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ABSTRACT 

Jeremy Stuart Michael Greeter: Damping at Every Turn: Maneuvers and Stability in the Free Flight of 
Hawkmoth Manduca sexta 

(Under the direction of Tyson L. Hedrick) 

Here I identify novel stability features in flapping flight.  Implications may shift the current scientific 

consensus that flying animals, particularly insects, must actively monitor and respond to even slight 

perturbations to maintain control in pitch and roll, and allow engineers to recreate these capabilities in flying 

robots.  Results are consistent with co-directional inertial and viscous effects working together to damp 

rotations.  This could explain flight stability across a broad range of body sizes, speeds, and flapping 

frequencies. 

I propose a previously undescribed, likely ubiquitous class of passive “inertio-viscous” damping.  

Flapping wings move, so rotational perturbations on the time scale of halfstrokes manifest as wing 

position/orientation changes later in the flapping cycle.  My novel results show these (at least partially) 

passive (inertia-based) kinematic responses push on the air to produce torques that oppose the initial 

perturbation.  I then identify key design elements which future flapping-wing micro air vehicles could employ 

to exploit these stability effects. 

This emerges from a series of three experiments exploring roll and pitch dynamics in hawkmoth 

Manduca sexta.  In the first, I coaxed moths to follow a light and described their lateral maneuver 

mechanics.  I concluded roll is heavily damped, and positive coupling between roll and lateral acceleration, 

negative coupling between roll and lateral velocity, and countertorque from wing motion around the roll axis, 

are relevant (viscous/velocity) damping factors. 

In the second, I launched miniature cannonballs at moths and described their pitch recovery 

mechanics.  I concluded inertial (and viscous) resistance of wing stroke plane to the pitch impulse (and 

rotational velocity) helps create pendular stability in mid-air.  Gyroscopic (and viscous) reactions to pitch 

impulses (and rotational velocity) manifest as deviations to wing kinematics that further damp pitch, 

indicating reinforcing roles for inertia and drag in flapping flight stability. 
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In the third, I glued T-bars on moths to create weight imbalances during hover.  Results reinforce 

my conclusions about damping and roll/pitch-associated wing kinematics, show flexibility helps compensate 

for off-axis loads, and associate a novel wing kinematic with roll torque that suggests gyroscopic and 

pendular damping mechanisms also complement viscous/velocity-based damping in roll.
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To my mother.  Thank you for pushing me to succeed.  
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AOA Angle Of Attack; represents the angle at which the wing encounters the air. 
  

AICc 
corrected Akaike Information Criterion—evaluates model predictive quality while penalizing for 
model complexity. 

  

BIC 
Bayesian Information Criterion, (or Schwartz criterion), an criterion for model selection among 
a finite set of models that is based on the likelihood function. 

  

BRF 
Body Reference Frame: reference frame from the perspective of the moth’s COM, in which 
the moth’s anatomical landmarks and canonical hover orientation determine ݕ ,ݔ, and ݖ. 

  

COM 
Center Of Mass: point where the sum of the product of individual units of mass and their 
distance away from that point equal zero.   

  

COP 
Center Of Pressure: net sum of force production by the wings, time-averaged over the course 
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DLT 
Direct Linear Transformation: A method for extrapolating positions in space from pixels marked 
on captured frames from non-collinear camera views 
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Flapping Counter Force: Idea that linear translation of flapping wings creates differential drag 
and thrust which damps the translation.  First described for sideslips. 
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Flapping Counter Torque: idea that rotations change the velocity of wings flapping in that 
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Modified Global Reference Frame: reference frame in which ݕ/ݔ coordinates have been 
rotated about the ݖ-axis (in yaw) sot so that the ݔ-axis is in line with the longitudinal axis of the 
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RML Restricted Maximum Likelihood. 

  
RMSE Root Mean Squared Error; RMSE values came from (data-relative) residuals. 

  

PD, PI 
Proportional-Derivative or Proportional-Integrative controller (as in control theory).  Note the 
“PD” controllers described here are similar to the “PI” controller of Whitehead et al., (2015). 

  

SRF 

Standard Reference Frame: frame where GRF points are rotated about the ݖ-, then ݔ-, and 
then the ݕ-axis such that, in the new SRF: 1) the wing base points and the abdomen point lie 
on a shared ݕ-ݔ plane, 2) the ݖ-ݔ plane includes the abdomen point and a (0,0,0) that is the 
midpoint of a line connecting the two wing base points 3) the ݖ-ݕ plane is perpendicular to the 
first two planes and intercepts the same (0,0,0) point. 
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Operators, Annotations, Subscripts, and Constants 

ൈ; |	|; ∑  “by” or cross-product; absolute value or magnitude of; sum of 
  

∈; •; ⫽ constrained to within; dot product; parallel with 
  

 ൎ; ∝; ∝෥ ;߂
change in; approximately equal/congruent to; proportional to; approximately proportional 
to 

  
≝; ~; ~ equal to by definition; on the order or in the vicinity of; on the order or in the vicinity of 

  
ሶ , ሷ  first and second time derivatives of the attendant variable, respectively 

  

௱ 

a subscript which indicates that mid-upstroke and mid-downstroke pre-collision midstroke 
means for the whole data set have been subtracted (Chapter 3); a subscript which 
indicates the given wing kinematic variable has been mean-centered by subtracting 
(separate upstroke and downstroke) means measured for that variable in the control trial; 
for body angles (i.e. roll and pitch), upstrokes and downstrokes were averaged together 
(Chapter 4) 

  

௱଴ 
a subscript which indicates that the zero-reference point is the hand-chosen pre-collision 
canonical frame (with no special treatment for midstrokes) 

  

ሬሬሬԦ; ሬሬሬറ௔; 
ശሬሬԦ; ഥ  

accents respectively indicate the variable underneath is a vector; the magnitude of the 
vector for direction ොܽ (directional unit vector); a line; a plane or indicates variable 
underneath is the average for the left and right wing combined (Chapter 2) 

  
௔௕ a subscript which indicates the antecedent is a coefficient relating ܾ to ܽ 
  
௖ variable has been centered by subtracting its mean value for the entire data set 
  
஽ a subscript which indicates the mechanism is related to drag 
  
݃ griavitational acceleration (980.665 ܿ݉	ିݏଶ) 
  
௜ the wing ipsilateral to the direction of moth lateral velocity 

  

 axis through the moth’s-ݕ ௬௬ rotational (pitch) inertia about a Body Reference Frame (BRF)ܫ
estimated COM 

  
 any coefficient estimated by regression or mixed model ܭ
  
௅  a subscript which indicates the mechanism is related to lift 
  

௅ோ 
differences in a kinematic measurement between the left and right side of a moth; i.e. left 
minus right 

  
௣ peak-to-peak amplitude of the antecedent variable 
  

݉  
average moth mass at time of experiment (Chapters 1-3); moth plus pin average mass 
from measurements before, between, and after treatments (Chapter 4) 

  
 .p-value (when alone, not as a subscript) ݌
  
ܳ multiplier that is -1 for upstrokes and +1 for downstrokes 
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 ଶ௔ adjusted r2; calculated for linear modelsݎ

  
 ଶ௖ conditional r2; calculated for linear mixed modelsݎ

 
 

Wing and Body Characteristics 

ሺ0, ሶݕ ,  ሶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ 3D vector with moth horizontal and vertical velocity as its only nonzero componentsݖ
  

 ௅ோߙ ;௖തതതߙ ;ߙ
(Chapter 2) wing pitch angle, angle a projection of ܴଷሬሬሬሬԦ onto the BRF ݖ/ݔ plane makes 
relative to the BRF ݕ/ݔ plane; ߙ averaged for the left and right wings, then centered to 
overall data mean; instantaneous difference in ߙ between the left and right wings 

  

;஖ߙ ;஖௱ߙ  ஖௅ோ௱ߙ

wing pitch angle: ߙ఍ (likely affects AOA, and COP to a lesser extent) is the angle the ሺݔ,  ሻݖ
components of the vector connecting the hindwing tip to the forewing tip makes relative to 
the stroke plane; ߙ஖௱ is change relative to control (Chapter 4), average (Chapter 3), or pre-

collision average (Chapter 2) ߙ఍; ߙ஖௅ோ௱ is left-right asymmetry in ߙ஖௱ 

  

ሶߚ ;ߚ  ௱ߚ ;
moth whole-body roll angle relative to the horizontal plane; first time derivative of whole-
body roll angle; roll angle measured relative midstroke-average roll angle (Chapter 2), or 
pre-collision midstroke-average roll angle (Chapter 3), or to control (Chapter 4) 

  

 ௅ோ௱ߞ	;௱ߞ ;ߞ
stroke plane inclination angle: ߞ is the angle of the stroke plane relative to the BRF 
horizontal plane; ߞ௱ is change relative to control ߞ ;ߞ௅ோ௱ is left-right asymmetry in ߞ௱ 

  

	 ;௣௖തതതതߠ ;௣ߠ ;ߠ
	 ;௅ோ௱ߠ ;௣ಽೃߠ
 ௜ߠ ;௅ோߠ

elevation angle; the angle	ܴଵሬሬሬሬԦ makes with the BRF horizontal; peak-to-peak wing elevation 
amplitude (Fig. 4.3), relative to control in Chapter 4; elevation angle, averaged for left and 
right wings, then centered to overall data mean; left-right asymmetry in ߠ௣ relative to 
midstroke averages (Chapter 2); left-right asymmetry in ߠ௣ relative to that for the control 
trial; instantaneous difference in midstroke elevation angular position between the left and 
right wings; instantaneous midstroke elevation angle for the wing ipsilateral to moth lateral 
velocity 

  

 ௱ߴ ;ିߴ	;ାߴ
elevation: forewing elevation angle relative to a BRF horizontal plane through the wing 
base, at the end of downstroke ߴା; and upstroke ିߴ; elevation offset ߴ ൌ ାߴ	 ൅  ௱ߴ and ,ିߴ
is change relative to control ߴ 

  

  ෩ഥ௣ߔ ;෩௣ߔ
(Chapter 2) peak-to-peak angular amplitude; mean peak-to-peak angular stroke amplitude 
for left and right wings 

  

 ;௣௖തതതതതߔ ;௣ߔ ;ߔ
 ;௅ோߔ ;௣ಽೃߔ
 ௅ோ௱ߔ

instantaneous sweep angle; peak-to-peak wing sweep amplitude, or the projection of ߔ෩௣ 
onto the BRF ݕ/ݔ plane (see Fig. 4.3); peak-to-peak wing sweep amplitude averaged for 
left and right wings, then centered to overall data mean; difference in sweep amplitude 
between the left and right wings; instantaneous difference in midstroke sweep angular 
position; left-right asymmetry in ߠ௣ relative to that for the control trial 

  

߮ା; ߮ି; ߮௱ 
sweep: forewing azimuthal angle relative to a BRF vertical plane through the wing base, 
at the end of downstroke ߮ା; and upstroke ߮ି; dorsoventral sweep asymmetry ߮ ൌ	߮ା ൅
߮ି, and ߮௱ is change relative to control or midstroke-centered ߮ 

  

 ௱௅ோߦ ;௱ߦ ;ߦ
stroke plane deviation angle: ߦ (related to AOA) is the angle the forewing makes at 
midstroke, measured perpendicular relative to the stroke plane; ߦ௱ is change relative to 
control ߦ ;ߦ௱௅ோ is left-right asymmetry in ߦ 
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Ԧ߬ 
estimate of COM imbalance (the cross product of the vertical force created by the sinker 
with a vector stretching from the visually estimated COM to the sinker position, in the BRF 

  

߬ఉሬሬሬറ;	߬ఉ଴ሬሬሬሬሬറ 
the roll portion of Ԧ߬ (߬ఉሬሬሬറ) comes from sinker mass and lateral placement; ߬ఉሬሬሬറ was calculated 
in the BRF; ߬ఉ଴ሬሬሬሬሬറ was calculated in the SRF.   

  

߬టሬሬሬሬറ; ߬ట଴ሬሬሬሬሬሬറ 
the pitch portion of Ԧ߬ (߬టሬሬሬሬറ) comes from sinker mass and longitudinal placement. ߬టሬሬሬሬറ was 
calculated in the BRF; ߬ట଴ሬሬሬሬሬሬറ was calculated in the SRF 

  
߰;	߰௱; 	
߰௱଴ 

moth body pitch, ሬܴԦସ relative to the horizontal plane (Fig. 4.3); ߰௱ is change relative to 
control (Chapter 4), pre-collision average (Chapter 3) or  ߰; mean-centred pitch 

  

ሶ߰ ; ሶ߰௱; ሶ߰௱଴ 
1st time derivative of pitch orientation, i.e. “pitch velocity;” midstroke-centred pitch velocity; 
mean-centred pitch velocity 

  

ሷ߰ ; ሷ߰௱ ሷ߰௱଴ 
2nd time derivative of pitch orientation, i.e. “pitch acceleration;” midstroke-centred pitch 
acceleration; mean-centred pitch acceleration 

  
 ;௅ሬሬሬԦേܨ ;஽ሬሬሬሬԦേܨ

 ௐሬሬሬሬሬԦേܨ ;௉ሬሬሬሬԦേܨ
drag; lift; parasite drag; profile (wing) drag; theoretical forces depicted and explained in 
Fig. 3.4 

  
 ിଶ; തܲ geometric characteristics of the stroke plane, as defined in Fig. 4.3 and its captionܮ ;ിଵܮ

  

 Ԧ distance/vector between the moth’s center of mass and center of pressure, e.g. in theݎ	;ݎ
computational  model (Eq. 3.3-5), and Fig. 3.2-3 

  
 Ԧേ COM-COP vectors shown in Fig. 3.2-3ݎ ;Ԧݎ

  

ܴଵሬሬሬሬറ; ܴଵపሬሬሬሬሬറ;  
ܴଶሬሬሬሬറ; ܴଷሬሬሬሬറ;  
ሬܴԦସ; ሬܴԦହ 

vector which stretches from the wing base point (point 3) to the forewing tip (point 4); the 
ܴଵሬሬሬሬറ vector which is ipsilateral to the direction of moth lateral velocity; vector which stretches 
from the wing base point (point 3) to the hindwing tip (point 5); vector which stretches from 
the hindwing tip (point 5) to the forewing tip (point 4); vectors which stretches from the 
abdomen tip through the centroid of wing base and scutum reference points, forming the 
moth’s body pitch axis; vector with an origin at the forewing tip and parallel to the stroke 
plane of the moth.  All vectors defined in Fig. 4.3 and its caption 

  

 ݖ ;ݕ ;ݔ
in the, +ݔ is forwards for the moth,	൅ݕ is rightwards for the moth, and , ൅ݖ is downwards 
for the moth in the BRF, and ൅ݖ is ⫽ with gravity in the GRF and MGRF; i.e. front/back, 
lateral, and vertical (respectively) in the given reference frame 

  

ሶݔ ;ݔ  ሶ௱ݔ ;
in the BRF, +ݔ is forwards for the moth; ݔሶ  is forward velocity; ݔሶ௱ is midstroke-centered 
forwards velocity 

  

 ௌݖ ;ௌݔ
 positions of T-bar center (for control treatments) or sinker center (for non-control -ݖ and -ݔ
treatments) relative to the center of the two wing bases in the MGRF.  Shown in Fig. 4.3. 

  
ሶݕ ;ݕ ሷݕ ;  in the BRF, +ݕ is to the right for the moth; ݕሶ  is rightward velocity; ݕሷ  is rightward acceleration 

  

 ሶ௱ isݖ ;ሶ is downward velocityݖ ;is downwards for the moth, (⫽ with gravity) ݖሷ  in the BRF, ൅ݖ ;ሶ௱ݖ	;ሶݖ ;ݖ
midstroke-centered downward velocity (Chapter 4); vertical acceleration (Chapter 2) 

  

 ஺ݖ
The abdomen’s ݖ- position relative to the center of the two wing bases in the MGRF is 
denoted by ݖ஺.  Shown in Fig. 4.3. 
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Model Coefficients 

߬఍ట time delay between ߰௱଴ and ߞ௱ in Eq. 3.9-10 
  
߬కట time delay between ߰௱଴ and ܳߦ௱ in Eq. 3.13 

  
߬ఝట time delay between െ߰௱଴ and ߮ in Eq. 3.14 

  
߬టሷ ట time delay between െ߰௱଴ and ሷ߰  in the theoretical control model (Eq. 3.16) 

  
߬టሷ టሶ  time delay between െ ሶ߰௱଴ and ሷ߰௱଴ in the theoretical control model (Eq. 3.16) 

  
ఉሶܭ ఈ relates ߙ௅ோ to ߚሶ  

  
ఉሶܭ ః relates ߔ௣ಽೃ to ߚሶ  

  
ఉሶܭ ఏ೛ relates ߠ௣ಽೃ to ߚሶ  
  
ఉሶܭ ௬ሶ  relates ݕሶ  to ߚሶ  

  
ఉሶܭ ఏ೔ relates ሺ0, ሶݕ , ሶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݖ ൈ ܴଵపሬሬሬሬሬറ to ߚሶ  

  

టሷܭ ఍ 
relates ܫ௬௬

ିଵ݉݃sinሺെߞ௱ሻ to ሷ߰௱ in the observational pitch acceleration models (Eq. 3.6-7 & 3.2), 
or theoretical ሺܫ௬௬ ൅ ሻ to ሷ߰ߞsinሺെݎଶሻିଵ݉݃ݎ݉  in the computational model (Eq. 3.3-5) 

  

టሷܭ టሶ  
relates observed െܫ௬௬

ିଵ ሶ߰௱
ଷ
ห ሶ߰௱หൗ  in the observational pitch acceleration models (Eq. 3.6-7 & 

3.1-2), or theoretical െሺܫ௬௬ ൅ ଶሻିଵݎ݉
టሶ య

หటሶ ห
 to ሷ߰  in the compu-tational model (Eq. 3.3-5) 

  
టሷܭ క஽ relates െܫ௬௬

ିଵܳߦ௱ cosሺߞ௱ሻ to ሷ߰௱ in the observational pitch acceleration models (Eq. 3.7 & 3.2) 
  
టሷܭ ఝ relates ߮௱ to ሷ߰௱ in the observational pitch acceleration models (Eq. 3.2 & 3.1-2) 

  
 in the computational model (Eq. 3.3-5) ߞ ௱ (Eq. 3.8), or theoretical ߰ toߞ ఍ట relates observed ߰௱ toܭ

  
 ௱ in Eq. 3.9-10ߞ ఍టఛ relates time-delayed ߰௱଴ toܭ
  
 ௱ in Eq. 3.11ߦ ఍௱ toߙ- కఈഅ relatesܭ

  
 ௱ in Eq. 3.12ߦܳ కట relates ߰௱ toܭ

  
 ௱ in Eq. 3.13ߦܳ కటఛ relates time-delayed ߰௱଴ toܭ
  
 ఝటఛ relates time-delayed െ߰௱଴ to ߮ in Eq. 3.14ܭ
  
ఝటሶܭ  relates െ ሶ߰௱cos	ሺߞ െ ߮ሻ to ܳ߮௱ in Eq. 3.15 

  
టሷܭ టഓ relates time-delayed െ߰௱଴ to ሷ߰  in the theoretical control model (Eq. 3.16) 
  
టሷܭ టሶ ഓ relates time-delayed െ ሶ߰௱଴ to ሷ߰௱଴ in the theoretical control model (Eq. 3.16) 
  



xxiv 
 

టሷܭ ௫ሶ  
relates observed – ௬௬ܫ

ିଵ cosሺ߰௱ሻ ሶ௱ݔ
ଷ ⁄|ሶ௱ݔ|  or – ௬௬ܫ

ିଵ cosሺߞ௱ሻ ሶ௱ݔ
ଷ ⁄|ሶ௱ݔ|  to ሷ߰௱ in the preliminary pitch 

acceleration models Eq. 3.1-13; or theoretical െݎሺܫ௬௬ ൅ ଶሻିଵݎ݉ cosሺ߰ሻ ሶݔ ଷ ሶݔ| |⁄  to ሷ߰  in the 
computational model (Eq. 3.3-5) 

  

టሷܭ ௭ሶ  
relates  observed – ௬௬ܫ

ିଵ sinሺ߰௱ሻ ሶ௱ݖ
ଷ ⁄|ሶ௱ݖ|  or – ௬௬ܫ

ିଵ sinሺߞ௱ሻ ሶ௱ݖ
ଷ ⁄|ሶ௱ݖ|  to ሷ߰௱ in the preliminary pitch 

acceleration models (Eq. 3.1-2) 
  
టሷܭ ఈ஽ relates ܳߙ఍௱ cosሺߞ௱ሻ to ሷ߰௱ in the preliminary pitch acceleration model (Eq. 3.1) 

  
టሷܭ ఈ௅ relates observed ߙ఍௱ sinሺെߞ௱ሻ to ሷ߰௱ in the preliminary pitch acceleration model (Eq. 3.1) 

  
టሷܭ క relates observed െߦ௱ to ሷ߰௱ in the preliminary pitch acceleration model (Eq. 3.1) 

  
టሷܭ ణ relates observed ܳ  ௱ to ሷ߰௱ in the preliminary pitch acceleration models (Eq. 3.1-2)ߴ

  
టሷܭ క௅ relates observed ߦ௱ sinሺߞ௱ሻ to ሷ߰௱ in the preliminary pitch acceleration model (Eq. 3.2) 
  
 ௱ to ߬ఉ଴ሬሬሬሬሬറߚ ఛഁబሬሬሬሬሬሬሬറఉ coefficient relatingܭ
  
 ௅ோ௱ to ߬ఉሬሬሬറߞ ఛഁሬሬሬሬሬറ఍ coefficient relatingܭ
  
 ௅ோ௱ to ߬ఉሬሬሬറߔ ఛഁሬሬሬሬሬറః coefficient relatingܭ
  
 ఛഗబሬሬሬሬሬሬሬሬറట coefficient relating ߰௱ to ߬ట଴ሬሬሬሬሬሬറܭ
  
 ௱ to ߬టሬሬሬሬറߞ ఛഗሬሬሬሬሬറఝ೩ coefficient relatingܭ
  
 ఛഗబሬሬሬሬሬሬሬሬറ఍೩ coefficient relating ߮௱ to ߬టሬሬሬሬറܭ
  

 ௫ሷ఍ܭ
relates theoretical ݃ sinሺߞ െ 	߰ሻ to ݔሷ  in the computational model  
(Eq. 3.3-5) 

  

௫ሷ௫ሶܭ  relates theoretical 
௫ሶయ

|௫ሶ |
݉ൗ  to ݔሷ  in the computational model (Eq. 3.3-5) 

  
݃ ௬ሷఉ relatesܭ sinሺߚሻ to ݕሷ  

  
௬ሷ௬ሶܭ  relates ݕሶ  to ݕሷ  

  
ሷݕ ሻ toߚሺ݊݃݅ݏ௣௖തതതതതߔ ௬ሷః relatesܭ  

  
ሷݕ ሻ toߚሺ݊݃݅ݏ௣௖തതതതߠ ௬ሷఏ relatesܭ  

  
ሷݕ ሻ toߚሺ݊݃݅ݏ௖തതതߙ ௬ሷఈ relatesܭ  

  
,௬ሷఏ೔ relates ሺ0ܭ ሶݕ , ሶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݖ ൈ ܴଵపሬሬሬሬሬറ to ݕሷ  

  
௭ሷఉ relates ݃ሺ1ܭ െ cosሺߚሻሻ to ݖሷ 

  
௭ሷ௭ሶܭ  relates ݖሶ to ݖሷ 
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 ሷݖ ௣௖തതതതത toߔ ௭ሷః relatesܭ
  
 ሷݖ ௣௖തതതത toߠ ௭ሷఏ relatesܭ

  
 ሷݖ ௖തതത toߙ ௭ሷఈ relatesܭ
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CHAPTER 1 

GENERAL INTRODUCTION 

 

General Overview 

My dissertation focuses on the flight dynamics of the hawkmoth Manduca sexta (Linnaeus, 1763) 

(Fig. 1.1), specifically their maneuverability and stability.  Scientists study subjects like this to better 

understand the natural world and to discover basic design principles which can be translated into 

technological improvements. 

This introductory chapter walks the reader through basic concepts in classical mechanics and 

insect flight.  First, it explains how the concept of stability can be applied to organisms that move.  Second, 

it covers the basics of insect flight mechanics.  Third, it discusses stability and movement in the context of 

insect flight mechanics and gives an overview of the current state of knowledge in this specific area.  Fourth 

and finally, it gives an introductory overview of the experiments detailed in Chapters 2-4. 

 

Figure 1.1 Hawkmoth Manduca sexta 

Hawkmoth Manduca sexta feeds from a flower.  
Hawkmoths (Sphingidae) are a cosmopolitan group adapted 
to high-speed flight and hover-feeding.  This particular 
species is native to North America and starts its life cycle as 
eggs deposited on either tobacco (Nicotiana) or devil’s claw 
(Proboscidea louisianica).  After feeding on its host plant as 
a caterpillar for several months, it pupates and emerges as 
an adult (imago).  Moths typically live as flying adults for a 
few weeks or less.  As plant predators and pollinators, they 
help keep plant ecosystems balanced and diverse.  As prey 
items themselves, they also help transmit energy from 
autotrophs (plants) to higher-level predators, such as birds 
and mammals. 
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Movement and Stability 

Physical stability is the ability of an object to return to an initial set of conditions (“equilibrium”) when 

subjected to perturbation (usually within a specified range of stability).  In classical mechanics, the ball and 

valley in Fig. 1.2A is an example of a stable system.  If we apply an impulse that accelerates the ball to an 

initial velocity of less than ඥ2݄݃, it eventually settles back to the bottom of the valley between the two 

peaks. 

 

Figure 1.2A: Stability 

Stable ball in a valley.  In classical mechanics, this ball 
and valley compose a stable system.  If we apply an 
impulse that accelerates the ball to an initial velocity of 
less than ඥ2݄݃, it eventually settles back to the bottom of 
the valley between the two peaks. 

 

 

 

Fig. 1.2B shows a pendulum, another example of a stable system.  When subjected to perturbation, 

the pendulum will return to a stable 90° orientation due to the passive effects of gravity, and the motion-

damping effect of friction in its pivot.  And so it is with a hypothetical tree subjected to a small gust of wind; 

the mechanical design of the system naturally returns it to its original state over time (in this case, after a 

finite number of decreasing oscillations).  Even a powered pendulum, like that of a grandfather clock, will 

eventually return to its original, cyclical state if perturbed.  This powered pendulum is an example of a stable 

process, even though its position is not fixed over time.  When a system like this regularly returns to its 

original state after perturbation because of mechanical rules, without active outside interference, it is 

exhibiting “passive” stability. 

 

ℎ

�

(field)

��
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Figure 1.2B: Stability of cyclical processes 

Stable pendulum.  Whether i) regularly swung in 
a small arc like the pendulum in a grandfather 
clock, or ii) allowed to swing freely, this pendulum 
represents a classically stable system.  After a 
perturbation, gravity and friction in the pivot will 
eventually return this swinging mass eventually 
return to its i) original pattern of motion or ii) its at-
rest stable orientation with angle = 90°. 

 

 

 

Passive vs active stability 

Fig. 1.2C shows an instance of “active” stability, where a sea lion balances a ball on the tip of its 

nose.  Here, instead of gravity creating forces that push the ball back to its original at-rest condition as 

in Fig. 1.2A-1.2B, the sea lion provides these restorative forces.  To maintain stability during locomotion, 

animals use a combination of passive stability (arising from their mechanical design) and active stability 

(arising from their neural and musculoskeletal responses) to mitigate perturbations. 

 

Figure 1.2C: Active stability 

Sea lion uses active stability to balance a ball.  Here a sea 
lion balances a ball on the tip of its nose.  If the sea lion were 
a stone statue but the ball were real, this system would be 
considered unstable; a small perturbation of the ball would 
send it toppling to the ground.  However, a real sea lion uses 
its senses (such as touch, sight, and equilibrium) to measure 
slight perturbations of the ball and then react with opposing 
forces that keep the ball balanced on its nose.  This restores 
stability to the system, though this is considered “active” 
stability since sea lion must use senses, processing power, 
energy, and reactions to maintain the ball’s position.  
Compare this to Fig. 1.2A) and Fig. 1.2B), where gravity and 
the configuration of the system is enough to maintain i) the 
position of the ball or ii) the position or regular cyclical pattern 
of the swinging mass.  Creatures that move typically rely on a 
combination of both passive and active reactions to maintain 
stability as they navigate through their environment in search 
of resources and mates. 
 

pivot, with friction

� pendulum mass

�����

restorative force is

�� sin(�����)

��

(field)

��

�

��
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Stability in legged locomotion 

Walking, swimming, and flying are all cyclical processes that stabilize against perturbations using 

both passive and active responses.  Of these cyclical locomotor modes, human walking is probably the 

best understood.  In human walking, the upper body functions as an inverted pendulum, rotating about pivot 

points created by each foot as they alternately touch ground (Dickinson et al., 2000).  Each successive step 

allows the weight of the pendulum to fall forward and the cycle to continue (Cavagna et al., 1977).  The 

process is similar even for multi-legged animals (Full and Koditschek, 1999).  In humans, central pattern 

generators in our spinal cord initiate this ambulatory cycle, and the cycle is mechanically stable against 

slight imperfections in the walking surface.  Larger imperfections require active reflexes also mediated by 

the spinal cord (Harkema et al., 1997).  These reflexes, though we may not be consciously aware of them, 

involve neural control circuits that trigger muscles to create amelioratory responses (Zehr and Stein, 

1999).  Larger perturbations may require further active responses mediated by the supraspinal locomotor 

network in the midbrain, cerebrum, and cerebellum (Jahn et al., 2008;Qiao and Jindrich, 2014). 

 Stability in flight (see Flight stability) and swimming is less well-understood.  Nevertheless, the 

same basic rules, including cyclical energy storage, central pattern generators, physical stability against 

small perturbations to the cycle, and neural responses to large perturbations, exist in these locomotor 

modes as well (Alexander and Bennet-Clark, 1977;Biewener and Daley, 2007;Dickinson et al., 2000;Full et 

al., 2002;Marder and Calabrese, 1996;Orlovskiĭ et al., 1999). 

 

What is a maneuver? 

An animal engaged in a maneuver intentionally creates nonzero net torque or force in order to 

change its orientation, speed, or position in some way.  Goal-directed maneuvers must be controlled, and 

thus it is generally advantageous for the animal to maintain stability throughout; except perhaps in cases 

of predator avoidance [e.g. moths falling out of the air to avoid bats (Miller and Surlykke, 2001)] or dispersal  

[e.g. young spiders floating on silk (Bell et al., 2005;Lister, 1678; Lister et al., 1993)].  To change direction 

while walking, bipedal animals typically place a foot distal from their center of mass, thus creating an off-

center ground reaction force that results in a net rotational torque (Jindrich and Qiao, 2009).  Meanwhile, 

counterbalancing tension in stabilizing muscle groups and connective tissue ensure the internal and 
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external structure of the walker follows the chosen path without falling over.  In flying animals, the 

mechanisms that initiate maneuvers and create stability mid-air are much less well-understood.  These 

topics are discussed in Flight stability and Flight maneuvers. 

  

Flight in Animals 

Powered flight has proven to be a particularly successful locomotion strategy.  In addition to the 

millions of species of flying insects (Chin and Lentink, 2016;Dudley, 2002a), untold numbers of bats and 

birds and pterosaurs have also populated Earth’s skies.  After ~350 million years of evolution (Engel and 

Grimaldi, 2004;Knecht et al., 2011), flying insects display capabilities our most sophisticated unmanned 

aerial vehicles currently lack, in a self-healing, self-fueling package that is a fraction of the size with a 

fraction of the processing power.  For this reason, studying insect flight allows us to explore new concepts 

in biology that we can then directly apply to improve engineering designs. 

 

How insect wings create lift 

Insects flap their wings back and forth to create the forces necessary for flight (Weis-Fogh, 1973).  

When oriented effectively, wings redirect incoming air both forwards and downwards, creating a net reaction 

force approximately perpendicular to the orientation of the wing (or “airfoil,” Fig. 1.3A).  In a forward-flying 

insect, the portion of the force antiparallel to gravity is “lift,” and the rest is either “drag” or “thrust” (Azuma, 

2012).  Note that these definitions of lift and drag differ from the classical fluids directions of lift being 

perpendicular to the flow direction and drag parallel to it. Referencing lift and drag to gravity simplifies 

stability and weight support analysis and is therefore common in the insect flight literature. Because these 

forces are the net of air pressure on the wing, various fluid flow structures that interact with the airfoil will 

alter lift and drag.  For example, quasi-stable leading-edge-vortices (LEVs) increase lift (Fig. 1.3A; Srygley 

and Thomas, 2002;Birch et al., 2004;Ellington et al., 1996;van den Berg and Ellington, 1997), and cycling 

wings can intercept previously shed vortices to extract kinetic energy (Birch and Dickinson, 2003). 
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Figure 1.3A: Airfoils create lift and drag 

Airfoils redirect incoming air to create lift.  Wings redirect incoming air both forwards and downwards.  
This creates net reaction force (ܨே௘௧ሬሬሬሬሬሬሬሬԦ, black), which has both vertical (ܨ௅ሬሬሬԦ, orange) and horizontal (ܨ஽ሬሬሬሬԦ, green) 
components.  A specific wing will produce different ratios of 
vertical (lift) to horizontal (drag) force depending on its 
“angle of attack” (ߙ, red) relative to the incomcing wind (light 
purple).  Other variables that affect this relationship include 
hysteresis in unsteady flows (such as flapping wings in 
transition), viscosity, velocity, Reynolds number, and wing 
size, shape, area, composition, camber.  The swirl at the 
front of the wing is created by interaction with the wing’s 
leading edge, and is called the leading edge vortex (LEV).  
On the size and speed scales typical of flying insects, LEVs 
enhance lift and are ubiquitous (Sane, 2003). 
 
 
 

Figure 1.3B-C: Insects flap their wings to create aerodynamic forces 

Insects flap their wings in a cycle, along a 
stroke path.  B&C) During hover, insects like 
hawkmoths rotate their wings forwards and 
backwards in a cycle.  Both up- and downstroke 
create lift.  During hover, upstroke and downstroke 
create equal and opposite drag (so the moth does 
not move forwards or backward).  In (male) 
hawkmoths, the front and back wings are attached 
and generally function as a single unit (Dudley, 
2002a).  As a general rule for animals with 
effectively two flapping airfoils, wing movement is 
(approximately) bilaterally symmetric. B&C show 
up- and downstroke in the same image solely for 
purposes of visualization.  B) also shows LEVs 
(light purple) spiraling distally to be shed on the 
outside of each wing.  C) shows that the center of 
pressure (COP, circle with a dot) lies directly 
vertical to the center of mass (COM, circle split into 
four sections) during stable hover.  Cet. par., 
variation from this arrangement causes rotation.  If 
the magnitude of lift |ܨ௅ሬሬሬԦ| is not equal to the moth’s 
mass times gravity ݉݃, this causes vertical 
acceleration.  Longitudinally imbalanced drag 
induces longitudinal motion and pitch.  Laterally 
imbalanced lift induces roll.  Laterally imbalanced 
drag induces yaw. 
 

 

During hover, insects like hawkmoths rotate their wings forwards and backwards in a cycle to create 

lift and counterbalancing drag/thrust during upstrokes and downstrokes, respectively.  For hawkmoths, this 
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process is bilaterally symmetric during hover (Fig. 1.3B-1.3C show upstroke and downstroke in the same 

image solely for purposes of visualization).  The amount of lift or drag produced by a wing can be roughly 

approximated by ݑܣߩଶ 2⁄  times the coefficient of lift or drag (ܥ௅ or ܥ஽), where ߩ is air density, ܣ is the wing 

area, and ݑ is wind speed (where ܴ݁ > 1).  The angle a wing makes relative to incoming air is known as the 

angle of attack (ߙ in Fig. 1.3A).  ܥ௅ and ܥ஽ vary with angle of attack, and are typically determined 

experimentally for a given set of initial conditions (Fig. 1.3D). 

 

Figure 1.3D: Coefficients of lift and drag 

Coefficients of lift and drag depend on angle 
of attack.  In Fig. 1.3D, the amount of lift or drag 
produced by a wing can be approximated by 
ଶݑܣߩ	 2⁄  times the coefficient of lift or drag (ܥ௅ or 
 is the wing area, and ܣ ,is air density ߩ ஽), whereܥ
 is wind velocity.  The angle a wing makes ݑ
relative to incoming air is known as the angle of 
attack (ߙ in Fig. 1.2A).  ܥ௅ and ܥ஽ vary with angle 
of attack, and are typically determined 
experimentally for a given set of initial conditions.  
With permission from (Usherwood and Ellington, 
2002). 
 

 

Fluids and size 

Viscous forces are relatively less important in larger and faster animals.  So, flight strategies change 

with size and speed.  Essentially, viscous forces (i.e. forces exerted by surrounding fluids) scale with surface 

area, while inertia (e.g. the force it takes to accelerate a body or wing) scale with mass and speed.  If an 

animal increases in size isometrically, the mass will scale faster than its surface area, (one being length 

squared and the other being length cubed), and fewer body-lengths-per-second will correspond to the same 

absolute speeds.  So, there is a larger ratio of inertial to viscous fluid forces for animals of larger size.  

Larger animals experience less resistance to motion relative to their body size, so the medium “feels” 

thinner.  This basic fluids principle, known as Reynolds number (ܴ݁), dictates the physical mechanisms 

which animals can use to effectively create lift and thrust.  Disregarding factors like buoyant force and 

focusing on this effect only, the smallest flying insects (e.g. thrips or parasitoid wasps) swim through air like 

(Usherwood & Ellington, 2002)
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a human through honey (Delvare, 1993;Jones et al., 2015;Santhanakrishnan et al., 2014); hawkmoths flap 

in air “thicker” than water to you or I; and the largest whales glide through water with lower relative 

resistance than air to a jumbo jet (Sane, 2003;Usherwood and Ellington, 2002;Vogel, 2008).  Paddle-like 

hovering flight strategies are commonly seen at lower ܴ݁; while airplane-like forward gliding is commonly 

seen at higher ܴ݁. 

  

Stability and Maneuvers in Flapping Flight 

In the case of flight, stability involves the return of the animal’s body to a stable orientation and the 

return of the wings to a stable flapping cycle.  Velocity is controlled and maneuvers are purposeful.  An 

unwelcome perturbation may cause an animal to deviate from its ideal path or diverge from its ideal 

orientation.  An animal is considered to be stable in response to a perturbation if it returns to its original 

orientation and flapping dynamic within a reasonable period of time, and without falling/crashing.  The 

quicker and less violent the return, the more stable is the animal to that particular type of perturbation.  For 

purposeful maneuvers, I expect flying animals to use various reorientation strategies covered later in this 

section. 

 

Flight maneuvers 

The location of net forces relative to an object’s center of mass (COM) determines the net 

torque.  For example, if a building’s center of mass is not directly above the center of its ground reaction 

forces, it experiences nonzero net-torque, and begins to topple/lean (Fig. 1.4A).  In flying animals, forces 

are the result of air pressure, and the net center of reaction forces is known as the center of pressure (COP).  

So, for stable flight, the COP must be positioned directly over the COM (Fig. 1.3C).  If a flying animal 

displaces its COM away from this position by extending or flapping an appendage, it will experience net 

torque and begin to rotate (Dudley, 2002b). 
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Figure 1.4: Net torque causes rotation 

Nonzero net torque creates rotational acceleration.  The 
location of net forces relative to an object’s center of mass (COM) 
determines net torque.  For example, if a building’s center of mass 
is not directly above the center of its ground reaction forces, it 
experiences nonzero net-torque, and begins to topple/lean.  
Without human intervention, the more this building leans, the more 
displaced the COM will become, which will increase the lever arm 
length (ݎ) and thus increase net torque (increasing the rate of 
rotational acceleration).  Thus, the more it leans, the faster it will 
topple.  In real life, the COM of the Leaning Tower of Pisa has been 
re-centered above its ground reaction force by adding a large 
amount of lead weights to the tower on the left side of this image. 

 

There is one other option for reorientation.  Flying (or 

falling!) animals can also reorient by leveraging the inertia of 

individual moving parts against one another (Frohlich, 1980).  This 

is called “inertial” reorientation, and has been shown previously in 

larger flying animals at low speeds, such as bats and birds, (Bergou 

et al., 2011;Bergou et al., 2015;Hedrick et al., 2007;Iriate-Díaz et 

al., 2011;Meadows, 2015;Warrick and Dial, 1998; but see Ros et al., 2015) but not insects.  Insects are 

relatively smaller (lower ܴ݁) and have fewer hinged, heavy parts with which they might attempt inertial 

reorientation.  A prominent, at least indirect role for inertia in the reorientation of insects is still conceivable, 

however, since large, rapidly-flapping insect wings are effectively gyroscopes, albeit counter-rotating ones 

(Chapters 3 & 5; Dickerson et al., 2014;Eberle et al., 2015;Jankauski and Shen, 2016;Jenkins, 2016), and 

because insect bodies are jointed and flexible (Chapter 4; Dhyr et al. 2013;Hinterwirth et al. 2010). 

Prior to my work, much research had been conducted on free-flight maneuvers in birds (e.g. 

(Hedrick and Biewener, 2007;Tobalske et al., 2007)) but relatively little on free-flying (untethered) insects 

(excepting Fry et al., 2003).  Much has been done since then, (e.g. (Beatus et al., 2015; Ristroph et al. 

2009; Ristroph et al. 2013)), and it is with these recent studies that I am best able to compare and contrast 

my own conclusions. 
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Flight stability 

Researchers have only recently developed the theoretical framework that enables them to ask 

probing questions about stability in flapping flight.  First, the basic mechanisms of lift and thrust creation in 

insect-scale flight needed to be understood (e.g. (Ellington, 1984;Weis-Fogh, 1956)).  Next, questions were 

asked about how these animals physically create free-flight maneuvers (e.g. (Fry et al., 2003)), and how 

their neural systems work (e.g. (Daniel and Tu, 1999;Gray et al., 2002;Nishikawa et al., 2007;Springthorpe 

et al., 2012)). 

The most recent step, the one which I have worked hardest to move forward, is understanding how 

animals maintain stability in flight.  Stability has proven the most challenging of these subject areas because 

it necessitates a previous understanding of flight forces, maneuver methods, and neural processing 

systems. 

