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ABSTRACT

Stephanie T. Lane: Regularized structural equation modeling for individual-level directed
functional connectivity.

(Under the direction of Kathleen Gates and Patrick Curran).

Within functional magnetic resonance imaging (fMRI) research, one method for

evaluating functional brain architecture is directed functional connectivity analysis. Given

the potentially exploratory nature of directed functional connectivity modeling, data-

driven strategies for identifying individual-level models are necessary. One promising

method, the unified SEM, is rooted in the structural equation modeling framework. By

representing both the lagged and contemporaneous directed relationships present among

regions of interest, it allows for the estimation of individual-level models of connectivity.

In this study, I present the regularized unified SEM as an alternative to existing methods,

where an individual-level model is selected from a range of possible models with varying

degrees of penalization. This method is compared to other existing methods for estab-

lishing directed functional connectivity, including an established stepwise model building

procedure for the unified SEM as well as the graphical vector autoregressive model. In

this evaluation, the regularized unified SEM using the adaptive LASSO outperforms all

other methods on simulated time series data, as well as on simulated blood oxygen level

dependent (BOLD) data. Performance is optimal in the presence of a long time series, a

small number of variables, and a sparse network.
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CHAPTER 1: INTRODUCTION

Within psychological science, a renewed appreciation for investigating processes at

the level of the individual has emerged. In the last several decades, a handful of methods

have been proposed to examine change at the level of the individual (e.g., p-technique fac-

tor analysis; Nesselroade & Ford, 1985); however, these lines of research have historically

occupied a relatively small portion of methodological research in psychology. Nonetheless,

the desire to model processes at the level of the individual, as opposed to the level of a

group or sample, is increasingly evident in applications ranging from ecological momen-

tary assessment data (e.g., Beltz et al., 2016; Wright et al., 2014) to blood oxygen level

dependent (BOLD) data from functional magnetic resonance imaging (e.g., Price et al.,

2016). Moreover, this individual-level focus is not only present within traditional psy-

chometric models (e.g., structural equation models), but is also present within emerging

research in network conceptualizations of psychological outcomes over time (e.g., Bors-

boom & Cramer, 2013). Thus, it may be said that there is increasing appreciation for

intraindividual variation, as opposed to inter individual variation.

Here, we are not conceptualizing individual variation as a quantifiable amount

of deviation from some nomothetic process, but we are instead endorsing the notion

that an individual is characterized by her own process (Cattell, 1966). That is, in this

context, intraindividual variation does not simply refer to the error variation present for

a given individual. Nowhere is this perspective so evident as Molenaar (2004), where
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it is argued that the structure identified from a group process may be generalized to

an individual only under very strict conditions. More precisely, a process is said to be

“ergodic” if the structures of interindividual variation and intraindividual variation are

equivalent. However, in the presence of a nonergodic process, we may not validly pool

over individuals, arrive at one model characterizing the processes underlying the full

sample, and then use that model to make inferences at the level of the individual. In such

an instance, dedicated analysis of the individual may instead be used to reliably recover

within-person processes over time.

The desire to make inferences at the level of the individual is particularly evident

in person-specific connectivity modeling within fMRI research. Specifically, one goal of

connectivity modeling is to reveal the directed relationships capturing temporal processes

between pre-defined regions of interest (ROIs) in the brain, where these relationships are

the result of underlying dependencies in the neural signal (Friston et al., 2013). Within

the context of connectivity modeling, there is a critical distinction between functional and

effective connectivity. Where functional connectivity implies some mutual information

or statistical dependence between two systems over time, effective connectivity explicitly

refers to the causal influence that one system exerts over another over time (Friston et al.,

2013).

Importantly, the establishment of functional connectivity does not offer information

regarding the source of the dependence between regions, but rather that the dependence

between regions exists. At the most basic level, functional connectivity between ROIs of

interest could be represented using a correlation matrix. In contrast, effective connectivity

analysis seeks to make explicit claims of causality and requires more sophisticated model-
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ing approaches, such as the dynamic causal model (Friston et al., 2003). Finally, directed

functional connectivity may be established when identifying statistical dependencies which

possess directionality but do not directly model the neuronal activity or imply causality.

This is in contrast to nondirected functional connectivity, in which bidirectional correla-

tion may be used. For the purposes of the present project, all discussion will be limited

to directed functional connectivity analysis. Therefore, we will seek to make inferences

regarding the temporal ordering of relationships, but we do not make statements regarding

causality.

Since the inception of the Human Connectome Project, an overarching goal has

been to establish a “blueprint” of connectivity that exists across all persons (Van Essen

et al., 2013). However, it has also been acknowledged that there is a sizable amount of

the connectome that may be specific to the individual (Barch et al., 2013), yielding more

of an individual-specific “fingerprint” of connectivity (Finn et al., 2015). Moreover, this

individual variability, whether at the level of network-wide measures (e.g., centrality,

degree) or at the level of individual weights characterizing connection strength within a

network structure, has been found to be predictive of a host of cognitive and behavioral

outcomes (van den Heuvel et al., 2009). Subsequently, researchers increasingly wish to

identify functional connectivity at the level of the individual. A variety of efforts have

been made toward this goal, many of which have been evaluated in recent years (Smith

et al., 2011). Of these methods, many are able to detect the presence of a relationship

between pairs of regions of interest (e.g., correlation); however, few are able to detect the

direction of a relationship (Smith et al., 2011). Thus, it is well established that there is

a need for methods which can identify both the presence and direction of relationships
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between regions of interest.

Given the inherently exploratory nature of identifying individual-level network-

like models to inform connectivity, there exists a need for principled unsupervised, or

data-driven, methods to arrive at models characterizing connectivity at the individual

level. However, within psychological science, much work has warned against the use of

specification searches in covariance structure modeling (MacCallum, 1986), as well as

the use of measures of model modification to make data-driven modifications to a model

(MacCallum et al., 1992). Specifically, it is known that the dangers of these specification

searches are most pronounced when the initial model is farthest from the data-generating

model. Additional concerns regard the notion that these models may be infrequently cross-

validated in practice, yielding models which may capitalize on the unique idiosyncrasies of

a single sample.

The use of time series data affords unique opportunities to ameliorate concerns

surrounding data-driven specification searches in two ways. Addressing the first concern

requires understanding the characteristics of BOLD data. That is, when considering

a time series of BOLD activation, it is readily apparent that there will be an effect

representing the extent to which a variable will predict itself at the next time point. This

effect, where a variable at time − 1 predicts itself at time, is known as an autoregressive

effect. In a specification search, by beginning the search procedure with freely estimated

autoregressive effects at the start of estimation, the search is able to start in a more

optimal position. Specifically, the inclusion of autoregressive effects likely begins the search

closer to the data-generating, or true, model. A second consideration with the use of time

series data is the presence of multiple individuals, or multiple “samples.” That is, the
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presence of multiple individuals is analogous to the presence of multiple data sets in the

context of cross-sectional data. Therefore, cross-validation can be conceptualized across

each individual’s data set, as opposed to across each study’s data set. Consequently, cross-

validation may occur to assess the presence of relationships which may consistently exist in

a homogeneous sample.

Importantly, while some of the issues concerning specification searches have been

addressed, indicating that models may be reliably recovered, other issues have not been

addressed. All of the methods considered in the course of this study, whether existing

methods or newly proposed methods, fall broadly under the category of a “specification

search.” The current study introduces, for the first time, a regularized unified structural

equation model (uSEM), a penalized estimation procedure, for identifying individual-level

models characterizing both lagged and contemporaneous (instantaneous) processes within

time series data. Additionally, the performance of the regularized uSEM performance

is compared to a similar method rooted in the structural equation modeling framework,

the stepwise unified SEM. The stepwise uSEM has also been previously referred to as the

automated unified SEM; here, the term “stepwise uSEM” will be used to maintain clarity,

as many data-driven or unsupervised search procedures may be considered “automated” in

nature.

Previously, the stepwise uSEM has been used with success for neuroimaging data

from within the group iterative multiple model estimation (GIMME) framework (Gates

& Molenaar, 2012), in which shared information across other individuals in a given

sample is used to inform a subset of relationships within each individual’s automated

uSEM. However, because the interest here is in individual-level modeling, the individual-
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level stepwise uSEM, using no shared information across the sample, will be used. The

performance of the regularized uSEM will also be compared to the graphical vector

autoregressive model (graphical VAR; Eichler, 2005; Wild et al., 2010) rooted in the

Gaussian graphical modeling framework. Like the other methods investigated in this

study, the graphical VAR model was introduced to identify models representing sparse

connectivity (or relationships) among variables of interest. As these three methods use

lagged information from the time series to predict current values, all methods may be

considered more broadly rooted in the Granger Causality framework. It is to a discussion

of these respective methods I now turn, prefaced by a introduction of the notion of

Granger Causality.

Granger Causality

Given that BOLD data constitute a time series that could be characterized as

both stationary (after preprocessing) and stochastic, Granger Causality analysis has

been applied with some success in the past. The concept of Granger Causality supposes

that a variable X is said to “Granger-cause” a variable Y if past (or contemporaneous)

values of X provide information about the future prediction of Y after controlling for past

values of Y (Granger, 1969). However, the use of modeling rooted in a Granger Causality

framework, such as vector autoregressive modeling, has not been without contention

in neuroscience (Friston et al., 2013). Of primary concern is the rate at which data are

sampled. In the context of fMRI data, the sampling rate is the speed with which scans are

obtained (Friston et al., 2013).

This sampling rate is specifically of concern given the rate of measurement rel-

ative to the process under observation; that is, the rate of measurement of the fMRI
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signal (seconds) is longer than the speed of the neural process under observation (mil-

liseconds). In time series modeling more broadly, it is known that when the rate of

measurement is longer than the process under observation, effects may surface contem-

poraneously (Granger, 1969). Thus, there exists a need for methods that are able to

not only establish directionality with respect to lagged relationships, but also with re-

spect to contemporaneous relationships, given that many effects of interest may surface

contemporaneously.

Furthermore, it has been argued that Granger Causality modeling can be success-

fully applied to neuroimaging data when proper care is taken (Gates et al., 2010; Friston

et al., 2013; Seth et al., 2013, 2015). Multiple methods that have been popularized in the

neuroimaging literature rest on the concept of Granger causality, including the unified

structural equation model and the graphical VAR. Here, I will introduce one existing

variant of the uSEM, the stepwise uSEM, as well as the graphical VAR. This discussion

will be followed by the introduction of the proposed regularized uSEM, which also stems

from a Granger Causality framework.

Unified Structural Equation Model

The aptly named unified SEM (Kim et al., 2007) “unifies” the estimation of both

the lagged relationships and the contemporaneous relationships present among observed

variables. This framework was specifically introduced to meet the challenges of analyzing

multi-subject, multivariate fMRI data (Kim et al., 2007). Because the fMRI signals

contained in a typical fMRI time series are temporally correlated, a conventional SEM

modeling only contemporaneous relationships is not well suited for the analysis of fMRI

data. This is due to violation of the assumption of independent observations. Specifically,

7



observations are sequentially correlated in time.

At its core, the unified SEM is a structural vector autoregressive model (SVAR;

Chen et al., 2011) estimated within a structural equation modeling framework. By fitting

the SVAR within an SEM framework, we are able to circumvent the usual process of iden-

tifying an SVAR. That is, a typical SVAR is obtained by using Cholesky decomposition

on the covariance of the errors in a standard VAR model, thereby transforming a VAR

into an SVAR (Lütkepohl, 2005). A known feature of SVARs fitted in this way is that the

solutions are nonunique and instead rely upon the ordering of the series (Beltz & Mole-

naar, 2016; Lütkepohl, 2005). By fitting the SVAR as a uSEM, we avoid these nonunique

solutions.

While structural equation modeling has been previously discussed as a potential

solution for modeling directed functional connectivity, it has occasionally been dismissed

within the literature for being either entirely confirmatory (Varoquaux & Craddock,

2013) or for its ability to only represent contemporaneous relationships (McIntosh &

Gonzalez-Lima, 1994). Here, the incorporation of the lagged relationships in the unified

SEM obviates the criticism that it may only handle contemporaneous relationships.

Additionally, the potential for incorporating different model-building or estimation

procedures that could be used with the unified SEM addresses the criticism that SEM may

be confirmatory-only.

First, the constituent parts of the unified SEM may be defined. The multivariate

autoregressive process may be defined as:

ηt = ϕ1ηt−1 + ...+ ϕqηt−q + ζt (1)
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where ηt is the p × 1 vector of observed (or latent) variables at time t, ϕ is a p × p

parameter matrix containing the longitudinal temporal (or lagged) relationships, and ζt

is a p × 1 vector of white noise. Within the ϕ matrix, the coefficients along the diagonal

represent the autoregressive process for each variable; that is, these coefficients represent

the effect a variable has on itself at a future time point. Similarly, the off-diagonal

coefficients represent the cross-lagged relationships between variables. These coefficients

may be freed, fixed, or constrained. The contemporaneous, or instantaneous, activity

among variables can then be represented by a conventional SEM,

ηt = Aηt + ϵt (2)

where ηt is the p × 1 vector of observed (or latent) variables at time t, A is a p × p

matrix containing the contemporaneous relationships among ROIs, and ϵt is a p× 1 vector

assumed to be white noise. The diagonal of A is set to zero to reflect that a variable

cannot predict itself in contemporaneous time. That is, a variable may not exert an

instantaneous effect on itself. The combined expression for the unified SEM can be defined

as:

ηt = Aηt + Σq
u=1ϕuηt−u + ζt (3)

where lagged relationships may be represented up to order q and all else is defined as

before, with E(ζt) = 0 and error covariance θζ. A path diagram representing the structure

of the unified SEM is shown in Figure 1, where current variables are represented by ηt,

lagged variables are represented by ηt−1, contemporaneous effects are represented by solid

lines, and lagged effects are represented by dashed lines.
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Figure 1: Three-Variable uSEM: Detailed Depiction

A more common representation of the unified SEM collapses the directed lagged

and contemporaneous effects into a single path diagram, where the phantom variables

(latent variables regressed into observed variables with a fixed loading of 1) are omitted

from the diagram and all relationships are depicted simultaneously. This depiction, as seen

in Figure 2, will be used moving forward to simplify presentation in the presence of more

variables.

In the context of modeling fMRI data, the unified SEM is frequently simplified to

include only lagged associations of order q = 1 given the speed of the BOLD signal relative

to the speed of data collection. That is, the neural signal underlying the BOLD signal

responds on the order of milliseconds, where a standard amount of time between scans is

two seconds. Thus, in resting-state data, there may be few instances in which activity two
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V 1

V 3V 2

Figure 2: Three-Variable uSEM: Simplified Depiction

scans ago in time predicts the activity in the current scan.1

The unified SEM may be more concisely written as

η = Bη + ζ (4)

where η is composed of [ηt−1, ηt], such that the lagged time series and contemporaneous

time series are horizontally concatenated. Similarly, ζ is composed of [ζt−1, ζt], where ζt−1

is a 0 vector. The B matrix, as depicted in Gates et al. (2016), is of dimension 2p × 2p,

1A researcher can confirm that additional lags are not necessary by performing white noise tests.
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such that:

B =



0 0

0 0

ϕ11 ϕ12 ϕ1p

ϕ21

ϕ(p−1)p

ϕp1 ϕp(p−1) ϕpp︸ ︷︷ ︸
Lagged

0 0

0 0

0 A12 A1p

A21

A(p−1)p

Ap1 Ap(p−1) 0


︸ ︷︷ ︸

Contemporaneous

(5)

Here, the upper left and upper right quadrant reflect that a lagged variable cannot

be predicted by another lagged variable, nor can it be predicted by a variable measured at

a future point in time. That is, no directed relationships are permitted where a variable at

time would predict a variable at time− 1. The lower left quadrant represents the ϕ matrix

containing the lagged relationships (both autoregressive and cross-lagged), while the lower

right quadrant represents the A matrix containing the contemporaneous relationships.

Again, the diagonal of the lower right quadrant is set to zero to reflect that no variable

may predict itself at the same time point.

Similarly, the Ψ matrix may be defined, such that:
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Ψ =



ψ11

ψ21

ψp1 ψp(p−1)

0 0

0 0︸ ︷︷ ︸
Lagged

0

0 0 ψ(2p)(2p)


︸ ︷︷ ︸

Contemporaneous

(6)

where the Ψ matrix contains the variance and covariance matrix of the regression

errors. Specifically, the off-diagonal elements represent covariances and the diagonal el-

ements represent variances. Thus, the variances are estimated for all variables, lagged

and contemporaneous, and covariances are estimated among the lagged variables. How-

ever, covariances are neither estimated among lagged and contemporaneous variables nor

among contemporaneous variables. Put differently, as the lagged variables are considered

exogenous variables, only exogenous covariances are allowed.

Finally, the covariance matrix Σ may be represented using conventional SEM

notation, such that

Σ = Λ(I−B)−1Ψ(I−B′)−1Λ′ +Θ (7)

If the time series were composed of latent variables, Λ would represent the relation of the

observed variables to the latent variables. In the context of neuroimaging data, a latent
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variable could represent a broader network of regions within the brain (e.g., default mode

network), and each observed variable could represent a region of interest that belongs

to that network. In other contexts within psychological research, a latent variable may

represent a construct such as depression, and each observed variable may be an item

evaluating some aspect of depressive symptomatology. In this project, however, only

single observed variables will be considered; no multiple-indicator latent factors will be

considered (see Chapter 4, Future Directions, however, for further discussion). Therefore,

when the time series is composed of observed variables, Λ is reduced to an identity matrix

of dimension 2p × 2p. Similarly, Θ drops out of the equation, as we are not modeling

measurement error; therefore, Θ = 0.

Stepwise Unified Structural Equation Model

Model Building Procedure

Though multiple methods of automated model building are possible, one classic ap-

proach makes use of a forward-selection model building procedure driven by modification

indices, also known as LaGrange multipliers (Sörbom, 1989). Within structural equation

modeling, a modification index indicates the extent to which the model fit would improve

if a given parameter (currently fixed to zero) were freely estimated (Jöreskog & Sörbom,

1986). One automated procedure for identifying individual-level models using modification

indices is a forward-selection procedure which begins with a null model, where all lagged

and all contemporaneous relationships are set to zero. In order to aid the search, the

autoregressive relationships representing a variable’s influence on itself from the previous

time point may be freed, as prior work has shown that beginning the model search with

these relationships freely estimated aids with the recovery of directionality, even when
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these effects are small in magnitude (Lane et al., under revision). Regardless of the null

model used at the start of estimation, the forward-selection procedure proceeds to itera-

tively add directed paths, both lagged and contemporaneous, which improve the likelihood

ratio test. The model selection terminates when no modification index possesses a p-value

lower than a pre-specified threshold for α. This automated procedure, adding relationships

one at a time in a forward-selection process, was popularized in LISREL, though its use

has been met with great criticism (MacCallum, 1986).

A variation of this procedure is used in Gates et al. (2010), where fit indices are

used as the stopping criteria (instead of p-values alone) and a pruning stage is added.

Specifically, the search proceeds as previously specified, adding directed relationships

which most improve the likelihood ratio test. However, instead of stopping when no

modification index possesses a p-value lower than a prespecified α, it instead terminates

when the model is “excellent” as indexed by two of four standard fit indices used in

structural equation modeling: the NNFI (also known as the TLI) (Bentler & Bonnett,

1980), CFI (Bentler, 1990), RMSEA (Steiger, 1990), and SRMR (Jöreskog & Sörbom,

1981). Specifically, estimation is terminated when the CFI and TLI are greater than .95

and the RMSEA and SRMR are less than .05. These fit indices will be used at stopping

criteria in Chapters 2 and 3; therefore, full details regarding the specification of each index

of fit is displayed below.

The RMSEA is estimated by ϵ̂a, which is the square root of the discrepancy per

degree of freedom:

ϵ̂a =

√√√√max

{(
F (S,Σ(θ̂)

df
− 1

N − 1

)
, 0

}
(8)
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where the minimum of the fit function is represented by F (S,Σ(θ̂)), df is the

number of degrees of freedom represented by m(m + 1)/2 − t (where m = 2p and p is the

number of variables for the unified SEM), and N is the sample size. The SRMR may be

expressed as:

SRMR =

√∑p
i=1

∑i
j=1[(sij − σ̂ij)/siisjj]2

m(m+ 1)/2
(9)

where sij is an element of the sample covariance matrix, σ̂ij is an element of the

model-implied covariance matrix, m is twice the number of observed variables (current

and lagged), and all elements are standardized by dividing the residuals by the standard

deviations of the observed variables (e.g., sii).

