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ABSTRACT

Jung In Kim: Contributions to the Analyses of Recurrent Events and Competing Risk
(Under the direction of Jason Fine)

There is a growing interest in the analysis of recurrent events data. Recurrent events are

frequently considered as an outcome when a subject could possibly experience more than

one event over follow-up period. Thus, It is important to consider previous events history

to explore the relationship between the effects of covariates and the correlated failure times.

We extend the Cox-type model with time-varying effect depending on the number and the

gap time between previous events to enhance both model fit and prediction. Parameter

estimation and statistical inference can be achieved via the partial likelihood. A statistical

test procedure is provided to assess the existence of the triggering effects. We demonstrate

our approach via comprehensive simulation studies and chronic pseudomonas infections in

young cystic fibrosis patients data. Significantly, our model provides better predictions than

the existing models.

When some patients do not adhere to their assigned treatments in a randomized trial,

the standard intention-to-treat analysis may not properly estimate the effect of treatment on

the outcome. Also, considering only received treatment without accounting for unmeasured

confounders could be biased. Therefore, it is challenging to obtain the true treatment effect,

which can be observed when all subjects comply their assigned regime. Instrumental variable

methods help us to consistently estimate the average causal effect of an exposure on some

outcome of interest even in the presence of latent confounding. We apply Abadie’s weighting

scheme to estimate corresponding local average response functions in survival analysis. The

method is demonstrated by simulation studies and the colorectal cancer screening data,

designed and sponsored by the National Cancer Institute.
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Competing risks also occur when subjects can experience one or more events which

compete with the outcome of interest. In these cases, the competing risk inhibits to observe

the event of interest or modifies the chance that this event occurs. We extend existing

parametric approaches to estimate the cumulative incidence function for considering both

left truncation and interval in competing risks settings. This parametric method is applied

to data from the study of osteoporotic fractures to bone mineral density testing interval with

age as time scale.
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CHAPTER 1: LITERATURE REVIEW

1.1 Survival Analysis

1.1.1 Single Failure Time Data

The Cox proportional hazards regression model [1] is the most commonly applied for

analyzing censored survival data. The model quantifies the hazard rate λ(t) = limh↓0
1
h
P (T ≤

t+ h|T > t), where T is the survival time of an individual, with covariate vector Z such as

λ(t) = λ0(t) exp(β′Z), (1.1.1)

where t ≥ 0, λ0(t) is an unspecified baseline hazard function and β is a p-vector of unknown

regression coefficients. Let λ(t|z1) and λ(t|z2) be the hazard functions given covariate vectors

z1 and z2 respectively. Define the hazard ratio of z1 with respect to z2 as r(t|z1, z2) = λ(t|z1)
λ(t|z2)

=

exp(β′z1 − β′z2), which does not depend on time t. The hazard ratio is interpreted as the

instantaneous failure at time t of a subject with covariate vector z1 is r(t|z1, z2) times as

likely as a subject with covariate vector z2. This ratio is of primary interest in survival

analysis.

Let Ti be the failure (survival) time, Ci denote the potential censoring time, Xi =

min(Ti, Ci) denote the observed time for the subject i, and δi = I(Ti ≤ Ci), where I(·)

is the indicator function. Suppose that there are n independent subjects, i.e., i = 1, . . . , n.

The following partial likelihood function is considered to estimate β [1, 2].

PL(β) =
n∏
i=1

{
exp(β′Zi)∑

k∈Ri
exp(β′Zk)

}δi
, (1.1.2)
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where the risk set Ri = {k : Xk ≥ ti}, i.e., all individuals who have not died or been censored

yet by ti. Then, β is estimated by β̂ maximizing (1.1.2).

1.1.2 Recurrent Failure Time Data

Repeated failure events are frequently considered in a longitudinal study when subjects

could possibly experience more than one event during the study period. The failures can be

repeated by the same type of event or caused by different natures. In this thesis, Chapter 2

and 3 are related to the former case and Chapter 4 covers the latter case.

To explore the relationship between the effects of covariates and the correlated failure

times, the Cox proportional hazards model [1] was extended to a multivariate counting

process model allowing for time varying covariates with assuming independent increments

[3]. To formulate in a counting process form, the data for the subject i, (Xi, δi) is re-expressed

as {Ni(t), Yi(t)}. The right continuous N(t) is referred to as the counting process defined

by Ni(t) = N∗i (t ∧ Ci), where N∗i (t) is the number of events that occur during the interval

[0, t] and Ci is the censoring time for subject i. The left continuous Y (t) is referred to as the

at-risk process given by Yi(t) = I(Xi ≥ t), indicating the ith subject is under observation by

the value t. Thus, the β also can be estimated by maximizing the logarithm of the following

partial likelihood

C(β) =
n∑
i=1

∫ τ

0

β′Zi(s)dNi(s)−
∫ τ

0

log

{
n∑
i=1

Yi(s) exp{β′Zi(s)}

}
dN̄(s), (1.1.3)

where τ is the end of study time and N̄ =
∑n

i=1Ni. The estimator β̂ is defined as the

solution to the score equation given by

U(t; β) =
n∑
i=1

∫ t

0

Zi(s)dNi(s)−
∫ t

0

∑n
i=1 Yi(s)Zi(s) exp{β′Zi(s)}∑n

i=1 Yi(s) exp{β′Zi(s)}
dN̄(s). (1.1.4)

From the score function (1.1.4), the following form can be derived in terms of a local mar-

2



tingale:

U(t; β) =
n∑
i=1

∫ t

0

Zi(s)dMi(s)−
∫ t

0

∑n
i=1 Yi(s)Zi(s) exp{β′Zi(s)}∑n

i=1 Yi(s) exp{β′Zi(s)}
dM̄(s), (1.1.5)

where M̄ =
∑n

i=1Mi, and Mi(t) = Ni(t) −
∫ t

0
λi(s)ds. There are additional definitions

such as: S(r)(t; β) = n−1
∑n

j=1 Zj(t)
⊗rYj(t) exp{β′Zj(t)}, r = 0, 1, 2, E(t; β) = S(1)(t;β)

S(0)(t;β)
, and

V (t; β) = S(2)(t;β)

S(0)(t;β)
− E(t; β)⊗2. Also, their corresponding limiting values were defined as s(r)

for r = 0, 1, 2, e = s(1)/s(0), and v = s(2)/s(0) − e⊗2, respectively. Under some regularity

conditions in [3], the estimated β̂ has consistency and asymptotic normality with mean β0

and covariance matrix Σ−1, where Σ =
∫ τ

0
v(t, β)s(0)(t, β)λ0(t)dt. The Σ is estimated by the

partial likelihood observed information evaluating at β = β̂. The estimator of the cumulative

baseline intensity function Λ0(t) =
∫ t

0
λ0(s)ds is given by

Λ̂0(t; β̂) =

∫ t

0

∑n
i=1 dNi∑n

i=1 Yi(s) exp{β̂′Zi(s)}
. (1.1.6)

Prentice et al. [4] proposed two arbitrary baseline intensity functions. One is a function

of time from the beginning of the study and the other one is a function of time from the

previous failure time. Let Z(t) = {Z1(t), . . . , Zp(t)} denote p covariate processes at time t,

and N(t) be a counting process, i.e., the random number of failures prior up to time t. Thus,

the corresponding intensity functions are following:

λCP{t|N(t)} = λ0m(t) exp{β′mZ(t)},

λGT{t|N(t)} = λ0m(t− tN(t)) exp{β′mZ(t)},
(1.1.7)

where λ0m(·) ≥ 0, m = N(t) + 1, i.e., m = 1, 2, . . . and βm is a stratum-specific regression

coefficients vector. The corresponding partial likelihoods can be written as

PLCP (β) =
∏
m≥1

dm∏
i=1

exp{β′mZmi(tmi)}∑
k∈R(tmi,m) exp{β′mZmk(tmi)}

, (1.1.8)

where tmi denotes a failure time in stratum m for subject i and dm is a total number of

failures in stratum m, and

PLGT (β) =
∏
m≥1

dm∏
i=1

exp{β′mZmi(tmi)}∑
k∈R(umi,m) exp{β′mZmk(lk + umi)}

, (1.1.9)

3



where lk is the last failure time of subject k prior to the entry into stratum m and umi implies

that subject i fails in stratum m with a gap time umi at time tmi. Kelly et al. [5] suggested

to use the gap time model to analyze recurrent event data when within-subject events are

independent because it determines whether the treatment is effective for the mth event since

the time from the previous event.

Wei et al. [6] suggested marginal distributions for the multivariate failure times. Each of

the distributions is also based on the Cox proportional hazards model [1]. There is no specific

constraint for dependence among the different failure times within each subject. Similar to

Prentice et al. [4] each event or event type is modeled as a separate stratum. Within each

strata, the marginal data is used, that is, all information is ignored except the given event

type. As a result, each patient normally appears in all of the strata, barring deletion due to

missing values [7]. For the mth type of failure, m = 1, . . . ,M , of the ith subject, the hazard

function is given by

λm(t) = λ0m(t) exp{β′mZm(t)}, (1.1.10)

where βm is the failure-specific regression coefficients vector. The corresponding mth failure-

specific partial likelihood is

PLm(β) =
n∏
i=1

[
exp{β′mZmi(tmi)}∑

k∈R(tmi)
exp{β′mZmk(tmi)}

]δmi

. (1.1.11)

Similarly, βm is estimated by solving the equation ∂ logPLm(β)/∂β = 0. The estimated

(β̂′1, . . . , β̂
′
M)′ is approximately normal with mean (β′1, . . . , β

′
M) and covariance matrix ΣM×M

with σkl(βk, βl) = A−1
k (βk)E[wk1(βk)wl1(βl)

′]A−1
l (βl) for k, l = 1, . . . ,M , where

Ak(βk) = E

[∫ τ

0

{Zk(t)− ek(t; βk)}⊗2Yk(t) exp{β′kZk(t)}dΛ0k(t)

]
,

wki(βk) =

∫ τ

0

{Zki(t)− ek(t; βk)}dMki(t),

Mki(t) = Nki(t)−
∫ t

0

Yki(s)λki(s)ds,

4



S
(r)
k (t; β) = n−1

n∑
i=1

Z⊗rki Yki(t) exp{β′Zki(t)}, for r = 0, 1, 2,

Ek(t; β) = S
(1)
k (t; β)/S

(0)
k (t; β), and ek(t; β) be the corresponding limit. This marginal

method is a useful tool for making inferences on the population average effect of covari-

ates on failure times. However, it cannot provide insights into the interrelationship among

failure times [7, 8]. Also, Kelly et al. [5] suggested this method is more appropriate to

data where there are different types of events from a same person than to recurrent event

data. These two aforementioned approaches by Prentice et al. [4] and by Wei et al. [6] use

stratified proportional hazards model with a separate stratum depending on the number of

previous events. Thus, those methods could be proper for only handling a small number of

recurrent events. Since there is a case with some strata that does not have enough subjects

or a case where there are too many number of parameters to be estimated, those models

might not get stable hazard estimates.

The existing Cox type hazards functions for analyzing recurrent event data have been

reviewed. These methods are assumed that the underlying counting process is a time variant

Poisson process. Lin et al. [9] suggested a robust procedure for treating all recurrent events

within a subject as a single counting process without assumption related to the poisson

process. By denoting E[dN(t)|Z(t)] = dµ(t),

dµ(t) = exp{β′0Z(t)}dµ0(t), or (1.1.12)

µ(t) =

∫ t

0

exp{β′0Z(s)}dµ0(s), (1.1.13)

where µ0(·) is an unknown function. Model (1.1.12) is referred to as the proportional rates

(means) model. Model (1.1.1) implies model (1.1.12) with dµ0(t) = λ0(t), but not in reverse.

The corresponding inferences are similar to arguments in [3]. [9] imposed the following

regularity conditions, for i = 1, . . . , n:

(i) {Ni(·), Yi(·), Zi(·)} are independent and identically distributed.

5



(ii) Pr(Yi(τ) = 1) > 0, where τ is a predetermined study end time.

(iii) Ni(τ) are bounded.

(iv) Zi(·) are bounded total variations, i.e., |Zij(0)| +
∫ τ

0
|dZij(t)| ≤ K for all j = 1, . . . , p,

where Zij is the jth element of Zi and K is a constant.

(v) A ≡ E[
∫ τ

0
{Z(t)− E(β0, t)}⊗2Y (t) exp{β′0Z(t)}dµ0(t)] is positive definite.

Then, n−1/2U(t; β0), 0 ≤ t ≤ τ converges weakly to a continuous zero mean Gaussian process

with covariance matrix

Σ(s, t) = E

[∫ s

0

{Z1(u)− E(u; β0)}dM1(u)

∫ t

0

{Z1(v)− E(v; β0)}dM1(v)

]
,

0 ≤ s, t ≤ τ between time points s and t. Also, they proved that β̂ has asymptotic normality

with mean β0 and covariance matrix Γ = A−1ΣA−1, where Σ = Σ(τ, τ). The covariance

matrix Γ can be consistently estimated with these subsequent quantities:

µ̂0(t) =

∫ t

0

dN̄(s)

nS0(s; β̂)
,

Â = −n−1

n∑
i=1

∫ τ

0

{Zi(s)− E(s; β̂)}⊗2Yi(s) exp{β̂′Zi(s)}dµ̂0(s),

Σ̂ = n−1

n∑
i=1

∫ τ

0

{Zi(u)− E(u; β̂)}dM̂i(u)

∫ τ

0

{Zi(v)− E(v; β̂)}dM̂i(v),

M̂i(t) = Ni(t)−
∫ t

0

Yi(s) exp{β̂′Zi(s)}dµ̂0(s).

Additionally, a random weight function Q(t; β̂) is incorporated into U(τ, β), then the follow-

ing weighted estimating functions for β0 are obtained:

UQ(τ ; β) =
n∑
i=1

∫ τ

0

Q(s; β̂){Zi(s)− E(s; β)}dNi(s). (1.1.14)

They assumed that the weight function is non-negative, bounded and monotone in t, and

converges almost surely to a continuous deterministic function q(t) in t ∈ [0, τ ]. By solv-

ing UQ(τ ; β) = 0, β0 can be estimated by β̂Q. Also, they showed that n1/2(β̂Q − β0) is

6



asymptotically zero mean normal with covariance matrix A−1
Q ΣQA

−1
Q , where

AQ = E

[∫ τ

0

q(t){Z1(t)− E(t; β0)}⊗2Y1(t) exp{β′0Z1(t)}dµ0(t)

]
,

ΣQ = E

[∫ τ

0

q(u){Zi(u)− E(u; β0)}dM1(u)

∫ τ

0

q(v){Zi(v)− E(v; β0)}dM1(v)

]
.

Note that the weight function Q(t; β̂) does not relate to β.

1.2 Instrumental Variable Methods

Instrumental variable (IV) analysis is commonly applied to estimating the exposure effect

for the data with unmeasured confounders. For example, in a randomized trial, subjects often

do not comply with their assigned treatment protocols. Hence, a subject’s actual treatment

may differ from his or her assigned treatment, i.e., compliance might not be random. To

estimate the true causal effect of an exposure on an outcome, we may use IV. The valid IV

should have the following properties such as i) affect treatment (endogenous covariate) or

be associated with treatment by sharing a common cause; ii) be a factor that is as good as

randomly assigned and iii) related to the outcome only through the treatment [10]. Even

though recurrent failure event time data are frequently obtained in many randomized clinical

trials or observational studies, there is only a handful of studies that analyze it by dealing

with non-compliance problem. Thus, existing IV methods mostly for time-to-event data,

i.e., univariate failure time data, are reviewed.

An intent-to-treat analysis is more commonly used without considering the presence of

non-compliance. For example, if Z is denoted as a randomization indicator, i.e., Z = 1 for

individuals randomized to receive an active treatment and Z = 0 otherwise, then we can

model the intent-to-treat treatment effect as λ(t|Z) = λ0(t) exp(β0Z). The parameter β0

is not to measure the true causal effect of treatment, but rather a mixture of the effect on

the compliers with the absence of effect on the non-compliers due to their non-compliance.
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Thus, the measure of treatment effect under intent-to-treat analysis would diminish as non-

compliance increased.

Several IV methods for right-censored event time outcome data have been proposed. The

following models could plausibly be used: the rank preserving structural failure time model

(RPSFTM) [11], the marginal structural Cox proportional hazards model [12–14] and the

method of inverse probability of censoring weighted log-rank tests [15].

The causal parameter of interest will often be a function of the survival differences that

would have been observed, contrary to fact that all subjects remained on protocol. Robins

and Tsiatis [11] proposed the RPSFTM using a class of rank estimators to estimate the

survival differences with correcting non-compliance issue. This model is a strong version

of the accelerated failure time (AFT) model with time-dependent covariates proposed by

[16]. The ranking preserving implies that given any two subjects i and j, if subject i fails

before subject j when both followed a particular treatment regime, then subject i would

fail before subject j when both followed any other regime. Let Ui denote the survival

time of the subject i when he or she is never to receive treatment, i.e., Di(t) = 0 for

all t. In the absence of censoring, the observable random variables are {Ti, Hi(Ti), Zi}

are independently and identically distributed, where Ti is the observed survival time of

ith subject, Hi(Ti) = (Di(s); 0 < s ≤ Ti) is the observed treatment history, and Zi is

a randomization group indicator. Simply, the RPSFTM assumes that the baseline latent

lifetime variable, Ui, is related to these observable random variables by the relationship

Ui =

∫ Ti

0

exp{β0Di(s)}ds, (1.2.1)

where β0 is an unknown parameter. More generally, the RPSFTM links the variable Ui to

{Ti, Hi(Ti)} by assuming Ui = ψ(Ti, Hi(Ti), β0), where β0 ∈ Rp is an unknown parameter

and ψ(·) is a known smooth function. The following properties are satisfied by:

(i) smoothness: ψ1(t, h(t), β), ψ3,p(t, h(t), β), and ψ13,p(t, h(t), β) are continuous for all β
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and almost all t, where ψ1(t, h(t), β) ≡ ∂ψ(t, h(t), β)/∂t, ψ3,p(t, h(t), β) ≡ ∂ψ(t, h(t), β)/∂βp,

ψ13,p(t, h(t), β) ≡ ∂ψ1(t, h(t), β)/∂βp.

(ii) Monotonicity: ψ(t, h(t), β) > ψ(s, h(s), β) if t > s.

(iii) Identity: ψ(t, h(t), 0) = t

(iv) Independence and Identification: There exists a unique β0 such that U(β0) |= Z,

where U(β) = ψ(T,H(T ), β).

Thus, β0 can be considered as the true value of β with a casual interpretation. Standard

nonparametric methods can be applied to test the null hypothesis β0 = 0.

In the marginal structural Cox proportional hazards model [12–14], the Cox proportional

hazards model [1, 16], which is a standard semi-parametric method, was adopted rather

than the AFT model. The parameter of interest in the marginal structural Cox proportional

hazard model is the counterfactual hazard ratio rather than survival time itself. Loeys and

Goetghebeur [14] proposed the Complier PROPortional Hazards Effect of Treatment (C-

PROPHET). Suppose that n independent individuals were randomized over experimental

exposure (Zi = 1) or control (Zi = 0). Either (Di1, Ti1) or (Di0, Ti0) is observed, where

Di1 = 1 denotes that subject i received the treatment and Ti1 is the corresponding right

censored survival time when Zi = 1. The following assumptions are required:

(i) (Di1, Ti1, Di0, Ti0, Zi) are independent and identically distributed random variables, im-

plying that potential outcomes for each subject are unrelated to the treatment or out-

come experienced by other individuals.

(ii) randomization: (Di0, Ti0, Di1, Ti1) |= Zi.

