
Applying valued booleans in testing of cyber-physical systems

Downloaded from: https://research.chalmers.se, 2021-08-31 12:58 UTC

Citation for the original published paper (version of record):
Claessen, K., Smallbone, N., Lidén Eddeland, J. et al (2018)
Applying valued booleans in testing of cyber-physical systems
Proceedings - 2018 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems, MT-CPS 2018:

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/222823569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Applying Valued Booleans in Testing of
Cyber-Physical Systems*

Koen Claessen∗, Nicholas Smallbone∗, Johan Lidén Eddeland†‡, Zahra Ramezani‡, Knut Åkesson‡ and Sajed Miremadi†
∗Department of Computer Science and Engineering

Chalmers University of Technology, Gothenburg, Sweden
Email: {koen, nicsma}@chalmers.se

†Volvo Car Corporation
Gothenburg, Sweden

Email: {firstname.lastname}@volvocars.com
‡Department of Electrical Engineering

Chalmers University of Technology, Gothenburg, Sweden
Email: {johedd,rzahra,knut}@chalmers.se

In software testing, as in cyber-physical systems
testing, test suites are traditionally developed by hand.
In this work we consider one framework for putting the
computer in charge of the testing instead: constrained
random test case generation as supported by the tool
QuickCheck [2]. This is implemented by the use of
Valued Booleans (VBools). VBools naturally allow for
an extension of QuickCheck into cyber-physical sys-
tems, which is useful particularly since QuickCheck can
perform shrinking of test cases. Shrinking is a technique
to make test cases simpler while preserving failure.

This work has three main contributions. First, we
adapt random testing with QuickCheck to hybrid sys-
tems. Second, we define VBools as a way to simplify
counterexamples (shrinking) when testing hybrid sys-
tems. Finally, we compare random testing and shrinking
to existing falsification tools, to illustrate strengths and
weaknesses of random testing and the importance of
simplifying counterexamples.

Formally, a VBool is a pair of a Boolean value and
a robustness value, which is a non-negative number:

V = B× R≥0

The robustness of a false VBool represents the severity
of the failure. The robustness of a true VBool represents
the severity with which its negation would have failed,
which roughly coincides with how convincingly the
test passed. The most common VBool operator is ≤v,
which takes the difference between its arguments as its
robustness:

∗ This abstract summarizes the work made in a conference paper
which is accepted to WODES 2018 [3].

≤v : R× R→ V

x≤v y =

{
(>, x− y) if x ≤ y

(⊥, y − x) otherwise

The other comparison operators are defined in terms
of ≤v. > and ⊥ denote true and false, respectively.

We define conjunction ∧+ as follows. The Boolean
part of x∧+ y is computed as x ∧ y. For robustness,
suppose that we have a property which is a conjunction
of two sub-properties, both of which fail; we would like
the total severity to be the sum of the two severities.
Therefore, when we take the conjunction of two false
VBools, their robustnesses are added. We do the same
if both VBools are true. If one VBool is true and the
other is false, there is no obvious way to combine
the two robustnesses, so we take the robustness of the
false VBool (as shown in (1) - (4)). The other boolean
operators are defined as in (5) - (8).

(⊥, x)∧+(⊥, y) = (⊥, x+ y) (1)
(⊥, x)∧+(>, y) = (⊥, x) (2)
(>, x)∧+(⊥, y) = (⊥, y) (3)

(>, x)∧+(>, y) =

(
>, 1

1
x + 1

y

)
(4)

>v = (>,∞) (5)
⊥v = (⊥,∞) (6)

¬v(b, x) = (¬b, x) (7)
x∨+ y = ¬v(¬v x∧+ ¬v y) (8)

We perform some experiments on a model of a heater,
where we test against the following specification: If
the setpoint temperature has been constant (steady) for

8

2018 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems

978-1-5386-6748-4/18/$31.00 ©2018 IEEE
DOI 10.1109/MT-CPS.2018.00011

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:27:28 UTC from IEEE Xplore. Restrictions apply.

50 minutes, then the difference between the setpoint
temperature and the actual room temperature should
be at most 1◦C.

0 20 40 60 80 100 120 140 160

Time [m]

-5

0

5

10

15

20

25

30

T
e

m
p

e
ra

tu
re

 [
°C

]

setpoint

room

not ok

Figure 1: Random testing performed with
QuickCheck on the heater example.

0 10 20 30 40 50 60

Time [m]

-5

0

5

10

15

20

25

T
e

m
p

e
ra

tu
re

 [
°C

]

setpoint

room

not ok

Figure 2: Standard shrinking turns the counterex-
ample into a glitch.

0 10 20 30 40 50 60 70 80

Time [m]

-5

0

5

10

15

20

25

30

T
e

m
p

e
ra

tu
re

 [
°C

]

setpoint

room

VBool value

not ok

Figure 3: Shrinking with valued Booleans. We
have included the VBool value in the graph for
clarity, even though it is not a temperature.

Random testing without shrinking gives compli-
cated counterexamples, as shown in Figure 1. Standard
QuickCheck shrinking only yields short glitches, which
is exemplified in Figure 2. To get the desired output of
shrinking, we apply shrinking with VBools instead. As
seen in Figure 3, the test case is much simpler but the
failure is preserved.

A similar framework is falsification of temporal logic
properties, which is a black-box approach to testing of
hybrid systems. The tools S-TaLiRo [1] and Breach [4]
use Metric Temporal Logic (MTL) and Signal Tem-
poral Logic (STL) respectively to calculate robustness
of trajectories, which are minimized by gradient-free
optimizers. One key difference between VBools and
the similar robust satisfaction of temporal logic is that
VBools are meant to be a logic for expressing truth and
robustness at the same time, rather than robustness being
defined after the fact. Of course, the ”+” semantics of
VBools can also be used to alter the robustness values
of MTL or STL formulas, to be used in falsification.
Further details on VBools are found in the conference
paper by the authors [3].

REFERENCES

[1] Yashwanth Annpureddy et al. “S-TaLiRo: A tool
for temporal logic falsification for hybrid sys-
tems”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems. Springer. 2011, pp. 254–257.

[2] Koen Claessen and John Hughes. “QuickCheck: A
Lightweight Tool for Random Testing of Haskell
Programs”. In: Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional
Programming. ICFP ’00. New York, NY, USA:
ACM, 2000, pp. 268–279. ISBN: 1-58113-202-6.
DOI: 10 .1145/351240 .351266. URL: http : / /doi .
acm.org/10.1145/351240.351266.

[3] Koen Claessen et al. Using Valued Booleans to
Find Simpler Counterexamples in Random Testing
of Cyber-Physical Systems. Accepted to WODES.
2018.

[4] Alexandre Donzé. “Breach, a toolbox for verifica-
tion and parameter synthesis of hybrid systems.”
In: CAV. Vol. 10. Springer. 2010, pp. 167–170.

9

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:27:28 UTC from IEEE Xplore. Restrictions apply.