The CFI may be defined as:

CFI = 1− max[(χ2
t − dft), 0]

max[(χ2
t − dft), (χ2

i − dfi), 0]
(10)

where χ2
t is the chi-square corresponding to the baseline model, or independence

model, and χ2
t is the chi-square corresponding to the fitted model. Finally, the TLI may be

defined as:

TLI =
(χ2

i /dfi)− (χ2
t/dft)

(χ2
i /dfi)− 1

(11)

Once a model is achieved that satisfies two of these four fit indices, a pruning stage

is added to the classic LISREL search procedure, where any directed relationships no

longer significant at p = .05 are removed from the model. After this pruning stage, if

the model fit is no longer excellent, then the search proceeds one final time until a model

again satisfies two of four of these criteria.
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As previously mentioned, chief among the criticism of such a method is that it is

frequently difficult to cross-validate a model which was arrived at via specification search.

The first concern regarding cross-validation may be ameliorated when considering that

each individual may be considered his or her own sample, and researchers may assess the

degree of concordance among individual-level models if seeking evidence for some group-

level pattern of effects. Indeed, MacCallum et al. (1992) recommend the use of parallel

samples when using specification searches, and time series data collected from multiple

individuals allow for exactly this possibility.

Furthermore, as previously discussed, prior work has shown that specification

searches are most dangerous when the initial model is far from the true, data-generating

model. Similarly, in the context of neuroimaging data, autoregressive effects are con-

sistently present and large in magnitude due to the lagged nature of the hemodynamic

response following neural activation. Thus, by beginning the model search with the au-

toregressive effects freely estimated, we start the model closer to the true model. For all

models tested in the present study, the autoregressive effects will be freely estimated. The

aforementioned automated procedure using modification indices is implemented in the

group iterative multiple model estimation algorithm, GIMME (Gates & Molenaar, 2012),

and its use for neuroimaging data has been met with success.

However, as the model-building procedure makes use of forward or stepwise

selection, there is concern for how well the procedure may perform if incorrect paths are

selected near the beginning of model selection (Beltz & Molenaar, 2016). An approach

such as GIMME largely makes use of a group-level structure in order to guide individual-

level model selection, as the group-level model assists in picking out signal from noise
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in selecting individual-level paths. However, imposing a group-level structure could

foreseeably arrive at paths that are not significant for a sizable minority of the sample.

Indeed, as the use of GIMME is predicated on the assumption of an underlying group-

level model, it will ultimately make use of a truly individual-level stepwise uSEM when

no group-level structure exists. Additionally, if a better individual-level search can be

implemented, the need for a group-level structure to guide individual-level search may be

obviated. Therefore, all models within this project will only consider and use data from a

single individual, N = 1.

Graphical Vector Autoregressive Model

A related model, the graphical vector autoregressive model, has also been previ-

ously introduced for the analysis of single-subject, multivariate time series data (Eichler,

2005; Wild et al., 2010). The graphical VAR, also known as a sparse time series chain

graphical model (Abegaz & Wit, 2013), has seen applications ranging from reconstructing

genetic networks (Abegaz & Wit, 2013) to estimating temporal relations within experience

sampling data (Wild et al., 2010). Much like the unified SEM, the graphical VAR relies

on the concept of Granger causality and utilizes information regarding temporal depen-

dence within time series data. Further, the graphical VAR utilizes graphical modeling to

represent directed relationships among variables. That is, it is rooted in the framework

of Gaussian Graphical Modeling, which has been recently presented as an alternative to

structural equation modeling for representing covariance structures (Epskamp et al., 2016).

Specifically, the graphical VAR makes use of a Gaussian Graphical Model to describe

contemporaneous relationships leftover after modeling temporal (lagged) relationships

using a network of directed regression coefficients.
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First, the graphical VAR searches across all possible constrained VAR models and

selects the model that optimizes some target criterion (e.g., AIC: Wild et al., 2010, EBIC

or BIC: Chen & Chen, 2008; Epskamp, 2016). In the graphical portion of the model,

the contemporaneous relationships are denoted via undirected connections among the

errors. That is, no statement of directionality is made with respect to instantaneous

relationships. In contrast, the lagged, or temporal, relationships are denoted via directed

connections. Though the graphical VAR can be expanded to include lagged relationships

beyond an order of 1, I restrict our discussion here to a lag of order 1 for consistency and

scope.

The graphical VAR using a lag of order 1 can be represented as:

yt = Ωyt−1 + ϵt (12)

where yt is a vector of values across multiple variables at time t, Ω contains the

lagged, or “between-time” effects, and ϵt is an error vector. Within contemporaneous time,

(ϵt ∼ 0,κ), where κ represents the nondirected contemporaneous, or lag-0, relationships.

The graphical VAR lends itself well to interpretation, as both the Ω and κ matrices

may be standardized post-estimation to represent partial directed correlation (PDC) and

partial contemporaneous (nondirected) correlations (PCC), respectively. That is, the

elements of the κ matrix may be rescaled as:

PCC(yi,t, yj,t) = − Kij√
KiiKjj

(13)

where the PCC represents the correlation between a given pair of variables at the same

point in time, partialling out the linear effects of all other variables, both contemporaneous
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and lagged. Similarly, the elements of the Ω matrix containing the lagged relationships

may be standardized by

PDC(yi,t, yj,t−1) =
ωij√

ΣiiKjj + ω2
ij

(14)

where Σii represents a diagonal element of the variance-covariance matrix of the residuals,

after inverting the concentration matrix κ, and all other terms are defined as before.

The PDC represents the linear relationship between a dependent variable y at time t

and a predictor variable y at time t − 1, net the linear effect of all other variables at

time t − 1 (Wild et al., 2010). Figure 3 depicts an example network structure from

the graphicalVAR package (Epskamp, 2016), where the contemporaneous and lagged

structures are depicted separately. Note that the lagged relationships are depicted by

one-headed arrows, where the contemporaneous relationships are depicted by nondirected

edges. In this simple diagram representing typical output from graphical VAR package,

positive weights are depicted using green edges and negative weights are depicted using

red edges.

V1

V2 V3

V1

V2 V3

Figure 3: Graphical VAR: Partial Contemporaneous and Partial Directed Correlations
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Much like the stepwise uSEM, the graphical VAR lends itself to multiple options for

proceeding with model building, and several options have been proposed. For example, a

simple constrained search using forward selection in combination with some information

criteria, such as the AIC or BIC, was proposed in an earlier variation of the graphical

VAR (Eichler, 2005). As with the unified SEM, it is possible to fit an entirely confirmatory

model derived from some a priori hypothesis. However, in the context of establishing

functional connectivity, researchers frequently do not have a concrete, a priori structure

in mind. Therefore, an exploratory variation of the graphical VAR will be investigated

here.

Specifically, a variant of the graphical VAR will be investigated, where the least

absolute shrinkage and selection operator (LASSO; Tibshirani, 1996) is used in combi-

nation with the Bayesian Information Criteria (BIC; Schwarz et al., 1978), for model

selection. A general expression for the LASSO in the context of regression can be written

as:

β̂lasso = argmin
{ N∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
+ λ

p∑
j=1

|βj|
}

(15)

provided an outcome vector, y, and a matrix of predictors, Xn×p, where β0 is the intercept

term and βj is the coefficient for the prediction of y using xj, and λ is the tuning parame-

ter controlling the degree of regularization. In the case of the graphical VAR, the vector y

would represent the observed variables at time, yt, and X would represent the vector of y

variables at t− 1. Because the LASSO forces some parameter estimates to zero as the level

of penalization increases, it serves as not only a method to induce sparsity, but also as a

method to perform variable selection.
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In this specification of the graphical VAR, the LASSO penalty is incorporated

into estimation to act as a variable selection procedure, such that small coefficients

are shrunk to zero. The LASSO stands in contrast to an alternative approach, such

as ridge regression, in which coefficients are shrunk toward zero but do not reach zero

(Hoerl & Kennard, 1970). Though the ridge penalty has been shown to outperform

the LASSO in minimizing prediction error (mean square error; MSE), it yields a less

interpretable solution. Therefore, the ridge penalty will not be investigated in the present

study.

The implementation of both penalties fall into the category of a regularization

procedure, which aims to increase the sparsity, and therefore, the parsimony and generaliz-

ability of a solution (Jacobucci et al., 2016). With the LASSO, the degree of regularization

is set by a tuning parameter, λ. Higher values of λ will result in more parsimonious model;

at the extreme, the highest value of λ will result in a model in which all connections are

zero. When λ is zero, no regularization takes place. Ideally, an optimal value of λ will

be selected in order to maximize true connections and minimize spurious connections

(Epskamp & Fried, 2016).

In the graphical VAR, the procedure is as follows: a range of networks are first

estimated using various levels of the LASSO tuning parameters, resulting in a variety of

potential models. If we assume that ϵ ∼ N(0,κ), then we may express the conditional

density of the tth observation as:

fc(yt|yt−1;Ω,Θ) = (2π)p/2det(Θ)1/2e−
1
2
(yt−Ωyt−1)′Θ(yt−Ωyt−1) (16)

where yt is a vector representing the levels of p variables measured at time t, Θ represents

22



the inverse of κ, the variance-covariance matrix of the residuals, and all other terms are

defined as before (Abegaz & Wit, 2013). Thus, the objective function for minimization

may be expressed as:

ℓpen(Ω,Θ) = log det−tr(SΩΘ)− Σp
i ̸=jPλ(|θij|)− Σp

i,jPρ(|ωij|) (17)

where

SΩ = (1/T )ΣT
t=1(yt −Ωyt−1)(yt −Ωyt−1)

′, (18)

Pλ(·) and Pρ(·) are penalty functions for Θ and Ω respectively, and θij and ωij are

elements of these matrices (Abegaz & Wit, 2013). Though several penalty functions are

possible, the L1 penalty representing the LASSO is used here. The convex L1 penalty may

be represented as

Pλ(θ) = λ|θ|, (19)

which may be substituted into the prior expression to yield the optimization problem

which allows for sparse estimates of both Ω and Θ :

max(Θ,Ω)
{
log det(Θ)− tr(SΩΘ)− λΣp

i ̸=j|θij| − ρΣp
i,jωij

}
(20)

where λ and ρ control the level of sparsity for the lagged matrix, Ω, and the in-

verted contemporaneous matrix, Θ. For this optimization problem, an efficient coor-

dinate descent algorithm is used, full details of which can be found in Rothman et al.

(2010).

In order to select the optimal model from this range of models, the BIC (Schwarz
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et al., 1978) or extended BIC (Chen & Chen, 2008) is used. In prior simulation work, the

EBIC has been shown to successfully select the correct model (Epskamp et al., 2016). The

original BIC (Schwarz et al., 1978) would select the model that minimizes the following

expression:

BIC = −2 logLnθ̂(s) + ν(s) log n, (21)

where θ̂(s) is the maximum likelihood estimator of θ(s), ν(s) is the number of components

in model s, and n is the number of observations. The extended BIC extends this equation

to include:

BICγ = −2 logLnθ̂(s) + ν(s) log n+ 2γ log τ(Sj), (22)

where γ is a hyperparameter controlling the sparsity of the solution, τ is the size of the

model space Sj, and Sj is the collection of all models with j variables (Chen & Chen,

2008). When γ is set to zero, the extended BIC corresponds to the original BIC. For

purposes of consistency across methods, the γ parameter will be set to zero, yielding the

original BIC.

Thus, in each iteration, instead of optimizing the likelihood function, the penalized

likelihood is instead optimized, where the tuning parameters λ and ρ control the level

of penalization (Epskamp et al., 2016). The optimal model following this procedure is

identified by selecting the model with the lowest BIC value.

The graphical VAR approach is characterized by several advantages. First, it is

well-suited for the analysis of time series data with a large number of variables where

a relatively sparse solution is desired. Additionally, the presence of multiple tuning pa-
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rameters allows for a more continuous selection of models, where there may be multiple

possible optimal models, depending on the desired level of sparsity. Moreover, the use of

the LASSO for variable selection avoids the use of a forward-selection or stepwise proce-

dure, which may miss the optimal model by adding only one relationship in each iteration.

Finally, a VAR(1) model allows all directed lagged and all nondirected contemporaneous

relationships among variables to be present prior to the regularization procedure offered

by the LASSO. Note that for the purposes of this dissertation, λ and ρ will be set to

equality in the graphical VAR, yielding equally penalized lagged and contemporaneous

relationships.

Importantly, there are several desirable characteristics that are not offered by the

graphical VAR. First, the parameterization is such that the contemporaneous relationships

are expressed via off-diagonal elements in the variance-covariance matrix of the residuals.

Thus, there are no directed contemporaneous relationships; instead, sparse nondirected

contemporaneous relationships are modeled to simply account for any leftover relationships

after modeling directed lagged processes. However, in the pursuit of directed functional

connectivity, it is precisely these missing directed contemporaneous elements that are

frequently of interest, as many effects surface contemporaneously. Thus, it may be

desirable to combine the most useful elements of the data-driven unified SEM and

the graphical VAR into a hybrid model: the regularized unified structural equation

model.

Regularized Unified Structural Equation Modeling

Though the topic of regularization has been long-discussed in other modeling

contexts, such as graphical modeling (Friedman et al., 2008) and regression (Tibshirani,
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1996), it has received less attention within structural equation modeling, and psychomet-

rics more broadly. However, with the increasing presence of “big data” within psychologi-

cal research, more research into methods for automatic variable selection and models with

many variables relative to the number of individuals is warranted. To this end, there exists

increased discussion regarding what regularization has to offer various models popular

in psychological research, ranging from regression (McNeish, 2015) to traditional factor

analysis or structural equation modeling (Jacobucci et al., 2016).

In the context of multiple regression, regularization may be used to perform

variable selection when the number of predictors exceeds the number of individuals,

or when a small set of predictors (out of many possible) is desired. In the context of

confirmatory factor analysis, where an underlying, or latent, variable is related to a

given number of observed variables via a factor loading, regularization may be used to

either force loadings to zero (e.g., LASSO penalty) or force loadings close to zero (e.g.,

ridge penalty). Using regularization in this example may be a more principled way to

induce sparsity than an alternative approach, such as forcing a simple structure to exist,

which could have the unintentional consequence of inflating covariances among latent

factors (Hsu et al., 2014). Both examples highlight ways in which regularization may be

introduced to psychological audiences using familiar models.

With respect to structural equation modeling, regularization may be applied to the

latent variable portion of a structural equation model as well as the measurement model

portion. Given that this project pertains to the structural relationships present in a time

series composed of observed variables, I will focus my discussion on this case. Unlike a

VAR(1) model, the unified SEM does not allow for all possible paths to be present at the
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beginning of model estimation. In the unified SEM, if the specified model contained all au-

toregressive relationships, all possible cross-lagged relationships, and all possible contem-

poraneous relationships, it would suffer from underidentification.

This fact largely informs why previous strategies for data-driven identification of

relationships within structural equation modeling (e.g., Gates et al., 2010) have utilized

forward-selection procedures, where relationships are added sequentially until a final model

is established, or stepwise procedures, where relationships are added sequentially and

subsequently pruned until a final model is established. In contrast, backward-elimination

procedures, where all possible relationships exist at the start of model estimation and are

sequentially eliminated, have received less discussion. Given that the proposed regularized

uSEM is able to begin estimation with an underidentified model and gradually arrive at

a sparse model via the introduction of parameter penalties, it offers a unique solution to

arriving at a sparse individual-level model.

First, the regularization procedure begins by presenting the unified SEM using

matrices expressed in reticular action model, or RAM, notation (McArdle, 2005). The use

of RAM notation is beneficial here for two reasons. First, it offers a direct correspondence

between the matrix and graphical specifications of the unified SEM, yielding easily

interpretable matrices. Second, the direct, or structural, relations are captured in a

single matrix which may be used for regularization. Note that this is in contrast to the

traditional LISREL notation, which would separate the directed effects into two matrices:

the exogenous and the endogenous effects.

Briefly, RAM notation decomposes any structural equation model into three

matrices: the filter (F) matrix, the asymmetric (A) matrix, and the symmetric (S) matrix.
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The filter matrix contains a 1 for each manifest variable and zeros elsewhere; thus, for our

observed-variable unified SEM, the filter matrix would be equivalent to an identity matrix.

The asymmetric matrix contains any regressions among variables; for the unified SEM,

this matrix would take the form of the B matrix presented in Equation (5) containing

regressions of variables at time on variables at time − 1 and regressions of variables at

time on other variables at time. Finally, the symmetric matrix contains all variances and

covariances; this matrix aligns with the Ψ previously presented in Equation (6), where

lagged variables are allowed to freely covary. Using these matrices, the expected covariance

matrix can then be computed as:

Σ = F(I−A)−1S(I−A)−1′F′. (23)

In turn, this expected covariance matrix may then be placed into the maximum likelihood

loss function, such that

FML = log(det(Σ)) + tr(S ∗Σ−1)− log(det(S))− p (24)

where S is the sample covariance matrix and p is the number of variables. In order to in-

corporate regularization into this loss function, we modify it accordingly:

Freg = FML + λP (·), (25)

where P (·) is a general function for penalizing the parameters. In this instance, the

LASSO (|| · ||), which penalizes the sum of the absolute values of the parameters,

and adaptive LASSO, which introduces a parameter-specific penalty in the sum of

the absolute values of the parameters, are used given the interest in variable selec-
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tion.

Borrowing the structure from Equation 15, we may express the adaptive LASSO

penalty in a simple regression context as:

β̂adaptivelasso = argmin
{ N∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
+ λ

p∑
j=1

ŵj|βj|
}

(26)

where ŵj is a weight equal to 1/|β̂j|. With the introduction of the weight vector ŵ

in the adaptive LASSO, each estimate possesses a data-dependent weight (Zou, 2006). It

is known that compared to the standard LASSO, the adaptive LASSO is able to reduce

bias (Zou, 2006) through these parameter-specific weights. Specifically, the standard

LASSO is known to introduce bias in larger coefficients, as all estimates are penalized

uniformly. Thus, large coefficients are less biased in the final model. By optimizing the fit

function containing parameter-specific penalties on the B matrix containing all directed

relationships, we now have the regularized unified SEM.

Given the goal of a sparse, data-driven model, the regularized uSEM offers several

benefits. First, we are able to begin estimation with a model containing all possible

bidirectional structural relations. Additionally, we are able to utilize the benefits of the

SEM framework to utilize traditional measures of fit. Specifically, we are able to select

from a continuous range of models with increasing sparsity, examining popular measures

of fit within structural equation modeling (e.g., RMSEA, BIC) in order to make our

final selection. For the purposes of the current study, the BIC will be used, which will be

expanded upon in Chapter 2. This approach, selecting the best model from a range of

models, is in contrast to other forward-selection or stepwise model building procedures,

which make use of a priori fixed cutoff values and halt the search when those fixed
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cutoff values are reached. That is, in other competing forward- or stepwise- selection

procedures, the fit of a model is compared to a fixed cutoff and not to other candidate

models.

Furthermore, in the regularized uSEM, there exist the ability to handle missing

data (e.g., using full information maximum likelihood), provided that data can be assumed

to be missing at random. This feature stands in contrast to the graphical VAR, which

requires multiple imputation in the presence of missing data. Finally, regularization has

never been applied to a structural vector autoregressive model or a unified structural

equation model, representing a unique contribution to the literature and a novel strategy

for identifying data-driven models of directed temporal and contemporaneous network

structure.

Current Study

Given the increasing interest in individual-level connectivity and in time series

analysis more broadly, researchers must decide among a myriad of candidate approaches,

not all of which are well-suited for identifying directed functional connectivity. The

current project evaluates the ability of two existing approaches, the stepwise unified

structural equation model and the graphical vector autoregressive model, as well as a

new method, the regularized unified structural equation model, to recover both lagged

and contemporaneous relationships that comprise directed functional connectivity. To

accomplish these goals, I conduct two simulation studies.

In Chapter 2, I discuss the finite sampling behavior of each model using time

series data composed of lagged and contemporaneous effects. The studies comprising this

chapter, Study 1A and Study 1B, will evaluate the performance of each approach across
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conditions encountered in practice. In Study 1B, the effect of mismodeling the direction

of the contemporaneous structure will be evaluated. In Chapter 3, Study 2 contains

selection of simulations conducted on data from Smith et al. (2011), which are considered

benchmark data for evaluating any method for identifying networks representing directed

functional connectivity.
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CHAPTER 2: STUDY 1

Prior to discussing the relevance of these methods for functional connectivity analy-

sis, the finite sampling behavior of each method across conditions encountered in practice

must be considered. Table 1 presents the list of methods that will be considered, as well

as relevant penalties and stopping criteria. Though the performance of the stepwise uSEM

has been evaluated prior to this work in terms of the overall recovery of data-generating

network connections (Gates et al., 2010), other outcome measures pertaining to the accu-

racy and precision of individual estimates have not been considered. Furthermore, given

that the performance of the regularized uSEM has never before been investigated, there is

a pressing need to understand its finite sampling behavior in a controlled simulation study.

