded all other metastases. Of the other major clones in the primary, clones 3 and 5 seeded 

the lung metastasis, while clone 3 additionally seeded the spinal metastasis. This metastasis 

then continued to evolve, developing private clone 9 (Figure 2.10A). These clones (3 and 5) 

were mutually exclusive with minor clone 2, which was found in the primary tumor, lung, liver, 

and adrenal metastases (Figure 2.11). Two of the minor clones in the primary tumor (clones 2 

and 4) became the dominant clones in the liver and adrenal metastases, with additional private 

subclonal evolution in the adrenal metastasis (clone 6). Interestingly, clone 7 was established in 

the primary tumor and also metastasized to the liver, but not to the adrenal, metastasis (Figure 

2.10B). Using ClonEvol, there were two potential models for clone 7 development that we were 

not able to fully resolve; either it evolved (1) from clone 4 (Figure 2.11) or (2) independently from 

clone 2 (Figure 2.12). This result demonstrates that the multiclonal metastatic potential residing 

in the primary tumor is maintained through metastasis. 

Importantly, patient A1 presented at stage IV and only received two doses of radiation 

and one cycle of single-agent taxane before death. Thus, her primary-to-metastatic disease 

likely is representative of the natural course of basal-like breast cancer rather than representing 

selection from the evolutionary pressure imposed by therapy.  
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Figure 2.9. SciClone analysis of A1. SciClone analysis of variant allele frequencies in copy 
number neutral regions of each tumor using Bayesian beta mixture modeling and multi-
dimensional clustering of tumors from patient A1. Multiple clones are shared in the primary and 
metastases, with Clone 1 in the primary and all matched metastases; Clone 2: primary, adrenal, 
and liver; Clone 3: primary, adrenal, and liver; Clone 4: primary, lung, and spine; Clone 5: 
primary, adrenal, and liver; Clone 6: primary and lung; Clone 7: adrenal; Clone 8: primary and 
liver; Clone 9: primary; and Clone 10: spinal. 
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Figure 2.10. Clonality analysis of each tumor from patient A1. VAFs among the primary and 
matched metastases in patient A1 (A) and a representative evolutionary tree (B) colored by 
subclone based on the clonality plots in panel A, with the width of the branch indicating the 
approximate percentage of that clone within the tumor. Clone 1 is established in the primary 
tumor and seeded all distant metastases. Clones 2 and 4 from the primary tumor seeded the 
liver and the adrenal gland, with clone 7 concurrently seeding the liver from the primary tumor. 
Clones 3 and 5 from the primary tumor seeded the lung, with clone 3 also seeding the spine. 
Private clones include clone 6, specific to the adrenal metastasis; clone 8, specific to the 
primary tumor; and clone 9, specific to the spinal metastasis. 
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Figure 2.11. ClonEvol analysis of A1. ClonEvol demonstrates that Clones 1 and 2 are founding 
clones that seed the distant metastases at different percentages. Clone 2 and Clone 3 are 
exclusive of one another, leading to separate lineages. The proportion of each clone is 
demonstrated by the width of the nested shapes. 
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Figure 2.12. Representative evolutionary tree of an alternative model of A1. ClonEvol predicted 
two possible evolutionary lineages of clones in patient A1. The first model is in Fig 5B. The 
alternative model demonstrating that Clone 7 is independent of Clone 4 is presented.  
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In patient A7, the subclonal structure was determined by SciClone (Figure 2.13), and a 

single model of evolution was suggested by ClonEvol (Figure 2.14). The primary tumor 

consisted of one main clone (Figure 2.15), seeding all other sites of metastasis at the highest 

VAF observed.  The main clone then diverged to two lineages, giving rise to clone 2 

predominantly in the liver, kidney, and rib and clone 4 predominantly in the lung and brain 

(Figure 2.15B). Clone 4 is present in the lung and brain metastases at an almost equivalent VAF 

to the founding clone 1. Clones 2 and 6 in the rib are also present at an almost equivalent VAF 

to clone 1; clones 2 and 6 are seen at a low VAF in the lung. These clonal data paint a complex 

picture with two possible explanations: either the split of clone 1 into clones 2 and 6 and clone 4 

occurred prior to metastatic spread (Solution A, Figure 2.15B) or these clones cross seeded 

from the rib metastasis to the lung metastasis (Solution B, Figure 2.15B). Clone 2 further 

evolved to clones 3 and 5 in the liver and kidney metastases. We favor the first hypothesis, 

namely that clone 2 in the rib, liver, and kidney metastases is at a VAF equivalent to the 

founding clone, indicating that the evolution of this clone occurred before metastatic seeding. All 

metastases aside from the rib metastasis also contained private subclones. 
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Figure 2.13. SciClone analysis of only copy number neutral regions demonstrates multiclonal 
seeding of metastases. The Lung metastasis contains both branches of the clonal tree, 
predominantly containing Clone 4 but with a small fraction of Clone 2. In contrast, the rib 
metastasis contains predominantly Clone 2 with a small minority of Clone 3. Private clones are 
seen in all metastases. 
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Figure 2.14. Clonevol analysis of A7. ClonEvol of the copy number neutral mutations from 
SciClone analysis demonstrates one founding clone leading to a branched pattern of Clones 2 
and 4. Private clones are present in all metastases. 
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Figure 2.15. Clonality analysis of each tumor from patient A7. Clonality shared among the 
primary tumor and matched metastases in patient A7 (A) and the representative evolutionary 
tree (B) colored by subclone identity based on the clonality plots in panel A, with the width 
representative of the percentage of the clone within that tumor. Clone 1 was established in the 
primary tumor and maintained through metastatic spread in every tumor. Clone 2 was present in 
the liver, kidney, and rib and at a low frequency in the lung, while clones 3 and 5 were 
additionally shared by the liver and kidney metastases. Clone 6 was present in the rib and a low 
frequency in the lung metastases. Brain and lung metastases shared clone 4. Each tumor had a 
private clone not shared with any other tumor: clone 7 specific to the lung, clone 8 specific to the 
kidney, clone 9 specific to the liver, and clone 10 private to the brain. 
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Discussion 

Whole genome sequencing and mRNA sequencing of two TNBC/basal-like breast 

cancer patients with primary tumors and multiple matched metastases demonstrated significant 

genetic similarity between the primary breast cancers and their matched metastases. Patient A1 

demonstrated significant intratumoral heterogeneity established in the primary tumor and 

multiclonal seeding of metastasis. Interestingly, patient A7 possibly contained a more 

homogenous primary breast cancer that then led to diverse, heterogeneous metastases. Even 

though there is continued evolution, the acquisition of mutations private to a single metastasis 

likely had limited impact on the metastatic potential, as these mutations were rarely expressed 

or were expressed at low levels. In contrast to earlier findings in renal cell carcinoma of 

monoclonal metastasis seeding (Gerlinger et al., 2012), basal-like breast cancer metastases 

can be the result of multiclonal seeding of cells established in the primary. The results 

presented here are inconsistent with a single cell of a primary breast cancer seeding a distant 

metastasis (Navin et al., 2011). Herein, we describe an example of multiple subclones that 

resided within a primary tumor followed by multiclonal seeding of all distant metastases as well 

as a common disruption of TP53. 

In both patients, relatively few mutations occurred once the tumor cells left the primary 

site, and of those that did alter protein coding sequences, the mutations were not highly 

expressed at the RNA level in general. The high correlation of gene expression among 

primaries and matched metastases illustrates that subtype is typically maintained throughout 

metastasis (Harrell et al., 2012), and that specific intrinsic subtypes have an inherent tendency 

to metastasize to specific organs (Harrell et al., 2012; Smid et al., 2008). Taken together, these 

results suggest that the metastatic potential was present within the primary tumor of these two 

basal-like breast cancer patients. Here, we uncover a genetic explanation for the close 
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correlation of gene expression in metastases and matched primaries—namely that, in the two 

cases examined, the samples from a given individual were much more genetically similar than 

they were dissimilar, both on the DNA and RNA levels. 

While the majority of genetic alterations present in metastases were shared with the 

matched primary cancer in these two patients examined, we also identified a significant amount 

of intratumoral heterogeneity, evident because multiple subclones were detected within each 

metastasis. Patient A1 demonstrates that more than one subclone from the primary seeded 

each metastasis, and the intratumoral heterogeneity in the primary tumor setting was mostly 

reflected in each metastasis. In patient A7, the lung metastasis exhibited diverse intratumoral 

heterogeneity, with two small subclones (2 and 6) found at high frequency in three of the other 

metastases. There are two possible explanations for the complex clonal patterns seen in patient 

A7: either the two dominant clones (clones 2 and 4) were established in the primary and were 

not sampled in the piece of the primary tumor that was actually sequenced, or clones 2 and 6 in 

the rib cross seeded into the lung metastasis. While one metastasis seeding another metastasis 

has been previously demonstrated in prostate cancer (Gundem et al., 2015), we also recognize 

that the A7 primary breast cancer likely had spatial heterogeneity that was not fully captured by 

our sequencing (Yates et al., 2015). In fact, the A7 primary breast cancer piece sequenced was 

a skin punch biopsy taken from a 5 cm primary breast cancer, rather than a tumor resection. 

Hence, samples from multiple portions of this tumor were not sequenced. Of the two 

possibilities, the most parsimonious explanation for the observations relevant to patient A7 is 

that multiclonal seeding of the metastases did occur and that our limited sample did not permit 

detection of clones 2 and 6. Hence, only subsequent deep sequencing of additional portions of 

the A7 tumor would resolve the issue of monoclonal versus multiclonal seeding from the 

primary. Unfortunately, no additional specimens exist for this patient. Regardless of this, in 
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patient A7 multiple multiclonal seeding events were discovered, such as the rib metastasis 

seeding the kidney and liver. 

The genetic heterogeneity in both of the primary tumors and the resulting metastases 

may explain why many metastatic TNBC patients fail to have a durable treatment response and 

instead progress within a few years (Anders and Carey, 2008). In particular, heterogeneity 

provides for a wealth of individual genotypes, thus yielding a genetic diversity from which 

chemotherapy resistance may arise. Treatment has been shown to select for therapy-resistant 

clones in primary breast cancer (Juric et al., 2015; Li et al., 2013; Miller et al., 2016), and 

therapy can select for subclones in the metastatic setting. 

While our studies provided evidence of multiclonal seeding of metastasis in these two 

patients, both with basal-like breast cancer, our results may or may not apply to a larger cohort 

of patients with basal-like breast cancers, to other subtypes of breast cancers, or to other 

cancer types. Even within the poor-prognosis basal-like subtype, patients often receive many 

more lines of therapy and have more favorable responses to their therapies for a longer duration 

than the two patients presented here. Furthermore, patients with luminal and HER2-enriched 

breast cancer have comparatively more opportunities to benefit from targeted therapies such as 

tamoxifen, aromatase inhibitors, and/or HER2 agonists such as trastuzumab, lapatinib, or 

pertuzumab. Since neither patient A1 nor A7 was treated with targeted therapies, there were 

different selective pressures in the metastatic setting compared to current standard of care for 

ER+ and HER2+ patients.  

The basal-like subtype is a highly aggressive cancer that often metastasizes to the lung 

and brain within 5 y of diagnosis. This is in contrast to luminal A breast cancers, which are 

typically more indolent, are less likely to progress to stage IV, and typically metastasize first to 

the bone (Haque et al., 2012). The difference in these patterns of relapse and the timing with 
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which they occur suggest fundamental differences in disease progression between the subtypes 

(Ellis et al., 2012) within the context of drastically different treatment strategies. Continued 

analyses of larger datasets representing each of the subtypes and patients with varying clinical 

histories will be necessary to identify consistently altered genes to define early versus late 

drivers, metastasis-site specific alterations, and differences among the mechanism of 

metastasis across various subtypes of breast cancer. 
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CHAPTER 3 – THE EVOLUTION OF LETHAL BREAST CANCER METASTASIS: 
MULTICLONAL SEEDING DRIVEN BY TP53 AND COPY NUMBER ALTERATIONS 

Preface 

 This work is currently under review and is a first author manuscript. The UNC Tumor 

Donation Program was started by Dr. Lisa Carey, with tissues collected by Niamh Kieran, Julie 

Benbow, and Amy Garret. Autopsies were performed by Vincent Moylan and Claudia Brady. 

Tissue quality control was performed by pathologists. Chad Livasy and Leigh Thorne. DNA and 

RNA isolation, library preparation, and sequencing was performed mostly by Dr. Xiaping He with 

the latter DNA samples done by me. Sequencing data was mapped by Alan Hoyle and Joel 

Parker. Copy number was evaluated by Mengjie Chen. Droplet PCR of ESR1 mutations was 

performed by Sunil Kumar and Gaorav Gupta. I performed all scientific investigation of both the 

RNA and DNA sequencing analyses, with significant oversight and mentorship from Katherine 

Hoadley, Joel Parker, Elaine Mardis, Lisa Carey, Carey Anders, and Charles Perou. I designed 

the figures, supplemental data, and written text of this manuscript. 