(iii) No access to treatment on the control arm. That is, Di0 = 0 for all subjects, and Ti0

represents the treatment-free survival time outcome, when randomized to control.

(iv) exclusion restriction: Pr(Ti1 > t|Di1 = 0) = Pr(Ti0 > t|Di1 = 0).
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Under the randomized treatment assignment Zi, the treatment actually received can be

written as Di = (1 − Zi)Di0 + ZiDi1. The observation time is defined as Xi = min(Ti, Ci),

with Ti = (1−Zi)Ti0 +ZiTi1, the observed survival time, possibly censored at time Ci. The

corresponding censoring indicator is denoted by δi = I(Ti ≤ Ci). Additionally, they assumed

(v) independent censoring: (Ti, Di, Zi) |= Ci or weaker assumption that censoring is non-

informative for the control arm as a whole, while in the experimental arm, censoring is

a non-informative conditional on treatment exposure.

To estimate C-PROPHET, Pr(Ti0 > t|Di1 = 1) = Pr(Ti > t|Zi = 0, Di1 = 1) and Pr(Ti1 >

t|Di1 = 1) = Pr(Ti > t|Zi = 1, Di1 = 1) are compared by using a proportional hazards

model. That is, C-PROPHET implies that the proportional hazards of treatment in the

subpopulation that has received the treatment. Within this subgroup D1i = 1, the two

hazard rate functions have a relationship as follows:

λ(t|Zi = 1, Di1 = 1) = λ(t|Zi = 0, Di1 = 1) exp(ψ0), (1.2.2)

where exp(ψ0) denotes the causal proportional hazards effect within the treatable subpop-

ulation. However, the estimator proposed by Loeys and Goetghebeur [14] is limited to the

setting of all-or-nothing compliance exposure. To overcome this limitation, Loeys et al. [17]

extended it to more general causal proportional hazards models that allow for time-constant

discrete and continuous exposure levels. Suppose that there are n independent subjects are

randomly assigned to treatment (Zi = 1) or control (Zi = 0). Let Xi denote a covariate

vector measured prior to randomization. Subjects randomized to treatment arm may receive

control therapy, but subjects on the control arm have no access to treatment and thus ad-

here to their assigned treatment. Let Ui denote that subject i’s potential exposure to the

treatment if the subject were randomized to treatment and Di = ZiUi indicated the ob-

served exposure for all subjects. That is, Ui cannot be observed in control arm but Di = 0.

Under non-informative censoring, Xi = min(Ti, Ci), and corresponding censoring indicator
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δi = I(Ti ≤ Ci) are defined. To contrast the observed hazard in the treated group versus

the unobserved subpopulation-specific hazards in the control group, the following causal

proportional hazards model is considered:

λ(t|Zi = 1, Ui = u,Xi = xi) = λ(t|Zi = 0, Ui = u,Xi = xi) exp(ψ0u), (1.2.3)

where ψ0 is the unknown parameter of interest. The fundamental problem of estimating ψ0

is that all subjects in the control group (Zi = 0) have latent Ui. Randomization is the key

for the estimation procedure. The Eq.(1.2.3) is re-written in terms of survival distributions

such as

S(t|Zi = 1, Ui = u,Xi = xi) = S(t|Zi = 0, Ui = u,Xi = xi)
exp(ψ0u). (1.2.4)

The survival probability in the control group are defined as a mixture of unobserved compliance-

specific probabilities given by

S(t|Zi = 0, Xi = xi) =
∑
u

S(t|Zi = 0, Ui = u,Xi = xi)Pr(Ui = u|Zi = 0, Xi = xi),

where Ui is discrete. Also, if Eq.(1.2.4) holds, then S(t|Zi = 0, Xi = xi) can be expressed as∑
u S(t|Zi = 1, Ui = u,Xi = xi)

exp(−ψ0u)Pr(Ui = u|Zi = 1, Xi = xi) since Pr(Ui = u|Zi =

0, Xi = xi) = Pr(Ui = u|Zi = 1, Xi = xi) by definition of Ui and randomization. They

defined Ŝ1→0(t|Xi;ψ) as

∑
u

Ŝ(t|Zi = 1, Ui = u,Xi = xi)
exp(−ψu)P̂ r(Ui = u|Zi = 1, Xi = xi).

The unknown parameter ψ0 is estimated by the value of ψ that minimizes the distance

between the Ŝ1→0(t|Xi;ψ) and the fitted treatment-free survival distribution in the control

arm conditional on Xi.

Robins and Finkelstein [15] proposed the inverse probability of censoring weighted (IPCW)

log-rank test for estimating the effect of treatment with non-compliance and a informative

censoring scheme. They assumed that there is no unmeasured confounders of censoring, that

is, the cause-specific intensity rate of censoring time λC(t), where Ci = t, does not depend on
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the possibly unobserved failure time Ti conditional on the assigned treatment Zi and recorded

historyHi(t) of all associated time variant covariatesXi(t), whereHi(t) = {Hi(s); 0 ≤ s ≤ t}.

This assumption can be expressed as λC(t|H(t), Z, T, T > t) = λC(t|H(t), Z, T > t) which

is different from the usual independent censoring assumption λT (t|Z,C ≥ t) = λT (t|Z),

where λT (t|Z,C ≥ t) denotes the cause-specific hazard of failure time Ti = t. Under the

assumption, the following model is considered

λC(t|H(t), Z, T > t) = λ0Z(t) exp{β′ZH(t)}. (1.2.5)

Since both the baseline hazards λ0Z(t) and βZ may depend on the treatment arm, this model

(1.2.5) can be separated by treatment-arm-specific models for censoring and then they are

fit to data from the two arms separately. Let X = min(T,C), Y (t) = I(X ≥ t) be the

at-risk indicator, and let δ = I(T ≤ C) be the censoring indicator. A consistent estimate of

the conditional probability that a subject i is uncensored through time t given (H(T ), Z, T )

is provided by the following time-dependent extension of the Kaplan-Meier (K-M) product

limit estimator for censoring:

K̂H
i (t) =

∏
{j:Xj<t,δj=0,Zj=Zi}

[1− λ̂Zi
(Xj) exp{βZi

Hi(Xj)}], (1.2.6)

where

λ̂Z(Xj) =
1− δj∑n

i=1 Yi(Xj) exp{βZHi(Xj)}I(Zi = Z)

is the baseline hazard estimator for censoring λ0Z in arm Z. Let K̂0
i (t) be the usual treatment-

arm-specific Kaplan-Meier estimator of the probability of being uncensored by time t in

treatment arm Zi, then the subject specific weight is defined Ŵi(t) = K̂0
i (t)/K̂H

i (t) so that

Ŵi(t) will be converged to one for all t if and only if there is no dependent censoring within

each treatment arm. Thus, IPCW K-M estimate of the treatment arm specific marginal

probability of remaining alive through time t is

ŜT (t|z) =
∏

{i:Xi<t}

1− δiŴi(Xi)I(Zi = z)∑n
k=1 Yk(Xi)Ŵk(Xi)I(Zk = z)

. (1.2.7)
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Yu et al. [18] extended semiparametric linear transformation models that include the

proportional hazards model that was considered by Cuzick et al. [19] to estimate the dis-

tribution of survival times in the treatment and control groups, conditionally not only on

observed covariates, but on the latent compliance type. Under the two-arm randomized

trials with all-or-nothing compliance and time-to-event outcomes, let Xi be a p-dimensional

covariate vector, and let Z = (Z1, . . . , Zn) denote the n-vector of treatment assignments with

0 < Pr(Zi = 1) < 1, for i = 1, . . . , n. For all possible assignment vectors z = (z1, . . . , zn) ∈

{0, 1}n, let Diz = 1 denote that a subject i received the treatment under the assignment z

and let Tiz and Ciz similarly denote the potential event time and potential right censoring

time for subject i under assignment z, respectively. Let Ui = k denote subject i's latent

class membership: Ui equals 1 if i is an always-taker (Di0 = Di1 = 1), 2 if i is a complier

(Di0 = 0; Di1 = 1), 3 if i is a never-taker (Di0 = Di1 = 0) and 4 if i is a defier (Di0 = 1;

Di1 = 0). The following assumptions are required:

(i) stable unit treatment value assumption: For any assignments z and z′, if zi = z′i,

then Diz = Diz′ , Tiz = Tiz′ and Ciz = Ciz′ for i = 1, . . . , n. Thus, Diz ≡ Dizi ≡ Diz,

where z = 0 if zi = 0, and z = 1 otherwise; similarly, Tiz ≡ Tizi ≡ Tiz and Ciz ≡ Cizi ≡

Ciz.

(ii) random sampling: (Diz, Tiz, Ciz, Xi, Zi), i = 1, . . . , n, are independent and identically

distributed from the distribution of a random vector (Dz, Tz, Cz, X, Z).

(iii) random assignment conditional on covariates: D0, T0, C0, D1, T1, C1 |= Z|X.

(iv) conditional non-null compliance class: Pr(U = 2|X = x) > 0.

(v) conditional monotonicity: Pr(D1 ≥ D0|X = x) = 1.

(vi) exclusion restriction: For k = 1, 3 and for all t, Pr(T0 ≤ t|U = k,X = x) = Pr(T1 ≤

t|U = k,X = x).

They considered three estimands such as the (conditional) complier average causal effect
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(CACE), the time t effect on the (conditional) complier survival probability (CESP), and

the (conditional) complier quantile causal effect (CQCE):

CACE(x) = E[T1 − T0|U = 2, X = x],

CESP (t;x) = Pr(T1 > t|U = 2, X = x)− Pr(T0 > t|U = 2, X = x),

CQCE(q;x) = sup{t : Pr(T1 ≤ t|U = 2, X = x) ≤ q}−sup{t : Pr(T0 ≤ t|U = 2, X = x) ≤ q}.

The causal linear transformation model for the potential event time distributions cannot be

directly used for estimation by using the observed data. Since only Ti = ZiTi1 + (1Zi)Ti0 is

observed. Thus, they proposed the following model with only using the parameters that are

related to the Ti:

log{H(Ti)} = −
3∑

k=1

(β0k + βkZi + η′kXi)I(Ui = k) + εi, (1.2.8)

where H(·) is an unspecified continuously differentiable increasing function with H(0) = 0,

the random errors εi are independent, identically distributed, and independent of Ui, Xi, Zi.

Additionally they assumed

(vii) (independent censoring of potential outcomes) For z = 0, 1, Cz |= εz, Cz |=

U |X.

Thus, the observed data are (Yi,∆i, Xi, Di, Zi) with realized values (yi, δi, xi, di, zi) for i =

1, . . . , n. The log likelihood of the observed data is a mixture of distributions depending

on the compliance type probabilities pik = Pr(Ui = k|Xi = xi) since compliance class

cannot be fully observed. The pik can be calculated with the multinomial logit model with

log{pik(θ)/pi2(θ)} = θ′kxi, for k = 1, 3, and θ = (θ′1, θ
′
3)′. The corresponding likelihood

function of (yi, δi, xi, di, zi) for i = 1, . . . , n is given by

n∏
i=1

{(pi1gi1 + pi2gi2)I(di = zi = 1) + pi3gi3I(di = 0, zi = 1) + pi1gi1I(di = 1, zi = 0)

+ (pi2gi2 + pi3gi3)I(di = zi = 0)}λ1−δi
C|X,Z(yi|xi, zi)SC|X,Z(yi|xi, zi)fX,Z(xi, zi), (1.2.9)
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where

gik =

{
λε[logH(yi) + β0k + βkzi + η′kxi]

h(yi)

H(yi)

}δi
exp {Λε[logH(yi) + β0k + βkzi + η′kxi]} ,

λC|X,Z and SC|X,Z are the conditional hazard and survivor functions of C given X,Z and

fX,Z is the density of X,Z. Since the distributions of the censoring time and covariates do

not depend on the parameters of interest, the likelihood (1.2.9) can be simplified as∏
di=zi=1

(pi1gi1 + pi2gi2)
∏

di=0,zi=1

pi3gi3
∏

di=1,zi=0

pi1gi1
∏

di=zi=0

(pi2gi2 + pi3gi3). (1.2.10)

The maximum likelihood estimator (MLE) can be obtained by maximizing the likelihood

(1.2.10) with respect to (θ, β01, β2, β03, η1, η2, η3, h1, . . . , hnu) subject to the constraints in

which h1, . . . , hnu are non-negative. They also showed that the MLE is consistent and has

asymptotic normality under the regularity conditions.

1.3 Competing Risks Analysis

So far, we have considered that there is only one event type of interest. However, in

many contexts it is likely that we can have several different types of failure. The occurrence

of one type of failure may prevent us from observing the other types of failures. The causes

of failure compete to occur or to be observed so it is referred to as competing risks. We

restrict ourselves to competing risk events where the follow-up duration of a patient ends at

the onset of the first event, and do not focus on multiple or recurrent events occurring in

a patient. For example, in cardiovascular studies, deaths from other causes are considered

as competing risks. There are two different ways to deal with competing risks setting such

as a latent failure time formulation and an approach of bivariate random variables with the

event time and the type of event. The former has the identifiability problem so the latter is

commonly used in modern competing risks analyses.

Specifically, one possible access for characterizing competing risks data is the latent failure

time. Let T̃j is the latent time variable due to cause j for j = 1, . . . , nJ , i.e, nJ is the number
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of failure types. We observe T = min(T̃1, . . . , T̃J) in the absence of censoring. Functions

corresponding to the latent failure times are called marginal. The marginal hazard function

is defined as

λ̃j(t) = lim
h↓0

1

h
P (t ≤ T̃j < t+ h|T̃j > t). (1.3.1)

Also, the marginal survival function is S̃j(t) = P (T̃j > t) = exp{−Λ̃j(t)}, where Λ̃j(t) =∫ t
0
λ̃(s)ds. Note that the marginal functions for cause j do not consider other causes which

may not be practically relevant. The marginal functions are only estimable when T̃1 |= T̃2

|= . . . |= T̃J . However, this assumption is not verifiable [20].

In addition to the marginal functions, we can consider a bivariate random variable (T, J),

where T is a random variable for the event time and J is a random variable for the event

type. Thus, it leads to crude functions such as cause-specific hazard functions [21] and cu-

mulative incidence functions (subdistribution functions). The corresponding analysis can be

performed without identifiability problems and all measures can be estimated from observ-

able data. The cause-specific hazard for failure type j is given by

λ∗j(t) = lim
h↓0

1

h
P (t ≤ T < t+ h, J = j|T > t) (1.3.2)

for j = 1, . . . , J , and is interpreted as cause j failure hazard at time t, among subjects alive at

time t with acknowledging the existence of other causes by treating failures from other causes

as censored. Even though the cause-specific hazard function has a clear interpretation, the

corresponding function S∗j (t) = exp{−Λ∗j(t)}, where Λ∗j(t) =
∫ t

0
λ∗j(s)ds, does not. It implies

that when cause j is the only cause of failure then S∗j (t) would be equal to the survival

function. Another commonly used crude function is the cumulative incidence function (CIF)

defined as

Fj(t) = P (T ≤ t, J = j). (1.3.3)

It means the probability of observing the event of interest from cause j, acknowledging

that the subject may experience the event due to other causes first. It is not the same

quantity with P (T̃j < t), because T̃j cannot be observed when T̃k < T̃j, k 6= j. The name
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subdistribution function is driven by the fact that Fj(t) does not converge to one as t is going

to infinity. It represents the overall probability of the type j event such that

lim
t→∞

Fj(t) = P (J = j),

so it is not a proper probability distribution. Corresponding subsurvival function is Qj(t) =

P (T > t, J = j) and Qj(t) + Fj(t) = P (J = j) by the law of total probability. These CIF

and subsurvival function are estimable without assuming independence between the causes

of the failure. The CIF can be expressed in terms of the cause-specific hazards:

Fj(t) =

∫ t

0

S(u)λ∗j(u)du =

∫ t

0

exp{−Λ(u)}λ∗j(u)du (1.3.4)

=

∫ t

0

exp

{
−

J∑
j=1

∫ u

0

λ∗j(v)dv

}
λ∗j(u)du,

where S(t) is the overall survival function, S(t) = 1−
∑J

j=1 Fj(t). This is often used for the

estimation of Fj(t). We can also define a cause-specific density at time t, say

fj(t) = lim
h↓0

1

h
P (t ≤ Ti < t+ h, J = j) = λ∗j(t)S(t). (1.3.5)

By the law of total probability, we have λ(t) =
∑J

j=1 λ
∗
j(t), because failure must be due to

one of the J causes, and similarly F (t) =
∑J

j=1 Fj(t) and f(t) =
∑J

j=1 fj(t).

Various nonparametric and semiparametric methods have been developed for modeling

the cumulative incidence function Fj(t). A subdistribution hazard function is considered

directly from the cumulative incidence function for cause j by Gray [22] in order to compare

the cumulative incidence of a particular type of failure amongst K different groups. The

corresponding function is defined by

λj(t) =
dFj(t)

{1− Fj(t)}
(1.3.6)

= lim
h↓0

1

h
P{t ≤ Ti < t+ h, J = j|T ≥ t or (T ≤ t and J 6= j)}.

The conditional expression includes two different scenarios: 1) the event has not occurred at

time t, and 2) the event has occurred from a different cause before t. The difference between
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λj and λ∗j is due to the risk set. The former includes subjects who have failed from other

causes, but the latter excludes subjects who have failed from other causes up to time t.

Fine and Gray [23] suggested semiparametric proportional sub-distribution by adopting

the Cox proportional hazards model, which is following:

λj(t|Z) = λj0 exp(β′jZ), (1.3.7)

where λj0 is an unspecified, nonnegative baseline subdistribution hazard and βj is a p vector

of unknown regression parameters. Also, the covariates are linear on a complementary log-

log transformed cumulative incidence function. They showed that the partial likelihood

approach is still valid for the estimation in complete data and censoring complete data and

proposed the weighted score function for the right censored data. Fine [24] generalized the

Fine and Gray model [23] by using a transformation of the cumulative incidence function to

have flexibility. Given the assumption that g(.) is a known and differentiable function, the

following model is considered:

g{Fj(t|Z)} = hj(t)− β′jZ, (1.3.8)

where hj(t) is the baseline failure probability, unspecified, invertible and strictly increas-

ing in t. By choosing g(x) = log{− log(1 − x)}, it gives the proportional subdistribution

model. However, the proposed estimation method is less efficient under this model. Also,

the proportional odds model with g(x) = logit(x) is specified.
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CHAPTER 2: SELF-TRIGGERING COX MODEL
FOR RECURRENT EVENT DATA

2.1 Introduction

Recurrent event data frequently arise when subjects may experience more than one event

during the observation period. For example, cystic fibrosis patients have have repeated

Pseudomonas aeruginosa infections, which are prognostic for progressive lung disease and

are highly associated with the mortality and morbidity in early life. The most common

approaches to modeling recurrent event data are the Andersen and Gill (AG) model [3], the

Prentice, Williams and Peterson total time (PWP-CP) and gap time (PWP-GT) models [4],

and the Wei, Lin and Weissfeld model (WLW) model [6]. Other models, such as Lee, Wei

and Amato model [25] based on the marginal Cox model or frailty models [26] may also

be considered. While these model specifications target different endpoints and may have

different interpretations, the methods have been compared in simulation experiments and real

data analyses in terms of model fit [5, 7, 8, 27, 28]. The application of such methods generally

ignores previous event history when modeling the risk of future events, with the focus on

the effects of baseline covariates, like treatment, on the recurrent event trajectory. The

incorporation of time-dependent covariates capturing this history may improve a model fit

and prediction, but may also obscure the effects of time-independent covariates. Additionally,

it is difficult to deal with a large number of events when either of the PWP or WLW

approaches is applied.