Finally, given the natural similarity of the graphical VAR and the regularized uSEM, it is

important to understand their relative performance.

As discussed in detail below, in Study 1A, I evaluate these methods across three

factors: varying number of time points, varying number of variables, and varying sparsity

(or density) of the network. This study is designed to evaluate the methods across

conditions encountered in time series data more broadly defined in psychological science.

In Study 1A, each method will be used on data generated by the appropriate structure;

that is, the regularized uSEM and stepwise uSEM will be fit to data generated by a

uSEM with directed lagged and contemporaneous relationships. The graphical VAR will

be fit to data generated by a sparse VAR model, with directed lagged and nondirected
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contemporaneous relationships. Therefore, I am able to evaluate the performance of the

models under a variety of conditions encountered in practice, when the data-generating

model and the fitted model align.

In Study 1B, the performance of the methods are evaluated when the directionality

of the contemporaneous structure is misspecified. That is, the uSEM-based methods are fit

to data generated by a graphical VAR, and the graphical VAR is fit to data generated by

a uSEM. Therefore, I can evaluate the performance of the regularized uSEM and stepwise

uSEM when applied to data with nondirected contemporaneous relationships. In Study

1B, the number of time points and the sparsity of the network will again be varied, but

the number of variables will be held constant at V = 5.

By performing these separate studies, we may evaluate the relative performance of

the three methods, both when the data-generating and fitted models align (Study 1A),

and when they do not (Study 1B). Further details regarding the levels of each simulation

factor, as well as each outcome variable, are provided below.

Method Stopping/Evaluation Criteria
Regularized uSEM - ALASSO BIC
Regularized uSEM - LASSO BIC
Stepwise uSEM NNFI, CFI, SRMR, RMSEA
Stepwise uSEM - add BIC NNFI, CFI, SRMR, RMSEA + BIC
Graphical VAR BIC

Table 1: Methods Considered

Model Specifications

Stepwise uSEM. In this comparison, the stepwise model building procedure

for the uSEM employs a stepwise model search using modification indices (Jöreskog &

Sörbom, 1986). Here, the search will terminate when the model is “excellent” as indexed
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by two of four standard fit indices used in structural equation modeling: the NNFI

(Bentler & Bonnett, 1980), CFI (Bentler, 1990), RMSEA (Steiger, 1990), and SRMR

(Jöreskog & Sörbom, 1981). A variation of the stepwise uSEM will also be tested, where

the BIC (χ2 − df ∗ log(N)) is added for consideration. In this variation, the stopping rule

is changed from two-of-four to three-of-five.

Regularized uSEM. Similarly, the regularized uSEM will be estimated using

penalties controlled by a pre-specified range of λ values, corresponding to various degrees

of regularization. As presented in Table 1, the regularized uSEM will be investigated

with both the standard LASSO penalty as well as the adaptive LASSO penalty. Of the

regularized unified structural equation models tested across the range of λ values, the

model with the lowest BIC is chosen, consistent with current practice (Jacobucci et al.,

2016).

Graphical VAR. Finally, the graphical VAR will similarly estimate models

across a range of λ values, where the model with the lowest BIC is chosen. Though some

variations of the graphical VAR allow the lagged and contemporaneous matrices to be

penalized using different λ values, these values will be held to equality for the purpose of

the current study to maintain comparability to competing methods. To ease comparison,

no bidirectional contemporaneous relationships will be generated in the uSEM. These

analytic approaches will again be employed in Study 1B as well as Study 2 (Chapter

3).

Here, in Study 1A and Study 1B, the number of time points will be varied, as well

as the overall sparsity of the network. Only Study 1A will vary the number of variables;

the number of variables will be held constant in Study 1B. The choice of these design
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factors suits two purposes. First, these simulation factors represent characteristics of data

that may be of general interest in examining a method for time series data collected within

psychological science more broadly (e.g., ecological momentary assessment data). Second,

these design factors directly relate to functional connectivity analysis in fMRI studies.

Thus, in Study 2, I will be able to introduce conditions that are more specific to fMRI and

less general, maintaining scope within each respective study.

Each cell in the fully-crossed simulation design will be examined across R = 500

replications. Finally, in order to evaluate each replication, multiple outcome measures

will be considered, including both sensitivity (the ability to detect true relationships) and

specificity (the ability to remove false relationships) of both nondirected and directed

relationships. Additional outcome measures are considered, including the relative bias of

true positive paths, the absolute bias of false positive paths, the root mean square error,

and computation time. More details are provided below for each simulation factor and for

each outcome measure.

Design Factors for Simulation

Number of time points. The number of time points in each replication is varied

across four levels: T = 50, 100, 200, 500, representing a range of potential time lengths

encountered in practice. At the lower bound, the stepwise unified SEM (when using

shared information from the sample) has demonstrated promise in previous simulation

work with as few as 60 time points (Lane et al., under revision). In an fMRI study, the

number of time points is directly related to the “session length” or “session duration,”

which is generally reported in minutes. The number of time points is then equal to to the

session duration divided by the temporal resolution, or sampling time. Thus, an fMRI
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resting state or task-related session may have as many as 500 time points over the course

of several minutes.

Similarly, in a daily diary study, the number of time points may relate to the

number of days an individual is monitored over the course of a study (e.g., Wright et al.,

2014), and may be closer to the lower bound of the chosen range here. For example, in

Wright et al. (2014), individuals were kept in the study for further analysis using uSEM

provided they provided at least 30 time points worth of observations, though the majority

of participants provided between 30 and 100 time points worth of observations. These

numbers, drawn from Wright et al. (2014), are typical within a daily diary study. There-

fore, the chosen range of time series lengths in the present study is well representative of

multiple conditions encountered in practice.

Number of variables. Given the iterative nature of the respective methods in

this study, computational feasibility, as well as computational time, will be in part dic-

tated by the number of variables measured at each repeated measurement. Here, the levels

chosen roughly correspond to common numbers of variables that we may see in time series

data more broadly defined, whether fMRI data or ecological momentary assessment data.

Given the focus of this dissertation on implications for directed functional connectivity

analysis, the number of variables is also informed in part by the number of ROIs that may

be present within a given brain network. The number of regions of interest, in turn de-

pends on the atlas used to select regions of interest, which are available at varying degrees

of granularity. That is, different researchers and different software programs parcellate

the brain differently, resulting in potentially different numbers of variables for the same

network.
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For example, the atlas described by Yeo et al. (2011) is implemented in the popular

neuroimaging software FreeSurfer, and it defines 68 nodes representing regions of interest

(ROIs) across the whole brain grouped into seven networks. In contrast, Shirer et al.

(2012) utilizes 90 ROIs grouped into 14 networks, and Power et al. (2011) utilize 264

nodes, grouped into at least 11 networks. Across these various parcellations, the number

of ROIs considered to be members of one network may vary from four (e.g., cerebellar

network) to greater than 30 (e.g., default mode network) (Power et al., 2011). Thus, the

number of variables will be varied across three levels: five, ten, and fifteen variables. For

purposes of computational burden, more than fifteen variables will not be considered in

this study.

Level of sparseness. Given the interest in recovering a relatively sparse network

of relationships, the level of sparsity will also be varied across three levels: 15%, 20%, and

25% of possible connections. Given that each of the five methods uses stopping criteria

differently, it is important to consider the recovery of the data-generating sparsity for each

method, particularly as it relates to the other design factors (e.g., number of variables and

number of time points). Additionally, given that it is known that regularization methods

perform more optimally with the true network structure is sparse (Epskamp et al., 2015),

it will be important to consider variation in performance due to sparsity. These levels

of sparsity are informed by in-house empirical applications of the stepwise unified SEM,

where individual-level models contained between 11% to 29% of possible relationships.

The chosen levels are rounded to roughly reflect the average number of relationships, as

well as one standard deviation above and below the mean.

For consistency across methods, possible connections here will be defined by the
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(p× p)− p number of elements in the matrix representing the lagged relationships and the

p×(p−1)
2

number of elements in the matrix representing the contemporaneous relationships.

Put differently, each directed relationship in the lagged matrix will count as a candidate

path, excluding the diagonal containing autoregressive effects; in contrast, only half of the

non-zero elements of the contemporaneous matrix will count as a candidate path. Again,

this allows for the graphical VAR to be evaluated against these methods on a common

basis, as we may assess its ability to detect the presence of a relationship regardless of

its directionality. Given that the autoregressive relationships will be freed at the start of

estimation in each model, these paths will not be considered in the number of candidate

paths.

Factors held constant. Though many design factors are held constant in any

Monte Carlo simulation study, by definition, I will delineate several factors here that

will remain constant, though a future study may be interested in varying. First, for this

study, the number of individuals considered will be held constant at N = 1; that is, no

group-level structure will be generated. Consequently, no group-level inferences will be

made. Though prior work has shown that improvements are possible when using shared

information, (e.g., Gates & Molenaar, 2012; Varoquaux & Craddock, 2013), these methods

implicitly assume some sample-level homogeneity in network structure, and I wish to avoid

this assumption in the current study.

Additionally, the strength of the structural relationships among variables will

be held constant over time; that is, the magnitude of the connection strength will not

change across the duration of the time series. Given that neither the proposed method,

the regularized uSEM, nor the competing methods, the stepwise uSEM or the graphical
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VAR, are able to accommodate time-varying effects, I do not expect that these meth-

ods would perform differently from each other when faced with such unmodeled time

variation.

Further, while missing data is frequently of interest as a condition in Monte Carlo

simulations pertaining to structural equation modeling, it will not be investigated here. In

the unified SEM, missing data may be handled by full information maximum likelihood

under the assumption of missingness at random (Enders & Bandalos, 2001). However, the

graphical VAR currently does not have a built-in mechanism for handling missing data,

as multiple imputation must be used in an external step, prior to estimating the graphical

VAR. Thus, neither the amount of missing data nor the mechanism of missing data will

be varied in this study. Finally, the normality of the observations will not be varied, as all

variables will be generated to be multivariate normal.

Data Generation

All data will be generated in R (R Core Team, 2016). As noted above, data will

be generated according to both the unified SEM and the graphical VAR. The unified

SEM will be generated in accordance with the procedure described by Gates et al.

(2010). Similarly, the graphical VAR will be generated consistent with the procedure

described in Yin & Li (2011) and implemented in the graphicalVAR (Epskamp, 2016)

package in R. In generating the time series, T + 50 observations will be generated so that

the first 50 observations may be discarded to remove fluctuations due to initialization.

Additionally, prior to the generation of each time series, the matrix containing the

lagged and contemporaneous effects will be checked for stationarity by ensuring that the

maximum eigenvalue does not exceed a value of one.
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Figure 4: Study 1A: Data-generating models. Paths are drawn at random in accordance
with specified simulation conditions.
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Figure 5: Study 1A: Data-generating models, Alternate Representation. Paths are drawn
at random in accordance with specified simulation conditions.

Figure 4 depicts a potential data-generating connectivity structure for the nine

possible combinations of the number of variables and the levels of sparsity. This structure

is depicted both in the form of a simplified path diagram (Figure 4), as well as a matrix

(Figure 5). In each matrix, an orange shaded cell represents a connection between the

column (predictor) and row (outcome) variable, and a grey shaded cell represents a con-

nection fixed at zero. Each replication will contain data generated from a structure that

matches the specified conditions, where connections are randomly placed in the lagged
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and contemporaneous matrix corresponding to the level of sparsity. In the contemporane-

ous matrix, no bidirectional relationships will be generated. It should be noted that the

randomly generated individual-level matrices are an important feature of the simulation

design, as it ensures that the generated matrices do not fit only one pattern of network

connectivity (e.g., small network, random network).

Model Estimation

All models will also be estimated in R. The stepwise unified SEM will be estimated

using the indSEM function within the gimme package (Lane et al., 2016), which iteratively

adds relationships in a stepwise-selection procedure according to the highest modification

index, terminating when a model fit is deemed “excellent,” as indexed by the four previ-

ously referenced indices of fit. In another variation that will be tested, this routine will be

modified to include the BIC, and estimation will halt when three of the five indices indi-

cate “excellent” fit. The indSEM is specifically designed to conduct the search procedure

for N = 1.

The graphical VAR will be estimated using the graphicalVAR package within R

(Epskamp, 2016). In this procedure, a range of λ values will be provided, and the BIC

will be used to select the optimal tuning parameter in order to arrive at a final model

composed of the partial directed (lagged) correlations and the partial contemporane-

ous (bidirectional) correlations. To maintain consistency with the regularized uSEM,

the penalty for the lagged and contemporaneous relationships will be constrained to

equality.

Finally, the regularized uSEM will be estimated in a combination of two R pack-

ages: lavaan (Rosseel, 2012) and regsem (Jacobucci, 2016). First, lavaan will be used
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to specify the unified structural equation models and provide relevant information for the

next step, such as initial starting values, degrees of freedom, and model matrices expressed

in RAM notation. The regsem package will then be used to regularize, or induce sparsity,

in the structural equation models across a range of λ values controlling the LASSO and

adaptive LASSO penalties.

Study Hypotheses

Multiple hypotheses guiding Study 1 are presented below:

1. With less sparse network structures, the regularized uSEM will outperform the

stepwise uSEM given the use of relative, not absolute, stopping criteria. That is, the

stepwise uSEM may reach an “excellent” model before identifying all connections in a

denser network.

2. The smallest number of converged solutions will be present in conditions when the

number of time points is small relative to the number of variables.

3. When nondirected contemporaneous connections are present (Study 1B), the recovery

of true lagged directed relationships may be poorer in the stepwise uSEM and

regularized uSEM.

4. Less biased parameter estimates are expected for the adaptive LASSO compared to

the standard LASSO given the use of parameter-specific weights in the adaptive

LASSO.

5. Regularization-based methods (graphical VAR, regularized uSEM) are expected to

perform better overall when the true network structure is more sparse.
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Outcome Measures for Study 1

Sensitivity and Specificity. In order to evaluate the recovery of data-generating

connections, whether directed or nondirected in nature, both sensitivity and specificity

will be evaluated. Sensitivity and specificity are both popular outcome measures for

evaluating multiple aspects of recovery of connections when simulating network data (e.g.,

Abegaz & Wit, 2013; Epskamp et al., 2016), and are closely related to measures of “recall”

and “precision” used in other literature describing the performance of various search

algorithms (e.g., Ramsey et al., 2011). Sensitivity measures the ability of an algorithm to

recover true paths, while specificity measures the ability of an algorithm to remove false

paths. Here, we may define sensitivity as

sensitivity =
true positives

true positives + false negatives
(27)

and specificity may be defined as

specificity =
true negatives

true negatives + false positives
(28)

These measures allow for a global evaluation of a model’s ability to recover true directed

or nondirected edges and reject false directed or nondirected edges. Importantly, we

may evaluate sensitivity and specificity for lagged and contemporaneous relationships

separately. Additionally, as mentioned, we may evaluate these measures for directed paths

and nondirected paths separately. For both of these measures, values closer to 1 are ideal,

with .8 representing acceptable performance.

Relative Bias. Though researchers who make use of methods such as those pro-

posed here are frequently interested in the identification of connectivity (e.g., the presence

44



of a connection), they are also frequently interested in the weights, or parameter estimates,

associated with each relationship. Indeed, previous work has recommended that the coeffi-

cients from each individual-level final model be taken into a second-stage analysis, whether

to identify potential covariates in the context of a general linear model (GLM; Kim et al.,

2007), or to describe the network using measures from a graph theoretic framework. Thus,

relative bias will be computed for each structural relationship. Relative bias may be

computed as the difference of the true value, θ and the estimate, θ̂, weighted by the true

estimate:

Rel. Bias =
θ̂ − θ

θ
× 100 (29)

Bias will be important to consider for both the graphical VAR and the unified SEM,

whether stepwise or regularized. First, as the graphical VAR makes use of the LASSO, it

is known that regularization techniques trade some bias for increased stability and gener-

alizability. Thus, there is reason to anticipate bias for the graphical VAR. Additionally,

the unified SEM makes use of quasi-maximum likelihood estimation (or pseudomaximum

likelihood). This is because a block-Toeplitz data structure is used for estimation, where

additional variables are created to represent the variables at t − 1. In this context, we

cannot assume row-wise independence of observations. Though it is known that estimates

from a block-Toeplitz data structure are not true ML estimates, they have been shown to

have the same asymptotic properties as ML estimates for pure AR processes (Hamaker

et al., 2002). Finally, as the regularized uSEM makes use of both quasi-maximum likeli-

hood estimation and the LASSO, bias will be an relevant outcome to consider. Within the

variations tested of the regularized uSEM (standard LASSO and adaptive LASSO), it will
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be important to consider differences in bias.

Absolute Bias: False Positives. Where the relative bias of true positive paths

will be considered, the absolute bias of false positive paths should also be considered. That

is, the absolute bias of paths which emerged in the fitted model but whose true value is

θ = 0. Absolute bias may simply be defined as the unsigned difference between the true

and recovered path weight:

Abs. Bias = |θ − θ̂| (30)

Absolute bias is computed here in place of relative bias given that relative bias

would not be defined in the presence of a true θ of 0. This measure, while not of focal

interest to this study, will be useful for determining the magnitude of edges which should

have been removed from the final model, but were falsely retained.

Root mean square error. Finally, root mean square error will also be computed

in order to evaluate error in prediction. RMSE may be computed as:

RMSE =

√
Σ(θ̂ − θ)2

N
(31)

where θ again represents the true estimate, θ̂ represents the recovered estimate, and

N is the number of true estimates for an individual.

Computational time. Given the iterative nature of the proposed methods, the

computational time will be a nontrivial factor in estimating these models. Thus, the

computational time and its relationship to simulation factors such as number of variables,

number of measurements, and the sparsity of the network underlying the time series will

be considered. It is expected that the computational time will increase with the number of
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variables.

Proper solutions. In the unified SEM, the final models will be checked for proper

solutions. That is, any warnings that may indicate a solution may not be reliable (e.g.,

did not converge, nonpositive definite matrix) will be monitored. In the regularized

unified SEM, any models within the range of models tested that possesses negative

degrees of freedom or fails to converge within a given number of random starts will not be

considered.

Results will be graphically examined, including the probing of any meaningfully

large main effects or interaction effects.

Results

As a reminder, two sub-studies were conducted, here termed Study 1A and Study

1B. Study 1A is designed to test the performance of models under optimal conditions;

for example, I evaluate the performance of the stepwise unified SEM when fit to data

generated by the unified SEM. In Study 1B, the data generating model and the fitted

model do not correspond. For example, the stepwise unified SEM is fit to data generated

by the graphical vector autoregressive model. The importance of these sub-studies is

this: we are able to assess the importance of directionality. That is, if data are generated

by a unified SEM, then all connections are directed. We are able to assess the ability of

the unified SEM methods (stepwise uSEM and regularized uSEM) to recover directed

connections. Additionally, we are able to assess what happens when these directed models

are fit to data with non-directed connections (e.g., a unified SEM fit to data generated by

a graphical VAR).

In the sections that follow, the performance of each method, along with any
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potential variations of each method, will be considered. Of most importance will be

measures that address features of network recovery: sensitivity and specificity. For

Study 1A, relative bias, absolute bias, and RMSE will also be presented. If relevant,

sensitivity and specificity will be broken down across multiple levels: time-specific recovery

(contemporaneous versus lagged) and direction-specific recovery (nondirected versus

directed). A table of relevant outcomes for each method in Study 1A is displayed below in

Table 2.

Outcome Measure Regularized uSEM Stepwise uSEM Graphical VAR
Path Sensitivity Yes Yes Yes
Path Specificity Yes Yes Yes
Direction Sensitivity Yes Yes No
Direction Specificity Yes Yes No
Path Sensitivity, Lagged Yes Yes Yes
Path Specificity, Lagged Yes Yes Yes
Direction Sensitivity, Lagged Yes Yes Yes
Direction Specificity, Lagged Yes Yes Yes
Path Sensitivity, Contemp. Yes Yes Yes
Path Specificity, Contemp. Yes Yes Yes
Direction Sensitivity, Contemp. Yes Yes No
Direction Specificity, Contemp. Yes Yes No
Relative Bias Yes Yes Yes
Absolute Bias Yes Yes Yes
RMSE Yes Yes Yes

Table 2: Study 1A: Outcome Measures by Method

Study 1A

Convergence and computational time

The number of normally terminated models varied by method. For the stepwise

uSEM, 100% of cases across all conditions yielded normal solutions. The performance

of the stepwise uSEM with the BIC added as a stopping criteria varied a bit more,

where 21 of 36 cells yielded 100% normally terminating models. Across the remaining
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cells, the lowest convergence rate was 88%. For those that did not complete estimation,

the procedure was unable to arrive at a model which satisfied three-of-five fit indices.