Prior to 2009 when my research began, there were few free-flight studies (i.e. ones in which the 

animal is not connected to a fixed surface) on animal flight stability.  Work existed on the responses of 

various tethered insects to simulated rotations (Fry et al., 2008;Lehmann and m, 1998;Sherman and 

Dickinson, 2003;Taylor and Thomas, 2003).  Recent work also includes the response of hummingbirds, 

bees, and hawkmoths responding to unsteady flow (Combes and Dudley, 2009;Ortega-Jimenez et al., 

2013;Ravi et al., 2013;Vance et al., 2013;Vandenberghe et al., 2004).  Computational fluid dynamic (CFD) 

and physical (i.e. robotic) modeling studies have also been conducted.  However, these models necessitate 

(sometimes non-obvious) simplifications that, if incorrect, may result in substantial differences between 

model and real-world flight dynamics (Chapters 3 & 5; Chin and Lentink, 2016;Taha et al., 2015). 

Notable work has also been done on passive damping of rotation about the vertical (Bergou et al., 

2010;Hedrick et al., 2009), longitudinal (Beatus et al., 2015;Ristroph et al., 2009), and lateral (Cheng et al., 

2011;Ristroph et al., 2013;Whitehead et al., 2015) axes (i.e. yaw, roll, and pitch, respectively; Fig. 1.6A-C).  

Key passive damping mechanisms that have been identified include flapping countertorque, or “FCT” 

[rotations change the velocity of wings flapping in that rotational plane, damping the rotation (Fig. 1.6; 

Hedrick et al., 2009)], and air drag [specifically for high-drag, smaller flying insects (Ristroph et al., 2013)].  

When flapping frequency is slow or nonexistent, such as during gliding, these flapping-related damping 

factors are supplemented by many of the same stability factors seen in fixed wing aircraft (Azuma, 2012). 
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These passive damping factors (those identified in previous work) are almost all global reference 

frame (GRF) velocity effects, where rotations are damped solely by changes to wing velocity or orientation 

in the reference frame of a stationary observer.  This is distinct from the gyroscopic/inertio-viscous passive 

damping factors I identify in Chapters 3-5, where torque impulses change wing kinematics relative to the 

flapping animal itself (i.e. in the “BRF,” or body reference frame, like that of a passenger sitting inside of a 

turning airplane).  These deviations from the normal flapping cycle in the BRF of the moth match those 

which create roll (Chapters 2, 4, 5), and pitch (Chapter 3) torque in the opposite direction of the initial torque 

impulse; this is the novel class of inertio-viscous damping I propose in this dissertation (Fig. 3.7, 5.2, 5.5).  

Since inertio-viscous damping factors complement GRF velocity (viscous) damping factors previously 

discussed, flapping stability could scale across a range of sizes and speeds. 

 

Figure 1.5: FCT in yaw is an example of damping from viscous GRF wing velocity changes 

 
Flapping flight is damped by world reference frame velocity effects.  During a leftwards yaw rotation, 
if the wings move at (approximately) the same speed in reference to the rotating moth (in the body reference 
frame, or BRF), then in the world reference frame (global reference frame, or GRF), the right wing flaps 
faster in downstroke and the right faster in upstroke.  Research has found this type of velocity effect damps 
yaw in flapping flight (Hedrick et al., 2009;Hedrick and Robinson, 2010), roll in hawkmoths and cockatoos 
(Greeter and Hedrick, 2016;Hedrick et al. 2007), and sideslip in fruit flies and hawkmoths (Faruque and 
Humbert, 2010b;Greeter and Hedrick, 2016).  If the asymmetric misalignment of rotational axes with the 
wings were to (via inertia) introduce asymmetries in wing movement from the perspective of the moth, and 
these flapping asymmetries interacted with the air so as to create yaw countertorque, that would instead 
be an example of an “inertio-viscous” damping effect.  A damping effect like this has not (yet) been shown 
to be the case for yaw rotations, though my dissertation describes such damping effects for roll and pitch. 
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Figure 1.6A-C: Flapping flight wing and body kinematics 

Pitch, roll, and yaw.  It is convenient to break down 
whole-body kinematics into the six familiar degrees of 
freedom: up/down, left/right, fore/aft, yaw, pitch, and roll.  
A) Pitch (green) is rotation about the lateral (left/right) axis, 
B) roll (red) is rotation about the longitudinal (fore/aft) axis, 
and C) yaw (cyan) is rotation around the vertical (up/down) 
axis. 
 
 
Quantifying wing and body dynamics 

In M. sexta, as in most flying animals, the majority 

of reorientation forces come from the wings.  Thus, it is 

useful to define basic wing kinematics to establish a 

foundation for the rest of this dissertation.   

Figure 1.6 defines the chief characteristics of body 

(A-C) and wing (D-E) kinematics as applied in this 

dissertation.  It is convenient to break down whole-body 

kinematics into the six familiar degrees of 

freedom: up/down, left/right, fore/aft, yaw, pitch, and roll.  

Yaw is rotation around the vertical (up/down) axis, pitch is 

rotation about the lateral (left/right) axis, and roll is rotation about the longitudinal (fore/aft) axis (Fig. 1.6A-

C).  Wing sweep, wing elevation, wing stroke plane, and stroke plane deviation angle are all basic kinematic 

measures of wing motion (Fig. 1.6D).  Since angle of attack (ߙ, Fig. 1.3B) is dynamic, it is also useful to 

define a “wing pitch angle” relative to some consistent geographical benchmark, such as stroke plane angle 

(Fig. 1.6E) or the body reference frame (BRF) horizontal axis.  Fig. 4.3 (in Chapter 4) provides a more 

complete diagram and a detailed description of the wing and body kinematics I used throughout my 

research. 
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Figure 1.6D-E: Flapping flight wing and body kinematics 

Body pitch and wing stroke path, stroke 
plane, sweep, elevation, and deviation.  
D) Wing sweep, elevation, stroke plane, and 
deviation angle are all basic kinematic 
measures of wing motion.  Sweep and 
elevation (longitudinal and vertical wing 
position relative to the wing base) are 
typically measured as either an 
instantaneous position or as an amplitude for 
a given quarter- or halfstroke.  Stroke plane 
is typically measured over the course of a 
given halfstroke, and wing deviation 
perpendicular to this line is stroke plane 
deviation angle (measured at midstroke in 
my work).  Some publications use “wing 
deviation,” “elevation,” and “stroke plane 
deviation” interchangeably; however, mine 
do not.  E) Since angle of attack (ߙ, Fig. 
1.2B) is dynamic, it is also common to define 
a “wing pitch angle” relative to some 
consistent geographical benchmark, such as 
stroke plane angle (as shown in this figure) 
or the BRF horizontal axis (though E depicts 
only the former convention).  When fitting 
trends to models in my work, I typically 
isolate wing pitch angle at midstroke. 
 

 

 

Summary of Chapters 2-4 

My dissertation consists of five chapters that describe three main experiments.  All three 

experiments look at both stability and maneuverability in the hawkmoth species Manduca sexta (henceforth, 

simply “hawkmoths”).  They examine M. sexta roll and pitch in three distinct contexts: 1) goal-directed lateral 

and roll maneuvers, 2) stabilization of pitch in response to an impulse perturbation, and 3) compensation 

for center of mass (COM) dislocation.  Despite their different approaches, all three experimental results are 

in close agreement.  This consistency supports my conclusions about how hawkmoths maneuver and 

stabilize. 
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Chapter 2 summary 

 Chapter 2 describes direct lateral maneuvers and roll maneuvers in hawkmoths.  In this experiment, 

I coaxed moths to follow a handheld oscillating light in the dark.  First, results demonstrate hawkmoths 

reorient their net lift vector to create direct lateral maneuvers (i.e. “sideslips”).  Second, results demonstrate 

hawkmoths use left-right asymmetries in wing pitch angle and sweep to generate asymmetries in lift.  This 

asymmetry creates the net torque that initiates the roll maneuver. 

Relative to previous and concurrent work, this study confirms the same basic wing mechanisms for 

roll torque creation, (Beatus and Cohen, 2015;Beatus et al., 2015), but shows greater than expected 

passive damping in roll.  The damping is so severe that changes to wing kinematics correlated to the first, 

rather than the second, derivative of roll orientation. 

In this first study, we concluded that viscous interactions from global reference frame (GRF) effects 

are a major factor in roll damping.  Recall from Fig. 1.6 that, when rotated in space (in the GRF), wings may 

be flapping at the same speed in the reference frame of the moth (the BRF), but experience unequal 

velocities that lead to viscous damping.  Thus, just as in yaw, when a moth begins to roll about its 

longitudinal axis, global reference frame asymmetries in wing velocity damp the rotation (Fig. 5.1A).  

Because roll creates sideslip, the lateral motion from sideslip further enhances this effect (Fig. 5.1B).  In 

this way, lateral motion itself damps roll.  

In a similar global reference frame effects, it is likely that moths are also roll-damped by well-known 

velocity-based effects also present in fixed-wing aircraft, such as dihedral angle and induced angle of attack 

(AOA; the angle at which wings hit incoming air; Fig. 1.3A & 1.3D) asymmetry.  These specific damping 

effects are likely small when velocity is also low (Cheng and Deng 2011; Cheng et al., 2009; Elzinga et. al, 

2014), but not when velocities are high. 

Moths seemed to employ two active damping countermeasures during the maneuvers.  First, the 

angle of attack asymmetries moths used to induce roll are opposite those which expected to create roll 

damping (known for fixed-wing case; Cheng et al., 2011).  Second, hawkmoths employ lateral asymmetry 

in elevation amplitude to counter roll damping.  Results show roll damping is about four times as strong 

during upstrokes (upwards movement of the wing); which indicates global reference frame asymmetries in 

wing velocity about the roll axis during sideslip (Fig. 5.1A-C) are a major source of roll-damping in M. sexta. 
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Chapter 3 summary 

 Chapter 3 describes M. sexta response to impulse pitch perturbations.  In this experiment, I fired a 

small (~.2 ݃) clay projectile from toy cannon at hawkmoths while they hovered in mid-air, striking them in 

the abdomen or thorax and perturbing them in pitch.  First, it shows that hawkmoths are unexpectedly 

capable of stabilizing against quite large (>90°) pitch perturbations.  Second, it shows this stabilization 

response can be (and likely is) mediated by passive changes to stroke plane angle and angle of attack, 

(and possibly passive changes to fore-aft/dorsoventral sweep amplitude as well).  The implications of my 

results could contrast with long-standing scientific consensus, as they indicate there could be much greater 

passive damping in pitch than currently believed (Maeda et al., 2010;Noda et al., 2013;Ristroph et al., 

2013;Sun et al., 2007;Taha et al., 2015), and that wing inertia/momentum likely plays an important role in 

creating stability in flapping flight (e.g. (Cheng et al. 2009)). 

When pitched by an impulse, both drag and inertia cause the wings to resist rotation more strongly 

than the body, so they continue to flap in a similar plane within the global reference frame (GRF), even as 

the body oscillates.  This restores a measure of pendular stability to the flight of insects, with the center of 

pressure (COP; Fig. 1.3C) serving as a quasi-fixed point above the damped (but oscillating) center of mass 

(COM; Fig. 1.3C & 3.4).  Because rapidly flapping wings are essentially gyroscopes, pitch torque at the 

wing base manifests as stroke plane deviation angle changes at midstroke.  Careful examination of 

directionality and the data suggests these changes are reinforced by the aerodynamic forces of pitch 

rotation, and also help passively restore stability.  Stroke plane deviation angle changes are essentially roll 

perturbations to the wings themselves; these changes may interact with the rotational momentum of flipping 

wings to create dorsoventral sweep asymmetries which also damp pitch. 

Recent/concurrent research on insect flight shows both aerodynamic (Hedrick, 2011;Hedrick et al., 

2009;Hedrick and Robinson, 2010) and inertial (Eberle et al., 2015) forces damp world frame (GRF) 

rotations of flapping wings.  In this context, the results of Chapter 3 strongly suggest that pitch-damping in 

insect-scale flapping flight is the result of the sum of viscous and inertial forces.  Wings of insects are thus 

massive vibrating structures that experience high drag, and these two effects work together to automatically 

resist and correct for rotations.  Wing movements are not perfectly coupled to the body. 
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Since the wing kinematics that passively resist pitch rotation seem to arise from both inertial (in this 

case gyroscopic/accelerative) and viscous (air drag/velocity) sources, this strongly suggests a general 

effect that is not strictly dependent on Reynolds number alone, or possibly even the time scale of the 

perturbation.  If inertial and aerodynamic effects are additive and create pitch stability in hawkmoths, this 

may be the case for flying animals across a wide variety of size scales and flapping frequencies, and in 

other degrees of freedom, as well.  Thus this could be an important theoretical step in the study of stability 

in flapping flight. 

 

Chapter 4 summary  

 Chapter 4 describes M. sexta response to the manipulation of its center of mass (COM).  In these 

experiments, moths fed from a flower with an off-axis fishing sinker attached to a T-bar on their dorsal 

surface, which required them to continually create torque to maintain hover orientation. 

First, the results show moths alter their orientation (their COM) position to partially adapt to the 

applied torque.  They pitch their bodies down, increase their intra-abdominal angle, and roll their entire body 

to reduce the effective COM displacement.  Because this does not completely correct for the COM offset, 

they also use their wings to create continuous pitch and roll torque, described below. 

To counter the pitch-down COM offset that remains after adjusting their body pitch angle and intra-

abdominal angle, moths make their stroke planes more acute, and sweep their wings farther forward relative 

to a control trial.  They also increase angle of attack (AOA) in downstrokes.  To counter the roll COM offset 

that remains after adjusting their body roll angle, moths increase the sweep of the sinker-ipsilateral wing 

pair relative to that of the sinker-contralateral wing pair.  They also increase/decrease downstroke/upstroke 

stroke plane angle in the sinker-ipsilateral wing pair relative to the control. 

Wing kinematic results were consistent with the theoretical framework I established in previous 

chapters.  However, unlike previous chapters, I did not find a significant relationship between angle of attack 

(AOA) and roll; and the relationship between AOA and pitch was statistically weak (and only present for 

downstrokes).  Furthermore, there was no significant relationship between elevation amplitude and roll.  

These results are consistent with my conclusion that roll is heavily damped in M. sexta, and that the changes 
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they make to angle of attack and elevation amplitude during sideslip are targeted at reducing velocity-

related (world-frame/GRF) roll-damping effects. 



18 
 

REFERENCES 

Alexander, R. M. and Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other 
tissues. Nature 265, 114-117. 

Azuma, A. (2012). The biokinetics of flying and swimming: Springer Science & Business Media. 

Beatus, T. and Cohen, I. (2015). Wing-pitch modulation in maneuvering fruit flies is explained by an 
interplay between aerodynamics and a torsional spring. Phys. Rev. E 92, 022712. 

Beatus, T., Guckenheimer, J. M. and Cohen, I. (2015). Controlling roll perturbations in fruit flies. J. R. 
Soc. Interface 12, 10.1098/rsif.2015.0075. 

Bell, J., Bohan, D., Shaw, E. and Weyman, G. (2005). Ballooning dispersal using silk: world fauna, 
phylogenies, genetics and models. Bull. Entomol. Res. 95, 69-114. 

Bergou, A. J., Swartz, S. M., Vejdani, H., Riskin, D. K., Reimnitz, L., Taubin, G. and Breuer, K. S. 
(2015). Falling with style: bats perform complex aerial rotations by adjusting wing inertia. PLoS Biol. 13, 
e1002297. 

Bergou, A. J., Swartz, S., Breuer, K. and Taubin, G. (2011). 3D Reconstruction and analysis of bat flight 
maneuvers from sparse multiple view video. 1-2. 

Bergou, A. J., Ristroph, L., Guckenheimer, J., Cohen, I. and Wang, Z. J. (2010). Fruit Flies Modulate 
Passive Wing Pitching to Generate In-Flight Turns. Phys. Rev. Lett. 104, 148101. 

Biewener, A. A. and Daley, M. A. (2007). Unsteady locomotion: integrating muscle function with whole 
body dynamics and neuromuscular control. J. Exp. Biol. 210, 2949-2960. 

Birch, J. M. and Dickinson, M. H. (2003). The influence of wing-wake interactions on the production of 
aerodynamic forces in flapping flight. J. Exp. Biol. 206, 2257-2272. 

Birch, J. M., Dickson, W. B. and Dickinson, M. H. (2004). Force production and flow structure of the 
leading edge vortex on flapping wings at high and low Reynolds numbers. J. Exp. Biol. 207, 1063-1072. 

Cavagna, G. A., Heglund, N. C. and Taylor, C. R. (1977). Mechanical work in terrestrial locomotion: two 
basic mechanisms for minimizing energy expenditure. Am. J. Physiol. 233, R243-61. 

Cheng, B., and Deng, X. (2011). Translational and rotational damping of flapping flight and its dynamics 
and stability at hovering. IEEE Trans. Robotics 27.5, 849-864. 

Cheng, B., Deng, X. and Hedrick, T. L. (2011). The mechanics and control of pitching manoeuvres in a 
freely flying hawkmoth (Manduca sexta). J. Exp. Biol. 214, 4092-4106. 

Cheng, B., Fry, S. N., Huang, Q., Dickson, W. B., Dickinson, M. H., & Deng, X. (2009). Turning dynamics 
and passive damping in flapping flight. IEEE Int. Conf. Robotics and Automation. 1889-1896 

Chin, D. D. and Lentink, D. (2016). Flapping wing aerodynamics: from insects to vertebrates. J. Exp. Biol. 
219, 920-932. 

Combes, S. A. and Dudley, R. (2009). Turbulence-driven instabilities limit insect flight performance. Proc. 
Natl. Acad. Sci. U.S.A. 106, 9105-9108. 

Daniel, T. L. and Tu, M. S. (1999). Animal movement, mechanical tuning and coupled systems. J. Exp. 
Biol. 202, 3415-3421. 

Delvare, G. (1993). On the Megaphragma of Guadeloupe with the description of a new species 
(Hymenoptera, Trichogrammatidae). Revue française d'Entomologie 15, 149-152. 



19 
 

Dyhr, J. P., Morgansen, K. A., Daniel, T. L. and Cowan, N. J. (2013). Flexible strategies for flight control: 
an active role for the abdomen. J. Exp. Biol. 216, 1523-1536. 
 
Dickerson, B. H., Aldworth, Z. N. and Daniel, T. L. (2014). Control of moth flight posture is mediated by 
wing mechanosensory feedback. J. Exp. Biol. 217, 2301-2308. 

Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R. and Lehman, S. (2000). How 
Animals Move: An Integrative View. Science 288, 100-106. 

Dudley, R. (2002a). The biomechanics of insect flight: form, function, evolution: Princeton University Press. 

Dudley, R. (2002b). Mechanisms and implications of animal flight maneuverability. Integr. Comp. Biol. 42, 
135-140. 

Eberle, A. L., Dickerson, B. H., Reinhall, P. G. and Daniel, T. L. (2015). A new twist on gyroscopic 
sensing: body rotations lead to torsion in flapping, flexing insect wings. J. R. Soc. Interface 12, 20141088. 

Ellington, C. P., van den Berg, C., Willmott, A. P. and Thomas, A. L. (1996). Leading-edge vortices in 
insect flight. Nature 384.6610, 626-630 

Ellington, C. P. (1984). The aerodynamics of hovering insect flight. VI. Lift and power requirements. Phil. 
Trans. R. Soc. Lon. B Biol. Sci. 305, 145-181. 

Elzinga, M. J., Floris B. v., and Dickinson, M. H. (2014). Strategies for the stabilization of longitudinal 
forward flapping flight revealed using a dynamically-scaled robotic fly. Bioinsp. Biomim. 9.2, 025001. 

Engel, M. S. and Grimaldi, D. A. (2004). New light shed on the oldest insect. Nature 427, 627-630. 

Faruque, I. and Humbert, J. S. (2010). Dipteran insect flight dynamics. Part 2: Lateral–directional motion 
about hover. J. Theor. Biol. 265, 306-313. 

Frohlich, C. (1980). The physics of somersaulting and twisting. Sci. Am. 242, 154-165. 

Fry, S. N., Rohrseitz, N., Straw, A. D. and Dickinson, M. H. (2008). TrackFly: virtual reality for a 
behavioral system analysis in free-flying fruit flies. J. Neurosci. Methods 171, 110-117. 

Fry, S. N., Sayaman, R. and Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in 
Drosophila. Science 300, 495-498. 

Full, R. J., Kubow, T., Schmitt, J., Holmes, P. and Koditschek, D. (2002). Quantifying Dynamic Stability 
and Maneuverability in Legged Locomotion1. Integr. Comp. Biol. 42, 149-157. 

Full, R. J. and Koditschek, D. E. (1999). Templates and anchors: neuromechanical hypotheses of legged 
locomotion on land. J. Exp. Biol. 202, 3325-3332. 

Greeter, J. S. M., and Hedrick, T. L. (2016). Direct lateral maneuvers in hawkmoths. Biol. Open, bio-
012922 

Gray, J. R., Pawlowski, V. and Willis, M. A. (2002). A method for recording behavior and multineuronal 
CNS activity from tethered insects flying in virtual space. J. Neurosci. Methods 120, 211-223. 

Harkema, S. J., Hurley, S. L., Patel, U. K., Requejo, P. S., Dobkin, B. H. and Edgerton, V. R. (1997). 
Human lumbosacral spinal cord interprets loading during stepping. J. Neurophysiol. 77, 797-811. 

Hedrick, T. L. (2011). Damping in flapping flight and its implications for manoeuvring, scaling and evolution. 
J. Exp. Biol. 214, 4073-4081. 



20 
 

Hedrick, T. L. and Biewener, A. A. (2007). Low speed maneuvering flight of the rose-breasted cockatoo 
(Eolophus roseicapillus). I. Kinematic and neuromuscular control of turning. J. Exp. Biol. 210, 1897-1911. 

Hedrick, T., Usherwood, J. and Biewener, A. (2007). Low speed maneuvering flight of the rose-breasted 
cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation. J. Exp. Biol. 210, 1912-1924. 
 
Hedrick, T. L., Cheng, B. and Deng, X. (2009). Wingbeat Time and the Scaling of Passive Rotational 
Damping in Flapping Flight. Science 324, 252-255. 

Hedrick, T. L. and Robinson, A. K. (2010). Within-wingbeat damping: dynamics of continuous free-flight 
yaw turns in Manduca sexta. Biology Letters 6, 422-425. 

Hinterwirth, A. J. and Daniel, T. L. (2010). Antennae in the hawkmoth Manduca sexta (Lepidoptera, 
Sphingidae) mediate abdominal flexion in response to mechanical stimuli. J. Comp. Physiol. A 196, 947-
956. 
 
Iriarte-Díaz, J., Riskin, D. K., Willis, D. J., Breuer, K. S., & Swartz, S. M. (2011). Whole-body kinematics 
of a fruit bat reveal the influence of wing inertia on body accelerations. J. Exp. Biol. 214.9, 1546-1553. 

Jahn, K., Deutschländer, A., Stephan, T., Kalla, R., Hüfner, K., Wagner, J., Strupp, M. and Brandt, T. 
(2008). Supraspinal locomotor control in quadrupeds and humans. Prog. Brain Res. 171, 353-362. 

Jankauski, M. and Shen, I. (2016). Experimental studies of an inertial-elastic rotating wing in air and 
vacuum. Int. J. Micro Air Veh. 8, 53-63. 
 
Jindrich, D. L. and Qiao, M. (2009). Maneuvers during legged locomotion. Chaos 19, 026105. 

Jones, S., Laurenza, R., Hedrick, T. L., Griffith, B. E. and Miller, L. A. (2015). Lift vs. drag based 
mechanisms for vertical force production in the smallest flying insects. J. Theor. Biol. 384, 105-120. 

Knecht, R. J., Engel, M. S. and Benner, J. S. (2011). Late Carboniferous paleoichnology reveals the 
oldest full-body impression of a flying insect. Proc. Natl. Acad. Sci. USA 108, 6515-6519. 

Lehmann, F. O. and Dickinson, M. H. (1998). The control of wing kinematics and flight forces in fruit flies 
(Drosophila spp.). J. Exp. Biol. 201, 385-401. 

Linnaeus, C. v. (1763). Centuria insectorum rariorum. Amoenitates Academicae 6, 384-415. 

Lister, M. (1638). Historiae animalium Angliae: tres tractatus. Regiae Societatis Typographum Londini. 

Lister, M., Davies, M., Harley, B., Parker, J. and Findlen, P. (1993). Martin Lister's English Spiders 1678. 
ISIS-International Review Devoted to the History of Science and its Cultural Influence 84, 801-801. 

Maeda, M., Gao, N., Nishihashi, N. and Liu, H. (2010). A free-flight simulation of insect flapping flight. J. 
Aero Aqua Bio-mechanisms 1, 71-79. 

Marder, E. and Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 
687-717. 

Meadows, R. (2015). How bats land upside down. PLoS Biol. 13, e1002298. 

Miller, L. A. and Surlykke, A. (2001). How Some Insects Detect and Avoid Being Eaten by Bats: Tactics 
and Countertactics of Prey and Predator Evolutionarily speaking, insects have responded to selective 
pressure from bats with new evasive mechanisms, and these very responses in turn put pressure on bats 
to “improve” their tactics. Bioscience 51, 570-581. 



21 
 

Nishikawa, K., Biewener, A. A., Aerts, P., Ahn, A. N., Chiel, H. J., Daley, M. A., Daniel, T. L., Full, R. 
J., Hale, M. E., Hedrick, T. L. et al. (2007). Neuromechanics: an integrative approach for understanding 
motor control. Integr. Comp. Biol. 47, 16-54. 

Noda, R., Maeda, M. and Liu, H. (2013). Effect of Passive Body Deformation of Hawkmoth [sic.] on Flight 
Stability. Intelligent Autonomous Systems 12, pp. 835-842: Springer. 

Orlovskiĭ, G. N., Deliagina, T. and Grillner, S. (1999). Neuronal control of locomotion: from mollusc to 
man. Oxford University Press. 

Ortega-Jimenez, V. M., Greeter, J. S., Mittal, R. and Hedrick, T. L. (2013). Hawkmoth flight stability in 
turbulent vortex streets. J. Exp. Biol. 216, 4567-4579. 

Qiao, M. and Jindrich, D. L. (2014). Compensations during Unsteady Locomotion. Integr. Comp. Biol. 54, 
1109-1121. 

Ravi, S., Crall, J. D., Fisher, A. and Combes, S. A. (2013). Rolling with the flow: bumblebees flying in 
unsteady wakes. J. Exp. Biol. 216, 4299-4309. 

Ristroph, L., Berman, G. J., Bergou, A. J., Wang, Z. J. and Cohen, I. (2009). Automated hull 
reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects. J. Exp. Biol. 
212, 1324-1335. 

Ristroph, L., Ristroph, G., Morozova, S., Bergou, A. J., Chang, S., Guckenheimer, J., Wang, Z. J. and 
Cohen, I. (2013). Active and passive stabilization of body pitch in insect flight. J. R. Soc. Interface 10, 
20130237. 

Ros, I. G., Bassman, L. C., Badger, M. A., Pierson, A. N. and Biewener, A. A. (2011). Pigeons steer like 
helicopters and generate down- and upstroke lift during low speed turns. Proc. Natl. Acad. Sci. USA 108, 
19990-19995. 

Sane, S. P. (2003). The aerodynamics of insect flight. J. Exp. Biol. 206, 4191-4208. 

Santhanakrishnan, A., Robinson, A. K., Jones, S., Low, A. A., Gadi, S., Hedrick, T. L. and Miller, L. 
A. (2014). Clap and fling mechanism with interacting porous wings in tiny insect flight. J. Exp. Biol. 217, 
3898-3909. 

Sherman, A. and Dickinson, M. H. (2003). A comparison of visual and haltere-mediated equilibrium 
reflexes in the fruit fly Drosophila melanogaster. J. Exp. Biol. 206, 295-302. 

Springthorpe, D., Fernández, M. J. and Hedrick, T. L. (2012). Neuromuscular control of free-flight yaw 
turns in the hawkmoth Manduca sexta. J. Exp. Biol. 215, 1766-1774. 

Srygley, R. B., and Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying 
butterflies. Nature 420.6916, 660-664. 

Sun, M., Wang, J. and Xiong, Y. (2007). Dynamic flight stability of hovering insects. Acta Mechanica Sinica 
23, 231-246. 

Taha, H. E., Tahmasian, S., Woolsey, C. A., Nayfeh, A. H. and Hajj, M. R. (2015). The need for higher-
order averaging in the stability analysis of hovering, flapping-wing flight. Bioinsp. Biomim. 10, 016002. 

Taylor, G. K. and Thomas, A. L. R. (2003). Dynamic flight stability in the desert locust Schistocerca 
gregaria. J. Exp. Biol. 206, 2803-2829. 

Tobalske, B. W., Warrick, D. R., Clark, C. J., Powers, D. R., Hedrick, T. L., Hyder, G. A. and Biewener, 
A. A. (2007). Three-dimensional kinematics of hummingbird flight. J. Exp. Biol. 210, 2368-2382. 



22 
 

Usherwood, J. R. and Ellington, C. P. (2002). The aerodynamics of revolving wings I. Model hawkmoth 
wings. J. Exp. Biol. 205, 1547-1564. 

van den Berg, C. and Ellington, C. P. (1997). The three–dimensional leading–edge vortex of a 
‘hovering’model hawkmoth. Phil. Trans. R. Soc. Lond. B Biol. Sci. 352, 329-340. 

Vance, J., Faruque, I. and Humbert, J. (2013). Kinematic strategies for mitigating gust perturbations in 
insects. Bioinsp. Biomim. 8, 016004. 

Vandenberghe, N., Zhang, J. and Childress, S. (2004). Symmetry breaking leads to forward flapping 
flight. J. Fluid Mech. 506, 147-155. 

Vogel, S. (2008). Modes and scaling in aquatic locomotion. Integr. Comp. Biol. 48, 702-712. 

Warrick, D. R. and Dial, K. P. (1998). Kinematic, aerodynamic and anatomical mechanisms in the slow, 
maneuvering flight of pigeons. J. Exp. Biol. 201, 655672. 

Weis-Fogh, T. (1956). Biology and physics of locust flight. II. Flight performance of the desert locust 
(Schistocerca gregaria). Phil. Trans. R. Soc. B: Biol. Sci. 239, 459-510. 

Weis-Fogh, T. (1973). Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms 
for Lift Production. J. Exp. Biol. 59, 169-230. 

Whitehead, S. C., Beatus, T., Canale, L. and Cohen, I. (2015). Pitch perfect: how fruit flies control their 
body pitch angle. J. Exp. Biol. 218, 3508-3519. 

Zehr, E. P. and Stein, R. B. (1999). What functions do reflexes serve during human locomotion? Prog. 
Neurobiol. 58, 185-205.



 

23 
 

CHAPTER 2 
DIRECT LATERAL MANEUVERS IN MANDUCA SEXTA 

 
This chapter was published in Biology Open in 2016.  DOI: 10.1242/bio.012922 

Summary 

We used videography to investigate direct lateral maneuvers, i.e. “sideslips,” of the 

hawkmoth Manduca sexta.  M. sexta sideslip by rolling their entire body and wings to reorient their net force 

vector.  During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both 

wing elevation and sweep), allowing them to continue to support body weight while rolled.  To execute 

the roll maneuver we observed in sideslips, they use an asymmetric wing stroke, increasing the pitch of the 

roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair.  They also increase the wing 

sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the 

ipsilateral pair.  The roll maneuver unfolds in a stairstep manner, with orientation changing more during 

downstroke than upstroke.  This is due to smaller upstroke wing pitch angle asymmetries as well as 

increased upstroke flapping countertorque from left-right differences in global reference frame wing velocity 

about the moth’s roll axis.  Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, 

such that rightward roll velocity will be opposed by rightward motion.  Computational modeling using blade-

element approaches confirm the plausibility of a causal linkage between the previously mentioned wing 

kinematics and roll/sideslip.  Model results also predict high degrees of axial and lateral damping.  On the 

time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not 

second, derivative of roll.  Collectively, these results strongly support a roll-based sideslip with a high degree 

of roll damping in M. sexta. 

 

Key Words 

free flight, maneuver, flight control, Manduca sexta, lateral maneuvers, sideslip, side-slip, dodge, banked 

turning, roll, flapping countertorque
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Introduction 

Flying animals must maneuver and stabilize to navigate obstacles and avoid predators when 

seeking resources and mates.  Moths of the Sphingidae family provide a ready model system for 

investigating animal flight maneuverability and stability due to their aerial agility, ease of care/training, large 

body size, cosmopolitan distribution, and economic significance as agricultural pests.  Member species 

oscillate horizontally while hover-feeding, and rapidly maneuver away if visually startled; such flight 

behavior may have evolved to avoid ambush predators at flowers (Waaserthal, 1992;Cheng et al., 2011).  

Previous studies have probed a multitude of sphingid characteristics, including escape flight maneuvers, in 

detail, but not direct lateral maneuvers, or “sideslips.” Here we investigate sideslip kinematics in the 

sphingid Manduca sexta (Linnaeus, 1763). 

Our first hypothesis was that M. sexta sideslip, at least partially, by creating direct lateral force via 

asynchrony in wing pitch angle, as described in fruit flies (Ristroph et al., 2009).  Ristroph et al. (2009) first 

observed that sideslipping Drosophila melanogaster display left-right phase asymmetry in wing pitch 

rotation.  They showed a difference in the wing pitch angle near the end of Drosophila’s ≈155° halfstrokes 

(stroke reversal), where wing trajectories are almost lateral, that may create net lateral force that accounts 

for about half of sideslip acceleration.  M. sexta wings have similarly quasi-lateral trajectories near the end 

of their ≈100° halfstrokes, where forces are also high (Bomphrey et al., 2005).   

Our alternative hypothesis was that M. sexta sideslip solely by rolling to reorient their net 

aerodynamic force vector.  Apparently roll-based, roughly lateral maneuvers during insect hover have been 

observed, (Ellington, 1984a;Ristroph et al., 2009;Muijres et al., 2015); and recent work on Aedes aegypti 

showed mosquitoes perform direct lateral maneuvers via a simple roll-based rotation of their stroke plane 

(Iams, 2012).  However, A. aegypti’s particularly low flapping amplitude of ≈45° may not permit sideslip via 

wing pitch asynchrony as described in the first hypothesis, since their wings do not achieve roughly 

opposing lateral trajectories near the ends of strokes like those of fruit flies and hawkmoths. 

In this study we found strong agreement between videographic analysis of M. sexta lateral 

maneuvers and a first-principle model of our second, roll-only sideslip hypothesis.  In further support of this 

result, we also identified changes to wing kinematics that more fully explain the observed lateral and vertical 
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accelerations.  We calculated passive damping time constants for lateral and vertical acceleration based 

on our fitted equations, and compared them to time constants estimated from computational models. 

Further exploring sideslip maneuvers, we next identified wing kinematics associated with roll, 

added possible passive sources of damping to this model, then tested it against the first and second time 

derivatives of observed roll orientation.  These predictions came from qualitative observations of roll 

maneuvers, general principles of flapping flight, or previous animal flight maneuvering studies.  For all 

models, we used the corrected Akaike information criterion (AICc), to select the best sets of predictor 

variables, and ݌-values from our full-parameter test model to confirm coefficient significance. 

 

Results 

Overview 

Our results show that moths use roll to redirect their net force vector and thus initiate lateral 

maneuvers.   They use sweep and elevation amplitude to amplify the force they create, and a mixture of 

various wing asymmetries to initiate roll.   Linear movement is resisted by passive drag, and roll itself is 

highly damped. 

Sideslips were roll-based and largely unidirectional.  The average sideslip maneuver, as defined in 

Methods, lasted ≈0.2s.  The overall average magnitudes for the first derivatives of yaw, pitch, and roll can 

be seen in Table 2.S1.  During many sideslips, moths experienced brief yaw (and sometimes pitch) 

rotations, which they later corrected with rotational acceleration in the opposite direction.  This explains the 

relatively high average absolute value for yaw and pitch velocity despite the ideally unidirectional nature of 

whole-body sideslip maneuvers.  Models for vertical and lateral acceleration (ݖሷ and ݕሷ ) show a relationship 

consistent with a roll-based lateral acceleration hypothesis.   Increases to ݖሶ and ݕሶ  reduce collinear 

acceleration (ݖሷ and ݕሷ ).  Bilateral increases in sweep and elevation amplitude (ߔ௣ and ߠ௣) increase vertical 

and horizontal force production and thus acceleration.  These angles, ߔ௣ and ߠ௣, are the peak-to-peak 

angular amplitudes of the wing paths, measured respectively in the horizontal and vertical body reference 

planes (BRF) for each halfstroke. 

    Mixed models for ߚሶ  (roll velocity) show wing asymmetries affect roll velocity, primarily wing pitch 

angle (ߙ), but also asymmetries in ߔ௣ and ߠ௣.  Figure 2.1 shows the results for ݕሷ ሶߚ ሷ, andݖ , , and highlights 
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select relevant factors for these position and orientation derivatives.  Figure 2.2 shows kinematics for an 

example trial segment. 

 

Figure 2.1: Model results 

 
Three major moth body position and orientation derivative models.  In descending vertical order, rows 
1-3 show data for ݕሷ ሶߚ ሷ, andݖ , .  The thin salmon line has an intercept of zero and a slope equal to the value 
of the fitted coefficient, (ܭ௬ሷఉ,	ܭ௭ሷఉ, and ܭఉሶ ఈ respectively by row).  The thicker black line has an intercept of 
zero and a slope of one.  In the first column, we fit ݕሷ  and ݖሷ to the a priori constant dorsally-directed force 
production model, and ߚሶ  to ߙ௅ோ (the wing asymmetry that contributed the most to roll velocity).  In the second 
column, we fit ݕሷ ሶߚ ሷ, andݖ ,  to the complete linear models that resulted from the variable selection process 
(Eq. 2.6-8).  In C and F of the third column, we fit ݕሷ  and ݖሷ to the full linear mixed models; they differ from 
column two only by the addition of a random intercept for each moth (which resulted in lower AICc values 
than the models without this adjustment).  Panel H of the second column is the linear model for ߚሶ , which 
includes ߙ௅ோ, ߔ௅ோ, and ݕሶ .  Panel I of the third column shows the full linear mixed model for ߚሶ  which differs 
from panel H by the addition of separate up- and downstroke coefficient estimates for elevation angle.  It is 
important to note that, while we do present this data, panel H scored better than panel I in AICc analysis.  
n = 218 halfstrokes from 19 maneuvers from 4 moths.  For ݌-values see Tables 2.1 & 2.3. 
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Figure 2.2: Example trial 
(Caption is 
on the next 
page) 
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Example trial segment.  Figure 2.2 (on the previous page) depicts a ≈580݉ݏ (14.5 wingbeat) segment of 
midstroke body and wing kinematic data from a representative trial segment.  A This segment begins with 
a lateral deceleration followed by an acceleration in the opposite direction.  Panels B-D depict the estimated 
contribution of moth wing and body kinematics to ݕሷ ሶߚ ሷ, andݖ , , respectively.  Panels B-D show ݕሷ ሶߚ , , and ݖሷ 
in bold black, plotted against the independent variables from Eq. 2.1-3 after they are first multiplied by the 
estimated coefficients from the best linear mixed model of each orientation derivative.  These coefficients 
are the same as those in Tables 2.1-2, and estimated from the entire data set.   The plots show data at only 
midstrokes.  Upstrokes are denoted by plain dots, while downstrokes are denoted by a different character 
for each measured variable. 
 
 
AICc analysis results 

Most predicted kinematics turned out to be significant.  We subjected the mathematical models 

built to test our hypotheses to a variable selection process, as explained in Methods.  Stepwise regression 

and AICc analysis for Eq. 2.6-8 (lateral acceleration, vertical acceleration, and roll velocity) reveals the 

highest quality models include the following variables (Eq. 2.1-3): 

ሷݕ ൌ ௬ሷఉ݃ܭ sinሺߚሻ ൅ ൫ܭ௬ሷఃߔ௣௖തതതതത ൅	ܭ௬ሷఏߠ௣௖തതതത൯݊݃ݏሺߚሻ 	൅	ܭ௬ሷ௬ሶ ሶݕ       (2.1), 

ሷݖ ൌ ௭ሷఉ݃ሺ1ܭ െ cosሺߚሻሻ ൅ ௣௖തതതതതߔ௭ሷఃܭ ൅ ௣௖തതതതߠ௭ሷఏܭ ൅  ,ሶ       (2.2)ݖ௭ሷ௭ሶܭ

ሶߚ ൌ ఉሶܭ ఈߙ௅ோ ൅ ఉሶܭ ఃߔ௣ಽೃ ൅	ܭఉሶ ఏ೛ߠ௣௅ோ ൅	ܭఉሶ ௬ሶ ሶݕ        (2.3), 

where each K is a linear coefficient relating the second subscript (the independent variable) to the first 

(dependent variable), ݃  ሻ is   േ1 according to the sign of roll orientation.  Figureߚሺ݊݃ݏ ଶ, andିݏ	980.665ܿ݉ = 

2.3 shows how we define our reference frames and angles.  In the above equations, wing pitch angle is α, 

elevation amplitude is ߠ௣, and sweep amplitude is ߔ௣.  Throughout this paper, we use ഥ , ሬሬሬԦ, ሶ , ሷ , ௣,

௜, ௖ and ௅ோ to represent left+right wing pair means, vectors, first derivatives, second derivatives, peak-

to-peak amplitude, the wing ipsilateral to moth lateral velocity, mean-centered data (mean of entire data set 

subtracted), and the left minus right orientation or amplitude difference, respectively. 

In our data, the AICc variable selection process does not eliminate any predictor variables from Eq. 