There is limited literature discussing the potential use of event history for modeling the

occurrence of recurrent events. Recently, Chen and Chen [29] proposed an m-memory Cox-
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type self-triggering intensity model to account for the correlation among the occurrence of

events by utilizing a time-dependent decay function that describes the effects of previous

events. However, this work neither provides a formal statistical procedure to test if such

self-triggering effect exists, nor demonstrates the improvements that such effects may have

on model fit and the prediction of future event occurrences. This Chapter addresses these

issues.

The remaining sections are organized as follows. In Section 2.2, we briefly review the

Cox-type model with self-triggering scheme and discuss the use of partial likelihood for

parameter estimation and inference. In addition, we propose a hypothesis testing procedure

for the existence of the triggering scheme. Evaluation of model prediction is also discussed.

In Section 2.3, we will report simulation studies conducted to examine the feasibility of the

partial likelihood estimation and hypothesis testing procedures. The cystic fibrosis registry

data is analyzed in Section 2.4 with comparison between different modeling approaches in

terms of prediction accuracy.

2.2 Inference

2.2.1 Notations, Model, and Estimation

Let Tij denote the event occurrence time for the jth event of subject i, and let tij be the

observed realization of Tij. Letting Ci denote the censoring time, one can define Ni(t) =

N∗i (t∧Ci), where N∗i (t) is the number of events that are observed during the interval [0, t] for

subject i, and Yij(t) = I(Ci ≥ t), where I(A) is an indicator function of event A. Also, let

Zi = (Zi1, . . . , Zip)
′ denote the p-vector covariate with corresponding regression parameters

γ = (γ1, . . . , γp)
′ in a Cox-type regression model that also includes a non-increasing function

which accommodates the self-triggering effects of previous events. The intensity function is
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given by

λi(t) = λ0(t) exp

{
γ′Zi +

∫ t

0

ρ(t− s)dNi(s)

}
, (2.2.1)

where ρ is the self-triggering function that describes the decaying effects of previous events.

Assuming that ρ(x) = α exp(−βx) with unknown parameters α ≥ 0 and β ≥ 0, the model

(2.2.1) can then be written as

λi(t) = λ0(t) exp

γ′Zi +

Ni(t−)∑
j=1

α exp{−β(t− tij)}I{Ni(t−) > 0}

 , (2.2.2)

where the parameter α controls the magnitude of the cumulative effects from previous events

and parameter β controls for the decay rate of the function. When α = 0, model (2.2.2)

assumes no self-triggering effects from previous events. The parameter values α 6= 0 and

β > 0 imply that more recent events have stronger effects than more distant events, while

α 6= 0 and β = 0 indicate non-differential effects from previous events and lead to a regular

Cox-type model with the total number of events, N(t−), as a time-varying covariate.

It is important to recognize that model (2.2.2) can be explosive. The intensity may

become arbitrarily large when either α is large or β is close to 0, and the process may

become non-stationary under these conditions. To address this issue, one may restrict to

bounded ρ by assuming there is no effect of previous events after either a certain time lag or

after a certain number of previous events. Chen and Chen [29] considered an m-lag model,

which is defined by

λi(t) = λ0(t) exp

γ′Zi +
∑

j∈`(t,m)

α exp{−β(t− tij)}

 , (2.2.3)

where `(t,m) = {j : max(N(t−) −m + 1, 1) ≤ j ≤ N(t−),m ∈ N+, N(t−) > 0}. That is,

the occurrence rate is influenced by the nearest m events in the history. Although m can be

predetermined by a researcher based on prior knowledge, it can also be determined from the

observed data based on cross-validation or likelihood based information measures, like the

Akaike information criterion (AIC). Of course, model (2.2.3) is equivalent to model (2.2.2)

as m→∞.
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Let ni denote the total number of observed events of subject i by Ci, i = 1, . . . , n. As-

suming Ci is independent of each Tij, conditionally on Zi, Chen and Chen [29] proposed a

partial likelihood function for θ = (γ, α, β)′, which is defined as

L(θ) =
n∏
i=1

ni∏
j=1

[
exp{φi(tij,m; θ)}∑

k∈R(tij) exp{φk(tij,m; θ)}

]dNi(tij)

, (2.2.4)

where φi(t,m; θ) = γ′Zi +
∑

j∈`(t,m) α exp{−β(t− tij)} is the aggregated effects and R(tij) =

{k : Ck ≥ tij} =
∑

i Yij(tij) is the set of subjects who are at risk at time tij. The estimator

θ̂ can be defined as a solution of ∂ log{L(θ)}/∂θ = 0. The large sample properties of θ̂

follow from standard partial likelihood theory given that the self-triggering function satisfies

certain regularity conditions. Thus, n1/2(θ̂ − θ) is consistent and asymptotically zero mean

with covariance matrix Σ−1, where

Σ = E

[∫ τ

0

{
∂θφ(t,m; θ)− E[{∂θφ(t,m; θ)}Y (t) exp{φ(t,m; θ)}]

E[Y (t) exp{φ(t,m; θ)}]

}⊗2

Y (t)λ(t)dt

]
. (2.2.5)

The covariance matrix Σ can be consistently estimated with

Σ̂ = n−1

n∑
i=1

∫ τ

0

{
∂θφ(t,m; θ̂)−

∑n
j=1{∂θφj(t,m; θ̂)}Yj(t) exp{φj(t,m; θ̂)}∑n

j=1 Yj(t) exp{φj(t,m; θ̂)}

}⊗2

× Yi(t) exp{φi(t,m; θ̂)}dΛ̂0(t)dt,

(2.2.6)

where Λ̂0(t) =
∫ t

0
dN̄(s)∑n

j=1 Yj(s) exp{φj(s,m;θ̂)} , and N̄(s) =
∑n

i=1Ni(s).

2.2.2 Testing for Self-Triggering Effects

As mentioned previously, whether the event occurrence rate is independent of past events

is determined by the parameter α. Testing such assumption is of practical interest in under-

standing the natural history of disease. To test the assumption, one tests if α equals zero.

Under the null hypothesis α = 0, one may naively use likelihood-based methods such as like-

lihood ratio test, score test, or Wald-type test. However, when α = 0, the parameter β is not

identifiable in model (2.2.2). The classical large sample properties of these likelihood-based
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tests may not be valid under such non-identifiability [27, 30–32]. To avoid such issues, we

propose the following testing procedure.

Given a sequence of fixed β(k), k = 1, . . . , K < ∞, we estimate γ and α by maximizing

L(θ(k)) in (2.2.4), where θ(k) = (γ, α, β(k))′ when β = β(k). Let γ̂(k) and α̂(k) denote the

maximizer of the function for γ and α, respectively. A Wald-type test statistic can be

defined by α̂(k)/se(α̂(k)), where se(α̂(k)) denotes the standard error of α̂(k). Under the null

hypothesis that α equals zero, the test statistic asymptotically follows a standard normal

distribution. However, to make a joint inference for α given different values of β, one requires

an adjustment for multiple testing. For simplicity, we adopt the Bonferroni correction to

account for multiple comparisons in these dependent hypothesis tests. If at least one p-value

is less than the predetermined size divided by K, the null hypothesis is rejected so that the

family-wise type I error probability can be controlled under the predetermined size. In the

simulations below, we study the performance of each individual testing result and compare

it with the overall procedure which adjusts for the multiple comparisons.

2.2.3 Prediction

Including event history as covariates is of importance for model specification, as well as

for model prediction for future events. Let pij(w; t) denote the probability of at least one

event occurring within a window (t, t+w], given that j events have occurred before t. Here,

w can be considered as a period of time when the occurrence of an event is of interest after

time t. One can show that the probability can be written as

pij(w; t) = P (Ti(j+1) ∈ (t, t+ w]|Tij ≤ t, Ti(j+1) > t)

= 1− Si(j+1)(t+ w)/Si(j+1)(t),

(2.2.7)

where Si(j+1)(t) = exp{−
∫ t
tij
λi(s)ds} is the conditional survival function of the (j + 1)th

event given that the jth event occurred at tij. If no event occurred before t, i.e., j = 0,
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we would let ti0 = 0 and Si1(t) = exp{−
∫ t

0
λi(s)ds} is the survival function of the time

to the first event. One may simplify pij(w; t) as pij(w; t) = 1 − exp{Λi(t + w; t)}, where

Λi(t+ w; t) =
∫ t+w
t

λi(s)ds is the cumulative hazard function in the window (t, t+ w]. One

can estimate pij(w; t) by

p̂ij(w; t) = 1− exp{Λ̂i(t+ w; t, θ̂)},

where Λ̂i(t + w; t, θ̂) =
∫ t+w
t

dΛ̂0(s) exp{φi(s,m, θ̂)}ds with θ̂ and Λ̂0 defined in Subsection

2.2.1.

To evaluate the performance of the prediction, one may apply the receiver operating

characteristic curve (ROC) for binary classification. This curve is created by plotting true

positive rate (sensitivity) against false positive rate (1-specificity) at various threshold prob-

abilities. Given a threshold probability q, one predicts at least one event would occur in

(t, t + w] if p̂ij(w; t) > q. Let δi = I{p̂ij(w; t) > q} denote the indicator of the predicted

event occurrence. The true positive rate under q is estimated by n−1
∆

∑n
i=1 I(δi = ∆i), where

∆i = I{Ni(t+w)−Ni(t) > 0} and n∆ =
∑n

i=1 ∆i, while the false positive rate is estimated

by n−1
∆

∑n
i=1 I(δi = 1−∆i). To summarize the accuracy of a model, an area under the curve

(AUC) may be calculated. However, when two ROC curves are compared, one may not be

interested in the entire range of the false positive rate. As an alternative, the partial AUC

that considers the area under only a portion of the ROC curve may be calculated and may

be more clinically relevant [33].

2.3 Simulation Studies

Extensive simulation experiments were conducted to demonstrate the feasibility of our

proposed method. We considered sample sizes n = 100, 400, 1000 with different α, β, and m.

For subject i, the recurrent event process was generated under the intensity function (2.2.3)

with λ0(t) = 1. We generated the first event time ti1 by solving the equation ti1 exp(γzi) +
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log(ui1) = 0, with subsequent event times obtained recursively by solving the equation

∫ ti`

ti(`−1)

exp

γ′zi +
∑

j∈`(t,m)

α exp{−β(t− tij)}

 dt+ log(ui`) = 0,

for ti`, ` = 2, . . . , ni, until ti(ni+1) is larger than the censoring time Ci, with ui` independently

drawn from a uniform distribution on the interval (0,1), and Ci randomly drawn from a

uniform distribution on the interval (0,4). The covariate zi = 1 if i is even, and 0 otherwise.

Table 2.1 shows the simulation results when γ = −0.5, α = 0.5, and β = 0.5, 1, with

each scenario replicated 1, 000 times. We report mean (MEAN), median (MED), empirical

standard deviation (ESD), defined by the sample standard deviation of the replicated esti-

mates, average of the replicated standard deviation estimates (ASD), and empirical coverage

probability (CP) at a 0.95 nominal level. In Table 2.1, the estimated γ and α have biases

close to 0 but the bias of β is relatively large when m = 1 and n = 100. However, the

median of the repeated estimates for β is close to the true value under this small sample

size. The bias decreases as the sample size increases and the number of lags increases. The

variance estimation is generally close to the empirical variance, with the empirical coverage

probability close to the nominal level.

Table 2.2 shows the simulation results for testing α = 0 when the true α = 0, 0.1, 0.2,

with γ = −0.5, β = 0.5 and m = 2. We implemented our hypothesis testing procedure

that addresses the potential non-identifiability issues. The sample size n ranges from 100 to

1,000. We choose five different β values and estimate γ and α with β fixed at one of those

five values. We report the average estimated values for γ and α from 1,000 repeated data

generations. The empirical size of the test (size), defined as the percentage of rejections

when the null hypothesis is true, i.e., α = 0, and the empirical power (power), defined as

the percentage of rejections when the null hypothesis is false, i.e., α 6= 0, are shown in Table

2.2. Regardless of the true value of β, the mean estimates of α increases as the given β

increases. The bias of α̂ is the smallest when β equals the true value except when α = 0. As
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Table 2.1: Simulation Results when γ = −0.5, α = 0.5, and β = 0.5 (first half), β = 1
(second half)

m 1 2 3 4

n 100 400 1000 100 400 1000 100 400 1000 100 400 1000

MEAN -0.50 -0.50 -0.50 -0.51 -0.50 -0.50 -0.51 -0.50 -0.50 -0.51 -0.50 -0.50
MED -0.50 -0.50 -0.49 -0.50 -0.50 -0.50 -0.51 -0.50 -0.50 -0.51 -0.51 -0.50

γ̂ ESD 0.14 0.07 0.04 0.14 0.06 0.04 0.13 0.06 0.04 0.13 0.06 0.03
ASD 0.15 0.07 0.04 0.14 0.06 0.04 0.13 0.06 0.04 0.13 0.06 0.04
CP 95 94 95 94 95 95 95 95 94 95 94 94

MEAN 0.52 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
MED 0.52 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49

α̂ ESD 0.21 0.09 0.06 0.11 0.05 0.03 0.08 0.03 0.02 0.05 0.02 0.01
ASD 0.21 0.10 0.06 0.11 0.05 0.03 0.08 0.03 0.02 0.05 0.02 0.01
CP 95 95 95 94 94 95 95 95 94 94 96 94

MEAN 1.19 0.56 0.52 0.62 0.51 0.49 0.53 0.49 0.49 0.49 0.49 0.49
MED 0.49 0.49 0.49 0.48 0.49 0.48 0.46 0.48 0.48 0.47 0.49 0.49

β̂ ESD 4.97 0.44 0.25 0.69 0.23 0.13 0.37 0.15 0.09 0.25 0.11 0.07
ASD 6.43 0.48 0.25 0.76 0.22 0.13 0.37 0.15 0.09 0.25 0.11 0.07
CP 90 93 94 93 93 95 93 93 93 93 94 94

MEAN -0.51 -0.49 -0.50 -0.51 -0.50 -0.50 -0.51 -0.50 -0.50 -0.51 -0.50 -0.50
MED -0.51 -0.49 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.51 -0.50 -0.49

γ̂ ESD 0.15 0.07 0.04 0.14 0.07 0.04 0.14 0.06 0.04 0.14 0.07 0.04
ASD 0.15 0.07 0.04 0.14 0.07 0.04 0.14 0.07 0.04 0.14 0.07 0.04
CP 94 93 95 94 94 95 95 96 95 95 94 94

MEAN 0.53 0.50 0.50 0.51 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49
MED 0.53 0.50 0.50 0.51 0.50 0.49 0.49 0.49 0.49 0.49 0.50 0.49

α̂ ESD 0.27 0.10 0.06 0.14 0.06 0.04 0.10 0.04 0.03 0.08 0.04 0.02
ASD 0.24 0.10 0.06 0.14 0.06 0.04 0.10 0.04 0.03 0.08 0.03 0.02
CP 94 94 95 94 95 95 93 96 93 95 94 95

MEAN 2.39 1.14 1.05 1.47 1.04 1.02 1.13 1.00 0.99 1.04 1.02 1.00
MED 0.97 0.94 0.98 1.01 0.98 1.00 0.98 0.98 0.98 0.97 1.00 0.99

β̂ ESD 7.05 0.97 0.45 3.31 0.38 0.23 1.10 0.28 0.18 0.53 0.23 0.14
ASD 6.38 0.95 0.44 2.43 0.41 0.24 0.92 0.29 0.17 0.57 0.23 0.14
CP 88 91 92 90 93 95 91 94 94 93 93 94

expected, the likelihood ratio test (LRT) has an inflated type-I error probability when the

null hypothesis is true, since the usual regularity conditions are not satisfied. We observe

the conservativeness of the Bonferroni correction (BC) under the same scenario, with the

empirical size well below the nominal level. The statistical power of the Boferroni correction
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Table 2.2: Simulation Results for Hypothesis Testing H0 : α = 0

n 100 400 1000

β γ̂ α̂ power γ̂ α̂ power γ̂ α̂ power

0 -0.510 -0.012 5.2 -0.501 -0.001 4.0 -0.499 -0.002 4.9
0.25 -0.510 -0.014 5.5 -0.501 -0.001 3.6 -0.499 -0.003 5.0
0.5 -0.510 -0.016 5.1 -0.501 -0.001 4.3 -0.499 -0.004 4.8
0.75 -0.510 -0.017 5.3 -0.501 -0.001 4.5 -0.499 -0.005 4.7
1.0 -0.509 -0.018 4.7 -0.501 -0.001 4.3 -0.499 -0.006 5.2

BC 1.6 1.3 1.8

LRT 6.4 6.2 6.3

0 -0.506 0.061 9.7 -0.506 0.075 27.1 -0.499 0.075 57.7
0.25 -0.504 0.073 9.8 -0.504 0.089 30.3 -0.497 0.089 61.3
0.5 -0.503 0.082 10.7 -0.504 0.098 31.5 -0.498 0.098 62.3
0.75 -0.503 0.087 10.8 -0.505 0.104 30.8 -0.498 0.103 62.0
1.0 -0.504 0.091 10.3 -0.506 0.108 29.9 -0.500 0.107 60.6

BC 4.3 18.3 43.7

LRT 8.9 30.8 51.9

0 -0.510 0.154 29.7 -0.510 0.150 80.5 -0.504 0.151 99.2
0.25 -0.506 0.180 32.5 -0.506 0.176 84.9 -0.501 0.176 99.4
0.5 -0.506 0.196 33.7 -0.506 0.192 87.0 -0.500 0.192 99.5
0.75 -0.507 0.206 33.5 -0.507 0.202 86.1 -0.502 0.203 99.3
1.0 -0.509 0.213 33.7 -0.509 0.209 85.1 -0.504 0.210 98.9

BC 19.0 71.0 98.5
LRT 25.7 72.5 99.0

γ = −0.5, β = 0.5, and α = 0 (first part), α = 0.1 (second part), α = 0.2 (third part)

tends to be lower than the likelihood ratio test when the null hypothesis is false, especially

when the sample size is small. In contrast, the individual Wald tests with a given β have

size close to 0.05 and have the highest powers in every scenario. This occurs because of the

high correlation of the test statistics at different values of β, exceeding 0.90 for all pairs of

β offering providing modest gains in power.
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2.4 Analysis of Cystic Fibrosis Registry Data

Cystic fibrosis (CF) is an inherited disease of the secretory glands that causes thick and

sticky mucus in lungs and blocks airways. The buildup of mucus facilitates bacterial growth

in the lungs and repeated lung infections are common amongst CF patients. The most

common pathogen observed in the lungs of CF patients is Pseudomonas aeruginosa (Pa)

[34]. Recurrent Pa infections may be used to characterize the progression of chronic lung

disease in young CF patients.

In the 2007 CF Registry data, there are 6, 823 subjects who were born after 1997 and

had at least one follow-up before the end of year 2007. We considered gender, genotype,

and a diagnostic group as the time-independent covariates. Among those patients, 50.3%

were male. Regarding genotype, 68.8% were homozygous (∆F508/∆F508), 25.1% had a

severe mutation in their genotype (∆F508/non-∆F508-I, II, III), and 6.1% had a mild mu-

tation in their genotype (∆F508/non-∆F508-IV, V). The diagnostic group was defined by

the method of diagnosis of CF. Among the CF registry patients, 23.9% were diagnosed

by prenatal/neonatal screening (SCREEN), 18.6% were diagnosed by meconium ileus (MI),

5.7% were diagnosed by positive family history (FH), and 51.6% were diagnosed based on

symptoms other than meconium ileus (SYMPTOM). We chose homozygous genotype and

prenatal/neonatal screening groups as the reference categories for the genotype and diagnos-

tic group variables, respectively. We excluded patients without complete information. The

majority of patients who have missing data lack genotype information. The analysis below

included 4, 590 individuals.