 

Introduction 

Breast cancer is the second leading cause of cancer related death in women and is 

typically caused by metastasis. Breast cancer is a heterogeneous disease comprised of multiple 

“intrinsic” expression-based subtypes (Perou et al., 2000), wherein the subtype predicts future 

sites of recurrence and survival (Harrell et al., 2012; Smid et al., 2008). While this evidence 

strongly supports the hypothesis that the primary tumor contains information about metastatic 

potential, the factors responsible for this metastatic potential are still not well understood.  
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It also remains unknown whether metastasis is the result of a single cell from the primary 

tumor circulating in the blood to seed and survive at distant sites (i.e. monoclonal seeding), or 

instead results from a collection of multiple cells of the primary that seed together and survive at 

distant sites (i.e. multiclonal seeding). Additionally, it is unclear when the ability to metastasize is 

acquired: by the original primary cells, over time during some dormancy period that follows 

treatment, or with adaptation at the final site of metastasis. Understanding the heterogeneity of 

metastatic sites, for example whether they correspond genetically to one or multiple clones from 

the primary tumor, could more accurately inform treatment decisions.  

Several recent studies in other tumor types have demonstrated both single clones 

leaving the primary to seed distant metastases (Gerlinger et al., 2012) and multiclonal seeding 

(Gundem et al., 2015; Maddipati and Stanger, 2015). In small cohorts of breast cancer patients, 

previous breast cancer studies have also demonstrated both monoclonal (Ding et al., 2010; 

Krøigård et al., 2015) and multiclonal (Murtaza et al., 2015) seeding of single, matched 

metastatic sites. Multiregional sequencing of breast cancer has demonstrated that significant 

heterogeneity existed within 8/12 primary tumors (Yates et al., 2015). Brastianos and colleagues 

demonstrated continued acquisition of new driver mutations in the context of brain metastases 

(Brastianos et al., 2015). Using two patients and whole genome sequencing of multiple matched 

metastases and primaries, we previously reported multiclonal seeding of triple negative, basal-

like breast cancers (Hoadley et al., 2016). These studies were, however, limited by studying 

small cohorts of patients and typically only one or two matched metastatic sites per patient. 

Additionally, these studies defined “genetic drivers” as genes previously shown in large 

scale sequencing projects to be significantly mutated above the background rate that is 

expected by chance (Cancer Genome Atlas, 2012; Ciriello et al., 2015; Dees et al., 2012a; 

Lawrence et al., 2013). The actual biological or functional impact of these alterations in 

individual patients therefore was not measured. Computational approaches incorporating gene 

expression from RNAseq data and known protein interaction networks could help to predict the 
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functional impact of individual DNA-based somatic alterations (Hou and Ma, 2014). Previous 

work has demonstrated the power of integrating gene expression and DNA alterations to define 

unique driver sets beyond mutational background (Silva et al., 2015). By employing the 

DawnRank method to determine the functional impact of mutations and copy number 

alterations, we can empirically define drivers on an individual tumor basis as well as the timing 

with which they occur during the development of breast cancer metastasis. 

Here, we present the underlying evolutionary processes of breast cancer metastasis in a 

large cohort of primaries with matched multiple metastases per patient. Utilizing a Rapid 

Autopsy Program established at the University of North Carolina at Chapel Hill, we have 

collected matched primary and metastatic breast cancers from 16 individuals and performed 

RNA-sequencing (RNAseq) and DNA whole exome sequencing on the primary, 67 matched 

metastases (2-7 per patient) and a matched normal tissue comparator for each patient. We 

examine the clonal evolution of metastasis within each patient, copy number and mutational 

spectrum of the metastatic process in a subtype-specific manner, and apply a novel 

computational approach that integrates RNA and DNA sequencing data to identify genomic 

drivers. These results demonstrate the genetic diversity of the metastatic process and highlight 

the potential of using the primary tumor data as a means of targeting metastases. 

  



 
 

50 

Methods 

Patient consent and tissue processing 

Tumor tissue was obtained from metastatic breast cancer patients who consented to 

Rapid Autopsy at the University of North Carolina prior to death. Primary, metastatic, and 

normal tissue were taken within 6 hours of death for all metastatic sites, both known and found, 

at time of autopsy. Tissues were frozen in the -80C freezer, and RNA and DNA were isolated 

from each tissue using Qiagen RNAeasy and DNAeasy kits, respectively, according to the 

manufacturer protocols (Valencia, CA). Primary breast cancer tissues taken at diagnosis were 

also acquired as available. Archived tissues in formalin-fixed paraffin-embedded (FFPE) tissues 

had total RNA isolated with Roche High Pure RNA paraffin kit Cat #03270289001 and DNA 

isolated with the Maxwell 16 FFPE Tissue LEV DNA Purification Kit (San Diego, CA). Quality of 

RNA was checked with the Agilent BioAnalyzer RNA 6000 Nano Kit (Santa Clara, CA). 

DNA Whole Exome Sequencing 

DNA was prepared for sequencing with the Agilent SureSelect XT library protocol (Santa 

Clara, CA). Fresh-frozen tumors were processed according to manufacturer’s protocol 3ug 

input, while FFPE tumors were processed with the low-volume input according to 

manufacturer’s protocol for 200 ng input. DNA libraries were captured and amplified with Agilent 

SureSelect Human All Exon v5 or v6 (Santa Clara, CA) according to the manufacturer’s 

protocol. Quality of both DNA libraries and DNA exome capture quality and concentration were 

quantified with Agilent ScreenTape DNA 1000 and High Sensitivity D1000 respectively (Santa 

Clara, CA). 

2x100 bp paired-end sequence data was generated from the Illumina HiSeq 2500 for 

each tumor or normal sample with 3 samples per lane. Illumina reads were mapped to the NCBI 

Build 36 reference sequence with BWA (Li and Durbin, 2009), realigned with ABRA (Mose et al., 

2014), processed by biobambam2 (Tischler and Leonard, 2014), and called as somatic variants 

with STRELKA (Saunders et al., 2012).  
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We used minor allele frequency of highly variable SNPs in the general population for 

sample identity. All samples had an expected 87-100% identity with tumors from the same 

patient.  

Copy number was called with SynthEx (Silva GO et al., manuscript in preparation). 

Briefly, the ratio of on-target and off-target exome reads of tumor were compared to a normal 

selected from the dataset by highest degree of similarity in library size and fold enrichment. 

Segment level ratios were calculated and log2 transformed. Copy number levels greater than 

0.25 were considered as gains, and less than -0.32 as losses. 

RNA Sequencing 

Fresh-frozen (FF) RNA was prepared for sequencing with Illumina TruSeq polyA Select 

protocol. If libraries failed the protocol, they were then prepared with Illumina TruSeq RiboZero 

Gold protocol according to the manufacturer’s protocol. FFPE RNA was prepared with Illumina 

TruSeq FFPE RiboZero Gold protocol according to the manufacturer’s protocol. RNA libraries 

were sequenced as 2x50 base-paired end read with two samples per lane on an Illumina HiSeq 

2500 sequencers. Reads were aligned with MapSplice (Wang et al., 2010), genes values were 

quantitated with RSEM (Li and Dewey, 2011), and counts were upper quartile normalized and 

log2 transformed for analysis. 

Because of bias in FFPE and Total RNASeq data as compared to mRNAseq data, a 

normalization vector was calculated. Previously published matched samples of FFPE, total 

RNAseq, and mRNA sequenced samples with the same protocol were used to find the mean 

difference for each gene across each platform (Zhao et al., 2014). This was then applied to total 

RNASeq runs where a gene by gene adjustment was made in the total RNAseq samples. 

Droplet PCR for ESR1 Mutations 

Digital droplet PCR for wild-type (WT) and four hotspot ESR1 alleles (D538G, Y537C, 

Y537S, and Y537N) was performed using the Raindrop Source and Sense instruments 

(RaindanceTM Technologies, Billerica, MA). Primers for a 75bp amplicon that includes these 
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hotspot mutations were used in conjunction with locked nucleic acid Taqman probes for wild-

type (conjugated to TET) or mutant ESR1 alleles (conjugated to FAM), purchased from 

Integrated DNA Technologies (IDT, Coralville, IA). The multiplexed genotyping reaction was 

validated using synthesized 125bp DNA fragments (gBlocks, IDT, Coralville, IA). Details of 

primer and probe sequences are available upon request. TaqMan Genotyping Master Mix 

(Applied Biosystems, Foster City, CA) was used for 10-100 ng of Covaris-sheared genomic 

DNA in a 50 µl reaction volume. After PCR amplification in a thermocycler (C1000 Touch™ 

Thermal Cycler, Bio-Rad®, Hercules, CA), the emulsion was analyzed on the Raindrop Sense 

instrument (RainDanceTM Technologies, Billerica, MA) to measure the end-point fluorescence 

signal from each droplet using standard manufacturer’s protocols. The fluorescence intensity 

and duration for each droplet in the FAM and TET channels were analyzed using RainDrop 

Analyst Software II (RainDanceTM Technologies, Billerica, MA). Two-dimensional (FAM and TET 

intensity) plots were made for each sample and gates were used to define graphical areas with 

specific fluorescence properties. The number of droplet events specific for WT or mutant ESR1 

alleles was used to calculate the mutation frequency.  

 

Computational Analyses 

Hierarchical Clustering of Gene Expression. TCGA 1098 primary breast cancers (Ciriello et 

al., 2015) were merged with tissues from this study and median centered. Correlation centered 

hierarchical clustering of the median centered dataset with the PAM50 50 genes was performed 

with Cluster and visualized with Java TreeView. 

Computational re-interrogation of somatic mutations in Related Tumors. Low read 

coverage or low tumor cell purity can cause our rigorous somatic mutation caller to miss 

mutations (Mose et al., 2014; Wilkerson et al., 2014). Thus, we examined high-confident 

somatic mutations from a related individual in all tumors from that patient. First, all of the 

somatic mutations from the tumors within one patient were collapsed into one vector, excluding 
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any guanine to adenine or cytosine to thymine mutations from FFPE tissues. For each mutation 

from a single patient, we then counted the mutant and reference alleles at that position from the 

original BAM file of each tumor from that patient. Variant Allele Fractions (VAF, alternate 

counts/total read counts) were recalculated from the new calls. All mutations from the dataset 

were interrogated in the normal sequence for all tumors in this dataset to account for false 

positives. Mutations with variant allele frequencies greater than 20% in at least two normal 

tissues from unrelated patients were excluded from future analyses. 

DawnRank. We generated a binary matrix of 0 indicating no alteration and 1 indicating any 

alteration (mutation or copy number) for genes in the published DawnRank network (Hou and 

Ma, 2014). We combined TCGA log2 transformed normalized RNASeq data with RAP RNASeq 

data, median centered the data for each gene, and further transformed scores to the absolute 

value. DawnRank was then run for each individual tumor with a mu = 3. DawnRank scores were 

saved, and the top 5% of scores within each tumor were considered to be candidate drivers. 

These candidate drivers were then filtered by non-silent mutations and copy number laterations 

such that if an alteration was present, it was then identified as a driver.  

RNA Interrogation of DNA Mutations. Using the ‘union’ list of mutations for each patient, 

UNCeqR (Wilkerson et al., 2014) was employed to count the number of mutated reads from the 

RNA BAMs at each position within a patient. Mutations with read counts from non-normalized 

RNA counts less than 5 reads in the RNA were considered to be 0. Mutations within each tumor 

were only considered if at least 5 reads of that gene were detected with RNASeq. Any genes in 

which the RNA gene expression of the gene was less than 5 were removed from the total 

number of DNA mutations in that tumor. UNCeqR was additionally run on the de novo mutation 

identification with default parameters. 

Subclonal analysis. SciClone (Miller et al., 2014) was applied to all related tumors for each 

patient using the mutation calls following computational re-interrogation. The final clone for each 

patient was excluded due to wide scatter across all samples. SciClone was then rerun, and 
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clusters were tested for significance using SigClust (Huang et al., 2015). Clusters that 

overlapped, with the same pattern, and non-significant p values were collapsed into one clone. 

The mean VAF of the mutations comprising each clone was then calculated per tumor. Circles 

were then drawn with the radius of the circle proportionate to the mean VAF. 

R Version. All statistical analyses were performed using R v.3.3.0 in RStudio (RStudio Team, 

2015). 
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Results 

Patient Characteristics 

  To explore the genetic evolution and drivers of breast cancer metastasis, we performed 

DNA whole exome sequencing and RNA sequencing for gene expression on 16 primary 

invasive breast cancers and 67 matched metastases (Figure 3.1, Figure 3.2). Our cohort had a 

median age at diagnosis of breast cancer of 45.5 years old, a median time to relapse of 14.5 

months, and overall survival of 36.5 months (Table 3.1). These patients all received at least 1 

chemotherapeutic agent, and all but one patient received radiation, predominantly to the breast 

and/or brain (Table 3.2). 