The adaptive LASSO yielded slightly more computational concern, where the cell-wise

convergence rate ranged from 78% to 100%. The performance of the standard LASSO

was comparable. Finally, the graphical VAR yielded 100% normally terminating models

across all cells. For all subsequent analyses, complete replications will be used. Any

values presented as marginal means will be adjusted for the unequal number of normally

terminating replications across conditions.

Computational time differed greatly across the three general methods (regularized

uSEM, stepwise uSEM, and graphical VAR), with interactive effects among the simulation

factors. Overall, the stepwise uSEM and graphical VAR were much less computationally

burdensome than the regularized uSEM. In contrast, the regularized uSEM, whether using

the standard LASSO or adaptive LASSO, was much more computationally intensive, likely

due to the size of the B matrix on which regularization took place.

In the most computationally burdensome situation, with a large number of vari-

ables, a less sparse network, and a short time series (V = 15, S = 25%, T = 50), the

regularized uSEM with standard LASSO took more than 4000 minutes to complete

estimation for a single individual. The regularized uSEM with adaptive LASSO fared

better, but still exceeded 3000 minutes for the same cell. With more time points, however,

the regularized uSEM was much more reasonable, with the smallest differences between

methods observed with a small number of variables, a sparse network, and a longer time

series (V = 5, S = 15%, T = 500). Figure 6 displays the computation time for each

method broken down by number of variables, number of time points, and the sparsity of
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the network.
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Figure 6: Study 1A: Computational Time by Number of Variables, Number of Time
Points, and Sparsity of Network

Graphical VAR

Across all conditions, the performance of the graphical VAR varied widely. In many
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instances, the graphical VAR adequately recovered directed lagged relationships as well

as the sparse structure of nondirected contemporaneous relationships. However, of all

methods, the graphical VAR was characterized by the largest RMSE values, indicating the

greatest amount of prediction error. Additionally, an increased number of time points and

number of variables led to dramatic decreases in the specificity of recovered relationships,

indicating a tendency to retain too many false edges. Further details are provided below,

broken down by relevant outcome.

Path Sensitivity

Across an increasing number of time points, the overall path sensitivity increased;

for both the T = 200 and T = 500 conditions, the overall path sensitivity exceeded .98.

Of the simulation factors, the number of time points most strongly related to the path

sensitivity, ranging from .72 at T = 50 to .998 at T = 500. Increasing the proportion of

possible connections (sparsity) was associated with quite modest increases in overall path

sensitivity. Interestingly, these increases were not uniform for contemporaneous and lagged

effects.

Contemporaneous versus Lagged. That is, the sensitivity of contemporaneous paths

remained relatively constant across increasing network density (.83 at S = 15%; .83 at

S = 25%), where the sensitivity of lagged paths increased mostly across increasing network

density (.84 at S = 15%; .91 at S = 25%). The sensitivity of contemporaneous paths also

remained relatively constant across an increasing number of variables; (.84 at V = 5; .81

at V = 15), where the sensitivity of lagged paths increased modestly across an increasing

number of variables (.83 at V = 5; .93 at V = 15). Of the thirty-six simulation conditions,

27 conditions yielded contemporaneous path sensitivity of .8 or greater. The nine cells
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yielding contemporaneous path sensitivity lower than .8 corresponded to the T = 50

conditions.

Path Specificity

Viewing the previous path sensitivity results, the graphical VAR demonstrated

more than adequate performance in recovering true edges, regardless of directionality.

However, with any data-driven search procedure, it is important to consider the balance

of sensitivity and specificity. To this end, the path specificity was frequently below a

desirable threshold (typically .8) across all varied time series lengths, and it did not vary

meaningfully across increasing time series length (range = .63 − .66). The high sensitivity

but low specificity is evidence of the method retaining too many edges in the final model.

Increasing the number of variables was associated with increased path sensitivity, but

decreased path specificity substantially. For illustration, Figure 7 depicts the negative

correlation between path sensitivity and path specificity, broken down by the number of

variables, holding the length of time series constant at T = 200 and the sparsity of the

network constant at S = 25%.

Increasing the proportion of connections was associated with dramatic decreases in

path specificity; thus, with denser data-generating networks, the graphical VAR retained

too many false edges (see Figure 8). This finding is consistent with prior work, which has

found the LASSO to perform less well for variable selection if the true network structure is

more dense (Epskamp et al., 2015). Marginalizing over other factors, the path specificity

at V = 5 is .82, where the path specificity at V = 15 is .43. This decrease in path

specificity with an increasing number of variables was present for both directed lagged

relationships and nondirected contemporaneous relationships.
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Figure 7: Graphical VAR: Path Sensitivity and Path Specificity by Number of Variables

Contemporaneous versus Lagged. For example, the contemporaneous path specificity

at V = 5 is .94, and the contemporaneous path specificity at V = 15 is .76. The lagged

path specificity suffers as well, where it drops from .88 at V = 5 to .58 at V = 15.

Therefore, increasing the number of variables results in increased false positives in the

graphical VAR.

Direction Sensitivity

Because the graphical VAR does not allow for the estimation of directed contem-

poraneous relationships, we may not separately evaluate the recovery of directed lagged

and directed contemporaneous relationships. We may, however, consider the recovery of

directed lagged relationships.

Lagged Only. In the best performing simulation condition, the graphical VAR

yielded a directed lagged sensitivity of 1.0 (V = 15, S = .25, T = 500). Across in-

creasing levels of network density, the sensitivity to lagged directions increased from
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Figure 8: Graphical VAR: Path Specificity by Number of Variables and Sparsity

.83 at S = 15% to .89 at S = 25%. However, this was accompanied by decreases in

specificity.

Direction Specificity

Lagged Only. Increases in network density, a longer time series, and an increased

number of variables all resulted in decreased performance with respect to lagged direction

specificity. That is, each of these factors contributed to the graphical VAR retaining too

many false edges. For example, the lagged direction specificity decreased from .93 at

S = 15% to .78 at S = 25%. There was a less clear effect of the number of time points

on lagged direction specificity, as it dropped very slightly from .87 at T = 50 to .85 at

T = 500. The most important effect pertaining to lagged direction specificity was the

interaction between the number of variables and the sparsity of the network, where denser

networks with a larger number of variables yielded the poorest specificity, much like the

aforementioned finding for path specificity.
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Bias and RMSE

Of these false positive paths, the average absolute bias was relatively small and

decreased across an increasing number of time points, ranging from .08 to .03 from T = 50

to T = 500, respectively. There was more substantial relative bias of the true positive

paths, where the true positive paths were heavily downwardly biased. Additionally,

the RMSE was consistently high across conditions, ranging from 0.22 to 0.39 across all

conditions.

Summary

Looking across all possible conditions, the best performance was observed for the

cell with five variables, sparsity = 15%, and T = 500, where the path specificity was 1.00

and the path sensitivity was .93. Similarly, the poorest path sensitivity was observed with

V = 5, S = 15%, and T = 50; the poorest path specificity was observed with V = 15,

S = 25%, and T = 500.

Stepwise unified SEM

The performance of the stepwise unified SEM ranged varied across conditions.

Overall, the best outcomes were observed with a small number of variables and a large

number of time points. Compared to the performance of the graphical VAR, a more

optimal balance of sensitivity and specificity was achieved, indicating improved ability

to recover true edges and reject false edges. Additionally, less variability in parameter

estimates was observed, as evidenced by lower RMSE values. The discussion here will

focus on the standard stepwise uSEM, where estimation halts when two of four fit indices

are “excellent.” Any deviations observed from these results for the alternative approach,

where the BIC is included, will be noted at the end of the section. Full details are
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provided below.

Path Sensitivity

Collapsing over other simulation factors, there was a significant effect of number

of time points on the sensitivity to data-generating relationships, without respect to

direction, where the lowest condition (T = 50) experienced an average path sensitivity

of .63, while the highest condition (T = 500) experienced an average path sensitivity of

.86. The effect of number of time points on both path sensitivity and direction sensitivity,

marginalizing over other simulation factors, is presented in Figure 10. A visual inspection

of the means reveals that performance was uniformly better for a smaller number of

variables (V = 5) compared to a larger number of variables (V = 15). Additionally,

this difference was more pronounced when the density of the networks was greater. That

is, collapsing over levels of time series length, the path sensitivity was at its lowest for

the 15 variable condition with 25% of possible connections (.71). Figure 9 displays this

interaction effect.

Lagged versus Contemporaneous. Breaking down path sensitivity by lagged and

contemporaneous relationships, the sensitivity to lagged relationships was uniformly higher

for contemporaneous relationships than lagged relationships. Factors contributing to

increased lagged path sensitivity were a longer time series, a more sparse network, and

a smaller number of variables. No differential effects were observed for the sensitivity of

contemporaneous relationships – the same factors led to improved contemporaneous path

sensitivity.

Path Specificity

There was no obvious main effect of sparsity on the ability to successfully recover
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Figure 9: Stepwise uSEM: Path Sensitivity by Number of Variables and Sparsity

true paths or directions (e.g., path or direction sensitivity). There was, however, an effect

of network sparsity on the overall path specificity (whether relationships were contempo-

raneous or lagged), where more sparse networks yielded greater specificity. Put differently,

in more sparse networks, fewer false positives were observed. The effect of number of

time points was also present for the specificity of data-generating relationships, where the

specificity of the T = 50 condition was .77 compared to the T = 500 condition’s sensitivity

of .99. This high specificity indicates that, marginalizing over other simulation factors,

very few false positives were found in the T = 500 condition.

Lagged versus Contemporaneous. The specificity of lagged relationships was

uniformly high, where performance improved with an increased number of time points:

.86 at T = 50 to .99 at T = 500. The specificity of contemporaneous relationships was

similarly high, where performance varied most in accordance with time series length: .89

at T = 50 to .99 at T = 500. Increasing the network density and the number of variables
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yielded detectable, but minor decreases in path specificity (e.g., .96 at S = 15% and .93 at

S = 25%).

Direction Sensitivity

Similar effects were seen for the direction sensitivity of the data-generating relation-

ships as were seen for the path sensitivity. That is, the direction sensitivity ranged from

.47 to .75 between the T = 50 and T = 500 conditions, respectively. As with overall path

sensitivity, increasing the network density and the number of variables yielded modest

decreases in direction sensitivity.

Lagged versus Contemporaneous. An interesting difference existed in the sensi-

tivity to lagged directed relationships versus contemporaneous directed relationships.

That is, lagged directions were recovered more frequently than contemporaneous direc-

tions. For example, the lagged direction sensitivity at T = 200 was .70, compared to

the contemporaneous direction sensitivity at T = 200 of .57. In the best performing

cell (V = 5, S = 15%, T = 500), the contemporaneous direction sensitivity reached

.75.

Direction Specificity

The direction specificity, while globally high, ranged in accordance with time series

length, such that the direction specificity increased from .85 to .95 between the T = 50

and T = 500 conditions, respectively.

Lagged versus Contemporaneous. No differential effects were observed for the effect

of the simulation factors on the direction specificity of lagged versus contemporaneous

relationships. Specificity of the lagged directions was slightly, though consistently, higher

than the specificity of the contemporaneous directions (e.g., lagged direction specificity
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Figure 10: Stepwise uSEM: Path Sensitivity and Direction Sensitivity by Number of Time
Points

of .99 at T = 200 compared to contemporaneous direction specificity of .95 at T =

200.

Bias and RMSE

As would be expected, increasing the number of time points increased the precision

of the estimates, where the RMSE dropped from .21 at T = 50 to .08 at T = 500. Even

with only T = 200, the RMSE dropped to .10, representing only slightly less precision

than the condition with the largest number of time points. Additionally, increasing the

number of time points decreased the moderate level of relative bias seen at T = 50

(10.73%) to the negligible level of bias seen at T = 500 (1.24%). Though bias is a known

consideration when making use of a pseudo-maximum likelihood approach, the bias here

remains within acceptable levels, as most individual cells remain within 10% relative bias.

For the presence of relative bias across all conditions, see Figure 11.
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Figure 11: Stepwise uSEM: Relative Bias by Number of Variables, Number of Time
Points, and Sparsity of Network

Adding BIC to stopping criteria. The oft-implemented automated unified SEM

uses two of four standard SEM fit indices as stopping criteria. Here, I introduced the BIC

as a stopping criteria and set estimation to terminate when three of five measures reached

“excellent” according to the aforementioned criteria. Compared to the above results, very

few differences were observed. Where sensitivity and specificity range from 0 to 1, no

individual cell differed by more than .01.
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Summary

Unlike the graphical VAR, increasing the number of time points in the stepwise

uSEM yielded improved path specificity, or improved ability to reject false paths. Like

the graphical VAR, increases in both the number of variables and the density of the

network slightly harmed performance. Here, the ability to recover directed relationships is

improved, though best performing cell yields a sensitivity of only .75 to contemporaneous

directed relationships, which are frequently of interest to researchers. From this, I turn to

a discussion of the regularized uSEM.

Regularized unified SEM

Two forms of regularization penalties were tested in the course of Study 1A – the

standard LASSO and the adaptive LASSO. Overall, the adaptive LASSO outperformed

the standard LASSO in almost every outcome measure. Though regularization with the

standard LASSO penalty yielded respectable sensitivity, its specificity was poor. That

is, when using the standard LASSO, the majority of true paths were retained in the final

solution; however, a substantial number of false positives were also present. In contrast,

the adaptive LASSO exhibited both exceptional sensitivity and specificity, representing an

ideal balance.

Therefore, though my discussion will center on the performance of regulariza-

tion using both methods, I will place an emphasis on the performance of the adaptive

LASSO. Compared to both the graphical VAR and the stepwise uSEM, the regularized

uSEM with adaptive LASSO yielded better performance with respect to sensitivity and

specificity, particularly in the presence of a longer time series. Full details are provided

below.
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Path Sensitivity

Marginalizing over other simulation factors, increasing the number of variables

yielded reduced sensitivity for the adaptive LASSO (see Figure 13) (.91 at V = 5 and .82

at V = 15). With the standard LASSO, increasing the number of variables increased path

sensitivity, but reduced the path specificity (discussed below). Thus, with more variables,

the standard LASSO tended to retain too many paths in general, increasing the sensitivity

but decreasing the specificity. Collapsing across other factors, increasing the density of

data-generating relationships led to minimal increases in path sensitivity but noticeable

decreases in path specificity. The same pattern was observed with respect to direction

sensitivity. Finally, increasing the length of the time series led to increases in the overall

path sensitivity, regardless of whether relationships were recovered as contemporaneous

or lagged. Figure 12 depicts the increase in path sensitivity for both the adaptive LASSO

and standard LASSO as the length of the time series increases.

Lagged versus Contemporaneous. As with other methods, the sensitivity to lagged

paths for the adaptive LASSO uSEM was slightly higher than the sensitivity to contempo-

raneous paths. However, this effect seemed to only be present in shorter time series. For

example, at V = 5, S = 15% with T = 50 time points, the lagged and contemporaneous

path specificity were .68 and .74, respectively. However, holding the number of variables

and the sparsity of the network constant, the lagged and contemporaneous path specificity

were .98 and .98, respectively, at T = 200.

Path Specificity

For the adaptive LASSO, increases in the density of the network did not mean-

ingfully relate to the path specificity (.85 at S = 15% and .86 at S = 25%). Increasing
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Figure 12: Path Sensitivity and Number of Time Points: Adaptive LASSO versus Stan-
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Figure 13: Adaptive LASSO: Path Sensitivity and Specificity by Number of Variables

the number of variables modestly reduced the path specificity, where the path specificity

dropped from .85 at V = 5 to .78 at V = 15, representing a noticeable decrement. For the
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standard LASSO, the sparsity of the network related more strongly to the path specificity,

where it dropped from .79 at S = 15% to .60 at S = 25%. Finally, with respect to effect

of time series length on path specificity, an important discrepancy existed between the

regular LASSO and the adaptive LASSO. That is, when performing regularization using

the adaptive LASSO, the specificity of recovered relationships increased with increasing

number of time points (specificity = .66 for T = 50 and specificity = .96 for T = 500).

However, when using the standard LASSO penalty, the opposite effect occurred. That is,

more false positives were produced at a higher number of time points (specificity = .76 at

T = 50 and specificity = .63 for T = 500). For a depiction of this differential effect, see

Figure 14.

Lagged versus Contemporaneous. The path specificity was uniformly high for lagged

and contemporaneous relationships, with no noticeable differences by simulation factor.

For example, at T = 200, the lagged path specificity was .99 and the contemporaneous

path specificity was .99.

Direction Sensitivity

Marginalizing over simulation factors, increasing the number of time points im-

proved the direction sensitivity (.50 at T = 50; .96 at T = 500), where the number of

variables yielded decrements in direction sensitivity. Specifically, with V = 5, the direc-

tion sensitivity was .80, where with V = 15, the direction sensitivity was .69. Increasing

the network density minimally impacted the sensitivity to directions (.75 at S = 15%

compared to .73 at S = 25%).

Lagged versus Contemporaneous. The sensitivity to lagged directions was again

uniformly higher than the sensitivity to contemporaneous directions, as was seen in the
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Figure 14: Path Specificity and Number of Time Points: Adaptive LASSO versus Stan-
dard LASSO

stepwise uSEM. The most striking feature of the performance by the adaptive LASSO

uSEM is the sensitivity to contemporaneous directions in the presence of a longer time

series. That is, the performance does not differ tremendously from the stepwise uSEM for

shorter time series. However, at T = 200, the adaptive LASSO uSEM performs as well as

the stepwise uSEM does with T = 500, and at T = 500, the adaptive LASSO uSEM far

outpaces the performance of the stepwise uSEM (see Figure 15).

Direction Specificity

The specificity of the directed paths was consistently high with time series of

T = 200 or longer. Increasing the number of variables yielded minimal impact on direction

specificity, though increasing the density of the network noticeably decreased the direction

specificity (e.g., .90 at S = 15% and .82 at S = 25%).

Lagged versus Contemporaneous. The direction specificity of lagged and contempo-
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Figure 15: Direction Sensitivity and Number of Time Points: Adaptive LASSO versus
Stepwise uSEM

raneous directions, considered separately, was uniformly high. When using the adaptive

LASSO, no single cell yielded either a lagged or contemporaneous direction sensitivity

lower than .80. When using the standard LASSO, the direction specificity was uniformly

lower, though still above .60 in all cells.

Bias and RMSE

As would be expected, an increase in the number of time points was associated with

decreases in RMSE (RMSE = 0.17 at T = 50 and RMSE = 0.07 at T = 500), indicating

less error in prediction in the presence of a longer time series. The RMSE increased

slightly with a larger number of variables, increasing from RMSE = .10 to RMSE =

.14 from V = 5 to V = 15, representing a modest increase. Across all conditions, the

relative bias for the true positive paths of the adaptive LASSO remained within acceptable

limits. Figure 16 displays the relative bias present when using the regularized uSEM with
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Figure 16: Adaptive LASSO: Relative Bias by Number of Variables, Number of Time
Points, and Sparsity of Network

adaptive LASSO across all simulation factors: number of time points, number of variables,

and sparsity of the network.

Consistent with hypothesized results, greater bias was present when using the

standard LASSO, as seen in Figure 17, lending greater support for the use of the adaptive

LASSO in this context. Additionally, increases in network density were associated with

slight increases in both relative bias and RMSE. As previously mentioned, the standard
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LASSO yielded lower specificity than the adaptive LASSO, retaining too many false edges.

The absolute bias of these false positives, however, is informative. That is, when using the

standard LASSO, the average absolute bias of the false positives across all conditions was

less than .05. Therefore, while the adaptive LASSO clearly outperformed the standard

LASSO by our indices of recovery, these false positives present in the models selected by

the standard LASSO condition were not large in magnitude.
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Figure 17: Standard LASSO: Relative Bias by Number of Variables, Number of Time
Points, and Sparsity of Network
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Study 1B

In Study 1B, the fitted model and the data-generating model are misaligned. That

is, for fitting the graphical VAR, data are generated with directed contemporaneous re-

lationships. For fitting the unified SEM-based models (stepwise uSEM, adaptive LASSO

uSEM, standard LASSO uSEM), data are generated with correlational contemporaneous

relationships. This study, while less central than Study 1A, provides important informa-

tion regarding the performance of the models if either 1) correlational contemporaneous

relationships are assumed and modeled erroneously or 2) directed contemporaneous re-

lationships are assumed and modeled erroneously. To maintain scope, the number of

variables will not be manipulated for Study 1B – it will be held constant at V = 5, where

sparsity and length of time series will be manipulated.