We applied and compared five different modeling approaches including AG, PWP-CP,

PWP-GT, WLW and self-triggering Cox (STC) models. The AG model is a generalization

of the proportional hazards model to the intensity function of the repeated events which

assumes that the time-independent covariates have multiplicative effects. This model only
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can introduce the influence of the prior events on future recurrences through the time-

dependent covariates. The corresponding intensity function is given by

λi(t) = λ0(t) exp{γ′Zi}

with the risk set indicator Yis(t) = I(Ti,s−1 < t ≤ Tis) for s = 1, . . . , S, S = ni + 1 and the

risk set at time t by
∑

is Yis(t). Prentice, Williams, and Peterson employed stratified AG

models by considering two different time scales, a total time from the beginning of the study

and a gap time from the most recent preceding occurrence of an event. The PWP models

have restricted risk sets, i.e, the risk set for the (s + 1)th event contains only subjects who

have experienced s events and have stratum-specific hazards. The total time (PWP-CP)

and gap time (PWP-GT) models are given, respectively, as follows:

λis(t) = λ0s(t) exp{γ′sZis}

and Yis(t) = I(Ti,s−1 < t ≤ Tis), and

λis(t) = λ0s(t− ts−1) exp{γ′sZis}

and Yis(t) = I(Tis − Ti,s−1 > t), where λ0s is an unspecified event-specific baseline hazard

function for the sth event, Ti0 = 0 and TiS = Ci. The corresponding risk set at time t for

each stratum s is
∑

i Yis(t). Thus, as s increases, the number of subjects in the risk set may

decrease dramatically and it may be difficult to obtain stable parameter estimates for large

values of s. The WLW model is based on the marginal Cox models. That is, each event is

separately modeled on the total time scale with estimation within a given stratum ignoring

information in other strata. To accommodate the dependence between the recurrent event

times, a robust sandwich covariance matrix estimate is obtained. The hazard functions can

be written

λis(t) = λ0s(t) exp{γ′sZis}

with Yis(t) = I(Tis ≥ t) and the risk set at time t in the sth stratum is
∑

i Yis(t). This

method also has instability issues when the risk set becomes small for larger s. Finally, as
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we mentioned in Section 2.2.1, the proposed STC model can be regarded as a generalized

Cox-type model represented by the hazard function (2.2.3) with additional parameters α, β,

and optionally m.

We divided the 4, 590 subjects into two groups: a training group and a test group. We

randomly selected 3, 590 subjects as a training set for model estimation and building, and

then used the rest of the subjects as a test set for the evaluation of prediction. The average

number of events per subject in the training set is 1.8, with one individual having 39 repeated

infections. Thus, the maximum number of possible strata based on the previous number of

events for PWP and WLW methods is 40. Very few subjects would appear in some later

strata if one uses a highly stratified approach. Several modifications have been proposed to

deal with this issue [7, 35]. Firstly, one may ignore the risk set size issue and keep all strata in

the analysis despite the fact that the within-strata hazard estimates are unstable. Secondly,

one may delete the data after a certain number of events. Thirdly, one may aggregate the

strata with a small number of subjects, especially those with a high frequency counts. Since

among the 40 possible strata, 23 strata have less than 10 subjects, we adopted the third

approach when applying PWP and WLW. We considered the two different strata schemes,

denoted by s1 and s2, respectively. Up to the third event in s1 and the fifth event in s2,

each stratum (event) has its own stratum-specific regression coefficients. However, a single

model is considered for the later events.

For the conventional PWP and WLW methods, one can have either an overall estimate or

event-specific estimates for the covariate effects. For WLW, the overall estimate is obtained

as the weighted average of the event specific estimates minimizing the corresponding variance,

while for PWP, the overall estimate is obtained by fitting a single model to all events with

the same covariates. We chose six different lag numbers (m = 1, 2, 3, 4, 5,∞) under the STC

model. The estimation results under different models are shown in Table 2.3. To choose the

number of lags (m) in the self-triggering models, −2 log{L(θ̂)} values were calculated, where
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Table 2.3: Parameter Estimates under Various Models.

Gender Severe Mild MI FH SYMPTOM α β
Model (0:male)

STC

m=1 0.121* -0.020 -0.395* -0.048 -0.119* 0.013 1.731* 0.603*
(0.024) (0.028) (0.073) (0.041) (0.060) (0.029) (0.033) (0.031)

m=2 0.112* -0.025 -0.386* -0.047 -0.116 0.011 1.106* 0.549*
(0.024) (0.028) (0.073) (0.041) (0.060) (0.029) (0.021) (0.028)

m=3 0.110* -0.023 -0.390* -0.052 -0.118* 0.003 0.867* 0.514*
(0.024) (0.028) (0.073) (0.041) (0.060) (0.029) (0.017) (0.028)

m=4 0.107* -0.025 -0.389* -0.058 -0.126* -0.006 0.743* 0.478*
(0.024) (0.028) (0.073) (0.041) (0.060) (0.029) (0.016) (0.027)

m=5 0.106* -0.027 -0.396* -0.063 -0.130* -0.015 0.660* 0.452*
(0.024) (0.028) (0.073) (0.041) (0.060) (0.029) (0.016) (0.027)

m=∞ 0.094* 0.001 -0.448* -0.097 -0.178* -0.082* 0.560* 0.801*
(0.025) (0.029) (0.074) (0.042) (0.061) (0.029) (0.020) (0.041)

AG 0.176* -0.038 -0.595* -0.114 -0.245* -0.042
(0.031) (0.036) (0.088) (0.052) (0.075) (0.037)

PWP-CP 0.121* -0.023 -0.374* -0.026 -0.081 0.070*
(s1) (0.028) (0.032) (0.083) (0.049) (0.069) (0.034)

0.110* -0.031 -0.356* -0.038 -0.102 0.051
(s2) (0.028) (0.032) (0.082) (0.048) (0.069) (0.033)

PWP-GT 0.106* -0.026 -0.370* -0.046 -0.113 0.002
(s1) (0.025) (0.028) (0.076) (0.043) (0.060) (0.029)

0.102* -0.031 -0.358* -0.046 -0.122* -0.010
(s2) (0.024) (0.028) (0.076) (0.042) (0.059) (0.029)

WLW 0.178* -0.054 -0.660* -0.144 -0.339* -0.130*
(s1) (0.048) (0.055) (0.137) (0.078) (0.113) (0.054)

0.198* -0.051 -0.698* -0.164* -0.355* -0.125*
(s2) (0.052) (0.061) (0.143) (0.083) (0.123) (0.060)

†Estimated standard errors in parentheses.
†† Superscript * indicates that the corresponding p-value is less than 0.05.

a model with a smaller −2 log{L(θ̂)} value is preferred. The corresponding −2 log{L(θ̂)}

values for each m are 100266, 100027, 99974, 99931, 99937, and 100388 for m = 1, . . . , 6,

respectively. The smallest value occurs when m = 4, suggesting that the four most recent
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events be used in the STC model.

To test the existence of the self-triggering effect, the Bonferroni correction method was

used. When fitting the STC model with m = 4, referred to as STC(4), we estimated

other parameters with β fixed at five different values, 0, 0.25, 0.478, 0.75, and 1.0, which is

centered at the β estimate in the selected STC model. Five Wald-type test statistics and their

corresponding p-values for α = 0 were calculated. All five p-values are less than 0.01, which

suggests that the self-triggering effect is statistically significant. The coefficient of gender

γ̂1 = 0.110 indicates that the estimated relative risk for Pa infection is exp(0.110) = 1.116.

That is, the Pa infection is more likely to occur in females than in males. Similarly, one

can conclude that the infection is less likely to occur in the mild mutation genotype group

compared to the homozygous group and in the patients who are diagnosed via family history

compared to the patients diagnosed by prenatal or neonatal screening. The same conclusions

about covariate effects can be drawn under the AG model. The other models evidence

somewhat different results even within the same stratification schemes. Additionally, we

note that the coefficient estimates under the WLW model are greater than those from other

competing models. Total time models, such as AG, PWP-CP, WLW, and STC tend to

produce larger estimated covariate effects. This may occur because total times within a

patient may be highly correlated, resulting in a carry-over effect. Such effects have been

previously documented with the WLW model [5, 36–38].

The model prediction using the test set with 1,000 subjects was implemented using the

fitted models from the training set, where possible. The estimated probability of a new

event occurring during 2004 is calculated based on data at the end of 2003. Among 1, 000

subjects in the test data, we do not consider 456 subjects who are censored before 2004.

Also, the WLW method is based on the marginal models which do not provide the estimated

predictions. The left panel of Figure 2.1 displays ROC curves and AUC values of each model,

while the right panel is a zoom-in on the portion of the ROC curves where the false positive
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Figure 2.1: ROC curves and partial ROC curves

Table 2.4: Two Paired ROC Curves Comparison Tests’ p-values by AUC and pAUC

Model M1 M2 M3 M4 M5 M6 M7 M8 M9

M1: STC(1) <.001 <.001 <.001 .002 .803 .113 <.001 <.001

M2: STC(2) .001 .091 .187 <.001 .013 .190 .408 .484

M3: STC(3) .004 .301 .936 <.001 .002 .040 .044 .067

M4: STC(4) .013 .646 .504 <.001 <.001 .024 .035 .045

M5: AG <.001 <.001 <.001 <.001 .001 <.001 <.001 <.001

M6: PWP-CP(s1) .649 .050 .015 .011 <.001 .050 .028 .024

M7: PWP-CP(s2) .880 .102 .037 .030 <.001 .175 .390 .255

M8: PWP-GT(s1) .009 .797 .788 .948 <.001 .013 .037 .782

M9: PWP-GT(s2) .012 .867 .694 .857 <.001 .014 .035 .832

rate is less than or equal to 0.2.

We used the test method proposed by [39] for the comparison of the AUC and partial

AUC using bootstrapped variance estimation [40]. The corresponding null hypothesis is

H0 : A1 = A2 and the alternative hypothesis is H0 : A1 6= A2, where A1 and A2 are the two
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(partial) AUCs. All possible tests for the pairwise model comparisons are performed. Table

2.4 shows the corresponding p-values. Specifically, the lower triangular values represent p-

values for the AUC comparisons, while the upper triangular values represent p-values for

the partial AUC comparisons. The prediction performance of the STC(4) model is not

significantly different from the PWP gap time model in terms of AUC, using either 4 (s1) or

6 (s2) strata. However, the underlined p-values in Table 2.4 indicate that the partial AUC

of the STC(4) model is significantly different from all other competing models, including

PWP gap time model. The STC(3) model has AUC and pAUC that are quite comparable

to STC(4) and are significantly different from those for the non-STC models in Table 2.4.

2.5 Discussion

In this Chapter we examined the Cox model with self-triggering effects for recurrent event

data, and compared the model to the currently existing methods. To test the existence of

the self-triggering effect, the parameter beta describing the decay rate of the triggering effect

was fixed with other unknown parameters estimated and used to construct a test statistic.

This can address the non-identifiability of the STC model under the null of no triggering

effect. The Bonferroni correction procedure was proposed to adjust for multiple testing at

different values of beta. Interestingly, the adjustment appears to be rather conservative,

with the simulations indicating that tests at fixed beta are highly correlated and a test at

a single beta may provide greater power than the multiple testing approach. This requires

further investigation. As an alternative, supremum score tests have been advocated in other

testing scenarios with non-identifiability under the null and might be utilized in the current

setting [30–32]. This is a topic for future research.

In analysis of the cystic fibrosis data, we demonstrated that the extended Cox model with

a self-triggering scheme may yield significant gains in prediction of future events compared

to available models. One particular characteristic of this dataset is that it includes fairly

34



large number of infections per subject, which creates difficulties in defining strata for the

PWP and WLW methods. The STC model accommodates such data more naturally, with a

growing number of recurrent events easily accommodated by the intensity function (2.2.3).
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CHAPTER 3: COX MODEL FOR RECURRENT EVENT DATA
WITH INSTRUMENTAL VARIABLE

3.1 Introduction

Recurrent failure events are frequently considered in a longitudinal study when subjects

could possibly experience more than one event during the observation period. To explore the

relationship between the effects of covariates and the correlated failure times, the Anderson-

Gill (AG) model is commonly applied. However, when some patients do not adhere to their

assigned treatments in a randomized trial, the standard intention-to-treat (ITT) analysis,

which focuses on the causal effect of assignment of treatment rather than the causal effect

of receipt of treatment, may not properly estimate the effect of treatment on the outcome.

Another naive method is analyzing with received treatment. It is likely to be confounded

by determinants of compliance [41]. The use of instrumental variable methods helps us to

consistently estimate the average causal effect of an exposure on some outcome of interest

even in the presence of latent confounding. Abadie [42] suggested new IV estimators for

general response models with covariates. In this Chapter, we will apply the weighting scheme

of Abadie [42] into the Cox and AG models for analyzing survival data with non-informative

right censoring. We demonstrate our approach via comprehensive simulation studies and a

colorectal-cancer screening data analysis.

Instrumental variable (IV) methodology is one approach to deal with the issue of unmea-

sured confounders. It has been actively explored and discussed over the last few decades in

the econometrics, epidemiology, statistics, and biomedical sciences [10, 41, 43–46].

An important application of IV methods is to estimate the effect of receiving treatment
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in randomized trials with non-adherence, i.e., some individuals do not comply with the

assignment treatment. When there is noncompliance, the standard intention-to-treat (ITT)

effect is different from the effect of receiving the treatment versus the control. Since the

ITT measures the effect of assignment of treatment rather than the effect of actual receipt

of treatment [42, 45, 47–49].

A special type of noncompliance, all-or-nothing (all-or-none) compliance, is that all sub-

jects are immediately categorized whether they comply or not with their assigned treatment

after randomization. That is, there is no partial compliance in this situation [50]. In con-

trast, an application in partial compliance requires strong assumptions for identifiability.

Thus, the all-or-none compliance status is commonly considered [14, 18, 47, 48, 50, 51].

To deal with survival outcome under noncompliance, several methods have been devel-

oped and implemented. Baker [51] suggested a likelihood-based approach for discrete time

survival data to estimate the difference between complier hazards in treatment and con-

trol group by considering death as competing risk. Loeys and Goetghebeur [14] proposed

the marginal structural Cox proportional hazards model for a compliers proportional haz-

ards effect of treatment and derived estimating equation for it under independent censoring.

However, they did not consider covariates, that is a generalization of the Mantel-Haenszel

estimator. Cuzick et al. [19] applied a partial likelihood method by accommodating covari-

ates by assuming independence of covariates and compliance class. Also, they explored a full

likelihood when covariates are not independent of compliance, but it was too complicated to

estimate. Gong [50] developed several parametric potential outcome survival models with

considering ignorable and non-ignorable censoring schemes. Based on Baker [51] and Nie

et al. [52] estimated the effect of treatment on survival at specific times by adopting a non-

parametric approach in the presence of noncompliance and administrative censoring. Nie

et al. [52] included always-takers, unlikely that Baker [51] only considered compliers and

never-takers. Additionally, they gained efficiency over the standard IV method by using the
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mixture structure in the data. Lin et al. [53] considered a semi-parametric linear transfor-

mation model and proposed a two-stage estimation procedure to estimate the parameters.

MacKenzie et al. [54] extended Cox’s proportional hazards model by adding additional ad-

ditive term into intensity function by assuming approximate orthogonality of an instrument

with latent confounders. Thus, they derived an estimator from the score equation of the

partial likelihood similar to Cox model. Yu et al. [18] used semi-parametric transformation

models for the distribution of survival time, conditionally on covariates and latent compli-

ance type. Maximum likelihood is used to estimate the parameters of the transformation

models and applied expectation-maximization (EM) algorithm to overcome the computa-

tional difficulties from the mixture structure and the infinite dimensional parameter in the

models. They considered the complier average causal effect, the complier effect on survival

beyond time t, and the complier quantile effect. Like Cuzick et al. [19], they also allow

for always-takers with a positive probability but they allow the association between covari-

ates and response to vary with compliance class. A few papers have considered trials with

repeated outcome measures in the presence of noncompliance. Yau et al. [55] extended

Imbens and Rubin [56] by allowing the baseline covariates and missing in outcomes, Small

et al. [57] proposed a random effects model approach for longitudinal binary outcomes, and

OMalley [58] presented the concept of lagged predictors and outcomes to incorporate IV in

longitudinal analysis.

The remaining sections are organized as follows. In Section 3.2 we introduce notation,

model, estimand and IV assumptions mostly based on [42] and describes the method of

estimation and asymptotic properties of the estimators. To demonstrate the feasibility of

our proposed method, simulation studies are presented in Section 3.3. In Section 3.4, we

apply the method into the colorectal- cancer data from Prostate, Lung, Colorectal, and

Ovarian (PLCO) cancer screening trial to evaluate the effect of flexible sigmoidoscopy in

comparison with usual care on colorectal-cancer mortality.
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3.2 Inference

3.2.1 Notations, Assumptions and Models

We consider two-armed randomized trials with all-or-nothing compliance and repeated

failure time outcomes. Let X be a p-dimensional covariate vector. Suppose that Z is a

binary instrument variable. If a subject is assigned to the control group then Z = 0, and

if a subject is assigned to the treatment group, then Z = 1. Dz is a potential treatment

status given Z = z. That is, under assignment Z = z, Dz = 1 represents a particular subject

would take the treatment, but would not be given the treatment otherwise. The observed

treatment status binary variable can be expressed as D = ZD1 + (1 − Z)D0. Similarly, let

Tzd denote the potential event time vector when Z = z and D = d.

Clearly, if D0 = 0, we are only able to observe T00 not T01 without considering censoring.

Let L = l be the indicator of the potential compliance stratum. There are four different types

given by [56] such as compliers, always-takers, never-takers, and defiers. By convention, the

values L = 1, 2, 3, 4 refer to compliers, always-takers, never-takers, and defiers respectively.

Since we cannot fully observe potential outcome vector, compliance type is also unobservable.

These four compliance types can be written with using Dz as follows,

L =



1 if D0 = 0 and D1 = 1

2 if D0 = 1 and D1 = 1

3 if D0 = 0 and D1 = 0

4 if D0 = 1 and D1 = 0.

We now make the following assumptions akin to [42]:

Assumption 3.2.1. random assignment conditional on covariates

(D0, T00, T01, D1, T10, T11) |= Z|X, where |= denotes independence.
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Assumption 3.2.2. conditional monotonicity

P (D1 ≥ D0|X) = 1.

Assumption 3.2.3. exclusion restriction

P (T0d > t|X) = P (T1d > t|X) for all t and d ∈ {0, 1}.

Assumption 3.2.1 is a weaker assumption than (D0, T00, T01, D1, T10, T11, X |= Z)

in a complete randomization setting. That is, it means that there is no other common

factors of the IV and the outcome. Assumption 3.2.2 implies that there are no defiers.

This assumption is based on consistent preference [46] and it is a key assumption under

heterogeneous treatment effects [10]. Assumption 3.2.3 says that the probability of outcome

does not depend on treatment in always-takers and never-takers strata since they receive

the same treatment regardless of assignment; the experiment provides no information about

the treatment effect in these strata. Thus, we can write Td ≡ Tzd for any z. That is, it

guarantees that Z is not able to make an effect on the outcome directly only through the

treatment status (D).

Assumption 3.2.4. conditional first stage

0 < P (Z = 1|X) < 1 and P (D1 = 1|X) > P (D0 = 1|X).

Assumption 3.2.5. independent censoring

(Z,D, T ) |= C, where C is the censoring time.