  We examined the clinical features and intrinsic molecular subtype of each of the primary 

tumors and their matched metastases. We applied the PAM50 subtype predictor (Parker et al., 

2009) to determine the intrinsic molecular subtype (Appendix 3.1). Breast tumors from 4 

patients were positive for estrogen receptor (ER) expression, but negative for HER2 

amplification (ER+/HER2-) at diagnosis. All four of these patients are luminal or second closest 

to the luminal centroid (due to normal contamination). Primary breast tumors from 3 patients 

were clinically HER2-positive: 1 of the HER2-enriched subtype, 1 of the luminal subtype, and 1 

of the basal-like subtype. Breast tumors from 9 patients were triple negative (negative for ER, 

progesterone receptor (PR), and HER2), with 6 patients classified as the basal-like subtype and 

3 patients second closest to the basal centroid but called as normal-like due to normal tissue 

contamination (Appendix 3.1).  
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Figure 3.1. Experimental design. (A) 16 patients with primary breast cancers and matched 
metastases. (B) DNA Whole exome sequencing and RNA sequencing was performed on all 
tumors. (C) Gene expression, mutations and copy number alterations for all tumors were 
determined for each patient, and each tumor specimen. Subclonality analysis was performed 
with SciClone to define clones, then SigClust to perform posterior significance testing on the 
subclones, and hierarchical clustering to depict relationship of subclones and tumors in each 
patient. DawnRank driver analysis evaluated the network impact of copy number alterations and 
mutations to identify individual drivers in each tumor specimen. 
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Figure 3.2. Distribution of tumor specimens for each patient. Diagrammatic view of the 
tumors from the 16 patients in the UNC Rapid Autopsy Program (RAP) that were sequenced 
with both RNA and DNA whole exome sequencing by site of disease (black = sequenced). 
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Table 3.1. Clinical History for each patient. 
 

  

Patient Race

ER Status (0 
= negative; 
1 = positive)

PR Status (0 
= negative; 
1 = positive)

HER2 Status (0 
= negative; 1 = 

positive)
Age at 

Diagnosis

Stage at 
Diagnosi

s

Time to 
relapse 

(months)

Overall 
Survival 
(months)

A1 Caucasian 0 0 0 64 T4N2M1 0 1.5
A2 African American 1 0 0 57 T3N1M1 0 12

A4 Caucasian 1 1 1 42 T4N2M1 0 22

A5 African American 0 0 0 65 T4N0M0 23 26

A7 African American 0 0 0 57 T2N2M0 17 24

A8 Caucasian 1 1 1 45 T1N1M1 0 48

A11 Caucasian 0 0 0 46 T2N0M0 35 56

A12 Caucasian 1 1 0 64 T3N2MX 9 61

A15 Caucasian 0 0 0 59 T4N0M0 8 12

A17 Caucasian 0 0 0 74 T2N3M0 63 72

A20 Caucasian 0 0 0 63 T2N2M0 22 38

A23 Caucasian 0 0 0 49 T4N2M0 17 37

A26 Caucasian 0 1 1 66 T4N0M0 12 14

A28 African American 1 1 1 38 T1N1M0 91 121

A30 Caucasian 0 0 0 53 T2N0M0 12 36

A34 Caucasian 1 1 0 30 T2N1M0 36 73
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Table 3.2. Therapeutic interventions received for each patient. 

Pt Chemotherapy Estrogen-
directed 
therapy 

Her2 
directed 
therapy 

Other 
biologics 

A1 taxol     
A2 doxorubicin/cytoxin letrozole, 

alendronate 
   

A4 doxorubicin/cytoxin, paclitaxel, 
gemcitabine 

 trastuzumab
, navelbine 

  

A5 docetaxel, 5-fluorouracil, epirubicin, 
cyclophosphamide, capecitabine 

  pamidronate 

A7 doxorubicin/cytoxin,  paclitaxel, 
capectiabine, carboplatin 

    

A8 doxorubicin/cytoxin,  paclitaxel, 
capecitabine 

letrozole, 
fulvestrant 

trastuzumab 
lapatinib 

  

A11 doxorubicin/cytoxin,  paclitaxel, 
gemcitabine, carboplatin 

  Ispinesib 

A12 doxorubicin/cytoxin, paclitaxel, 
capecitabine, vinorelbine,  
gemcitabine, carboplatin, irinotican 

tamoxifen, 
letrozole, 
exemestane, 
fulvestrant 

 bevacizumab 

A15 doxorubicin/cytoxin,  paclitaxel, 
carboplatin, capecitabine, bevacizumab 

 lapatinib cetuximab 

A17 fluorouracil/epirubicin/ 
cyclophosphamide, paclitaxel 

tamoxifen    

A20 doxorubicin/cytoxin, paclitaxel, 
gemcitabine, carboplatin, capecitabine, 
vinorelbine 

  bevacizumab, 
denosumab 

A23 doxorubicin/cytoxin,  paclitaxel, 
carboplatin, capecitabine, gemcitabine 

  bevacizumab, 
anti-death 
receptor 5 

A26 capecitabine, doxorubicin/cytoxin, 
paclitaxel 

tamoxifen, 
letrozole 

trastuzumab   

A28 doxorubicin/cytoxin, paclitaxel, 
gemcitabine, vinorelbine 

tamoxifen, 
letrozole, 
luprolide, 
anastrazole, 
exemestane 

trastuzumab
, TDM1 

samarium, 
denosumab 

A30 gemcitabine, doxorubicin, paclitaxel   denosumab 
A34 doxorubicin/cytoxin,  paclitaxel, 

capecitabine, eribulin, carboplatin, 
gemcitabine 

luprolide, 
tamoxifen, 
letrozole, 
goserelin, 
exemestane 

  bevacizumab, 
denosumab, 
everolimus 
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As reported previously (Harrell et al., 2012), gene expression of tumors from an 

individual patient are highly correlated with one another, regardless of spatial and temporal 

distance from the primary tumor and/or exposure to different therapies (Figure 3.3). This result 

was recapitulated in our sample set: of 16 patients, 4 had all specimens from the same patient 

clustered immediately together, and 14 patients had all tumors contained within the same 

subtype-defining dendrogram branch (Figure 3.3). Two patients, A2 and A4, had primaries of 

the luminal subtype with mixed HER2-enriched and luminal metastases. All of the basal-like 

primaries had metastases of the basal-like subtype.  
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Figure 3.3. Hierarchical clustering of 1098 TCGA Primary breast cancers with the RAP 
primaries and metastases. A. Supervised hierarchical clustering using the PAM50 gene set 
with TCGA and RAP tumors. PAM50 subtype represented and positioning of RAP tumors 
shown in the second row of the color bar. Zoomed in view of the dendrogram of each subtype 
showing the location of tumors from each RAP patient for A. basal-like, B. luminal, and C. 
HER2-enriched sample associated clusters.  
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Computational Re-Interrogations of Mutations in Related Tumors Identifies  

Previous work from our group demonstrated that low frequency clones present at 1-5% 

in the primary tumor are enriched to >40% in the related metastases (Hoadley et al., 2016). 

Other groups have also identified an increased sensitivity and specificity of utilizing genomic 

alignments from multiple related tumors in the whole exome space to identify low frequency 

mutations (Josephidou et al., 2015). Based on these results, we investigated whether mutations 

called with high confidence in one tumor from an individual were present in other tumors from 

that same patient.  

To first control for false positive calls, all germline variants in the population were 

removed using dbSNP (Landrum et al., 2014) as well as mutations with ≥ 20% variant allele 

frequency (VAF) in at least two normal tissues from unrelated patients. All high-quality somatic 

mutations across tumors within each patient were computationally re-interrogated from the 

original DNA binary alignment map (BAM) files in each tumor from that patient. Quantification of 

the VAF was calculated as the read depth of the variant allele/total counts at that position. For 

example, in Patient A20, 304 mutations identified with high confidence across all 6 specimens 

from that patient were computationally re-interrogated in each tumor from this patient (Figure 

3.4). For all tumors, a median of 58 mutations were additionally identified per tumor (Figure 3.5). 

A median of 28.6% of mutations would have been missed if not for the computational re-

interrogation method.  
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Figure 3.4. Timing with which somatic alterations are acquired. (A) A heatmap of the variant 
allele frequencies for Patient A20 for all somatic mutations identified following computational re-
interrogation. (B) Each genetic alteration is categorized as a founder alteration if present in the 
primary and at least 1 metastasis (gray); metastasis-shared if present in ≥ 2 metastases and not 
the primary (blue); or metastasis-private if present in only 1 tumor from that patient (pink). Total 
counts for each category and relative proportions within that patient are then calculated. (C) 
Representative drawing of when during the development of metastasis each category of 
mutations could have occurred: founder mutations established in the original breast cancer and 
maintained throughout metastasis (gray); metastasis-shared mutations occurring after 
metastasis but along shared branches of the tree (blue); or metastasis-private mutations, 
acquired at the final site of metastasis (pink). (D) Quantification of the proportion of mutations 
within each category described in (C) before and after computational re-interrogation. 
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Figure 3.5. Computational re-interrogation of high quality mutation calls related tumors. (A) 
Mutation load per tumor before (gray) and after (green) computational re-interrogation. (B) 
Proportion of mutations within each patient were categorized as founder, metastasis-shared, or 
metastasis-private before re-interrogation (gray boxes) and following re-interrogation (green 
boxes). 
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It is critical to understand when during the development of metastasis genetic drivers are 

acquired. Therefore, we wanted to determine whether this computational re-interrogation altered 

our main conclusions of when during the metastatic process somatic mutations are acquired. 

We categorized mutations on when they possibly occurred in the metastatic process: (1) in the 

primary setting and thus shared between the primary and all metastases (founder, gray); (2) 

during metastatic spread, thus shared with at least 2 metastases but not measured in the 

primary (metastasis-shared, blue); (3) or at the final site of metastasis and thus not shared with 

any other tumor in the patient (metastasis-private, pink) (Figure 3.4A). The total number of 

mutations per category was counted, and the proportion of mutations in each category was 

calculated with the denominator including all mutations observed in the metastases (Figure 

3.4B).  

In Patient A20, there are clear metastatic specific clones as well as common founder 

mutations. Additionally, private mutations are measured in every tumor from this patient. This 

can be represented by an evolutionary tree rooted in the primary with branches representing 

shared genetic events in the metastases but not shared with other branches (Figure 3.4C). 

Within Patient A20, computational re-interrogation of mutations altered the distribution: 37% of 

the mutations originally classified as private to 17% with re-interrogation and 5% originally 

classified as founder mutations shifting to 40% of mutations with re-interrogation (Figure 3.4D). 

Computational re-interrogation across the entire cohort significantly altered the 

categorization of mutations: with the original mutation calls, 60% of mutations per patient were 

considered as private and 12% as founders (Figure 3.5B, gray boxes) compared to 32% of 

mutations per patient considered as private and 40% as founders following re-interrogation 

(Figure 3.5B, green boxes). 
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Figure 3.6. Timing of genetic alterations and driver acquisition in metastasis. Categorization of 
DNA alterations into founder alterations (established in the primary and observed in at least 1 
metastasis), metastasis-shared (shared between at least 2 metastases but not the primary), or 
in only one metastasis (private) for (A) mutations and (B) copy number alterations (CNAs). The 
analyses in A and B were repeated for DawnRank drivers in (D) mutations and (E) CNAs. (F) 
Total number of DawnRank driver genes altered by mutation. (G) Total DawnRank driver counts 
for each tumor including both CNA (gray) and mutation (black).  
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The shift in the majority of mutations being considered as ‘private’ to being measured in 

the original primary tumor has significant clinical implications: if the majority of somatic 

mutations are already established in the original breast cancer, these could be potentially 

targeted to prevent future metastatic seeding with effective therapies. We demonstrate a critical 

need for re-interrogation of mutations in related samples. In matched tumor sets, ignoring low 

frequency mutations could alter the conclusions of a study.  

 

Evolutionary Progression of Genetic Alterations in Breast Cancer Metastasis 

To understand when during the metastatic process somatic mutations and copy number 

alterations (CNAs) occurred, we categorized all somatic alterations within each patient into the 

previously described categories of founder, metastasis-shared, or metastasis-private. Of these 

categories, the majority of mutations and CNAs in the metastases were shared with at least one 

other tumor (mutations: 40% founder; 28% metastasis-shared; 32% private; and for CNAs: 37% 

founder; 40% metastases-shared; 25% metastasis-private; Figure 3.6A-B). Each tumor had a 

median of 185 genes mutated and 8706 genes copy number altered. Only 3 non-synonymous 

mutated genes were common across the dataset: TP53 (13/16 patients), MT-ATP6 (10/13), and 

TTN (9/13); in contrast, large portions of the genome were commonly amplified or deleted in 

most patients across the dataset. 

Many mutations and copy number alterations are likely passenger alterations without 

functional biologic consequences. We therefore used a novel computational tool called 

DawnRank (Hou and Ma, 2014) that integrates DNA alterations, protein-protein interaction 

network, and the expression of these networks via RNA gene expression data for each 

individual tumor. By evaluating the perturbation of the network through RNA gene expression 

data, DNA alterations can be scored and identified as “genetic drivers” on an individual patient 

level (Hou and Ma, 2014). DawnRank network analysis was applied to each tumor, and genes 

with DawnRank network scores in the top 5% of all genes (of 8710 total genes) were then 
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examined for DNA alteration via somatic mutation and CNA. Genes with copy number alteration 

and/or mutation within this top 5% were considered as “genetic drivers”. 