2.6-8.  The addition of a random intercept for each moth does decrease the minimum AICc value for both 

lateral and vertical acceleration models, and also brings ܭ௭ሷఉ closer to its expected value of one.  With the 

exception of ܭఉሶ ఏ೛, the coefficient relating elevation amplitude to roll velocity, all signs and magnitudes 

matched a priori expectations. 
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Figure 2.3: Angle and point designations 
 

Digitization and wing angle calculation scheme.  
Panel A) shows the digitized points and resulting 
vectors used in wing position and orientation 
calculations.  Only the body and right wing are shown 
in this image, but we marked points with bilateral 
symmetry on both sides of the sagittal plane.  Point 1 
was marked in an anterior portion of the scutum, point 
2 at the tip of the abdomen, and point(s) 3 at the wing 
bases(s).  We used points 1-3, measured in the GRF, 
to calculate yaw, pitch, and roll.  These angles were 
then used to compute body point positions in the 
moth’s BRF (Stengel 2004).  We next constructed an 
MGRF in which z remained vertical, but the x/y plane 
was rotated in yaw so that x was parallel with a vector 
running from the distal tip of the abdomen (point 2) to 
the geometric centroid of points 1-3, projected onto 
the GRF horizontal.  In the MGRF, positive x 
movement is forwards for the moth, positive z 
movement is parallel with gravity (downwards), and 
positive y movement is to the moth’s right.  ܴଵሬሬሬሬԦ is the 
vector that stretches from the wing base point (3) to 
the forewing tip (4).  ܴଶሬሬሬሬԦ is the vector that stretches 
from the wing base point (3) to the hindwing tip (5), 
and ܴଷሬሬሬሬԦ stretches from (5) to (4).  To compute wing 
pitch angle (ߙ), we projected ܴଷሬሬሬሬԦ onto the BRF ݖ/ݔ 
plane and took ߙ as the angle between this projected 
vector and the BRF horizontal.  Midstroke wing pitch 
angles are all positive; we measured downstroke ߙ 
relative to the positive moth BRF ݔ-axis and upstroke 
 is the ߠ  .axis-ݔ relative to the negative moth BRF ߙ
angle	ܴଵሬሬሬሬԦ makes with the BRF horizontal. At 
midstroke, when measured ipsilateral to the direction 
of roll, we call it ߠ௜.  Peak-to-peak amplitude ߔ෩௣ is the 

angle between ܴଵሬሬሬሬԦ’s BRF position at the top of 
upstroke and the end of downstroke, and v.v. for the 
following halfstroke.  Sweep amplitude, ߔ௣, is the 
projection of ߔ෩௣ onto the BRF ݕ/ݔ plane, while ߠ௣ (not 
shown) is the projection of ߔ෩௣ onto the BRF ݖ/ݔ 
plane. 

 
 
Lateral and vertical acceleration 

Basic gravitational predictions are highly significant; wing asymmetry predictions are also 

significant, but less so.  In order of significance, the lowest AICc lateral acceleration model (Eq. 2.1) includes 

sin(ߚ), ݕሶ  ሻ, while the lowest AICc vertical acceleration model (Eq. 2.1) includesߚሺ݊݃ݏ௣௖തതതതߠ ሻ, andߚሺ݊݃ݏ௣௖തതതതതߔ ,

௣௖തതതതത, 1ߔ െ cosሺߚሻ, ߠ௣௖, and ݖሶ.  The best fit models for ݕሷ  and ݖሷ are linear mixed models (i.e. they contain 
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corrections for individual moth effects), while the best AICc model for ߚሶ  is a linear model.  See Table 2.1 

for the coefficients estimated for the best fit models as well as coefficients and ݌-values for full variable 

linear models prior to variable selection.  For all of these independent variables, coefficient signs and 

magnitudes match expectations as outlined in Methods.  We also calculated angular stroke amplitude (ߔ෩௣) 

as the relative angle between the wingtip at the end of each halfstroke in the BRF.  We compared the AICc 

and ݌-values of Eq. 2.6-7 against modified versions where we replaced ߔ௣തതതത and/or ߠ௣௖തതതത	with ߔ෩ഥ.  The results 

of these comparisons show better AICc values for ߔ௣௖തതതതത alone, as well as ߔ௣௖തതതതത and ߠ௣௖തതതത together as a unit, than 

equations with ߔ෩ഥ.  The significance of ܭ௬ሷః and ܭ௬ሷఏ is not a result of their ݊݃ݏሺߚሻ	multiplier; if we attempt to 

fit ݕሷ ൌ ௬ሷఉ݃ܭ	 sinሺߚሻ ൅  is not significant.  Mixed models improve the most when ܭ value for-݌ ሻ, theߚሺ݊݃ݏܭ

we subtract the mean ߔ௣തതതത and ߠ௣തതത for the entire data set, rather than for each individual moth or trial.  See 

Table 2.2 for a comparison of the contribution of each of these effects relative to one another. 

 

Table 2.1: Lateral and vertical acceleration model results 

ሷݕ   Linear Models ݖሷ Linear Models 

ሷݕ   
Best AICc 

Model 	
ଶ௖ݎ ൎ 0.90 

Best LM 
ଶ௔ݎ
ൎ 0.82 

Full Initial Variable 
Linear Regression 

 ሷݖ

Best 
AICc 

Model	
ଶ௖ݎ
ൎ 0.79 

Best LM 
ଶ௔ݎ ൎ 0.42 

Full Initial Variable 
Linear Regression 

 .Coef ݏݐܷ݅݊
Coef. 
Value 

Coef. 
Value 

Coef. 
Value 

 .Coef ݌
Coef. 
Value 

Coef. 
Value 

Coef. 
Value 

 ݌

None ܭ௬ሷఉ 0.88 0.78 0.79 <2E-16 ܭ௭ሷఉ 1.00 0.82 0.82 5.51E-14 

௬ሷ௬ሶܭ ଵିݏ  -2.51 -1.66 -1.79 1.01E-11 ܭ௭ሷ௭ሶ  -3.11 -4.64 -4.64 4.85E-8 

 ௭ሷః -560.57 -538.43 -538.56 <2E-16ܭ ௬ሷః 158.13 105.83 128.23 1.53 E-2ܭ ଵି݀ܽݎ	ଶିݏ	݉ܿ

 ௭ሷఏ -148.68 -262.42 -262.77 6.19E-12ܭ ௬ሷఏ 102.14 120.89 127.71 8.51E-5ܭ ଵି݀ܽݎ	ଶିݏ	݉ܿ

 1.51E-2 56.73- 53.29- *106.67- .ݐ݌ܿܫ -- -- -- *29.15- .ݐ݌ܿܫ ଶିݏ	݉ܿ

*Average moth ID random intercept 

 

Table 2.2: Comparison of best AIC models for ݕሷ ሷݔ	, , and ߚሶ   

Best AICc ݕሷ  Linear Model Best AICc ݔሷ  Linear Model Best AICc ߚሶ  Model 

 % Contrib.  % Contrib.  % Contrib. 

sin	ሺߚሻ 65.77 1 െ cos	ሺߚሻ 30.48 ߙ௅ோ 20.68 

ሶݕ ሶݕ ሶ 13.69ݖ 22.01   23.56 

 ௣ಽೃ 21.86ߔ 38.77 ߔ ሻ 5.89ߚሺ݊݃݅ݏߔ

 ௣௅ோ 33.91ߠ 17.06 ߠ ሻ 6.33ߚሺ݊݃݅ݏߠ

 (ݐ݁ݏ) 0 .ݐ݌ܿܫ Excluded .ݐ݌ܿܫ Excluded .ݐ݌ܿܫ

 



 

31 
 

Roll velocity 

For reasons detailed in Methods, we present model results for roll velocity rather than roll 

acceleration.  The best AICc model for roll velocity (Eq. 2.3) includes	ߙ௅ோ, ߔ௣ಽೃ, ߠ௣௅ோ, and ݕሶ ; the signs of  

ఉሶܭ ఈ, ܭఉሶ ః, and ܭఉሶ ௬ሶ  match a priori expectations (see Methods), but the sign of ܭఉሶ ఏ೛ does not.  See Table 

2.3 for these coefficients and Table 2.2 for a comparison of the contribution of each of these effects relative 

to one another.  Instantaneous left-right wing position differences at midstroke separately correlate with roll 

velocity; however, such wing position differences do not appear in the best AICc models—likely because 

they simply recapitulate ߔ௣ಽೃ, ߠ௣௅ோ, and ߙ௅ோ, (possibly with additional noise). 

    Moths show a stair-step pattern in roll at endstrokes; they reorient more in the overall direction 

of roll during downstroke and less during upstroke (Fig. 2.S1).  In fact, roll in the overall direction of motion 

is often lost in upstroke rather than gained.  This stair-step pattern corresponds to periodicity in ߙ௅ோ (Fig. 

2.S2-3).  Autocorrelations show ߙ௅ோ  typically holds the same sign for consecutive wingbeats but displays 

periodicity in magnitude (Fig. 2.S3).  Average downstroke |ߙ௅ோതതതതത| is 1.57 times upstroke |ߙ௅ோതതതതത|, and 

downstroke ߙ is 1.30 times upstroke ߙ.  Conversely, ߔ௣, ߔ௣ಽೃ, ߠ௣, and ߠ௣௅ோ are about the same magnitude 

and hold consistent sign for consecutive half and whole wingbeats. 

 

Table 2.3: Roll model results 

ሶߚ   
Best AICc Model 

ଶ௔ݎ ൎ 	0.34 

Separate Up- and 
Downstroke 	
ఉሶܭ ఏ೛ model 

ଶ௖ݎ 	ൎ 	0.38 

Full Initial Variable 
Linear Regression 

 ݌ Coef. Coef. Value Coef. Value Coef. Value ݏݐܷ݅݊
ఉሶܭ ଵିݏ ఈ 1.92 2.24 1.84 2.83E-4 

ఉሶܭ ଵିݏ	݀ܽݎ ௬ሶ ሶݕ  -2.64E-2 -2.58E-2 2.66E-2 5.03E-11 

ఉሶܭ ଵିݏ ః 2.20 2.10 2.11 3.50E-5 

ఉሶܭ ଵିݏ ఏ೛ -3.71 
Up Down 

-3.59 2.57E-4 
-4.89 -1.22 

 (set) 0 .ݐ݌ܿܫ ݀ܽݎ

 

 

Computational model results 

Blade element model (Hedrick and Daniel, 2006) results mostly match observed trends.  Velocity 

decay half-lives (i.e. time constants), estimated from the differential solutions to Eq. 2.1-2, are similar to 

those extracted from two computational models of passive theoretical M. sexta (Hedrick and Daniel, 
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2006;Kim and Han, 2014).  Coefficients values from observed data and the blade element model also agree 

(Tables 2.S2-3).  Unfortunately, the model is not sufficiently accurate to test whether the wing kinematic 

changes we observed fully create the body movements we observed.  However, it was useful in interpreting 

whether the approximate wing kinematic changes selected in the experiments create the same general 

movements in the model as they appear to in actual moths. 

 

Discussion 

Summary 

M. sexta can sideslip, and they do so by rolling their body to reorient their net force vector.  They 

augment the net force they produce during sideslips to prevent sinking by increasing flapping amplitude, 

and encounter decelerative/damping drag proportional to their lateral and vertical velocity.  Roll maneuvers 

are multifactorial and involve a high degree of damping. 

    These moths create roll torque via left-right asymmetries in sweep amplitude, elevation amplitude, and 

most importantly, midstroke wing pitch angle.  Because moths are heavily roll-damped, asymmetries in 

flapping kinematics at the half-wingbeat timescale relate linearly to the first, rather than second, derivative 

of roll (when roll is measured at that same timescale).  In addition to flapping countertorque (FCT), this 

damping torque is likely due in part to induced angle of attack asymmetries—a well-known effect in rolling 

fixed-wing aircraft.  Moths roll more in the direction of net reorientation during downstroke than upstroke by 

modulating the wing pitch angle difference in each halfstroke, and potentially due to larger upstroke FCT 

since wing pitch angles and their left-right differences are smaller in upstroke.   

 

Lateral and vertical acceleration 

Our models of lateral and vertical acceleration indicate M. sexta roll to redirect their net force vector 

and thus create lateral acceleration.  The most significant relationship between independent and dependent 

variables in the entire study is that between lateral acceleration and the moth’s whole-body roll angle 

(݃sinሺߚሻ and ݕሷ ).  The relationship between roll orientation and vertical acceleration (݃ሺ1 െ cosሺߚሻሻ and ݖሷሻ 

is also highly significant.  The coefficient for this latter relationship (ܭ௭ሷఉ) is positive because -ݖ in our 

coordinate system is antiparallel with gravity (upwards).  The magnitudes of ܭ௬ሷఉ and ܭ௭ሷఉ are both very 



 

33 
 

close to one, as expected.  These relationships were also predicted by a priori hypotheses and further 

supported by visual inspection.  The strong match between the roll-based sideslip hypothesis and the lateral 

acceleration data indicates that any additional effects such as direct lateral force production via left-right 

asymmetries in flap timing produce only marginal forces if they are present at all.  Our linear mixed model 

based on roll only accounts for roughly 90% (based on ݎଶ௖) of the observed lateral acceleration.  We did 

consider that our use of a moving light source positioned above the moth may have enhanced the roll 

response in these recordings compared to self-motivated sideslips, cueing the moths to rotate their body 

and head to maintain a constant visual angle to the light source.  However, we consider this unlikely since 

head stabilization is evident in our videos, and from a digital comparison of antennae position relative body 

orientation. 

On the time scale of half wingstrokes and over the airspeed range we observed, M. sexta behaves 

as a physical system in which we can model damping opposite the direction of lateral and vertical motion 

as approximately proportional to collinear velocity.  Comparisons between coefficients and time constants 

estimated from mathematical models and observed data (Tables 2.S2-3) show that this resistance probably 

comes from passive drag, though some resistance could conceivably come from active steering by the 

moth in an attempt to limit acceleration. 

Finally, our linear acceleration results show that moths flap with greater amplitude to increase net 

maneuver force and maintain altitude during sideslips.  This is opposed to alternative possibilities of 

bilaterally increased wing pitch angle or flapping frequency; neither of which significantly relate to increased 

acceleration.  Increased wing pitch angle may present a problem for hawkmoths, since they already use 

high effective angles of attack while hovering, (Ellington, 1984a;Ellington, 1984b;Ellington et al., 1996), and 

even higher angles when they use wing pitch asymmetry to create roll torque (Table 2.S4).  Moths have 

shown small (~2 ݖܪ) increases to flapping frequency in response to wing clipping (Fernandez et al., 2012), 

though in the absence of wing area alteration, their flapping frequency (~26 ݖܪ) may be close to some 

physiological limit; unclipped moths show insignificant increases in flapping frequency when maneuvering 

at speed (Ortega-Jimenez et al., 2013). 
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Roll velocity 

The most important contributor to roll initiation we identified in this study is wing pitch angle, a 

relationship estimated by coefficient ܭఉሶ ఈ (Eq. 2.3).  The positive signs of ܭఉሶ ః and ܭఉሶ ఈ show that greater 

wing pitch angle and sweep amplitude on one side of the moth relative to the other creates roll torque away 

from that wing pair (contralateral roll).  Since airfoil velocity and angle of attack affect lift force, is consistent 

with established theory.  Based on AICc results comparing models that used wing pitch angle calculated in 

several different ways, we believe the way we measure ߙ (Fig. 2.3) is the best way to represent the 

kinematic relationship with the data we have.  One discarded alternate wing pitch angle measurement was 

based on a wing “chord” stretching from the hindwing tip to a perpendicular intersection with ܴ ଵሬሬሬሬറ (ܴଵሬሬሬሬറ	is shown 

in Fig. 2.3).  A precise estimate of actual effective angle of attack for M. sexta would have been preferable; 

unfortunately such estimates suffer from a number of confounding factors, such as increased noise, 

variations in wing curvature, and the complexity of M. sexta wing air flow dynamics, (Ellington et al., 

1996;Bomphrey et al., 2005;Zheng et al., 2009). 

We examined single-wing kinematics in greater detail to determine precisely how hawkmoths 

create the wing asymmetries that create roll.  To create the wing pitch asymmetry, a moth rolling to the right 

alters the left and right wing pair ߙ by about the same amount but in opposite directions; increasing the left 

while decreasing the right (Table 2.S4).  Instantaneous midstroke asymmetries in sweep and elevation 

angular position (ߔ௅ோ and ߠ௅ோ) also correlate strongly and positively with roll velocity, as expected if 

amplitude asymmetries are unevenly distributed about the midline.  A positive correlation between 

instantaneous midstroke sweep angle and roll velocity suggests that, to create sweep amplitude 

asymmetries, a moth rolling to the right decreases ߔ௣ಽೃ primarily by extending its right wing pair relatively 

less far forward in comparison to its left wing pair.  Meanwhile, the positive correlation between 

instantaneous midstroke elevation angle and roll velocity is more ambiguous, since the measurement of 

midstroke ߠ௅ோ is linked to changes in ߙ௅ோ.  Binned average values (Table 2.S4) imply it is possible moths 

bilaterally adjust both sweep and elevation angle amplitude much as they do wing pitch angle, but t-test 

results for this are not significant. 

We observe oscillation in both ߚሶ  (in the form of a stair-step pattern) and ߙ௅ோ for up- vs downstrokes 

(Fig. 2.S3).  Thus, we here report results for mixed models which separate up- and downstroke coefficient 
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estimations.  All derivatives depend on stroke-to-stroke changes rather than instantaneous measures so 

this halfstroke-frequency stair-step pattern did not interfere with how we calculated coefficients.  Models 

where we introduced separate ܭఉሶ ఈ ܭఉሶ ః, and/or  ܭఉሶ ఏ೛ for up- and downstrokes are not better according to 

AICc.  Note  ߙ௅ோ is higher for downstrokes but ܭఉሶ ఈ remains the same.  This strongly suggests moths create 

more roll torque in the target direction of movement in downstrokes rather than upstrokes, at least in part, 

by adjusting the magnitude of ߙ௅ோ.  A further plausible explanation for the stair-step pattern in roll comes 

from key kinematic differences between up- and downstroke which likely result in greater upstroke damping, 

as discussed next. 

  

Roll damping and FCT 

The results reported here compliment wing velocity mediated roll damping described in the turning 

free-flight of cockatoos, (Hedrick et al., 2007), and computational studies that predict heavily damped roll 

in M. sexta (Kim and Han, 2014).  Effective angle of attack asymmetry induced by rolls, as in fixed-wing 

aircraft, likely damps movement in moths as well.  Our results further support FCT effects.  The velocity of 

the wings about the roll axis is additive with velocity created by overall body and wing reorientation in the 

global reference frame (GRF).  This decreases lift in the wing contralateral to a roll, and increases lift on 

the wing ipsilateral to a roll (Hedrick and Biewener, 2007;Hedrick et al., 2009).  Flapping countertorque is 

a drag effect, where cross-sectional area of the wing relative to the rotation, in part, determines the strength 

of the effect.  Thus, ceteris paribus, FCT (and thus roll damping) depends on the inverse of wing pitch angle 

as defined in this work.  The data show wing pitch angle magnitudes and asymmetries are both smaller in 

upstrokes than downstrokes (Fig. 2.S2-3).  We thus predict increases in elevation amplitude have a larger 

negative impact on roll during upstrokes.  Consistent with this roll FCT explanation, linear models in which 

we separate up/downstroke ߠ௣ result in a more negative upstroke ܭఉሶ ఏ೛ (Table 2.3).  Our results thus agree 

with this FCT explanation. They contradict our a priori expectation that increased roll-contralateral ߠ௣ 

(relative to ipsilateral) would increase relative contralateral force and thus ܭఉሶ ఏ೛ would be consistently 

positive, and presumably larger for downstrokes. 



 

36 
 

We find evidence of antagonistic coupling between roll and lateral velocity, (ߚሶ  and ݕሶ ), where roll 

velocity towards a given side negatively correlates with whole-body velocity in that direction (i.e. rightwards 

roll velocity correlates negatively with rightwards linear velocity and v.v.).  As seen in Fig. 2.2, our data 

include both lateral accelerations and decelerations, and the negative correlation between lateral velocity 

and roll velocity is significant for both cases.  In lateral accelerations (sideslip initiation) the ipsilateral wing 

pair moves towards shed air, while the wing pair contralateral to sideslip moves away, which may increase 

ipsilateral wing force.  In lateral decelerations, (sideslip reversal), lateral velocity may negatively correlate 

with roll velocity simply because moths are rolling away from their direction of sideslip in order to redirect 

force and slow down.  As an alternative or supplementary explanation, this antagonistic coupling in lateral 

accelerations is also suggestive of the velocity-mediated sideslip damping first proposed by Faruque and 

Humbert (2010b). 

 

Comparison to aerial maneuvers in other animals 

Given previous research, we can compare the sideslip maneuvers of M. sexta directly to sideslips 

of the fruit fly D melanogaster and the mosquito A. aegypti, and indirectly with other maneuvers in birds and 

bats.  Firstly, our results do not support a scenario in which M. sexta wing pitch angle timing asymmetries 

at the ends of halfstrokes play a prominent role in creating direct lateral force, as in D melanogaster 

(Ristroph et al., 2009).  Preliminary examination of videos digitized continuously through the wingbeat cycle 

does not show evidence of consistent timing differences.  Instead our data provide strong support for the 

simple body roll hypothesis.  Thus we conclude that moths use roll to reorient their net force vector, much 

like birds performing turns (Hedrick and Biewener, 2007;Hedrick et al., 2007;Ros et al., 2011), and 

mosquitoes performing sideslips (Iams, 2012).  Iams (2012) measures “stroke plane roll,” the angle a line 

between the two wingtips makes relative to the horizontal.  In our moths, a Pearson product moment 

correlation of body roll with stroke plane roll measured at midstroke yields 0.944, indicating high agreement 

between the two measures.  This suggests stroke plane roll is indeed a plausible measurement to use in 

place of body roll to determine the direction of net force creation in the ݖ/ݕ plane.  D melanogaster also 

uses a tilted stroke plane roll angle to create a portion of its lateral acceleration during sideslips and 

saccades (Ristroph et al., 2009;Muijres et al., 2015). 
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Free-flight M. sexta rolls are also comparable to aerial rolls in other animals.  Many animals use 

their tail and body to perform inertial reorientation in order to right themselves in the air (Jusufi et al., 2011).  

Despite M. sexta possessing a weighty “tail” in the form of a flexible abdomen, we did not observe it to have 

a role in roll reorientation.  This contrasts with abdominal reflexes recorded in M. sexta in response to pitch 

or yaw displacement (Dickerson et al., 2014;Dyhr et al., 2013;Hinterwirth and Daniel, 2010), modeled 

effects on stability (Noda et al., 2013), as well as the active aerodynamic role of the flat tails of birds and 

bats (Adams et al., 2012;Gardiner et al., 2011;Thomas, 1993).  Instead, M. sexta appears to rely solely on 

the aerodynamics of its flapping wings to create roll maneuvers—and not at all on its wing inertia, which 

contrasts with both turning pigeons (Ros et al., 2011) and reorienting bats (Bergou et al., 2011;Iriate-Díaz 

et al., 2011).  To create roll torque, moths use a combination of wing stroke asymmetry, as seen in turning 

birds (Hedrick and Biewener, 2007;Ros et al., 2011), and wing pitch asymmetry—similar to wing 

camber/pitch asymmetry observed during downstroke in both the aforementioned birds as well as 

dragonflies and hummingbirds (Wang et al., 2003); but dissimilar to the wing rotation angle asymmetries 

that create roll torque in fruit fly saccades (Muijres et al., 2015).  Like our moths, Read (2015) found that 

the hummingbird Calypte anna rolls while turning to influence lateral velocity, and that they: 1) increase the 

mean elevation angle; 2) decrease the elevation amplitude; and 3) increase the stroke amplitude of the 

contralateral wing relative to the ipsilateral wing.  However, unlike our moths, they showed a timing 

difference in wing pitch angle between the contralateral and ipsilateral wings that did not manifest as an 

angle difference at mid-downstroke. 

The stepwise nature of roll reorientations and the significant relationship of moth wing kinematic 

changes with roll velocity rather than acceleration, together suggest a highly damped, roughly first order 

system for roll.  This agrees with some prior free-flight research on both roll and yaw in flapping flight.  

Previous research on hawkmoth yaw turns revealed a roughly first-order control system in which 

imbalanced force from stroke amplitude and wing angle of attack asymmetry drives yaw rotations, and 

imbalanced drag on the wings induced by the yaw rotation naturally damps the physical system (Hedrick 

et al., 2009;Ortega-Jimenez et al., 2014).  Since the component of M. sexta’s wing velocity about the roll 

axis that creates FCT in roll is much smaller than the component about the yaw axis that creates FCT in 

yaw, the existence of a first-order relationship between wing kinematics and body roll is especially 
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interesting.  The apparent existence of a first order system in M. sexta in the creation of roll, supported by 

our live-animal data as well as computational models, in addition to yaw, suggests that first order control 

relationships could be the norm for body orientation control in flapping flight. 

 

Methods 

Animals 

We acquired four male M. sexta as pupae from a domestic colony at the Duke University 

Department of Biology.  These M. sexta were from a line of hawkmoths that was recently out-crossed with 

domesticated lines from several other universities.  Following eclosure, adult moths had access to honey 

dissolved in water ad libitum.  They lived in (30 x 30 x 30 ܿ݉) cubic mesh cages and were kept on an 

extended day, abbreviated night light cycle.  Moths were between one and fifteen days post-eclosure at 

time of use.  See Table 2.S5 for individual moth morphological details. 

 

Experimental setup 

We recorded moth sideslip maneuvers from hawkmoths flying in a 71 x 71 x 74 ܿ݉ glass-walled 

arena following an oscillating light (Fig. 2.3).  Two Phantom v7.1 and one Phantom v5.1 digital cameras 

(Vision Research Inc., Wayne, NJ, USA) used the high-intensity 680nm light from eight LEDs (Roithner 

LaserTechnik, GmBH, A-1040, Vienna, Austria) to capture moth maneuvers at a frame rate of 600-700Hz.  

We filmed trials at night inside a closed, unlit room with shuttered windows.  The ambient light level in the 

filming room was approximately 180lx at the time of filming, and only 10݈ݔ without the high-intensity infrared 

LEDs, as measured with a lux meter (840006, Sper Scientific LTD, Scottsdale, AZ, USA).  The time of 

filming generally coincided with nighttime in the moths’ abbreviated night/day cycle.  Most moths warmed 

up and flew naturally in the dark flight chamber, but some required manual stimulation with thumb and 

forefinger to elicit warm-up behavior.  Once the moths were hovering at least one wingspan above the floor 

of the chamber, the light was oscillated above the moths, horizontal to the ground and roughly perpendicular 

to the moths’ sagittal plane with an approximate frequency of 1.25ݖܪ and peak-to-peak amplitude of 25ܿ݉.  

To construct the light, we mounted a 2.2ܿ݉ radius cut-out of a phosphore/dialectric light (model# 11100, 
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115V/.03W, EI Products Inc., Maxwell, TX, USA) on the end of a 50.7ܿ݉ long metal rod.  The moths 

exhibited phototaxis and spontaneously followed the light’s path. 

 

Figure 2.4: Experimental setup 
Flight chamber and cameras used in 
experiments.  1&2) Phantom v7.1 cameras; 3) 
Phantom v5.1 camera; 4) oscillating light source. 
 
 
Camera calibration 

We used direct linear transformation (DLT) 

to calibrate the cameras (Hedrick, 2008).  The DLT 

input points were the filmed pixel positions of two 

light-emitting diodes situated 68.5 mm apart at the 

end of a wand, after we waved this wand through the 

filming space by hand.  Three calibrations were used 

among the different recordings.  Their pixel (u,v,w) Calibration Root Mean Squared Errors (RMSE) for each 

of the three cameras were (0.12,0.14,0.14) for trials 1-2, (0.15,0.11,0.10) for trials 3-6, and (0.13,0.14,0.15) 

for trial 7.  See Table 2.S5 for the median RMSE of each digitized point for each trial.  We based the first 

calibration on wand points we tracked by hand, and the second two calibrations on wand points tracked by 

custom software. 

 

Video data analysis 

We used qualitative observations of raw video data to select 7 trials in which the moths were 

sufficiently visible for manual digitization and underwent minimal yaw rotation throughout their individual 

sideslip maneuvers.  These videos are comprised of 19 distinct lateral maneuvers; defined as lateral 

accelerations where the direction of acceleration is sustained for at least 0.077ݏ, or about two 26 ݖܪ 

wingbeat cycles, which is approximately the average wingbeat frequency in our trials. 
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Measuring wing parameters 

We marked points at each of four visually-identified phases in the moths’ wingstrokes: (1) end-

downstroke, (2) end-upstroke, (3) mid-downstroke, and (4) mid-upstroke.  This allowed us to identify key 

points in the stroke cycle for analysis and decreased the requisite amount of manual digitizing.  In each of 

these four frames, we digitized 8 moth body and wing points (Fig. 2.3) using the MATLAB (r2011a, The 

Mathworks, Natick, MA) package DLTdv5 (Hedrick, 2008).  We (rarely) excluded point 5 when visibility did 

not allow us to digitize it.  Both the left and right wing points were marked independently on every digitized 

frame. 

We used MATLAB to compute Euler angles and wing kinematics from the digitized points.  Figure 

2.3 shows wing angles and explains reference frames, including the modified global reference frame 

(MGRF), GRF, and BRF.  To filter out regular within-wingbeat fluctuations, we calculated position and 

orientation derivatives from wingbeat to wingbeat changes only; we measured changes between like points 

in the flapping cycle rather than from each digitized frame to the next.  We then averaged the resulting four 

derivative measurements (since there were four digitized frames per stroke) to capture both high and low 

frequency changes not tied to within-wingbeat oscillations.  We fit ݖ ,ݕ ,ݔ, and their derivatives, (i.e. whole-

body position and movement), in the MGRF only.  When correlating these body movements with wing 

kinematics, we inserted stroke amplitude values at their corresponding midstroke points.   This is where we 

focused analysis since midstrokes are a convenient reference point where forces are either highest, or 

close to their highest, in the M. sexta stroke cycle (Bomphrey et al., 2005;Zheng et al., 2013).  We calculated 

all angles using points from the BRF. 

 

A priori lateral and vertical acceleration models 

Here we describe the simplified models we used to analyze links between three aspects of moth 

movement, including lateral and vertical acceleration, as well as roll velocity.  We started with the following 

two equations, which are based on a first principles, constant dorsally-directed force (equal to body weight) 

model of animal flight as follows: 

ሷݕ ൌ ௬ሷఉ݃ܭ sinሺߚሻ           (2.4), 

ሷݖ ൌ ௭ሷఉ݃ሺ1ܭ െ cosሺߚሻሻ          (2.5), 
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where ߚ is measured relative to the MGRF ݕ/ݔ plane.   Equation 2.4 tested our hypothesis that moths roll 

to accelerate laterally, while Eq. 2.5 tested the conjugate force model for vertical acceleration.  For all 

equations ݖ ,ݕ, and their derivatives are in the MGRF, i.e. aligned to moth sideslip motion and gravity, 

respectively.  At no point did we attempt to separate the initiation of acceleration and its reversal; we fit the 

data with the same linear models regardless of the direction in which the moths were attempting to 

accelerate/decelerate. 

 

Linearizing resistive forces and adding other model terms 

We added to these basic equations kinematic variables that we had a priori reason to expect might 

contribute to moth directional movement, and then applied a stepwise variable elimination approach.  Here, 

ሺ0, ሶݕ , ሶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݖ ൈ ܴଵపሬሬሬሬሬറ, which is roughly equivalent to ݕሶ sinሺߠ௜ሻ, represents drag on the wing ipsilateral to the 

directional or rotational movement.  We attempted to fit this kinematic variable because the wing ipsilateral 

to the movement direction is exposed to both lateral velocity and roll velocity.  We report the attempted fit 

of this measurement for completeness since we used all attempted kinematics when calculating ݌-values.   

Since we are interested in how departures from typical flapping leads to the creation of movement, we used 

the mean-centered versions of ߔ௣തതതത and ߠ௣തതത.  In Eq. 2.6, subtracting the overall mean isolates variance and 

thus allows us to multiply by ݊݃݅ݏሺߚሻ to estimate coefficients.  In Eq. 2.7-8, mean-centering ߔ௣തതതത and ߠ௣തതത allows 

us to assume a zero intercept; a significant intercept result would indicate moth-specific variation or that 

our model fails to represent the complete moth system maneuver dynamics. 

High Reynolds number air drag is roughly proportional to velocity squared.  However, the velocities 

moths encountered in our experiments cover a small range, over which we might expect to reasonably 

linearize an exponential trend.  Furthermore, computational analysis of the flight of M. sexta suggests that, 

on the time scale of half wing-strokes, passive resistance to movement during horizontal and vertical 

movement is roughly linearly proportional to velocity rather than velocity squared for both horizontal and 

vertical movement terms, (Cheng and Deng, 2011;Kim and Han, 2014).  Further velocity damping effects 

have also been proposed (Faruque and Humbert 2010).  Linearizing the resistive forces and adding other 

model terms resulted in the following equations, (see Expected Coefficient Values for predictions): 

ሷݕ ൌ ௬ሷఉ݃ܭ sinሺߚሻ ൅ ௬ሷ௬ሶܭ ሶݕ ൅ ሺܭ௬ሷఃߔ௣௖തതതതത 	൅	ܭ௬ሷఏߠ௣௖തതതത ൅ ሻߚሺ݊݃ݏ௖തതതሻߙ௬ሷఈܭ	 	൅	ܭ௬ሷఏ೔ሺ0, ሶݕ , ሶሻݖ
ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ ൈ ܴଵపሬሬሬሬሬറ     (2.6), 
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ሷݖ ൌ ௭ሷఉ݃ሺ1ܭ	 െ cosሺߚሻሻ ൅ ሶݖ௭ሷ௭ሶܭ ൅ ௣௖തതതതതߔ௭ሷఃܭ ൅	ܭ௭ሷఏߠ௣௖തതതത ൅	ܭ௭ሷఈߙ௖തതത            (2.7). 

 

Fitting roll dynamics 

It quickly became clear that the data strongly supported Eq. 2.4-5, so we next investigated ߚ (roll).  

Final models involve the first, rather than second, derivative of roll.  Here we justify this choice. 

A combination of factors led us to fit the first, rather than the second derivative of roll.  Both previous 

and concurrent research predict strong damping in roll during flapping flight (Hedrick, 2011;Kim and Han, 

2014).  Trials 1-2 were continuously digitized and preliminarily analyzed; as expected, the results show 

accelerations that vary greatly throughout each halfstroke, and even more over the course of whole 

wingstrokes.  Yet, the wing asymmetries that correlate with roll are largely conserved from each halfstroke 

to the next, and roll velocity direction is largely conserved from each whole stroke to the next (Fig. 2.S1-4).  

This indicates sustained intended direction of reorientation, and allows us to ignore accelerative changes 

on the sub-halfstroke time scale.  Not only did prior kinematic analysis of M. sexta performing yaw turns 

also fit the first rather than second orientation derivative (Hedrick and Robinson 2010), but recent 

computational models indicate that roll on the scale of half-wingstrokes experiences heavy damping such 

that a linear roll-velocity model may actually be most appropriate (Cheng and Deng, 2011;Kim and Han, 

2014).  Regardless, we did attempt to fit roll acceleration for completeness.  Linear regressions of the 

second derivative of roll vs various wing asymmetries reveal no significant trends. 

We did not have a first principles prediction for the kinematics behind roll velocity.  We therefore 

compiled a preliminary model that related various wing angle differences and body kinematics we 

suspected may be important to roll, and then applied the same stepwise variable elimination approach.  We 

verified the wing angle correlations visually in several instances before adding them to the model. 

ሶߚ ൌ ఉሶܭ ఈߙ௅ோ ൅ ఉሶܭ ఃߔ௣ಽೃ ൅ ఉሶܭ ఏ೛ߠ௣ಽೃ 	൅	ܭఉሶ ఏ೔ሺ0, ሶݕ , ሶሻݖ
ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ ൈ ܴଵపሬሬሬሬሬറ ൅ ఉሶܭ ௬ሶ ሶݕ            (2.8). 

 

Expected coefficient values 

In Eq. 2.6-7, we expected the values for both ܭ௬ሷఉ and ܭ௭ሷఉ to be close to +1.  We expected ܭ௬ሷ௬ሶ , 

௭ሷ௭ሶܭ , and ܭఉሶ ఏ೔ to be negative; where the component of velocity antiparallel to acceleration—or, in the cases 
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of ܭఉሶ ఏ೔ and ܭఉሶ ௬ሶ ሶݕ , ipsilateral to the moth’s direction of rotation—damps motion.  Since greater flapping 

amplitude increases force, we expected ܭ௬ሷఃto be positive and ܭ௭ሷః to be negative (positive z is down).  To 

account for the expected nature of ߔ௣௖’s contribution to ݕሷ , we multiplied ܭ௬ሷః by the sign of ߚ before fitting 

ఉሶܭ ௬ሷః.  We expectedܭ ః, ܭఉሶ ఏ೛, and ܭఉሶ ఈ to all be positive since we expected more vigorous flapping and 

higher angle of attack on the left side of the moth should send the moth rolling to the right, and v.v. 

  

Statistics 

We performed initial regressions in MATLAB, and final mixed model analysis in R (R Development 

Core Team, 2013).  After selecting variables in the kinematic equations using stepwise variable elimination, 

we used AICc in conjunction with linear and linear mixed models to identify those of the best quality.  To 

assess model quality, AICc evaluates how closely a model’s predictions match observed data while 

penalizing for complexity.  As explained later in this section, we used a cascade approach, rather than a 

full variable sweep, to choose and compare models. 

For all models, we retroactively attempted autoregressive correlation structures with corAR1 and 

corARMA from the nlme library (Pinheiro et al., 2014) to evaluate the necessity of adjustment for the time 

series nature of the data.  We used the AICc function from the AICmodavg library (Mazerolle, 2013) to 

evaluate the AICc values for each linear mixed model.  For lateral and vertical acceleration models, all 

attempted autoregressive correlation structures resulted in erratic residual behavior and increased AICc, 

indicating reduced model quality.  Since these basic autocorrelation structures did not improve fits, we did 

not evaluate more sophisticated techniques like vector autoregression nor apply any autoregressive 

correlation structures to the final chosen models. 

Our cascade AICc comparison approach started with a series of linear models, using R’s lm 

function from its stats library (R Development Core Team, 2013) with the qr optimizer from the nlme library 

(Pinheiro et al., 2014).  We started by testing the most significant identified variable against the null 

hypothesis of a simple intercept.  For Eq. 2.1-2, we also attempted to fit a variety of intercepts, since scatter 

was low, and because we qualitatively observed ample variation in typical sweep and elevation amplitude 

among moths.  In the case of roll velocity (Eq. 2.3), we did not fit an intercept since one would expect no 

wing kinematic asymmetries in the case of a stably hovering moth, and no roll-damping affect for zero 
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lateral velocity.  Once the most significant variable was confirmed to decrease AICc, we added the next 

least significant variable to the model and tested whether it additionally improved AICc values, but also 

recursed/went back (at least) one step by additionally testing the model with the lone exclusion of the 

variable confirmed in the previous step.  In this way we proceeded until we had tested that all variables 

identified in the stepwise variable elimination improved model quality. 

Once the linear model cascade was complete, we then attempted to fit linear mixed models using 

lme with the optim optimizer and REML estimation technique, (also from nlme), (Pinheiro et al., 2014).  

Here, we evaluated models of random intercepts for two possible factors in the analysis: moth and trial 

number in the case of lateral and vertical acceleration; and the same two intercepts as well as random 

coefficients for up- and downstroke in the case of roll velocity.  This tested whether allowing for fixed 

variations between individual trials, moths, or (in the case of roll velocity) halfstrokes improved model 

quality.  We attempted to fit random intercepts and coefficients for each possible combination of variables 

that had been shown to improve model quality.  To limit complexity, we did not attempt nested group 

structures. 

To correct for our initial variable selection with stepwise linear regression, we report ݌-values 

(Tables 2.1 & 2.3) for linear models in which all initially attempted independent variables are used at once, 

(Eq. 2.6-8), regardless of their significance.  We used summary from the stats library to calculate the ݌-

values for each coefficient.  When two initially tested measurements were extremely similar in nature, 

however, such as wing pitch angle and estimated effective angle of attack, we only represented it once in 

the linear model fit which determined its ݌-value.  We report ݌-values for the initially attempted models, 

rather than report artificially low ݌-values in models composed only of independent variables for which we 

found significant correlations with the dependent variable.  We extracted adjusted r2 (ݎଶ௔) values directly 

from the output of the lm function, and evaluated the conditional r2 (ݎଶ௖) value of mixed models using the 

r.squaredGLMM function from the MuMIn library (Barton, 2015). 

To understand in greater detail how moths alter their wing dynamics to create roll, we also 

compared normal flapping to that during maneuvers.  We treated observed roll velocities in the bottom 25th 

percentile as normal flapping, and designated the rest as high roll velocity flapping.  Then we used 

MATLAB’s ttest (paired t-test) to compare the movements of the ipsi- and contralateral wings during high 
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roll velocities with wing movements during normal flapping, and ttest2 (unpaired t-test) to compare high roll 

velocity ipsi- and contralateral wing movements to one another (Table 2.S6). 

For both the roll velocity and linear acceleration models, we averaged the coefficient times the 

average absolute value of the kinematic measure and added them all together to create a reference value 

to determine percentage contribution as seen in Table 2.2. 

 

Blade element model 

We used a blade element model to investigate the effects of measured wing kinematics on a 

computationally simulated hawkmoth (Hedrick and Daniel, 2006).  This model sums quasi-steady estimates 

of aerodynamic forces due to rotation of the wing about its spanwise axis (Sane and Dickinson, 2002), wing 

translation (Dickinson et al., 1999), and added mass.  We modified the simulation from Hedrick and Daniel 

(2006) to include independent kinematics for the left and right wing pairs.  We used basic flapping 

parameters that match those of a hovering hawkmoth.  We investigated the different kinematic adjustments 

observed in the moths by modulating either the amplitudes or, when differences were reported for mid-

stroke only, by modulating the mean.  We modulated the means and amplitudes since this produces wing 

kinematic changes without altering the relative phases of the left and right wing pairs.   For example, we 

produced a 10 degree change in wing pitch angle at mid-stroke by increasing the average wing pitch angle 

of the right wing pair by 5 degrees and decreasing the wing pitch angle of the left wing pair by 5 degrees. 

 

Analysis of methods and limitations 

The methods were sufficient to test our initial hypotheses, and led to secondary hypotheses about 

roll that we were also able to test, but there were some shortcomings.  The data size was insufficient to 

determine the simultaneous relevance of multiple nested random factors (i.e. maneuver, trial, moth number, 

and up- vs downstroke), since using lme with this group structure often resulted in overfit data in the form 

of singularities. 

Several independent variables that we had little physical reason to believe should correlate with 

observed kinematic trends yielded significant ݌-values.  Unlike expected independent variables that also 

had significant ݌-values, these unexpected independent variables increased minimum AICc values in the 
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models.  This further validated our approach of using the AICc cascade approach for checking expected 

relationships, even though it did not eliminate any variables that survived stepwise regression variable 

selection. 