For Study 1B, several outcomes are presented. In order to assess the overall

recovery of connections, path sensitivity and path specificity will be examined. In order

to evaluate the recovery of directed lagged relationships, lagged direction sensitivity and

lagged direction specificity will be evaluated. Finally, contemporaneous path sensitivity

and contemporaneous path specificity will be examined. These outcomes taken together

will allow for an assessment of the influence of mismodeled contemporaneous directed

relationships.

Graphical VAR

In the presence of directed contemporaneous relationships, the graphical VAR

simply recovers these relationships in the form of a sparse nondirected correlation struc-

ture. The direction sensitivity and direction specificity for the lagged relationships, which

remain identical to the data-generating directed lagged relationships from Study 1A, do
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not change dramatically. That is, in Study 1A, the directed lagged sensitivity is .76 for

the V = 5, S = 20%, T = 100 cell, while in Study 1B, the directed lagged sensitivity for

the same cell is .77. For this same cell, the directed lagged specificity similarly does not

change. For example, the directed lagged specificity for V = 5, S = 20%, T = 100 in Study

1A is .91, and the directed lagged specificity in Study 1B is .88.

Stepwise unified SEM

The overall recovery of relationships, regardless of the data-generating direction of

the contemporaneous structure, remains adequate in the stepwise uSEM. Collapsing across

the sparsity of the network, the path sensitivity at T = 200 is .90, and the path specificity

at T = 200 is .98. Further decomposing this measure, the directed path sensitivity for

lagged relationships at T = 200 is .79 (compared to .76 in Study 1A), and the directed

path specificity for lagged relationships at T = 200 is .99 (compared to .99 in Study 1A).

The overall contemporaneous path sensitivity increased slightly in Study 1B compared

to Study 1A. Collapsing over other simulation factors, in the T = 500 conditions, the

contemporaneous path sensitivity increased from .90 in Study 1A to .95 in Study 1B,

indicating improved ability to retain true contemporaneous edges when the structure

was generated to be correlational, not directed, in nature. The contemporaneous path

specificity also remained high in Study 1B. Indeed, across all conditions in Study 1B, the

contemporaneous path specificity exceeded 90% across all replications. Thus, it can be

stated that the stepwise uSEM did not suffer or produce spurious relationships in the

presence of a mismodeled correlational structure.

Regularized unified SEM

Performing the regularized uSEM with adaptive LASSO on data generated with
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correlational contemporaneous relationships has minimal effects on measures assessing

the recovery of the network structure. For example, in the cell with five variables, 20%

sparsity, and T = 200, the sensitivity for directed lagged relationships was .94, and the

specificity for directed lagged relationships was .97. These values changed minimally from

Study 1A, where the outcomes for the same cell was .93 and .97, respectively. Thus, there

was no evidence of spurious effects in the lagged matrix. There were differences between

Study 1A and Study 1B in terms of recovering the contemporaneous structure. That is,

for the T = 50 condition, collapsing over network sparsity, the contemporaneous path

sensitivity was .72 in Study 1B compared to .52 in Study 1A. Thus, the regularized uSEM

was more likely to recover that a path existed between two variables measured at time

when the path was generated to be nondirected.

Summary: Study 1A and Study 1B

In data generated to be compatible with time series data broadly defined within

psychological research, the regularized uSEM using the adaptive LASSO performed ex-

ceptionally well recovering both data-generating paths and data-generating directions. As

would be expected, performance was best with a longer time series, with highest speci-

ficity and highest sensitivity observed when the number of time points was large and the

network was at its most sparse. With the adaptive LASSO specifically, relative bias was

lower than 15% across all cells. The stepwise uSEM also performed well, though its sensi-

tivity was lower in general than the regularized uSEM, consistent with expectation. This

effect was more pronounced when the network was less sparse, where the path sensitivity

of the stepwise uSEM decreased with increasing network density. The graphical VAR

demonstrated somewhat uniformly adequate sensitivity, but poor specificity, frequently
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retaining too many false positive paths. In Study 1B, few differences were observed, as

previously discussed. With the finite sampling behavior of these models established, I now

turn to a discussion of their relative performance with data designed to emulate BOLD

time series data. For the first time, the regularized uSEM is introduced and evaluated for

the identification of individual-level directed functional connectivity.
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CHAPTER 3: STUDY 2

In Study 2, design factors directly related to fMRI will be manipulated in a par-

tially crossed simulation design borrowed from Smith et al. (2011). In this seminal work,

researchers evaluated the performance of more than thirty methods for network modeling

with fMRI data across twenty-eight conditions designed to mimic a range of network

models. Smith et al. (2011) ultimately found that many competing methods perform

poorly when considering measures of network recovery such as recall and precision. Of the

methods tested, “Bayes net” methods were found to perform well, where lagged (lag-zero)

methods were found to perform consistently poorly. All of the methods considered in the

present dissertation may be thought of as Bayes net methods; none of these methods were

evaluated in the original work.

Therefore, Study 2 will employ a second Monte Carlo simulation study, which will

evaluate the ability of the respective methods to recover patterns of temporal dependence

not just in time series data broadly, but in data generated to emulate fMRI data. Given

the thoroughness of the simulation in Study 1, other relevant factors, such as number of

regions and sparsity of network, will not be varied in this simulation. Instead, factors more

specific to fMRI studies will be varied here. Namely, the temporal resolution (TR), the

presence of backwards (i.e., reciprocal) connections, the presence of cyclic connections,

inter-regional hemodynamic response function lag variability, the strength of connections,

and the neural lag.
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Design Factors for Simulation

Temporal resolution. The temporal resolution, or the amount of time between

scans, will be varied across two levels: TR = 0.25 and 3.0. While a TR of 0.25 seconds

would not practical for scanning the whole brain, it would be possible for achieving a

select number of slices of data (e.g., Lindquist & Wager, 2007). Thus, this value may

represent an extreme lower bound. Temporal resolution of 3 seconds represents val-

ues more typically found in standard whole-brain fMRI (see Lindquist et al., 2009 for

an empirical example). Testing the ability of lag-based methods to function under dif-

ferent temporal resolutions is an important point of consideration, as prior work has

shown methods to perform differently under varying temporal resolutions (Smith et al.,

2011).

Presence of backwards connections. Within fMRI data, it is frequently

the case that a given pair of brain regions may be connected in both directions, as

opposed to one direction only (Smith et al., 2011). This is known as a backward, or

reciprocal, connection. However, there is some ambiguity regarding the meaning of

these relationships. In the context of a negative backward connection, we may infer

inhibition. Here, a simulation will be introduced which adds reciprocal relationships equal

in magnitude to the sending connection, but of opposite sign.

HRF lag variability. Here, the hemodynamic response function lag is defined

as the time from the onset of a neural stimulus to the peak of the BOLD response.

Broadly, the hemodynamic response function is the change in the magnetic resonance

signal triggered by neuronal activity (Huettel et al., 2004). A schematic of between-

subject variation in the HRF is depicted in Figure 29. It is known that between-person
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variability is generally greater than within-person variability (Handwerker et al., 2004).

Additionally, the HRF lag for individuals is important to consider against the temporal

resolution (TR). In the present study, HRF lag variability is varied to be SD = 0.5s and

SD = 0.0s.

Stronger Connections. In one simulation, the magnitude of the data-generating

connections will be increased from 0.4 to 0.9.

Cyclic Connections. In one condition, cyclic connections will be introduced.

These connections are particularly relevant for consideration, as several modeling ap-

proaches for fMRI assume no cyclic causality. Two such methods are the PC algorithm

(Meek, 1995; Spirtes & Glymour, 1991) and the Greedy Equivalence Search (GES; Chick-

ering, 2002).

Factors held constant. Other design factors relevant to fMRI but not manipu-

lated include the effect of inaccurate ROIs (whether mixing time series or adding random

time series), the effect of nonstationary connection strength over time, the effect of strong

external inputs, or the effect of shared inputs.

Data Generation and Characteristics

The source of data comes from Smith et al. (2011), which are publicly avail-

able at http://www.fmrib.ox.ac.uk/datasets/netsim/. In Smith et al. (2011), data

were generated to mimic BOLD fMRI time series in 28 different simulations. Again,

these simulations are not fully crossed; instead, each individual simulation is designed

to test one plausible situation at a time that may be encountered in empirical research.

Therefore, no meta-models will be used; instead, all results will be investigated graphi-

cally.
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The time series data present in these simulations were based on a combination of

models: a network model depicting directed relationships at the neural level, overlaid by

the dynamic causal model (DCM, Friston et al., 2003) fMRI forward model, which makes

use of the nonlinear balloon model to characterize vascular dynamics (Buxton et al., 1998).

Specifically, DCM is a framework for identifying effective connectivity, as it seeks to infer

processes at the neuronal level, instead of at the level of the BOLD time series. As such, it

is based on the use of differential equations which describe dynamics at the neuronal level;

this model is then combined with a hemodynamic forward model to arrive at effective

connectivity (Stephan et al., 2008). Full details regarding the dynamic causal model are

beyond the scope of this project, but more details may be found in Friston et al. (2003).

Of most relevance here is that the data are generated in a manner considered to be most

consistent with the dynamics underlying connectivity.

Here, I introduce these data for an important reason. First and foremost, these

data are considered benchmark data for any method that may be brought to bear on

directed functional connectivity. Further, very few approaches in the original Smith et al.

(2011) study were able to accurately detect direction at the individual-level. Second, I

introduce these data to avoid making use of a package that may generate data in a way

that automatically prefers one method to another. That is, there are multiple methods in

existing literature and software packages that one may use to generate BOLD data. Here,

I evaluate the regularized uSEM, the stepwise uSEM, and the graphical VAR on fMRI on

these benchmark data.

From the 28 simulations designed in Smith et al. (2011), eight were chosen to

test performance in conditions that may realistically be encountered in practice. From
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the original manuscript, the chosen simulations were sim1, sim5, sim13, sim14, sim15,

sim18, sim19, and sim20. Table 3 details the characteristics of the chosen simula-

tions.

Sim Nodes Duration TR Noise HRF SD Description
1 5 10 3.00 1.0 0.5 Start
5 5 60 3.00 1.0 0.5 Longer Session
13 5 10 3.00 1.0 0.5 Backward Connections
14 5 10 3.00 1.0 0.5 Cyclic Connections
15 5 10 3.00 0.1 0.5 Stronger Connections
18 5 10 3.00 1.0 0.0 No HRF SD
19 5 10 0.25 0.1 0.5 Fast TR, Long Neural Lag
20 5 10 0.25 0.1 0.0 Fast TR, Long Neural Lag, No HRF SD

Table 3: Study 2: Smith Simulation Conditions

Here, sim1 is considered the condition to which other conditions will be compared,

as it represents typical network and scan properties. This network contains 5 nodes, a

session duration of ten minutes, a temporal resolution of 3 seconds, an addition of 1%

noise, and an HRF lag variability of 0.5 seconds (see Figure 18).

From this simulation, sim5 increases the session duration to 60 minutes, instead

of a standard 10 minutes. This change increases the number of time points six-fold. To

sim1, sim13 adds backwards (or reciprocal) connections to the data-generating process (see

Figure 19). From sim1, sim14 introduces the presence of a cyclic connection (see Figure

20). For clarification, note that this cyclic connection is not a reciprocal connection.

From sim1, sim15 increases the strength of the connections and decreases the amount

of noise. From sim1, sim18 decreases the standard deviation of the HRF among regions

to zero. From sim1, sim19 decreases the temporal resolution to 0.25 (TR = .25) and

increases the neural lag to 100ms, as opposed to the data-generating 50ms used across

other simulations. Finally, from sim19, sim20 maintains the short TR and the reduced
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Figure 18: Smith sim1: ground truth network structure

noise, but removes the HRF standard deviation of 0.5 present in sim1, sim13, sim14,

sim15, and sim19.

Outcome measures. As in Study 1A, measures of sensitivity and specificity

will be evaluated in order to measure recovery and precision pertaining to the original

underlying neural network structure. Measures pertaining to the estimates of the edge

weights themselves will not be considered due to differences in scaling. All measures

considered in Study 2 are displayed in Table 4.

Outcome Measure Regularized uSEM Stepwise uSEM Graphical VAR
Path Sensitivity Yes Yes Yes
Path Specificity Yes Yes Yes
Direction Sensitivity Yes Yes No
Direction Specificity Yes Yes No

Table 4: Study 2: Outcome Measures by Method
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Figure 19: Smith sim13: ground truth network structure

Results

Sim1. Across the first simulation, both the sensitivity and specificity of data-

generating relationships were approximately comparable. Across the methods, the highest

path sensitivity was observed for the regularized uSEM using the standard LASSO. The

adaptive LASSO was slightly behind with respect to path sensitivity, but outperformed

the regular LASSO with respect to path specificity. That is, the regularized uSEM using

the standard LASSO experienced a greater rate of false positives (specificity = .72); the

use of the adaptive LASSO improved path specificity (specificity = .92). The stepwise

uSEM fell slightly behind the adaptive LASSO uSEM in terms of path sensitivity (.81

versus .86), but outperformed the adaptive LASSO uSEM with respect to path sensitivity

(.96 versus .92). The graphical VAR also performed admirably with respect to path
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Figure 20: Smith sim14: ground truth network structure

sensitivity and specificity, (sensitivity = .86; specificity = .90). Finally, the stepwise

uSEM with BIC yielded the same results as the stepwise uSEM using the standard two-

of-four fixed cutoffs. These results are mostly consistent with the results of Study 1A,

and demonstrate that all of the methods evaluated here exhibit promise for recovering

nondirected connections in fMRI data.

Moving to direction recovery, the performance of all methods suffers. The LASSO

uSEM demonstrates a direction sensitivity of .58, as the method with the best perfor-

mance on this outcome. The adaptive LASSO uSEM demonstrates a direction sensitivity

of only .51, though its direction specificity is .83. Across both regularized approaches

and the stepwise uSEM, the modal characteristic of the results is this: very few spurious

paths are estimated, and spurious directions are frequently those which represent the
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opposite direction of a data-generating direction. Put differently, V 1 → V 2 is likely to

appear in a model where V 2 → V 1 is the correct data-generating direction, but any such

directed connection is unlikely to appear otherwise. The performance of each method,

broken down by outcome measure, is displayed in Figure 21. For the discussion of all

other Smith simulations, only variation from the aforementioned pattern of results will be

presented.
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Figure 21: Sim 1: Specificity and Sensitivity by Method

Sim5: Longer Session Length. Of the set of Smith simulations, sim5 yielded

arguably the most promising results. In sim5, the session duration was increased from

10 minutes to 60 minutes, representing what would be an hour-long resting state scan.

The stepwise uSEM performed reasonably well in recovering that a path existed (path

sensitivity = .84), and performed quite well in rejecting paths that did not exist (path

specificity = 1.0). However, the stepwise uSEM performed poorly in recovering the direc-
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tionality of these paths, where the direction sensitivity was .48. The regularized uSEM

with adaptive LASSO outperformed the stepwise uSEM in these respects, outperforming

many methods originally tested in Smith et al. (2011). For example, the overall path

sensitivity for this model was 1.0, with a path specificity of 0.92. Therefore, regardless of

directionality, the adaptive LASSO uSEM performs well in recovering connectivity. The

recovery of directionality, however, is where the adaptive LASSO sets itself apart. The

sensitivity to directed paths for the adaptive LASSO was .82, with a specificity of 0.75.

Therefore, though the adaptive LASSO tends to retain a few too many false directions,

it far outperforms all other competing methods in recovering the directionality. The reg-

ularized uSEM with standard LASSO performed predictably less well, exhibiting greater

sensitivity but lower specificity, reflecting the tendency to over-retain edges. See Figure 22

for a full breakdown of sensitivity and specificity by method.

0.00

0.25

0.50

0.75

1.00

Path
Sensitivity

Path
Specificity

Direction
Sensitivity

Direction
Specificity

Outcome

V
al

u
e

Method

ALASSO uSEM

LASSO uSEM

Stepwise uSEM

Stepwise uSEM + BIC

Graphical VAR

Figure 22: Sim 5: Specificity and Sensitivity by Method
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Sim13: Backwards Connections. From a simulation design perspective, it is

important to note that the introduction of backwards connections in this Smith simulation

does not hold constant the number of overall connections with respect to the other Smith

simulations. That is, the addition of a backwards connection does not result in the

removal of another connection. For example, for a given individual-level data-generating

matrix, there may be five directed connections. In sim13, where backwards connections are

introduced, anywhere from one to three additional directed connections were introduced to

complement the existing five directed connections. Therefore, the level of sparsity in the

network is not held constant.

Across all methods, the introduction of these backwards connections hinders perfor-

mance, where the path sensitivity drops from .85 to .55 (a 34% decrease) averaged across

all methods. Thus, we have a reduced ability to recover true edges. The specificity of the

connections does not suffer, however, with all methods performing at a specificity of .8 or

higher. Given the poor performance at the level of the paths (nondirected connections),

the direction sensitivity suffers as well, ranging from 0.26 to 0.31 across all methods.

Note that this range does not include the graphical VAR, as it does not model directed

contemporaneous connections. See Figure 23 for results.

Sim14: Cyclic Connections. In sim14, “cyclic connections” are introduced.

Compared to sim1, the relationship at the level of the neural network between V1 and V5

is flipped, such that V5 predicts V1. In this way, a “causal chain” is created. This change

seems to have little effect on the results, consistent with results presented by Smith et al.

(2011). See Figure 24 for full details.

Sim15: Stronger Connections. In sim15, the average data-generating directed
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Figure 23: Sim 13: Specificity and Sensitivity by Method
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Figure 24: Sim 14: Specificity and Sensitivity by Method

connection is increased from .4 to .9. Compared to the previous two simulations, a

striking finding is the relative performance of the regularized uSEM and stepwise uSEM
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approaches. That is, both the LASSO and adaptive LASSO uSEM recover 100% of data-

generating connections. However, while the specificity of the regularized uSEM approaches

suffers in the presence of these stronger connections, the specificity of the stepwise uSEM

does not. The stepwise uSEM exhibits a specificity of .81, while the adaptive LASSO

uSEM and LASSO uSEM exhibit specificity values of .58 and .20, respectively. Finally,

the graphical VAR offers perhaps the best balance of sensitivity (.99) and specificity

(.89) for sim15 (see Figure 25). Regarding directionality, performance in sim15 did not

vary meaningfully from findings already reported in sim1, as the regularized approaches

outpaced the stepwise approaches in terms of path sensitivity, but not in terms of path

specificity.
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Figure 25: Sim 15: Specificity and Sensitivity by Method

Sim18: No inter-regional hemodynamic response function variability. In

the original Smith et al. (2011) paper, the HRF lag across persons was not systematically
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varied. Therefore, I am unable to select a simulation which mimics this specific aspect

of HRF variability. Instead, the authors varied the HRF standard deviation across

regions within a given person. In sim18, this inter-regional variability is dropped to 0,

instead of the standard deviation of 0.5 used in other simulation conditions. Therefore, by

design, sim18 is identical to sim1 other than the component representing the interregional

standard deviation of the hemodynamic response funciton. Here, no meaningful differences

are observed compared to sim1 (see Figure 26).
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Figure 26: Sim 18: Specificity and Sensitivity by Method

Sim19: Fast TR. Finally, sim19 is comparable to sim13, with the exception that

the TR is set to 0.25 instead of TR = 3.0 used in other conditions. Here, the number of

minutes for the scan session is held constant at 10 minutes; therefore, the number of time

points increases twelve-fold in this simulation study. Unfortunately, all methods perform

poorly in this condition. Neither of the regularized uSEM-based methods are able to
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estimate very successfully; specifically, the adaptive LASSO is able to recover only 23%

of directed relationships. However, the performance of the stepwise uSEM is considerably

worse. That is, neither stepwise uSEM approach (two-of-four fit or three-of-five fit

including BIC) are able to detect relationships other than the diagonal of the Φ matrix

containing the autoregressive components. Specifically, the path sensitivity is nearly

0 (see Figure 27), indicating that no other effects were recovered. The graphical VAR

demonstrates the opposite effect, where the final model is very dense, such that sensitivity

is high and specificity is low. Neither outcome is desirable.
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Figure 27: Sim 19: Specificity and Sensitivity by Method

Sim20: Fast TR, No HRF Lag Variability. Overall, the reduction of HRF

lag variability in sim20, compared to sim19, yielded little improvement in the results. For

both variations of the stepwise uSEM, largely autoregressive only effects were returned,

indicating that an “excellent” model fit was achieved by freeing only the diagonal of the Φ
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matrix for estimation; no additional cross-lagged or contemporaneous relationships were

added. Similarly, the performance of the regularized uSEMs were again mixed for this fast

TR condition, where the overall sensitivity improved but the specificity decreased (see

Figure 28).
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Figure 28: Sim 20: Specificity and Sensitivity by Method

Summary of Smith simulation results. Across these results, the recovery of

network structure in sim5 is most encouraging. It should be noted that in the original

Smith et al. (2011) paper, only three of 38 methods tested exceeded 70% direction

recovery even when the length of scan session was increased to 4 hours (240 minutes).