Using this methodology, genetic drivers were even more likely to be “founder” events 

that were established in the primary breast cancer and maintained throughout metastasis when 

compared to the original mutation spectrum (Figure 3.6D; mutations: median of genetic drivers 

in founders was 56%; metastasis-shared was 11%; metastasis-private was 18%). Genetic 

drivers as a result of CNA were also more likely to be “founder” events than the original 

proportions (Figure 3.6E; median of genetic drivers in founders was 41%; metastasis-shared 

was 41%; metastasis-private was 21%). CNAs again comprised the numerically dominant 

somatic mechanism behind driver genes, with each tumor having on average, 6 mutation-based 

driver alterations (Figure 3.6F; Figure 3.6G, black) as compared to 189 CNA-based driver 

alterations (Figure 3.6G, gray). 
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TP53 Drives Breast Cancer Metastasis 

We next examined common DawnRank drivers and the timing with which these 

alterations were established during the progression of metastasis. All 16 patients in our cohort 

harbored TP53 alterations identified by DawnRank as drivers, with 14/16 present in the primary 

and all metastases. Interestingly, tumors from 13/16 patients’ primary tumors had a TP53 

mutation that was not only in the primary, but in every metastasis from that patient (Figure 

3.7A); tumors from the additional 3 patients had copy number loss of TP53, also identified by 

DawnRank as drivers. TP53 mutations were diverse across the protein and altered protein 

function regardless of subtype: Patient A12’s luminal tumors had a 45 base deletion between 

exons 4/5 incorporating the splice site, patient A8’s HER2-enriched tumors had a premature 

stop codon introduced at Arg306*, and tumors from 9/10 of the basal-like patients had either 

nonsense or deleterious missense mutations (Bouaoun et al., 2016).  

RNASeq validation of the presence of these TP53 mutations utilized UNCeqR 

(Wilkerson et al., 2014) in two ways: re-interrogating known mutations in the RNA BAM file as 

well as de novo discovery of mutations with combined DNA and RNA BAM files. Interestingly, 

re-interrogation UNCeqR identified 3/16 mutations while the de novo caller identified an 

additional 4/16 TP53 mutations. These 7 mutations comprise the missense and non-

synonymous TP53 mutations. 6 additional mutations in TP53 were not observed in the RNA: the 

45 bp deletion in A12, 2 frame shift deletions, 2 splice site deletions, and an in-frame deletion 

previously validated with whole genome sequencing (Hoadley et al., 2016).  

DawnRank driver identification of TP53 in every patient in our dataset coupled with 

RNASeq validation of the expression of most of these mutations provides conclusive evidence 

of TP53 disruption as a critical, early event in the formation of aggressive breast cancer. TP53 is 

the only founding driver disrupted by mutation in our metastatic breast cancer patients.  
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Figure 3.7. Timing and frequency of predicted drivers in primary and metastatic breast cancers. 
(A) DawnRank drivers from somatic mutations in at least 2 patients in the cohort (blue gene = 
only luminal patients; red gene = only basal patients). DawnRank copy number (B) 
amplfications and (C) deletions in 14/16 patients. The most frequent copy number drivers seen 
exclusively in basal-like patients for (D) gains and (E) losses are presented. Each driver is 
annotated with chromosomal cytoband location and characterized per patient as a founder 
alteration (gray), metastasis-shared (blue), or metastasis-private (pink) as described in Figure 2. 
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Cohort-Wide and Subtype-Specific Genetic Drivers of Breast Cancer Metastasis 

Beyond TP53, genetic drivers caused by mutation were observed in only 3/16 patients: 

ESR1, PIK3CA, and DMBT1 (Figure 3.7A). All other mutation drivers were identified in only 1 or 

2 patients in the dataset, and many were specifically observed in the basal-like patients (Figure 

3.7A, red font).  

In contrast to the low frequency of common mutational drivers in our dataset, many copy 

number amplifications and deletions were consistently identified as drivers in almost all patients. 

Previously identified common regions of amplification in breast cancer (8q, 5p, and 1q) included 

the DawnRank hits ANGPT1, LYN, SDC2, SHC1, GDNF, and TERT identified as drivers in 

15/16 patients, with 6/10 of these events showing amplification in the primary that was 

maintained in metastases in those patients (Figure 3.7B, gray). Common copy number losses 

included FAS, a critical member of the apoptosis cascade, PIK3R1, the repressive subunit of 

PIK3CA, and AURKB, a central inhibitor of the cell cycle pathway Figure 3.7C). 

In an analysis restricted to the basal-like subset of patients (n=10), we collectively 

identified common copy number amplifications of genes involved in cell cycle genes, specifically 

the G1/S transition including CCNE1, CUL1, CDK5 and chromatin associated-proteins RBBP4 

and HDAC1 (Figure 3.7D). BCAN gain specifically in the basal-like patients has not been 

previously described in breast cancer but has been shown to be highly overexpressed in 

aggressive gliomas via STAT3 signaling (Natesh et al., 2015). Interestingly, concurrent basal-

specific copy number loss of non-canonical STAT signaling and brain-specific genes include 

ADRBK1, ADRA2A, and DUSP1 (Figure 3.7E). Basal-like copy number loss of the DNA 

damage cascade regulator RAD51 was also called as a common basal-specific driver (Figure 

3.7E). 
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Resistance to Aromatase Inhibitor Therapy via ESR1 Mutations is Subtype Dependent 

DawnRank driver analysis identified ESR1 mutations specifically in the metastatic 

samples only in 3 ER-positive, luminal patients (Figure 3.7A). ESR1 mutations in the binding 

pocket of the estrogen receptor have been previously described as effectors of resistance 

mechanisms to estrogen suppression by aromatase inhibitors (AIs) (Li et al., 2013; Miller et al., 

2016). Upon re-examining the medical histories of the patient’s in this dataset, 6 patients had 

ER-positive breast cancer and all had received both a nonsteroidal aromatase inhibitor 

(letrozole) and a steroidal aromatase inhibitor (exemestane). Three of the 6 ER-positive patients 

exhibited ESR1 mutations in the metastases but not the primary, and all were called as drivers 

by DawnRank. Interestingly, the 3 ER-positive patients who had received AIs but did not 

develop ESR1 mutations were not of the luminal molecular subtype: A26 = basal-like; A8 = 

HER2-enriched; A2 = mixed luminal/HER2-enriched. 

Confirmatory testing of ESR1 mutations in these 3 patients’ tumors was performed via 

two orthogonal approaches: expression of the mutant version in the RNA via UNCeqR and 

confirmation of DNA mutations with the highly sensitive Droplet PCR system RainDrop. In 

Patient A34, a T to A mutation at chr6:152419922 was called as a somatic mutation in the 

lymph node metastasis (A34-LN-Met; Figure 3.8A, gray), two liver metastases (data not shown), 

and the pancreatic metastasis upon re-interrogation (A34-Pancreatic-Met; Figure 3.8A). This 

variant was confirmed in the RNASeq BAM file for all metastases from this patient (Figure 3.8B). 

Fluorescence measurement of wild-type (y-axis) versus mutant (x-axis) ESR1 confirmed mutant 

ESR1 in both the A34-LN-Met (Figure 3.8C) and A34-Pancreatic-Met (Figure 3.8D) at VAFs 

extremely comparable to those identified in the DNA.  Droplet PCR validation across all 3 

patients demonstrated a sensitivity down to 0.4% VAF in the DNA when using the re-

interrogation method. 

In addition to Patient A34, Patient A12’s and Patient A28’s metastases also exhibited 

ESR1 mutations that cause constitutive activation of ESR1 in the presence of AI therapy (Li et 
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al., 2013, Miller et al., 2016). In A12, 2 of the 5 metastases contained a p.Tyr537Ser mutation in 

ESR1, which was not observed in the primary. Interestingly, Patient A28 had 1 metastasis with 

the p.Tyr537Asn mutation while the other 3 metastases from this patient exhibited a different 

p.Ser463Pro mutation.  
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Figure 3.8. Resistance to aromatase inhibitor therapy via ESR1 mutations. (A) DNA sequencing 
alignment of Patient A34’s ESR1 mutation: wild-type in the primary, chr6-152419922-A-T 
mutation originally discovered in the lymph node metastasis (A34-LN-Met), and discovered in 
the pancreatic metastasis (A34-Pancreatic-Met) following re-interrogation. (B) RNA Sequencing 
alignment at the same genomic location, confirming the re-interrogated mutation in A34-
Pancreatic-Met. Confirmatory testing with Droplet PCR fluorescence quantified wild-type (y axis) 
versus mutant (x axis) ESR1 in (C) A34-LN-Met and (D) A34-Pancreatic-Met. (D) Comparison of 
the variant allele frequency measured from Droplet PCR (y-axis) versus whole exome 
sequencing (x axis) for three luminal patients who received aromatase inhibitor therapy: Patient 
A12 (green dots), A28 (red dots), and A34 (blue dots). R2 and p value are reported for the 
Spearman correlation of the two methods. 
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Multiclonal Seeding of Metastasis is Present in ER+ and ER- Patients 

The subclonal heterogeneity of primary breast cancer was elegantly demonstrated in 

recent publications (Miller et al., 2016; Yates et al., 2015). Whole genome sequencing of two 

triple-negative, basal-like patients in this dataset also demonstrated multiclonal seeding of 

metastasis (Hoadley et al., 2016). To evaluate the clonal evolution of metastasis, we performed 

subclonality analysis with SciClone (Miller et al., 2014). Posterior significance testing of 

SciClone clusters with SigClust was applied to clusters, wherein the radius of the point plotted 

demonstrates the mean variant allele fraction (VAF) of the mutations in a given cluster. 

Of the 16 patients examined, 13 patients had multiple clones in the primary that 

collectively seeded each distant metastasis (Figure 3.9, Figure 3.10, Figure 3.11A). Patients A8, 

A17, and A30 had only a single clone detected in the primary (Figure 3.11A). Within all patients, 

the metastases were multiclonal, meaning each metastasis had at least two clones present. 

Most patients also had metastasis-shared clones, indicating further evolution after metastasis 

occurred. This could be a result of either one metastasis seeding other metastases, clones that 

arose in a separate part of the primary that were not sequenced, or clones present in the 

primary that simply were below our level of detection with NGS-based methods. 
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Figure 3.9. Clonality plots for each basal-like patient. Clones as determined by SciClone and 
posteriorly tested with SigClust are plotted with the radii of the circle proportional to the mean 
variant allele frequency of the mutations in that clone per each tumor. Total number of mutations 
per clone are demonstrated in the last column, and tumor purity is reported at the bottom of 
each plot for A. A1; B. A15; C. A23; D. A26; E. A7; F. A5; G. A30. 
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Figure 3.10. Clonality plots for luminal and HER2-enriched patients. Clones as deter- mined by 
SciClone and posteriorly tested with SigClust are plotted with the radii of the circle proportional 
to the mean variant allele frequency of the mutations in that clone per each tumor. Total number 
of mutations per clone are demonstrated in the last column, and tumor purity is reported at the 
bottom of each plot for A. A28; B. A12; C. A4; D. A2; E. A8. 



 
 

78 

 
Figure 3.11. Metastatic seeding patterns. (A) Clones present in the primary and metastases 
(founder) as compared to a clone shared by at least 2 metastases in a given patient (metastatic 
clone), arranged according to molecular subtype. (B-E) Each subclone detected in a patient is 
represented as a separate color along the x axis for each primary and metastasis down the y 
axis. The radius of each circle is proportionate to the mean variant allele frequency of that clone 
in each tumor. Private mutations were excluded in clonality analysis. Tumor purity estimates are 
reported on the bottom row, and the total number of mutations per clone are in the right-most 
column. Multi-clonal seeding patterns are observed in basal-like patients (B) A11, (C) A20, and 
luminal patient (D) A34. Monoclonal patterns are identified in 3 patients including basal-like 
patient (E) A17. 
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Clonality plots for basal-like patients are presented in Figure 3.9 and for the luminal and 

HER2-enriched patients in Figure 3.10, with four interesting cases presented in Figure 3.11B-E. 

With each row indicating a distinct clone and each column representing a different tumor, the 

radius of the circle plotted is proportionate to the mean VAF of the mutations in the clone in 

each tumor. Multiclonal seeding was observed in basal-like patients A11 and A20 (Figure 

3.11B-C), and in luminal patient A34 (Figure 3.11D). In Patient A11, the primary contained four 

founding clones present in all specimens (green, purple, orange, and teal), and a subclone 

(gold) that seeded the brain, liver, and cerebellar metastases. The pink subclone is enriched in 

the lung and rib metastases as compared to the brain, liver, and cerebellar metastases. A 

similar complex subclonal pattern was seen in patient A20, with two subclones predominantly 

present in the left lung metastasis and brain metastasis (gold and green) and two separate 

subclones in the liver, adrenal, and right lung metastases (brown and gray). The primary of A20 

also contained 3 subclones that seeded all metastases (purple, organe, and teal). Patient A34, 

mentioned earlier with ESR1 mutations, had an equally complex subclonal pattern, with 5 

subclones present in the primary and in every metastasis at different variant allele fractions 

identified in individual metastases (Figure 3.11D).  

Patient A17 demonstrates monoclonal seeding, with the dominant clone in the primary 

(teal) further evolving separately in the metastases (Figure 3.11E). This pattern was observed in 

3/16 patients, confirming previous reports of monoclonal seeding in breast cancer (Krøigård et 

al., 2015). Private mutations were observed in almost all tumors across the dataset (but are not 

displayed), indicating continued evolution after metastasis, even within each primary tumor. 
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Discussion 

The molecular mechanisms driving the metastatic process are critical to understand in 

order to better prevent and treat existing metastases. Utilizing the UNC Rapid Autopsy Program 

and next generation sequencing of multiple tumors from 16 breast cancer patients, we 

demonstrated that metastasis is largely a result of multiclonal seeding of breast cancer 

metastases in the majority of cases examined. Moreover, our data illustrates that the majority of 

genetic drivers were established in the primary breast cancer and maintained throughout the 

metastatic process; this was observed in both luminal and basal-like breast cancers. We also 

demonstrate that TP53 is the only mutational driver common across all subtypes of breast 

cancer metastasis, and that the majority of drivers were predominantly altered by virtue of 

somatic copy number alterations. Finally, we provide evidence that computational re-

interrogation of high quality somatic mutations is a requirement when studying related tumors, 

as previously classified private mutations are often, in-fact, shared across tumors often with 

lower coverage. 