We were unable to separate the wing kinematics of the moth’s compensatory control of yaw from 

its intentional creation of roll.  This problem is especially confounding since previous studies and 

computational model data indicate the wing kinematics that we show bring about roll (Hedrick et al., 

2009;Hedrick and Robinson, 2010;Ortega-Jimenez et al., 2014) should also bring about yaw.  Yet, 

understanding the specifics of yaw control is not a question we designed this experiment to answer; but 

rather one we plan to address in future research. 
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Table 2.S1: Mean midstroke kinematic derivatives 
 ݖ ݕ ݔ  Yaw  Pitch  Roll ݈ܾ݁ܽ݅ݎܸܽ

 ሻݏ/ሻ 1st Linear Derivative ሺܿ݉ݏ/݀ܽݎ1st Angular Derivative ሺ ݏݐܷ݅݊/݁ݎݑݏܽ݁ܯ
Abs.  Value Mean ±SD 94.40±72.00 61.63±55.27 102.36 ±83.53 11.39±10.32 27.16±21.08 7.42±6.47 

ଶݏ/݀ܽݎ2nd Angular Derivative ሺ ݏݐܷ݅݊/݁ݎݑݏܽ݁ܯ ൈ 10ଷሻ 2nd Linear Derivative ሺܿ݉/ݏଶሻ 
Abs.  Value Mean ±SD 3.67±3.35 20.02±18.55 40.35±36.90 93.07±73.78 178.63±157.11 100.39±81.98 

Table 2.S1 shows the mean values and first and second derivatives of yaw, pitch, and roll; as well as the 
first and second derivatives of horizontal and vertical location.  Here, yaw, pitch, and roll are calculated 
independently. 
 
 
 

Table 2.S2: Passive ݔሶ  and ݖሶ damping 

Source 
Velocity Half Life ሺݏݐܾܽ݁݃݊݅ݓሻ 

ሶݕ ሶߚ ሶݖ   
௬ሷ௬ሶܭ ௭ሷ௭ሶܭ , , and Eq. 3 7.18 5.79 ≤0.25 

Kim and Han 2014 17.95 
7.13a 

5.77d 0.68 

Hedrick and Daniel, 2006 7.02 
4.15a 

2.60d 
0.33* 

a ascending; d descending; †≤½ the ߚሶ  model sampling rate 
*The roll velocity damping coefficient based on the Hedrick and Daniel (2006) model varies slightly 
depending on the starting roll velocity; 0.33 is for an initial roll velocity 3.5	݀ܽݎ	ିݏଵ. 

Table 2.S2 compares our estimates of damping half-lives (in wingbeats) for lateral and vertical acceleration, 
calculated as 26݈݊ሺ.5ሻ/ܭ, as well as the damping half-life of roll velocity assumed from the Nyquist 
frequency, with those from computational models.   
 
 
 

Table 2.S3: Observed vs modeled damping effects 
Units ିݏଵ ݀ܽݎ	ିݏଵ 

Coefficient ܭ௬ሷ௬ሶ ௭ሷ௭ሶܭ  ఉሶܭ  ఈ ܭఉሶ ః ܭఉሶ ఏ೛ ܭఉሶ ௬ሶ ሶݕ  

Observed Data 
Fit 

-2.51 -3.11 2.24 2.10 -3.71 -2.64E-2 

Computational 
Model 

-2.35 -3.01* 4.96 3.44 -1.02 -9.60E-3 

*The model coefficient value for ܭ௭ሷ௭ሶ  is for downwards motion only; the estimated value was -7.75 for 
upwards motion. 

Table 2.S3 compares the coefficient estimates from our observed data with those estimated by the 2006 
Hedrick and Daniel computational model.   
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Table 2.S4: Contribution of each wing kinematic change to roll 
Amplitude or 
Angle ሺ݀݁݃ሻ 

High Roll Velocity Low Roll Velocity 
Ipsilateral Mean Contralateral Mean Bilateral Mean 

 46.60±14.19 ±15.33*51.20 ±17.09*40.34 ߙ
 ௣ 106.88*±11.44 112.04±12.60 110.91±6.77ߔ
 ௣ 21.04±9.11 18.73*±10.50 21.99±9.09ߠ

*indicates significant difference from bilateral mean value, with ≥95% confidence.   
 
Table 2.S4 contrasts ipsilateral with contralateral wing kinematics for rolls by presenting a mean followed 
by standard deviation.  Note that, according to t-tests, all high roll velocity wing kinematic ipsilateral and 
contralateral means were different from one another with ≥95% confidence; while only some ipsilateral and 
contralateral means were significantly different from bilateral mean values (denoted by *).  “Low Roll 
Velocity” includes (only) points in time where measured roll velocity was in the bottom 25th percentile, while 
“High Roll Velocity” includes the rest of the data set.   
 

 
 

Table 2.S5: Moth morphological details by trial 

Trial 
# 

Date Taken 
Moth 
ID# 

Dura-
tion 
ሺݏ) 

# of 
Manoeu-

vres 

Mean 
Wing 

Length 
(ܿ݉) 

Moth 
Mass 
(݃) 

DLT RMSE ሺݏ݈݁ݔ݅݌ሻ 

1 2 3L 3R 4L 4R 5L 5R 

1 2011 11 03 1 1.22 4 5.38 1.90 0.59 0.49 0.58 0.85 0.86 0.80 0.69 0.75 

2 2011 11 08 1 0.85 5 - 1.71 1.28 1.11 0.58 0.93 2.43 4.41 1.06 1.72 

3 2012 08 23 2 0.15 1 5.40 1.57 0.64 0.45 0.55 0.37 0.63 0.65 0.44 0.70 

4 2012 08 24 3 0.48 1 5.46 2.13 0.35 0.63 0.67 0.50 0.94 0.53 0.59 0.56 

5 2012 08 26 3 0.55 2 - 1.94* 0.51 0.50 0.68 0.73 1.18 1.08 0.74 0.73 

6 2012 08 26 3 0.87 4 - 1.94* 0.29 0.62 0.88 0.43 1.04 0.72 0.47 0.42 

7 2012 08 30 4 0.72 2 5.48 2.24 0.71 0.59 0.81 0.58 1.39 1.14 0.76 0.67 
*consecutive trials from same day with no feeding 
 
The left side of Table 2.S5 shows general data collected for each video, as well as morphological details 
for each moth.  This includes mass at time of filming and mean wing length.  To the right are the RMSE 
values for each measured point as they are labeled in Fig. 2.4A. Here, ‘L’ indicates points on the left wing 
and ‘R’ the right. 
 
 
 

Table 2.S6: Calibration residuals 

Calibration Date Trial #s 
DLT RMSE by Camera ሺݏ݈݁ݔ݅݌ሻ 

1 2 3 
2011 11 01 (hand) 1-2 0.12 0.14 0.14 
2012 08 22 (auto) 3-6 0.15 0.11 0.10 
2012 08 30 (auto) 7 0.13 0.14 0.15 

 
Table 2.S6 shows the RMSE (in pixels) for each calibration used to interpret the individual camera view 
angles into 3D data. 
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Figure 2.S1: Roll angle vs time 
End-upstroke and end-downstroke roll orientation vs 
time from example trial.  Figure 2.S1 shows the stair-step 
pattern of roll orientation during roll maneuvers.  In this 
example case a moth is rolling to the left.  Note that its end-
upstroke roll orientation is less leftwards than its roll orien-
tation at end-downstroke; however, the overall directional 
pattern of roll is still consistently leftwards from stroke to 
stroke.  ݊ = 18 halfstrokes from one maneuver from one 
moth. 
 
 
 
 
 

 
Figure 2.S2: Mean wing pitch autocorrelation 

Mid-downstroke and mid-upstroke wing pitch 
angle autocorrelation.  Figure 2.S2 shows 
autocorrelation of wing pitch angle where each time 
step is a halfstroke.  Mid-downstrokes are the data 
points corresponding to odd numbers, and mid-
upstrokes the even numbers, on the horizontal axis.  
Recall from Fig. 2.3 that midstroke wing pitch 
angles are all positive.  The alternating positive-
negative pattern of the autocorrelation plot shows 
that mean upstroke wing pitch angle is below the 
mean, and consistently smaller than that of 
downstroke.  ݊ = 218 halfstrokes from 19 
maneuvers from 4 moths. 
 

 

 
 
Figure 2.S3: Left-right wing pitch difference autocorrelation 

Left-Right wing pitch angle difference 
autocorrelation.  Figure 2.S3 shows auto-
correlation of left minus right wing pitch angle 
difference where each time step is a halfstroke.  
Mid-downstrokes are the data points corre-
sponding to odd numbers, and mid-upstrokes the 
even numbers, on the horizontal axis.  Midstroke 
wing pitch angle is measured as explained in Fig. 
2.3.  Because it is a difference, this data set 
includes both positive and negative numbers.  The 
pattern shows that the sign and magnitude of left-
right wing pitch angle difference is largely 
consistent from each halfstroke to the next, but that 
it is smaller in upstrokes than downstrokes.  ݊  = 218 
half-strokes from 19 maneuvers from 4 moths. 
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Chapter 2 Symbols and Abbreviations 

Box 2.1: Abbreviations 

AICc 
corrected Akaike Information Criterion—evaluates model predictive quality while 
penalizing for model complexity 

BRF 
Body Reference Frame, where coordinates have been rotated to align with the moth’s 
body axis such that forward movement by the moth is ൅ݔ, rightward movement by the 
moth is ൅ݕ, and upward movement by the moth is –  ݖ

DLT 
Direct Linear Transformation: A method for extrapolating positions in space from pixels 
marked on captured frames from non-collinear camera views 

FCT 
Flapping Counter Torque: idea that rotations change the velocity of wings flapping in 
that rotational plane, damping the rotation.  First shown for yaw. 

GRF 
Global Reference Frame: unchanged coordinates from direct linear transformation and 
alignment with handheld global axes, where –  is antiparallel with gravity ݖ

MGRF 
Modified Global Reference Frame: reference frame which has been adjusted by rotating 
the GRF ݕ/ݔ plane so that the ݔ-axis aligns with the yaw orientation of the moth 

RML Restricted Maximum Likelihood 

RMSE 
Root Mean Squared Error; in this study all RMSE values came from (data-relative) 
residuals. 

 
 
Box 2.2: Variable Annotations and Constants 

ഥ  variable underneath is an average for the left and right wing combined 

ሬሬሬԦ  variable underneath is a vector 

ሶ , ሷ   first and second time derivatives of the variable underneath, respectively 

௣  peak-to-peak amplitude of the antecedent variable 

௅ோ 
differences in a kinematic measurement between the left and right side of a moth; i.e. 
left minus right 

௖  variable has been centered by subtracting its mean value for the entire data set 

௜  the wing ipsilateral to the direction of moth lateral velocity 

 ܭ any coefficient estimated by regression or mixed model 

݃  gravity, taken as 980.665 ܿ݉	ିݏଶ 

 ଶ௔ݎ adjusted r2; calculated for linear models 

 ଶ௖ݎ conditional r2; calculated for linear mixed models 
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Box 2.3: Moth body kinematics 

 ݖ ,ݕ ,ݔ front/back, lateral, and vertical (respectively) in the given reference frame 

ሺ0, ሶݕ ,  ሶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݖ 3D vector with moth horizontal and vertical velocity as its only nonzero components 

 ߚ moth whole-body roll angle, measured absolute to the GRF ݕ/ݔ plane 

 
 
Box 2.4: Moth wing kinematics 

See Fig. 2.3 for a detailed description of wing kinematics 

ܴଵሬሬሬሬറ  vector which stretches from the wing base point (point 3) to the forewing tip (point 4) 

ܴଵపሬሬሬሬሬറ  the ܴଵሬሬሬሬറ vector which is ipsilateral to the direction of moth lateral velocity 

ܴଶሬሬሬሬറ  vector which stretches from the wing base point (point 3) to the hindwing tip (point 5)   

ܴଷሬሬሬሬറ  vector which stretches from the hindwing tip (point 5) to the forewing tip (point 4) 

 ෩௣ߔ peak-to-peak angular amplitude 

 ෩ഥ௣ߔ mean peak-to-peak angular stroke amplitude for left and right wings 

 ௣ߔ,ߔ sweep angle; the projection of ߔ෩௣ onto the BRF ݕ/ݔ plane 

 ௣௖തതതതതߔ sweep amplitude averaged for left and right wings, then centered to overall data mean 

 ௣ಽೃߔ difference in sweep amplitude between the left and right wings 

 ௅ோߔ instantaneous difference in midstroke sweep angular position 

 ߠ elevation angle; the angle	ܴଵሬሬሬሬԦ makes with the BRF horizontal 

 ௣௖തതതതߠ elevation angle, averaged for left and right wings, then centered to overall data mean 

 ௣ಽೃߠ difference in elevation amplitude between left and right wings 

 ௅ோߠ
instantaneous difference in midstroke elevation angular position between the left and 
right wings 

 ௜ߠ instantaneous midstroke elevation angle for the wing ipsilateral to moth lateral velocity 

 ߙ wing pitch angle; angle a projection of ܴଷሬሬሬሬԦ onto the BRF ݖ/ݔ plane makes relative to the 
BRF ݕ/ݔ plane 

 ௖തതതߙ  averaged for the left and right wings, then centered to overall data mean ߙ

 ௅ோߙ instantaneous difference in ߙ between the left and right wings 

 
 
Box 2.5 Coefficients 

݃ ௬ሷఉ relatesܭ sinሺߚሻ to ݕሷ  ሷݖ ௣௖തതതതത toߔ ௭ሷః relatesܭ 
௬ሷ௬ሶܭ  relates ݕሶ  to ݕሷ  ሷݖ ௣௖തതതത toߠ ௭ሷఏ relatesܭ 
ሷݕ ሻ toߚሺ݊݃݅ݏ௣௖തതതതതߔ ௬ሷః relatesܭ  ሷݖ ௖തതത toߙ ௭ሷఈ relatesܭ 
ሷݕ ሻ toߚሺ݊݃݅ݏ௣௖തതതതߠ ௬ሷఏ relatesܭ ఉሶܭ  ఈ relates ߙ௅ோ to ߚሶ  
ሷݕ ሻ toߚሺ݊݃݅ݏ௖തതതߙ ௬ሷఈ relatesܭ ఉሶܭ  ః relates ߔ௣ಽೃ to ߚሶ  
,௬ሷఏ೔ relates ሺ0ܭ ሶݕ , ሶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݖ ൈ ܴଵపሬሬሬሬሬറ to ݕሷ ఉሶܭ  ఏ೛ relates ߠ௣ಽೃ to ߚሶ  
௭ሷఉ relates ݃ሺ1ܭ െ cosሺߚሻሻ to ݖሷ ܭఉሶ ௬ሶ  relates ݕሶ  to ߚሶ  
௭ሷ௭ሶܭ  relates ݖሶ to ݖሷ ܭఉሶ ఏ೔ relates ሺ0, ሶݕ , ሶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݖ ൈ ܴଵపሬሬሬሬሬറ to ߚሶ  
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CHAPTER 3: 
 DRAG AND INERTIA HELP DAMP AND RESTORE 

PITCH IN THE FLAPPING FLIGHT OF MANDUCA SEXTA 
 

This Chapter was submitted as a full-length research article to J. Exp. Biol. in 2017 for peer review.  As of 
the writing of this dissertation, the manuscript is in the revision stages. 

 

Summary 

The inertial reactions of wings to pitch impulses reinforce velocity/drag damping reactions to pitch 

rotation, possibly a general feature of stability in flapping flight.  Flexibility (and wing hinge elasticity) may 

allow these effects. 

We launched projectiles to perturb hawkmoths (Manduca sexta) in hovering flight.  These moths 

proved capable of recovering from large (>100°), rapid (~4 ݉ݏ) pitch perturbations.  Our analysis reveals 

two previously undescribed mechanisms that enhance pitch stability: 1) inertia and drag keep the wings 

flapping close to their original stroke plane in the global reference frame, and 2) passive changes to stroke 

plane deviation angle and effective angle of attack, (and possibly wing sweep as well), create pitch 

countertorque.  These responses indicate flapping wings act as Coriolis vibratory gyroscopes, resisting 

rotational change despite reorientation of the moth’s body: Nevertheless, drag also creates or reinforces 

both mechanisms, implying they have broad importance over a range of size scales.  Abdominal movement 

may also amplify effect 1 in moths.  Together, these changes create pitch-damping torque on a lever arm 

connecting the centre of pressure and centre of mass, resulting in a pendulum-like oscillatory recovery 

pattern.  Low latency in a control model fit to observed body pitch and pitch rate, along with low latency in 

these two wing kinematic changes indicate these responses are nearly instantaneous and thus likely 

passive.  Body and wing drag also instantly resist pitch rotation, but the stroke plane effect is largest and it, 

plus body and wing drag, together produce passive pitch stability in a computational model even without 

including the angle of attack or stroke plane deviation angle changes.  Future investigators, modellers, and 

engineers should consider similar features that may benefit flying insects in general, and air vehicle design. 
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Introduction 

Despite over a century of research into animal flight and powered flight by human-designed aircraft, 

the elements of mechanical design and control that allow manoeuvrability and stability in flapping flight are 

still not fully understood.  We are only beginning to answer basic questions, such as how hovering animals 

stabilize their orientation, or how wing movements create turns.  Here, in free-flight animal experiments, we 

use the impact of small projectiles to perturb hovering moths Manduca sexta (L.), and then quantify their 

responses to better understand their ability to maintain pitch orientation. 

During flight, animals and machines must respond to a range of perturbations, whether large and 

intermittent, or small and periodic.  The underlying importance of stability to flight has inspired a range of 

research, including live animal experiments e.g. (May et al., 1980;Taylor and Thomas, 2003), comparative 

studies (e.g. Hedrick et al., 2009; Ristroph et al., 2013), numerical simulations e.g. (Sun and Xiong, 2005), 

and control theoretic studies e.g. (Cheng and Deng, 2011;Liu et al., 1998).  Recent studies indicate 

stabilization engenders trade-offs such as limiting maximum flight speed in orchid bees (Euglossini), and 

hawkmoths (Sphingidae) flying in turbulence (Combes and Dudley, 2009;Ortega-Jimenez et al., 2013) and 

possibly limiting manoeuvrability in hummingbirds (Archilocus colubris) (Ravi et al., 2015). 

In hawkmoths, our research has shown a high degree of passive damping stabilizes yaw and roll 

(Greeter and Hedrick, 2016;Hedrick et al., 2009;Hedrick and Robinson, 2010), but computational and 

theoretical models consistently identify pitch as the angular degree of freedom with the least amount of 

passive stability (e.g. Sun et al., 2007).  Thus, hovering animals like M. sexta are expected to need sensory 

feedback and active control to stabilize body pitch orientation or augment a small margin of passive stability 

(Maeda et al., 2010;Ristroph et al., 2013;Taha et al., 2015); but see (Noda et al., 2013;Noda et al., 2014). 

To investigate stability in free-flying hawkmoths, we examined responses to brief, large-magnitude 

pitch perturbations.  We shot projectiles from a spring-loaded cannon at moths in hovering flight.  Each 

projectile collision occurred over several milliseconds.  Such nearly instantaneous perturbations allow us to 

examine how moths react mechanically to perturbations on the time scale of halfstrokes, possibly before 
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their neural system registers the displacement and responds.  Our experiment is similar to those on running 

guinea fowl (Numida meleagris) (Daley et al., 2006), walking cockroaches (Blaberus discoidalis) (Jindrich 

and Full, 2002), and flying fruit flies (Drosophila melanogaster) (Beatus et al., 2015;Ristroph et al., 

2010;Whitehead et al., 2015), in that the perturbations are brief, unexpected, and mechanical in nature.  

However, even in those studies the impulse perturbation delivered lasts longer than a full stroke cycle.  Our 

experiment differs from previous aerodynamic perturbation experiments on hawkmoths and bees (Apis 

mellifera) (Ortega-Jimenez et al., 2014;Vance et al., 2013), particularly because those perturbations were 

longer, primarily to the wings rather than the body, and difficult to quantify in magnitude and direction. 

We predicted moth responses would incorporate both active and passive elements, but that active 

elements would necessarily dominate, based on previous research cited above.  We first identified the wing 

kinematics that contributed to pitch orientation recovery by analysing high speed video of moth reactions 

after perturbations.  We quantified these wing kinematics and combined them with a priori expectations 

based on previous research to create a nonlinear model of pitch-righting in M. sexta.  We refined the model 

by applying maximum likelihood selection techniques, and applied the same approach to estimate response 

delays in a simple passive + active control model based on current pitch orientation and its rate of change 

over time.  Finally, we assessed the effect of the mechanical damping identified in our analysis on flight 

stability using numerical simulation. 

Most strikingly, our data support two novel sources of near-instantaneous passive pitch stability, 

neither previously considered in computational models, nor revealed in prior animal flight experiments.  

Overall, passive inertia and drag mechanisms dominate the initial pitch perturbation response in M. sexta.  

Combined with rotational drag (Ristroph et al., 2013), these results demonstrate passive pitch stability in 

M. sexta, and its possibility in other flying animals.  When a collision pitches the moth’s body 1) its wings 

continue to flap close to their original stroke plane in the world reference frame, and 2) effective angle of 

attack (AOA) and stroke plane deviation angle changes that further damp pitch rotation occur near 

midstrokes.  Since the centre of forces, or “centre of pressure” (COP) is situated above the centre of mass 

(COM) during normal flight, lift, drag, and gravity act on a COP-COM moment arm to create a passive 

pendular restorative torque.  These responses indicate flapping wings act as Coriolis vibratory gyroscopes, 

resisting rotational change despite reorientation of the moth’s body.  Drag also adds to effects 1) and 2), 



 

58 
 

however, implying these novel mechanisms have broad importance over a range of body sizes because 

they are sourced from both inertial and viscous forces.  Combined with recent work, our results also suggest 

flexibility at or near the wing base (Eberle et al., 2015;Jankauski and Shen, 2016), and/or the abdomen 

(Dyhr et al., 2013;Noda et al., 2013;Noda et al., 2014), allow such effects. 

 

Methods 
Moths came from three universities and lived in mesh cages on an extended dark:light cycle 

We acquired 11 male M. sexta as pupae from the domestic colonies housed at the respective 

biology departments of UNC Chapel Hill, Duke University, and the University of Washington.  UNC and UW 

hawkmoths were from inbred domestic colonies, while Duke moths had been recently outcrossed with 

several other domesticated lines.  Following eclosure, moths drank water ad libitum in their enclosures, and 

fed on 1:4 solutions of sucrose or honey dissolved in tap water during recording and training.  They lived in 

30 ൈ 30 ൈ 30ܿ݉ mesh cages at ambient room temperature and humidity in a 22:2݄ݎ light:dark cycle.  See 

Table 3.S1 for individual trial and moth details. 

 

We trained moths to feed from man-made flowers in a recording arena 

We trained food-limited M. sexta to feed on an artificial nectar solution while they hovered in an 

arena (Fig. 3.1A).  The nectar was delivered via an artificial flower composed of a white photo paper disc 

attached to a nectar-filled syringe tube.  Moths were trained by repeated feeding from this artificial flower 

in the days leading up to perturbation trials.  Training times typically coincided with night or dusk in the 

moths’ artificial extended-day, contracted-night, 24-hour light cycle.  In each experimental trial, we lured the 

moth to approach a white paper disc that simulated our training flower but contained no nectar and did not 

allow for proboscis insertion.  We moved this white disc completely out of contact with the moth and used 

a modified toy cannon to launch a small projectile at the moth (Fig. 3.1B).  We used high speed cameras 

to record the event. 
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Figure 3.1: Flight chamber, cameras, and cannon 
Experimental setup and cannon. We recorded pitch perturbations from hawkmoths flying in a 71 ൈ 71 ൈ 

74cm glass-walled arena.  A) Two Phantom v7.1 
cameras and one Phantom v5.1 (Vision 
Research Inc., Wayne, NJ, USA) or Y4 camera 
(IDT Vision, Tallahassee, FL), used the high-
intensity 680݊݉ light from eight LEDs (Roithner 
LaserTechnik, GmBH, A-1040, Vienna Austria) 
to video the perturbations at 900-1200ݖܪ.  The 
visible light level in the arena was ~350	݈ݔ, as 
measured with a luxmeter ex post facto (840006, 
Sper Scientific LTD, Scottsdale, AZ, USA).  We 
waved a wand with two red LED lights positioned 
65݉݉ apart through the filming space to 

calibrate the cameras (Hedrick, 2008).  Labels: 1-2) Phantom v7.1 cameras; 3) Phantom v5.1 or IDT Y4 
camera 4) flying moth.  B) Spring-loaded cannon used in experiment. 
 
 
We extracted kinematics with 3D videography and MATLAB 

We collected 3D kinematics using the MATLAB (2009a/2010b/2015b, The Mathworks, Natick, MA) 

package DLTdv5 (Hedrick, 2008) to mark natural wing and body landmarks in every frame where they were 

visible.  Figure 3.2 depicts marked points, calculated wing angles and the body reference frame (BRF).  Our 

unit of comparison was the halfstroke, since both our prior work and modelling suggests average forces 

are sufficient for modelling basic kinematic effects in hawkmoth-scale insects (Hedrick et al., 2009).  When 

correlating these body movements with wing kinematics, we inserted halfstroke measurements at their 

corresponding midstroke points, since midstrokes are a convenient reference point where forces are close 

to their highest in the M. sexta stroke cycle (Bomphrey et al., 2005;Zheng et al., 2013).  We calculated all 

wing angles using points from the BRF.  

From the digitized points, we identified stroke cycle landmarks and wingbeat frequency.  To identify 

endstroke points, we summed the BRF wingtip positions and marked the maximum or minimum ݔ ൅ ሺെݖሻ 

position near where the first time derivative of the tip’s ݔ-position changed sign.  We marked midstrokes 

halfway between endstroke points, and used the interval between the four sets of points in each stroke 

cycle to calculate wingbeat frequency. 

The high-frequency perturbation events of varying magnitudes complicated digital filtering; to 

exclude high-frequency noise but preserve near-collision data, we cleaved the signals into two parts at the 

frame where the projectiles first contacted the moths (Fig. 3.3).  We subjected the body orientation results 

for the pre- and post- perturbation segments to a 25ݖܪ low-pass digital Butterworth filter prior to analysis, 
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but computed wing kinematics from unsmoothed data.  All final model regressions used 25ݖܪ low-pass-

filtered body orientation data (Eq. 3.1, 3.2, 3.6-8, 3.11, 3.12) except for time delay models, which used 35ݖܪ 

(3.9-10, 3.13-14 & 3.16) to increase sensitivity to smaller delays. 

 

Figure 3.2: Marked points, body angles, and wing angles 
Marked points, body angles, and wing angles. We 
computed flapping kinematics from the time-varying 
3D position of points on the moth and wings.  A) shows 
the points and vectors used. The left side is not shown 
but was also tracked. A manually identified canonical 
frame provided the default position for fixed 
morphology of the moth.  We used this to compute 
Euler angles (yaw, pitch, and roll) and reference 
frames (Stengel, 2015).  In the Body Reference Frame 
(BRF) planes, +ݔ is forwards for the moth, +ݖ is 
parallel with gravity (downwards), and +y is to the 
right.  B) and C) show the body and wing angles we 
measured based on the points and vectors in A).  We 
measured body pitch angle changes ߰௱ relative to the 

canonical orientation of ܴସሬሬሬሬԦ. The azimuthal/elevation 

angles of ܴଵሬሬሬሬԦ relative to a BRF vertical/horizontal 
(ሺݕ, ,ݔሻ/ሺݖ  ሻ) plane through the wing base point yieldݕ
wing sweep/elevation angle (߮/ߴ), at the end of 

downstroke (߮ା/ߴା) and upstroke (߮ି/ିߴ).  ܮଵശሬሬԦ 
connects the ሺݔ,  ሻ forewing tip position at the end ofݖ
a given up- or downstroke with its ሺݔ,  ሻ position at theݖ
end of the previous or subsequent halfstroke.  

Extending ܮଵശሬሬԦ in ݕ yields a stroke plane തܲ; during 
perturbation, തܲ deviates from its average hover 
orientation in the BRF by “stroke plane inclination 

angle” ߞ௱.  Line segment ܮଶശሬሬԦ (brown) starts 
perpendicular to തܲ and ends at the position of point 4 
when the wing is at midstroke.  The arctangent of its 
length over the midstroke ݕ-position of 4 is ߦ.  C) 
shows an oblique view of this midstroke 

measurement; reflecting ܴଵሬሬሬሬԦ onto തܲ yields ܴହሬሬሬሬԦ; ߦ is the 
angle between these vectors.  The difference between pre-hit average ߦ and its value at a post-hit midstroke 
is the “stroke plane deviation angle” ߦ௱.  “Wing pitch angle” ߙ఍௱, is the angle that the ሺݔ,  ሻ components ofݖ

ܴଷሬሬሬሬԦ make relative to the stroke plane.  To get deviation from baseline for all angles, we subtracted pre-hit 
midstroke averages from the measurements for each post-hit halfstroke.  We averaged and subtracted 
upstroke and downstroke kinematics separately. 

  

B

A

C

-�
�

φ φ
+

�-

+

ζ

+�
�

-�
�

�

�
4

-

�
1

�
2

�

+�
�

-�
�

-�
�

+�
�

+�
�

-�
�

+�
�

 
�

2

�
3

�
�

�
5
⫽�

�

 �(<0)

�
1

 

3

3

1

5

4

2

�
4

�
1

�
3�

2

+�
�

-�
�

+�
�

-�
�



 

61 
 

Figure 3.3: Two example trials 

 
Two example trials.  Here we show pitch and its time derivatives, as well as stroke plane inclination angle, 
for two representative trials from our data set: A) one pitch-up (Table 3.S1, Trial 32), and B) one pitch-down 
(Table 3.S1, Trial 56).  In each figure, the cyan arrow indicates when the projectile first contacts the moth, 
and the magenta arrow indicates when it ends contact.  Moth images show the first and last contact of the 
projectile, the maximum pitch deviation, initial return to zero pitch deviation, and maximum post-correction 
oscillation.  Within the first two images, yellow circles highlight the position of the cannonball.  Pitch 
orientation ߰௱, pitch velocity ሶ߰௱, pitch acceleration ሷ߰௱, and stroke plane inclination angle ߞ௱, are shown, 
see figure for units. The data were smoothed at 25ݖܪ (see Methods) and mean-centered to each trial’s 
pre-hit values.  Models fit near-collision data sets of almost identical duration from each trial: this post-
perturbation analysis “window” starts at the magenta arrow and ends at the nearest frame ≤0.1ݏ later. 
 
 
We used a priori theory, video observations, and a stepwise approach to develop our pitch acceleration 
models 

We first constructed a preliminary non-linear model that related various wing and body kinematics 

we hypothesized were important to pitch acceleration based on initial observations and a priori theory.  The 

first pitch acceleration model (Eq. 3.1) included: 1) A visual observation of a mismatch between stroke plane 

and pitch deviations (expressed as ܭటሷ ఍݉݃sinሺെߞ௱ሻ; see Derivation below and also the Chapter 3 Symbols 

and Abbreviations); 2) A visual observation of changes to stroke plane deviation angle during perturbations 

టሷܭ) ஞξ௱) 3) Wing pitch angle ሺܳܭటሷ ఈ௫ߙ఍௱ cos
ሺߞ௱ሻ ൅ టሷܭ ఈ௭ߙ఍௱ sin

ሺെߞ௱ሻ; see Derivation belowሻ 4) Drag-based 

torque from longitudinal and vertical motion, ሺܭటሷ ௫ሶ
௫ሶ೩

య

|௫ሶ೩|
cosሺ߰௱ሻ ൅ టሷܭ ௭ሶ

௭ሶ೩
య

|௭ሶ೩|
sinሺ߰௱ሻሻ; 5) A pitch velocity damping 

term (ܭటሷ టሶ
టሶ ೩

య

หటሶ ೩ห
; see Derivation below) 6) Dorsoventral sweep asymmetry in lift-based torque creation 

ሺܭటሷ ఝ߮௱; see Derivation belowሻ and, by theoretical extension 7) Drag-based torque creation from elevation 

angle offset (ܳܭటሷ ణ  :(௱ߴ

ሷ߰௱ ൌ ௬௬ܫ
ିଵ ൬ܭటሷ ఍݉݃ sinሺെߞ௱ሻ െ టሷܭ టሶ

టሶ ೩
య

หటሶ ೩ห
െ టሷܭ ௫ሶ

௫ሶ೩
య

|௫ሶ೩|
cosሺ߰௱ሻ െ టሷܭ ௭ሶ

௭ሶ೩
య

|௭ሶ೩|
sinሺ߰௱ሻ ൅ టሷܭܳ ఈ஽ߙ఍௱ cos

ሺߞ௱ሻ ൅

టሷܭ ఈ௅ߙ఍௱ sin
ሺെߞ௱ሻ െ టሷܭ కߦ௱ ൅ టሷܭ ఝ߮௱ ൅ టሷܭܳ ణ  ௱൰,      (3.1)ߴ
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where 	ܳ ൌ ൜
൅1, ݏ݁݇݋ݎݐݏ݊ݓ݋݀
െ1, ݏ݁݇݋ݎݐݏ݌ݑ , ߮ ൌ	߮ା ൅ ߮ି, and ߴ ൌ ାߴ	 ൅  as defined in Fig. 3.2, and mechanically ,ିߴ

justified in Fig. 3.4-5.  We found that ߦ௱ and ߙ఍௱ were negatively proportional (Fig. 3.6D), and when we treat 

 ఍௱ in the model.  Furthermore, whileߙ ௱’s statistical significance outweighs that ofߦ ,఍௱ߙ ௱ the same asߦ

multipliers of cosሺ߰௱ሻ and sinሺ߰௱ሻ might be theoretically better for ܭటሷ ௫ሶ  and ܭటሷ ௭ሶ  terms, (as in our 

computational pitch model, Eq. 3.3-5), the correlation of ߰௱ with ሷ߰௱ is both assured and non-causal; thus 

we replace it with ߞ௱ in an attempt to focus on causal relationships. This led us to a refined model: 

ሷ߰௱ ൌ ௬௬ܫ
ିଵ ൬ܭటሷ ఍݉݃ sinሺെߞ௱ሻ െ టሷܭ టሶ

టሶ ೩
య

หటሶ ೩ห
െ టሷܭ ௫ሶ

௫ሶ೩
య

|௫ሶ೩|
cosሺߞ௱ሻ െ టሷܭ ௭ሶ

௭ሶ೩
య

|௭ሶ೩|
sinሺߞ௱ሻ െ టሷܭܳ క஽ߦ௱ cos

ሺߞ௱ሻ ൅

టሷܭ క௅ߦ௱ sin
ሺߞ௱ሻ ൅	ܭటሷ ఝ߮௱ ൅ టሷܭܳ ణ  ௱൰       (3.2)ߴ

Only terms which decreased BIC and had significant P-values were included in the final pitch 

acceleration model (Eq. 3.7).  

 

Derivation of ܫ௬௬
ିଵ and ݎ  

To estimate the pitching moment of inertia ܫ௬௬, we reconstructed each moth body volume as a set 

of voxels in the 3 camera views and evenly distributed the measured body mass within that volume.  

Following perturbation, the moth’s body rotates somewhat like a pendulum about some COR (assumed to 

be near the COP) a distance of ݎ	away from the COM.  Thus, it is potentially reasonable to use ሺܫ௬௬ ൅  ଶሻݎ݉

for inertia, measure pitch about the COR, and incorporate r in the wing kinematics.  However, r is unknown 

and a statistical estimate of it is based only on small variations in mass and rotational inertia among the 11 

moths and 16 trials.  Therefore, we chose to instead perform BIC-based stepwise elimination on Eq. 3.2, 

discarding r, which is estimated for the computational model from a separate nonlinear fit (Eq. 3.5).  
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Derivation of  ܭటሷ ఍݉݃ ௱ሻߞሺെ݊݅ݏ ௬௬ܫ
ିଵ  

In Fig. 3.4B, we show that resistance of the stroke plane angle to rotation results in pitch 

acceleration. We found that when a moth is pitched by ߰௱, its wings rotate by a lesser amount, resulting in 

a change in the BRF angle between the moth body and wings (ߞ௱).  This angle creates resistive torque 

 ௱ሻ. Since this type of resistance mimics a pendulum with a pivot at or near the COP, we divideߞsinሺݎ݃݉–

by rotational inertia relative to the COP: (ܫ௬௬ ൅  (ଶ) according to the parallel axis theorem.  Once we 1ݎ݉

exclude ݎ and substitute ܫ௬௬
ିଵ for ൫ܫ௬௬ ൅ ଶ൯ݎ݉

ିଵ
 as justified in Derivation of ܫ௬௬ and ݎ, and 2) multiply by 

our estimated coefficient ܭటሷ ఍, we arrive at the final term representing how resistance of the stroke plane 

angle to rotation creates pitch acceleration in Eq. 3.6-7 & 3.1-2:	 ሷ߰௱ ൌ	–ܭటሷ ఍݉݃sinሺߞ௱ሻ ൅ ⋯.  

 

Derivation of  െܳܭటሷ క஽ߦ௱ ݏ݋ܿ
ሺߞ௱ሻ ௬௬ܫ

ିଵ  

In Fig. 3.5A, we show that deviations in the AOA affect the pitch torque created by drag during 

upstrokes and downstrokes, similar to the dynamic described by Chen et al. (2017).  Increased AOA leads 

to increased induced drag force (ܨ஽ሬሬሬሬԦേ) with a magnitude ∝෥ ஽ሬሬሬሬԦേܨ ఍.  The torque on the COM isߙ ൈ  Ԧ, which isݎ

thus ∝ േߙ఍ݎ cosሺߞሻ.  We replace 1) ߙ఍ with ߙ఍௱ and 2) ߞ with ߞ௱ because we are interested in deviations 

from typical pitch acceleration ( ሷ߰௱); and introducing a non-“midstroke-centred” ߞ term could add information 

to the model that is independent of how AOA affects ሷ߰௱.  We then multiply ߙ఍௱ݎ cosሺߞ௱ሻ by ܳ to reflect that 

downstroke drag ܨ஽ሬሬሬሬԦା pitches the moth up, and upstroke drag ܨ஽ሬሬሬሬԦି pitches the moth down.  When evaluating 

the preliminary pitch acceleration model (Eq. 3.1), we found, however, that stroke plane deviation angle 

  .఍௱ߙ ௱ሻ appears to be a better measure of the way in midstroke wing angles create imbalanced drag thanߦ)

Since ߙ఍௱ ∝෥		െ  ௱, (the two co-vary; Fig. 3.5B-C & 3.6D), this wing kinematic represents a combination ofߦ

changes to effective AOA (ߙ఍௱; Fig. 3.5A) and COP (ߦ௱; 3.5D; Elzinga et al. 2014; Chen et al. 2017).  We 

multiply by -1 when we substitute ߦ௱ for ߙ఍௱, resulting in –ܳߦ௱ݎcos	ሺߞ௱).  Once we exclude ݎ and divide by 

inertia ܫ௬௬ (see Derivation of ܫ௬௬ and ݎ), and multiply by our estimated coefficient ܭటሷ క஽; we arrive at the final 

term representing how AOA and stroke plane deviation angle changes together create pitch acceleration 

in Eq. 3.2 & 3.7: ሷ߰௱ ൌ 	െܳܭటሷ క஽ߦ௱ cos
ሺߞ௱ሻ ௬௬ܫ

ିଵ ൅ ⋯. 
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Derivation of  ܭటሷ ఝ߮௱ܫ௬௬
ିଵ 

In Fig. 3.5B, we show that deviation from typical dorsoventral sweep asymmetry engenders an 

imbalance in lift, which results in net pitch torque.  During stable hover (i), the cross product of dorsal (െ) 

and ventral (൅) lift forces (ܨ௅ሬሬሬԦേ) and lever arms (ݎേሬሬሬԦ) are equal so the resultant pitch torques balance; i.e. 

௅ሬሬሬԦିܨ ൈ ሬሬሬԦݎି ൌ ௅ሬሬሬԦାܨ	 ൈ  ାሬሬሬԦ over the course of a whole stroke.  If we assume a constant wing velocity, lift isݎ

proportional to the azimuthal angle swept by the wings; i.e. ܨ௅ሬሬሬԦേ ∝ ߮േ.  When the moth shortens the dorsal 

ሺെሻ part of the stroke in the azimuthal plane (ii), this asymmetry reduces ܨ௅ሬሬሬԦି ൈ ௅ሬሬሬԦାܨ ሬሬሬԦ relative toݎି ൈ  ାሬሬሬԦ.  Fromݎ

Fig. 3.5B, we see that this reduction of ߮ି rotates the lever arm ିݎሬሬሬԦ so that it is slightly more parallel with  

 ሬሬሬԦ in our pitchݎି ௅ሬሬሬԦି, and also reduces its length.  However, we do not consider these alterations toܨ

acceleration model because they 1) are small, 2) only serve to reinforce the torque imbalance, and 3) are 

difficult to quantify because COP position depends on multiple factors.  Thus, where ߂ represents deviation 

in a measurement relative to typical flapping averages, ൫ܨ௅ሬሬሬԦା ൈ ାሬሬሬԦݎ െ ௅ሬሬሬԦିܨ ൈ ሬሬሬԦ൯௱ݎି ∝෥ ሺ߮ା െ	߮ିሻ௱ ≝ ߮௱.  Once 

we 1) exclude |ݎԦ| and divide by inertia ܫ௬௬ (see Derivation of ܫ௬௬ and ݎ), and 2) multiply by our estimated 

coefficient ܭటሷ ఝ; we arrive at the final term representing how dorsoventral sweep asymmetry creates pitch 

acceleration in Eq. 3.7 & 3.1-2: ሷ߰௱ ൌ టሷܭ	 ఝ߮௱ܫ௬௬
ିଵ ൅ ⋯. 

 

Derivation of  ܭటሷ టሶ
టሶ ೩

య

หటሶ ೩ห
௬௬ܫ

ିଵ 

In Fig. 3.5C, we show that pitch rotation rate causes (profile) drag on the moth’s wings (ܨௐሬሬሬሬሬԦേ), and 

to a lesser extent, parasite drag on the moth’s body (ܨ௉ሬሬሬሬԦേ) which both result in resistive rotational damping.  