In addition to these assumptions, Abadie [42] presents a Lemma 2.1 an identification

Theorem 3.1 summarized as following: Let g(.) be any measurable real function of (Y,D,X)

such that E|g(Y,D,X)| <∞, where Y is an outcome of interest. Define

κ = 1− D(1− Z)

P (Z = 0|X)
− (1−D)Z

P (Z = 1|X)
,

and under the previous assumptions,

E[g(Y,D,X)|D1 > D0] =
1

P (D1 > D0)
E[κg(Y,D,X)].
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The κ can be considered as a weight that allows us to estimate expectations for compliers

in terms of expectations for the entire population. However, κ takes a negative value when

D is different from Z. Thus, we cannot directly use log partial likelihood as an objective

function in the estimation process. This will be discussed more detail in Section 3.2.

Let N∗(t) be the number of events that occur during the interval [0, t] and H(·) be a

(p + 1) dimensional covariate process including X and D. However, the observation period

is mostly limited by some predetermined time τ so N∗(·) cannot be fully observed. Let C

denote censoring time as previously defined. The censoring scheme is also assumed to be

independent such that E[dN∗(t)|H(t), C ≥ t] = E[dN∗(t)|H(t)] for all t ≥ 0. Anderson and

Gill [3] suggested the following intensity model such as

λ(t) = λ0(t) exp{β′1X + β2D}, (3.2.1)

where λ0(·) is an unspecified baseline hazard function, β1 is a p-dimensional coefficient vector

for X and β2 is a scalar coefficient for D. These regression coefficients measure the effects of

the corresponding covariates to the intensity on the log scale. Here, we only consider time

invariant covariates, i.e., H(t) = H. Since Z and D for compliers, Z is ignorable under the

Assumptions 3.2.1 and 3.2.3. Thus, we have

λ(T |D1 > D0, X,D = 1) = λ(T1|D1 > D0, X, Z = 1) = λ(T1|D1 > D0, X),

λ(T |D1 > D0, X,D = 0) = λ(T0|D1 > D0, X, Z = 0) = λ(T0|D1 > D0, X)

and

λ(T |D1 > D0, X,D = 1)

λ(T |D1 > D0, X,D = 0)
=
λ(T1|D1 > D0, X)

λ(T0|D1 > D0, X)
= exp(β2).

We consider this hazard function as a local hazard function defined as λ(T |D1 > D0, X,D).

The β2 is the parameter of interest and we refer to exp(β2) as the causal proportional hazards

effect corresponding to the conditions described by two levels of D within compliers.
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3.2.2 Estimation and Asymptotic Properties

Abadie [42] presented two methods to estimate parameters for LARF such as Least

Squares (LS) and Maximum Likelihood (ML). ML can be easily applied to the partial

likelihood to deal with time-to-event data, so it will be adopted in this paper. Define

N(t) = N∗(t ∧ C) and Y (t) = I{C ≥ t}, where a ∧ b = min(a, b), and I(·) is an in-

dicator function. Suppose that the observed data {Ni(·), Yi(·), Hi} for i = 1, . . . , n are

independent and identically distributed. Let’s denote ω(x) = P (Z = 1|X = x) as a

nuisance function for κ. If we know the function ω(x), then we can calculate κi with

κi = 1 − di(1 − zi)/{1 − ω(xi)} − (1 − di)zi/ω(xi). The following equation is a partial

likelihood after weighting by κ based on [3]

PL(θ) =
n∏
i=1

ni∏
j=1

{
κi exp(θ′Hi)∑

k∈R(tij) κk exp(θ′Hk)

}dNi(tij)

, (3.2.2)

where Hi = (X ′i, Di)
′, θ = (β′1, β2)′, j = 1, . . . , ni, and ni = Ni(Ci). As we mentioned in

Section 3.2, we cannot directly use this weighted partial likelihood as an objective function

for ML. Since κi can be negative values, taking the logarithm of this function is not valid.

Under Eq.(3.2.2), the corresponding weighted score function for θ is given by

Uκ(t; θ) =
n∑
i=1

κi

∫ t

0

{Hi − Eκ(s; θ)} dNi(s), (3.2.3)

where Eκ(s; θ) =
∑n

j=1HjYj(s)κj exp(θ′Hj)∑n
j=1 Yj(s)κj exp(θ′Hj)

.

Based on [42], the following assumption guarantees the usual identification condition.

Assumption 3.2.6. U(τ ; θ|D1 > D0) = 0 has a unique solution at θ0 over θ ∈ Θ, where τ

denotes the end of the study time, U(τ ; θ) =
∑n

i=1

∫ τ
0
{Hi − E(s; θ)}dNi(s), and E(s; θ) =∑n

j=1HjYj(s) exp(θ′Hj)∑n
j=1 Yj(s) exp(θ′Hj)

.

Then, the parameter θ0 can be estimated by θ̂ the solution to the equation Uκ(τ ; θ) = 0

42



with using Theorem 3.1 in [42]. This implies that n−1Uκ(θ) converges almost surely to a

function U(θ|D1 > D0), that is ‖Uκ(θ)− U(θ|D1 > D0)‖ −→a.s. 0.

As we mentioned, if we know the function ω0, then κi(di, zi, ω0(xi, γ0)) is observed and

θ0 can be directly estimated with a single step. However, ω(·) is commonly unknown in

practice. Therefore, we need one more step to estimate γ0 which could be estimated by

specifying a parametric model ω(X, γ). Suppose that we consider E[Z|X] = Φ(γ′X), where

Φ(·) is a standard normal cumulative distribution function. This probit linear model is often

used when the dependent variable is binary. Then, γ0 can be estimated by solving

∂

∂γ

n∑
i=1

{zi ln Φ(γ′xi) + (1− zi) ln Φ(−γ′xi)} = 0. (3.2.4)

Let γ̂ denote the solution of the Eq.(3.2.4) and κi can be estimated by κ̂i(γ̂) = κi(di, zi, ω(xi, γ̂)).

The weighted score function re-expressed by adding γ is following

Uκ(θ, γ) =
n∑
i=1

κi(γ)

∫ τ

0

[Hi − Eκ(s; θ, γ)] dNi(s), (3.2.5)

where Eκ(s; θ, γ) =
∑n

j=1HjYj(s)κj(γ) exp(θ′Hj)∑n
j=1 Yj(s)κj(γ) exp(θ′Hj)

. To obtain θ̂(γ̂), we solve Uκ(θ, γ̂) = 0. The

following regularity conditions are imposed to construct Theorem 3.2.1 and 3.2.2, for i =

1, . . . , n:

c1) P (Yi(τ) = 1) > 0.

c2) Ni(τ) are bounded by a constant.

c3) Hi are bounded and time invariant.

c4) Let S
(r)
κ (t; θ, γ) = n−1

∑n
i=1 H

⊗r
i Yi(t)κi(γ) exp(θ′Hi) for r = 0, 1, 2, where for any vector

a, a⊗0 = 1, a⊗1 = a, and a⊗2 = aa′. Also, let Eκ(t; θ, γ) = S
(1)
κ (t; θ, γ)/S

(0)
κ (t; θ, γ), and

eκ(t; θ, γ) be the corresponding limit.

c5) Σθ = E
[∫ τ

0
κ(γ0){H − eκ(θ0, γ0)}⊗2Y (t) exp(θ′0H)dΛ0(t)

]
is positive definite.
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Theorem 3.2.1. (Consistency of θ̂)

Suppose that all Assumptions 3.2.1-3.2.6 and the regularity conditions previously listed and

that (i) ω(·) belongs to some parametric functions such that ω(X, γ) with ω0 = ω(X, γ0) for

some γ0 ∈ Rq; there exists η > 0 such that for ‖γ − γ0‖ < η, ω(X, γ) is bounded away

from zero and one and is continuous at each γ on the support of X; (ii) γ̂ −→p γ0. Then

θ̂(γ̂) −→p θ0.

To establish the asymptotic normality of θ̂, we need to consider the corresponding distri-

bution of Uκ(θ0, γ0) =
∑n

i=1 κi(γ0)
∫ τ

0
[Hi − Eκ(s; θ0, γ0)] dMi(s), where dMi(s) = dNi(s) −

Yi(s) exp(θ′0Hi)dΛ0(s).

Theorem 3.2.2. (Asymptotic normality of θ̂)

Under the assumptions in Theorem 3.2.1, and (i) for ‖γ − γ0‖ < η, ω(X, γ) is continuously

differentiable at each γ, ∂ω(X, γ)/∂γ is bounded; (ii) γ̂ is asymptotically linear with influ-

ence function ψ(B), i.e.,
√
n(γ̂ − γ0) =

√
n
−1∑n

i=1 ψ(bi) + op(1), where E[ψ(bi)] = 0 and

E[ψ(bi)
′ψ(bi)] <∞. Then,

√
n(θ̂(γ̂)− θ0) −→d N(0,Σ), where

Σ = Σ−1
θ E [{Uκ(θ0, γ0) + Σγψ}{Uκ(θ0, γ0) + Σγψ}′] Σ−1

θ ,

Σθ = E[
∂

∂θ
Uκ(θ0, γ0)],Σγ = E[U(θ0, γ0){∂κ(γ0)/∂γ}],

and

U(θ0, γ0) =
n∑
i=1

∫ τ

0

{Hi − Eκ(s; θ0, γ0)}dMi(s).

The Σ can be consistently estimated by

Σ̂ = Σ̂−1
θ

[
1

n

n∑
i=1

{Uiκ(θ̂, γ̂) + Σ̂γψ̂i}{Uiκ(θ̂, γ̂) + Σ̂γψ̂i}′
]

Σ̂−1
θ , where

Σ̂θ = −n−1∂Uκ(θ̂, γ̂)/∂θ = n−1

n∑
i=1

∫ τ

0

κi(γ̂){Hi − Eκ(θ̂, γ̂)}⊗2Yi(s) exp(θ̂′Hi)dΛ̂0(s),

Uiκ(θ̂, γ̂) =

∫ τ

0

κi(γ̂){Hi−Eκ(s; θ̂, γ̂)}dM̂i(s), where dM̂i(s) = dNi(s)−Yi(s) exp(θ̂′Hi)dΛ̂0(s),
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Σ̂γ = n−1

n∑
i=1

∫ τ

0

{Hi − Eκ(s; θ̂, γ̂)}dM̂i(s){∂κi(γ̂)/∂γ}′.

The estimate for Uiκ is defined as the score residual for each subject and each variable [59].

The estimator of the cumulative baseline intensity function Λ0(t) =
∫ t

0
λ0(s)ds is similar to

the Breslow estimator in [60]. However, some κi’s are negative so it is given by

Λ̂0(t; θ̂, γ̂) =

∫ t

0

max

{ ∑n
i=1 κi(γ̂)dNi(s)∑n

i=1 κi(γ̂)Yi(s) exp(θ̂′Hi)
, 0

}
. (3.2.6)

3.3 Simulation Studies

Extensive simulation experiments are explored in this section to demonstrate the feasi-

bility of our proposed method by comparing it with the existing method. We adopted the

ways to generate ui, di and tij based on [53] and [18]. For each subject i = 1, . . . , n, we do

the following steps:

1) Draw xi from some choice of f(x).

2) Draw zi from some choice of P (z = 1|x; γ). We chose P (z = 1|x) = Φ(γ′x), where Φ is

the cumulative distribution function (CDF) of the standard normal distribution.

3) Draw l from the multinomial distribution with probability p = (p1, p2, p3), in which l = 1

(compliers), 2 (always-takers), or 3 (never-takers), and the subgroup probabilities are

calculated by using the multinomial logistic regression model given by

pl = P (L = l|x;α) =
exp(α0l + α′lx)

1 +
∑2

l=1 exp(α0l + α′lx)
, for l = 1, 2

, and p3 = 1− p1 − p2.

4) Determine di by f(z, l) = zI{l ≤ 2}+ (1− z)I{l = 2}.

5) Generate tij by applying different coefficients depending on potential class types.

a) Draw ri from the uniform distribution from 0 to 1.
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b) Solve the following equation to get a gap time gij,

3∑
m=1

gij exp(θ′lhi)I{li = l}+ log(ri) = 0, where hi = (xi, di)
′.

c) Calculate tij = ti(j−1) + gij.

d) Recursively do step a)-c) while tij is less than some predetermined value τ .

6) Generate ci from the uniform distribution from 0 to τ .

As a brief illustration, we performed a simulation study where 1000 samples were generated

according to the aforementioned algorithm, each with n = 500, 1000, 2000 observations and

τ = 5. We considered two covariates except D. One is a binary variable drawn from

the binomial distribution with probability 0.5 and the other one is a continuous covariate

drawn from the truncated normal distribution whose range is from −2 to 2. By changing

the parameter α’s in step 3, we are able to adjust the proportion of compliers, p1. The

proportion of compliers can measure the strength of the IV which refers to how strongly

the IV is associated with the treatment after controlling for the measured confounders X

[10, 45]. We conducted simulations under two different p1’s ranges such as [.49, .68] and

[.61, .89]. Additionally, each stratum has a different θm, m = 1, 2, 3 in step 5 b), but we will

use the same value for m = 2 and 3 for simplicity. Since heterogeneity of treatment effects

is not restricted by the identification conditions in this IV model [42]. Data was generated

according to the assumptions that we have in Section 3.2.

Table 3.1 and 3.2 show the simulation results when θ1 = (β11c, β12c, β2c)
′ = (0.5, 0.5, 1.0)′

and θ2 = θ3 = (β11o, β12o, β2o)
′ = (0.3, 0.3, 0.5)′, with complier probability ranges [.49, .68]

and [.61, .89], respectively. The proposed IV model is compared with the AG models, 1)

with D; 2) with Z, i.e., ITT, in every six settings. The IV parameters are estimated by

using initial values from the AG model with D. We report mean (MEAN); median (MED);
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Table 3.1: Simulation Results with β11c = β12c = 0.5, β11o = β12o = 0.3, β2c = 1.0, β2o = 0.5
and p1 = [.49, .68].

Proposed IV Model AG Model AG Model (ITT)

N 500 1000 2000 500 1000 2000 500 1000 2000

MEAN 0.511 0.501 0.500 0.540 0.538 0.536 0.472 0.471 0.470

MED 0.504 0.498 0.497 0.536 0.538 0.536 0.470 0.470 0.471

X(β11c) ESD 0.199 0.106 0.069 0.068 0.049 0.036 0.070 0.051 0.036

TSD 0.191 0.109 0.074 0.069 0.049 0.035 0.059 0.042 0.029

CP 96.9 96.4 96.6 86.0 79.9 73.4 88.2 84.6 77.3

MEAN 0.518 0.503 0.503 0.480 0.481 0.481 0.433 0.433 0.434

MED 0.502 0.495 0.500 0.481 0.483 0.481 0.433 0.432 0.433

X(β12c) ESD 0.137 0.077 0.042 0.044 0.030 0.021 0.045 0.031 0.021

TSD 0.119 0.070 0.045 0.042 0.030 0.021 0.035 0.024 0.017

CP 94.9 95.2 96.0 82.1 79.1 73.2 50.0 25.2 7.8

MEAN 1.010 1.004 0.999 0.708 0.709 0.706 0.688 0.688 0.686

MED 1.005 1.008 0.998 0.708 0.709 0.707 0.687 0.690 0.686

D(β2c) ESD 0.115 0.075 0.053 0.068 0.046 0.032 0.074 0.049 0.036

TSD 0.123 0.082 0.053 0.066 0.046 0.033 0.060 0.042 0.030

CP 95.3 95.7 94.8 0.8 0 0 0.5 0 0

Outlier/No Convergence 22 9 3 0 0 0 0 0 0

empirical standard deviation (ESD), defined by the sample standard deviation of the repli-

cated estimates; average of the replicated theoretical standard deviation estimates (TSD);

and empirical coverage probability (CP) at a 0.95 nominal level. Additionally, we present

the number of outliers or no-convergence cases out of 1, 000 replications. The outliers are de-

fined by using the median absolute deviation (MAD), MAD(x) = b∗MED(|x−MED(x)|),

where b = 1.4826. If |xi −MED(x)|/MAD(x) is greater than 20, then we define xi as an

outlier. Table 3.1 and 3.2 contain all estimates based on the proposed IV method. The

estimates have biases close to 0 and the biases decrease as the sample size increases. The

estimated variances are similar to the corresponding empirical variances, so the empirical

coverage probabilities are close to the nominal level 95. In contrast, the biases by the naive

AG model are relatively large and do not noticeably decrease by increasing sample size.
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Table 3.2: Simulation Results with β11c = β12c = 0.5, β11o = β12o = 0.3, β2c = 1.0, β2o = 0.5
and p1 = [.61, .89].

Proposed IV Model AG Model AG Model (ITT)

N 500 1000 2000 500 1000 2000 500 1000 2000

MEAN 0.502 0.502 0.500 0.556 0.556 0.556 0.523 0.522 0.524

MED 0.496 0.497 0.500 0.557 0.556 0.555 0.526 0.523 0.524

X(β11c) ESD 0.116 0.074 0.052 0.065 0.044 0.033 0.072 0.050 0.035

TSD 0.110 0.074 0.051 0.062 0.044 0.031 0.059 0.042 0.030

CP 95.6 95.9 94.7 82.7 71.6 52.2 88.5 86.8 82.7

MEAN 0.504 0.500 0.502 0.490 0.488 0.489 0.475 0.473 0.473

MED 0.496 0.497 0.501 0.490 0.488 0.489 0.474 0.473 0.472

X(β12c) ESD 0.072 0.044 0.031 0.036 0.025 0.018 0.040 0.028 0.021

TSD 0.062 0.042 0.029 0.035 0.025 0.018 0.035 0.024 0.017

CP 96.1 95.8 94.5 91.6 91.0 87.0 83.4 77.3 62.7

MEAN 1.001 0.999 0.999 0.969 0.968 0.968 0.875 0.873 0.874

MED 0.999 0.999 1.000 0.966 0.968 0.968 0.875 0.874 0.874

D(β2c) ESD 0.079 0.054 0.037 0.061 0.042 0.029 0.068 0.046 0.032

TSD 0.079 0.055 0.038 0.060 0.042 0.030 0.059 0.042 0.029

CP 94.9 95.4 95.9 91.1 88.0 79.0 43.9 16.8 1.5

Outlier/No Convergence 2 2 0 0 0 0 0 0 0

Additionally, even though the variance estimation is close to the empirical variance, the

empirical coverage probability has a rather poor value due to bias. We expected intuitively

some values between 0.3 and 0.5 for the estimates of β11 and β12 in AG model. However,

the β12 is included in that range but not for the β11. The bias of β11 is even larger when the

compliance rate is higher. Through this simulation, we can also confirm that IV estimators

have a larger asymptotic variance than the conventional ones, since the IV introduces an

additional source of uncertainty. In terms of proportion of compliance, the less the rate of

noncompliance, the less the ITT effect and the average treatment effect among compliers

tend to differ, which is the same results in [10, 44, 45]. The number of outliers or divergence

cases decreases as the rate of compliance, or sample size increase. We also applied this pro-

posed method to the Cox proportional hazard model and present corresponding simulation
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results in the Appendix 5.

3.4 Colorectal-Cancer Mortality with Screening Flexible Sigmoidoscopy

Colorectal-cancer is cancer that initiates in the colon or rectum which are parts of the

large intestine. It is known as the second most common cause of cancer death in the United

States after lung cancer [61]. Screening is often suggested as one of the best way to protect

colorectal-cancer. Because it can early detect precancerous growths, called polyps, that can

transform into cancer. There are several recommended screening options, such as fecal occult

blood test (FOBT), fecal immunochemical test (FIT), colonoscopy, virtual colonoscopy or

flexible sigmoidoscopy.