Previous work using two patients identified multiclonal seeding as a mechanism in 

breast cancer metastasis with the majority of functional mutations established in the primary and 

maintained throughout metastasis (Hoadley et al., 2016). Here, we build upon this very small 

study and demonstrate, at least for basal-like tumors, that multiclonal seeding is a common 

mechanism of metastasis. In patients where multiclonal seeding occurred, the metastasis 

formation must have occurred via a large mass of cells breaking off from the primary (i.e. large 

enough to contain 2, often 3 subclones), which then travels to the distant site and seeds this 

site. This has significant clinical implications including that if the metastasis seed is a clump of 

cells with distinct subclonal populations, then successful therapy to prevent metastasis that are 

focused on inhibiting individual cell migration/motility may have no effect upon tumors that use 

multiclonal seeding.  
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Historically, point mutations or small intragenic in/dels have been regarded as the driving 

force behind oncogenesis. One of the novel aspects of this work was to utilize a more 

functional-based assessment of genetic drivers, DawnRank, which integrates prior knowledge of 

protein interaction networks with mutations, copy number alteration, and RNA expression data 

to refine our ability to identify drivers for each individual patient. By contrast, DNA-only based 

methods can only identify drivers based upon correlation to previous datasets from which 

population-based enrichments of specific genes were determined. Our novel, functional-based 

genetic driver approach demonstrated that the majority of drivers were the result of copy 

number alteration, which also was suggested from a DNA-only approach (Ciriello Nat Gen 

2014). Finally, our results confirm that copy number alterations are established early in the 

development of breast cancer and maintained throughout the evolution of breast cancer 

metastasis (Krøigård et al., 2015). This is contrast to earlier literature in breast cancer 

metastasis demonstrating that a majority of drivers are private and acquired at the final site of 

metastasis (Brastianos et al., 2015).  

We discovered that computational re-interrogation of high quality mutations in one tumor 

are often at lower coverage in the original primary tumor. Furthermore, when considering 

DawnRank computationally predicted functional drivers, the vast majority of drivers are indeed 

established in the primary. In genomic studies of matched tumors from a single patient, it is 

critical to re-examine the sequencing files to fully characterize the timing with which mutations 

are acquired. Clinically, if most of the drivers of breast cancer metastasis are indeed established 

in early development of breast cancer, more effective therapies could possibly prevent or treat 

existing metastases. 

Strikingly, TP53 mutations were seen repeatedly in both basal-like and luminal breast 

cancers, with the mutation always established in the primary and maintained in every 

metastasis from that patient. Beyond TP53, no other driver mutations were present in more than 

3/16 patients in this dataset. Driver analysis identified ESR1 mutations in patients with luminal 
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subtype breast cancers who received aromatase inhibitors (AIs) in the binding pocket of ESR1, 

consistent with previous reports demonstrating the mechanism of resistance to AIs (Li et al., 

2013; Miller et al., 2016). Interestingly, patients who received aromatase inhibitors for non-

luminal yet clinically ER positive tumors did not demonstrate ESR1 resistance mutations in the 

metastatic setting. This molecular diversity of ER-positive tumors (Ciriello et al., 2013; Gatza et 

al., 2014) may explain differential response of many patients’ metastases to aromatase inhibitor 

therapy. 

Our study had a number of limitations, most notably including the sample size of 16 

patients; this inhibited our ability to identify recurrent somatic mutations common to the 

metastatic setting, although our sample size was large enough to identify the importance of 

TP53 and ESR1.  A larger sample size will also be needed to identify site-specific (i.e. lung or 

brain) differences and adaptations. In addition, with only 2 HER2-enriched patients in our 

analysis, additional patients in this subtype are necessary to confirm clonality of metastasis and 

understand resistance mechanisms that develop in HER2-positive breast cancer. Finally, many 

of the primary breast cancers in this dataset were treated with neo-adjuvant (preoperative) 

therapy prior to mastectomy. Future studies comparing matched therapy-naïve, post-neo-

adjuvant therapy, axillary lymph nodes, liquid biopsies, and distant metastases will be needed to 

understand the earlier steps of clonal evolution.  

In summary, this study validates and further expands upon the compelling evidence of 

multiclonal seeding across multiple subtypes of breast cancer, especially for TNBC/Basal-like 

tumors. Additionally, we demonstrate that most genetic drivers arise from copy number 

alterations. The mechanism to generate genetic diversity is largely unknown; however, the 

consistency across our cohort and previous literature suggests that TP53 dysfunction is an early 

and critical event in the development of aggressive breast cancer. Despite the high degree of 

heterogeneity in primary breast cancer (Yates et al., 2015) maintained through metastasis via 

multiclonal seeding, these results also show that the majority of genetic drivers are established 
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in the primary breast cancer and maintained throughout metastasis. This gives hope that 

therapeutic targeting of the founding events that drive the metastatic phenotype might prevent 

metastatic spread or inhibit the progression in the advanced setting.  
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APPENDIX 3.1: PAM50 Analysis of A16 Tumors 

Sample Name 
Tissue 
Type 

RNASeq 
Method Basal Her2 LumA LumB Normal Call 

A11.PT.FFPE FFPE Ribo0 0.60 0.07 -0.54 0.02 -0.08 Basal 

A17.Primary.FFPE FFPE Ribo0 0.24 
-

0.08 -0.02 -0.23 0.32 Normal 

A2.Primary.FFPE FFPE Ribo0 -0.11 
-

0.17 -0.01 0.27 -0.21 LumB 

A20.Primary.FFPE FFPE Ribo0 0.63 
-

0.38 -0.23 -0.33 0.34 Basal 
A23.Primary.FFPE FFPE Ribo0 0.81 0.01 -0.67 -0.09 -0.08 Basal 
A23.LN.Met.FFPE FFPE Ribo0 0.79 0.09 -0.74 0.05 -0.19 Basal 

A26.Primary.FFPE FFPE Ribo0 0.17 
-

0.54 0.22 -0.25 0.45 Normal 

A28.PT.FFPE FFPE Ribo0 -0.02 
-

0.62 0.52 -0.45 0.66 Normal 

A30.Primary.FFPE FFPE Ribo0 -0.07 
-

0.55 0.59 -0.47 0.75 Normal 

A34.Primary.FFPE FFPE Ribo0 -0.25 
-

0.53 0.67 -0.37 0.68 Normal 

A1.LUNG.MET FF polyA 0.52 
-

0.10 -0.24 -0.51 0.39 Basal 

A1.ADRE.MET2 FF polyA 0.58 
-

0.17 -0.31 -0.37 0.29 Basal 

A1.AX.LN.MET FF polyA 0.58 
-

0.05 -0.35 -0.36 0.25 Basal 

A1.PRIMT.2 FF polyA 0.56 
-

0.09 -0.29 -0.43 0.31 Basal 

A1.LIV.MET2 FF polyA 0.62 
-

0.12 -0.37 -0.35 0.25 Basal 

A1.SPIN.MET1 FF polyA 0.69 
-

0.13 -0.47 -0.33 0.21 Basal 
A11.BRAIN.MET FF polyA 0.57 0.03 -0.48 -0.19 0.00 Basal 
A11.LUNG.MET FF polyA 0.56 0.08 -0.52 -0.10 -0.07 Basal 
A12.LIV.MET FF polyA -0.39 0.10 0.10 0.30 -0.15 LumB 

A12.SkullMet FF polyA -0.17 
-

0.20 0.08 0.23 -0.13 LumB 

A12.AdrenalG.Met FF polyA -0.39 
-

0.24 0.49 0.03 0.27 LumA 

A12.PleuraMet FF polyA -0.36 
-

0.08 0.24 0.18 0.07 LumA 
A12.LN.Met.subcarinal FF polyA -0.13 0.04 -0.02 0.11 -0.06 LumB 

A12.RLL.MET FF polyA -0.28 
-

0.22 0.28 0.02 0.22 LumA 

A12.PRIMT020076B FF polyA -0.64 
-

0.05 0.53 0.10 0.03 LumA 

A15.LiverMet FF polyA 0.54 
-

0.11 -0.28 -0.43 0.33 Basal 

A15.ChestWallMet FF polyA 0.41 
-

0.04 -0.15 -0.44 0.40 Basal 

A15.PRIMT070427B FF polyA 0.61 
-

0.12 -0.44 -0.27 0.14 Basal 



 
 

85 

A15.LN.MET FF polyA 0.55 
-

0.14 -0.35 -0.30 0.19 Basal 

A15.MediastnMet FF polyA 0.42 
-

0.06 -0.14 -0.45 0.41 Basal 
A17.3.LivMet.1 FF polyA 0.55 0.07 -0.40 -0.33 0.25 Basal 
A17.9.ChestMet FF polyA 0.53 0.09 -0.41 -0.36 0.28 Basal 
A2.LungMet FF polyA -0.27 0.21 0.08 0.04 -0.01 Her2 
A2.LN.Met.Subcarinal FF polyA -0.25 0.12 0.13 -0.02 0.06 LumA 

A20.BrainMet FF polyA 0.67 
-

0.26 -0.33 -0.45 0.33 Basal 

A20.AdrenalMet FF polyA 0.69 
-

0.21 -0.43 -0.36 0.25 Basal 

A20.LungMet.L FF polyA 0.67 
-

0.22 -0.32 -0.48 0.39 Basal 

A20.LivMet FF polyA 0.67 
-

0.08 -0.53 -0.26 0.16 Basal 

A20.LungMet.R FF polyA 0.68 
-

0.18 -0.41 -0.41 0.31 Basal 

A23.BrainMet.3 FF polyA 0.67 
-

0.09 -0.38 -0.44 0.27 Basal 
A23.PleuraMet FF polyA 0.62 0.00 -0.41 -0.31 0.23 Basal 

A23.BrainMet.2 FF polyA 0.67 
-

0.08 -0.40 -0.38 0.24 Basal 

A23.BrainMet FF polyA 0.63 
-

0.11 -0.35 -0.46 0.28 Basal 

A26.Lung.Met.2 FF polyA 0.57 
-

0.06 -0.47 -0.17 0.04 Basal 

A26.Lung.Met.1 FF polyA 0.39 
-

0.06 -0.46 -0.09 -0.02 Basal 
A26.SoftTissueMet FF polyA 0.39 0.11 -0.50 -0.08 -0.17 Basal 
A28.LungMet.LLL FF polyA -0.42 0.10 0.29 0.25 -0.10 LumA 

A28.LivMet.1 FF polyA -0.54 
-

0.10 0.49 0.20 0.04 LumA 

A28.LungMet.RUL FF polyA -0.49 
-

0.15 0.48 0.14 0.07 LumA 

A28.AdrenalMet FF polyA -0.26 
-

0.01 0.15 0.22 -0.06 LumB 

A28.PancreasMet FF polyA -0.49 
-

0.16 0.48 0.11 0.12 LumA 
A28.DuraMaterMet FF polyA -0.19 0.01 0.11 0.20 -0.05 LumB 
A30.LivMet.R FF polyA 0.69 0.12 -0.46 -0.33 0.17 Basal 
A30.LivMet.L FF polyA 0.75 0.11 -0.53 -0.33 0.11 Basal 

A30.BrainMet.L4 FF polyA 0.69 
-

0.09 -0.32 -0.54 0.29 Basal 

A30.BrainMet.Occi FF polyA 0.70 
-

0.11 -0.43 -0.32 0.15 Basal 

A30.BrainMet.R FF polyA 0.76 
-

0.09 -0.42 -0.42 0.18 Basal 

A34.PancreasMet FF polyA -0.42 
-

0.28 0.61 -0.14 0.41 LumA 

A34.LiverMet.L FF polyA -0.65 
-

0.11 0.61 0.14 0.13 LumA 
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A34.LN.Met FF polyA -0.56 
-

0.11 0.51 0.18 0.06 LumA 

A34.LiverMet.R FF polyA -0.57 
-

0.19 0.63 -0.02 0.22 LumA 
A4.LLL.MET FF polyA 0.11 0.42 -0.26 -0.09 -0.10 Her2 

A4.PRIMT020306B FF polyA -0.18 
-

0.39 0.50 -0.31 0.44 LumA 

A4.LUL.MET FF polyA -0.21 
-

0.05 0.46 -0.46 0.50 Normal 

A5.SKIN.Met.L FF polyA 0.69 
-

0.10 -0.49 -0.22 0.13 Basal 

A5.SKIN.Met.R FF polyA 0.61 
-

0.13 -0.40 -0.29 0.24 Basal 

A5.PRIMT030065B FF polyA 0.71 
-

0.17 -0.49 -0.19 0.10 Basal 

A7.RIB.MET FF polyA 0.75 
-

0.06 -0.41 -0.41 0.20 Basal 

A7.LUNG.MET1 FF polyA 0.70 
-

0.15 -0.33 -0.47 0.35 Basal 
A7.LIV.MET1 FF polyA 0.74 0.01 -0.54 -0.29 0.15 Basal 

A7.PRIMT020552B FF polyA 0.78 
-

0.28 -0.36 -0.54 0.43 Basal 

A7.KIDNYMET FF polyA 0.56 
-

0.06 -0.23 -0.46 0.37 Basal 
A8.LUNG.MET FF polyA -0.16 0.50 -0.25 0.16 -0.29 Her2 
A8.030222BSPIMET FF polyA -0.39 0.40 0.08 0.22 -0.18 Her2 
A8.LIV.MET FF polyA 0.00 0.49 -0.34 0.26 -0.32 Her2 
A8.OVA.MET FF polyA -0.20 0.19 0.09 -0.13 0.16 Her2 
A8.SPIN.MET FF polyA -0.12 0.11 0.13 -0.27 0.25 Normal 
A11.RIB.MET FF Ribo0 0.58 0.08 -0.50 -0.26 0.07 Basal 
A11.CELEB.MET FF Ribo0 0.56 0.03 -0.44 -0.27 0.12 Basal 
A11.LIV.MET FF Ribo0 0.60 0.03 -0.51 -0.22 0.03 Basal 

A15.LUNG.MET FF Ribo0 0.40 
-

0.25 -0.03 -0.65 0.54 Normal 
A2.LivMet FF Ribo0 0.10 0.00 0.01 -0.35 0.23 Normal 

A7.BRAIN.Met FF Ribo0 0.68 
-

0.15 -0.26 -0.57 0.42 Basal 
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CHAPTER 4 – INTEGRATED MUTATIONS AND COPY NUMBER COMPUTATIONAL DRIVER 
CLASSIFICATION IDENTIFIES NOVEL AND KNOWN SUBTYPES OF BREAST CANCER 

Preface 

 This manuscript is a shared first co-authorship between Jack Hou and myself. Grace 

Silva curated the TCGA and METABRIC copy number data. Jack Hou created the DawnRank 

method with Jian Ma, identified the subgroups, and performed the ClaNC classification. The 

classification was edited by myself and Dr. Charles Perou. I performed all subsequent analyses. 