Parasite drag ܨ௉ሬሬሬሬԦേ acts on the moth’s body, but is negligible compared to the much larger forces on the 

rotating wings.  Again we ignore r and the possibility that the moth rotates around a COR different than its 

COM (see Derivation of ܫ௬௬ and ݎ), and thus divide by ܫ௬௬.  We square the pitch velocity term ( ሶ߰௱) since 

drag forces are approximately proportional to (∝෥) the square of velocity.  We perform this operation as 

ሶ߰௱
ଷ
ห ሶ߰௱หൗ  so that the independent variable retains the sign of its direction of rotation.  Due to stroke plane 

resistance to rotation, the moth’s wings may rotate at approximately ܭట఍ ≈ ½ the rate of its body (Table 3.3; 
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Eq. 3.8).  But, ሺܾܽሻଶ ൌ ܽଶܾଶ so we can disassociate this possible rate effect from the independent variable 

and expect to capture it within our estimate of the coefficient ൫ܭటሷ టሶ ൯, which represents how squared pitch 

velocity damps pitch acceleration:	 ሷ߰௱ ൌ టሷܭ	 టሶ
టሶ ೩

య

หటሶ ೩ห
௬௬ܫ

ିଵ ൅ ⋯. 

 

Figure 3.4 New model for pitch stability in flapping flight 

 

A pitch-unstable model.  A) A graphical representation of the pitch instability predicted for hovering 
insects, reproduced with permission (Ristroph et al., 2013).  Here, wing motion is fixed to the body reference 
frame (BRF) and lift and weight are antiparallel (i).  However, if pitched down (ii), the lift vector is reoriented 
and is no longer antiparallel with weight, creating forward motion, (iii).  This leads to drag on the insect’s 
wings, creating a pitch up torque.  Current computational studies predict the resulting pitch-up perturbation 
will be larger in magnitude than the original pitch down perturbation (iv), leading to growing oscillations.  
Our stroke-plane stabilized hawkmoth result.  B) A theoretical moth, whose wings are connected to its 
body via a frictionless gimbal, experiences a pitch down perturbation; however, its wing motion remains in 
the original plane in the global reference frame (GRF), restoring the moth to equilibrium.  In hovering (i), 
the moth’s lift (ܨ௅ሬሬሬԦ) and weight (݉݃ሬሬሬሬሬሬԦ) vectors are equal in magnitude and antiparallel.  The moth’s centre of 
mass and centre of pressure (COP) are vertically aligned to one another and separated by ݎԦ. This changes 
when a perturbation (߰௱) of -30° is applied, reorienting the moth’s body and ݎԦ.  Due to the theoretically 
frictionless gimbal, the stroke plane remains at a fixed orientation in the GRF (ii).  Meanwhile, the stroke 
plane’s orientation relative to the moth’s body deviates by angle ߞ௱ but lift is still directed vertically. Thus, a 
resultant force of –݉݃sinሺߞ௱ሻ acts at the COP perpendicular to ݎԦ, rotating the moth back toward its original 
orientation; i.e. ܨ௅ሬሬሬԦ ൈ Ԧݎ ൌ	–݉݃ݎsinሺߞ௱ሻ.  In (iii), this leads to a slight overcorrection, which is also resisted by 
the GRF-fixed stroke plane leading to decaying oscillations and a return to hovering equilibrium.  In this 
theoretical case, ߰௱ and ߞ௱ are equal to one another.  In reality, friction and/or other factors cause the 
magnitude of ߞ௱ to be about half that of ߰௱ over the perturbation range of -30° to 30° (Table 3.3; Eq. 3.8). 
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Figure 3.5: Explanation of pitch acceleration model terms 
Explanation of pitch acceleration model terms which 
involve ࣈ ,࣐, and ࣒ሶ .  A) Profile drag (ܨ஽ሬሬሬሬԦേ) is a function of 
angle of attack (≈ߙ఍), so changes to angle of attack alter pitch 
torque about the COM-COP lever arm (ݎԦ).  Increases in wing 
pitch may lengthen ݎԦ as well, reinforcing this affect.  See 
Derivation of െܳܭటሷ క஽ߦ௱ cos

ሺߞ௱ሻ ௬௬ܫ
ିଵ for a precise derivation 

of the model (Eq. 3.7) term representing how angle of attack 
and stroke plane deviation angle together affect pitch 
acceleration in downstrokes i) and upstrokes (ii).  B) During 
stable hover (i), the cross product of dorsal (െ) and ventral 
(൅) lift forces (ܨ௅ሬሬሬԦേ) and lever arms (ݎേሬሬሬԦ) are equal so the 

resultant pitch torques balance; i.e. ܨ௅ሬሬሬԦି ൈ ሬሬሬԦݎି ൌ ௅ሬሬሬԦାܨ	 ൈ  ାሬሬሬԦ overݎ
the course of a whole stroke.  When the moth shortens the 
dorsal ሺെሻ part of the stroke in the azimuthal plane (ii), this 
asymmetry reduces ܨ௅ሬሬሬԦି ൈ ௅ሬሬሬԦାܨ ሬሬሬԦ relative toݎି ൈ  ାሬሬሬԦ, and createsݎ

pitch torque.  See Derivation of 	ܭటሷ ఝ߮௱ܫ௬௬
ିଵ for a precise 

derivation of the model (Eq. 3.2) term representing how 
dorsoventral sweep asymmetry affects pitch acceleration.  C) 
Pitch rotation rate causes (profile) drag on the moth’s wings 
 and to a lesser extent, parasite drag on the moth’s ,(ௐሬሬሬሬሬԦേܨ)

body (ܨ௉ሬሬሬሬԦേ).  Together they both resist rotation.  See 

Derivation of ܫ௬௬
ିଵܭటሷ టሶ ሶ߰௱

ଷ
ห ሶ߰௱หൗ 	 for a precise derivation of 

the model (Eq. 3.2) term representing how pitch velocity 
damps pitch acceleration.  D) How stroke plane deviation 
changes may create pitch.  Concurrent work (Chen et al. 
2017) supports that similar stroke plane deviation angle 
changes create pitch torque primarily by altering the COP 
position and net force orientation in fruit fly halfstrokes.  This 
should complement the imbalanced drag from simultaneous 
wing pitch angle changes shown in A) and Fig. 3.6D.  Stroke 
plane deviation angle may also alter drag, though perhaps 
not in a way that directly creates pitch torque; ܳߦ௱ correlated 
negatively with longitudinal acceleration in our data set.   
 
 

 

Time delays between kinematics and body pitch 

Equations 3.9-10 & 3.13-14 relate ߞ௱, ߦ௱, and ߮௱ to 

body kinematics from earlier instants in time, in an attempt to 

quantify response time lag.  We shifted ߰ െ	߰଴ forward in 

time and compared it to ߞ௱ and ߦ௱, and ߮௱ from the first 0.1ݏ 

post-collision.  A lag close to zero would indicate these wing 

kinematics passively resist rotation; a lag similar to M. sexta 
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sensorimotor response delays would indicate that the correlations come from an active response by the 

moth. 

 

Previous work suggests a PD control model 

The pitch acceleration control model (Eq. 3.16) tests the idea that the moths actively respond to 

perturbation in proportion to pitch orientation and velocity at an earlier instant in time (ݐ െ ߬).  Time delays 

(߬ట & ߬టሶ ) are the moth’s sensory + reaction time delays for response to deviations in ߰ and ሶ߰ , respectively.  

Though we call ours a PD control model, it is conceptually similar to the PI control used to model active 

wing kinematic responses to pitch deviation in Drosophila by Whitehead et al., (2015). 

 

We expected all coefficients to be positive and time delays to indicate active control 

Except for Eq. 3.14-15, we expected all coefficients to be positive—where all terms represent either 

passive damping of pitch or active recovery by the moth.  We expected ܭటሷ ఍ to resemble COP-COM 

distance.  Since previous studies predicted active control would dominate, we initially expected ߬ట and ߬టሶ  

would both be greater than one wingbeat (≈33݉ݏ). 

 

We created a simulation of ሷ߰  based on previous work, but with variable wing hinge flexibility 

 Equations 3.3-5 form the basis of a simulation that tests whether a flexible connection between the 

wings and body during pitch perturbation can create passive stability in a theoretical moth.  Equations 3.6 

& 3.8 relate stroke plane inclination angle (ߞ௱) to ߰௱ to quantify the coefficient representing the flexibility in 

this connection 

We created basic differential equations relating time derivatives of longitudinal position and pitch 

orientation and then used MATLAB’s ode45 function to solve them numerically.  The equations for ݔሷ  and ሷ߰  

were based on principles from our own analysis and also informed by prior work (Gao et al., 2009;Hedrick 

and Daniel, 2006;Ristroph et al., 2013;Sun et al., 2007;Sun and Wang, 2007;Wu et al., 2009).  Our model 

equations are based on the following tenets: 1) First-derivative drag terms are squared; 2) Net drag torque 
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acts on the COP (which is stationary in the BRF); 3) Stroke plane orientation affects longitudinal 

acceleration; 4) Stroke plane orientation is linearly proportional to body pitch. 

ߞ ൌ  ఍ట߰         (3.3)ܭ	

ሷݔ 	ൌ ௫ሷ఍݃ܭ	 sinሺߞ െ 	߰ሻ െ	ܭ௫ሷ௫ሶ
௫ሶ య

|௫ሶ |
݉ൗ       (3.4) 

ሷ߰ ൌ 	 ൬݉݃ݎsinሺെߞሻ െ టሷܭ టሶ
టሶ య

หటሶ ห
െ టሷܭ ௫ሶ ݎ

௫ሶయ

|௫ሶ |
cosሺ߰ሻ൰ ሺܫ௬௬ ൅ ଶሻൗݎ݉    (3.5) 

 The default state of all these variables is zero; hence the exclusion of the ߂ subscript in these 

equations.  Vertical movement was not included in the model because, without a compensatory increase 

in vertical force production, a model moth would only lose elevation and invariably become unstable.  Moths 

likely compensate for this predicted elevation loss by increasing flapping frequency or amplitude during 

perturbations (Greeter and Hedrick, 2016), but fitting such behaviour is not informative to the current study.  

We based our coefficient values (Table 3.S2) on estimates from a version of Eq. 3.7, but with each element 

multiplied by ݎ and with an inertia of ሺܫ	 ൅  .ଶሻ as in Eq. 3.5ݎ݉	

 

Results 
Overview 

We analysed 8 pitch-up and 8 pitch-down perturbation trials from 11 moths.  The mean downwards 

and upwards max post-perturbation pitch deviations were -57° and +57° [sic.], and the range was -78° to 

106°.  Average roll and yaw deviation magnitudes at the time of max pitch deviation were 9° and 13°, 

respectively. The mean pitch recovery time for moths that returned to less than 0.5° of their original pitch 

orientation within the analysed duration was 0.14ݏ (6 pitch-up and 2 pitch-down trials). Qualitatively, moths 

in all analysed trials were in the process of recovering from the perturbation; however, some perturbations 

pushed moths into contact with an obstacle prior to them regaining original orientation (Table 3.S1). Videos 

3.S1-2 and Fig. 3.3 & 3.S1 show typical recovery behaviour for four example trials. 

Qualitatively, moths were generally able to recover from impacts with <0.5g cannonballs moving at 

a speed of ~4݉	ିݏଵ.  Due to targeting variation, the cannonballs collided with the moths in a variety of 

locations, leading to variation in perturbation magnitude and outcome. Moths that crashed (Videos 3.S3-4) 

often did so after suffering cannonball collisions with the wing that resulted in a mix of large pitch and roll 
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components, or collisions that pushed the moth into some obstacle.  Moths were also likely to crash if the 

projectile directly struck their head.  We only analysed trials in which the primary perturbation direction was 

pitch and the cannonball did not strike the head or wings.  We terminated video analysis when the moth 

contacted any obstacle after the initial perturbation. 

In the following section, we present our best models for pitch recovery based on our experimental 

observations and theoretical predictions.  We used MATLAB’s stepwiselm function with minimum-BIC 

(Bayesian information criterion) to eliminate insignificant terms from Eq. 3.1-2 and fitnlm and BIC to 

determine coefficients and optimal time delays for all other models.  We fit data from only the first ≈6 

halfstrokes post-collision, (within 0.1ݏ) because our interest was the immediate post-collision response (Fig. 

3.8).  We excluded a single outlier point, in which the moth vigorously flicked its abdomen (disrupting our 

pitch measurement, Fig. 3.2), from any fits that involved pitch acceleration or pitch velocity (Fig. 3.S1B). 

 

Several wing kinematic measurements relate to pitch acceleration 

After making initial modelling predictions (Eq. 3.2) based on an a priori set of observed and 

predicted relationships, (Methods; Fig. 3.4-5) we identified the best model relating wing and body 

kinematics to pitch acceleration. We first checked whether a relationship between deviations in pitch 

acceleration and stroke plane inclination angle were supported independent of other factors and determine 

that this was indeed the case (Fig. 3.6A; Eq. 3.6).  Overall, we found that deviations from normal stroke 

plane inclination angle (ߞ௱), stroke plane deviation angle (ߦ௱; in concert with co-varying AOA), the sum of 

fore and aft wing sweep (߮௱), and body pitch rotation rate ( ሶ߰௱), were all significantly related to pitch 

acceleration with a coefficient of the expected sign.  Variables with a ߂ subscript do not represent absolute 

orientations, but instead quantify deviations from mean pre-collision hovering (Chapter 3 Symbols and 

Abbreviations; Methods).  We illustrate the exact nature of wing and body kinematic measurements in Fig. 

3.2.  Our final model, Eq. 3.7, only includes model terms from Eq. 3.2 that reduced BIC and had significant 

P-values. 

Figure 3.6A-B shows fit results for Eq. 3.6-7, in which ܫ௬௬ is rotational (pitch) inertia about a Body 

Reference Frame (BRF) ݕ-axis through the moth’s estimated COM, ݉ is measured moth mass in grams, ݃ 

is 980.665 ܿ݉	ିݏଶ, ܳ is -1 for upstrokes and +1 for downstrokes, and ܭ௔௕ is the coefficient relating 
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independent variable ܾ to dependent variable ܽ.  See the symbols list at the end of this chapter for a 

description of all terms used in these two equations. 

ሷ߰௱ ൌ ௬௬ܫ
ିଵܭటሷ ఍݉݃sinሺെߞ௱ሻ         (3.6), 

ሷ߰௱ ൌ ௬௬ܫ
ିଵሺܭటሷ ఍݉݃sinሺെߞ௱ሻ െ టሷܭ టሶ

టሶ ೩
య

หటሶ ೩ห
െ టሷܭܳ క஽ߦ௱ cos

ሺߞ௱ሻ ൅ టሷܭ ఝ߮௱ሻ     (3.7).  

 
 
Figure 3.6: Correlation of pitch-related kinematic variables 

 

Correlation of various kinematic variables. Here, mid-upstrokes are upwards triangles, and mid-
downstrokes by downwards triangles, data are from the first 0.1ݏ post-perturbation.  Fit lines either 
represent the slope of the only coefficient, or, when there are multiple coefficients, a line with a slope of 
one.  Panels C-D include 48 downstrokes and 50 upstrokes, while A-B & F exclude an outlier downstroke.  
Table 3.3 contains the p-values, ݎଶ௔, and coefficient values for these results.  A) The angle between the 
stroke plane and body, i.e. “stroke plane angle” ߞ௱, is closely related to pitch acceleration ሷ߰௱.  B) Our full 
model for ߰ ሷ௱ includes stroke plane angle ߞ௱, stroke plane deviation angle ߦ௱, pitch rate ߰ ሶ௱, and dorsoventral 
sweep asymmetry (߮௱). C) Changes in stroke plane angle track changes in body pitch; the slope of the 
relationship is ≈½, and it attenuates outside ±30°. D) Wing pitch relative to the stroke plane ߙ஖௱, and stroke 

plane deviation ߦ௱ are significantly correlated, but ߦ௱ is more strongly correlated with ሷ߰௱ in our complete 
model (Eq. 3.7). E) Stroke plane deviation ߦ௱ correlates significantly with pitch deviation as expected if it 
were effected passively by pitch rotation (Fig. 3.7; Fig. 3.S2).    F)  The best-BIC proportional-derivative ሷ߰௱ 
control model fit to time-delayed body pitch and pitch rate (߰௱ሺݐ െ ߬టሷ టሻ & ߰ ሶ௱ሺݐ െ ߬టሷ టሶ ሻ) shows an low-latency 

response (≈6.7݉ݏ for ሶ߰௱ and ≈23.3݉ݏ for ߰௱) best characterizes their correlation with pitch acceleration 
ሷ߰௱. 
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Table 3.1 shows the fit results of Eq. 3.6, and Table 3.2 shows the relative importance of these 

different terms to the modelled pitch acceleration. 

 
Table 3.1: Eq. 3.6 fit results 

Fit of Eq. 3.6 ݎଶ௔ = 0.24 

Coef. Estimate Units ݌ 

టሷܭ ఍ 1.51 ܿ݉ 2.24E-7 

Fit of Eq. 7 ݎଶ௔ = 0.61 

Coef. Estimate Units ݌ 

టሷܭ ఍ 1.17 ܿ݉ 9.97E-7 

టሷܭ టሶ  8.37E-1 ݃	ܿ݉ଶ  1.11E-7 

టሷܭ క 3.30E3 ݃	ܿ݉ଶ	ିݏଶ 1.23E-6 

టሷܭ ఝ 2.25E3 ݃	ܿ݉ଶ	ିݏଶ 6.84E-5 

 
 

Table 3.2: Relative contribution of wing kinematics to pitch 

Terms from Eq. 3.7 # Interpretation 
Mean of 

Abs. Value 
 ଶିݏ	݃݁݀

Median of 
Abs. Value 
 ଶିݏ	݃݁݀

Median for 
Pitch-Up 
 ଶିݏ	݃݁݀

Median for 
Pitch-Down 
 ଶିݏ	݃݁݀

Mean % 
relative to ∑ of 
Term #s 1-4 

Median % 
relative to ∑ of 
Term #s 1-4 

Median % 
relative to ∑ of 
Term #s 1-4 

Pitch-Up 

Median % 
relative to ∑ of 
Term #s 1-4 
Pitch-Down 

௬௬ܫ
ିଵܭటሷ ఍݉݃sinሺߞ௱ሻ 1 

stroke plane 
resists rotation 

1.06E4 1.08E4 -2.46E2 3.22E1 29.3% 40.7% 90.9% 17.0% 

௬௬ܫ
ିଵܭటሷ టሶ

ሶ߰
௱
ଷ
ห ሶ߰௱หൗ  2 rotational drag 7.45E3 2.44E3 -6.17E-1 4.28E0 20.6% 9.17% <1% 2.25% 

௬௬ܫ
ିଵܭటሷ క஽

௱ߦ cosሺߞ௱ሻ 3 angle of attack 9.99E3 6.27E3 -6.98E1 4.89E1 27.7% 23.6% 25.8% 25.7% 

௬௬ܫ
ିଵܭటሷ ఝ߮௱ 4 

sweep 
asymmetry 

8.09E3 7.07E3 4.57E1* 1.05E2 22.4% 26.6% -16.9% 55.1% 

∑ of Term #s 1-4 - 
predicted pitch 

acceleration 
3.61E4 2.66E4 -1.55E-4 1.09E4 100% 100% 100% 100% 

ሷ߰
௱ - 

observed pitch 
acceleration 

2.64E4 2.25E4 -2.27E4 2.07E4 73.2% 84.6% 146% 190% 

*there is no change in sign of ܭటሷ ఝ for upstrokes vs. downstrokes, which does not match a priori theoretical 
predictions. 
 
 
Stroke plane inclination angle ߞ correlates with pitch and pitch acceleration 

During flight, moths flap their wings back and forth along a curve (Fig. 3.2B), whose endpoints form 

the stroke plane.  During perturbation recovery, BRF stroke plane inclination angle ߞ (Fig. 3.2B), deviates 

from its value during hover in proportion to ߰௱ (Fig. 3.2B & 3.4B), the moth body’s deviation from its normal 

pitch orientation (Table 3.3, Eq. 3.8).  After the moth is pitched by the cannonball, its wing pairs continue 

flapping closer to their original trajectory in the global reference frame (GRF) than would be expected if the 

wings were rigidly connected to the body (Fig. 3.3, 3.4B, 3.6C, 3.S1).  The direction of stroke plane deviation 

during perturbations (the sign of ܭటሷ ఍ and ܭ఍ట) is as expected from passive inertia- and drag-based 

resistance to pitch perturbation (Fig 3.7E).  The response is linearly proportional over a pitch range of -30° 

to 30°, beyond which it saturates (Fig. 3.6C).  The best-fit time delay between deviations in stroke plane 

inclination angle and pitch orientation is <0.05 wingbeats, (Table 3.3, Eq. 3.9-5).  We hypothesized that 
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deviation in ߞ creates torque on the COP-COM vector, (Fig. 3.4B) and thus used ܫ௬௬
ିଵܭటሷ ఍݉݃sinሺെߞ௱ሻ to 

represent how it creates pitch acceleration in Eq. 3.6-7. 

 

Stroke plane deviation angle ߦ represents mixed angle of attack and COP effects, and correlates with 
both pitch and pitch acceleration 

 During flapping, moths rotate their wings about the root to tip axis to alter the angle at which those 

wings interact with the air.  This angle is termed the “effective angle of attack” (AOA).  We expected AOA 

deviations would affect drag at the COP above the COM, creating pitch torque (Fig 3.5A; Chen et al., 2017).  

Yet, in our final pitch acceleration model, only “stroke plane deviation angle” ߦ௱ (Fig. 3.2B) remains and not 

AOA.  The inclusion of a ܳߦ௱ term in our pitch acceleration model removes the statistical significance of 

other terms related to AOA, including wing pitch angle relative to the stroke plane (Fig. 3.2C, ߙ఍௱).  Thus, 

while measured ߦ௱ is significantly negatively proportional to ߙ఍௱ (Table 3.3, Eq. 3.11; Fig. 3.6D), it contains 

additional model-relevant information.  Since stroke plane deviation angle changes correlate negatively 

with wing pitch changes of the wings during perturbation recovery (Fig. 3.6D), and with net COP location 

of a given halfstroke (Fig 3.5D; Elzinga et al. 2014; Chen et al., 2017), ܭటሷ క஽ is positive.  This agrees with 

the hypothesis that stroke plane deviation and AOA changes combine to create pitch torques that oppose 

rotation. 

Like stroke plane angle ߞ௱, stroke plane deviation angle ߦ௱ correlates with pitch orientation as one 

would expect were it a passive response (Table 3.3, Eqns. 3.8,3.12; Fig. 3.6E).  Pitch-up rotations that 

passively alter AOA because of rotational drag and gyroscopic/inertial effects should lead to negative 

upstroke ߦ௱ and positive downstroke ߦ௱; with an opposite sign association for ߦ௱ and halfstroke direction 

during pitch-down rotations (Fig. 3.7A-D).  Model results agree (Table 3.3, Eq. 3.12), and the time delay is 

brief (Table 3.3, Eq. 3.13; Fig. 3.S2). 

 

Fore/Aft imbalance in wing sweep correlates with pitch acceleration 

Body pitch acceleration ሷ߰  also correlates with changes in the sum of fore and aft wing sweep ߮௱, 

i.e. “dorsoventral sweep asymmetry.”  This variable (߮௱) measures how far forward or backward a moth 

extends its wings during a given halfstroke (Fig. 3.2B).  Thus, ߮௱ attempts to estimate how much lift-based 
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pitch torque the wings produce in front of or behind the moth’s COM (Fig. 3.5B).  In the final model, (Table 

3.3, Eq. 3.14), abbreviated upstroke sweep correlates with pitch-up acceleration, and abbreviated 

downstroke sweep correlates with pitch-down acceleration.  This pattern agrees with the lift-based 

dorsoventral sweep asymmetry observed in actively pitching fruit flies (Whitehead et al., 2015) and 

hawkmoths (Wang et al., 2008).  M. sexta shows decreases to sweep amplitude, however, that are more 

pronounced in the rearward/dorsal/aft half of each halfstroke (Fig. 3.S3).  This is consistent with a larger 

role for ߮௱ in pitch-down than pitch-up perturbations (Table 3.2, Term 4).  It could be explained by greater 

lift production in the forwards portion of strokes, or by vertical wing movement behind the COM near the 

upstroke-to-downstroke transition point. 

 

Table 3.3: Delay analysis shows passive wing kinematics 

Eq. Eq. 
Filter 

Frequency 
ሺݖܪ) 

Coef. 
Coef. 

Estimate* ݌ 
Delay 
Coef. 

Delay Coef. 
Estimate 

 (wingbeats ݖܪ30)
 ଶ௔ݎ

3.8 
௱ߞ ൌ      ఍ట߰௱ܭ

߰௱ 	∈ ሼെ30°: 30°ሽ 
 ఍ట 5.39E-1 6.42E-12 - - 0.59ܭ 25

3.9 
௱ߞ ൌ ݐ఍టఛ߰௱଴൫ܭ െ ߬఍ట൯ 

߰௱ ∈ ሼെ30°: 30°ሽ 
 ఍ట 5.47E-1 1.97E-10 ߬఍ట <0.05 0.50ܭ 35

௱ߞ 3.10 ൌ ݐ఍టఛ߰௱଴൫ܭ െ ߬఍ట൯ 35 ܭ఍టఛ 1.72E-1 1.69E-11 ߬఍ట <0.05 0.19 

௱ߦ 3.11 ൌ െܭకఈഅߙ఍௱ 25 ܭకఈഅ 1.06E-1 1.28E-2 - - -0.11 

௱ߦܳ 3.12 ൌ  కట 5.02E-2 3.06E-4 - - 0.13ܭ కట߰௱ 25ܭ

௱ߦܳ 3.13 ൌ ݐకటఛ߰௱଴൫ܭ െ ߬కట൯ 35 ܭకటఛ 5.65E-2 6.24E-5 ߬కట 0.25 0.15 

3.14 ߮௱ ൌ ݐఝటఛ߰௱଴൫ܭ െ ߬ఝట൯ 35 ܭఝటఛ 
-5.96E-2+ 
-4.78E-1+ 

8.90E-5 
7.97E-4 

߬ఝట <0.05 
4.6 

-0.09 
-.142 

3.15 
ܳ߮௱ ൌ െܭఝటሶ

ሶ߰ cosሺߞ െ ߰ீோிሻ 
߰௱ ∈ ሼെ30°: 30°ሽ 

 +ఝట -2.00E-3+ 1.99E-1** - - 0.19ܭ 25

*Equations are structured such that the expected sign of the coefficient, if it comes from passive effects, is 
positive.  All coefficients are unitless, except ܭఝట, which has units of ିݏଵ. 
+The negative sign of these coefficients indicates a non-passive effect. 
**Nota bene: this ݌-value is insignificant. 

 

Sensory inputs also relate to pitch acceleration 

Like other insects, moths use sensorimotor control systems to correct perturbations (Dickerson et 

al., 2014;Sane et al., 2007).  We attempted to identify the sensory inputs upon which moths base the active 

portion of their pitch-righting response by correlating time-delayed deviation in the zeroth and first time 

derivatives of pitch orientation (߰௱ and ሶ߰௱) to an output for pitch control: deviation from normal pitch 

acceleration ( ሷ߰௱) at midstrokes.  We chose to assume this Proportional-Derivative (PD) control model 

because hawkmoths have sensory organs that readily detect such information, and previous research on 
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pitch correction predicts PD-like control (Whitehead et al., 2015;Windsor et al., 2013) .  The best BIC time 

delay model shows a time delay of ≈0.023ݏ for changes to pitch, ≈0.0067ݏ for changes to pitch velocity, 

(Fig. 3.6F; Table 3.4; Eq. 3.16). 

ሷ߰ ൌ ௬௬ܫ
ିଵ ቀെܭటሷ టഓ߰௱଴൫ݐ െ ߬టሷ ట൯ െ టሷܭ టሶ ഓ

ሶ߰ ൫ݐ െ ߬టሷ టሶ ൯ቁ      (11).     

 

Table 3.4: Fit results for Eq. 3.11 

Eq. 3.11:     ሷ߰ ൌ ௬௬ܫ
ିଵ ቀെܭటሷ టഓ߰௱0൫ݐ െ ߬ట൯ െ టሷܭ టሶ ഓ

ሶ߰ ൫ݐ െ ߬టሶ ൯ቁ  ݎଶ௔ = 0.55 

Coef. Estimate Units 
Coef.  
 value-݌

Delay 
Coef. 

Delay Coef. 
Estimate 

Units 

టሷܭ టഓ 3.11E2 ݃	ܿ݉	ିݏଶ 1.27E-6 ߬ట 0.7 30 ݖܪ 
wingbeats ܭటሷ టሶ ഓ 2.50E1 ݃	ܿ݉	ିݏଵ 1.80E-15 ߬టሶ  0.2 

 

Modelling pitch perturbation responses 

After fitting our model, we created a simple computational implementation of pitch perturbation 

response based on the theoretically passive contributors to pitch stability: ܭ఍ట, ܭటሷ టሶ  and ܭటሷ ௫ሶ . The model 

(see Methods) is based on drag terms from the literature as well as the passive relationship we measured 

between ߞ௱ and ߰௱ (but does not include that between ߦ௱ and ߰௱).  We analysed the response of the model 

to two basic levels of simultaneous perturbation to ߰௱ and ሶ߰௱, based on: 1) The average cannonball 

perturbation from this study, and 2) The largest recorded deviations in pre-perturbation hover.  This fully 

passive moth model produces growing oscillations in pitch when the stroke plane is rigidly attached to the 

body (i.e. ܭ఍ట ൌ 0), but rapidly decaying oscillations in response to even a small degree of flexibility in body-

to-stroke-plane coupling (ܭ఍ట > 0.1).  Recovery is approached within the sample window (0.25-0.5s post-

perturbation) when ܭ఍ట nears the value estimated in our study, (≈0.5, Table 3.3; Fig. 3.S4). 

 

Discussion 

Summary 

M. sexta recover from large, sudden perturbations to pitch.  The response latencies and modelled 

physical stability mechanisms indicate the response is initially passive with later active components. In the 

experiments conducted here, the passive effects are more important.  Passive responses arise because 1) 

the wings are partially isolated from body rotations, 2) the wings resist rotation because of both drag and 
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gyroscopic/inertial effects, and 3) the COP lies above the COM (Fig. 3.4-5 & 3.7).  A computational model 

shows that even a small degree of isolation or flexibility between rotation of the insect’s body and its stroke 

plane greatly enhances stability in pitch. 

Our discussion also covers several related ideas.  First, stroke plane resistance to rotation and 

COP-COM arrangement likely also damp slight deviations during hover and aerodynamic as well as 

mechanical perturbations.  Second, abdominal and wing base flexibility are plausible reasons for the 

different pitch-up and pitch-down perturbation responses.  Third and finally, it is useful to consider insect 

wings as vibrational gyroscopes that also experience high drag.  Since drag and inertia work together to 

create the stability mechanisms we observed, these same mechanisms could passively stabilize pitch in 

flight for animals across a wide range of size and speed. 

 

We found two unexpected, and one expected, passive sources of pitch stability  

In the immediate aftermath of a perturbation, drag and inertial resistance of the wings to rotation 

alter stroke plane angle; this reorients the net lift vector in the BRF, which in turn acts on the COP-COM 

lever arm to restore pitch orientation (Fig. 3.4B & 3.S4), passively stabilizing the moth.  In a second 

previously-undescribed stability mechanism, gyroscopic/inertial effects and rotational drag on the wings 

alter stroke plane deviation angle.  Changes to stroke plane deviation angle are complemented by wing 

pitch angle changes, and together they alter COP and create differential drag for upstrokes and 

downstrokes, further counteracting rotation.  Independent work shows both gyroscopic/inertial effects, and 

drag to a lesser extent, modify wing position in pitch rotations (Eberle et al., 2015;Jankauski and Shen, 

2016).  Third, rotational velocity and the associated drag on the body and wings is an expected source of 

passive pitch damping. 

The significance of stroke plane inclination ߞ௱ and stroke plane deviation ߦ௱ in the model despite 

the presence of a pitch velocity term ( ሶ߰௱) indicates they are not simply statistical proxies for body and wing 

drag.  The tight correlation of ߞ௱ with ߰௱, the (in hindsight) intuitive theoretical explanation for these results, 

and small estimated time delays (see PD control… below) all indicate that these wing angle changes are 

mostly passive in nature, and not due to the moth first sensing a change in pitch state and then producing 

a response that changes stroke plane inclination.   
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These passive sources of pitch stability are important to flight stability: Our computational model 

indicates that resistance of the stroke plane to rotation drastically reduces the degree of active response 

required for pitch perturbation recovery.  They are also consistent with prior research that indicates insects 

sense wing kinematics, and that some aspects of wing kinematics may be passively mediated.  For 

example, M. sexta sense wing rotations that would change ߞ and ߦ, and respond to these BRF wing 

kinematic changes even more strongly than they respond to visually simulated GRF pitch rotations 

(Dickerson et al., 2014;Hinson and Morgansen, 2015;Hinterwirth and Daniel, 2010).  Prior studies also 

show wing pitch angle may be passively maintained in insect flight (Beatus and Cohen 2015; Bergou et al., 

2007;Bergou et al., 2010;Ishihara et al., 2009a;Ishihara et al., 2009b;Norberg, 1972;Whitney and Wood, 

2010).  
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Figure 3.7: Inertia and drag work together to create passive countertorque in flapping wings 

 

Inertia and drag work together to create passive 
pitch countertorque in flapping wings. A) When a 
pitch-up impulse is applied to this right-spinning 
wheel, the new angular momentum moves the spin 
axis (cyan) towards the axis of the applied impulse 
and the wheel rolls left. B) Flapping moth wings—
mechanically-isolated, rapidly vibrating biological 
structures—experience similar effects.  B) shows 
both wings at end-downstroke and end-upstroke, the 
left wing at mid-downstroke, and the right wing at 
mid-upstroke.  A pitch-up impulse applied to the mid-
stroke wings produces gyroscopic inertial effects that 
push the left wing down and the right wing up.  This 
helps explain why, in the downstrokes of pitch-up-
perturbed moths, we measure a decreased angle of 
attack (AOA), and an increased stroke plane 
deviation angle (ߦ).  C) This side view also showing 
how gyroscopic effects change AOA and stroke plane 
deviation angle; the moth’s wings flap along a curved 
path and changes to that path and/or to the angle of 
the wing alter AOA and COP location (Fig. 3.5D).  D) 
Drag adjusts AOA in the same direction as 
gyroscopic effects.  As the moth wing rotates with 
pitch, it experiences drag that increases upstroke 
AOA and decreases downstroke AOA. Thus, inertial 
(A-C) and drag (D) effects influence AOA in similar 
ways during perturbation.  E) Drag and inertia work 
together to keep stroke plane inclination angle close 
to its original orientation.  In (i) drag on the wings 
during a pitch-up rotation creates a pitch-down 
torque.  In (ii) wing inertia resists rotation when 
torque is applied. The resulting deviation in the stroke 
plane inclination angle (and lift vector) relative to the 
body reference frame creates a restoring torque (Fig. 
3.4B).  It is interesting to conjecture that inertial 
resistance of the wings to flipping may influence 
effect D), since wings oscillate rapidly in wing pitch 
during flapping flight, (and torsional/flipping inertial 
resistance likely influences roll dynamics; 5.2C-D).  
Note that it is also possible wing deviation angle 
changes interact with the angular momentum of 
flipping wings to (passively) create a pitch-restoring 
dorsoventral sweep asymmetry response like the one 
observed in this data set, but this figure does not 
depict such an effect. 
 
 

The positive sign of the fit coefficient ܭటሷ క஽ is consistent with drag from pitch rotational velocity and 

inertial effects passively modifying ߦ and AOA (Fig. 3.7).  When wings sweep along a curved path, wingtip 

deviation strongly influences the angle at which they encounter the air (Fig. 3.5A), and also the location of 
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the net of forces for the halfstroke (Fig. 3.5D).  We tested two different wing kinematic approximations of 

these effects, which co-varied in the data: ߙ఍௱ and ߦ௱.  We used ߦ௱ in the final model because using only 

this wing kinematic was better according to BIC.  It is also based only on tip position, wing base, and body 

orientation, which are straightforward reference points to discern in a number of different experimental 

situations, which we hope will facilitate broad comparisons among different experiments and organisms. 

 

Not just for collisions; generality of stroke plane (and AOA/stroke plane deviation) damping 

 Although we perturbed the moth artificially, our computational model demonstrates that the 

underlying decoupling between body orientation and stroke plane will also effectively stabilize smaller 

mechanical perturbations (Fig. 3.S4) on the time scale of halfstrokes.  If our conclusions are valid, in an 

aerodynamically (rather than mechanically) perturbed moth, the stroke plane itself will still resist rotation 

because of drag and inertia, bringing the body back toward its original orientation, aside from pendular 

oscillations due to its incomplete resistance to rotation.   

Furthermore, since M. sexta wing movement is dominated by inertia (Jankauski and Shen, 2016), 

as is turning flight in general (Fry et al., 2003), aerodynamic perturbation of the wings across size scales 

likely also results in 2/ߨ off-phase Coriolis reactions similar to the pitch-restorative stroke plane deviation 

angle changes we witnessed (this chapter) and AOA changes we predict (Fig. 5.3).  The amplitude and 

subsidence rate of the gyroscopic reactions will be determined by the viscoelasticity/viscosity of the involved 

body joints and surrounding air (drag effects).  Since wing hinges are extremely elastic (Weis-Fogh, 1960), 

since wing movement is dominated by inertia (Combes et al. 2003; Eberle et al., 2015; Jankauski and Shen, 

2016), and since (as this study showed) wing movement is flexible relative to the moth’s body frame, this 

subsidence rate is likely slow.  Thus, elasticity and flexibility may allow the passive changes to wing 

kinematics in impulse perturbations to manifest as equal and opposite changes to wing kinematics during 

subsequent halfstrokes that also help restore orientation.  This suggests evolution, and future engineers of 

micro-air vehicles (MAVs), can tune these features for increased stability (see Passive vs. active 

stability…air vehicle design). 
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As discussed in the final section of this discussion, these inertial damping effects will scale with 

size and speed, as will the changes to wing kinematics and stroke plane angle that arise from pitch rotational 

velocity (Fig. 3.7).  

 

Changes to sweep help correct pitch, and may be mostly active 

Dorsoventral sweep asymmetry ߮௱ also correlated with pitch acceleration in a way that is similar to 

D. melanogaster (Whitehead et al., 2015) and another hawkmoth species (Wang et. al. 2008).  While ߮௱ 

had a small best-fit time delay, models with longer time delays were within the same statistical range (Table 

3.3, Eq. 3.14; Fig. 3.S2).  Indeed, coefficient signs are inconsistent with a passive response to either pitch 

or pitch velocity.  If drag created fore-aft wing sweep deviations, (߮௱), pitch-up/down rotations would curtail 

the second half of up/downstroke, but the coefficient is significantly negative (Table 3.3, Eq. 3.14), 

especially for pitch-down perturbations (not shown).  If stroke plane changes bring about ߮௱ (since the BRF 

stroke plane becomes more/less horizontal over the course of pitch-down/up rotations) we would expect 

ܳ߮௱ ൌ െܭఝట ሶ߰௱cos	ሺߞ െ ߰ሻ, at least when ߰௱ ∈ ሼെ30°: 30°ሽ, but, the opposite is true (Table 3.3, Eq. 3.15).  

Nevertheless, one final explanation exists that could passively create the observed sweep asymmetries.  

Since the passively induced stroke plane deviation angle changes are essentially roll perturbations to the 

wings themselves, these could interact with the gyroscopic nature of wing flipping/pitching during strokes 

to create the observed sweep asymmetries. 

 

PD control model results further support that M. sexta pitch response is passive 

Our best-fit time-delay active control model predicts that M. sexta pitch stability is a combination of 

passive and active responses.  Previous research shows that a PD controller would be sufficient for active-

only stability in M. sexta given sufficiently small response delays (Ristroph et al., 2013;Whitehead et al., 

2015).  Nevertheless, moths might only have the opportunity to alter wing kinematics at halfstrokes 

(Fernandez et al., 2012;Springthorpe et al., 2012) due to the intrinsically discrete nature of flight muscle 

activations.  In fact, tethered moths respond to visual/tactile flower movements and visually simulated pitch 

with a delay of ≈40-80݉ݏ (Dickerson et al., 2014;Hinterwirth and Daniel, 2010;Sponberg et al., 

2015;Windsor et al., 2013).  Thus, prior evidence indicates moths may not be able to detect and then 
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respond to state changes within 0.2-0.7 wingbeats (7-23݉ݏ).  Indeed, our PD-controller time delays (Table 

3.4, Eq. 3.16) indicate that the M. sexta pitch perturbation response includes passive components.  The 

post-perturbation steady-state reached in our computational model suggests that the hawkmoth’s passive 

response greatly reduces the necessary active response magnitude.  Thus, it is not surprising that a 

combination of passive and active responses results in a control system for M. sexta that can stabilize pitch 

perturbation of >100° as we recorded. 

 

COP-COM arrangement and wing resistance to movement creates pendulum-like pitch stability 

The wing kinematic changes we measured can produce restoring torque only because the moth’s 

centre of aerodynamic forces (COP) lies well above its COM (Ellington, 1984).  This arrangement results 

in a pendulum-like stability effect when body pitch deviates from equilibrium (the pendulum swings) and 

stroke plane does not deviate to the same extent (the pivot remains semi-fixed) (Ristroph et. al, 2013).  The 

expected perturbation response of our computational model further supports these hypotheses.  If, as in 

our computational model, we assume a centre of rotation (COR) located near the COP, passive restorative 

pitch acceleration would be inversely proportional to stroke plane deviation once ݎ (COP-COM distance) 

becomes very large (Fig. 3.S5).  However, the ݎ estimated from Eq. 3.5 lies within the theoretical range 

where ݎ is still directly proportional to restorative pitch acceleration. 

The arrangement of COP above COM also magnifies the passive restoring pitch torque that 

changes to AOA and stroke plane deviation angle generate (Fig. 3.5A & 3.5D).   