The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial is a multi-

center, two-armed randomized trial, sponsored by the National Cancer Institute, of screening

tests for prostate, lung, colorectal and ovarian cancers. Ten centers across the U.S. recruited

participants between November 1993 and July 2001. Data were collected until December 31,

2009. One objective of the trial is evaluating the effectiveness of the screening with flexible

sigmoidoscopy on mortality from colorectal-cancer by comparing with usual-care. Prorok

et al. reported further details about this trial [62].

The original data consist of 154, 897 individuals aged 55 to 74 years. They were randomly

assigned to either the usual-care (control, N = 77, 453) group or the screening with flexible

sigmoidoscopy (intervention, N = 77, 444) group. For the intervention group, subjects were

offered the screening at baseline and 3 or 5 years later. Among them, 187 participants

who left study, dead, diagnosed cancer, or removed organ before the first intervention and

4 participants who have 0 day from trial entry (randomization) to the last follow-up were

ignored. Thus, we only considered 154, 706 individuals in this analysis. The screening

assignment (Z) can be used as an instrument and the treatment variable (D) becomes
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an indicator of screen received at baseline. Table 3.3 presents descriptive statistics for the

baseline characteristics of the participants by the instrumental variable (Z) and the treatment

variable (D). In particular, the main factor of interest is the flexible sigmoidoscopy screening.

We also consider other risk factors such as: sex, age (year), family history of any cancer,

family history of colorectal cancer, colorectal polyps, colon comorbidities, and diabetes.

Table 3.3: Characteristics of the Study Participants

Characteristics Control (Z = 0) Intervention (Z = 1) Not Screened (D = 0) Screened (D = 1)

N = 77449 N = 77257 N = 90056 N = 64650

Number of Participants (%)

Sex
Male 38340 (49.5) 38229 (49.5) 43529 (48.3) 33040 (51.1)
Female 39109 (50.5) 39028 (50.5) 46527 (51.7) 31610 (48.9)

Age§
62.60 (5.37) 62.59 (5.39) 62.65 (5.39) 62.52 (5.33)

Age Level
55-59 yr 25838 (33.4) 25789 (33.4) 29902 (33.2) 21725 (33.6)
60-64 yr 23767 (30.7) 23736 (30.7) 27451 (30.5) 20052 (31.0)
65-69 yr 17473 (22.6) 17402 (22.5) 20352 (22.6) 14523 (22.5)
70-74 yr 10371 (13.4) 10330 (13.4) 12351 (13.7) 8350 (12.9)

Family History of Any Cancer
No 32742 (42.3) 33327 (43.1) 37798 (42.0) 28271 (43.7)
Yes 41305 (53.3) 41971 (54.3) 47137 (52.3) 36139 (55.9)
Unknown 3402 (4.4) 1959 (2.5) 5121 (5.7) 240 (0.4)

Family History of Colorectal Cancer
No 64504 (83.3) 65203 (84.4) 73997 (82.2) 55710 (86.2)
Yes † 7320 (9.5) 7627 (9.9) 8331 (9.3) 6616 (10.2)
Possibly ‡ 1925 (2.5) 2108 (2.7) 2262 (2.5) 1771 (2.7)
Unknown 3700 (4.8) 2319 (3.0) 5466 (6.1) 553 (0.9)

Colorectal Polyps
No 68690 (88.7) 69910 (90.5) 78705 (87.4) 59895 (92.6)
Yes 4947 (6.4) 5185 (6.7) 5739 (6.4) 4393 (6.8)
Unknown 3812 (4.9) 2162 (2.8) 5612 (6.2) 362 (0.6)

Colon Comorbidities
No 72351 (93.4) 73786 (95.5) 82905 (92.1) 63232 (97.8)
Yes 1052 (1.4) 1090 (1.4) 1247 (1.4) 895 (1.4)
Unknown 4046 (5.2) 2381 (3.1) 5904 (6.6) 523 (0.8)

Diabetes
No 68028 (87.8) 69371 (89.8) 77773 (86.4) 59626 (92.2)
Yes 5699 (7.4) 5810 (7.5) 6776 (7.5) 4733 (7.3)
Unknown 3722 (4.8) 2076 (2.7) 5507 (6.1) 291 (0.5)

§ denotes a continuous variable. Mean and standard deviation are reported.
† indicates colorectal-cancer family history in immediate family member.
‡ indicates colorectal-cancer family history in relatives or unclear cancer type.

This trial assumed that at least 85% compliance with screening in the intervention group

and no more than 15% contamination among participants in the usual-care group [62, 63].
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However, note that individuals who are assigned to the usual-care group (Z = 0) do not have

records of treatment by assuming P (D0 = 0|X) = 1. It is a special case referred as a perfect

exclusion of the control group from the treatment [42]. The Assumption 3.2.2 holds trivially

and it implies that only two possible types of compliance strata, compliers and never-takers,

exist. In this case, we have

λ(T |D1 > D0, X,D = 1) = λ(T1|D1 = 1, X, Z = 1) = λ(T1|D = 1, X)

and

λ(T |D1 > D0, X,D = 0) = λ(T0|D1 = 1, X, Z = 0)

= λ(T0|D1 = 1, X, Z = 1) = λ(T0|D = 1, X).

Thus, the proposed estimator describes the effect of the treatment for the treated given X.

The observed time from trial entry (randomization) to death for participants known to

be dead, or to trial exit for participants not known to be dead is given in days. By dividing

365.25, the observed times (days) are transformed into years. The censoring indicator, de-

noted by ∆, is equal to 1 if the individual died only due to colorectal-cancer and 0 otherwise.

Table 3.4: Analysis Results without Covariates

Data N p̂1 Proposed IV Model Cox Model Cox Model (ITT)

(Subgroup) Estimates (S.E)

Total 154706 0.84 -0.427 (0.100)*** -0.442 (0.088)*** -0.343 (0.083)***

Family History of Any Cancer 83276 0.86 -0.294 (0.125)* -0.237 (0.114)* -0.258 (0.111)*

Family History of Colorectal Cancer 14947 0.87 -0.105 (0.260) -0.010 (0.241) -0.097 (0.239)

Colorectal Polyps 10132 0.85 0.335 (0.369) 0.315 (0.305) 0.288 (0.309)

Colon Comorbidities 2142 0.82 -2.127 (1.060)* -1.772 (1.061)† -2.125 (1.062)*

Diabetes 11509 0.81 -0.603 (0.412) -1.036 (0.311)*** -0.335 (0.253)

p-value: *** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05, † ≤ 0.1

Table 3.4 shows the estimation results with different subgroup data sets by risk factors

of colorectal-cancer. Also, three models such as the proposed IV model, the Cox model with

D and the Cox model with Z (ITT) were applied for each data set. For each data set, the
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proportion of compliers p1 is estimated by using the following formula in [41]: p1 = p11−p01,

where p11 is the proportion of participants who would receive treatment (D = 1) if assigned

treatment (Z = 1) and p01 is the proportion of participants who would receive treatment

(D = 1) if assigned treatment (Z = 0). This estimated complier proportion could explain

each others’ distances between three different estimates in Table 3.4. When p̂1 has a relatively

high value, there is no big difference within the values of hazard ratio by exponentiating the

parameter estimates. For example, the subgroup of individuals who have a colorectal-cancer

family history has the highest p̂1 value with 0.87 and the corresponding three exponentiated

values are 0.900, 0.990 and 0.908, respectively. In contrast, the subgroup including subjects

who have a diabetes has the lowest p̂1 value with 0.81. The IV estimate has the middle

value between the estimates of Cox model with D and ITT. In the Cox model, the hazard

ratio is exp(−1.036) = 0.355. A hazard ratio value smaller than 1 says that an increase

in one unit for that particular variable, will decrease the rate of experiencing an event

(end point) throughout the observation period. That is, a screened individual who has

not yet experienced death by colorectal-cancer or not yet censored by a certain time has

the decreased rate of being dead caused by colorectal-cancer at the next point in time by

100% − 35.5% = 64.5% compared to an individual who did not get the screening. Also,

there is a statistically significant association between the screening and mortality caused

by colorectal-cancer with p-value 0.001 which is less than 0.05. In the ITT analysis, the

corresponding hazard ratio is exp(−0.335) = 0.715. Similarly, colorectal-cancer mortality

rate is decreased in the treatment assigned group with 100% − 71.5% = 28.5% compared

to the usual-care assigned group. It is not statistically significant with p-value 0.185 which

is greater than 0.05. The hazard ratio of ITT is nearly two times greater than one of

the Cox model, and the statistical significances are different. The IV estimate −0.603 lies

between the two estimates of the naive models. The hazard ratio of exp(−0.603) = 0.547

corresponds to a decreased rate of colorectal-cancer mortality by 100%−54.7% = 45.3% as D

is altered from the usual-care to the screening within the population subset that has received
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screening. Also, the results of subset that contains individuals who have colon comorbidities

show difference in parameter estimates. Thus, we will further examine these two subgroups

with considering covariates.

Table 3.5: Analysis Results with Covariates

Colon Comorbidities

Covariate Proposed IV Model Cox Model Cox Model (ITT)

D -2.148 (1.062)* -1.696 (1.061) -2.143 (1.061)*

Gender (Female) 2.013 (1.153)† 1.855 (1.063)† 1.910 (1.064)†
Age 0.224 (0.095)* 0.218 (0.076)** 0.220 (0.074)*

Diabetes

D -0.641 (0.409) -1.076 (0.311)*** -0.361 (0.253)

Gender (Female) -0.846 (0.597) -0.522 (0.270)† -0.475 (0.270)†
Age 0.068 (0.043) 0.097 (0.024)*** 0.096 (0.024)***

Estimates (S.E)

p-value: *** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05, † ≤ 0.1

Table 3.5 shows the parameter estimation results with considering two covariates such as

gender and age. Note that the both naive Cox models with four categories of age variable do

not converge in subgroup of colon comorbidities, so the continuous age variable is used. After

accounting for gender and age, there is no statistically significant association between D and

colorectal cancer mortality, but there is a statistically significant association between Z and

colorectal cancer mortality in colon comorbidities subgroup. Conditioning on the covariates,

the average treatment hazard ratio for the treated is exp(−2.148) = 0.117. Consistent with

the ITT analysis results, it is statistically significant. All IV estimates in the subset of colon

comorbidities are similar to the ITT estimates. However, the IV estimates in the subset of

diabetes are different from the others.
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3.5 Discussion

Non-compliance is a common issue in randomized clinical trials or observational studies.

The intention-to-treat analysis ignores non-compliers and the analysis which only focuses on

treatment (D) cannot provide reliable inferences regarding the true effect of the treatment.

To overcome the problem, IV methods can be applied. However, there are limitations in

using IV in recurrent event data analysis. Thus, we suggested an extended Abadie’s IV

method into AG model by using weighting scheme. We could use the similar arguments

with AG model to develop asymptotic properties of the proposed estimators. Note that we

applied this method into PLCO data, which does not include recurrent event data.

However, there are limitations of this method, that is, we could not use full observed data.

For example, the PLCO data have several time variant covariates including the exposure,

and the IV also could be changing by time in longitudinal data. Since we only consider a

binary IV and a binary treatment at baseline in this Chapter, incorporating time variant

covariates and time varying IV into this model will be the future research.
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CHAPTER 4: PARAMETRIC LIKELIHOOD INFERENCE
FOR INTERVAL CENSORED AND LEFT TRUNCATED

COMPETING RISKS DATA

4.1 Introduction

Hudgens et al. [64] developed parametric modeling of the cumulative incidence function

for interval censored competing risks data. We extend their parametric models to addi-

tionally account for left truncation by changing time scale. That is, instead of using the

elapsed time from the study entry to failure time, we applied the time adjusted for age. A

full likelihood estimator is still valid under a mixed case interval censoring model and an

independent inspection process model. However, a naive likelihood method is shown to be

invalid in both settings, while it is not valid only under the independent inspection process

model without considering truncation. This extended parametric method is demonstrated

via comprehensive simulation studies and is applied to data from the Study of Osteoporotic

Fractures to obtain bone mineral density (BMD) testing interval by age as a time scale.

In this chapter, we develop parametric estimation methods for competing risks survival

data subject to interval censoring and left truncation. These methods are motivated by

clinical practice guidelines for bone mineral density (BMD) screening to identify and treat

osteoporosis (very low bone density) for fracture prevention in postmenopausal women. Clin-

ical practice guidelines agree that women aged 65 and older should receive BMD testing to

detect and treat osteoporosis [65–67]. However, no standard BMD screening interval has

been recommended. To guide decisions about the interval of BMD tests for women aged

65 and older, Gourlay et al. [68] conducted a competing risk analysis of BMD screening

intervals using data from the Study of Osteoporotic Fractures (SOF) observational study of
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BMD and fractures in women aged 65 and older at study entry. For four different risk strata

(Normal BMD, Mild osteopenia, Moderate osteopenia, Advanced osteopenia) reflecting an

increasing fracture risk correlating with baseline BMD testing scores, they provided cumula-

tive incidence curves of osteoporosis by applying Hudgens’ parametric method [64] with the

standard approach using the elapsed time from the baseline to the occurrence of the event as

the time scale. Interval censoring arose, because BMD was measured intermittently. Thus,

the time to osteoporosis was not directly observed, but was only known up to some intervals.

Incident hip and clinical vertebral fractures and pharmacologic treatment were considered

to be competing risks, because individuals who have hip or clinical vertebral fractures are

always treated regardless of their BMD level, and treated individuals no longer need BMD

risk stratification.

Unlike the work done in the previous study, we seek to estimate the cumulative incidence

curves of osteoporosis with age as a time scale instead of using time in the study. This

creates a left truncation issue because subjects entered into the study at different ages and

the necessary BMD measurements were not initiated until 2 years after baseline enrollment.

For example, women entering the study at age 65 who had the event (osteoporosis) before

age 67 (when their BMD measurements began) were not considered as incident osteoporosis

cases. That is, left truncation occurs when the subjects have been at risk before beginning

BMD measurements in this study (or before study entry in other cases). Lamarca et al.

[69] indicated that the usage of age as time is more appropriate for survival analysis of the

elderly population where the goal is to describe the risk factors that modify the hazard of

the failure after a specific age, 65 years in SOF data. Cain et al. [70] also supported that

bias can be increased and that standard errors can be underestimated by ignoring delayed

entries. Thus, bias can be reduced when analyses account for left truncation, although the

results are unstable when there are higher levels of truncation.

It is a common interest to estimate cumulative incidence function (CIF), which is the
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probability of a specific event occurrence by time t, in the presence of other competing

events. Hudgens et al. [71] computationally derived a nonparametric maximum likelihood

estimator (NPMLE) of the CIFs for competing risks data subject to interval censoring and

truncation by generalizing Turnbull’s estimator [72]. The NPMLE and the naive estimator

of the CIF for current status data had been studied by Jewell et al. [73] and Groeneboom

et al. [74, 75]. Li and Fine [76] applied kernel smoothing to estimate the NPMLE of the

CIF and the cause-specific hazard function (CSHF) in current status data with competing

risks. Since the nonparametric estimation require intense computation [64, 74], parametric

models can be preferred in this case.

Based on Jeong and Fine [77] which suggested parametric estimation method of the CIF

for right censored competing risks data, Hudgens et al. [64] extended the parametric models

for allowing interval censoring with considering both full maximum likelihood estimators

(MLEs) and naive estimators. In this Chapter 4, we conduct competing risks analysis addi-

tionally accounting for left truncation by extending the parametric estimation method from

Hudgens et al. [64]. The remaining sections are organized as follows. We begin by intro-

ducing notations and the proposed parametric modeling, and its estimation and asymptotic

properties are given in Section 4.2. In Section 4.3, we present simulation studies conducted

to examine the feasibility of the extended method, and results of the SOF data analysis are

reported in Section 4.4.

4.2 Inference

4.2.1 Notations and Parametric Modelling

Let K ∈ {1, . . . , nK} denote the cause of failure. An individual can only experience one

of nK distinct mutually exclusive competing causes. Let T denote a continuous random

variable representing the time of failure, which is only known up to some interval. The CIF
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for type k failure is defined as Fk(t) = Pr[T ≤ t,K = k], i.e., the cumulative probability

of type k failure in the presence of other competing events. It is also expressed in terms of

CSHF, such that Fk(t) =
∫ t

0
S(u)λ∗k(u), where S(t) = exp{−

∫ t
0

∑nK

k=1 λ
∗
k(u)du} is the overall

survival function and λk(t) = limdt→0{Pr(t ≤ T < t + dt,K = k|t ≤ T )/dt} is known to be

as CSHF of the type k.

To overcome complication due to interval censoring, the direct parameterization of the

CIF without covariates by Jeong and Fine [77] is applied. Also, it gives natural interpretation

concerning the probability of an event of interest. A parametric model Fk(t; Θk) is separately

specified for each CIF with distinct Θk for each k. We also adopt the Gompertz model in

Jeong and Fine [77], which is defined by

Fk(t; Θk) = 1− exp[βk{1− exp(αkt)}/αk] (4.2.1)

with Θk = (αk, βk) where αk < 0 and βk > 0 so that the function (4.2.1) is an improper

distribution function. That is, the CIF satisfies limt→∞ Fk(t) < 1 when nK > 1 and the

probability of experiencing each cause has positive value. The corresponding hazard function

is given by

λk(t) = βk exp(αkt). (4.2.2)

This model satisfies

0 < Fk(t; Θk) < 1 for all t > 0 and k = 1, . . . , nK , and (4.2.3)

Fk(t; Θk) is monotone increasing function of t for k = 1, . . . , nK . (4.2.4)

Similar to Hudgens et al. [64], we consider two observation processes such as the mixed

case and independent inspection process (IIP) models by revisiting notations. Additionally,

we consider that the T is left truncated at V0 with a time origin that is the same for all failure

types. If the time origin is smaller than the minimum value of V0, then the estimated CIF is

used for extrapolation i.e. predicting the response to an input which lies outside of the range

58



of the values of the observed intervals used to fit the model. Conversely, when one is bigger,

we will assume that there are no event between the corresponding V0’s and the time origin

by ignoring the periods. The former will be considered and then we need to consider the

conditional distribution of T given T > V0. Let V = (V0, V1, . . . , VM) be the vector of ordered

observation times where M is the random number of observation times for an individual,

V0 ≥ 0 and VM+1 =∞ such that Vl−1 < Vl for l = 1, . . . ,M + 1. Define ∆kl = 1(Vl−1 < T ≤

Vl, K = k) for k = 1, . . . , nK and l = 1, . . . ,M . That is, ∆kl equals 1 if a subject has an event

of type k during (Vl−1, Vl] and 0 otherwise. Let ∆M+1 = 1−
∑nK

k=1

∑M
l=1 ∆kl. When ∆M+1 = 1,

the event type is unknown and right censored. Instead of observing (T,K) directly, we

observe copies of Y = (M,V,∆) where ∆ = (∆11, . . . ,∆1M ,∆21, . . . ,∆nKM ,∆M+1). Under

the mixed case interval censoring model, (M,V ) |= (T,K) is assumed. It implies that the

observation process is determined independently of the failure time and the cause of failure.

For l = 1, 2, . . ., define the history of observation times and failure information by

Hl = (V1, . . . , Vl−1,∆11, . . . ,∆nK1, . . . ,∆1,l−1, . . . ,∆nK ,l−1|V0), where H1 = V0. Under the

IIP model, it is assumed Vl |= (T,K)|Hl implying that the next observation times is inde-

pendent with the failure time and cause given the history of observation times and failure

information. That is, the IIP stops if a failure is detected, such that ∆jl = 0 for all l < M

and j ∈ {1, . . . , nK}. Thus, the IIP model is more appropriate when future observation

times depend on the history of the observed data [78].