Here, adequate direction recovery (above 80%) was achieved using the adaptive LASSO

when the session duration was increased to 60 minutes.

Across all methods, the recovery was uniformly poor in the fast TR condition

with increased neural lag, with the stepwise uSEM recovering almost none of the data-
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generating relationships other than the autoregressive effects. Though important to

consider from a methodological perspective, it is useful to note that a TR as fast as

0.25s is not frequently used in practice. Few methods performed well in sim13, where

backwards connections were introduced, though it is worth noting that the introduction

of these backwards connections yielded an overall denser network. Given 1) the use of

fixed cutoffs in the stepwise uSEM and 2) the assumption of a sparse network when

using regularization methods, it is unsurprising that these results were not favorable.

These results align with those found by Smith et al. (2011), who reported that even

the best methods yielded heavily reduced sensitivity in the presence of these backwards

connections.

Overall, the results of Study 2 highlight the promise of the regularized uSEM

with adaptive LASSO for estimating directed functional connectivity, provided there

are a sufficient number of time points. The results of Study 2 also underscore the dif-

ficulty involved for any estimation technique to recover the underlying neural network

structure using the BOLD time series, and further motivate careful application of these

methods.
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CHAPTER 4: CONCLUSION

The intensive longitudinal data collected from a single individual offers promising

insight into understanding dynamic within-person processes over time. These within

person processes may characterize over time relationships between pre-defined regions

of interest within networks of the brain, or these processes may pertain the over-time

relationship of indicators of psychopathology (Fried et al., 2016). With the increasing pres-

ence of neuroscience within psychological research, as well as in the increased gathering

of intensive longitudinal data via experience sampling, there will likely only continue to

be increased interest in identifying network-like models to characterize individual-level

processes. This work comes at a time when network-like characterizations of psycho-

logical outcomes have gained increasing traction in the field (Borsboom & Cramer,

2013).

Though various methods have been proposed for the data-driven identification of

network-like models characterizing temporal and contemporaneous processes over time,

there exists little work comparing the relative performance of these methods. Further,

there exists less work evaluating the performance of these methods with data generated to

specifically mimic BOLD time series data from an fMRI resting-state block. The present

study sought to introduce a novel procedure, the regularized unified SEM, which bridges

the strengths of the graphical VAR and the stepwise unified SEM.

In Chapter 2, the regularized uSEM was developed and investigated in the context

90



of a simulation study, where its finite sampling behavior was evaluated and compared to

the performance of alternative methods. The regularized uSEM was shown to perform

particularly well when making use of the adaptive LASSO penalty, yielding individual-

level models with both exceptional sensitivity and specificity. That is, more than any

other model in Study 1A, the regularized uSEM resulted in individual-level models with

exceptional ability to retain true edges and remove false edges.

Also within Chapter 2, in Study 1B, it was shown that the misspecified direc-

tionality of the contemporaneous structure did not harm 1) the recovery of the directed

lagged relationships or 2) the overall recovery of data-generating edges, without respect to

direction. Therefore, there is not evidence that a crucial decrement in recovery of overall

network structure would be observed if a researcher were to mistakenly mismodel the

directionality of a sparse contemporaneous structure.

In Chapter 3, the ability of these methods to recover the underlying structure of

simulated BOLD time series was evaluated. In Study 2, the relative performance of each

method was considered with reference to eight simulations selected from the Smith data

(Smith et al., 2011), which are considered benchmark data for evaluating the performance

of methods for directed functional connectivity analysis. Given the disagreement in the

literature regarding the use of methods rooted in Granger Causality for the identification

of directed functional connectivity (see e.g., Smith et al., 2011; Seth et al., 2013, Friston

et al., 2013), a controlled evaluation of these methods via Monte Carlo simulation was

necessary. It was hoped that these methods would be particularly well-suited for this

purpose, as previous work has discussed the promise of Bayes Net methods (e.g., Mumford

& Ramsey, 2014).
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All methods, by including either directed or nondirected contemporaneous re-

lationships, exceeded the performance of lagged-based methods in Smith et al. (2011),

where only 10% of true edges were recovered (Mumford & Ramsey, 2014). This finding

underscores the importance of including not only lagged effects in the model, but also

contemporaneous effects, as many of the effects surface contemporaneously. Across all

methods within Study 2, the path sensitivity decreased compared to conditions observed

within Study 1, though the path specificity remained adequate in many cases. That is,

there was a general trend to not retain enough true edges, though the edges retained in

the final model tended to be true edges, not spurious edges.

Across all methods, the ability to recover true edges and reject false edges was quite

variable depending on the characteristics governing each unique simulation. Specifically,

in sim13, where backwards connections are introduced, the path sensitivity of all methods

suffered, and all methods uniformly suffered in sim19 and sim20, where the temporal

resolution was reduced to T = 0.25s in both the presence and absence of HRF lag

variability. Most promise was shown in sim5, where the length of the time series was

increased to reflect a 60 minute scan session, or T = 1200. Here, the regularized uSEM

with adaptive LASSO performed as well as the best methods from Smith et al. (2011).

Overall, the stepwise unified SEM and the regularized unified SEM exhibited the most

promise for evaluating these data, though the ability to recover directed relationships

suffered in comparison to the results of Study 1A.

Limitations

Given considerations of computational time, one limitation of the present study is

the modest number of replications per cell (R = 500). This may have been circumvented
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by removing the simulation factor with the largest number of variables (V = 15), or by

removing the specific cell with exponentially longer computational time (V = 15, T = 50),

which would have yielded a partially crossed simulation design. Neither decision was

made, as a 15 variable condition is within the realm of possibility for both experience

sampling researchers and neuroimaging researchers aiming to arrive at a network-like

model of directed connectivity.

An additional limitation in the present study is that only one strategy for estimat-

ing regularized uSEMs was investigated. That is, only the BIC was considered for selection

of the final model. Other research has made use of the RMSEA as one potential alter-

native (e.g., Jacobucci et al., 2016). Alternatively, and perhaps more commonly, the use

of k-fold cross-validation has been suggested in order to select the optimal λ controlling

the level of sparsity or penalization (e.g., Epskamp et al., 2015). In this process, the data

would be subdivided into k blocks, where data are iteratively partitioned into training

data sets (e.g., k−1 folds) and tests data sets (e.g., the kth fold), and the λ that minimizes

the cross-validation error when predicting the kth fold using the model selected using data

from k − 1 folds is chosen. This approach was not used for two reasons. First, k-fold cross

validation typically occurs with k = 5 or k = 10 folds, and the lower bounds of “sample

size” (number of time points) manipulation in this study (e.g., T = 50, T = 100) would

yield quite small test data sets, some of which would have more variables than time points.

Thus, the BIC was used for model selection here, also to retain comparability to methods

such as the graphical VAR.

An additional limitation regarding Study 2 is the use of the Smith simulation data.

Though these data are considered the current “gold-standard” for evaluating methods
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designed for functional connectivity analysis, the simulations are not fully crossed. Of

course, this feature was intentional on the part of the researchers, as some cells that would

emerge in a fully crossed design would be highly unlikely to emerge in practice, whether

due to an odd crossing of scan characteristics or a nonsensical network structure. However,

the lack of a fully crossed design does limit the ability to thoroughly investigate potential

interactive effects.

Future Directions

As previously mentioned, prior work has found that incorporating some group-

or sample-level information may improve the performance of specification searches. In

the stepwise unified SEM, this has taken the form of conducting parallel specification

searches and adding relationships which exist for a pre-specified majority of individuals.

When considering how to incorporate group-level information into individual-level searches

using regularization procedures, multiple options are possible. One option, proposed by

Varoquaux & Craddock (2013), is to conduct a pooled time series analysis, concatenating

time series data from all individuals into a single multivariate time series, in order to

select a group-level model using the LASSO tuning parameter. Another option may

be to incorporate a penalty which operates separately at the group- and individual-

levels.

Additionally, more work is warranted regarding additional penalties for use with

regularized uSEM. Here, most success was found using the adaptive LASSO. As the

focus of this dissertation was to not only introduce the regularized uSEM, but to also

evaluate its performance against competing methods, exhaustive work investigating

additional penalties was not within the scope of the present study. However, many

94



other options exist, including the SCAD penalty, MCP penalty, and the elastic net

penalty. The elastic net, which combines properties of the LASSO and ridge penalties,

may be of particular interest given its known benefits for data containing correlated

predictors.

Importantly, the data-driven identification of individual-level models is a first step.

This process ultimate attempts to automate the model building and model selection,

but still requires human judgment. In a large-scale simulation study such as this one,

not every model can be manually adjusted to remove connections which do not make

sense with respect to psychological theory. With any automated procedure, care must

be taken to consider competing models. In the context of the stepwise uSEM, this may

take the form of evaluating potential “multiple solutions” (e.g., Beltz & Molenaar,

2016), where multiple alternative models are considered when they yield functionally

interchangeable solutions in terms of model fit. Similarly, in the regularized uSEM, it may

be useful to consider multiple models that are within a certain range of the optimal BIC.

Finally, the present study evaluated models across a standard range of λ values, but a

researcher may be interested in increasing the granularity of these values. For methods

such as the regularized uSEM in particular, this may have yielded fewer false positive

relationships, as examining the absolute bias of these false positives revealed quite small

parameter estimates which may have been set to zero with a more granular range of

tuning parameters.

One final avenue for future work regards the incorporation of multiple-indicator

latent factors into the framework of the regularized unified SEM. This development

would allow for both the regularization of the measurement models representing the
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relationship between observed variables over time and their underlying latent construct,

as well as regularization of the latent variable model relating the constructs over time.

The introduction of multiple-indicator latent factors would offer a unique benefit over

competing network-like models, which all operate at the level of the observed variable.

Careful consideration regarding the simultaneous regularization of these matrices would be

necessary.

Ultimately, this research presents the timely introduction of the regularized uSEM

for establishing individual-level models of directed temporal and contemporaneous effects.

For time series data broadly defined, the regularized uSEM outperformed all competing

methods with respect to the recovery and precision of true relationships, whether directed

or nondirected. More work is warranted regarding strategies to improve the recovery of

directed relationships in the context of fMRI data.
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APPENDIX A: TABLES

Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

5 0.15 50 0.60 0.83 -0.46 0.10 0.22
5 0.15 100 0.82 0.89 -0.56 0.07 0.25
5 0.15 200 0.98 0.91 -0.65 0.05 0.28
5 0.15 500 1.00 0.93 -0.69 0.03 0.31
5 0.20 50 0.66 0.78 -0.63 0.10 0.27
5 0.20 100 0.89 0.76 -0.78 0.07 0.31
5 0.20 200 0.99 0.76 -0.86 0.05 0.34
5 0.20 500 1.00 0.79 -0.91 0.03 0.36
5 0.25 50 0.66 0.79 -0.66 0.09 0.28
5 0.25 100 0.88 0.77 -0.78 0.06 0.31
5 0.25 200 0.99 0.78 -0.87 0.05 0.34
5 0.25 500 1.00 0.81 -0.90 0.03 0.36
10 0.15 50 0.61 0.82 -0.73 0.08 0.30
10 0.15 100 0.87 0.81 -0.87 0.05 0.33
10 0.15 200 0.98 0.80 -0.95 0.04 0.35
10 0.15 500 1.00 0.82 -0.99 0.02 0.38
10 0.20 50 0.68 0.73 -0.82 0.08 0.32
10 0.20 100 0.91 0.66 -0.93 0.05 0.35
10 0.20 200 0.99 0.64 -0.99 0.04 0.37
10 0.20 500 1.00 0.67 -1.03 0.03 0.38
10 0.25 50 0.81 0.53 -0.93 0.08 0.35
10 0.25 100 0.94 0.46 -1.00 0.06 0.37
10 0.25 200 0.99 0.43 -1.05 0.04 0.38
10 0.25 500 1.00 0.47 -1.08 0.03 0.39
15 0.15 50 0.71 0.69 -0.88 0.07 0.34
15 0.15 100 0.91 0.63 -0.98 0.05 0.36
15 0.15 200 0.98 0.59 -1.03 0.04 0.37
15 0.15 500 1.00 0.61 -1.08 0.03 0.39
15 0.20 50 0.84 0.46 -0.96 0.08 0.35
15 0.20 100 0.94 0.40 -1.02 0.05 0.36
15 0.20 200 0.97 0.38 -1.06 0.04 0.38
15 0.20 500 0.99 0.37 -1.12 0.03 0.39
15 0.25 50 0.88 0.32 -0.98 0.08 0.36
15 0.25 100 0.94 0.29 -1.02 0.06 0.36
15 0.25 200 0.97 0.24 -1.07 0.04 0.38
15 0.25 500 0.99 0.19 -1.15 0.03 0.39

Table 5: Study 1A: Graphical VAR Results, Part I
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Mean Path
Sen.

Path
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

T = 50 0.72 0.66 -0.78 0.08 0.31
T = 100 0.90 0.63 -0.88 0.06 0.33
T = 200 0.98 0.61 -0.95 0.04 0.35
T = 500 1.00 0.63 -0.99 0.03 0.37
S = 0.15 0.87 0.78 -0.82 0.05 0.32
S = 0.20 0.90 0.62 -0.93 0.05 0.35
S = 0.25 0.92 0.51 -0.96 0.05 0.36
V = 5 0.87 0.82 -0.73 0.06 0.30
V = 10 0.90 0.65 -0.95 0.05 0.36
V = 15 0.93 0.43 -1.03 0.05 0.37

Table 6: Study 1A: Marginal Means, Graphical VAR Results, Part I
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Num.
Var

Spar-
sity

Time Lag
Path
Sen.

Lag
Path
Spec.

Con.
Path
Sen.

Con.
Path
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

5 0.15 50 0.54 0.88 0.49 0.95 0.51 0.93
5 0.15 100 0.76 0.93 0.81 0.97 0.74 0.96
5 0.15 200 0.96 0.93 0.99 0.97 0.96 0.97
5 0.15 500 1.00 0.95 1.00 0.98 1.00 0.98
5 0.20 50 0.59 0.84 0.55 0.93 0.55 0.91
5 0.20 100 0.82 0.84 0.86 0.93 0.81 0.91
5 0.20 200 0.98 0.85 0.98 0.92 0.98 0.92
5 0.20 500 1.00 0.88 1.00 0.92 1.00 0.94
5 0.25 50 0.56 0.85 0.57 0.93 0.52 0.92
5 0.25 100 0.81 0.84 0.86 0.93 0.80 0.92
5 0.25 200 0.99 0.85 0.99 0.92 0.99 0.92
5 0.25 500 1.00 0.88 1.00 0.94 1.00 0.94
10 0.15 50 0.53 0.88 0.53 0.95 0.50 0.94
10 0.15 100 0.82 0.88 0.83 0.94 0.82 0.94
10 0.15 200 0.98 0.87 0.98 0.92 0.98 0.94
10 0.15 500 1.00 0.90 1.00 0.92 1.00 0.95
10 0.20 50 0.59 0.83 0.58 0.90 0.55 0.91
10 0.20 100 0.89 0.78 0.84 0.87 0.88 0.88
10 0.20 200 0.99 0.77 0.97 0.85 0.99 0.87
10 0.20 500 1.00 0.81 1.00 0.84 1.00 0.90
10 0.25 50 0.73 0.69 0.64 0.80 0.69 0.83
10 0.25 100 0.93 0.64 0.84 0.76 0.92 0.79
10 0.25 200 1.00 0.60 0.95 0.74 1.00 0.77
10 0.25 500 1.00 0.65 0.99 0.74 1.00 0.80
15 0.15 50 0.62 0.81 0.59 0.87 0.59 0.90
15 0.15 100 0.91 0.77 0.82 0.84 0.90 0.88
15 0.15 200 0.99 0.75 0.94 0.81 0.99 0.86
15 0.15 500 1.00 0.77 0.99 0.81 1.00 0.88
15 0.20 50 0.79 0.64 0.62 0.76 0.75 0.79
15 0.20 100 0.96 0.58 0.77 0.73 0.94 0.75
15 0.20 200 1.00 0.55 0.89 0.72 1.00 0.73
15 0.20 500 1.00 0.52 0.97 0.73 1.00 0.71
15 0.25 50 0.87 0.48 0.60 0.73 0.83 0.68
15 0.25 100 0.98 0.44 0.72 0.70 0.97 0.65
15 0.25 200 1.00 0.36 0.84 0.69 1.00 0.59
15 0.25 500 1.00 0.30 0.95 0.67 1.00 0.52

Table 7: Study 1A: Graphical VAR Results, Part II
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Mean Lag
Path
Sen.

Lag
Path
Spec.

Con.
Path
Sen.

Con.
Path
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

T = 50 0.65 0.77 0.57 0.87 0.61 0.87
T = 100 0.88 0.74 0.82 0.85 0.86 0.85
T = 200 0.99 0.73 0.95 0.84 0.99 0.84
T = 500 1.00 0.74 0.99 0.84 1.00 0.85
S = 0.15 0.84 0.86 0.83 0.91 0.83 0.93
S = 0.20 0.88 0.74 0.84 0.84 0.87 0.85
S = 0.25 0.91 0.63 0.83 0.80 0.89 0.78
V = 5 0.83 0.88 0.84 0.94 0.82 0.94
V = 10 0.87 0.78 0.85 0.85 0.86 0.88
V = 15 0.93 0.58 0.81 0.76 0.91 0.74

Table 8: Study 1A: Marginal Means, Graphical VAR Results, Part II
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

5 0.15 50 0.58 0.86 0.45 0.91 -0.00 0.35 0.15
5 0.15 100 0.76 0.93 0.64 0.95 0.01 0.25 0.09
5 0.15 200 0.87 0.98 0.76 0.97 0.00 0.21 0.07
5 0.15 500 0.91 1.00 0.82 0.99 -0.00 0.05
5 0.20 50 0.65 0.81 0.49 0.86 0.09 0.36 0.19
5 0.20 100 0.79 0.89 0.64 0.89 0.05 0.28 0.12
5 0.20 200 0.89 0.97 0.75 0.93 0.03 0.25 0.09
5 0.20 500 0.92 1.00 0.78 0.94 0.00 0.28 0.07
5 0.25 50 0.63 0.82 0.47 0.87 0.06 0.37 0.17
5 0.25 100 0.80 0.90 0.64 0.89 0.05 0.27 0.12
5 0.25 200 0.88 0.97 0.74 0.93 0.02 0.22 0.09
5 0.25 500 0.92 1.00 0.79 0.94 0.01 0.43 0.07
10 0.15 50 0.60 0.82 0.46 0.88 0.08 0.35 0.18
10 0.15 100 0.72 0.93 0.60 0.94 0.06 0.27 0.11
10 0.15 200 0.82 0.99 0.71 0.97 0.02 0.24 0.08
10 0.15 500 0.85 1.00 0.75 0.98 0.01 0.27 0.06
10 0.20 50 0.62 0.80 0.47 0.87 0.14 0.35 0.20
10 0.20 100 0.74 0.90 0.60 0.91 0.06 0.27 0.12
10 0.20 200 0.82 0.97 0.69 0.95 0.02 0.26 0.10
10 0.20 500 0.87 0.99 0.75 0.96 0.00 0.28 0.08
10 0.25 50 0.63 0.75 0.46 0.83 0.17 0.37 0.24
10 0.25 100 0.74 0.86 0.58 0.88 0.11 0.28 0.16
10 0.25 200 0.79 0.94 0.65 0.91 0.06 0.26 0.12
10 0.25 500 0.84 0.98 0.71 0.93 0.03 0.24 0.10
15 0.15 50 0.67 0.72 0.51 0.83 0.11 0.33 0.22
15 0.15 100 0.73 0.90 0.60 0.93 0.06 0.26 0.12
15 0.15 200 0.81 0.98 0.70 0.96 0.02 0.24 0.09
15 0.15 500 0.85 1.00 0.75 0.98 -0.00 0.24 0.07
15 0.20 50 0.67 0.69 0.50 0.80 0.13 0.34 0.25
15 0.20 100 0.71 0.87 0.57 0.90 0.09 0.27 0.15
15 0.20 200 0.77 0.94 0.65 0.93 0.05 0.26 0.13
15 0.20 500 0.83 0.98 0.71 0.95 0.02 0.22 0.10
15 0.25 50 0.65 0.68 0.47 0.79 0.18 0.35 0.29
15 0.25 100 0.67 0.82 0.51 0.86 0.12 0.30 0.23
15 0.25 200 0.74 0.89 0.59 0.89 0.08 0.26 0.15
15 0.25 500 0.79 0.92 0.64 0.90 0.05 0.25 0.15