 

Abdominal or wing joint flexibility differences may explain pitch-up and pitch-down perturbation 
differences 

 Pitch-down perturbations produce a smaller passive stroke plane inclination response (ߞ௱) and a 

greater (potentially active) sweep response (߮௱) than pitch-up ones (Table 3.2).  This would be explained 

if 1) the wing joint or nearby wing portion is more pliable in response to pitch-up than pitch-down torsion, 

and/or 2) the decoupling of the stroke plane from the rotating body arises in part from abdominal bending, 

and the abdomen is more readily flexed than extended.  The abdomen is relatively massive, so when a 

cannonball pitches the moth up by hitting its thorax, inertia flexes it forward relative to the COP, creating 
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pitch-down torque (Fig. 3.4B; Noda et al., 2013; Noda et al. 2014), within a time range that is relevant to 

our perturbations (Dyhr et al., 2013). 

 

Passive vs. active stability in flapping flight and air vehicle design 

 Prior computational and physical flight models predict two basic unstable modes for insect flight, 

for anything but the smallest perturbation range (Humbert and Faruque, 2011;Maeda et al., 2010;Noda et 

al., 2013;Ristroph et al., 2013;Taha et al., 2015): one in pitch coupled with longitudinal motion (Kim et al., 

2014;Kim et al., 2015;Sun et al., 2007;Windsor et al., 2013;Zhang and Sun, 2010); and one in roll coupled 

with sideslip (Liang and Sun, 2013;Windsor et al., 2013;Zhang and Sun, 2010;Zhang et al., 2012).  Our 

recent observational study of sideslip (Greeter and Hedrick, 2016) and a recent physical model (Kim et al., 

2016) provide evidence that roll coupled with sideslip is in fact heavily damped in M. sexta.  Here, our 

updated empirical model of pitch provides evidence that pitch coupled with longitudinal motion is also more 

stable than widely believed.  Since yaw (Hedrick et al., 2009;Hedrick and Robinson, 2010), roll (Greeter 

and Hedrick, 2016;Kim et al., 2015), and pitch (this study) are all heavily damped in M. sexta, active control 

appears to supplement existing passive stability and may not be strictly necessary in flapping flight. 

 We can apply these insights to the design of small autonomous flying vehicles, whose biomimetic 

design might one day react to pitch much like M. sexta.  Micro-air vehicles (MAVs) are at the cutting edge 

of flight design research, and effective stability solutions remain a design hurdle of intense focus (Karásek 

et al., 2014;Koopmans et al., 2015;Ma et al., 2013;Orlowski and Girard, 2012;Pratt and Qin, 2016).  To 

replicate M. sexta pitch stability, air vehicles might include an elastic, flexible “gimbal” at the wing base that 

allows the airframe to pitch independently, or consider a flexible or jointed airframe whose COM changes 

passively in reaction to physical perturbation.  Instead of designing MAV wings that minimize weight or 

maximize force production (Bluman and Kang, 2016; Stewart et al., 2016), new designs should consider 

sturdier wings with greater inertia to enhance stability, and with an elastic base that allows for independent 

stroke plane rotation, even as it reduces energy requirements (Alexander and Bennet-Clark, 

1977;Andersen and Weis-Fogh, 1964).   

In this way, the concepts we described here could affect every level of optimal MAV design, from 

body configuration (with the consideration of COP-COM distance and the insertion of flexible joints), body 
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material design (body and wing base flexibility), and wing size and shape (inertia- and drag-based stability 

effects that depend on Reynolds number). 

 

These effects likely scale across the large size range of flying animals  

Our key finding is that inertia and drag work together to create passive stability in flapping flight.  

The stroke plane inclination response (ߞ௱), the stroke plane deviation response (ߦ௱), and the drag on and 

inertia of the moth’s body itself, are all examples of inertia and drag working together, and in the same 

direction, to passively stabilize pitch orientation. 

Creatures that fly operate at a range of Reynolds numbers.  In M. sexta, inertial forces dominate 

wing bending mechanics (Combes and Daniel, 2003; Jankauski and Shen, 2016). For smaller fliers, drag 

is more important.  Based on our results, we predict pendulum-like passive pitch stability (and possibly 

passive stability in other degrees of freedom as well), to be important across the extremes of this grand 

biological scale, producing similar stability mechanics from fundamentally different mechanisms (drag vs. 

inertia). 

See Chapter 5, Advancement 6 for further discussion. 

 

Chapter 3 Symbols and Abbreviations 

Box 3.1: Abbreviations 

AOA 
effective Angle Of Attack: represents the angle 
at which the wing encounters the air 

COP 
Centre Of Pressure: net sum of force production by the 
wings, time-averaged over the course of a stroke cycle 

    

BIC 

Bayesian Information Criterion, (or Schwartz 
criterion), an criterion for model selection 
among a finite set of models that is based on 
the likelihood function. 

FCT 
Flapping Counter Torque: idea that rotations change 
the velocity of wings flapping in that rotational plane, 
damping the rotation.  First shown for yaw. 

    

BRF 

Body Reference Frame: reference frame from 
the perspective of the moth’s COM, in which 
the moth’s anatomical landmarks and 
canonical hover orientation determine ݕ ,ݔ, and 
 .ݖ

GRF 
Global Reference Frame: based on the camera 
calibration (world view frame) 

    

COM 
Centre Of Mass: point where the sum of the 
product of individual units of mass and their 
distance away from that point equal zero.   

PD, PI 

Proportional-Derivative or Proportional-Integrative 
controller (as in control theory).  Note our “PD” 
controller is similar to the “PI” controller of Whitehead 
et al., (2015) 
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Box 3.2: Annotations, Subscripts, Constants, and Mathematical Symbols 

ൈ; |	|; ∑; 
 ;߂ ;⫽ ;• ;∋
ൎ; ∝; ∝෥; ≝ 

“by” or cross-product; absolute value or 
magnitude of; sum of; constrained to within; dot 
product; parallel; change in; about equal to or 
approximately congruent to; proportional to; 
approximately proportional to; equal to by 
definition 

݉  moth mass measured at time of the experiment 

    

ሬሬሬԦ; ശሬሬԦ; ഥ  
accents respectively indicate the attendant 
variable is a vector; line; and plane 

ܳ 
multiplier that is -1 for upstrokes and +1 for 
downstrokes 

    

ሶ ; ሷ  
accent indicates the first and second time 
derivative of the attendant variable 

 Ԧݎ	;ݎ
distance/vector between the moth’s centre of mass 
and centre of pressure, e.g. in the computational  
model (Eq. 3.3-5), or Fig. 3.2-3 

    

௔௕ 
a subscript which indicates the antecedent is a 
coefficient relating ܾ to ܽ 

 ଶ௔ adjusted r2; calculated for linear modelsݎ

    

஽ 
a subscript which indicates the mechanism is 
related to drag ௱ 

a subscript which indicates that mid-upstroke and mid-
downstroke pre-collision means for the whole data set 
have been subtracted (midstrokes only) 

    

݃ gravitational acceleration (980.665 ܿ݉	ିݏଶ) ௱଴ 
a subscript which indicates that the zero-reference 
point is the hand-chosen pre-collision canonical frame 
(with no special treatment for midstrokes) 

    

 ௬௬ܫ
rotational (pitch) inertia about a Body 
Reference Frame (BRF) ݕ-axis through the 
moth’s estimated COM 

 
lack of subscript on a kinematic variable indicates that 
we made no attempt to mean-centre/adjust the 
variable 

    

௅  
a subscript which indicates the mechanism is 
related to lift 

  

 
Box 3.3: Geometric Characteristics of M. sexta 

 ;௅ሬሬሬԦേܨ ;஽ሬሬሬሬԦേܨ

 ௐሬሬሬሬሬԦേܨ ;௉ሬሬሬሬԦേܨ
drag; lift; parasite drag; profile (wing) drag; 
theoretical forces explained in Fig. 3.4 

 Ԧേ COM-COP vectors shown in Fig. 3.2-3ݎ ;Ԧݎ

    

 ിଶ; തܲܮ ;ിଵܮ
geometric characteristics of the stroke plane 
as defined in Fig. 3.2 and its caption 

ሬܴԦଵ;	 ሬܴԦଶ; 
ሬܴԦଷ; ሬܴԦସ; 
ሬܴԦହ 

vectors connecting digitized moth points as defined in 
Fig. 3.2 and its caption 

 

Box 3.4: Wing and Body Angles 

ሶݔ ;ݔ  ሶ௱ݔ ;
in the BRF, +ݔ is forwards for the moth; ݔሶ  is 
forward velocity; ݔሶ௱ is midstroke-centred 
forwards velocity 

߮ା; ߮ି 
sweep: forewing azimuthal angle relative to a BRF 
vertical plane through the wing base, at the end of 
downstroke ߮ା; and upstroke ߮ି 

    

 is rightwards for the moth ߮௱ ݕin the BRF, ൅ ݕ
dorsoventral sweep asymmetry ߮ ൌ 	߮ା ൅ ߮ି, and ߮௱ 
is midstroke-centred ߮ 

    

 ሶ௱ݖ ;ሶݖ ;ݖ
in the BRF, ൅ݖ is downwards for the moth, (⫽ 
with gravity); ݖሶ is downward velocity; ݖሶ௱ is 
midstroke-centred downward velocity 

 ௱ߦ ;ߦ

stroke plane deviation angle: ߦ (likely affects COP, and 
AOA to a lesser extent) is the angle the forewing 
makes at midstroke, measured perpendicular relative 
to the stroke plane; ߦ௱ is midstroke-centred ߦ 

    

 ஖௱ߙ	;஖ߙ

wing pitch angle: ߙ఍ (likely affects AOA, and 
COP to a lesser extent) is the angle the ሺݔ,  ሻݖ
components of the vector connecting the 
hindwing tip to the forewing tip makes relative to 
the stroke plane; ߙ஖௱ is midstroke-centred ߙ఍ 

߰; ߰௱; 
߰௱଴ 

moth body pitch, ܴ ሬԦସ relative to the horizontal plane (Fig. 
3.2); 
midstroke-centred pitch; mean-centred pitch 

    

 ௱ߞ ;ߞ
stroke plane inclination angle: ߞ is the angle of 
the stroke plane relative to the BRF horizontal 
plane; ߞ௱ is midstroke-centred ߞ 

ሶ߰ ; 
ሶ߰
௱; ሶ߰

௱଴ 

1st time derivative of pitch orientation, i.e. “pitch 
velocity;” midstroke-centred pitch velocity; mean-
centred pitch velocity 



 

84 
 

    

 ିߴ	;ାߴ
elevation: forewing elevation angle relative to a 
BRF horizontal plane through the wing base, at 
the end of downstroke ߴା; and upstroke ିߴ 

ሷ߰ ; ሷ߰
௱ 

ሷ߰
௱଴ 

2nd time derivative of pitch orientation, i.e. “pitch 
acceleration;” midstroke-centred pitch acceleration; 
mean-centred pitch acceleration 

    

 ௱ߴ
elevation offset ߴ ൌ ାߴ	 ൅  ௱ isߴ and ,ିߴ
midstroke-centred ߴ 

  

 
Box 3.5: Coefficients and Time Delays in Order of Appearance 

టሷܭ ఍ 

relates ܫ௬௬
ିଵ݉݃sinሺെߞ௱ሻ to ሷ߰

௱ in the observational 
pitch acceleration models (Eq. 3.6-7 & 3.2), or 
theoretical ሺܫ௬௬ ൅ ሻ to ሷ߰ߞsinሺെݎଶሻିଵ݉݃ݎ݉  in the 
computational model (Eq. 3.3-5) 

టሷܭ టഓ 
relates time-delayed െ߰௱଴ to ሷ߰  in the theoretical control 
model (Eq. 3.16) 

    

టሷܭ టሶ  

relates observed െܫ௬௬
ିଵ ሶ߰

௱
ଷ
ห ሶ߰௱หൗ  in the observational 

pitch acceleration models (Eq. 3.6-7 & 3.1-2), or 

theoretical െሺܫ௬௬ ൅ ଶሻିଵݎ݉
టሶ య

หటሶ ห
 to ሷ߰  in the compu-

tational model (Eq. 3.3-5) 

߬టሷ ట 
time delay between െ߰௱଴ and ሷ߰  in the theoretical control 
model  
(Eq. 3.16) 

    

టሷܭ క஽
 relates െܫ௬௬

ିଵܳߦ௱ cosሺߞ௱ሻ to ሷ߰
௱ in the observational 

pitch acceleration models (Eq. 3.7 & 3.2) 
టሷܭ టሶ ഓ 

relates time-delayed െ ሶ߰
௱଴ to ሷ߰

௱଴ in the theoretical control 
model  
(Eq. 3.16) 

    

టሷܭ ఝ relates ߮ ௱ to ߰ ሷ௱ in the observational pitch acceleration 
models (Eq. 3.2 & 3.1-2) 

߬టሷ టሶ  
time delay between െ ሶ߰

௱଴ and ሷ߰
௱଴ in the theoretical control 

model 
(Eq. 3.16) 

    

 ௱ (Eq. 3.8), or theoretical ߰ toߞ ఍ట relates observed ߰௱ toܭ
 in the computational model (Eq. 3.3-5) ߞ

టሷܭ ௫ሶ  

relates observed – ௬௬ܫ
ିଵ cosሺ߰௱ሻ ሶ௱ݔ

ଷ ⁄|ሶ௱ݔ|  or – ௬௬ܫ
ିଵ cosሺߞ௱ሻ 

ሶ௱ݔ
ଷ ⁄|ሶ௱ݔ|  to ሷ߰

௱ in the preliminary pitch acceleration models 
Eq. 3.1-13; or theoretical െݎሺܫ௬௬ ൅ ଶሻିଵݎ݉ cosሺ߰ሻ ሶݔ ଷ ሶݔ| |⁄  to 
ሷ߰  in the computational model (Eq. 3.3-5) 

    

టሷܭ ௱ in Eq. 3.9-10ߞ ఍టఛ relates time-delayed ߰௱଴ toܭ ௭ሶ 
relates  observed – ௬௬ܫ

ିଵ sinሺ߰௱ሻ ሶ௱ݖ
ଷ ⁄|ሶ௱ݖ|  or – ௬௬ܫ

ିଵ sinሺߞ௱ሻ 
ሶ௱ݖ

ଷ ⁄|ሶ௱ݖ|  to ሷ߰
௱ in the preliminary pitch acceleration models 

(Eq. 3.1-2) 
    

߬఍ట time delay between ߰௱଴ and ߞ௱ in Eq. 3.9-10 ܭటሷ ఈ஽
 relates ܳߙ఍௱ cosሺߞ௱ሻ to ሷ߰

௱ in the preliminary pitch 

acceleration model (Eq. 3.1) 
    

టሷܭ ௱ in Eq. 3.11ߦ ఍௱ toߙ- కఈഅ relatesܭ ఈ௅
 relates observed ߙ఍௱ sinሺെߞ௱ሻ to ሷ߰

௱ in the preliminary pitch 

acceleration model (Eq. 3.1) 
    

టሷܭ ௱ in Eq. 3.12ߦܳ కట relates ߰௱ toܭ క 
relates observed െߦ௱ to ሷ߰

௱ in the preliminary pitch 
acceleration model (Eq. 3.1) 

    

టሷܭ ௱ in Eq. 3.13ߦܳ కటఛ relates time-delayed ߰௱଴ toܭ ణ relates observed ܳ ௱ to ሷ߰ߴ
௱ in the preliminary pitch 

acceleration models (Eq. 3.1-2) 
    

߬కట time delay between ߰௱଴ and ܳߦ௱ in Eq. 3.13 ܭటሷ క௅
 relates observed ߦ௱ sinሺߞ௱ሻ to ሷ߰

௱ in the preliminary pitch 
acceleration model (Eq. 3.2) 

    

 ௫ሷ఍ܭ ఝటఛ relates time-delayed െ߰௱଴ to ߮ in Eq. 3.14ܭ
relates theoretical ݃ sinሺߞ െ 	߰ሻ to ݔሷ  in the computational 
model  
(Eq. 3.3-5) 

    

߬ఝట time delay between െ߰௱଴ and ߮ in Eq. 3.14 ܭ௫ሷ௫ሶ  
relates theoretical 

௫ሶ య

|௫ሶ |
݉ൗ  to ݔሷ  in the computational model 

(Eq. 3.3-5) 
    

ఝటሶܭ  relates െ ሶ߰
௱cos	ሺߞ െ ߮ሻ to ܳ߮௱ in Eq. 3.15   
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Table 3.S2 Coefficient Estimates for Computational Model Eq. 3.3-3.5 
 

Coef. Fixed 
Value Units Coef. Fixed Value Units Coef. Eq. 3-5 Fit 

Estimate Units 

 980.665    none  8.85E-1  
 1.40   1.00   2.10E-2  
 1.97   8.35E-1   7.98E-2  
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These two graphs correspond to Supplementary Videos 
1-2.  

A) Supplementary Video 1, (Trial 42 in Table 3.S1), shows a 
pitch-down perturbation.  In this trial, the pitch-down pertur-
bation pushed the moth forward and into proboscis contact 
with the artifical flower.  We did not continue to digitize moth 
position after that point in time.
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Projectile
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Figure 3.S2: Best-fit time delays between wing kinematics and pitch 
deviation.  This figure plots sample-size adjusted BIC vs. time delay for Eq. 
3.10 & 3.13-3.14.  The vertical axes are BICadj minus mean BICadj for all 
attempted delays for a given equation.  The solid blue left axis pertains to Eq. 
3.13 & 3.14 (𝑄𝜉� & 𝜑�; thin cyan & thick true blue) and the dashed red right 
axis pertains to the Eq. 3.10 (𝜁�; dashed red).  The best BICadj time delays for 
𝜁�, 𝑄𝜉�, & 𝜑� are 0, 0.25, and 0 wingbeats.  The low time delays for 𝜁� & 𝑄𝜉� 
agree with our predictions of a passive wing kinematic response, but a zero 
time delay for 𝜑� does not.  However, as we see in this graph, there is a  
second loocal minima BICadj for 𝜑� within 5 of the first.  Though  a varied 
sample size and other factors may influence the fidelity of comparing  
sample-size adjusted BIC among fits, we can see in this graph that such a 
local minima is not mirrored in the other equations. This agrees with other 
study results which together all point to an active 𝜑� response, (and in 
contrast, passive 𝑄𝜉� & 𝜁� responses), as expected.
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B) Supplementary Video 2, (Trial 40 in Table 3.S2) shows a 
pitch-up perturbation.  The moth is first pitched by the 
cannonball, moving backwards and away from the impact, 
but recovers within frame.  An abrupt stop to the rotation of 
the abdomen caused an extreme pitch acceleration minima 
visible in the graph, which we labeled as an outlier and 
excluded from analysis.  Because it contains a large propor-
tion of M. sexta mass, a role for the abdomen in pitch-right-
ing is likely (Dhyr et al, 2013); however, we did not investi-
age that in this study because its impact with the cannonball 
would be a strong confounding factor.

Supplementary Videos 3-4 show moths crashing after perturbation.

C) Supplementary Video 4 shows a crash following a large pitch-down perturbation with a particularly large cannonball (0.48g).  Even 
after this ~145deg perturbation, the moth seems to be decellerating and thus on track to recover; however, it does not manage to do 
so before colliding with the ground.

D) Supplementary Video 3, (which we did not analyze for the data set) shows a crash following a slight pitch-up perturbation to one 
wing of the moth.  Moths were especially likely to crash if cannonballs contacted the wings.  We also did not analyze trials where balls 
touched the moths on the wing or head, or on any part of the body after the initial collision.
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How 𝑟 Affects Torque Production
𝑟 vs 𝑟/(𝐼��+𝑚𝑟²)

Figure 3.S5: How changes in COP-COM distance (𝑟) alters the 
affect of lift orientation on stroke-plane-based countertorque.  If 
the net effect of the suite of M. sexta pitch countertorque features 
cause it to rotate much like a pendulum about a quasi-fixed Center 
Of Rotation (COR) close to its COP (Center Of Pressure), its 
rotational inertia crossed with the lever of action is 𝑟/(𝐼��+𝑚𝑟²).  We 
use this multiplier for the first term of our computational pitch model.  
Higher values of this multiplier result in higher pitch countertorque 
from a rotation-resistant stroke plane inclination angle.  The blue 
decagon shows the estimate of 𝑟 based on a fit of Eq. 3.5 to 
observed data, and the nearby black square shows which value of 𝑟 
would maximize this particular passive stability effect.
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How 𝐾�� Affects Passive Computational
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Figure 3.S4: Immediate response of computational M. sexta 
pitch model to medium and large levels of perturbation.  The 
blue line (with decagons) is the response of the model to a pitch-up 
perturbation with initial pitch and pitch velocity deviations of the same 
magnitude as our data set’s mean.  The red line (with squares) is the 
response of the model to a pitch-up perturbation with initial values 
set at the maximum pitch deviation and maximum pitch velocity 
measured in our entire pre-perturbation dataset.  Resistance of the 
stroke plane inclination angle and rotational damping are the only 
two passive pitch countertorques included in this computational 
model.  Along the horizontal axis, we vary the value of 𝐾��--the 
coefficient wich determines the level of resistance of the stroke plane 
inclination angle to rotation.  The vertical values of points along each 
line come from the model’s average pitch position from 0.25-to-0.5𝑠 
post-perturbation. 

3.S3
Figure 3.S3: Histogram of observed post-perturbation dorso-
ventral sweep asymmetry (𝜑�).  A histogram shows 𝜑� measure-
ments are skewed right (mean 𝜑� is positive).  Since abridged 
quarter-strokes create sweep asymmetry, this histogram indicates 
the active sweep response of M. sexta to pitch perturbations arises 
chiefly from shortening the dorsal portion of the halfstroke.  This 
suggests the active sweep response is more important in the case of 
pitch-down perturbations than it is for pitch-up perturbations.
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CHAPTER 4 
HAWKMOTH RESPONSE TO LATERAL AND LONGITUDINAL LOADS 

 

Summary 

 This study addresses pitch and roll control in Manduca sexta with a different challenge for the 

moths than that employed in Chapters 2 & 3.  Rather than observe a spontaneous roll maneuver or 

response to impulse pitch perturbation, I examine at how M. sexta compensate for an off-axis weight 

attached to its thorax.  This perturbation is different because it is continuous rather than impulsive, and 

involves potential rather than kinetic energy.  It also affects both pitch and roll simultaneously, which is a 

logical next level of complexity in flight stability research. 

Moths use both postural and wing kinematic changes to compensate for the attached weights.  To 

relocate their center of mass (COM), they pitch down, roll to the side of the attached weight, and increase 

their intra-abdominal angle. 

Roll: As in Chapter 2, moths 1) move their COP laterally to create net roll torque via changes to left 

vs. right wing sweep asymmetry.  Unlike the results of Chapter 2, neither left-right wing pitch asymmetry 

(essentially effective angle of attack, AOA), nor left-right elevation amplitude correlate with apparent roll 

torque.  This is consistent with my conclusion that left-right elevation amplitude asymmetries in the roll 

maneuver case were targeted at reducing global-reference frame (GRF) damping effects.  In place of left-

right wing pitch asymmetry, moths 2) use asymmetries in stroke plane angle to further move their COP 

laterally via asymmetric lift production. 

Pitch: As in Chapter 3, moths 1) reorient their net force vector via changes to stroke plane angle, 

such that more acute angles correspond to net pitch-up torque.  At least for downstrokes, results also 

(weakly) support 2) net force vector reorientation via lower stroke plane deviation angle (i.e. higher AOA).   

Also as in Chapter 3, moths additionally 3) move their COP forward by moving the average position of the 

flapping wings forward relative to the control; i.e. increasing fore-vs.-aft wing sweep asymmetry. 
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Here, body segment (and stroke plane) flexibility relative to the COM help compensate for the 

attached mass.  This supports my previous (Chapter 3) conclusion that flexibility is an important factor in 

flapping flight stability, even in the case of active responses to continuous perturbations.  Furthermore, the 

correlation of roll wing kinematics directly with my estimate of weight-induced roll torque support the former 

conclusion (Chapter 2) that roll is heavily damped in M. sexta. 

 

Introduction 

Experimental overview 

Chapters 2-3 analyzed the mechanics of free-flying moths that experienced aerodynamic effects 

from the movement of their bodies through the air.  In this final study, I rely on the groundwork of Chapters 

1-3 to investigate the mechanics of steady perturbations induced by a mass attached to the backs of the 

moths, lateral or forward of their original center of mass (COM). 

 

Experimental differences from previous chapters 

When weights are attached, moths must continuously respond to a COM offset along the 

longitudinal axis alone, or along both the longitudinal and lateral axes simultaneously.  This means they 

must create (either pitch, or both) pitch and roll torque continuously and simultaneously.  Their net linear 

and angular velocity remains zero, however, so the velocity-based damping effects that were prominent in 

Chapters 2 and 3 should not exist here. 

 

Previous work in roll 

Taking the definition of lift as vertical and drag as horizontal in the body reference frame (BRF), my 

previous work showed moths produce laterally asymmetric lift to roll (Greeter and Hedrick, 2016; Chapter 

2), and longitudinally asymmetric lift and drag to pitch (Chapter 3).  Maneuvering moths used left-right 

asymmetries in wing sweep, elevation amplitude, and wing pitch (in lieu of angle of attack, AOA) to create 

roll torque.  Work in Drosophila melanogaster also identified essentially the same three wing kinematic 

variables as likely effectors of roll (Beatus and Cohen, 2015;Ristroph et al., 2009).  Findings in these studies 

were strikingly similar, but they concluded the opposite about what these results meant for stability in roll. 
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Previous work in pitch 

Previous research on control of pitch in hawkmoths (Chapter 3) and Drosophila (Ristroph et al., 

2013;Ristroph et al., 2010) agree that pendular stability factors exist in pitch because the COM lies well 

below the center of pressure (COP) (Ellington, 1984;Kim and Han, 2014;Noda et al., 2013).  Hawkmoth 

wings resist rotation more strongly than their body, providing a quasi-fixed reference point, and the wing 

motions that arise from both gyroscopic and aerodynamic effects help passively restore pitch as well.  In 

this case involving impulse perturbation response, hawkmoths produced asymmetric lift via bilaterally 

symmetric changes in stroke plane angle and fore-aft sweep amplitude, and longitudinally asymmetric drag 

by using different angles of attack (measured there as stroke plane deviation angles) in up- vs. 

downstrokes.  

Chapter 3 showed moths use fore-aft wing sweep asymmetry, stroke plane angle, and 

up/downstroke stroke plane deviation and AOA asymmetries to pitch.  Previous and concurrent work in M. 

sexta ((Cheng et al., 2011;Willmott and Ellington, 1997b); Khandelwal and Hedrick, unpublished data) and 

hummingbirds (Cheng et al., 2016) also support a role for stroke plane angle in active pitch maneuvers.  

Studies on D. melanogaster and hummingbirds also agree that active changes to fore-aft wing sweep 

asymmetry (Cheng et al., 2016;Whitehead et al., 2015) creates pitch torque.  Chapter 3 and work in 

hummingbirds (Cheng et al., 2016) also show a role for AOA in the creation of pitch torque.  Together with 

other recent work on the gyroscopic nature of flapping and pendular stability in pitch (Dickerson et al., 

2014;Eberle et al., 2015;Jankauski and Shen, 2016;Jenkins, 2016;Ristroph et al., 2013), these two studies 

are also consistent with my conclusions about pitch stability in hawkmoth-scale flapping flight.  

 

Expectations and hypotheses 

The results of Chapters 2-3 allowed more detailed predictions about the pitch and roll wing 

dynamics examined here.  This section describes my a priori expectations in a set of numbered hypotheses, 

both those that the results ultimately supported and those that they did not. 

In this study, placement of the weight above the moth alters COM position, and thus the COM-COP 

vector.  The torque applied here is continuous and due to an additional mass.  I first predict that moths 

change the roll and/or pitch orientations of their thorax and abdomen to manipulate their COM and thus 
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compensate for the off-axis weight.  Since the configuration of COM-below-COP is more stable (Chapter 

3), I predict them to roll to the weight-ipsilateral side (Hypothesis 1).  Since the COP and COM likely lie 

behind the wing bases (Ellington, 1984;Kim and Han, 2014;Willmott and Ellington, 1997b), I predict that 

moths pitch into a more horizontal hover orientation (Hypothesis 2).  Since changes to the BRF stroke plane 

angle create pitch torque, I also predict compensatory changes in wing kinematics to relocate the COP 

more directly above the new COM in order to restore pitch stability (Hypothesis 3). 

Moths manipulate effective AOA to create both roll and pitch (Chapters 2-3).  Since higher wing 

pitch angles increase both drag and lift, one might expect to see a conflict between the moth’s ability to use 

consistent left-right wing pitch asymmetries to generate (lift-based) roll torque, but opposing up- and 

downstroke stroke plane deviation asymmetries to generate (drag-based) pitch torque.  A moth rolling to 

the right increases its left wing pitch angle and decreases its right wing pitch angle by about the same 

amount.   Since the M. sexta drag curve is approximately linear in this range (Usherwood and Ellington, 

2002), it seems likely that an increase in longitudinal drag in the higher-pitched wing will be balanced by a 

decrease in longitudinal drag in the lower-pitched wing, resulting in zero net pitch torque.  Since wing pitch 

was the most prominent identified factor in M. sexta roll during sideslip maneuvers, I predict wing pitch 

angle to be a key driver of roll torque here as well.  I thus predict left-right wing pitch asymmetry will scale 

with my estimate of lateral COM displacement (Hypothesis 4).  I predict this linear relationship to have 

similar coefficients for downstrokes and upstrokes (Hypothesis 5) as in Chapter 2. 

Chapter 2 indicated left-right asymmetries in sweep and elevation amplitude also generate roll 

torque.  Similar to the case with wing pitch, I do not expect the left-right wing sweep asymmetries moths 

use to generate roll torque via lateral lift imbalance (Chapter 2) to conflict with the fore-aft wing sweep 

asymmetries moths use to generate pitch torque via longitudinal lift imbalance (Chapter 3).  I thus predict 

left-right wing sweep asymmetry will scale with my estimate of lateral COM displacement (Hypothesis 6).  

Moths used left-right wing elevation amplitude asymmetries, however, to counteract roll damping induced 

by rotation in the global reference frame (GRF), chiefly via flapping countertorque, or FCT.  Left minus right 

elevation amplitude had a negative correlation with roll (velocity).  In the stationary case, however, it is likely 

that moderately larger elevation amplitudes should generate moderately more lift (as is the case for sweep).  

Thus I predict left minus right elevation amplitude to have a positive correlation with roll torque, or be 
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insignificant (Hypothesis 7).  In the sideslip maneuver case (Chapter 2), I concluded the lower wing pitch 

angles and greater upwards motion of upstroke meant greater exposure to FCT effects, so the linear 

coefficient was higher for upstrokes than downstrokes.  Consistent with this conclusion, the coefficient 

relating elevation amplitude to roll velocity was ~4ൈ higher during upstrokes than downstrokes (likely due 

to FCT).  Since a hovering moth does not experience damping effects mediated by world reference frame 

rotational velocity, and net lift is higher during downstrokes than upstrokes (Bomphrey et al., 2005;Liu et 

al., 1998;Sane, 2003), here I expect the coefficient, if significant, to be lower for upstrokes than 

downstrokes. 

 I expect the wing kinematics for pitch torque generation to differ little from those I saw in Chapter 

3.  In response to positive longitudinal COM displacement, I predict moths will increase BRF stroke plane 

angle (Hypothesis 8), increase fore minus aft wing sweep amplitude asymmetry (Hypothesis 9), and 

decrease/increase downstroke/upstroke stroke plane deviation angle (i.e. increase AOA on downstrokes 

and reduce it during upstrokes; Hypothesis 10).  Since forces are higher during downstroke, I predict 

coefficients for downstroke wing kinematics to be larger and/or more statistically significant than their 

upstroke counterparts (Hypothesis 11). 

I expect the relationship between these wing kinematics and pitch torque generation to have 

approximately the same sign and magnitude as seen in Chapter 3.  Damping is high for roll and arises 

chiefly from GRF wing velocity differences (Chapter 2).  Damping is lower in pitch, and arises chiefly from 

gyroscopic and drag forces on the wings that manifest as the very kinematic changes (to the wings) that 

restore orientation (Chapter 3).  Thus, I expect the coefficients relating pitch-torque-generating wing 

kinematics with longitudinal COM offset to be approximately equal to those from Chapter 3, which relate 

them to the second derivative of pitch orientation (Hypothesis 12).  If stroke plane and stroke plane deviation 

angle changes indeed depend on COP being above the COM in order to create pitch torque, and our 

estimate of COM displacement is fully appropriate, I predict a slight reduction in these coefficients due to 

the high weight placement (Hypothesis 13).  If fore-aft wing sweep asymmetry does not rely on vertical 

COM location, and since GRF damping effects are absent, I predict a slight increase in this coefficient 

(Hypothesis 14). 
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Summary of methods, results, and discussion 

 As in Chapters 2-3, I hand-digitized wing kinematics from high speed video to characterize the 

motion of each moth’s body and wings.  Also as in Chapters 2-3, I then used a stepwise Bayesian 

information criterion (BIC) approach to determine which of kinematic variables were the best predictors of 

pitch and roll (though here, I allowed a variable with a 05.<݌ to remain in the presented best-fit multivariate 

model).  Methods were largely sufficient to test my hypotheses, and I believe the relationships I found to 

represent real physical effects. 

The results indicate moths adjust roll and pitch body angles to compensate for the attached 

weights, and use both wing sweep and stroke plane adjustments to create roll and pitch torque.  The 

directionality of these relationships agrees with the theoretical framework I presented in previous chapters. 

Unlike Chapters 2-3, however, I did not find definitive evidence that supported a role for AOA in the 

creation of either roll torque.  The results also do not show a relationship between elevation amplitude and 

roll torque.  This is consistent with my idea that the AOA and elevation amplitude asymmetries observed in 

Chapter 2 may have been targeted at reducing FCT from roll and lateral velocity, further supports my 

conclusion that roll in hawkmoths is heavily damped.  This suggests moths tailor their wing kinematic 

response to their specific circumstances and maneuvers, rather than using a “one-size-fits-all” approach to 

the generation of body torques.  For AOA, moths substituted left/right, up-/downstroke asymmetries in 

stroke plane angle, combined with left/right sweep asymmetries seen Chapter 2, to generate roll torque. 

In the case of pitch, I found strong support for the same fore-aft sweep asymmetry and stroke plane 

angle changes that moths exhibited in Chapter 3, and weak support for (downstroke) stroke plane deviation 

angle.  Interestingly, moths also appear to widen their intra-abdominal angle to help compensate for the 

pitch challenge, as is well-known for tethered moths (Dickerson et al., 2014;Dyhr et al., 2013;Hinterwirth 

and Daniel, 2010).  Moths also rolled to the side of the attached sinker, and tended to pitched down.  This 

supports modeling and experimental results that suggest that the COP and COM are behind the wing base 

in M. sexta (Ellington, 1984;Kim and Han, 2014;Willmott and Ellington, 1997b).  Thus, the results indicate 

physical flexibility helps create stability, not only in response to instantaneous perturbations as in Chapter 

3, but here in response to continuous loading as well. 
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Table 4.1: Individual moth and treatment details 
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Methods 

Animals and training 

I acquired 8 male M. sexta as pupae from the domestic colony housed at UNC Chapel Hill.  

Following eclosure, moths drank water ad libitum in their enclosures, and fed on 1:4 solutions of sucrose 

or honey dissolved in tap water during recording and training.  They lived in 30 ൈ 30 ൈ 30ܿ݉ mesh cages 

at ambient room temperature and humidity in a 22:2݄ݎ light:dark cycle.  Table 4.1 contains individual moth 

and treatment details. 

I trained food-limited M. sexta to feed on an artificial nectar solution while hovering in an arena (Fig. 

4.1).  The nectar was delivered in an artificial flower composed of a small funnel attached to a nectar-filled 

syringe tube.  I trained the moths by repeatedly feeding them from this artificial flower in the days leading 

up to perturbation trials.  Training times typically coincided with night or dusk in the moths’ extended-day, 

contracted-night light cycle. 

 

Figure 4.1: Experimental setup 

Experimental setup.  1&2) Phantom v7.1 cameras, 
3) Phantom v5.1 camera, 4) hawkmoth, 5) artificial 
flower.  Not shown: high-intensity infrared LEDs\ 
 
 
Experimental setup 

I recorded hawkmoths feeding in a 71 x 71 x 

74 ܿ݉ glass-walled arena (Fig. 4.1).  Two Phantom 

v7.1 and one Phantom v5.1 digital cameras (Vision 

Research Inc., Wayne, NJ, USA) used the high-

intensity 680nm light from eight LEDs (Roithner 

LaserTechnik, GmBH, A-1040, Vienna, Austria) to 

capture moth feeding at a framerate of 1000ݖܪ. 
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Figure 4.2: Images of moths attached to sinker and T-bar 

 

Representative moths with T-bar and sinker attached to their scuta. I glued an insect pin inside of a 
sewing needle to make a T-bar, and then inserted this needle into a small piece of natural cork.  Successful 
trials involved each of four successive treatments in view of the cameras, and due to moth behavior, often 
with the control treatment last. A) Color picture of moth with T-bar and sinker attached.  B) Freeze-frame 
from high-speed video showing moth with sinker attached (Trial 11, Treatment 1, Frame 36).  C) Side-view 
of a moth flying with sinker attached to the T-bar. 
 

To attach off-axis weights, I fixed an insect pin inside the eye of a needle with superglue, and then 

inserted that needle into a small piece of natural cork.   Before each trial, I super-glued each cork to the 

bare scutum (scraped free of scales) of a moth and allowed it to cure (Fig. 4.2).  Sinkers did not stay 

attached to the moths overnight, so any second attempts at acquiring successful trials were conducted with 

freshly-glued pins.  If the attachment and initial test flight were successful, I caught the moths and adjusted 

the sinker position (and/or mass) in between each trial segment, henceforth often simply “treatment.” 

For each trial, I filmed moths feeding in a control video, and also laden with a weight in three 

different configurations.  I filmed a control treatment with just the cork and pins attached to the moth (no 

sinker), and also three additional trials with the fishing sinkers attached (0.24 – 0.33݃, EagleClaw Micro 

Split-Shot Assortment (Silver), ASIN: B000ALC89U, Model: #02180H-007) attached at various positions 

along the insect pin.  I at first conducted treatments, including the control, in varying order.  Nevertheless, 

due apparent inter-treatment behavioral variations in the moths, trials were most often successful when the 

control treatment came last (fourth).  All but one trial consisted of the following four treatments (in random 

order): 1) No sinker, 2) Sinker attached at or close to the middle of the insect pin, 3) Sinker attached 

approximately halfway out to the end of the insect pin, 4) Sinker attached at the distal tip of the insect pin.  

In Trial 33, treatment 3 was accidentally repeated, but at different times (i.e. different attachments).  See 

Table 4.1 for individual trial data. 

A B C
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Digitized points and wing angles 

 I analyzed the resulting data in MATLAB (r2016, The Mathworks, Natick, MA), using a digitizing 

and wing kinematic scheme almost identical to that of Chapters 2&3, though I did not digitize the scutum.  

Fig. 4.3 shows the digitizing scheme and wing angles for this experiment.  I analyzed the first 100 frames 

from each treatment video.  
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Figure 4.3 Digitizing scheme and wing angles 

 

Caption next page 
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Marked points, body angles, and wing angles. I localized moth wing and body points in 3D space by 
hand from synchronized videos, allowing extraction of flight kinematics with custom MATLAB functions.  A) 
shows the points I digitized (marked) on the moth, and the vectors I used in wing position and orientation 
calculations.  A) only depicts the body and right wing, but I marked all points with bilateral symmetry about 
the sagittal plane, in every analyzed frame.  I marked point 1 at the sinker location, 2 at the caudal tip of 
the abdomen, and 3 at both wing bases.  In Chapter 3, I marked point 1 at a caudal portion of the scutum. 
A manually identified canonical frame provided the default position for fixed morphology of the moth.  I used 
this to compute Euler angles (yaw, pitch, and roll) and reference frames (Stengel, 2015).  In the Body 
Reference Frame (BRF) planes, positive ݔ is forwards for the moth, positive ݖ is parallel with gravity 

(downwards), and positive y is to the moth’s right.  ܴଵሬሬሬሬԦ stretches from the wing base (3) to forewing tip (4), 

ܴଶሬሬሬሬԦ from wing base (3) to hindwing tip (5), and ܴଷሬሬሬሬԦ from hindwing tip (5) to forewing tip (4).  B) and C) show 
the body and wing angles I measured based on the aforementioned points and vectors.  I measured body 

pitch angle changes ߰௱ (lime green) relative to the canonical orientation of ܴସሬሬሬሬԦ, which stretches from 2 
through the midpoint of a line connecting the two wing base points on any given frame.  The 

azimuthal/elevation angles of ܴଵሬሬሬሬԦ relative to a BRF vertical/horizontal (ሺݕ, ,ݔሻ/ሺݖ  ሻ) plane through the wingݕ
base point yields wing sweep/elevation angle (߮/ߴ), (navy blue/magenta), at the end of downstroke (߮ା/ߴା) 

and upstroke (߮ି/ିߴ).  ܮଵശሬሬԦ (purple) connects the ሺݔ,  ሻ forewing tip position at the end of a given up- orݖ
downstroke, i.e. “halfstroke,” with its ሺݔ,   .ሻ position at the end of the previous or subsequent halfstrokeݖ

Extending ܮଵശሬሬԦ in ݕ yields a stroke plane തܲ; during perturbation, തܲ deviates from its average hover orientation 

in the BRF by “stroke plane inclination angle” ߞ௱ (also purple).  Line segment ܮଶശሬሬԦ (brown) starts perpendicular 
to തܲ and ends at the position of point 4 when the wing is precisely at midstroke.  The arctangent of its length 
over the midstroke ݕ-position of 4 is ߦ (also brown), which analysis later showed is closely related to 
effective angle of attack.  C) shows an oblique view of this midstroke measurement for clarity: Reflecting 

ܴଵሬሬሬሬԦ onto തܲ at midstroke yields ܴହሬሬሬሬԦ; ߦ is the angle between these two vectors (here, negative).  The difference 
between pre-hit average ߦ and its value at a given post-hit midstroke is the “stroke plane deviation angle” 
 ,఍ (red), also closely related to angle of attackߙ ”௱.  To measure “wing pitch angle relative to stroke planeߦ

I measured the angle that the ሺݔ,  ሻ components of ܴଷሬሬሬሬԦ make relative to the stroke plane, and subtracted theݖ
mean hover orientation.  To get deviation from the baseline for all angles, I subtracted pre-hit midstroke 
averages from the measurements for each post-hit halfstroke.  I averaged and subtracted upstroke and 
downstroke kinematics separately.  D) shows “wing pitch angle relative to BRF horizontal” (ߙ, red), which 

was calculated as in Chapter 2.  To compute ߙ, I projected ܴଷሬሬሬሬԦ onto the BRF ݖ/ݔ plane and took ߙ as the 
angle between this projected vector and the BRF horizontal.  Midstroke wing pitch angles are all positive; I 
measured downstroke ߙ relative to the positive moth BRF ݔ-axis and upstroke ߙ relative to the negative 

moth BRF ݔ-axis.  E) Peak-to-peak stroke amplitude (ߔ෩௣, blue-green) is the angle between ܴଵሬሬሬሬԦ’s BRF 

position at the top of upstroke and the end of downstroke, and vv. for the following halfstroke.  It can be 
broken down into its BRF vertical “elevation amplitude” (ߠ௣, magenta) and BRF horizontal (ߔ௣, navy blue) 

components.  As seen in B), ߠ௣ & ߔ௣ are the same as (ߴା ൅   .for any given halfstroke (ି߮ +ା߮) & (ିߴ

Measurements ߴ ,ߴା, ିߴ, and ߔ෩௣ were not included in the final analysis of Chapter 4 data, and are shown 

here strictly for illustrative purposes (since here all measurements from the dissertation are shown together 
in one image, and with the same color coding).  F) The position of the pin and abdomen tip were estimated 
in relation to the center of the two wing bases.  Here, ݔௌ and ݖௌ (gray) are the ݔ- and ݖ- positions of T-bar 
center (for control treatments) or sinker center (for non-control treatments) relative to the center of the two 
wing bases in the MGRF.  The abdomen’s ݖ- position relative to the center of the two wing bases in the 
MGRF is denoted by ݖ஺, (also gray). 
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Estimating effective “torque” from sinker position 

 In this experiment, the true net COM of the moths is difficult to estimate with accuracy.  In place of 

more precise methods, I estimated the COM imbalance the moths had to compensate for ( Ԧ߬) using the 

cross product of  A) a BRF vertical vector of magnitude gravity times the sinker mass, with B) a vector 

stretching from the visually estimated COM to the sinker position (i.e. Ԧ߬ ൌ 	 Ԧݎ 	ൈ	ܨԦ).  In the absence of a 

better measurement for COM location, I compared wing kinematic measurements to this ߬Ԧ.  Other estimates 

of BRF Ԧ߬ were attempted, but did not change which factors survived the BIC model selection process.  I 

correlated the pitch portion of Ԧ߬ (߬టሬሬሬሬറ) to wing kinematics I expected to create pitch torque, and the roll portion 

of Ԧ߬ (߬ఉሬሬሬറ) to wing kinematics I expected to create roll torque.   