4.2.2 Estimation and Asymptotic Properties

Let Y1, . . . , Yn be a random sample of n independent and identically distributed copies

of Y . Therefore, the corresponding log likelihood functions for Y1, . . . , Yn under the mixed

case interval censoring model and the IIP model are following

logL(Θ) =
n∑
i=1

log `(Yi; Θ), (4.2.5)
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where Θ is the vector consisting of elements of Θ1 ∪ . . . ∪ΘnK
and

`(Yi; Θ) =

nK∏
k=1

M∏
l=1

{
Fk(vl; Θk)− Fk(vl−1; Θk)

1−
∑nK

k=1 Fk(v0; Θk)

}∆kl
{

1−
∑nK

k=1 Fk(vm; Θk)

1−
∑nK

k=1 Fk(v0; Θk)

}∆M+1

. (4.2.6)

The full likelihood estimator of Θ, Θ̂, is defined by the value that maximizes (4.2.5) with

the assumptions 4.2.3 and 4.2.4. They cannot be separately estimated by the failure type k.

Under certain regularity conditions, the maximum likelihood estimates of Θ have consistency

and asymptotic normality with mean Θ and covariance matrix ΣΘ. By taking the negative

second derivatives of the log likelihood function (4.2.5) with respect to Θ, the observed

information matrices can be computed and inverted to estimate the ΣΘ. The estimated

Fk(t; Θ̂k) is also approximately Normal distribution with mean Fk(t; Θk) and covariance

matrix Σ(t) by using the multivariate delta method. The Σ(t) can be estimated by

v̂ar{Fk(t; Θ̂k)} = Σ̂(t) =

(
∂Fk(t; Θk)

∂Θk

)
Σ̂Θ̂

(
∂Fk(t; Θk)

∂Θk

)′∣∣∣∣
Θ=Θ̂

(4.2.7)

, for k = 1, . . . , nK . The Σ̂Θ̂ is the inverse of the observed Fisher information, evaluated at

the parameter estimates Θ̂. A pointwise (1 − α)% confidence interval (CI) for Fk(t; Θ̂k) at

time t is given by

Fk(t; Θ̂k)± z1−2/α

√
Σ̂(t), (4.2.8)

where zq is the q quantile of the standard normal distribution. Note that the estimation is

only valid on the support of the observation time. To test differences between the probability

of a particular failure type by time t between two subgroups, i.e., the null hypothesis is

H0 : F 1
k (t; Θ1

k) = F 2
k (t; Θ2

k), where F g
k (t; Θg

k) denote the CIF for a failure of type k and Θg
k

are corresponding parameter in subgroup g = 1, 2. The Wald type test statistics is following:

F 1
k (t; Θ̂1

k)− F 2
k (t; Θ̂2

k)/

√
v̂ar{F 1

k (t; Θ̂1
k)}+ v̂ar{F 2

k (t; Θ̂2
k)} (4.2.9)

which follows a standard Normal distribution under the null hypothesis.

Note that in addition to this full likelihood method, Hudgens et al. [64] considered a

naive likelihood for estimating the CIF by using a reduced data. Since the naive estimator
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enables separate estimation of models for each cause, unlike the MLEs where all models

are fitted simultaneously. Thus, it is computationally easier to estimate than the MLEs.

However, we need to estimate all Θk’s for k = 1, . . . , nK to calculate Pr[T > v0]. Therefore,

the naive likelihood method cannot be applied.

4.3 Simulation Studies

We adopted simulation settings from Hudgens et al. [64]. There are two causes of failure,

i.e., nK = 2. The event type k and the failure time T given k are generated by using

Pr[K = k; Θk] = 1− exp(βk/αk) and Fk(t; Θk) = Pr[T ≤ t|K = k; Θk]Pr[K = k; Θk], where

Θk = (αk, βk) for k = 1, 2. The left truncation time V0 is randomly drawn from a uniform

distribution between 0 and u. Two different values 5 and 10 for u have different truncation

rates 0.16 and 0.29, respectively. The truncation rate for each iteration is obtained by taking

an average of cases when the event times are less than the truncation time point, V0, and then

take average of the truncation rates over the iterations. The following observation times V1 <

. . . < V7 are randomly generated with V1 = V0 + Unif (3, 5), V2 = V0 + Unif (7, 9), . . . , V6 =

V0 + Unif (23, 25), and V7 = V0 + 28. We start with an vector, (−0.01, 0.01,−0.01, 0.01), for

the initial values of (α1, β1, α2, β2). We consider sample size n = 500, 1000, 2000 and each

scenario is replicated 1, 000 times.

We report bias (BIAS), empirical standard deviation (ESD), defined by the sample stan-

dard deviation of the replicated estimates, average of the replicated standard deviation es-

timates (TSD), and empirical coverage probability (CP) at a 0.95 nominal level in Table

4.1. The columns of LT(5) and LT(10) indicate the results of accounting for two different

left truncation proportions. To check appealing features by considering left truncation, the

results without adjusting left truncation are also presented in last three columns denoted by

FL. All estimators are approximately unbiased. The estimates with considering left trun-

cation have biases closer to 0 than the ones without considering left truncation, and the
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Table 4.1: Simulation Results with (α1, β1, α2, β2) = (−0.058, 0.0093,−0.035, 0.067)

LT(5) LT(10) FL

n 500 1000 2000 500 1000 2000 500 1000 2000

α1 BIAS 0.008 -0.060 -0.020 0.004 -0.068 -0.020 -0.032 -0.096 -0.046
ESD 1.839 1.318 0.940 1.840 1.283 0.954 1.504 1.038 0.750
TSD 1.852 1.304 0.92 1.890 1.331 0.939 1.607 1.132 0.798
CP 0.949 0.955 0.951 0.959 0.968 0.941 0.962 0.977 0.965

β1 BIAS 0.019 0.018 0.006 0.027 0.024 0.008 0.012 0.017 0.007
ESD 0.251 0.180 0.128 0.291 0.203 0.152 0.197 0.137 0.099
TSD 0.253 0.179 0.126 0.297 0.21 0.147 0.198 0.141 0.099
CP 0.939 0.949 0.938 0.941 0.955 0.935 0.946 0.970 0.941

α2 BIAS -0.002 -0.007 -0.010 -0.008 0.018 0.005 0.007 0.004 -0.003
ESD 0.780 0.559 0.414 0.801 0.582 0.419 0.691 0.469 0.332
TSD 0.800 0.566 0.400 0.825 0.582 0.412 0.692 0.489 0.346
CP 0.959 0.949 0.949 0.956 0.951 0.946 0.963 0.955 0.964

β2 BIAS 0.014 0.015 0.021 0.027 -0.001 0.008 -0.001 0.008 0.009
ESD 0.739 0.528 0.388 0.873 0.626 0.445 0.607 0.420 0.300
TSD 0.744 0.526 0.372 0.878 0.618 0.438 0.577 0.410 0.289
CP 0.951 0.950 0.941 0.940 0.943 0.946 0.946 0.950 0.947

BIAS (×102), ESD (×102), TSD (×102)

bias is decreasing as the fraction of truncation is getting lower. In addition, standard er-

rors are underestimated when left truncation is ignored. These findings are consistent with

Cain et al. [70] as we mentioned in Section 4.1. The variance estimates using the observed

information are similar to the corresponding empirical variances of the estimators, so the

empirical coverage probabilities are nearly reached up to the nominal level 95.

4.4 Application: The Study of Osteoporotic Fractures

For clinical applications, bone mineral density (BMD) measurements are converted to

T-scores, i.e.

BMD of participant mean BMD of young reference population

SD of BMD of a young female reference population
.
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A BMD test can identify osteoporosis, the most important marker of fracture risk which is

defined as lowest BMD T-score ≤ −2.50 at one or more of three anatomical sites in the lower

spine and hip [79]. T-scores > −2.50 represent lesser degrees of fracture risk, i.e., T-score

−1.00 and higher at all hip and spine sites is considered normal or healthy, and lowest T-

score between −1.01 and −2.49 indicates osteopenia. The BMD testing interval was defined

as the estimated time during which osteoporosis developed in 10% of women to make the

transition to osteoporosis from normal BMD or osteopenia at baseline before having a hip

or clinical vertebral fracture.

The BMD testing to screen for osteoporosis is recommended for women 65 years of age or

older. To determine the BMD testing interval via age scale, we studied 4957 women, aged 67

years or older and recruited between 1986 and 1988, who did not have osteoporosis at baseline

and who were followed prospectively for up to 15 years. The follow-up period included study

examinations at year 2 (1989-1990), year 6 (1992-1994), year 8 (1995-1996), year 10 (1997-

1999), and year 16 (2002-2004), which represented the time period during which BMD and

fracture were followed concurrently. Thus, interval censoring occurs since a random variable

of interest, i.e., time to osteoporosis, is known only to lie within an interval between BMD

examinations at intermittent study visits instead of being observed exactly. Also, our goal

is to estimate the cumulative incidence curves of osteoporosis with age as time scale, which

accompanies left truncation. Because individuals who have already experienced osteoporosis

or having a hip or clinical vertebral fracture were not included in the study and they entered

into the study at different ages. Therefore, we need to account for the probability that the

osteoporosis has not been occurred before the entry age years. Thus, age minus 65 was taken

as the time scale. Similar to the Gourlay et al. [68], the analysis included the 513 women

who made the transition from normal BMD to osteopenia and had at least one subsequent

examination with BMD recorded. In other words, total 4957 + 513 = 5470 records are used

by assuming independence. We consider two failure types (nK = 2) such as osteoporosis and

others including incident hip or clinical vertebral fractures and the first reported use of a
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Food and Drug Administration (FDA) approved agent for the treatment of osteoporosis.

Table 4.2: Characteristics of the Study Participants

Failure Types

Total No Event Osteoporosis Others

Characteristics N = 5470 (100) N = 3704 (67.7) N = 1224 (22.4) N = 542 (9.9)

Age†
72.67 (4.38) 72.64 (4.39) 73.12 (4.41) 71.89 (4.07)

Age Level

67-74 yr 3838 (70.2) 2610 (68.0) 821 (21.4) 407 (10.6)
≥75 yr 1632 (29.8) 1094 (67.0) 403 (24.7) 135 (8.3)

T-score

≥-1, normal 1255 (22.9) 1171 (93.3) 10 (0.8) 74 (5.9)
(-1.50, -1), mild osteopenia 1386 (25.3) 1195 (86.2) 64 (4.6) 127 (9.2)
(-2, -1.50], moderate osteopenia 1478 (27.0) 972 (65.8) 309 (20.9) 197 (13.3)
≤-2, advanced osteopenia 1351 (24.7) 366 (27.1) 841 (62.3) 144 (10.7)

BMI (4)

<18.5, underweight 31 (0.6) 14 (45.2) 15 (48.4) 2 (6.5)
[18.5-25), normal 1940 (35.6) 1149 (59.2) 572 (29.5) 219 (11.3)
[25-30), overweight 2164 (39.7) 1493 (69.0) 451 (20.8) 220 (10.2)
≥30, obese 1310 (24.1) 1029 (78.5) 182 (13.9) 99 (7.6)

BMI (2)

<30 4160 (76.1) 2675 (64.3) 1042 (25.0) 443 (10.6)
≥30 1310 (23.9) 1029 (78.5) 182 (13.9) 99 (7.6)

Family History of Hip Fracture

No 4845 (88.6) 3301 (68.1) 1065 (22.0) 479 (9.9)
Yes 625 (11.4) 403 (64.5) 159 (25.4) 63 (10.1)

Number of Participants (%)

† denotes a continuous variable. Mean and standard deviation are reported.

Body mass index (BMI)= mass(kg)
height2(m2)

= mass(lb)
height2(in2)

× 703

Table 4.2 presents descriptive statistics of several clinical risk factors’ characteristics at

the baseline by the failure types. Note that age cannot be used as a covariate. The age range

at baseline is from 67 to 91. The corresponding largest VM is 99, so the range of observation

time is [67, 99] in age scale. We applied the Gompertz model with two parameters. Since the

Gompertz model is suitable when there is a subset of the population can never experience

the event of interest.
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Figure 4.1 shows the estimates of the CIFs (solid lines) and the 95% CIs (dotted lines)

for the two parameters Gompertz models accounting for BMI (2) and family history of

hip fracture at baseline, separately. The grey horizontal dashed line represents the 10%

threshold for the transition to osteoporosis. This line intersects each cumulative incidence

curve and the corresponding values of x axis would be the estimated testing intervals in age

scale between 65 and 99, respectively. The times in age scale for 10% of women without

osteoporosis to make the transition to osteoporosis decreased with lower BMI or with family

history of hip fracture. The estimates are 68.57 years for women whose BMI less than 30 and

71.26 years for those with obese. By contrast, the estimates for women with family history

and for those without family history are very similar with 68.47 and 69.02, respectively. The

grey vertical dashed line represents the minimum observed age in this study, 67 years.
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Figure 4.1: Estimated CIFs and CIs for Osteoporosis by BMI (2) and Family History

Then, the Figure 4.2 shows the CIF estimates by considering combination with these two

BMI and family history and by adjusting with four categories of BMI instead of two. The

estimated ages for 10% of subjects having the transition to osteoporosis are 68.23, 68.61,
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Figure 4.2: Estimated CIFs for Osteoporosis by Combining with BMI (2) and Family History
and by BMI (4)

Table 4.3: Estimates of the Osteoporosis Development in 10% of Participants

Subgroup N Age Estimates 95% CI

BMI < 30 & Family History=Yes 476 68.23 0.10 (0.063, 0.136)

BMI < 30 & Family History=No 3684 68.61 0.10 (0.094, 0.106)

BMI ≥ 30 & Family History=Yes 149 69.80 0.10 (0.061, 0.139)

BMI ≥ 30 & Family History=No 1161 71.53 0.10 (0.069, 0.131)

BMI < 18.5 31 65.88 0.10 (0.000, 0.217)

18.5 ≤ BMI < 25 1940 67.76 0.10 (0.082, 0.118)

25 ≤ BMI < 30 2164 69.36 0.10 (0.091, 0.109)

BMI ≥ 30 1310 71.26 0.10 (0.070, 0.130)
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69.80 and 71.53 in the left and 65.88, 67.76, 69.36 and 71.26 in the right with the same

order of the legend. The corresponding CIF estimates and CIs are reported in Table 4.3.

Note that the number of women who have less than 18.5 BMI is only 31, so it has a wide

95% CI. However, we still can check that the BMI gives more noticeable separation between

subgroups than the family history. We might conclude that the BMI is a key variable to

explain occurrence of osteoporosis.

Existing analyses of osteoporosis risk assessment tools suggest that our findings are robust

and clinically relevant. Ravn et al. [80] concluded that thinness, defined by low percentage

of body fat, low BMI, or low body weight, is an risk factor for low bone mass and fast bone

loss in postmenopausal women. Also, DeLaet et al.’s meta-analysis of BMI as a predictor

of fracture concluded that low BMI confers a risk of substantial importance for all fractures

that is largely independent of age and sex, but dependent on BMD [81]. Systematic reviews

of osteoporosis risk assessment tools have demonstrated that simple risk tools perform as

well as complicated risk tools to identify postmenopausal women aged 50 and older with

osteoporosis [82, 83]. For example, the Osteoporosis Self-Assessment Tool based on age and

body weight alone performed as well or better (as demonstrated by the area under the ROC

curve) than risk tools including as many as 6 clinical risk factors [84–86]. This is consistent

with our finding of improved osteoporosis risk stratification (more distinct separation of

cumulative incidence curves for osteoporosis) by using BMI rather than BMI combined with

family history of fracture for the baseline predictor.

4.5 Conclusion

The goal of this Chapter is to estimate the cumulative incidence functions of osteoporo-

sis with age as time scale instead of gap time from the beginning of the study to the event.

Thus, left truncation has been considered with interval censoring in competing risk setting

by extending Hudgens et al.’s parametric estimation method [64]. The numerical studies sug-
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gested that the proposed estimation performs well when the parametric models are correctly

specified, and also bias can be reduced with a relatively lower truncation rate. Additionally,

because left truncation of the outcome measure at study entry is common in the data sets

used for analyses of many risk assessment tools (not just for osteoporosis), we conclude that

our left truncation methods have potential for expanded use in clinical studies of screening

tests, especially those based on continuous measures/scores.

However, as we mentioned in Section 4.2, we could not apply the naive estimation method,

which can separately estimate for each event type by treating other events as independent

censoring events, since we still need to estimate all other parameters for different causes to

calculate the truncation probability in denominator. Thus, it could be a future study to

utilize the naive likelihood method.
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CHAPTER 5: SUMMARY AND FUTURE STUDIES

In this dissertation we have studied about recurrent event data within different circum-

stances. We focused on recurrence of the same type of events in Chapter 2 and Chapter 3,

and we slightly changed it to the competing risks setting allowing different types of events

so that the occurrence of event caused by one type may prohibit to observe the other type

of events in Chapter 4.

In Chapter 2, we proposed the self-triggering Cox (STC) model for recurrent event data,

and compared with the existing methods. Also, to address the non-identifiability of the

STC model under the null of no triggering effect, the Bonferroni correction procedure was

suggested to adjust for multiple testing at given some values for the non-identifiable param-

eter. The simulation studies indicate that the adjustment appears to be rather conservative

and a test at a single values may provide greater power than the multiple testing approach.

In addition, we demonstrated that the extended Cox model may give significant gains in

prediction of future events compared to available models.

In Chapter 3, we considered non-compliance issue within recurrent time-to event data by

using instrumental variable. Because the intention-to-treat analysis ignores non-compliers

and the analysis which only focuses on treatment cannot provide reliable inferences regarding

the true effect of the treatment. We suggested to extend Abadie’s IV method into Anderson-

Gill (AG) model and additionally into Cox model. We showed that the similar arguments

with AG model can be used to develop asymptotic properties of the proposed estimators

by using weighting scheme. Through PLCO data analysis, we demonstrated the proposed

method with Cox proportional hazards model instead of AG model.
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In Chapter 4, to estimate the cumulative incidence functions by accommodating left

truncation and interval censoring within competing risks data setting, we extended Hudgens

et al.’s parametric estimation method. The numerical studies suggested that the bias reduced

compared to the one from the estimation without considering left truncation. In addition, we

applied the extended parametric modeling for analyzing data from the study of osteoporotic

fractures.

There are several future researches that would be invoked by the presented works in

this dissertation. Firstly, we can generalize the STC model with using different intensity

functions, or we could incorporate the number of lag as an additional parameter in the

current model. Also, to deal with non-identifiability under the null, more rigorous testing

method would be required. Secondly, the suggested IV method has not been verified with

time varying covariates and time varying IV, it could be another candidate for the future

study. Additionally, we still need to demonstrate the method with AG model by applying it

into the real data analysis. Lastly, we could not apply the naive estimators by adding left

truncation. Thus, we can propose pairwise likelihood method to utilize the naive likelihood

method which makes estimation procedure simpler by allowing separate estimation for each

failure type.
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APPENDIX I: ADDITIONAL TABLES FOR CHAPTER 2

Table 5.1, 5.2 and 5.3 show the Anderson-Gill (AG) model estimation results when θ1 =

(β1c, β2c)
′ = (0.5, 1.0)′ and θ2 = θ3 = (β1o, β2o)

′ = (0.3, 0.5)′ with different p1 intervals,

respectively, and Table 5.4 shows the simulation results with the same setting except β2c to

test H0 : β2c = 0.

We additionally report Table 5.5, which shows the Cox model estimation results when

θ1 = (β1c, β2c)
′ = (0.5, 1.0)′ and θ2 = θ3 = (β1o, β2o)

′ = (0.3, 0.5)′ with different p1 intervals,

respectively.