Table 9: Study 1A: Stepwise uSEM Results, Part I
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Mean Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

T = 50 0.63 0.77 0.48 0.85 0.11 0.35 0.21
T = 100 0.74 0.89 0.60 0.91 0.07 0.27 0.14
T = 200 0.82 0.96 0.69 0.94 0.03 0.24 0.10
T = 500 0.86 0.99 0.74 0.95 0.01 0.28 0.08
S = 0.15 0.76 0.93 0.65 0.94 0.03 0.27 0.11
S = 0.20 0.77 0.90 0.63 0.91 0.06 0.28 0.13
S = 0.25 0.76 0.88 0.60 0.88 0.08 0.30 0.16
V = 5 0.80 0.93 0.66 0.92 0.03 0.30 0.11
V = 10 0.75 0.91 0.62 0.92 0.06 0.29 0.13
V = 15 0.74 0.87 0.60 0.89 0.08 0.28 0.16

Table 10: Study 1A: Marginal Means, Stepwise uSEM Results, Part I
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Num.
Var

Spar-
sity

Time Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

5 0.15 50 0.49 0.93 0.50 0.92 0.32 0.95 0.46 0.96
5 0.15 100 0.75 0.97 0.66 0.96 0.55 0.96 0.64 0.98
5 0.15 200 0.85 0.99 0.77 0.99 0.65 0.97 0.77 0.99
5 0.15 500 0.90 1.00 0.82 1.00 0.75 0.98 0.82 1.00
5 0.20 50 0.54 0.92 0.51 0.89 0.35 0.91 0.45 0.94
5 0.20 100 0.73 0.95 0.66 0.94 0.48 0.91 0.63 0.97
5 0.20 200 0.86 0.99 0.75 0.99 0.59 0.92 0.74 0.99
5 0.20 500 0.91 1.00 0.77 1.00 0.63 0.92 0.76 1.00
5 0.25 50 0.52 0.92 0.51 0.90 0.31 0.91 0.46 0.94
5 0.25 100 0.74 0.95 0.66 0.94 0.48 0.91 0.64 0.97
5 0.25 200 0.85 0.99 0.76 0.99 0.59 0.92 0.74 0.99
5 0.25 500 0.90 1.00 0.79 1.00 0.64 0.93 0.77 1.00
10 0.15 50 0.53 0.91 0.49 0.89 0.33 0.93 0.45 0.94
10 0.15 100 0.69 0.97 0.62 0.96 0.49 0.96 0.61 0.98
10 0.15 200 0.80 0.99 0.75 0.99 0.59 0.97 0.74 1.00
10 0.15 500 0.83 1.00 0.76 1.00 0.66 0.98 0.76 1.00
10 0.20 50 0.53 0.90 0.50 0.88 0.33 0.92 0.45 0.94
10 0.20 100 0.69 0.95 0.64 0.94 0.46 0.93 0.61 0.97
10 0.20 200 0.80 0.98 0.72 0.98 0.57 0.95 0.70 0.99
10 0.20 500 0.86 1.00 0.78 1.00 0.63 0.95 0.76 1.00
10 0.25 50 0.53 0.88 0.49 0.86 0.32 0.89 0.43 0.92
10 0.25 100 0.67 0.93 0.61 0.92 0.43 0.90 0.56 0.96
10 0.25 200 0.75 0.96 0.67 0.97 0.51 0.92 0.65 0.98
10 0.25 500 0.82 0.99 0.73 0.99 0.57 0.92 0.71 0.99
15 0.15 50 0.58 0.86 0.55 0.83 0.37 0.90 0.50 0.91
15 0.15 100 0.69 0.95 0.64 0.95 0.48 0.95 0.62 0.97
15 0.15 200 0.79 0.99 0.73 0.99 0.60 0.97 0.72 0.99
15 0.15 500 0.84 1.00 0.77 1.00 0.66 0.97 0.76 1.00
15 0.20 50 0.57 0.84 0.53 0.81 0.35 0.88 0.47 0.90
15 0.20 100 0.65 0.93 0.60 0.93 0.44 0.92 0.57 0.96
15 0.20 200 0.75 0.97 0.68 0.97 0.53 0.94 0.65 0.98
15 0.20 500 0.81 0.99 0.74 0.99 0.61 0.95 0.72 0.99
15 0.25 50 0.54 0.83 0.49 0.81 0.33 0.87 0.42 0.90
15 0.25 100 0.61 0.91 0.54 0.90 0.39 0.90 0.49 0.95
15 0.25 200 0.69 0.94 0.61 0.94 0.46 0.91 0.57 0.97
15 0.25 500 0.76 0.95 0.67 0.96 0.52 0.91 0.64 0.98

Table 11: Study 1A: Stepwise uSEM Results, Part II
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Mean Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

T = 50 0.54 0.89 0.51 0.87 0.33 0.91 0.45 0.93
T = 100 0.69 0.95 0.63 0.94 0.47 0.93 0.60 0.97
T = 200 0.79 0.98 0.72 0.98 0.57 0.94 0.70 0.99
T = 500 0.85 0.99 0.76 0.99 0.63 0.95 0.74 1.00
S = 0.15 0.73 0.96 0.67 0.96 0.54 0.96 0.65 0.98
S = 0.20 0.72 0.95 0.66 0.94 0.50 0.92 0.63 0.97
S = 0.25 0.70 0.94 0.63 0.93 0.46 0.91 0.59 0.96
V = 5 0.75 0.97 0.68 0.96 0.53 0.93 0.66 0.98
V = 10 0.71 0.95 0.65 0.95 0.49 0.94 0.62 0.97
V = 15 0.69 0.93 0.63 0.92 0.48 0.92 0.59 0.96

Table 12: Study 1A: Marginal Means, Stepwise uSEM Results, Part II
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

5 0.15 50 0.58 0.86 0.45 0.91 0.00 0.35 0.15
5 0.15 100 0.76 0.93 0.64 0.95 0.01 0.25 0.10
5 0.15 200 0.87 0.98 0.76 0.97 0.00 0.21 0.07
5 0.15 500 0.91 1.00 0.83 0.99 -0.00 0.05
5 0.20 50 0.65 0.81 0.49 0.86 0.09 0.37 0.19
5 0.20 100 0.79 0.90 0.64 0.90 0.05 0.28 0.12
5 0.20 200 0.88 0.97 0.74 0.93 0.03 0.26 0.09
5 0.20 500 0.92 1.00 0.78 0.94 0.00 0.28 0.07
5 0.25 50 0.63 0.83 0.47 0.87 0.06 0.37 0.17
5 0.25 100 0.80 0.89 0.64 0.89 0.05 0.27 0.12
5 0.25 200 0.88 0.97 0.74 0.93 0.03 0.25 0.09
5 0.25 500 0.92 1.00 0.79 0.95 0.01 0.42 0.07
10 0.15 50 0.60 0.82 0.45 0.88 0.09 0.35 0.18
10 0.15 100 0.72 0.93 0.60 0.94 0.06 0.27 0.12
10 0.15 200 0.82 0.99 0.71 0.97 0.02 0.24 0.08
10 0.15 500 0.84 1.00 0.75 0.98 0.01 0.28 0.06
10 0.20 50 0.62 0.80 0.47 0.87 0.14 0.35 0.20
10 0.20 100 0.74 0.90 0.59 0.91 0.07 0.28 0.12
10 0.20 200 0.82 0.97 0.69 0.95 0.03 0.27 0.10
10 0.20 500 0.87 0.99 0.75 0.96 0.01 0.31 0.08
10 0.25 50 0.63 0.75 0.46 0.83 0.16 0.37 0.23
10 0.25 100 0.73 0.86 0.58 0.88 0.11 0.29 0.16
10 0.25 200 0.79 0.94 0.65 0.91 0.06 0.27 0.12
10 0.25 500 0.84 0.98 0.71 0.94 0.03 0.24 0.10
15 0.15 50 0.67 0.72 0.51 0.83 0.09 0.35 0.25
15 0.15 100 0.72 0.91 0.60 0.93 0.07 0.27 0.12
15 0.15 200 0.81 0.98 0.71 0.97 0.02 0.26 0.11
15 0.15 500 0.84 1.00 0.75 0.98 0.00 0.25 0.07
15 0.20 50 0.67 0.69 0.50 0.81 0.14 0.33 0.24
15 0.20 100 0.71 0.87 0.57 0.90 0.10 0.27 0.15
15 0.20 200 0.77 0.95 0.65 0.94 0.05 0.26 0.13
15 0.20 500 0.83 0.98 0.72 0.96 0.02 0.23 0.10
15 0.25 50 0.65 0.69 0.47 0.79 0.17 0.35 0.29
15 0.25 100 0.67 0.83 0.51 0.87 0.14 0.29 0.19
15 0.25 200 0.73 0.90 0.59 0.90 0.08 0.26 0.15
15 0.25 500 0.78 0.93 0.64 0.91 0.05 0.26 0.15

Table 13: Study 1A: Stepwise uSEM + BIC Results, Part I
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Mean Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

T = 50 0.63 0.77 0.47 0.85 0.10 0.35 0.21
T = 100 0.74 0.89 0.60 0.91 0.07 0.27 0.13
T = 200 0.82 0.96 0.69 0.94 0.04 0.25 0.10
T = 500 0.86 0.99 0.75 0.96 0.01 0.28 0.08
S = 0.15 0.76 0.93 0.65 0.94 0.03 0.28 0.11
S = 0.20 0.77 0.90 0.63 0.91 0.06 0.29 0.13
S = 0.25 0.75 0.88 0.60 0.89 0.08 0.30 0.15
V = 5 0.80 0.93 0.66 0.92 0.03 0.30 0.11
V = 10 0.75 0.91 0.62 0.92 0.07 0.29 0.13
V = 15 0.74 0.87 0.60 0.90 0.08 0.28 0.16

Table 14: Study 1A: Marginal Means, Stepwise uSEM + BIC Results, Part I
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Num.
Var

Spar-
sity

Time Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

5 0.15 50 0.49 0.93 0.50 0.92 0.32 0.95 0.46 0.96
5 0.15 100 0.75 0.97 0.65 0.96 0.54 0.96 0.64 0.98
5 0.15 200 0.85 0.99 0.77 0.99 0.65 0.97 0.76 0.99
5 0.15 500 0.89 1.00 0.82 1.00 0.75 0.98 0.82 1.00
5 0.20 50 0.54 0.92 0.51 0.89 0.35 0.91 0.45 0.94
5 0.20 100 0.73 0.95 0.66 0.94 0.48 0.91 0.62 0.97
5 0.20 200 0.85 0.99 0.75 0.99 0.59 0.93 0.73 0.99
5 0.20 500 0.91 1.00 0.77 1.00 0.64 0.93 0.76 1.00
5 0.25 50 0.52 0.92 0.51 0.90 0.31 0.91 0.45 0.95
5 0.25 100 0.74 0.95 0.66 0.94 0.48 0.91 0.63 0.97
5 0.25 200 0.85 0.99 0.76 0.98 0.59 0.93 0.74 0.99
5 0.25 500 0.90 1.00 0.78 1.00 0.65 0.93 0.77 1.00
10 0.15 50 0.53 0.92 0.49 0.89 0.33 0.93 0.45 0.94
10 0.15 100 0.69 0.97 0.62 0.96 0.49 0.96 0.60 0.98
10 0.15 200 0.80 0.99 0.75 0.99 0.60 0.97 0.74 1.00
10 0.15 500 0.83 1.00 0.76 1.00 0.67 0.98 0.75 1.00
10 0.20 50 0.53 0.90 0.50 0.88 0.33 0.92 0.45 0.94
10 0.20 100 0.69 0.95 0.63 0.94 0.46 0.93 0.60 0.97
10 0.20 200 0.79 0.99 0.71 0.98 0.57 0.95 0.70 0.99
10 0.20 500 0.85 1.00 0.77 1.00 0.64 0.96 0.76 1.00
10 0.25 50 0.53 0.88 0.49 0.86 0.32 0.89 0.43 0.93
10 0.25 100 0.66 0.93 0.61 0.93 0.43 0.90 0.57 0.96
10 0.25 200 0.75 0.97 0.67 0.97 0.51 0.92 0.65 0.98
10 0.25 500 0.82 0.99 0.73 0.99 0.58 0.93 0.71 0.99
15 0.15 50 0.58 0.86 0.55 0.83 0.38 0.90 0.50 0.91
15 0.15 100 0.69 0.95 0.64 0.95 0.48 0.95 0.62 0.97
15 0.15 200 0.79 0.99 0.73 0.99 0.61 0.97 0.72 0.99
15 0.15 500 0.83 1.00 0.77 1.00 0.67 0.98 0.76 1.00
15 0.20 50 0.57 0.84 0.53 0.81 0.35 0.89 0.47 0.90
15 0.20 100 0.65 0.93 0.60 0.93 0.44 0.93 0.57 0.96
15 0.20 200 0.74 0.97 0.68 0.97 0.54 0.95 0.65 0.99
15 0.20 500 0.81 0.99 0.74 0.99 0.62 0.96 0.73 0.99
15 0.25 50 0.54 0.83 0.49 0.82 0.33 0.87 0.41 0.90
15 0.25 100 0.61 0.91 0.53 0.91 0.39 0.90 0.49 0.95
15 0.25 200 0.69 0.94 0.61 0.95 0.46 0.92 0.58 0.97
15 0.25 500 0.75 0.96 0.67 0.97 0.53 0.92 0.64 0.98

Table 15: Study 1A: Stepwise uSEM + BIC Results, Part II

107



Mean Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

T = 50 0.54 0.89 0.51 0.87 0.33 0.91 0.45 0.93
T = 100 0.69 0.95 0.63 0.94 0.47 0.93 0.60 0.97
T = 200 0.79 0.98 0.72 0.98 0.57 0.94 0.70 0.99
T = 500 0.85 0.99 0.76 0.99 0.63 0.95 0.74 1.00
S = 0.15 0.73 0.96 0.67 0.96 0.54 0.96 0.65 0.98
S = 0.20 0.72 0.95 0.66 0.94 0.50 0.92 0.63 0.97
S = 0.25 0.70 0.94 0.63 0.93 0.46 0.91 0.59 0.96
V = 5 0.75 0.97 0.68 0.96 0.53 0.93 0.66 0.98
V = 10 0.71 0.95 0.65 0.95 0.49 0.94 0.62 0.97
V = 15 0.69 0.93 0.63 0.92 0.48 0.92 0.59 0.96

Table 16: Study 1A: Marginal Means, Stepwise uSEM + BIC Results, Part II
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

5 0.15 50 0.79 0.63 0.63 0.77 -0.10 0.21 0.14
5 0.15 100 0.86 0.87 0.73 0.90 -0.07 0.17 0.09
5 0.15 200 0.97 0.95 0.88 0.95 -0.09 0.14 0.08
5 0.15 500 1.00 0.99 0.99 0.96 -0.10 0.10 0.07
5 0.20 50 0.82 0.62 0.63 0.73 -0.07 0.22 0.14
5 0.20 100 0.87 0.85 0.73 0.85 -0.07 0.18 0.10
5 0.20 200 0.95 0.95 0.87 0.90 -0.09 0.14 0.08
5 0.20 500 1.00 0.98 0.97 0.92 -0.13 0.10 0.08
5 0.25 50 0.80 0.63 0.63 0.73 -0.07 0.21 0.14
5 0.25 100 0.86 0.86 0.73 0.85 -0.07 0.18 0.10
5 0.25 200 0.96 0.94 0.86 0.90 -0.10 0.14 0.08
5 0.25 500 1.00 0.98 0.97 0.92 -0.12 0.10 0.07
10 0.15 50 0.59 0.73 0.42 0.83 -0.05 0.24 0.15
10 0.15 100 0.84 0.85 0.69 0.89 -0.06 0.18 0.10
10 0.15 200 0.96 0.94 0.87 0.94 -0.08 0.13 0.08
10 0.15 500 1.00 0.99 0.98 0.97 -0.08 0.09 0.06
10 0.20 50 0.62 0.69 0.44 0.80 -0.02 0.24 0.16
10 0.20 100 0.84 0.82 0.69 0.85 -0.06 0.18 0.10
10 0.20 200 0.96 0.92 0.87 0.91 -0.09 0.13 0.08
10 0.20 500 1.00 0.98 0.97 0.96 -0.09 0.09 0.06
10 0.25 50 0.67 0.62 0.48 0.74 -0.02 0.25 0.17
10 0.25 100 0.84 0.76 0.68 0.81 -0.05 0.19 0.11
10 0.25 200 0.94 0.88 0.84 0.87 -0.09 0.14 0.09
10 0.25 500 0.99 0.94 0.94 0.91 -0.11 0.11 0.08
15 0.15 50 0.55 0.72 0.39 0.83 -0.03 0.26 0.17
15 0.15 100 0.74 0.78 0.58 0.85 -0.04 0.19 0.12
15 0.15 200 0.96 0.91 0.87 0.92 -0.08 0.13 0.08
15 0.15 500 1.00 0.98 0.97 0.97 -0.07 0.09 0.05
15 0.20 50 0.60 0.66 0.42 0.78 -0.03 0.27 0.19
15 0.20 100 0.78 0.69 0.61 0.78 -0.05 0.20 0.13
15 0.20 200 0.94 0.86 0.84 0.88 -0.10 0.15 0.10
15 0.20 500 0.99 0.94 0.94 0.93 -0.09 0.11 0.08
15 0.25 50 0.64 0.60 0.43 0.73 -0.09 0.34 0.27
15 0.25 100 0.77 0.61 0.59 0.72 -0.10 0.26 0.20
15 0.25 200 0.91 0.79 0.78 0.81 -0.14 0.19 0.15
15 0.25 500 0.97 0.85 0.89 0.85 -0.13 0.14 0.11

Table 17: Study 1A: Adaptive LASSO uSEM Results, Part I
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Mean Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

T = 50 0.68 0.66 0.50 0.77 -0.05 0.25 0.17
T = 100 0.82 0.79 0.67 0.83 -0.06 0.19 0.12
T = 200 0.95 0.90 0.85 0.90 -0.10 0.14 0.09
T = 500 0.99 0.96 0.96 0.93 -0.10 0.10 0.07
S = 0.15 0.85 0.86 0.75 0.90 -0.07 0.16 0.10
S = 0.20 0.86 0.83 0.75 0.86 -0.07 0.17 0.11
S = 0.25 0.86 0.79 0.73 0.82 -0.09 0.19 0.13
V = 5 0.91 0.85 0.80 0.86 -0.09 0.16 0.10
V = 10 0.85 0.84 0.74 0.87 -0.07 0.16 0.10
V = 15 0.82 0.78 0.69 0.84 -0.08 0.19 0.14

Table 18: Study 1A: Marginal Means, Adaptive LASSO uSEM, Part I
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Num.
Var

Spar-
sity

Time Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

5 0.15 50 0.68 0.86 0.74 0.73 0.38 0.90 0.69 0.85
5 0.15 100 0.81 0.96 0.84 0.90 0.53 0.95 0.84 0.95
5 0.15 200 0.95 0.99 0.95 0.96 0.75 0.96 0.95 0.98
5 0.15 500 1.00 1.00 1.00 0.99 0.96 0.97 1.00 0.99
5 0.20 50 0.67 0.86 0.75 0.71 0.36 0.86 0.69 0.84
5 0.20 100 0.79 0.95 0.83 0.88 0.51 0.90 0.80 0.94
5 0.20 200 0.93 0.98 0.93 0.95 0.70 0.91 0.93 0.97
5 0.20 500 0.99 1.00 0.99 0.98 0.90 0.92 0.99 0.99
5 0.25 50 0.64 0.86 0.73 0.72 0.34 0.86 0.67 0.84
5 0.25 100 0.78 0.95 0.82 0.88 0.49 0.90 0.80 0.94
5 0.25 200 0.93 0.98 0.94 0.95 0.69 0.92 0.93 0.97
5 0.25 500 1.00 1.00 1.00 0.97 0.90 0.92 1.00 0.99
10 0.15 50 0.53 0.86 0.45 0.83 0.28 0.90 0.40 0.91
10 0.15 100 0.78 0.94 0.80 0.90 0.49 0.93 0.78 0.95
10 0.15 200 0.94 0.98 0.96 0.95 0.74 0.95 0.95 0.97
10 0.15 500 1.00 1.00 1.00 0.99 0.94 0.98 1.00 0.99
10 0.20 50 0.55 0.84 0.47 0.81 0.28 0.88 0.40 0.90
10 0.20 100 0.76 0.93 0.80 0.87 0.47 0.91 0.77 0.93
10 0.20 200 0.93 0.97 0.95 0.93 0.71 0.94 0.94 0.96
10 0.20 500 0.99 0.99 1.00 0.98 0.91 0.97 1.00 0.99
10 0.25 50 0.56 0.80 0.52 0.76 0.30 0.85 0.44 0.87
10 0.25 100 0.75 0.90 0.79 0.83 0.44 0.87 0.75 0.91
10 0.25 200 0.90 0.96 0.93 0.91 0.64 0.90 0.92 0.95
10 0.25 500 0.98 0.98 0.99 0.94 0.84 0.93 0.99 0.97
15 0.15 50 0.49 0.85 0.39 0.84 0.26 0.90 0.34 0.91
15 0.15 100 0.69 0.89 0.64 0.86 0.40 0.90 0.60 0.93
15 0.15 200 0.93 0.96 0.96 0.93 0.73 0.95 0.95 0.97
15 0.15 500 0.99 0.99 1.00 0.98 0.93 0.98 1.00 0.99
15 0.20 50 0.51 0.81 0.43 0.80 0.27 0.87 0.36 0.89
15 0.20 100 0.70 0.83 0.67 0.80 0.41 0.86 0.62 0.89
15 0.20 200 0.90 0.94 0.93 0.90 0.67 0.92 0.92 0.95
15 0.20 500 0.98 0.97 0.98 0.95 0.84 0.95 0.98 0.97
15 0.25 50 0.53 0.77 0.44 0.77 0.28 0.83 0.35 0.87
15 0.25 100 0.69 0.78 0.63 0.76 0.39 0.82 0.57 0.87
15 0.25 200 0.85 0.89 0.87 0.85 0.59 0.87 0.85 0.92
15 0.25 500 0.94 0.93 0.96 0.88 0.75 0.89 0.95 0.94