To check whether moths manipulate body orientation to compensate for the off-axis weights, I also 

calculated a ߬ట଴ሬሬሬሬሬሬറ and ߬ఉ଴ሬሬሬሬሬറ from moth and sinker points after they were rotated to a standard orientation.  In 

this standard reference frame (SRF), I rotated GRF points about the ݖ-, then ݔ-, and the ݕ-axis such that, 

in the new SRF: 1) the wing base points and the abdomen point lie on a shared ݕ-ݔ plane, 2) the ݖ-ݔ plane 

includes the abdomen point and a (0,0,0) that is the midpoint of a line connecting the two wing base points 

3) the ݖ-ݕ plane is perpendicular to the first two planes and intercepts the same (0,0,0) point.  Qualitative 

visual observations confirm this trend.  I also constructed a modified global reference frame (MGRF) in 

which moth body and wing points were rotated so that the ݔ-axis of the MGRF lies on the longitudinal axis 

of the moth (ܴସሬሬሬሬԦ	in Fig. 4.3). 

 

Correlating “torque” to body and wing measurements 

To check whether moths adjusted their body roll and pitch to offset the additional mass, I compared 

the SRF ߬ట଴ሬሬሬሬሬሬറ and ߬ఉ଴ሬሬሬሬሬറ to body pitch (߰௱) and roll (ߚ௱) orientation, respectively. 

I compared the BRF ߬టሬሬሬሬറ and ߬ఉሬሬሬറ to the wing kinematics that I identified related to pitch and roll in 

Chapters 2-3 to check my initial hypotheses (Introduction).  Based on Chapter 3 results, I compared ߬టሬሬሬሬറ 

to: i) the sine of stroke plane angle (sinሺെߞ௱ሻ), ii) fore-aft sweep amplitude asymmetry (߮௱), iii) up-

/downstroke stroke plane deviation angle (െܳߦ௱cos	ሺߞ௱ሻ), and iv) up-/downstroke wing pitch angle relative 

to the stroke plane (ܳߙ఍௱).  I compared ߬ఉሬሬሬറ to left-right asymmetries in: i) wing pitch relative to the stroke 
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plane (ߙ఍ಽೃ೩), ii) wing pitch relative to the BRF horizontal (ܳߙ௅ோ௱), iii) stroke plane angle (ܳߞ௅ோ௱), iv) stroke 

plane deviation angle (ߦ௅ோ௱), and v) and vi) peak-to-peak sweep (ߔ௅ோ௱), and elevation (ߠ௅ோ௱) amplitude.  Fig. 

4.3 shows these wing angles. 

Wing kinematics were averages from the first 100 frames of each non-control treatment video, and 

I correlated elements of Ԧ߬ with deviation from the control.  The delta subscript indicates I subtracted from 

these averages corresponding up- and downstroke kinematic averages taken from the given trial’s control 

treatment (separate averages taken for each moth).  Much like the wing kinematics, the delta subscript after 

the body kinematic measurements ߰ and ߚ indicates I also centered these variables to the control trial’s 

mean.  Here I did not, however, calculate separate reference (control treatment) means for up- and 

downstroke. 

  When identifying best-fit models, I used a BIC-based stepwise multiple linear regression (MATLAB 

function stepwiselm) with a forced zero intercept, to identify the most informative variables.  My final models 

only included statistically significant variables that also reduced BIC.  Unlike my previous work, the 

perturbations in this study were consistent and stable; so, wing kinematic changes might be likely to scale 

equally in response to increases/decreases in perturbation magnitude.  Thus I present individual data fits 

of separate correlations of elements of Ԧ߬ to each of these kinematics, in addition to my stepwise BIC 

modeling results (Results, Tables 4.2-4.3 and Fig. 4.4-5).  My a priori expectation is for all coefficients 

presented in Results Tables 4.2-3, to be positive, with the possible exception of ܭఛഗబሬሬሬሬሬሬሬሬറట for ߬ట଴ሬሬሬሬሬሬറ vs. ߰௱ (for 

reasons I explain in Discussion). 

 

Results 

Summary of observations 

Tables 4.2-3 and Fig. 4.4-5 show which relationships were individually significant, as well as mixed 

model results. Qualitatively, moths were unable to fly when sinkers were too heavy (> ~0.4	݃) and seemed 

to have greater difficulty responding to the weights in pitch, than in roll.  No moths able to stabilize in pitch 

appeared unable to stabilize their flight when a sinker of the same weight was moved laterally on the insect 

pin.  Some moths managed to fly even though their wings brushed against the insect pins during flight.  Yet, 
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I did not attempt to record videos where that was the case, and instead adjusted or reattached the pins if 

possible.  Many moths managed to perform for three treatments, but very few managed to perform for a 

fourth.  Though treatment order was random, trials where the control came last seemed to be the most 

likely to succeed for all four consecutive treatments. 

 

Table 4.2: Roll-related variables and models 
Eq. Interpretation Fit Equation Coef. Units Estimate ݌-value ݎଶ 
1 moths roll towards the sinker ߬ఉ଴ሬሬሬሬሬറ ൌ 	െܭఛഁబሬሬሬሬሬሬሬറఉߚ௱ ܭఛഁబሬሬሬሬሬሬሬറఉ ݃	ܿ݉ଶ	ିݏଶ	ି݀ܽݎଵ 6.85E3 2.65E-2 0.193 

2 
higher/lower left vs right stroke 
plane angle creates rightwards 
roll torque in down/upstrokes 

߬ఉሬሬሬറ ൌ  ଵ 1.86E4 5.14E-4 0.409ି݀ܽݎ	ଶିݏ	ܿ݉ଶ	ఛഁሬሬሬሬሬറ఍ ݃ܭ ௅ோ௱ߞఛഁሬሬሬሬሬറ఍ܭܳ	

3 
higher left vs right sweep 

amplitude creates rightwards 
roll torque 

߬ఉሬሬሬറ ൌ  ଵ 3.02E3 2.82E-2 -0.006ି݀ܽݎ	ଶିݏ	ܿ݉ଶ	ఛഁሬሬሬሬሬറః ݃ܭ ௅ோ௱ߔఛഁሬሬሬሬሬറఃܭ	

4 

best-BIC model 
left-right stroke plane and 
sweep amp. asymmetries 

create roll torque 

߬ఉሬሬሬറ ൌ ௅ோ௱ߞఛഁሬሬሬሬሬറ఍ܭܳ	 ൅	ܭఛഁሬሬሬሬሬറఃߔ௅ோ௱ ܭఛഁሬሬሬሬሬറ఍ ݃	ܿ݉ଶ	ିݏଶ	ି݀ܽݎଵ 6.85E3 1.30E-2 
0.489 

߬ఉሬሬሬറ ൌ ௅ோ௱ߞఛഁሬሬሬሬሬറ఍ܭܳ	 ൅	ܭఛഁሬሬሬሬሬറఃߔ௅ோ௱ ܭఛഁሬሬሬሬሬറః ݃	ܿ݉ଶ	ିݏଶ	ି݀ܽݎଵ 4.00E2 6.44E-2* 

 05.<݌*
 
 

Roll perturbation: Wing kinematic response 

 The roll portion of Ԧ߬ in the BRF (߬ఉሬሬሬറሻ correlates most strongly to left-right asymmetry in stroke plane 

angle (ߞ௱௅ோ; Fig. 4.4B), and also weakly (0.6≈݌) with left-right asymmetry in sweep amplitude (ߔ௱௅ோ; Fig. 

4.4C).  This estimate of lateral COM displacement does not significantly correlate with any other tested 

single variable.  Sweep amplitude relates to ߬ ఉሬሬሬറ in the same way it related to the first derivative of roll velocity 

 in Chapter 2, where moths increased left vs. right sweep amplitude to roll right.  Stroke plane angle (ሶߚ)

correlates with ߬ఉሬሬሬറ in that moths increase left vs. right stroke plane angle during downstrokes and decrease 

it during upstrokes to compensate for a weight on their left side (i.e. to create roll-right torque).  No version 

of left-right asymmetry in wing pitch or stroke plane deviation angle correlates significantly with ߬ఉሬሬሬറ. 

 

Roll perturbation: Best-BIC multivariate linear model for roll wing kinematics 

When considering up- and downstroke averages together as in Chapters 2-3, the best-BIC model 

includes both left-right stroke angle asymmetry ߞ௅ோ௱ and left-right sweep amplitude asymmetry ߔ௅ோ௱ (Fig. 

4.4D).  Note that this model’s ݌-value for ߔ௅ோ௱ was marginally above the 0.05>݌ significance threshold.    

Including up- and downstroke averages (for non-amplitude-related variables) in the BIC-based stepwise 

elimination process identifies no models better than those that include both-halfstroke variables. 
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Figure 4.4: Roll perturbation vs. wing and body kinematics 

 
Moths use roll, and left-right asymmetries in sweep and stroke plane angle to counter weight-
imposed roll torques.  In these plots, each triad of points with similar color and shape corresponds to the 
three non-control treatments of an individual trial.  Each point is the average of the given variable for the 
first 100 frames of a treatment, minus that variable’s average for the control treatment from that trial.  The 
magenta rightwards-pointing triangles, black squares, cyan leftwards-pointing triangles, gray rhombi, red 
circles, green upwards-pointing triangles, manila asterisks, and dark blue downwards-pointing triangles 
correspond to trials 11, 15, 17, 21, 27, 31 33, and 35 (respectively).  In A), larger roll deviations correlate 
with the estimate of weight-imposed roll torque, in a reference frame where all moths have been first 
computationally rotated into a standardized orientation.  Moths rolled to the side ipsilateral with the fishing 
sinker.  In B), asymmetry in left-right sweep amplitude correlates with greater weight-imposed roll torque.  
Moths increase sweep amplitudes on the side ipsilateral with the fishing sinker.  In C), left-right asymmetry 
in stroke plane angle correlate with weight-imposed roll torque.  Moths increase left-minus-right stroke plane 
angle in downstroke and decreased left-minus-right stroke plane angle in upstroke to create roll torque.  
Panel D) shows the best-BIC model for how moths respond to the lateral COM displacement in the BRF.  
The graph plots this model’s predictions against the estimate of weight-imposed roll torque in the BRF. 
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Pitch Perturbation: Body response 

 Body pitch (߰௱) does not linearly correlate with the pitch portion of Ԧ߬ in the SRF (߬ట଴ሬሬሬሬሬሬറ).  They do, 

however, co-vary:  There is a significant positive relationship between |߰௱| and ߬ట଴ሬሬሬሬሬሬറ (Fig. 4.5A).  In other 

words, moths change their general body pitch orientation relative to the control trial, but choose to pitch 

either more down, or more up when exposed to stronger longitudinal COM offsets (߬ట଴ሬሬሬሬሬሬറ of greater 

magnitude; here, all negative).  Results indicate moths choose to pitch their abdomens downwards (i.e. 

more horizontal; left side of the histogram in Fig. 4.6; left side of Fig. 4.7B) more often than upwards (right 

side of the histogram in Fig. 4.6; right side of Fig. 4.7B).   

The data also indicate that the moth body response to off-axis loading is more complicated than 

just “pitch-up” or “pitch-down.”  Negative ߬టሬሬሬሬറ (negative ݔ weight positions) do not coincide with pitch-up 

abdomen reorientations.  MGRF ݖ abdominal position relative to the wing bases was less than that of the 

T-bar’s center relative to the wing bases in the control trial (i.e. ݔ஺௱ ൏ 0) (Table 4.1).  This indicates the 

perturbed moths pitched their abdomens downwards (made their abdomens more horizontal), likely to 

reduce longitudinal COM displacement (Fig. 4.7C).  MGRF ݔ sinker position relative to the wing bases was 

less than that of the T-bar’s center relative to the wing bases in the control trial (i.e.	ݔௌ௱ ൏ 0 ; Table 4.1).  

The ݖ-position dropped slightly (ݖௌ௱ ൐ 0) but likely less than one would expect given the body roll 

reorientations.  These results indicate the perturbed moths pitched their thoraces upwards (and thus moved 

the sinker higher and farther back) to reduce longitudinal COM displacement (Fig. 4.7C).  As explained in 

Discussion, all of the pitch reorientations mentioned here have the conceptual/theoretical potential to 

reduce net pitch torque ߬టሬሬሬሬറ by bringing the COM longitudinally closer to the COP (Fig. 4.7B-C). 

 

Pitch perturbation: Wing kinematic response 

 Fore-aft wing sweep asymmetry (߮௱) correlates significantly with ߬టሬሬሬሬറ (Fig. 4.5B) in the same way it 

correlated to ሷ߰௱ in Chapter 3; more forward wing sweep is associated with the creation of pitch-up torque.  

Stroke plane angle (ߞ௱) does not alone significantly correlate with the pitch portion of Ԧ߬ in the BRF (߬టሬሬሬሬറ; Fig. 

4.5C).  Yet, when both ߞ௱ and ߮௱ are included in a fit together, ߞ௱ does correlate with ߬టሬሬሬሬറ in the same way it 

correlated to the second derivative of pitch ( ሷ߰௱) in Chapter 3; more acute angles between the stroke plane 
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and abdomen are associated with the generation of pitch-up torque.  With both-halfstroke ߮௱ included in 

fits, the correlation between sin	ሺെߞ௱ሻ and ߬టሬሬሬሬറ is stronger for downstroke than for upstroke ߞ௱, and stronger 

for downstroke ߞ௱ than for the mean of downstroke and upstroke ߞ௱ together.  Halfstroke amplitudes are 

identical in this data set, so I did not check separate correlations for up- and downstroke ߮ ௱.  This is because 

it is unlikely that amplitudes are different over the long-term for up- and downstroke during stable state 

hover, at least not in ways which are not already measured by separate estimates for up- and downstroke 

stroke plane angle ߞ௱.  In all these cases, correlations are similar if ߬టሬሬሬሬറ replaces ߬ట଴ሬሬሬሬሬሬറ. 

Stroke plane deviation angle (ߦ௱), it does not correlate with ߬టሬሬሬሬറ, but smaller stroke plane deviation 

in downstroke (recall that this would mean higher AOA) does significantly correlate with ߬ట଴ሬሬሬሬሬሬറ.  Downstroke 

wing pitch angle relative to the stroke plane (ߙ఍௱) also correlates with ߬ట଴ሬሬሬሬሬሬറ in the same way it correlated with 

ሷ߰௱ in Chapter 3; higher wing pitch angles in downstroke are associated with the creation of pitch-up torque.  

Unlike Chapter 3, however, this correlation was stronger than that for stroke plane deviation angle ߦ௱, and 

more informative according to BIC. 

 

Pitch perturbation: Best multivariate linear model for pitch wing kinematics 

When considering up- and downstroke averages together as in Chapters 2-3, the best-BIC model 

for ߬టሬሬሬሬറ includes only stroke plane angle ߞ௱ and fore-aft wing sweep asymmetry ߮௱ (Eq. 8; Fig. 4.5D).  I also 

attempted models with separate coefficients for upstroke and downstroke for non-amplitude-related 

variables.  Downstroke-only stroke plane (ߞ௱ 	∈  was a slightly (ΔBIC<2) better fit for ߬టሬሬሬሬറ than (ݏ݁݇݋ݎݐݏ݊ݓ݋݀

the both-halfstroke ߞ௱.  However, this BIC difference is statistically insignificant (Kass and Raftery 1995), 

so I reject it in favor of the less complex, both-halfstroke model. 
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Figure 4.5: Pitch perturbation vs. wing and body kinematics 

 
Moths use pitch, sweep, and stroke plane to counter weight-imposed pitch torques.   In these plots, 
each set of three isochromatic/isomorphic points corresponds to each trial’s triad of mean-centered 
treatment data points as detailed in Fig. 4.4.  In A), larger magnitude pitch deviations correlate with 
estimated weight-imposed pitch torque, in a reference frame where all moths have been first 
computationally rotated into a standardized orientation.  In B), asymmetry in fore-aft sweep amplitude 
correlates with greater weight-imposed pitch torque.  Moths increased the forward portion of sweep (relative 
to rearward sweep) to create pitch-up torque.  In C), more acute stroke plane angles correlate with greater 
pitch torque challenges, though this relationship is insignificant on its own, without the inclusion of a sweep 
amplitude asymmetry term.  However, the relationship is significant on its own when compared to pitch 
torque estimated in the MGRF (not shown).  D) shows the best-BIC model for how moths respond to the 
longitudinal COM displacement in the BRF.  The graph plots this model’s predictions against estimated 
weight-imposed pitch torque in the BRF. 
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Table 4.3: Pitch-related variables and models 
Eq. Interpretation Fit Equation Coef. Units Estimate ݌-value ݎଶ 

5 
moths reorient in pitch to 

reduce the sinker’s apparent 
pitch torque 

߬ట଴ሬሬሬሬሬሬറ ൌ  ଵ 1.97E3 9.75E-6 0.092ି݀ܽݎ	ଶିݏ	ܿ݉ଶ	ఛഗబሬሬሬሬሬሬሬറట ݃ܭ |߰|ఛഗబሬሬሬሬሬሬሬറటܭ

6 
higher fore vs aft sweep 

amplitude asymmetry creates 
pitch-up torque 

߬టሬሬሬሬറ ൌ  ଵ 3.67E3 1.59E-2 0.23ି݀ܽݎ	ଶିݏ	ܿ݉ଶ	ఛഗሬሬሬሬሬറఝ೩ ݃ܭ ఛഗሬሬሬሬሬറఝ೩߮௱ܭ	

7 
smaller stroke plane angle 
relative to the body creates 

pitch-up torque 
߬టሬሬሬሬറ ൌ   4.76E3 1.24E-1* -1.01	ଶିݏ	ܿ݉ଶ	ఛഗబሬሬሬሬሬሬሬറ఍೩ ݃ܭ ௱ሻߞሺെ	ఛഗሬሬሬሬሬറ఍೩sinܭ	

8 

best-BIC model 
smaller stroke plane angles 
and  higher fore-aft sweep 
asymmetry together create 

pitch-up torque 

߬టሬሬሬሬറ ൌ ఛഗሬሬሬሬሬറఝ೩߮௱ܭ	 ൅  ଵ 1.27E3 1.38E-4ି݀ܽݎ	ଶିݏ	ܿ݉ଶ	ఛഗሬሬሬሬሬറఝ೩ ݃ܭ 	௱ሻߞሺെ	ఛഗሬሬሬሬሬറ఍೩sinܭ
0.305 

߬టሬሬሬሬറ ൌ ఛഗሬሬሬሬሬറఝ೩߮௱ܭ	 ൅  ଶ 9.23E2 8.06E-4ିݏ	ܿ݉ଶ	ఛഗሬሬሬሬሬറ఍೩ ݃ܭ 	௱ሻߞሺെ	ఛഗሬሬሬሬሬറ఍೩sinܭ

 05.<݌*
 

Figure 4.6: Histogram of body pitch response to sinker perturbation 

Moths pitch downwards (or upwards) in response 
to weight attachment. Moths pitched both 
downwards and upwards in response to the 
longitudinal COM displacement imposed by the 
attached weight.  This histogram shows that net pitch-
down responses (negative pitch; left side of the graph) 
were more frequent than a net pitch-up responses 
(positive pitch; right side of the graph). 

 

 

 

 

 

Discussion 

Overview 

The observations are generally consistent with my initial hypotheses.  Most predicted wing and 

body kinematics correlate significantly and as expected with estimates of pitch and roll torque. 

The estimate of longitudinal displacement of COM used here significantly correlates with most of 

the kinematic variables identified as important to controlling pitch in Chapter 3, and as predicted in my 

introductory hypotheses.  Exceptions include the weak relationship between stroke plane deviation angle 

and estimated pitch torque, as well as a pitch-compensatory body response that is more complicated than 

simple “pitch-up” or “pitch-down.” 

The estimate of lateral displacement of COM used here also significantly correlates with most of 

the kinematic variables identified as important to roll in Chapter 3, and as predicted in my introductory 
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hypotheses.  Exceptions include the null results for a relationship between wing pitch angle and roll, as well 

as the predicted lack of significance in the relationship between elevation amplitude and estimated roll 

torque. 

 

Moths reorient their bodies to manipulate COM 
(supporting Hypothesis 1, mixed support for Hypothesis 2) 

Hawkmoths change the hover orientations of both their abdomen and thorax in response to this 

perturbation challenge.  The weights are attached to the thorax of each moth, so the observed roll and pitch 

reorientations change the weight’s location and thus fundamentally change the nature of the applied 

perturbation. 

Moths consistently rolled to the side ipsilateral with the fishing sinker (Fig. 4.4A & 4.7A), perhaps 

to simultaneously reduce weight-imposed pitch torque (in the global reference frame, GRF).  This is 

interesting because the T-bar is approximately perpendicular to the moth’s sagittal plane, so roll 

reorientations in both directions should reduce lateral COM displacement (as shown for pitch in Fig. 4.7B).  

If the net COM is displaced downwards by weight-ipsilateral roll reorientations, and upwards by weight-

contralateral roll reorientations, then the consistent preference for listing to the side of the attached sinker 

should both enhance stability (Chapter 2; Cheng and Deng, 2011a;Cheng et al., 2011;Ristroph et al., 

2013;Willmott et al., 1997) and reduce GRF pitch torque.  Since listing to the side of the attached weight 

helps straighten the COP-COM “pendulum” (Fig. 4.7A), this roll response is consistent with my explanation 

of pendular stability in flapping flight.  

Based on points in the body reference frame (BRF), moths typically choose to reorient their bodies 

into a more-pitch down configuration to compensate for the pitch torque applied by the sinker mass, though 

sometimes choose a more-pitch up response (Fig. 4.6).  If a moth’s intra-abdominal angle stays the same, 

both movements might result in a reduction of COM imbalance.  Upwards pitch would rotate the sinker 

upwards (and towards the center of the moth) and the abdomen’s COM would rotate more down.  

Downwards pitch would rotate the sinker farther out, but the abdomen farther back as well (Fig. 4.7B).  Note 

that the net mass of the portions of the hawkmoth that lie rearward of the wing base are likely much greater 

than the combined weight of the fishing sinker, forward thorax, and cephalon.  Modeling studies (e.g. Kim 
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and Han, 2014;Noda et al., 2013) indicate the COM and COP likely lie behind the wing bases during normal 

hover.  This may explain why moths prefer a pitch-down orientation. 

The data further indicate the moth body response to the pitch challenge presented by the weight is 

more nuanced than just “pitch up” or “pitch down.”  On average, pitch-down-challenged moths both rotate 

their thoraces up (move the weight higher and farther back) and rotate their abdomens down (made their 

abdomens more horizontal), to modulate longitudinal COM displacement.  This would make the intra-

abdominal angle more obtuse, changing the pitching moment in the case of a fixed stroke plane angle (Dyhr 

et al., 2013;Hinterwirth and Daniel, 2010).  Results here also complement abdominal reorientations in other 

tethered insects (Baader, 1990;Camhi, 1970;Frye, 2001;Götz et al., 1979).  Such a reconfiguration should 

better longitudinally adjust COM than simple whole-body (pitch-up or) pitch-down.  See Fig. 4.7C for a 

visual representation. 

The relative pitch rotation of these two body segments likely moves the COM to a less-challenging 

(lower pitch) longitudinal position.  However, it also displaces the COM upwards (antiparallel with gravity), 

and likely vertically closer to COP.  This is interesting when one considers that COM locations that are 

farther below COP are more favorable to pitch stability, because they lengthen the effective lever arm for 

the production of torque via active changes to stroke plane angle (Chapter 3; (Cheng and Deng, 

2011b;Cheng et al., 2011;Ristroph et al., 2013;Willmott et al., 1997)).  So it seems moths sacrifice some 

pitch stability to compensate for the attachment of the weight.  This could explain why moths laden with 

too-heavy weights anecdotally fail only in pitch rather than roll (as described in the Results overview).  It is 

also plausible that the simultaneous (weight-ipsilateral) roll reorientation helps compensate for this by 

moving the weight (and thus the net COM slightly) back downwards (Fig. 4.7A). 
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Figure 4.7: Moths reorient in roll and pitch to compensate for off-axis loads 

 
 
Moths reorient in roll and pitch in response to lateral and longitudinal COM displacement.  In A), the 
moth rolls to the side ipsilateral with the attached weight.  Since the moth’s body is much heavier than the 
fishing sinker, this likely shifts the net center of mass (COM) to the right, reducing weight-imposed roll 
torque.  Because this also rotates the weight to a less vertical position, this should reduce the pitching 
moment as well.  For both A) and B), pendulum figures mimic the depicted reorientations.  In these 
pendulums, the upper pivot point corresponds to a center of pressure (COP), the smallest checkered circle 
represents the fishing sinker’s COM, the next largest checkered circle represents the moth’s body COM, 
and the largest checkered circle represents net COM of the moth + sinker system.  Note that systems are 
stable when the COM and COP are vertically aligned.  In B), both pitch-down and pitch up-movements may 
help reduce the pitching moment.  Pitch-down moves the COM of the sinker farther forward and the COM 
of the moth farther back.  Since the moth weighs more than the sinker, this should move the net COM 
backwards.  Pitch-up moves the COM of the sinker backwards and the COM of the moth forwards, so that 
they are better vertically aligned.  This may also reduce pitch torque, especially if the COP lies above the 
original (and new) COM.  Moths chose to pitch down in response to the pitch perturbation much more often 
than they chose to pitch up.  In C), the moth pitches down, while moving its abdomen down in pitch, and its 
thorax up in pitch.  This moves the net COM up and to the left, reducing the weight-imposed pitch torque.  
True measures of changes to net pitch torque would require precise COP and COM location.  

C

A

B
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Moths change wing kinematics to manipulate COP location 
(supporting Hypotheses 3, 6, 9, 12) 

 Within the confines of this experiment, one cannot truly measure COP, but the wing kinematic 

measurements that correlate with roll and pitch torque indicate that Hypothesis 3 is correct.  Results indicate 

greater fore-minus-aft wing sweep amplitude asymmetry (߮௱) moves the net COP forward to compensate 

for pitch-down torque, and smaller fore-minus-aft wing sweep amplitude asymmetry moves the COP 

backwards to compensate for pitch-up torque (supporting Hypotheses 3,9,12).  Results also indicate lateral 

asymmetry in sweep (ߔ௅ோ௱) moves the net COP left or right to create roll-left or –right (supporting 

Hypotheses 3,6; though here 06.≈݌).  In another lift-based net-COP relocation mechanism, results indicate 

higher/lower left vs right stroke plane angle creates rightwards roll torque in down/upstrokes (ܳߞ௅ோ௱) 

(supporting Hypothesis 3). 

 

Stoke plane angle changes also create pitch torque 
(supporting Hypotheses 8, 12, 14) 

Unlike the wing kinematics described above, it’s likely that the pitch torque from stroke plane 

reorientation (ߞ௱) arises primarily from redirection of the net lift vector (Chapter 3; Cheng et al. 2011), rather 

than from COP relocation.  More acute/obtuse stroke plane angles correlate with the creation of pitch-

up/pitch-down torque, respectively (supporting Hypotheses 8, 12).  This result is consistent with extant 

literature (e.g. (Cheng et al., 2016;Cheng et al., 2011;Wang et al., 2008;Willmott and Ellington, 1997a)).  

Here, the coefficient relating ߞ௱ to ߬టሬሬሬሬറ is slightly lower than the one that relates the second derivative of pitch 

to ߞ௱ in Chapter 3, (supporting Hypothesis 14).  See Table 5.1 in Chapter 5 for further coefficient 

comparisons, and further discussion of Hypotheses 14-15.  

 

More about up- vs. downstroke stroke plane angle and its role in roll 

I did not initially expect ߞ௅ோ௱ to correlate with ߬ టሬሬሬሬറ.  Nevertheless, it makes sense that lower (effective) 

stroke plane angles in upstroke, and higher (effective) stroke plane angles in downstroke should both create 

more lift (upwards force).  This is because the wing moves upwards in upstrokes, and downwards in 

downstrokes.  Like most other insects, moths create lift during both halfstrokes (Weis-Fogh, 1973), but the 

downwards movement in downstroke enhances lift, while the upwards movement in upstroke diminishes it 
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(Bomphrey et al., 2005;Liu et al., 1998;Sane et al., 2007).  Thus an increase in the first and a decrease in 

the latter (here represented by ܳߞ௅ோ௱), should increase lift.  Following this logic, when left wing ܳߞ௅ோ௱ is 

greater than right wing ܳߞ௅ோ௱, this should create roll-right torque (consistent with Eq. 4 and Fig. 4.4B & D, 

and depicted in Fig. 4.8). 

 
 
Figure 4.8: Up-/downstroke stroke plane angle asymmetry changes lift, a novel roll wing kinematic 

Asymmetrical lift from left-right, up-/downstroke 
stroke plane angle asymmetry creates roll torque.  
Panel A) shows the how changes at endstrokes alter 
stroke plane angle.  In this explanation, higher 
downstroke and lower upstroke stroke plane angles 
enhance lift.  If these endstroke changes interact with 
specific wing pitch timing differences, they could also (or 
alternatively) directly enhance lift in a manner similar to 
the Magnus effect, (Dickinson et al. 1999; Shyy et al. 
2016; Sane and Dickinson 2002). 
 

 Upstroke and downstroke are a physically and 

temporally continuous cycle, so in the strictest sense, up- 

and downstroke stroke plane angle should be the same.  

However, in both this experiment and that of Chapter 3, I 

attempted to calculate a more kinematically/mechanically 

relevant stroke plane than this, since forces are highest 

at or just after midstroke (Bomphrey et al., 2005;Liu et al., 

1998;Sane, 2003).  Stroke plane measurements came 

from the majority of each halfstroke, but excluded “noise” 

from wing flips near the beginning and end of 

downstrokes.  Near the beginning and end of halfstrokes, 

wing speed and thus forces are also low (ibid.).  Perhaps 

moths use this relatively low-force endstroke time period 

to adjustment wing kinematics without incurring major 

aerodynamic penalties that would otherwise work against 

roll torque production).  If these endstroke changes 
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interact with specific wing pitch timing differences and vortices, they could also (or alternatively) directly 

enhance lift in a manner similar to the Magnus effect (Dickinson et al. 1999; Shyy et al. 2016; Sane and 

Dickinson 2002). 

In Chapter 2, I likely overlooked a role for left-right stroke plane asymmetry in the roll reorientations.  

In Chapters 3-4, I marked moth body and wing points on each analyzed video frame.  In final analysis of 

Chapter 2 videos, I digitized only endstrokes and midstrokes, a method that precludes differentiation of up- 

and downstroke stroke plane angles. 

 

Moths do not use lateral AOA asymmetry to compensate for the roll challenge 
(failing to support Hypotheses 4, 5) 

 I expected moths might use AOA asymmetries (ߙ௅ோ௱, ߙ఍ಽೃ೩, or ߦ௅ோ௱) to create roll based on the 

results from Chapter 1.  However, no version of up- or downstroke wing pitch significantly correlated with 

roll torque.  During sideslip, both the AOA and elevation amplitude asymmetries moths use to create roll 

torque should decrease FCT-based roll damping (Chapter 2).  Moths use a different method here, (where 

FCT is absent), which suggests they actively modify their wing kinematic strategies to fit specific 

circumstances. 

Passive explanations are feasible.  For example, the wing pitch angle changes I identified in 

Chapter 2 could be coupled with gyroscopic wing reactions to rotational perturbations applied over a larger 

time scale (Eberle et al. 2016), and/or to active endstroke adjustments (Beatus and Cohen, 2015).  Here in 

this study, moths alter endstroke wing kinematics to create asymmetric up- and downstroke stroke planes 

(a novel wing kinematic change which was discussed in the previous section and illustrated in Fig. 4.8). 

Hypothesis 5 followed from Hypothesis 4; since Hypothesis 4 was unsupported, Hypothesis 5 is of 

no practical value. 

 

Up-/Down AOA/deviation asymmetry correlates only weakly with longitudinal COM displacement 
(weakly supporting Hypothesis 10) 

I expected moths to increase their effective angle of attack (AOA) in downstrokes and decrease 

AOA in upstrokes in order to create pitch torque.  In the impulsive pitch perturbations (Chapter 3), stroke 

plane deviation angle correlates with pitch torque in just such a manner (there, as െܳߦ௱cos	ሺߞ௱ሻ), and also 



 

121 
 

with wing pitch angles that alternatively approximate effective AOA.  While downstroke െܳߦ௱cos	ሺߞ௱ሻ does 

in fact significantly correlate with longitudinal COM displacement as one would expect for the generation of 

pitch-up torque, upstroke ߦ௱ does not.  Furthermore, no computed version of AOA survives the stepwise 

BIC model selection process as an informative predictor for pitch torque.  

 

Moths do not use elevation amplitude asymmetry to compensate for the roll challenge 
(supporting Hypothesis 7) 

 Since FCT damping is not a major force factor in near-hover conditions, I expected left-minus-right 

elevation amplitude asymmetry (ߠ௅ோ௱) to have either a positive relationship with roll torque, or none at all.  

As expected, I did not find a statistically significant relationship between ߠ௅ோ௱ and the estimate of the roll 

torque challenge that the moths face. 

 

Both-halfstroke and downstroke kinematics correlate more strongly than upstroke ones 
(supporting Hypothesis 11) 

Introducing separate up- and downstroke wing kinematics to the stepwise model selection process 

results in no significant (ΔBIC>5) improvements over best-BIC both-halfstroke models.  Thus, both-

halfstroke variables are better predictors of both roll and pitch (or in the sole case of downstroke sinሺെߞ௱ሻ 

vs. ߬టሬሬሬሬറ, statistically just as good).  These both-halfstrokes models agree best with my initial hypotheses and 

have the strongest a priori theoretical foundation (Chapters 2-3). 

Since forces are higher during downstroke, I predicted coefficients for downstroke wing kinematics 

would be larger and/or more statistically significant than their upstroke counterparts.  When I exclude non-

amplitude both-halfstroke variables from the stepwise selection process, downstroke variables show 

consistently better ݌-values than upstroke ones, with the latter often lacking in statistical significance 

 .This supports Hypothesis 11  .(05.>݌)

I did not test separate up- and downstroke variables for amplitudes (elevation or sweep) because 

the moths here are in stable hover.  Any increase in upstroke amplitudes would mean a simultaneous 

increase in downstroke amplitudes, and vice versa.  Furthermore, I believe the separate up- and 

downstroke estimates of stroke plane angle and AOA-proxies (ߙ ,ߞ௱, ߙ఍೩, and ߦ௱) are sufficient to test the 

most obvious within-stroke dynamic differences. 
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Analysis of methods and limitations 

The most severe limitation on this study was a lack of good estimates for COM and COP.  True 

understanding of the locations of COP and COM—even during simple hover when COP & COM is net 

stationary over the course of the entire stroke cycle—is still relatively lacking.  Here moth COM location 

most likely changes during the course of the trials because the moths drink sugar water from the flowers, 

rotate their bodies and body segments, and of course, are attached to a sinker of variable weight and 

location.  Moth COP location also likely differs from the hover case because moths alter their flapping 

kinematics in response to the perturbation.  Furthermore, moths may also be mechanically coupled to the 

feeding flower by their firmly-attached proboscis; providing a lever arm longer than their entire body length 

that could easily affect net torque (by altering COP location) to an unknown degree in different treatments 

or trials.  Still, flight studies with proboscis-coupling are common-place (e.g. (Sponberg et al., 2015)). 

Nevertheless, flight kinematic results mostly match expectations based on previous work, and it is 

unlikely slight adjustments to this experiment’s estimate of COM location would drastically change its 

results.  (Increasing the size of the data set would be a better route if the goal were more statistical certainty, 

especially for kinematics that showed marginal statistical significance, like stroke plane deviation angle, ߦ௱.)  

In fact, the several versions of Ԧ߬ I tried, such as in the MGRF or SRF, result in the very same best-BIC 

models albeit with different significance levels and coefficient values.  Furthermore, while the best-BIC 

models I identified in this study may not exhibit extremely high statistical certainty, almost all kinematics not 

included in the best-BIC models (with the exception of stroke plane deviation angle ߦ௱ vs. pitch torque ߬టሬሬሬሬറ) 

were well outside the range of statistical significance (with ݌-values often as high as ~0.8).  Thus I believe 

the relationships I identified in my best-BIC models indicate real physical effects. 
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Chapter 4 Symbols and Abbreviations 

Box 4.1: Abbreviations 

AOA effective Angle Of Attack; represents the angle at which the wing encounters the air 
  

BRF 
Body Reference Frame: reference frame from the perspective of the moth’s COM, in which 
the moth’s anatomical landmarks and canonical hover orientation determine ݕ ,ݔ, and ݖ. 

  

COM 
Center Of Mass: point where the sum of the product of individual units of mass and their 
distance away from that point equal zero.   

  

COP 
Center Of Pressure: net sum of force production by the wings, time-averaged over the course 
of a stroke cycle 

  

FCT 
Flapping Counter Torque: idea that rotations change the velocity of wings flapping in that 
rotational plane, damping the rotation.  First shown for yaw. 

  
GRF Global Reference Frame: based on the camera calibration (world view frame) 

  

MGRF 
Modified Global Reference Frame: world view has been rotated in yaw so that the ݔ-axis is in 
line with the longitudinal axis of the moth. 

  

SRF 

Standard Reference Frame: frame where GRF points are rotated about the ݖ-, then ݔ-, and 
then the ݕ-axis such that, in the new SRF: 1) the wing base points and the abdomen point lie 
on a shared ݕ-ݔ plane, 2) the ݖ-ݔ plane includes the abdomen point and a (0,0,0) that is the 
midpoint of a line connecting the two wing base points 3) the ݖ-ݕ plane is perpendicular to the 
first two planes and intercepts the same (0,0,0) point. 

 
 
Box 4.2: Subscripts, Constants, and Mathematical Symbols 

ൈ; |	|; ∈; ⫽; 
 ~ ;ൎ ;߂

“by” or cross-product; absolute value or magnitude of; member of the given set; parallel 
with; change in relative to control; about equal to; on the order or in the vicinity of 

  

ሬሬሬԦ; ሬሬሬറ௔, ശሬሬԦ; ഥ  
accents respectively indicate the attendant variable is a vector; the magnitude of the 
vector for direction ොܽ (directional unit vector); a line; and a plane 

  
௔௕ a subscript which indicates the antecedent is a coefficient relating ܾ to ܽ 
  
݃ gravitational acceleration (980.665 ܿ݉	ିݏଶ) 
  

௅ோ 
differences in a kinematic measurement between the left and right side of a moth; ie left 
minus right 

  
݉  moth plus pin average mass from measurements before, between, and after treatments 
  
ܳ multiplier that is -1 for upstrokes and +1 for downstrokes 
  

௱ 

a subscript which indicates the given wing kinematic variable has been mean-centered 
by subtracting (separate upstroke and downstroke) means measured for that variable in 
the control trial; for body angles (i.e. roll and pitch), upstrokes and downstrokes were 
averaged together. 

  

 
lack of subscript on a kinematic variable indicates that I made no attempt to mean-
center/adjust the variable 
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Box 4.3: Geometric Characteristics of M. sexta 

 ിଶ; തܲ geometric characteristics of the stroke plane as defined in Fig. 4.3 and its captionܮ ;ിଵܮ
  

ሬܴԦଵ;	 ሬܴԦଶ; ሬܴԦଷ; 
ሬܴԦସ; ሬܴԦହ 

vectors connecting digitized moth points as defined in Fig. 4.3 and its caption 

  

 ௌݖ ;ௌݔ
 positions of T-bar center (for control treatments) or sinker center (for non-control -ݖ and -ݔ
treatments) relative to the center of the two wing bases in the MGRF.  Shown in Fig. 4.3. 

  

 ஺ݖ
The abdomen’s ݖ- position relative to the center of the two wing bases in the MGRF is 
denoted by ݖ஺.  Shown in Fig. 4.3. 