Table 5.1: Simulation Results (AG model) with p1 = [.41, .49]

Prob.Complier (p1) [.41, .49]

Known weight Unknown weight AG model

N 500 1000 2000 500 1000 2000 500 1000 2000

MEAN 0.517 0.503 0.500 0.517 0.500 0.500 0.459 0.457 0.460

MED 0.502 0.498 0.496 0.496 0.499 0.498 0.458 0.456 0.461

X(β1c) ESD 0.195 0.131 0.089 0.193 0.134 0.088 0.067 0.046 0.033

TSD 0.223 0.136 0.095 0.223 0.144 0.091 0.062 0.044 0.031

CP 97.7 97.3 96.1 98.3 97.5 95.9 86.7 82.2 72.3

MEAN 1.020 1.014 1.004 1.007 1.009 1.002 0.629 0.627 0.627

MED 1.020 1.014 1.003 1.008 1.009 1.000 0.625 0.628 0.627

D(β2c) ESD 0.157 0.115 0.074 0.152 0.110 0.070 0.066 0.049 0.033

TSD 0.200 0.115 0.077 0.170 0.112 0.074 0.062 0.044 0.031

CP 97.3 95.9 95.9 96.5 95.0 95.3 0 0 0

Outlier/No convergence 29 10 2 25 12 5 0 0 0
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Table 5.2: Simulation Results (AG model) with p1 = [.51, .67]

Prob.Complier (p1) [.51, .67]

Known weight Unknown weight AG model

N 500 1000 2000 500 1000 2000 500 1000 2000

MEAN 0.500 0.505 0.500 0.502 0.504 0.501 0.516 0.577 0.548

MED 0.491 0.501 0.500 0.491 0.502 0.498 0.514 0.576 0.550

X(β1c) ESD 0.147 0.099 0.065 0.156 0.100 0.064 0.066 0.046 0.044

TSD 0.154 0.099 0.068 0.159 0.096 0.068 0.062 0.043 0.031

CP 97.2 94.6 95.6 97.3 95.6 95.7 92.0 57.4 57.7

MEAN 1.008 1.004 1.003 1.006 1.001 1.001 0.680 0.712 0.695

MED 1.009 1.000 1.003 1.006 0.996 1.001 0.681 0.712 0.695

D(β2c) ESD 0.111 0.077 0.053 0.106 0.075 0.051 0.064 0.044 0.035

TSD 0.121 0.079 0.054 0.113 0.073 0.053 0.060 0.042 0.030

CP 96.4 95.5 94.3 96.7 94.8 95.4 0.3 0 0

Outlier/No convergence 4 2 4 7 3 2 0 0 0

Table 5.3: Simulation Results (AG model) with p1 = [.63, .84]

Prob.Complier (p1) [.63, .84]

Known weight Unknown weight AG model

N 500 1000 2000 500 1000 2000 500 1000 2000

MEAN 0.503 0.500 0.502 0.504 0.500 0.502 0.567 0.567 0.569

MED 0.499 0.498 0.502 0.499 0.497 0.503 0.566 0.565 0.568

X(β1c) ESD 0.126 0.081 0.059 0.117 0.081 0.059 0.069 0.048 0.032

TSD 0.124 0.080 0.056 0.120 0.081 0.056 0.063 0.044 0.031

CP 96.3 95.8 94.2 95.7 95.5 94.1 79.6 66.1 40.6

MEAN 1.002 1.000 0.999 1.001 0.998 0.999 0.884 0.881 0.882

MED 1.001 1.001 1.000 1.000 1.001 1.001 0.885 0.882 0.883

D(β2c) ESD 0.086 0.057 0.041 0.084 0.056 0.041 0.065 0.045 0.032

TSD 0.086 0.059 0.041 0.086 0.059 0.041 0.060 0.042 0.030

CP 95.7 96.2 95.2 95.7 96.3 94.6 50.9 21.9 3.3

Outlier/No convergence 3 0 0 3 1 0 0 0 0
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Table 5.4: Simulation Results for Hypothesis Testing H0 : β2c = 0 with (β1c, β1o, β2o) =
(0.5, 0.3, 0.5)

β2c = 0 β2c = 0.1 β2c = 0.2

N 500 1000 2000 500 1000 2000 500 1000 2000

Prob.Complier (p1) Method Type I error Power Power

[.41, .49] Known weight 2.29 3.83 4.54 7.56 10.91 21.45 17.79 35.47 60.80

Unknown weight 2.97 4.04 4.41 8.64 12.46 20.90 20.95 37.51 63.95

AG model 100 100 100 100 100 100 100 100 100

[.51, .67] Known weight 3.03 3.90 4.20 12.02 18.33 33.80 35.05 58.33 87.99

Unknown weight 2.63 4.30 4.70 12.69 18.88 32.83 36.71 59.62 86.86

AG model 99.2 100 100 99.7 100 100 99.9 100 100

[.63, .84] Known weight 5.73 3.32 5.20 15.68 30.58 47.30 50.10 81.80 97.90

Unknown weight 6.14 3.31 5.32 16.98 30.95 47.55 51.92 81.30 98.50

AG model 61.3 88.9 99.5 89.1 99.1 100 98.1 100 100
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Table 5.5: Simulation Results (Cox model) with (β1c, β1o, β2c, β2o) = (0.5, 0.3, 1.0, 0.5)

Prob.Complier (p1) [.41, .49]

N 500 1000 2000 4000 8000

MEAN 0.530 0.538 0.512 0.509 0.505

MED 0.519 0.514 0.500 0.501 0.507

X(β1c) ESD 0.440 0.348 0.241 0.131 0.088

TSD 1.054 0.488 0.304 0.272 0.129

CP 96.0 96.7 96.3 96.0 95.8

MEAN 1.102 1.099 1.057 1.029 1.012

MED 0.977 1.015 1.003 1.017 1.000

D(β2c) ESD 0.595 0.462 0.335 0.197 0.145

TSD 0.826 0.523 0.312 0.235 0.199

CP 91.4 93.3 94.6 95.5 95.5

Outlier/No convergence 223 133 87 50 28

Prob.Complier (p1) [.51, .67]

MEAN 0.516 0.519 0.505 0.498 0.501

MED 0.506 0.511 0.507 0.499 0.501

X(β1c) ESD 0.289 0.217 0.123 0.086 0.057

TSD 0.430 0.281 0.157 0.099 0.078

CP 96.7 97.0 96.5 96.3 94.9

MEAN 1.092 1.050 1.014 1.002 0.999

MED 1.022 1.011 0.996 0.997 0.999

D(β2c) ESD 0.438 0.292 0.156 0.100 0.070

TSD 0.504 0.287 0.160 0.107 0.080

CP 93.4 95.8 96.6 94.6 95.3

Outlier/No convergence 142 67 29 20 10

Prob.Complier (p1) [.63, .84]

MEAN 0.542 0.512 0.504 0.499 0.501

MED 0.540 0.506 0.501 0.499 0.500

X(β1c) ESD 0.262 0.172 0.105 0.072 0.049

TSD 0.460 0.190 0.152 0.081 0.061

CP 95.8 96.1 95.7 95.9 95.2

MEAN 1.028 1.007 1.001 1.003 0.999

MED 1.017 1.012 0.998 1.003 1.000

D(β2c) ESD 0.227 0.134 0.092 0.067 0.045

TSD 0.425 0.139 0.105 0.066 0.051

CP 95.6 95.4 95.4 94.4 94.4

Outlier/No convergence 76 33 29 15 6
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APPENDIX II: PROOFS FOR CHAPTER 4

Appendix A: Likelihood

a: The Mixed Case Interval Censoring Model

The probability of the observed data Y = (M,V,∆) for ∆kl = 1 equals to

Pr[M = m,V = v,∆kl = 1|T > v0]

= Pr[M = m,V = v, T ∈ (Vl−1, Vl], K = k|T > v0],

=
Pr[T ∈ (Vl−1, Vl], T > v0, K = k,M = m,V = v]

Pr[T > v0]

=
Pr[T ∈ (vl−1, vl], K = k|M = m,V = v]Pr[M = m,V = v]

Pr[T > v0]
, since (M,V ) |= (T,K)

=
Pr[T ∈ (vl−1, vl], K = k]Pr[M = m,V = v]

Pr[T > v0]
.

Since the Pr[M = m,V = v] does not involve with parameters from Θ, the likelihood is only

related to Pr[T ∈ (vl−1, vl], T > v0, K = k] = Fk(vl; Θk) − Fk(vl−1; Θk) and Pr[T > v0] =

1−
∑nK

k=1 Fk(v0; Θk).
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Similarly, for right censored observations, i.e., ∆M+1 = 1, we have

Pr[M = m,V = v,∆M+1 = 1|T > v0]

= Pr[M = m,V = v, T > VM |T > v0],

=
Pr[T > VM , T > v0,M = m,V = v]

Pr[T > v0]
,

=
Pr[T > vM |M = m,V = v]Pr[M = m,V = v]

Pr[T > v0]
, since (M,V ) |= (T,K)

=
Pr[T > vM ]Pr[M = m,V = v]

Pr[T > v0]
.

The corresponding likelihood equals to Pr[T>vM ]
Pr[T>v0]

. Therefore,

logL(Θ) =
n∑
i=1

log `(Yi; Θ),

where

`(Yi; Θ) =

nK∏
k=1

M∏
l=1

{
Fk(vl; Θk)− Fk(vl−1; Θk)

1−
∑nK

k=1 Fk(v0; Θk)

}∆kl
{

1−
∑nK

k=1 Fk(vm; Θk)

1−
∑nK

k=1 Fk(v0; Θk)

}∆M+1

.

b: The IIP Model

The probability of the observed data (M,V,∆) for ∆kM = 1 equals to the following

m−1∏
l=1

1

Pr[T > v0]
× Pr[Vl = vl|Hl = hl]Pr[∆1l = . . . = ∆nK l = 0, T > v0|Hl = hl, Vl = vl]

× Pr[VM = vm|HM = hm]Pr[∆kM = 1, T > v0|HM = hm, VM = vm],

∼
m−1∏
l=1

1

Pr[T > v0]
Pr[∆1l = . . . = ∆nK l = 0, T > v0|Hl = hl, Vl = vl]

× Pr[∆kM = 1, T > v0|HM = hm, VM = vm].
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For ∆kl = 1, the corresponding probability is

Pr[∆kl = 1, T > v0|Hl = hl, Vl = vl]

= Pr[vl−1 < T ≤ vl, K = k, T > v0|Hl = hl, Vl = vl] , since Vl |= (T,K)|Hl

= Pr[vl−1 < T ≤ vl, K = k, T > v0|Hl = hl]

= Pr[vl−1 < T ≤ vl, K = k, T > v0|Hl−1 = hl−1, Vl−1 = vl−1,∆1,l−1 = . . . = ∆nK ,l−1 = 0, T > τ ]

=
Pr[vl−1 < T ≤ vl, K = k, T > v0,∆1,l−1 = . . . = ∆nK ,l−1 = 0|Hl−1 = hl−1, Vl−1 = vl−1]

Pr[∆1,l−1 = . . . = ∆nK ,l−1 = 0, T > v0|Hl−1 = hl−1, Vl−1 = vl−1]

=
Pr[vl−1 < T ≤ vl, K = k, T > v0|Hl−1 = hl−1, Vl−1 = vl−1]

Pr[T > vl−1, T > v0|Hl−1 = hl−1, Vl−1 = vl−1]
, since τ ≤ vl−1

=
Pr[vl−1 < T ≤ vl, K = k|Hl−1 = hl−1]

Pr[T > vl−1|Hl−1 = hl−1]

=
Pr[vl−1 < T ≤ vl, K = k|Hl−2 = hl−2, Vl−2 = vl−2,∆1,l−2 = . . . = ∆nK ,l−2 = 0, T > v0]

Pr[T > vl−1|Hl−2 = hl−2, Vl−2 = vl−2,∆1,l−2 = . . . = ∆nK ,l−2 = 0, T > v0]

=
Pr[vl−1 < T ≤ vl, K = k,∆1,l−2 = . . . = ∆nK ,l−2 = 0, T > v0|Hl−2 = hl−2, Vl−2 = vl−2]

Pr[T > vl−1,∆1,l−2 = . . . = ∆nK ,l−2 = 0, T > v0|Hl−2 = hl−2, Vl−2 = vl−2]

=
Pr[vl−1 < T ≤ vl, K = k|Hl−2 = hl−2]

Pr[T > vl−1|Hl−2 = hl−2]

= . . . =
Pr[vl−1 < T ≤ vl, K = k]

Pr[T > vl−1]

=
Pr[vl−1 < T ≤ vl, K = k]

Pr[T > vl−1]

=
Fk(vl; Θk)− Fk(vl−1; Θk)

1−
∑nK

k=1 Fk(vl−1; Θk)

and
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Pr[∆1l = . . . = ∆nKl
= 0, T > v0|Hl = hl, Vl = vl] = 1−

nK∑
k=1

Pr[∆kl = 1, T > v0|Hl = hl, Vl = vl]

= 1−
nK∑
k=1

Fk(vl; Θk)− Fk(vl−1; Θk)

1−
∑nK

k=1 Fk(vl−1; Θk)

= 1−
nK∑
k=1

Fk(vl; Θk)− Fk(vl−1; Θk)

1− F (vl−1; Θk)

= 1− F (vl)− F (vl−1; Θk)

1− F (vl−1; Θk)
=

1− F (vl; Θk)

1− F (vl−1; Θk)
.

For ∆kM = 1,

1

Pr[T > τ ]

{
m−1∏
l=1

1− F (vl; Θk)

1− F (vl−1; Θk)

}
Fk(vm; Θk)− Fk(vm−1; Θk)

1− F (vm−1; Θk)

=
Fk(vm; Θk)− Fk(vm−1; Θk)

Pr[T > v0]
=
Fk(vm; Θk)− Fk(vm−1; Θk)

1− F (v0; Θk)
,

and for ∆1M = ∆2M = . . . = ∆nKM = 0,

1

Pr[T > v0]

m∏
l=1

Pr[Vl = vl|Hl = hl]Pr[∆1M = . . . = ∆nKM = 0, T > v0|Hl = hl, Vl = vl]

=
1

Pr[T > v0]

m∏
l=1

Pr[Vl = vl|Hl = hl]Pr[T > vm]

∼ Pr[T > vm]

Pr[T > v0]
=

1− F (vm; Θk)

1− F (v0; Θk)
.

Therefore, the log likelihood is expressed by

logL(Θ) =
n∑
i=1

log l(Yi; Θ),

where

l(Yi; Θ) =

nK∏
k=1

M∏
l=1

{
Fk(vl; Θk)− Fk(vl−1; Θk)

1− F (v0; Θk)

}∆kl
{

1− F (vm; Θk)

1− F (v0; Θk)

}∆M+1

.
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Appendix B: Asymptotic Variance of Fk(t; Θ̂k) for Gompertz Model

The approximate variance of Fk(t; Θ̂k) = 1− exp[β̂k{1− exp(α̂kt)}/α̂k] for k = 1, . . . , nK

has the following form

v̂ar{Fk(t; Θ̂k)} =

(
∂Fk(t; Θk)

∂Θk

)
Σ̂Θ̂

(
∂Fk(t; Θk)

∂Θk

)′∣∣∣∣
Θ=Θ̂

,

where Σ̂Θ̂ is the inverse of the following observed Fisher information matrix

−



∂2 logL(Θ)

∂α2
1

∂2 logL(Θ)
∂α1∂β1

∂2 logL(Θ)
∂α1∂α2

. . . ∂2 logL(Θ)
∂α1∂βnK

∂2 logL(Θ)
∂α1∂β1

∂2 logL(Θ)

∂β2
1

∂2 logL(Θ)
∂α2∂β1

. . . ∂2 logL(Θ)
∂β1∂βnK

...
...

...
...

...

∂2 logL(Θ)
∂α1∂βnK

∂2 logL(Θ)
∂β1∂βnK

∂2 logL(Θ)
∂α2∂βnK

. . . ∂2 logL(Θ)
∂β2

nK


.

By letting Dkl(Θk) = {Fk(Vl; Θk)− Fk(Vl−1; Θk)}, we have

∂ log l(Yi; Θ)

∂αk
=

M∑
l=1

∆kl

[
1

Dkl(Θk)

∂Dkl(Θk)

∂αk
+

1

1− F (τ ; Θk)

∂Fk(τ ; Θk)

∂αk

]
+∆M+1

[
−1

1− F (vM ; Θk)

∂Fk(vM ; Θk)

∂αk
+

1

1− F (τ ; Θk)

∂Fk(τ ; Θk)

∂αk

]
,

∂2 log l(Yi; Θ)

∂α2
k

=
M∑
l=1

∆kl

[
1

D2
kl(Θk)

{
∂2Dkl(Θk)

∂α2
k

Dkl(Θk)−
(
∂Dkl(Θk)

∂αk

)2
}

+

1

{1− F (τ ; Θk)}2

{
∂2Fk(τ ; Θk)

∂α2
k

{1− F (τ ; Θk)}+

(
∂Fk(τ ; Θk)

∂αk

)2
}]

+∆M+1

[
−1

{1− F (vM ; Θk)}2

{
∂2Fk(vM ; Θk)

∂α2
k

{1− F (vM ; Θk)}+

(
∂Fk(vM ; Θk)

∂αk

)2
}

+

1

{1− F (τ ; Θk)}2

{
∂2Fk(τ ; Θk)

∂α2
k

{1− F (τ ; Θk)}+

(
∂Fk(τ ; Θk)

∂αk

)2
}]
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and

∂2 log l(Yi; Θ)

∂αk∂βk

=
M∑
l=1

∆kl

[
1

D2
kl(Θk)

{
∂2Dkl(Θk)

∂αk∂βk
Dkl(Θk)−

∂Dkl(Θk)

∂αk

∂Dkl(Θk)

∂βk

}
+

1

{1− F (τ ; Θk)}2

{
∂2Fk(τ ; Θk)

∂αk∂βk
{1− F (τ ; Θk)}+

∂Fk(τ ; Θk)

∂αk

∂Fk(τ ; Θk)

∂βk

}]
+∆M+1

[
−1

{1− F (vM ; Θk)}2

{
∂2Fk(vM ; Θk)

∂αk∂βk
{1− F (vM ; Θk)}+

∂Fk(vM ; Θk)

∂αk

∂Fk(vM ; Θk)

∂βk

}
+

1

{1− F (τ ; Θk)}2

{
∂2Fk(τ ; Θk)

∂αk∂βk
{1− F (τ ; Θk)}+

∂Fk(τ ; Θk)

∂αk

∂Fk(τ ; Θk)

∂βk

}]
,

where

∂Fk(t; Θk)

∂αk
= {1− Fk(t; Θk)}{1 + exp(αkt)(αkt− 1)}βk/α2

k,

∂Fk(t; Θk)

∂βk
= {1− Fk(t; Θk)}{exp(αkt)− 1}/αk,

∂2Fk(t; Θk)

∂α2
k

=
−∂Fk(t; Θk)

∂αk

[
βk
α2
k

+
βk
α2
k

exp(αkt)(αkt− 1)

]
+{1− Fk(t; Θk)}

[
−2βk
α3
k

+
{
βkα

−1
k t2 + 2βkα

−3
k − 2βkα

−2
k t
}

exp(αkt)

]
,

∂2Fk(t; Θk)

∂β2
k

= −{exp(αkt)− 1}2{1− Fk(t; Θk)}/α2
k,

∂2Fk(t; Θk)

∂αk∂βk
= −{1− Fk(t; Θk)}{(αkt− 1) exp(αkt) + 1}{(exp(αkt)− 1)βk − αk}/α3

k.

The other mixed partial second derivatives are omitted.
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