Dr. Perou conceived this project. 

 

Introduction 

Breast cancer remains the second leading cause of cancer related death in women each 

year. Breast cancer is a heterogeneous disease with distinct molecular and clinical subgroups 

(Perou et al., 2000); however, even patients within the same molecular subgroup can have 

highly variable first sites of metastasis and differential response to targeted therapeutics(Carey 

et al., 2006; Ciriello et al., 2013). Identification of the underlying drivers of breast cancer could 

help identify the molecular cause of this heterogeneity while concurrently providing novel 

therapeutic targets.  

Large efforts to identify the genetic underpinnings causing breast cancer have led to 

unprecedented amounts of both DNA and RNA genomic data (Cancer Genome Atlas, 2012; 

Ciriello et al., 2015; Curtis et al., 2012). Genomic instability is a hallmark of cancer, leading to 

many mutations and copy number alterations per tumor; however, the significance of these 

alterations often is not well understood. Previous efforts to identify drivers rely heavily on 

mutation data, defining drives as those genes with mutations above the background rate of 
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mutation (Dees et al., 2012b; Forbes et al., 2015; Lawrence et al., 2013). Copy number 

alteration (CNA), however, is known to be an early, common, and critical factor in the 

development of breast cancer (Cancer Genome Atlas, 2012; Hoadley et al., 2016; Krøigård et 

al., 2015). Additionally, CNAs alter large numbers of genes in the same area of the genome, 

making it difficult to identify the actual driver in an area of alteration. Genetic driver analyses 

incorporating both mutation and CNAs provide a novel method of defining breast cancer drivers. 

Integration of RNA gene expression network analyses can accurately reflect oncogenic 

pathway alteration. DawnRank (Hou and Ma, 2014) allows for the integration of RNA gene 

expression, DNA mutations, and DNA copy number data. The proportion of drivers from CNA as 

compared to mutation is not well known. Additionally, it is not well known if drivers on an 

individual tumor level are consistent within and across subtypes or private to a tumor. A better 

understanding of the biology driving breast cancer needs to be explored with the hopes of 

identifying novel, tractable therapeutic targets. 

In this analysis, we have applied the novel computational method DawnRank (Hou and 

Ma, 2014), which predicts potential driver genes in individual samples, to the Cancer Genome 

Atlas breast cancer freeze set (Ciriello et al., 2015) followed by ConsensusClusterPlus 

(Wilkerson and Hayes, 2010) to identify novel subgroups. A ClaNC classifier (Dabney, 2006) 

was then identified, and the classifier applied to METABRIC (Curtis et al., 2012; Pereira et al., 

2016) for validation. Finally, we characterize the molecular and clinical phenotypes of each 

subgroup with additional analyses of publicly available clinical data, RNA gene expression 

signatures, protein expression, and survival outcomes.  
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Methods 

Patient sample selection 

We selected tumors with gene expression, mutation, and copy number data from The 

Cancer Genome Atlas (TCGA) breast cancer dataset (n = 871) and the Molecular Taxonomy of 

Breast Cancer International Consortium (METABRIC) dataset (n = 1,992). We randomly 

selected 500 samples from each dataset, keeping relative distribution of PAM50 subtypes 

consistent between the two datasets. The composition of samples is 19.3% Basal, 10.9% Her2, 

39.5% Luminal A, and 30.3% Luminal B. Normal-like breast cancers are not included in this 

analysis.  

DawnRank score calculation 

To assess a mutation or copy number alteration’s impact on the differential gene 

expression of downstream genes in the network, DawnRank (Hou and Ma, 2014) was applied. 

Briefly, gene networks were built from both curated and non-curated human gene interactions 

obtained from the MEMo paper (Ciriello et al., 2012) and KEGG analyses (Kanehisa et al., 

2012). DawnRank’s default dynamic damping factor parameter μ was 3, and the default 

Condorcet penalty parameter 𝛿 0.85. Gene expression data was first converted into a Z-score. 

DawnRank scores were next calculated according to the previously published method, such that 

the rank reflects their driver potential in a given sample. A non-parametric score based on the 

rank-order of DawnRank genes in each sample was used due to the uncertainty that individual 

DawnRank scores followed a distribution (QQ correlation 0.569).  

For each patient, segmented CNAs were converted into a discrete copy number gene 

matrix, with significant segment means greater than .1 assigned to 1 and means less than -.1 

assigned to -1. Using the hg19 gene annotation, genes that were completely encompassed 

within a segment based on genomic location were assigned that segment's discrete copy 

number value. For mutations, a mutation in known tumor suppressors were assigned -1 while 

mutations in known oncogenes are assigned 1 (Schroeder et al., 2014). If no mutation or copy 
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number alteration is present, the gene has a score of 0. DawnRank scores were converted into 

a rank-based percentage and then multiplied by both the mutation and copy number alteration 

matrices. Thus, DawnRank scores ranged from -100 (copy number loss/tumor suppressor 

mutation) to 100 (copy number gain/oncogene mutation). Only tumors with at least 5 non-zero 

DawnRank genes were further considered. 

Cohort level DawnRank scores were also calculated using a modified Condorcet voting 

scheme to assess the population-level driver potential of a given gene, as previously described 

(Hou and Ma, 2014). A p-value was calculated by fitting a normal distribution over the cohort-

level scores. Only genes with a cohort-wide p-value < 0.05 were considered for subtype 

classification.  

Alteration based subtype classification using consensus clustering 

TCGA DawnRank scores were clustered using  ConsensusClusterPlus (Wilkerson and 

Hayes, 2010), testing k =2 to k = 10 with 1,000 iterations and 80% sampling. Sample distances 

were calculated using the Pearson distance over 1,000 iterations. k  = 5 was selected as the 

maximum number of groups with the minimal number of misclassifications. 

Validation classifier 

To define a robust classifier, we employed ClaNC (Dabney, 2006). ClaNC ranks features 

based on t-statistics and then employs a custom Linear Discriminant Analysis to define 

centroids for each group. TCGA DawnRank drivers were tested with ClaNC beginning with 10 

features and increasing by 5 features with the default parameters. Performance of the ClaNC 

classifier was defined by comparing misclassification rate of TCGA tumors with the ClaNC 

classifier to ConsensusClusterPlus group identity.  

 

Statistical analyses  

Gene Expression Signatures. 420 previously published signatures were curated from multiple 

sources (Bindea et al., 2013; Fan et al., 2011; Gatza et al., 2010; Hoadley et al., 2007; Hu et al., 
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2009; Iglesia et al., 2014). For each signature, the mean of the genes comprising that signature 

was calculated for each tumor including TCGA normal breast samples, the 1098 freeze lobular 

dataset(Ciriello et al., 2015), and METABRIC tumors.  

Subtype-defining expressed features. To define subtype-specific features, significance 

analysis of microarray (Tusher et al., 2001) was applied in two ways: first, multiSam (an ANOVA 

permutated 100 times) compared variation across all subgroups; secondly, each subgroup was 

compared to all others in a two-class, unpaired parametric t-test again permutated 100 times. 

Features were considered significant if both the false discovery rate from the multiSam and at 

least one of the two-class comparisons were 0.  

Survival analyses. Overall survival data was calculated up to 10 years and plotted using a 

Kaplan-Meier survival curve using the survival package in R. Patient samples with greater than 

10 year survival are censored at the 10-year mark. Log-ranked likelihood test was used to 

compare significance among subgroups.   

R Version. All statistical analyses were performed in R v.3.3.2 . 
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Results 

Identification of driver-based subtypes 

In order to define the genetic drivers of breast cancer through an integrated analysis of 

gene expression, copy number, and mutation, we first applied DawnRank to the TCGA breast 

cancer dataset (Figure 4.1). Genes with cohort-wide DawnRank p values <= .05 were 

considered for clustering to define driver-subtypes. 65 copy number altered genes and 38 

mutated genes were significant across the cohort (Figure 4.2A).  

ConsensusClusterPlus was applied to the tumors with at least 5 features identified 

utilizing 1000 iterations and 80% resampling of genes and samples. Varying the number of 

groups from k  = 2 to k = 10, we identified five as the ideal number of clusters by observing the 

maximum cophenetic correlation (Figure 4.2A, color bar). We compared the clusters after 25 

different runs of ConsensusClusterPlus and observed consistent clustering results with a 

pairwise Rand Index of 0.97. Silhouette widths were calculated as the distance to the centroid, 

and samples were ordered accordingly.  

To define a robust predictor of driver subtype, we evaluated the ClaNC classifier using 

these 113 features. A t-test of each feature in one subgroup compared across the subgroups 

was calculated to obtain subtype-defining features (Figure 4.2B). The only mutations in the first 

50 features were PIK3CA, TP53, CDKN1B, and CDH1. This highlights copy number alterations 

as a critical mechanism driving breast cancer biology. Using the ConsensusClusterPlus 

subgroups to compare, we increased the number of features in the classifier by 5 and tested the 

performance of the ClaNC classifier (Figure 4.3). Misclassification rates varied by subtype 

(Figure 4.3), with the CN0 subtype (solid black line) having the highest misclassification rate. 73 

features were selected to build the centroid for each subtype, with 61 copy number alterations 

and 12 mutations.  
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Figure 4.1. Overview of Method. A schematic diagram detailing the selection of tumor samples 
from TCGA and METABRIC, calculation of DawnRank scores, clustering to define subgroups, 
building the classifier using ClaNC, and finally applying this classifier to the validation dataset 
with METABRIC tumors. 
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Figure 4.2. DawnRank Subtype Identification. (A) DawnRank scores were calculated (red = high score, 
oncogene; green = high score, tumor suppressor), and clusters identified using ConsensusClusterPlus. 
Tumors are ordered by the distance to the centroid. Copy number alterations and mutations are ordered 
by chromosome and position in the genome. (B) T statistics are plotted for each group, calculated by 
comparing one group to all other tumors (red = maximum association; blue = negative association). (C) 
Molecular and clinical characteristics of each tumor with Chi square test p values reported (black = 
positive or mutated; white = negative or wild-type).  
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Figure 4.3. Misclassification Rate of ClaNC. Increasing features by 5, misclassification rate was 
calculated by comparing ClaNC classifier to the original ConsensusClusterPlus subgroup 
identification (blue = DR-LumA/B; red = DR-Basal, green = DR-Immune; black solid = DR-DR-
CN0; purple = DR-LumA; black dashed = overall rate). Vertical line indicates the chosen number 
of features in the final classifier. 
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Subtype-defining drivers 

To define subtype-specific drivers, each driver (68 CNAs and 38 mutations) was tested 

by t statistic with one class against all others (Figure 4.4B). DR-LumA/B is defined by chr11q loss 

including BIRC3, ATM, CBL, and the T cell receptor family genes CD3E/D/G. Examination of 

the BIRC3 DawnRank network demonstrates a distinct up-regulation of PAK1, a known 

oncogene that activates MAPK and MET signaling (Figure 4.5) (Shrestha et al., 2012). This 

network may be the cause of the increased proliferation rate of DR-LumA/B compared to other 

ER-positive tumors.  