 
 
 

Box 4.4: Wing and Body Kinematics 

 ݖ ;ݕ ;ݔ
in the BRF, +ݔ is forwards for the moth,	൅ݕ is rightwards for the moth, and , ൅ݖ is 
downwards for the moth in the BRF, and ൅ݖ is ⫽ with gravity in the GRF and MGRF. 

  

;஖ߙ ;஖௱ߙ  ஖௅ோ௱ߙ
wing pitch angle: ߙ఍ (related to AOA) is the angle the ሺݔ,  ሻ components of the vectorݖ
connecting the hindwing tip to the forewing tip makes relative to the stroke plane; ߙ஖௱ is 

change relative to control ߙ఍; ߙ஖௅ோ௱ is left-right asymmetry in ߙ஖௱ 

  

 ௱ߚ ;ߚ
moth whole-body roll angle relative to the horizontal plane; roll angle measured relative 
to control’s mean roll angle 

  

 ௅ோ௱ߞ	;௱ߞ ;ߞ
stroke plane inclination angle: ߞ is the angle of the stroke plane relative to the BRF 
horizontal plane; ߞ௱ is change relative to control ߞ ;ߞ௅ோ௱ is left-right asymmetry in ߞ௱ 

  

 ௅ோ௱ߠ ;௣ߠ
peak-to-peak wing elevation amplitude (see Fig. 4.3); left-right asymmetry in ߠ௣ relative to 
that for the control trial 

  

 ିߴ	;ାߴ
elevation: forewing elevation angle relative to a BRF horizontal plane through the wing 
base, at the end of downstroke ߴା; and upstroke ିߴ 

  
ߴ ௱ elevation offsetߴ ൌ ାߴ	 ൅  ߴ ௱ is change relative to controlߴ and ,ିߴ
  

 ௅ோ௱ߔ ;௣ߔ
Peak-to-peak wing sweep amplitude (see Fig. 4.3); left-right asymmetry in ߠ௣ relative to 
that for the control trial 

  

߮ା; ߮ି 
sweep: forewing azimuthal angle relative to a BRF vertical plane through the wing base, 
at the end of downstroke ߮ା; and upstroke ߮ି 

  
߮௱ dorsoventral sweep asymmetry ߮ ൌ	߮ା ൅ ߮ି, and ߮௱ is change relative to control ߮ 

  

 ௱௅ோߦ ;௱ߦ ;ߦ
stroke plane deviation angle: ߦ (related to AOA) is the angle the forewing makes at 
midstroke, measured perpendicular relative to the stroke plane; ߦ௱ is change relative to 
control ߦ ;ߦ௱௅ோ is left-right asymmetry in ߦ 

  

Ԧ߬ 
estimate of COM imbalance (the cross product of the vertical force created by the sinker 
with a vector stretching from the visually estimated COM to the sinker position, in the BRF 
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߬ఉሬሬሬറ;	߬ఉ଴ሬሬሬሬሬറ 
the roll portion of Ԧ߬ (߬ఉሬሬሬറ) comes from sinker mass and lateral placement; ߬ఉሬሬሬറ was calculated 
in the BRF; ߬ఉ଴ሬሬሬሬሬറ was calculated in the SRF.   

  

߬టሬሬሬሬറ; ߬ట଴ሬሬሬሬሬሬറ 
the pitch portion of Ԧ߬ (߬టሬሬሬሬറ) comes from sinker mass and longitudinal placement. ߬టሬሬሬሬറ was 
calculated in the BRF; ߬ట଴ሬሬሬሬሬሬറ was calculated in the SRF 

  

߰;	߰௱ moth body pitch, ሬܴԦସ relative to the horizontal plane (Fig. 4.3); ߰௱ is change relative to 
control ߰ 

 
 
 
Box 4.5: Model Coefficients 

 ఛഗబሬሬሬሬሬሬሬሬറట coefficient relating ߰௱ to ߬ట଴ሬሬሬሬሬሬറܭ ௱ to ߬ఉ଴ሬሬሬሬሬറߚ ఛഁబሬሬሬሬሬሬሬറఉ coefficient relatingܭ

 ௱ to ߬టሬሬሬሬറߞ ఛഗሬሬሬሬሬറఝ೩ coefficient relatingܭ ௅ோ௱ to ߬ఉሬሬሬറߞ ఛഁሬሬሬሬሬറ఍ coefficient relatingܭ

 ఛഗబሬሬሬሬሬሬሬሬറ఍೩ coefficient relating ߮௱ to ߬టሬሬሬሬറܭ ௅ோ௱ to ߬ఉሬሬሬറߔ ఛഁሬሬሬሬሬറః coefficient relatingܭ
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CHAPTER 5 
MY CONCLUSIONS IN PERSPECTIVE 

 

Overview 

This chapter puts my results and conclusions in context with recent work of others who study flight 

in animals.  I stress the importance of my contributions, specifically identifying novel sources of stability in 

flapping flight, as well as identifying which wing kinematics contribute to the creation of maneuvers in real 

insects. 

 

Prior State of Work 

 Prior to my studies, there was a significant body of work on the morphology and flight of tethered 

insects from the old (e.g. (Fraenkel, 1932;Schilstra and Hateren, 1999;Weis-Fogh, 1956)) to the new (e.g. 

(Sugiura and Dickinson, 2009)).  Yet free-flight studies that focused on turning maneuvers or rotational 

stability in insect flight were rare (but see (Fry et al., 2003;Wang et al., 2008;Wang et al., 2003)).  Much 

work has been done since then, with the most notable progress on model organisms Drosophila 

melanogaster (“fruit flies”) and Manduca sexta (“hawkmoths”). 

 Work on D. melanogaster has primarily approached the problem from the a priori view that quick 

active reactions are necessary to maintain stability against small perturbations (e.g. (Beatus et al., 2015)).  

Typically, computational fluid dynamic (CFD) modeling studies agree with this assessment (Sun et al., 

2007;Sun, 2014;Sun and Wang, 2007); although studies reaching different conclusions exist (e.g. (Gao et 

al., 2011;Farque and Humbert 2010a)).  My work on M. sexta flight maneuvers has typically approached 

the issue assuming that important or relevant the mechanisms for passive flight stability had yet to be 

identified.  This view was informed by key papers that showed that yaw is passively damped across an 

array of flight scales, including that of fruit flies (e.g. (Cheng et al., 2009;Hedrick et al., 2009;Hesselberg 

and Lehmann, 2007;Sun, 2014;Warrick et al., 2012), in partial disagreement with prominent work on the 
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matter (Fry et al., 2003).  Furthermore, a few CFD studies have indeed suggested hawkmoth flight has 

some range of natural stability in roll and/or pitch (e.g. (Gao et al., 2009)), especially when updated with 

some flexibility features similar to the ones my dissertation identifies in real moths (e.g. (Kim et al., 

2016;Noda et al., 2013;Noda et al., 2014)).  Yet a focus on the role of active responses in M. sexta has 

remained prominent (e.g. (Sponberg et al., 2015)). 

 

Advancement 1: 
How Hawkmoths Move Left & Right, Up, and How They Roll and Pitch 

The most basic of my contributions is my identification of the wing kinematics that create roll, pitch, 

yaw, as well as lateral and upwards vertical motion, specifically in the case of free flight.  As a result of my 

work, the rotation of hawkmoths in many basic degrees of freedom are now much better described.  Though 

at least one free-flight insect pitch paper had been published (Wang et al., 2008), prior to my work only yaw 

(Hedrick et al., 2009) was reasonably well-understood.  Concurrent advancements in flight largely identify 

the same wing kinematic factors as important to creating roll, yaw, pitch, sideslip, and vertical motion in 

insect-scale hovering flight (Beatus and Cohen, 2015;Beatus et al., 2015;Cheng et al., 2016;Iams, 

2012;Ravi et al., 2015;Read, 2015;Ristroph et al., 2009;Ristroph et al., 2013;Whitehead et al., 2015), 

although many interpreted these results differently with regards to stability implications, as discussed below.   

 

Advancement 2: Stability in Roll 

 Much CFD research predicts relatively small margins of stability in roll for insects across a wide 

range of flight scales, from fruit flies to hawkmoths  (Faruque and Humbert, 2010b;Humbert and Faruque, 

2011;Xu and Sun, 2013;Zhang and Sun, 2011;Zhang and Sun, 2010).  These studies typically predict that 

roll and sideslip are linked in an unstable divergence (much like the a priori theory described for pitch and 

longitudinal motion in Chapter 3; left side of Fig. 3.4). 

Nevertheless, my work indicates that roll is instead heavily damped, and, at least in hawkmoths, 

inhibited (rather than reinforced) by lateral motion (Greeter and Hedrick, 2016).  In Chapter 2, hawkmoth 

wing kinematics correlated with the first, rather than the second, derivative of roll orientation.  Active 

decreases in roll-contralateral elevation amplitude (relative to the ipsilateral) further indicate flapping 
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countertorque (FCT) is a major source of rotational damping during this movement.  This result agrees with 

conclusions from turning cockatoos (Hedrick et al., 2007), as well as conjectures that mosquito roll may be 

heavily damped as well (Iams, 2012). 

Though the wing kinematics that create roll in M. sexta are surprisingly similar to those of D. 

melanogaster (Beatus and Cohen, 2015;Beatus et al., 2015;Ristroph et al., 2009), my conclusions differ 

from their assertion that rotations about the body long axis are almost exclusively actively damped (Beatus 

and Cohen, 2015;Beatus et al., 2015).  The rigid model they use to justify this conclusion does not allow 

for FCT effects (Hedrick et al., 2009), nor gyroscopic damping effects (Chapter 3), and their theoretical 

framework also does not address the counter-FCT effects (Greeter and Hedrick, 2016) of the active wing 

kinematic changes they witnessed post-perturbation.  Still, many CFD models identifying unstable roll in D. 

melanogaster roll do endeavor to include FCT.  It is possible that roll stability rules are different for the tiny 

fruit fly [ܴ݁ ~150, ݉		~1݉݃; (Fry et al., 2005;Vogel, 1966)], than for the comparatively massive hawkmoth 

[ܴ݁ ~8000, ݉ ~1.4݃ (Sane, 2003;Usherwood and Ellington, 2002; Chapters 1-4)].  Stability rules are also 

likely different when perturbation “impulses” last longer than an entire wingstroke (Ristroph et al. 

2010;Beatus and Cohen, 2015;Beatus et al., 2015), rather than much less than a halfstroke (Chapter 3).   

My correlation of wing kinematics with roll velocity in the active maneuvering case (Chapter 2) but 

roll torque in the hover case (Chapter 4), combined with the absence of wing kinematics that would reduce 

FCT in the latter, make a strong case for passive roll damping in M. sexta.  Future research should 

investigate the scaling of roll damping with size, and should re-examine left-right stroke plane asymmetry 

in the active roll maneuver case (which I did not measure in Chapter 2, but found to be important in Chapter 

3). 
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Figure 5.1: Summary of GRF velocity/viscous sources of damping during roll rotations 

 
GRF Velocity/viscous sources of roll-damping.  Panel A depicts the flapping countertorque (FCT) that 
arises from wing movement around the moth’s roll rotational axis.  Panel B depicts how the coupling of 
rightwards roll with rightwards linear movement magnifies the FCT damping effect during upstrokes by 
increasing the velocity on the moth’s left wing over that of its right.  C shows how a rightwards roll decreases 
left effective angle of attack (AOA) and increases right effective AOA.  In the active roll maneuvers of 
Chapter 2, moths countered effects A and B with reduced left (relative to right) wing elevation amplitude 
and effects A and C with increased left (relative to right) wing pitch angles.  D, in the style of Ristroph et al. 
(2009), shows the reaction of a lift-generating rigid body to a theoretical roll-right perturbation in the 
undamped (i–ii) and damped (iii-iv) cases.  In (iii), roll is damped by resistance of the “roll” stroke plane 
angle (implicit in A-B, and Fig. 5.2A-B), so lift remains more vertical than the rigid body, creating pendular 
countertorque.  Rightwards lateral movement (green) further damps roll (ߚ) as shown in Chapter 2.  Thus 
roll could eventually be restored in the roll-damped case, as it is in pitch, with damping of the “pitch” stroke 
plane angle (Chapter 3; Fig. 3.4B).  As in other figures, the checkered circle represents center of mass, and 
the circle with the white center represents center of pressure.  Translation likely creates differential drag 
and thrust that directly damps flight maneuvers, especially roll-limited sideslips (Faruque and Humbert, 
2010b); this is known as flapping counterforce (FCF), but is not depicted in this figure. 

A flapping countertorque works against rotations in the flapping plane

C roll induces effective AOA asymmetries 
which create countertorque
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Figure 5.2: Inertial roll damping factors. Resistance of roll stroke plane angle, damping reactions at 
endstrokes, and in wing pitch 

Thought experiment: Roll-right impulse 
creates inertio-viscous damping.  In A-
B, a roll impulse to flapping wings creates 
a Coriolis reaction at endstrokes.  These 
endstroke reactions appear to match those 
shown in to create roll-left torque in 
Chapter 4.  Note that resistance of the roll 
stroke plane to movement should create 
pendular stability (as shown for stroke 
plane and pitch in Chapter 3), and matches 
GRF viscous damping factors in roll (Fig. 
5.1A-B & 5.1D).  In C-D, the theoretical roll-
right impulse causes left wing pitch timing 
to cycle forward, and right wing pitch timing 
to cycle backward.  Slight differences in 
wing pitch timing, and asymmetrical 
midstroke wing pitch, are associated with 
roll torque in fruit flies (Ristroph et al., 
2009) and hawkmoths (Chapter 2).  
Intriguingly, this change would also 
reinforce each of the damping factors 
depicted in 5.1A-D. 
 

It is likely that the gyroscopic 

damping I identified in the pitch case (Fig. 

5.4) also damps roll (Fig. 5.2A-B).  In 

theory, if we apply a roll-right torque to a 

flying moth, we should again see a 

gyroscopic reaction 2/ߨ out of phase—at 

both endstrokes.  In the left wing, this 

would decrease downstroke stroke plane 

angle, and increase upstroke stroke plane 

angle.  In the right wing, this would 

increase downstroke stroke plane angle, 

and decrease upstroke stroke plane angle.  

In Chapter 4, I showed this combination of 

changes to stroke plane angle correlates 
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with roll-left torque (Fig. 4.7).  Thus the stroke plane reactions of the wings induced by rotation should damp 

roll. 

The wing pitch timing differences from a theoretical roll impulse/rotation (Fig. 5.1C-D) also match 

both active wing kinematic changes and passive damping factors associated with the creation of roll torque 

in the opposite direction from the given perturbation.  In fact, the overhead view of the theoretical hawkmoth 

in Fig. 5.2C closely matches that of a real fruit fly seen in Ristroph et al. (2009), in both sweep and wing 

pitch timing.  They proposed that, because wing pitch changes steeply near midstroke, even slight 

asymmetries in wing pitch timing generate relevant asymmetric forces.  Based on continuous wing pitch 

angles from the control moths in Chapter 4 (Fig. 5.3), the similar dynamics are present in hawkmoths.   

Based on this logic, a roll-right impulse would reduce left, and increase right AOA at (and just after) 

midstroke (for both upstrokes and downstrokes).  I showed these near-midstroke wing pitch asymmetries 

generate roll-left torque in M. sexta.  Rotation induced by the roll-right perturbation, and the resultant 

sideslip, would induce differences in the vertical flow velocity on either side of the moth (Fig. 5.3A-B) further 

damping roll; the more perpendicular orientation of the lower-wing-pitch left wing would further magnify this 

FCT effect, especially in upstrokes (Chapter 2).  Thus, this inertia-induced wing asymmetry would decrease 

left vs. right force production on its own, and also complement the viscous damping factors identified in 

Chapter 2. 

Other rotational modes also affect wing pitch gyroscopically (Eberle et al., 2015).  So, future 

research should address the role of torsional wing inertia (wing flipping inertia) in the creation of stability in 

other degrees of freedom as well, such as pitch or yaw. 

 

Figure 5.3: Wing pitch angle in M. sexta 
Wing pitch angle from 8 hovering moths.  
A concatenated time series of wing pitch 
angle, measured similar to Fig. 2.3C, but 
with a wing chord relative to the moth’s 
vertical BRF plane.  Excerpts are from the 
eight control treatments in Chapter 4.  Note 
the sharp changes in wing pitch near 
midstrokes are similar to those that allow 
timing asymmetries to create roll in fruit flies 
(Ristroph et al., 2009). 
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Advancement 3: Stability in Pitch 

Figure 5.4: Inertial and viscous effects work together to stabilize pitch 
Summary (reprint) of Figure 3.7.  See Chapter 3 for further detail.  The reaction of wings to a pitch impulse 

in B) match that of A) a similarly arranged spinning 
wheel.  The E) same or D) similar wing reactions to 
perturbation are enhanced by rotational drag.  In 
keeping with the discussion of wing torsion from the 
previous section (Fig. 5.2C-D), it is interesting to note 
that inertial resistance of the wings to flipping should 
enhance the damping factors presented in B-D.  Note 
that it is possible wing deviation angle changes 
interact with the angular momentum of flipping wings 
to (passively) create a pitch-restoring dorsoventral 
sweep asymmetry response like the one I witnessed 
in Chapter 3, but this figure does not depict such an 
effect.  
 
 

My experiments are the first to identify 

several passive mechanisms for pitch stability in M. 

sexta.  Concurrent work had predicted pitch in 

flapping flight was unstable, and that M. sexta would 

rely on rapid sensory feedback and active control to 

stabilize body pitch orientation, or at best augment a 

thin margin of passive stability (Maeda et al., 

2010;Noda et al., 2013;Ristroph et al., 2013;Taha et 

al., 2015).  Besides parasite (body) drag on the most 

drag-affected “fluffy” insects (Ristroph et al., 2013), 

no mechanisms for substantial margins of passive 

pitch stability had been proposed. 

My work shows a different aspect of pitch 

stability.  As moths pitch, the stroke plane resists 

rotation because it has inertia and drag.  Because the 

wings are flapping quickly, they respond to pitch 

perturbations with (off-phase) deviations at midstroke 

(rather than at endstroke, which instead would mean 

changes to stroke plane angle).  These two wing kinematic factors (stroke plane and stroke plane deviation) 
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correlate with pitch acceleration almost immediately following perturbation (Chapter 3), well after 

perturbation (Chapter 3), and to pitch torque in moths responding to displaced COM (Chapter 4; Table 5.1).  

Thus I am confident these near-instantaneous wing kinematic responses produce restorative pitch torque 

in M. sexta, damping pitch and making it more stable than previously believed. 

Table 5.1: Comparing pitch-inducing wing kinematics from Chapters 3&4 
 Chapter 3 Chapter 4 

Units Coef. Estimate ݌-value Coef. Estimate ݌-value 
݃	ܿ݉ଶ	ିݏଶ	 ݉݃ܭటሷ ఍

** 1.61E3 9.97E-7 ܭఛഗሬሬሬሬሬറ఍
* 9.22E2 8.06E-4 

݃	ܿ݉ଶ  ܭటሷ టሶ
** 8.37E-1 1.11E-7 െ െ െ 

݃	ܿ݉ଶ	ିݏଶ ܭటሷ క
** 3.30E3 1.23E-6 ܭఛഗబሬሬሬሬሬሬሬሬറక

+ 1.94E3 7.81E-4 

݃	ܿ݉ଶ	ିݏଶ ܭటሷ ఝ
** 2.25E3 6.84E-5 ܭఛഗሬሬሬሬሬറఝ

* 1.27E3 1.37E-4 

Table 5.1 directly compares the coefficients that relate stroke plane angle, stroke plane deviation, and fore-
aft pitch asymmetry to body movements in Chapter 3 and torque imposed by off-axis weights in Chapter 4.  
It also addresses Hypotheses 13-14 from Chapter 4.  The coefficients for stroke plane asymmetry (row 1) 
and stroke plane deviation angle (row 3) decrease as would be expected with a reduction in COP-COM 
vertical distance due to moth reorientation in response to the weight.  However, the coefficient for fore-aft 
sweep asymmetry decreases as well, when it should actually increase given that COM is moved 
longitudinally farther back by the majority of reorientations I measured.  This weakly supports Hypothesis 
13 and does not support Hypothesis 14.  It also suggests that I may have underestimated the pitch 
challenge in Chapter 4, perhaps by visually estimating a COM that is too far forward on the moth.  Symbols 
and coefficients are as explained in Chapters 2 & 3:  ߞ௱ is stroke plane, ሷ߰௱ is pitch acceleration, ߦ௱ is stroke 
plane deviation, ߮௱ is fore-minus-aft sweep amplitude, the delta ߂ subscript indicates all measurements are 
relative to the control, and the subscripts next to each ܭ coefficient indicate it relates the second subscript 
quantity (independent variable) to the first (dependent variable) in a linear model. 

**From a fit to ሷ߰௱ ൌ ௬௬ܫ
ିଵሺܭటሷ ఍݉݃sinሺെߞ௱ሻ െ టሷܭ టሶ

టሶ ೩
య

หటሶ ೩ห
െ టሷܭܳ క஽ߦ௱ cos

ሺߞ௱ሻ ൅ టሷܭ ఝ߮௱ሻ 
*From a fit to ߬టሬሬሬሬറ ൌ ఛഗሬሬሬሬሬറ఍ܭ		 sinሺെߞ௱ሻ ൅	ܭఛഗሬሬሬሬሬറఝ߮௱   
+From a fit to ߬ట଴ሬሬሬሬሬሬറ ൌ 	െܭఛഗబሬሬሬሬሬሬሬሬറకߦ௱ cosሺߞ௱ሻ , ௱ߦ ∈ ሼ݀݁݇݋ݎݐݏ݊ݓ݋	ݏݐ݊݁݉݁ݎݑݏܽ݁݉	ݕ݈݊݋   

 
 
Advancement 4 
Flexibility Assists Flight Stability 

Much prior work has focused on describing how torsional springs in the wing hinge might modulate 

angle of attack in insect flight (Bergou et al., 2007;Bergou et al., 2010;Ishihara et al., 2009a;Ishihara et al., 

2009b;Norberg, 1972;Whitney and Wood, 2010).   Mine is the first to point out how flexibility and springiness 

in the wing hinge might also provide body rotational stability. 

The stroke plane and stroke plane deviation resistance to pitch perturbation described above (and 

in Chapter 3) show that flexibility of the wings relative to the COM allows moths to instantaneously and 

passively respond to perturbations.  The abdominal flexion observed in the weight-attachment study 

(Chapter 4) shows that flexibility between body segments also increases stability, enhancing the rapid, 
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passive response to impulsive perturbations, as well as steady-state, active responses to continuous 

perturbations. 

Animals are not rigid machines, but viscoelastic and flexible.  If flexibility enhances flight stability in 

both of the only two cases I studied, it is likely true for other flying animals and other degrees of freedom 

as well.  These conclusions compliment those identifying flexibility in control structures as a source of 

passive stability in running cockroaches (Jindrich and Full, 2002), and increased maneuverability but 

decreased stability in swimming cetaceans (Fish et al., 2008;Fish, 2002). 

 

Advancement 5 
Maneuver and Perturbation Wing Kinematics Differ Due to Passive Damping and 
Active Counter-Damping 

My results also show that moths use a body and wing kinematic strategy tailored to specific 

perturbation and maneuver scenarios; i.e. there is not just one “pitch” or “roll” or perturbation or maneuver 

response.  In the GRF roll maneuver case (Chapter 1) moths reduced rotational damping with wing 

kinematics (asymmetries in elevation amplitude and wing pitch/AOA).  Since the moths were not rotating in 

the weight addition experiments, it is not surprising that these wing kinematic changes did not significantly 

correlate with roll. 

If response and maneuver strategies vary for moths depending on the specific scenario, they likely 

vary similarly for other animals as well.  Thus, to successfully identify complete information about which 

wing kinematics create maneuvers, respond to perturbations, etc., future researchers must be careful to 

avoid misguided assumptions about wing kinematics, even in the same animals creating torque about the 

same rotational axes. 

Nevertheless, these seemingly customized wing responses could in theory arise from quite simple 

control strategy.  For example, flying animals might be primed to sense the differences between prescribed 

and actual wing movements, and then respond in such a way that either enhances (in the perturbation 

case) or counteracts (for the maneuver case) this damping (Fig. 5.5).  Visuomotor responses are “slow” in 

Manduca sexta (≈40-80݉ݏ; Dickerson et al., 2014;Sponberg et al., 2015;Windsor et al., 2013).  

Nevertheless, flying insects have other rapid-response gyroscopically-mediated sensors, such as antennae 

(Sane et. al, 2007), halteres (Pringle, 1948), and wings (Dickerson et al. 2014) which may allow them to 
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more rapidly estimate/measure and respond to changes in state, even proportional to their displacement 

(i.e. with PD-like control; Beatus et al., 2015).  Thus, active reactions could rapidly reinforce the passive 

inertial and viscous damping responses seen in M. sexta. 

 
Figure 5.5: Control implications. A simple control model for flapping flight? 

 

A control system based on detecting the difference between prescribed and actual wing motion.   
Flying animals may measure the difference between prescribed and actual wing motion, then reinforce 
them in the case of an active stabilizing response; and counteract them in the case of maneuvers.  This 
could explain the active counter-damping kinematics I showed in roll maneuvers, and the match between 
wing kinematics which create active rotations, and those which arise passively after perturbation (as shown 
for pitch in Chapters 3-4 and Fig. 5.3; predicted for roll in Chapter 4 and Fig. 5.2). 
 
 
 

Advancement 6 
Reinforcing Gyroscopic and Aerodynamic Effects in Flapping Flight May Create 
Similar Stability and Maneuver Mechanics across Size and Speed Scales 

By far the most provocative element of my dissertation describes how—at least for pitch—inertial 

and aerodynamic passive reactions to perturbation likely work together to create passive wing movements 

that resist rotations instantly.  This would help explain how animals manage to maintain stability in flight. 

In Chapter 3, the stroke plane inclination response (ߞ௱), the stroke plane deviation response (ߦ௱), 

and the drag on, and inertia of, the moth’s body itself, are all examples of inertia and drag working together, 

and in the same direction, to passively stabilize pitch orientation.  This novel conclusion suggests that future 

work should examine whether inertia and drag also work in parallel to stabilize other directions of motion, 

such as yaw (Eberle et al., 2015;Hedrick et al., 2009) or pitch (Chapter 3).  In Chapters 2 & 4, they further 

indicate that both FCT (drag-based) and gyroscopic (inertia-based) damping also increase roll stability (Fig. 

5.1-2).  Largely active and direct inertial mechanisms have been shown to be important in some flapping 

A Simple Control Model for Flapping Flight

The difference between perscribed 

and acutal wing movement 

(damping) is sensed and:

i) perturbation: amplified*

ii) manuever: countered*

passive damping

moth sensory system detects position/orienta-
tion, and its derivatives or integrals, and moth 
corrects over- or undershoot with active wing 

changes (i.e. an active “maneuver”)

maneuver or perturbation

wing kinematic is changed by

inertial or aerodynamic perturbation, 

or actively by moth

Corollary Prediction:
Larger & faster flapping wings have sensors better-arranged to detect gyroscopic damping effects
Smaller, slower flapping wings have sensors better-arranged to detect aerodynamic damping effects

*and likely also aided by

active wing motions that are not 

implicated in passive damping
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flight reorientations (Bergou et al., 2011;Bergou et al., 2015;Hedrick et al., 2007;Iriate-Díaz et al., 

2011;Meadows, 2015), and proposed to be synergistic with wing reorientations in the banked flapping turns 

of birds (Warrick and Dial, 1998; but see Ros et al., 2015).  My conclusion here is largely different from 

these findings and proposals in that: 1) The effects I point out here are passive responses to perturbations, 

rather than arising from active changes to wing kinematics, 2) The inertial damping is indirect, or inertio-

viscous, in that the inertial response of a flapping wing to rotation pushes on the air to create countertorque, 

rather than an active effect where angular momentum is directly transmitted from a rotating wing to other 

parts of the body, and, separate from this, 3) These passive changes to wing kinematics reinforce 

aerodynamically-induced (passive) changes to wing orientation, and together they damp rotations. 

Creatures that fly vary vastly in size, and thus operate at a range of Reynolds numbers (ܴ݁; ratio 

of inertial to viscous forces).  At ܴ݁ ~8000 (Usherwood and Ellington, 2002), M. sexta is larger than most 

insects but smaller than most birds.  Here, inertial forces account for >85% of wing bending mechanics 

(Combes and Daniel, 2003; Jankauski and Shen, 2016), but for smaller fliers, drag is more important; for 

D. melanogaster, inertia and drag contribute about equally to wing bending (Ennos, 1988;Lehmann et al., 

2011).  Across this size range, flying animal body design remains remarkably consistent (Greenewalt, 

1962), and insect wings are able to sense and respond to both gyroscopic and aerodynamic forces 

(Dickerson et al.2014; Eberle et al.2015).  Based on these conclusions, we predict pendulum-like passive 

pitch stability (and possibly passive stability in other degrees of freedom as well), to be important across 

the extremes of this grand biological scale, producing similar stability mechanics from fundamentally 

different mechanisms (drag vs. inertia). 

We now know that in insects, flapping wings do not just generate lift; they also detect rotational 

changes to wing motion (Dickerson et al., 2014), and that those changes aid stability (Chapters 2-5).  

Furthermore, scale-independent sources of near-instantaneous passive damping likely simplify the 

developmental and evolutionary changes in body size for flying animals.  These facts give us insight into 

the optimal design of MAVs, as well as the evolution of biological flight. 
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How Might My Conclusions Inform and Improve MAV Design? 

Certainly if we could create an exact quantum replica of a living M. sexta, this equally corpulent 

moth would be capable of the same surprising aerial feats, such as recovery from >100 ݀݁݃ pitch 

perturbations (Chapter 3), or >5.5 ݉	ିݏଵ flight in a wind tunnel (Tyson Hedrick, personal communication).  

But which body design features are most important to creating stability? 

Mechanical engineering is informed every day by the biomechanics solutions scientists identify in 

nature, and flight is no exception.  Specifically, micro-air vehicles (MAVs) are an area of much active design 

research.  Effective stability solutions remain a design hurdle of intense focus (Karásek et al., 

2014;Koopmans et al., 2015;Ma et al., 2013;Orlowski and Girard, 2012;Pratt and Qin, 2016) that is often 

used to justify funding for research into insect-scale flapping flight in animals. 

Taken as a whole, my work shows that flapping-wing MAV designs of today may neglect important 

sources of passive stability.  Flexibility in an MAV wing hinge would help mimic the passive rotational 

stability mechanisms I identified.  Elasticity in the wing base would help gyroscopic responses propagate 

to subsequent halfstrokes.  Appropriate tuning of drive frequency (while considering elastic and damping 

mechanics) would maximize the amplitude of the stabilizing gyroscopic response, and possibly help 

passively mitigate the effects of wing wear.  Larger, heavier, and faster flapping wings would increase 

gyroscopic damping effects; smaller, lighter, draggier, slower-flapping wings would increase aerodynamic 

damping effects.  Flexibility in the wing hinge and chassis design could also help damp rotations (Chapter 

3; Noda et al., 2014), as well as help MAVs carry awkward loads (Chapter 4).  I can also hypothesize a 

simple functional control model for an MAV, based on my findings in M. sexta (Fig. 5.5). 

In short, stiffness along the leading edge of the wing, body flexibility, wing hinge flexibility and 

elasticity, and tuning of natural frequencies, could enhance inertial wing responses to perturbation and 

allow them to carry forward to subsequent halfstrokes.  Given damping factors, one could tune elasticity at 

the wing hinge to mode-match (and thus maximize) restorative reactions of the wings to perturbation.  This 

could also enhance the sensitivity of an active perturbation response system based on detectable wing 

deviations.  As work progresses in this field, and biomechanics in general, researchers will likely continue 

to discover simple solutions to engineering problems already selected for by nature. 
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Chapter 5 Abbreviations 

Box 5.1: Abbreviations 

AOA effective Angle Of Attack; represents the angle at which the wing encounters the air 
  

BRF 
Body Reference Frame: reference frame from the perspective of the moth’s COM, in which 
the moth’s anatomical landmarks and canonical hover orientation determine ݕ ,ݔ, and ݖ. 

  

COM 
Center Of Mass: point where the sum of the product of individual units of mass and their 
distance away from that point equal zero.   

  

COP 
Center Of Pressure: net sum of force production by the wings, time-averaged over the course 
of a stroke cycle 

  

FCF 
Flapping Counter Force: Idea that linear translation of flapping wings creates differential drag 
and thrust which damps the translation.  First described for sideslips. 

  

FCT 
Flapping Counter Torque: idea that rotations change the velocity of wings flapping in that 
rotational plane, damping the rotation.  First shown for yaw. 

  
GRF Global Reference Frame: based on the camera calibration (world view frame) 
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APPENDIX 
LOW-SPEED WIND TUNNEL DESIGN 

 
 
 

Overview 

In addition to the research projects described earlier in the dissertation, I also designed a laminar-

flow, low-speed wind tunnel.  This wind tunnel has since been used in several flight experiments, including 

one that resulted in a second-author publication (Ortega-Jimenez et. al, 2013).  In its current configuration, 

the maximum speed is approximately 5.5 ݉	ିݏଵ.  Recently, one M. sexta specimen managed to fly at that 

speed (Tyson Hedrick 2017, personal communication).  It is now housed in Wilson Hall at UNC Chapel Hill. 

 

Figure A.1: Dimensioned wind tunnel side view 

 
 
A lateral view of the wind tunnel, shown without supporting structure.  This is a to-scale drawing of 
the wind tunnel that this document describes.  Dimensions are in centimeters.  Some details are 
intentionally excluded.  Honeycomb cell size is not to scale.  The support structure (not shown) for the fan 
and downstream half of the vibration isolator is detachable from that of the rest of the wind tunnel. 
 
 

Design, Construction and Location 

The low-speed wind tunnel used here (Fig. A.1) is located in Wilson Hall at UNC-CH.  It was 

designed in-house with final design details and construction by Quate Industrial Fabrication (Durham, NC, 

USA).  It is a suction type, open-flow wind tunnel; constructed mainly of 5 ݉ ݉ thick aluminum and is housed 

in an 8.08L ൈ 2.53W ൈ 3.59H ݉  rectangular room where it is supported by a metal frame on locking wheels.  

With its current configuration, it has a min/max speed of 0.1 / 4 ݉	ିݏଵ.  Air enters the square settling 

55.2 23.9 44.3 119.6 257.0 68.4

12.512.5

75.8 61.0 153.5
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chamber and passes through a flow collimator and two screens.  Air then enters a nozzle with a square 

entrance and regular octagonal exit.  The nozzle speeds up the air, which then passes through a plastic 

screen as it enters the working section.  After leaving the working section, the air enters an expansion duct 

with an octagonal opening and circular exit.  It then travels through a vibration-isolating duct which also 

houses a flow collimator positioned directly in front of the fan entrance.  Finally, the air passes through the 

fan and exits the wind tunnel through a discharge guard.   

 

Settling Chamber 

In the settling chamber, a flow collimator and screens even out flow velocity where it is lowest (and 

thus resistance is minimal).  The flow collimator chiefly parallelizes flow pathlines and reduces small-scale 

turbulence, while the screens chiefly create a more uniform speed profile and thin the boundary layer 

(Barlow et al., 1999; Mehta and Bradshaw 1979).  The settling chamber has interior dimensions of 153.5 ൈ 

153.5 ܿ ݉.  The inlet has 32.5 ܿ ݉ clearance with the floor and 45 ܿ ݉ clearance with the closest ceiling fixture 

(156 ܿ݉ with the ceiling).  The entrance to the settling chamber is curved in a circular arc.  A recess in the 

settling chamber walls, as well as a metal grid which spans the entrance, together hold the flow collimator 

in place.  The flow collimator is a 10.2 ܿ݉ deep aluminum honeycomb (HexWeb® ACG®, Hexcel Co., 

Stamford, CT, USA), with >95% open area and a cell apothem of 4.75 ݉݉.  Next, the flow encounters two 

stainless steel woven mesh screens (Newark Wire Cloth Co., Clifton, NJ), each with 36% open area and 

metal wire diameters of 254 and 25.4 ݉ߤ, respectively.  The finer screen was placed upstream in this study, 

opposite their typical operational order.  The settling chamber attaches to the nozzle via hinges and clamps 

to allow rotation away from the rest of the wind tunnel.  The side of this chamber is removable for screen 

cleaning purposes.   
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Nozzle 

After the air exits the settling chamber, it then travels through the nozzle.  The nozzle contracts to 

increase flow velocity, reduce velocity variations to a smaller fraction of the average velocity, and 

induce/maintain a well-defined, thin boundary layer (Barlow et al., 1999; Mehta & Bradshaw 1979; 

Schlichting and Gersten, 2004).  The nozzle is composed of two largely identical halves, shown in the figure 

below.  The nozzle has a contraction ratio of ~5.7.  The quadrilateral nozzle entrance maximizes contraction 

ratio given the room shape, while four chamfers at each edge expand to give the exit a regular octagonal 

shape.  The octagonal shape is intended to thin the boundary layer and prevent flow separation near the 

edges (Barlow et al., 1999). 

 

The four interior chamfer hypotenuses from ݔ	 ൌ 	1 to 257 ܿ݉ are described by: 
 
	݁ݏݑ݊݁ݐ݋݌ݕ݄ ൌ	 
ሺെ1.5365 ൈ 10ିଵ଴ሻݔସ ൅ ሺെ4.3531 ൈ 10ି଻ሻݔଷ ൅ ሺ7.6242 ൈ 10ିହሻݔଶ ൅ ݔ0.11133 ൅ 0.51218   (A.1) 
 
 
The other (horizontal and vertical) sides of the nozzle vary from  
 
	ݔ ∈ 	 ሼ1	݋ݐ	120	ܿ݉:   
	݁݀݅ݏ ൌ 	 ሺെ4.6226 ൈ 10ି଻ሻݔସ ൅ ሺ8.0989 ൈ 10ିହሻݔଷ െ ଶݔ0.0066144 െ ݔ0.093549 ൅ 153.2122 (A.2) 
 
	ݔ ∈ 	 ሼ120	݋ݐ	257	ܿ݉:   
	݁݀݅ݏ ൌ 	 ሺ1.2824 ൈ 10ି଻ሻݔସ ൅ ሺെ1.0414 ൈ 10ିସሻݔଷ െ ଶݔ0.036188 െ ݔ6.4184 ൅ 492.50  (A.3) 
 
 
 

Working Section  

The next destination for the flow is the working section, which is the portion of the wind tunnel 

designed for low-turbulence flow experiments (Fig. A.1-2).  After exiting the nozzle (in the current 

experimental setup) the air passes through a plastic screen with open area >93% and a variable wire 

diameter of ~0.2-0.5 ݉݉ (1.27 ܿ݉ per grid).  In this experiment, this screen restricted moths to the working 

section, expansion duct, and vibration isolator.  The octagonal, transparent design of the working section 

allows for viewing from eight different principle angles.  It also allows for easier transition into the circular 

shape of the fan.  The clear panels are made of Lexan® (SABIC Innovative Plastics Holding B.V., Pittsfield, 

MA, USA). 
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Figure A.2: Oblique view of wind tunnel test section 

Wind tunnel test/working section oblique view.  
The test section is a regular octagon.  Each panel is 
fitted with a hinge on one side and clamps on the 
other to allow test section access.  There are many 
benefits to an octagonal test section.  First, it allows 
multiple flat plane angles for video collection.  
Second, an octagonal cross section likely has less 
turbulence at corners relative to a square test 
section.  Third, it aids the gradual transition of flow 
from the square settling chamber to the circular fan.  
Fourth, this allows us to keep the contraction ratio of 
the overall wind tunnel high (since starting with a 
square entrance allowed us to maximize its area in 
a square-shaped room). 
 
 

 
 
 

Expansion Duct and Vibration Isolator 

Expansion ducts and anti-twist vanes are typical wind tunnel components that decrease fan power 

requirements and reduce flow irregularities in upwind working sections (Barlow et al., 1999).  This wind 

tunnel also has a vibration isolator.  The expansion duct, which has an expansion ratio of ~1.0870, connects 

the working section to the vibration isolator.  Next, the vibration isolator connects the expansion duct to the 

fan.  Due to room size constraints, this wind tunnel’s expansion duct is proportionally shorter than those of 

most similarly-sized low-speed wind tunnels (Barlow et al., 1999); the vibration isolator helps create more 

laminar working section flow by increasing the distance between the working section and fan blades.  This 

vibration isolator is the same diameter as the fan, and has the appearance of a flanged pipe with the middle 

section removed (Fig. A1).  A ~0.5 ݉݉ thick tarp encircles the gap between the two flanged halves, and 

pipe clamps on either side of the gap secure the tarp in place.  The support structure for the fan and 

downstream half of the vibration isolator is detachable from that of the rest of the wind tunnel (although in 

(Ortega-Jimenez et. al, 2013), the two support structures were rigidly attached via metal tubing).  The 

vibration isolator also houses a circular section of honeycomb flow collimator.  This flow collimator (of the 

same material as previously described) is intended to damp the rotational patterns the fan introduces to the 

air.  Thus, this collimator is intended to take the place of the anti-twist vanes more typically situated directly 

before fan blades in similar wind tunnels (Barlow et al., 1999).   
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Fan and Motor 
 
The final section of the wind tunnel is the fan.  Todd Air Solutions (Salisbury, NC, USA) delivered 

the 736RPM, 1.49 ܹ݇, 0.165 ݉ଷ	ିݏଵ, belt-driven tube axial duct fan (WAF-30, Cincinnati Fan & Ventilator 

Co, Mason, OH, USA).  Situated parallel to the flow, two large steel plate fins and a teardrop belt tube 

collectively support the fan bearing encasement (which is not tapered).  The power supply is 200 ܸ, 15 ܣ.  

This electricity runs through a safety circuit breaker and then a variable frequency drive, (VS1MX82-2F, 

Baldor Electric Co., Fort Smith, AR, USA), which provides variable power to the fan motor (EM3558T-8, 

Baldor Electric Co.) and is controlled via an in-house dial-type potentiometer and switch panel.  Flow finally 

exits the wind tunnel by passing through a concentric circle discharge guard.  The fan is 1.64 ݉ from the 

room exit door and has between 0.65 and 1.07 ݉ lateral clearance with the left and right walls of the room, 

respectively. 
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