Table 19: Study 1A: Adaptive LASSO uSEM Results, Part II
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Mean Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

T = 50 0.54 0.89 0.51 0.87 0.34 0.91 0.45 0.93
T = 100 0.69 0.95 0.62 0.94 0.47 0.93 0.59 0.97
T = 200 0.79 0.98 0.71 0.98 0.57 0.95 0.70 0.99
T = 500 0.84 0.99 0.76 0.99 0.64 0.95 0.74 1.00
S = 0.15 0.73 0.96 0.67 0.96 0.54 0.96 0.65 0.98
S = 0.20 0.72 0.95 0.65 0.94 0.50 0.93 0.62 0.97
S = 0.25 0.70 0.94 0.63 0.93 0.46 0.91 0.59 0.96
V = 5 0.75 0.97 0.68 0.96 0.53 0.94 0.65 0.98
V = 10 0.71 0.96 0.64 0.95 0.49 0.94 0.62 0.97
V = 15 0.69 0.93 0.63 0.93 0.48 0.93 0.59 0.96

Table 20: Study 1A: Marginal Means, Adaptive LASSO uSEM Results, Part II
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

5 0.15 50 0.57 0.80 0.40 0.87 -0.17 0.08 0.14
5 0.15 100 0.70 0.88 0.56 0.90 -0.16 0.06 0.12
5 0.15 200 0.93 0.85 0.86 0.85 -0.21 0.04 0.12
5 0.15 500 1.00 0.77 1.00 0.78 -0.20 0.03 0.10
5 0.20 50 0.65 0.75 0.48 0.81 -0.21 0.09 0.15
5 0.20 100 0.83 0.75 0.68 0.77 -0.24 0.06 0.14
5 0.20 200 0.97 0.71 0.91 0.69 -0.28 0.04 0.13
5 0.20 500 1.00 0.57 1.00 0.57 -0.26 0.03 0.12
5 0.25 50 0.63 0.76 0.45 0.81 -0.20 0.08 0.15
5 0.25 100 0.82 0.77 0.68 0.78 -0.24 0.06 0.14
5 0.25 200 0.97 0.68 0.91 0.68 -0.28 0.04 0.13
5 0.25 500 1.00 0.59 1.00 0.58 -0.26 0.03 0.12
10 0.15 50 0.48 0.86 0.33 0.90 -0.20 0.07 0.16
10 0.15 100 0.80 0.82 0.64 0.86 -0.28 0.05 0.15
10 0.15 200 0.98 0.77 0.90 0.81 -0.30 0.03 0.14
10 0.15 500 1.00 0.78 0.99 0.79 -0.27 0.02 0.12
10 0.20 50 0.57 0.80 0.40 0.85 -0.22 0.07 0.16
10 0.20 100 0.85 0.73 0.70 0.79 -0.31 0.05 0.15
10 0.20 200 0.98 0.68 0.92 0.73 -0.33 0.04 0.14
10 0.20 500 1.00 0.68 0.99 0.71 -0.29 0.02 0.12
10 0.25 50 0.65 0.70 0.46 0.79 -0.26 0.08 0.17
10 0.25 100 0.90 0.60 0.75 0.69 -0.33 0.05 0.16
10 0.25 200 0.98 0.56 0.92 0.63 -0.33 0.04 0.14
10 0.25 500 1.00 0.53 0.99 0.58 -0.31 0.03 0.13
15 0.15 50 0.49 0.84 0.34 0.89 -0.19 0.06 0.17
15 0.15 100 0.83 0.75 0.68 0.82 -0.33 0.05 0.16
15 0.15 200 0.98 0.70 0.92 0.78 -0.33 0.03 0.14
15 0.15 500 1.00 0.71 1.00 0.77 -0.27 0.02 0.11
15 0.20 50 0.61 0.75 0.42 0.82 -0.25 0.07 0.18
15 0.20 100 0.89 0.63 0.75 0.73 -0.35 0.05 0.16
15 0.20 200 0.98 0.57 0.93 0.68 -0.34 0.04 0.14
15 0.20 500 1.00 0.58 0.99 0.66 -0.28 0.03 0.12
15 0.25 50 0.73 0.62 0.51 0.73 -0.31 0.08 0.18
15 0.25 100 0.91 0.52 0.76 0.64 -0.36 0.06 0.16
15 0.25 200 0.98 0.48 0.93 0.59 -0.35 0.04 0.15
15 0.25 500 1.00 0.45 0.99 0.55 -0.31 0.03 0.13

Table 21: Study 1A: Standard LASSO uSEM Results, Part I
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Mean Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

Rel.
Bias
True
Pos.

Abs.
Bias
False
Pos.

RMSE

T = 50 0.60 0.76 0.42 0.83 -0.22 0.08 0.16
T = 100 0.84 0.72 0.69 0.78 -0.29 0.05 0.15
T = 200 0.97 0.67 0.91 0.72 -0.31 0.04 0.14
T = 500 1.00 0.63 0.99 0.67 -0.27 0.03 0.12
S = 0.15 0.81 0.79 0.72 0.83 -0.24 0.04 0.14
S = 0.20 0.86 0.68 0.76 0.73 -0.28 0.05 0.14
S = 0.25 0.88 0.60 0.78 0.67 -0.29 0.05 0.15
V = 5 0.84 0.74 0.74 0.76 -0.23 0.05 0.13
V = 10 0.85 0.71 0.75 0.76 -0.29 0.05 0.14
V = 15 0.87 0.63 0.77 0.72 -0.31 0.05 0.15

Table 22: Study 1A: Marginal Means, Standard LASSO uSEM Results, Part I
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Num.
Var

Spar-
sity

Time Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

5 0.15 50 0.53 0.90 0.48 0.88 0.29 0.92 0.44 0.94
5 0.15 100 0.72 0.94 0.62 0.92 0.47 0.93 0.61 0.96
5 0.15 200 0.94 0.93 0.90 0.90 0.79 0.89 0.89 0.95
5 0.15 500 1.00 0.90 1.00 0.82 0.99 0.85 1.00 0.91
5 0.20 50 0.59 0.88 0.55 0.84 0.34 0.87 0.49 0.91
5 0.20 100 0.80 0.88 0.73 0.84 0.54 0.83 0.71 0.91
5 0.20 200 0.97 0.84 0.93 0.80 0.83 0.76 0.93 0.89
5 0.20 500 1.00 0.80 1.00 0.66 0.99 0.67 1.00 0.81
5 0.25 50 0.56 0.89 0.52 0.85 0.31 0.88 0.46 0.92
5 0.25 100 0.80 0.88 0.73 0.86 0.54 0.83 0.71 0.92
5 0.25 200 0.97 0.85 0.94 0.79 0.82 0.76 0.93 0.89
5 0.25 500 1.00 0.79 1.00 0.67 0.99 0.67 1.00 0.82
10 0.15 50 0.46 0.93 0.39 0.92 0.25 0.93 0.35 0.96
10 0.15 100 0.78 0.91 0.72 0.89 0.52 0.90 0.70 0.94
10 0.15 200 0.97 0.88 0.96 0.86 0.82 0.87 0.95 0.93
10 0.15 500 1.00 0.88 1.00 0.86 0.98 0.84 1.00 0.92
10 0.20 50 0.53 0.90 0.46 0.88 0.29 0.90 0.41 0.94
10 0.20 100 0.82 0.86 0.77 0.83 0.57 0.86 0.74 0.91
10 0.20 200 0.98 0.83 0.96 0.80 0.84 0.81 0.95 0.89
10 0.20 500 1.00 0.82 1.00 0.79 0.97 0.78 1.00 0.88
10 0.25 50 0.58 0.84 0.52 0.82 0.33 0.86 0.45 0.90
10 0.25 100 0.86 0.79 0.82 0.76 0.60 0.79 0.78 0.86
10 0.25 200 0.97 0.76 0.96 0.72 0.83 0.74 0.94 0.84
10 0.25 500 1.00 0.74 1.00 0.68 0.96 0.69 1.00 0.82
15 0.15 50 0.47 0.92 0.38 0.91 0.26 0.93 0.35 0.95
15 0.15 100 0.82 0.87 0.75 0.86 0.57 0.88 0.72 0.92
15 0.15 200 0.98 0.84 0.96 0.82 0.86 0.85 0.95 0.91
15 0.15 500 1.00 0.84 1.00 0.83 0.98 0.84 1.00 0.91
15 0.20 50 0.56 0.86 0.46 0.85 0.32 0.89 0.40 0.92
15 0.20 100 0.86 0.80 0.81 0.78 0.63 0.82 0.78 0.88
15 0.20 200 0.98 0.76 0.96 0.74 0.86 0.79 0.95 0.86
15 0.20 500 1.00 0.76 1.00 0.74 0.98 0.76 1.00 0.85
15 0.25 50 0.65 0.79 0.57 0.77 0.37 0.83 0.49 0.88
15 0.25 100 0.87 0.74 0.82 0.70 0.63 0.77 0.77 0.83
15 0.25 200 0.97 0.71 0.95 0.67 0.85 0.72 0.93 0.81
15 0.25 500 1.00 0.67 0.99 0.64 0.97 0.68 0.99 0.80

Table 23: Study 1A: Standard LASSO uSEM Results, Part II
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Mean Con.
Path
Sen.

Con.
Path
Spec.

Lag
Path
Sen.

Lag
Path
Spec.

Con.
Dir.
Sen.

Con.
Dir.
Spec.

Lag
Dir.
Sen.

Lag
Dir.
Spec.

T = 50 0.57 0.83 0.55 0.77 0.31 0.87 0.48 0.88
T = 100 0.75 0.90 0.76 0.85 0.46 0.89 0.73 0.92
T = 200 0.92 0.96 0.94 0.93 0.69 0.92 0.93 0.96
T = 500 0.99 0.98 0.99 0.96 0.89 0.95 0.99 0.98
S = 0.15 0.82 0.94 0.81 0.90 0.62 0.94 0.79 0.95
S = 0.20 0.81 0.92 0.81 0.88 0.59 0.91 0.78 0.93
S = 0.25 0.80 0.90 0.80 0.85 0.55 0.88 0.77 0.92
V = 5 0.85 0.95 0.88 0.88 0.63 0.91 0.86 0.94
V = 10 0.81 0.93 0.80 0.89 0.59 0.92 0.78 0.94
V = 15 0.77 0.88 0.74 0.86 0.54 0.90 0.71 0.92

Table 24: Study 1A: Marginal Means, Standard LASSO uSEM Results, Part II
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec

Lag
Dir.
Sen.

Lag
Dir.
Spec.

Con.
Path
Sen.

Con.
Path
Spec.

5 0.15 50 0.58 0.83 0.51 0.93 0.47 0.95
5 0.15 100 0.79 0.88 0.74 0.95 0.75 0.97
5 0.15 200 0.97 0.89 0.94 0.95 0.97 0.97
5 0.15 500 1.00 0.90 1.00 0.93 1.00 0.98
5 0.20 50 0.65 0.78 0.55 0.90 0.47 0.95
5 0.20 100 0.85 0.75 0.77 0.88 0.75 0.94
5 0.20 200 0.98 0.72 0.94 0.84 0.96 0.93
5 0.20 500 1.00 0.66 0.99 0.77 1.00 0.92
5 0.25 50 0.61 0.76 0.54 0.89 0.43 0.94
5 0.25 100 0.86 0.77 0.79 0.88 0.75 0.95
5 0.25 200 0.98 0.72 0.95 0.85 0.95 0.94
5 0.25 500 1.00 0.67 1.00 0.78 1.00 0.92

Table 25: Study 1B: Graphical VAR Results
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec

Lag
Dir.
Sen.

Lag
Dir.
Spec.

Con.
Path
Sen.

Con.
Path
Spec.

5 0.15 50 0.59 0.84 0.46 0.95 0.50 0.92
5 0.15 100 0.79 0.93 0.70 0.98 0.74 0.97
5 0.15 200 0.88 0.98 0.80 1.00 0.86 0.99
5 0.15 500 0.95 1.00 0.86 1.00 0.94 1.00
5 0.20 50 0.67 0.79 0.46 0.94 0.59 0.91
5 0.20 100 0.82 0.86 0.65 0.96 0.79 0.94
5 0.20 200 0.91 0.97 0.78 0.99 0.89 0.99
5 0.20 500 0.96 0.98 0.81 1.00 0.96 1.00
5 0.25 50 0.68 0.79 0.46 0.94 0.61 0.90
5 0.25 100 0.82 0.89 0.65 0.96 0.80 0.95
5 0.25 200 0.90 0.97 0.78 0.99 0.88 0.98
5 0.25 500 0.96 0.99 0.82 0.99 0.96 1.00

Table 26: Study 1B: Stepwise uSEM Results
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec

Lag
Dir.
Sen.

Lag
Dir.
Spec.

Con.
Path
Sen.

Con.
Path
Spec.

5 0.15 50 0.59 0.84 0.46 0.95 0.50 0.92
5 0.15 100 0.79 0.93 0.69 0.98 0.74 0.97
5 0.15 200 0.87 0.98 0.80 1.00 0.86 0.99
5 0.15 500 0.95 1.00 0.86 1.00 0.94 1.00
5 0.20 50 0.67 0.79 0.46 0.94 0.59 0.90
5 0.20 100 0.82 0.87 0.65 0.96 0.79 0.94
5 0.20 200 0.91 0.97 0.77 0.99 0.89 0.99
5 0.20 500 0.95 0.99 0.80 1.00 0.96 1.00
5 0.25 50 0.68 0.79 0.46 0.95 0.61 0.90
5 0.25 100 0.82 0.89 0.65 0.96 0.79 0.95
5 0.25 200 0.90 0.97 0.77 0.99 0.88 0.98
5 0.25 500 0.96 0.99 0.82 0.99 0.96 1.00

Table 27: Study 1B: Stepwise uSEM + BIC Results
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec

Lag
Dir.
Sen.

Lag
Dir.
Spec.

Con.
Path
Sen.

Con.
Path
Spec.

5 0.15 50 0.81 0.62 0.70 0.84 0.69 0.85
5 0.15 100 0.88 0.87 0.86 0.95 0.83 0.96
5 0.15 200 0.97 0.97 0.95 0.98 0.96 0.99
5 0.15 500 1.00 0.97 1.00 0.98 1.00 0.99
5 0.20 50 0.84 0.58 0.70 0.83 0.73 0.84
5 0.20 100 0.90 0.83 0.82 0.93 0.85 0.95
5 0.20 200 0.97 0.95 0.94 0.97 0.96 0.99
5 0.20 500 1.00 0.94 0.99 0.95 1.00 0.99
5 0.25 50 0.84 0.58 0.71 0.84 0.75 0.83
5 0.25 100 0.89 0.87 0.82 0.94 0.84 0.96
5 0.25 200 0.97 0.95 0.93 0.97 0.95 0.98
5 0.25 500 1.00 0.93 1.00 0.95 1.00 0.99

Table 28: Study 1B: Adaptive LASSO uSEM Results
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Num.
Var

Spar-
sity

Time Path
Sen.

Path
Spec

Lag
Dir.
Sen.

Lag
Dir.
Spec.

Con.
Path
Sen.

Con.
Path
Spec.

5 0.15 50 0.52 0.83 0.40 0.95 0.48 0.91
5 0.15 100 0.74 0.88 0.65 0.96 0.73 0.94
5 0.15 200 0.95 0.84 0.93 0.95 0.95 0.93
5 0.15 500 1.00 0.80 1.00 0.93 1.00 0.90
5 0.20 50 0.66 0.75 0.48 0.92 0.61 0.86
5 0.20 100 0.86 0.70 0.72 0.92 0.85 0.83
5 0.20 200 0.99 0.69 0.96 0.91 0.98 0.81
5 0.20 500 1.00 0.56 1.00 0.82 1.00 0.76
5 0.25 50 0.66 0.74 0.45 0.93 0.63 0.85
5 0.25 100 0.86 0.73 0.74 0.91 0.86 0.85
5 0.25 200 0.98 0.68 0.95 0.90 0.98 0.81
5 0.25 500 1.00 0.55 1.00 0.82 1.00 0.75

Table 29: Study 1B: Standard LASSO uSEM Results
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Condition Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

sim1 0.86 0.90 0.86 0.65
sim5 1.00 0.74 1.00 0.50
sim13 0.56 0.91 0.45 0.78
sim14 0.92 0.86 0.91 0.61
sim15 0.99 0.40 0.99 0.29
sim18 0.88 0.89 0.88 0.65
sim19 0.90 0.09 0.86 0.19
sim20 0.78 0.24 0.74 0.29

Table 30: Study 2: Graphical VAR Results
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Condition Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

sim1 0.81 0.96 0.42 0.85
sim5 0.84 1.00 0.48 0.88
sim13 0.52 0.95 0.26 0.91
sim14 0.83 0.94 0.40 0.84
sim15 0.92 0.81 0.54 0.78
sim18 0.82 0.94 0.48 0.87
sim19 0.00 1.00 0.00 1.00
sim20 0.00 1.00 0.00 1.00

Table 31: Study 2: Stepwise uSEM Results
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Condition Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

sim1 0.81 0.96 0.42 0.85
sim5 0.84 1.00 0.48 0.88
sim13 0.52 0.95 0.26 0.91
sim14 0.83 0.94 0.40 0.84
sim15 0.92 0.81 0.55 0.78
sim18 0.82 0.94 0.48 0.87
sim19 0.01 1.00 0.00 1.00
sim20 0.01 1.00 0.01 1.00

Table 32: Study 2: Stepwise uSEM + BIC Results
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Condition Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

sim1 0.86 0.92 0.51 0.83
sim5 1.00 0.92 0.82 0.75
sim13 0.59 0.93 0.30 0.88
sim14 0.89 0.90 0.50 0.80
sim15 1.00 0.58 0.62 0.57
sim18 0.92 0.91 0.58 0.82
sim19 0.31 0.68 0.23 0.74
sim20 0.64 0.45 0.50 0.55

Table 33: Study 2: Adaptive LASSO Results
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Condition Path
Sen.

Path
Spec.

Dir.
Sen.

Dir.
Spec.

sim1 0.91 0.72 0.58 0.69
sim5 1.00 0.46 0.96 0.45
sim13 0.58 0.85 0.31 0.83
sim14 0.92 0.64 0.58 0.66
sim15 1.00 0.20 0.68 0.39
sim18 0.92 0.74 0.65 0.70
sim19 0.34 0.81 0.25 0.83
sim20 0.45 0.72 0.35 0.74

Table 34: Study 2: Standard LASSO Results
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APPENDIX B: FIGURES

Figure 29: Hemodynamic response function across 20 subjects, as depicted in Handwerker
et al., 2004, demonstrating both between-subject variability and sensitivity of HRF to
sampling rate (TR). Panel A shows the normalized HRF. Panel B shows the HRF scaled
by % change, allowing us to see between-subject amplitude variability.
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Jöreskog, K. & Sörbom, D. (1981). LISREL V: Analysis of linear structural relationships
by maximum likelihood and least squares methods (Research Report 81-8). Uppsala,
Sweden: University of Uppsala, Department of Statistics.
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