Interestingly, the Immune subgroup lacks 1q amplification but has distinct gain of 8q 

amplification. ERBB2 is located at 8q, but other drivers defined here include IKBKB, LYN, 

COPS5, NCOA2, and SDC2. LYN is a known oncogene that can mediate anti-estrogen 

resistance in ER-positive breast cancer (Schwarz et al., 2014). In contrast, the DR-Basal 

subgroup has 1q amplification and a lack of focal 16p13.3 amplification and 8q amplification.   
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Figure 4.4. DawnRank scores and statistics of ClaNC features. DawnRank scores of the 75 features 
selected in the ClaNC classifier, with tumors ordered by subgroup and the distance to the centroid and 
features ordered first by copy number alteration or mutation and secondly by genomic location. T statistic 
is reported as the t-estimate for each subgroup compared to all other tumors. 
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Figure 4.5. BIRC3 network distinctly altered in DR-LumA/B tumors. (A) A network view in the 
DR-LumA/B subtype detailing the gene interactions between BIRC3 and nearby genes in the 
network up to two levels downstream. Red nodes represent down-regulation and green nodes 
represent overexpression. The intensity of the node represents the magnitude of gene 
expression. Edge thickness and color represent the distance between these gene in question 
and BIRC3. Magenta edges represent 1 degree of separation from BIRC3, black represents 2, 
and gray represents 3. (B) A network view of BIRC3 in non-Luminal subtypes. 
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Clinical and Molecular Heterogeneity within the Driver Subgroups 

To classify the driver-subtypes in context of previously defined clinical predictors and 

molecular taxonomy, we examined the correlation with PAM50 subtype, known clinical 

predictors, and IntClust. Predominantly tumors of the PAM50 Luminal B subtype comprise the 

first subgroup, defined by ER and PR positivity as well as an increased proliferation rate (Figure 

4.2C). Two luminal A subtypes were identified, one with a distinct lack of 1q amplification thus 

called copy number neutral (CN0). This subset of luminal A breast cancers have been 

previously reported both in a subset analysis of TCGA luminals (Ciriello et al., 2013) and 

defined in the METABRIC IntClust taxonomy(Curtis et al., 2012).  

Interestingly, two subgroups are comprised of a mixture of basal-like, HER2-enriched, 

and Luminal B tumors. These tumors have significantly increased proliferation rates, higher 

rates of TP53 mutation, and lack ER and PR expression (Figure 4.2C). This is the first classifier, 

to our knowledge, to categorize PAM50 basal-like and HER2E tumors into two subgroups.  

Clinically, tumor stage (T) and nodal status (N) do not correlate with the driver subtype 

classification (Figure 4.2C). This demonstrates the added knowledge of these subtypes above 

known clinical characteristics.  

Protein and Pathway Expression Varies by Driver Subgroup 

To identify pathways differentially expressed, we performed parametric t-tests and 

ANOVA testing of each class versus all others to identify protein and gene expression 

differences among the subgroups. Utilizing previously published gene signatures, the mean 

gene signature scores for each tumor were compared. Interestingly, the luminal progenitor 

signatures were highly expressed in the DR-Basal subgroup with concurrent down-regulation of 

mature luminal and estrogen signaling gene expression signatures (Figure 4.6A). Not 

surprisingly, those subgroups dominated by ER-negative tumors had lower expression of 

estrogen markers; however, even the PAM50-Luminal B tumors that were grouped into the DR-

Basal subgroup  
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Figure 4.6. RNA Pathway signatures and protein alterations. Signatures and protein expression 
significant across the cohort by a parametric ANOVA and also significant in at least one 
subgroup compared to all others (FDR = 0) were median centered across the cohort and 
clustered. Tumors were ordered by the distance to the centroid within each subgroup. 
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Figure 4.7. PAM50-Luminal B tumors reclassified into DawnRank subgroups. (A) DawnRank 
scores for the n=98 PAM50-Luminal B tumors demonstrate DR-subtype defining features. (B) T 
statistics are reported as each subtype compared to all other tumors.  
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Figure 4.8. Gene expression signature differences. Boxplots demonstrating variability of gene 
sigantures and protein expression both across all TCGA samples as well as those specifically 
characterized by the PAM50 classifier as Luminal B for the Mature Luminal signature (A,B), B 
cell signature (C,D), and ERa protein expression (E,F). 
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have lower expression of the mature luminal and estrogen signaling pathways. This indicates an 

alteration in estrogen signaling in these tumors concurrent with an increased proliferation. 

The other group of signatures significantly expressed are the immune signatures. 

Significant up-regulation of the immune gene signatures define the Immune subgroup. Again, 

PAM50-Luminal B tumors that were classified into the Immune DawnRank subtype have 

significantly higher immune infiltrate than those in the DR-LumA/B subgroup (Figure 4.8A).  

In addition to the gene expression signatures, we also analyzed publicly-available 

reverse phase protein arrays (RPPA) data from the Cancer Genome Atlas to investigate protein 

expression differences. Known estrogen signaling proteins including GATA3, INPP4B, and AR 

are overexpressed in the more luminal subtypes, DR-LumA/B, DR-Luminal A, and CN0 (Figure 

4.6B). This confirms protein expression of the gene expression measured in Figure 4.6A: 

distinct down-regulation of estrogen signals in ER-positive tumors are classified by our 

DawnRank classifier.  

 

DawnRank Subtypes Confer Improved Survival Differences Beyond Current Clinical and 

Molecular Predictors 

Utilizing gene expression, recently published mutation data (Pereira et al., 2016), and 

copy number data from the METABRIC dataset (n = 339 patients), we calculated the DawnRank 

scores for each tumor and applied the ClaNC classifier. METABRIC confirms the association of 

the DawnRank subtypes with the PAM50 classifier. We further confirmed the gene expression 

signature associations with subtype as analyzed above, validating the increased immune 

expression in the Immune subgroup and loss of differentiation in ER-positive tumors of the DR-

Basal subtype Figure 4.10. To first examine the differences in survival prediction, we performed 

Kaplan-Meier plots and survival analysis of the DawnRank subtypes and PAM50 classifier. 
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Figure 4.9. Validation of expression differences with METABRIC. Gene signature scores for the 
Mature Luminal signature (A,B), and B cell signature (C,D) both across all of TCGA and only in 
the PAM50 Luminal B subtype. 
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Figure 4.10. Association of survival by subtype. Kaplan-Meier plots and log rank tests of the 
overall survival up to 10 years from the METABRIC dataset of three classifiers: (A) DawnRank, 
(B) PAM50, and (C) IntClust classifiers. 
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While DawnRank is not significant by log likelihood test, PAM50 demonstrate significant 

separation of subtypes (Figure 4.9). We next tested univariate and multivariate Cox proportional 

hazard comparing survival and clinical or molecular variables. When incorporating DawnRank 

subtype in addition to the clinical variable, DawnRank subtype contributed survival outcome 

information in addition to ER status, PAM50 subtype, IntClust classification, TP53 mutation 

status, nodal status, ERBB2 status, and tumor size. Interestingly, ERBB2 status and IntClust 

subtype were not significantly predictive of survival alone.  

We then tested DawnRank subtype in a multivariate Cox proportional hazard test, 

incorporating ER status, Stage, nodal status, PAM50-subtype, and DawnRank (Table 4.1). 

Nodal Status had the most significant prediction power, followed by DR-LumA/B and Immune 

subtypes. PAM50-Basal and DR-LumA were also significant. Interestingly, ER status was not 

significant. 

In this study, we have demonstrated the ability to use an indirect classifier of empirical 

driver analyses to generate robust subgroups associated with both clinically relevant features as 

well as clinical outcome. 
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Table 4.1. Cox proportional hazard test of DawnRank subgroups with other known molecular 
and clinical features. 

 coef exp(coef) se(coef) z Pr(>|z|) Significance 
ER status (positive) -0.768 0.464 0.457 -1.680 0.093 . 
Stage1 -0.334 0.716 0.357 -0.936 0.349  
Stage2 -0.265 0.767 0.257 -1.029 0.303  
Stage3 0.301 1.352 0.415 0.727 0.467  
PAM50-LumB 0.493 1.637 0.266 1.851 0.064 . 
PAM50-Her2 0.463 1.589 0.462 1.002 0.316  
PAM50-Basal 1.008 2.740 0.516 1.953 0.051 . 
Nodal status 0.558 1.746 0.169 3.308 0.001 *** 
DR-LumA 0.968 2.632 0.476 2.031 0.042 * 
DR-LumA/B 1.208 3.346 0.436 2.770 0.006 ** 
DR-Immune 0.995 2.705 0.387 2.573 0.010 * 
DR-CN0 0.694 2.001 0.438 1.583 0.113  
---       
Significance. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Discussion 

We present a novel classification of breast cancer by calculating heuristic driver scores 

from and integration of gene expression, copy number, and mutation data. Utilizing both The 

Cancer Genome Atlas (TCGA) as a test set and the Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC) as the validation set, we demonstrate five robust driver-

subtypes. Our subtypes include a pure Luminal A subtype, a copy number neutral subtype, a 

pure Luminal B subtype, and two mixed subtypes: one with an increase in immune infiltration 

and the other demonstrating a de-differentiation phenotype. 

Known hotspots of copy number alteration in breast cancer, including 1q amplification, 

8q amplification, 11q loss, and 16q loss, demonstrate subtype-specific differences. 

Chromosome 11 loss is specific to the DR-LumA/B subtype including BIRC3 and CBL loss. 

BIRC3 network analysis demonstrates loss of BIRC3 and concurrent up-regulation of PAK1, a 

known oncogene downstream of BIRC3. A second interesting result is the loss of CBL, an E3 

ubiquitin protein ligase which recognizes known oncogenes including FGFR2, KIT, and 

PDGFRA. CBL loss has not been previously described in the context of Luminal breast cancer. 

Targeting of FGFR family members with dovitinb has been showing to be effective in a small 

cohort of breast cancer patients in Phase 2 trial (André et al., 2013). CBL loss could be a 

second marker for FGFR sensitivity in patients who lack FGFR amplification but still may be 

dependent on this pathway.  

Integrating gene expression to evaluate the impact of a genomic alteration, both 

mutation and copy number alterations, allows for novel subgroup identification. We demonstrate 

that these subgroups have survival differences beyond known clinical and molecular markers. 

There is information to be gained by utilizing a dynamic, integrated driver analysis including 

identification of novel therapeutic targets such as PAK1 in DR-LumA/B tumors. Improving our 

understanding of the molecular drivers of underpinning different subtypes of breast cancer are 

necessary to develop more targeted therapies.  
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Future in vitro and in vivo confirmation will be needed to confirm our findings. In addition, 

we are limited by known, curated pathways used to evaluate the networks. Assessment of these 

drivers through both therapeutic selection (comparing pre-treatment and post-treatment 

samples) and the selection of these drivers through the metastatic process are needed. 

DawnRank network-based analysis on both metastases and clinical trial samples with available 

gene expression, mutation, and copy number data are needed to understand the shift in drivers 

during these selection processes. 

The heterogeneity of breast cancer has long been described and understood from a 

clinical, histopathologic, and molecular lens. Through a novel computational framework, we 

were able to capture this heterogeneity and assess novel molecular drivers for each breast 

cancer subtype. Future functional studies confirming the role of these drivers in a subtype-

specific manner are needed in order to lead to novel therapeutic development. Incorporation of 

mutations, copy number alterations, and gene expression confirm the importance of evaluating 

not only mutations but also copy number variations in understanding the underlying biology 

driving breast cancer.  
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CHAPTER 5 – DISCUSSION AND CONCLUSION 

Breast cancer metastasis is still a devastating diagnosis with limited treatment options, 

especially for women with hormone receptor negative breast cancer. A better understanding of 

the process of metastasis, the timing with which the metastatic potential is established, and the 

common drivers in metastasis are needed to develop better therapeutic interventions. By 

comparing matched primary breast cancers and multiple metastatic sites, we described the 

clonal process of evolution in 16 patients, defined computationally-determined drivers, and 

identified the timing with which these drivers were acquired. Through these research projects, 

we attempted to clarify three questions: (1) is metastasis a monoclonal or polyclonal event; (2) 

when are metastatic drivers acquired; (3) what are common mechanisms of metastasis. 

 

Polyclonal Seeding in Breast Cancer Metastasis 

We determined that polyclonal seeding can occur in both luminal and basal-like breast 

cancers. We first performed whole-genome sequencing of two patients with triple-negative, 

basal-like breast cancer with a primary, 4 and 5 matched metastases, and a matched normal 

tissue to define the germline genotype. We then defined clones by SciClone (Miller et al., 2014), 

demonstrating that multiple clones are present in the primary and leave to metastasize. 

Additionally, these metastases are made up of more than one clone in every instance. This is in 

contrast to previous research mostly from other cancer types where monoclonal seeding 

appears to predominate. We then expand these findings in Chapter 2 in 16 patients, 

demonstrating both monoclonal seeding and polyclonal seeding. Both basal-like and luminal 

breast cancers demonstrate each model of seeding. 
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Previous literature suggests a single cell escapes the primary and then diversifies during 

metastasis. A seminal paper using DNA sequencing of a matched tumor and metastasis was in 

renal cell carcinoma, demonstrating branched evolution with a single cell of origin seeding 

distant metastasis (Gerlinger et al., 2012). A study of basal-like breast cancer, the matched 

metastasis, and a xenograft show high percentage of shared genetics across all 3 tumors 

(Krøigård et al., 2015). Single cell sequencing of one breast cancer with one matched liver 

metastasis suggest a single cell seeded the distant site (Navin et al., 2011). This is corroborated 

by a large panel of matched primary and brain metastases sequenced, showing continued 

evolution and acquisition of resistance mechanisms in the brain metastasis specifically 

(Brastianos et al., 2015). A larger study in prostate cancer suggests metastasis can seed other 

metastases (Gundem et al., 2015). Other studies in non-small cell lung cancer (Govindan et al., 

2012), colorectal cancer, and ovarian cancer (Castellarin et al., 2013; Schwarz et al., 2015) all 

shed light on the cancer evolution through metastasis.  

Recent in vivo evidence, however, sheds light on how polyclonal seeding might be 

possible. First in a genetically engineered pancreatic cancer mouse model, metastasis was 

shown to be a result from at least two distinct populations (Maddipati and Stanger, 2015). 

Recent evidence using a breast cancer genetically engineered mouse model further 

demonstrates not only polyclonal seeding of lung metastases but also that tumors cells self-

seed the contralateral fat pad of the mouse (Cheung et al., 2016). Furthermore, recent 

investigation demonstrates the fluid dynamics and video imaging of how exactly polyclonal 

seeding could occur (Au et al., 2016).  

Why would polyclonal seeding occur in metastasis? What is the evolutionary advantage? 

In order for a breast cancer to break off, survive through circulation, successfully land in a 

distant organ, and survive all while escaping immune surveillance, some level of genetic 

diversity and adaptation is needed. Others have observed clumps of circulating tumor cells in 

cancer patients (Aceto et al., 2014), further suggesting that multiple cells are needed in order for 
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metastasis to be successful. Potentially, this genetic diversity would be better shared across 

multiple tumor cells rather than the entire genetic burden existing in one cell. Furthermore, 

cross-talk between multiple types of cells could be beneficial: studies in our lab have 

demonstrated that most basal-like cancers show a mixed population of tumor cells containing 

both claudin-low (stem-cell like population) and basal-like cells, when we isolate only 1 

population of cells, the cells can repopulate both populations such that both populations are in 

the final culture (Prat et al., 2010). In addition, Zhang et al (Zhang et al., 2015) showed there is 

growth factor cross talk between these two populations, such that one makes the ligand the 

other the receptor; thus both populations would be needed in order to keep a tumor going. This 

suggests both tumor cell plasticity as well as a need for both populations to exist for the cancer 

cells to continue to grow. 

 

Similarity of Primary and Metastatic Breast Cancer 

When we looked at the RNA expression profiles of our 86 tumors compared to over 

1000 breast cancers from TCGA, the metastases were more similar to the matching primary 

tumor than other breast cancers. This confirms previous findings from our group with a smaller 

number of metastases and primaries (Harrell et al., 2012). Additionally, the primary breast 

cancer carries significant prognostic information including future site of first metastasis and 

overall survival. All of these conclusions provide evidence for much of the metastatic phenotype 

residing within the original primary breast cancer. Identifying these genetic features could 

provide therapeutic targets in the neo-adjuvant and adjuvant settings to ultimately prevent 

metastatic spread if these critical factors are identified. 

Recent publications have identified that a majority of the ‘genetic drivers’ are private to 

distant brain metastasis, not established in the original primary (Brastianos et al., 2015). While 

investigating our DNA sequencing data, we observed that mutations called in one or two tumors 

were present at very low coverage in the other tumors from that patient, especially in the 
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primary breast cancer. We computationally re-interrogated these mutations in two ways: first, 

we took the union set of mutations from one patient and counted the mutant allelic reads in each 

tumor. Second, we took all sequencing runs from a single patient, collapsed them into one 

“tumor” and de novo called mutations. We confirmed all of the mutations that had been 

identified from each tumor individually compared to the normal, only missing some 

insertions/deletions (which are notoriously difficult to identify). In the whole genome sequencing 

paper, we identify 2-3% clones in Patient A1 in the primary breast cancer specific to the liver 

and adrenal metastasis, proving that the original breast cancer contains multiple clones that 

together seed distant metastasis. These were only identified through computational re-

interrogation. In Chapter 2, we formally examine this re-interrogation and demonstrate a 30% 

increase in ‘founder’ mutations across the dataset that would have been otherwise missed.  

It is absolutely critical for evolutionary metastatic studies to perform computational re-

interrogation. In order to understand the timing with which drives are acquired, we must first 

accurately identify when in that patient’s cancer the genetic alteration occurred. Improper 

conclusions will be drawn if a depth coverage is required upon re-interrogation. Multi-regional 

sequencing of primary breast cancers demonstrated that primary breast cancers can have >10 

clones in them at times. Thus, a clone that seeds a metastasis and has 20-40% variant allele 

frequency in the metastasis could be as low as 1-2% in the primary when performing bulk 

sequencing of the primary. If we require a variant frequency cutoff of 5%, these would be 

missed. Re-analysis of publicly available metastatic datasets will be needed in the future to fully 

appreciate how different the conclusions could be in an independent dataset. 

 

Timing of Copy Number and Point Mutation Alterations in Cancer Development 

Recent literature described the timing of acquired genetic alteration. The authors 

showed that mutations are acquired in a linear function of time such that the older the tumors, 

the more mutations that tumor would have. This fits with other publications that demonstrate 
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pediatric cancers have relatively simple genetics – maybe one or two mutations – compared to 

melanoma or lung cancer, which tend to have the highest mutation burden caused by DNA 

mutation inducing origins (i.e. smoking and UV light). In contrast, the authors demonstrate that 

copy number events occur in large smatterings wherein the genome is significantly disrupted in 

one point in time, followed by large changes, and then relative stability. This difference in the 

process of acquiring genetic alterations fits with our findings: there seems to be a relative steady 

increase in the number of mutations as these clonal populations grow in the primary, 

metastasize, and seed distant sites. In contrast, when copy number alterations occur, it seems 

as though huge amounts of the genome are altered all at once. There is relatively little ‘private’ 

copy number alteration in the genomes of our metastatic patients.  

 Copy number alterations as a mechanism driving breast cancer progression is incredibly 

important. Copy number changes alter a large number of genes effectively in comparison to 

mutations. Thus, the cancer has a mechanism for generating large genetic diversity quickly. In 

our metastatic breast cancer patients as well as in primary breast cancer, copy number was the 

dominant mechanism for causing drivers. In trying to identify common mechanisms of 

metastasis, only one mutation was shared among our two patients with whole genome 

sequencing data and among 13/16 patients with whole exome sequencing (i.e. TP53). In 

contrast, 15/16 patients had common copy number altered regions, and these alterations were 

almost always established in the primary and maintained throughout metastasis. 

 The only common mutation across both our two patients with whole genome sequencing 

and in the whole exome dataset was TP53. TP53 is the most highly mutated gene in cancer and 

is known to be negatively prognostic in breast cancer. Interestingly, the basal-like breast cancer 

patients in our dataset were more likely to have missense mutations, and when these missense 

mutations occurred, they were also expressed in the RNA. In contrast, the luminal metastatic 

patients often had complete frame-shift, insertions/deletions, or early stop-codon mutations. 

These alterations were not expressed in the RNA, as they likely produced nonsensical RNA 
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transcripts which would be degraded by nonsense mediated decay. Finally, these alterations 

were all established in the original primary and carried in every single metastasis in every 

patient in which the TP53 alteration was present. This provides definitive evidence that TP53 

disruption is a critical event to generate breast cancer metastasis regardless of subtype. 

Aggressive breast cancer is a heavily copy-number altered disease. Triple negative 

breast cancers of the basal-like molecular subtype have the worst 5-year overall survival and 

the largest burden of copy number alterations. Studying only the ER+, luminal breast cancers, 

the poorest prognostic breast cancers again have TP53 alteration and significant copy number 

destabilization. Potentially, TP53 disruption is a critical event to generate genomic 

destabilization and ensuing copy number alteration. This also fits with the previous hypothesis 

that copy number alterations occur in bursts. Finally, this is consistent with one previous study 

which demonstrate that TP53 disruption and copy number alteration are the only occurrences 

shared in pre-invasive ductal carcinoma in situ, invasive breast cancer, and a matched lymph 

node. 

 

Heterogeneity of Primary Breast Cancer Genetic Drivers 

Previous work in our group as well as many others have demonstrated the large amount 

of variation in primary breast cancer. Even within the PAM50 molecular subtypes or clinical 

subtypes of hormone receptor positive versus hormone receptor negative disease, there are 

large variations in clinical response and survival. In Chapter 4, we strove to identify variation of 

genetic drivers in primary breast cancer with the similar computational strategy as applied to our 

metastatic tumors. 

 Defining 5 distinct ‘driver’ subtypes of breast cancer, we observed that these divisions 

were not based on estrogen receptor positivity. In contrast, we had two subgroups with mixed 

HER2 positive, ER positive, and ER negative breast cancers. When stratifying by ER positivity, 
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there was still significant survival differences across our ‘driver’ subgroups. This demonstrates 

that there are common mechanisms driving breast cancer across the different subgroups. 

 Interestingly, our most mixed subgroup of cancer had the worst overall survival but an 

elevated immune infiltrate. Immune infiltrate typically predicts an improved prognosis in both 

HER2-enriched and basal-like molecular subtypes but not the luminal subtypes. These immune 

infiltrated PAM50 Luminal B tumors that end up in the mixed driver subtype have a poor 

prognosis. They also demonstrate a loss of estrogen regulation and loss of the mature luminal 

phenotype. Whether this is due to the increased immune infiltration thus decreasing the 

differentiation or an actual biologic down-regulation of estrogen receptor is unknown; however, 

previous research in the fields of both oncology and rheumatology have demonstrated 

estrogen’s immune repressive affects. The possibility that estrogen may mediate the 

ineffectiveness of immune infiltrate has very interesting therapeutic implications. In metastasis, 

often estrogen receptor-positive primaries lose estrogen signaling and become more 

dedifferentiated. Potentially, in the metastatic setting, immune modulatory-therapies could be 

harnessed with more power than in the adjuvant setting when ER-positive tumors are highly 

estrogen dependent. Further investigation is needed to test this hypothesis directly in an in vivo 

and in vitro setting. 

 

Clinical Implications of Our Research Findings 

Our findings of the relationship between primaries and metastases has significant clinical 

implications. First, if polyclonal seeding is indeed common in triple negative breast cancer 

metastases, then therapeutics targeting multiple clones will be needed to effectively eradicate 

these subclones. This supports previous evidence of why single targeted therapies sometimes 

do not work in breast cancer due to resistance mechanisms: a primary breast cancer as multiple 

subclonal populations residing within the tumor that together mediate metastasis. Thus, an 
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understanding of the heterogeneity existing in a primary breast cancer is critical for effective 

halting of metastatic progression. 

While dual targeted therapy is necessary to block metastatic progression, it is also 

encouraging that much of the metastatic potential resides within the original tumor. We 

demonstrate that a majority of the copy number alterations occur in both the primary tumor and 

the matched metastases. In addition, when filtering the mutations (which are likely acquired as a 

linear progression of time) to those that significantly alter the gene expression network and thus 

are called ‘drivers’, a significant majority of them are established in the primary breast cancer. 

Therefore, it is possible that therapies targeting this original population that has metastatic 

potential could be delivered effectively in the adjuvant setting thus preventing metastatic spread. 

Alternatively, if metastasis does occur prior to detection, potentially effective targeting of these 

‘founder’ mutations that are present both in the primary breast cancer and in the metastasis 

could prevent and treat future sites of metastasis. 

Future research targeting copy number alterations is desperately needed. It has long 

been known that a majority of driver alterations are a result of copy number alteration. 1q 

amplification, 5q amplification, 8p loss, and 8q amplification are recurrent copy number 

alterations across all of breast cancer and are not subtype specific. In addition, triple negative 

breast cancer have subtype specific copy number alterations known to drive the tumor 

phenotype and are conserved across species. In our study as well as previous research have 

demonstrated that copy number alteration is an extremely early event, present in pre-invasive 

ductal carcinoma in situ, and are maintained not only in primary breast cancer but also distant 

metastasis. Therefore, it should not be ignored as a therapeutic target. Clearly, copy number 

alteration is a fundamental mechanism of oncogenic activity in breast cancer. Our research in 

Chapters 1 and 2 support that copy number alteration is a shared mechanism across 

metastasis. Furthermore, in Chapter 3, we demonstrate that copy number alteration causes 

more drivers that can separate subtypes of breast cancer than mutation. Finally, it is generally 
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accepted in the field that copy number alteration is a much more effective mechanism of 

genomic alteration than mutation, as whole arm amplifications can amplify a host of oncogenic 

factors at once. Further research in targeting these copy number alterations is desperately 

needed, especially in hormone receptor negative breast cancer. 

Conclusions 

 In summary, our research has demonstrated that both polyclonal and monoclonal 

seeding can occur and both are common mechanisms of metastasis across both hormone 

receptor positive and negative breast cancers, that most genetic drivers are established in the 

original breast cancer, and that common mechanisms exist across the molecular subtypes of 

breast cancer. We hope to continue investigating the >50 women’s metastases that have 

graciously donated their bodies to medical research at the end of their lives to continue to 

enhance our understanding of clonality, evolution, and genetic drivers of metastasis. We 

furthermore envision a day in which the proper combinatorial therapies that target TP53 as well 

as copy number amplifications can effectively prevent and treat metastatic progression in breast 

cancer. We firmly believe that continue research in metastatic breast cancer is needed to fully 

understand the molecular mechanisms of therapeutic resistance, site-specific metastasis, and 

therapeutic targets in the advanced setting. Only then can we begin to develop the proper 

therapeutic approaches to ultimately help our patients live longer, healthier lives.  
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