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Abstract Machine learning is used to compute achievable information rates (AIRs) for a simplified fiber
channel. The approach jointly optimizes the input distribution (constellation shaping) and the auxiliary
channel distribution to compute AIRs without explicit channel knowledge in an end-to-end fashion.

Introduction
Fiber transmission rates can be increased by
multi-level quadrature amplitude modulation (M-
QAM) formats, which require higher input power
and are thus more susceptible to nonlinear im-
pairments such as nonlinear signal-noise in-
teraction (NLSNI). Conventional techniques to
deal with NLSNI include improved detector de-
signs1–3 and optimized modulation formats3–5.
The achievable transmission rates are them-
selves upper-bounded by the channel capacity,
which is unknown for optical channels with NL-
SNI, even for simplified nondispersive scenar-
ios, though upper6 and lower6–8 capacity bounds
have been established.

A different approach for constellation or detec-
tor design is to rely on machine learning and deep
learning, including9–15. Recently, autoencoders
(AE) have emerged as a promising tool for end-to-
end design and have been shown to lead to good
performance for wireless9,10, noncoherent opti-
cal14, as well as visible light communication15.

In this paper, we develop an AE for a simplified
memoryless fiber channel model. It is shown that
the AE approach can be used to establish tight
lower bounds on the channel capacity by comput-
ing achievable information rates (AIR)16–19. More-
over, the AE can approach maximum likelihood
(ML) performance and leads to optimized constel-
lations that are more robust against NLSNI than
conventional QAM formats.

Simplified Fiber Channel Model
Similar to1–4,6–8, we consider a simplified mem-
oryless channel for fiber-optic communication
which is obtained from the nonlinear Schrödinger
equation by neglecting dispersion. The resulting
per-sample model is defined by the recursion

xk+1 = xke
jLγ|xk|2/K + nk+1, 0 ≤ k < K, (1)

where x0 = x is the (complex-valued) channel
input, y = xK is the channel output, nk+1 ∼
CN (0, PN/K), L is the total link length, PN is
the noise power, and γ is the nonlinearity param-
eter. The model assumes ideal distributed am-
plification and K → ∞. The channel input x
is drawn randomly from an M -point constellation
with E{|X|2} = Pin, where Pin is the input power.

Even though dispersive effects are ignored, the
model still captures some of the nonlinear ef-
fects encountered during realistic transmission
over optical fiber, in particular nonlinear phase
noise (NLPN). The main interest in this channel
model lies in the fact that the channel probabil-
ity density function (PDF) p(y|x) is known analyt-
ically1,7,8. This allows us to compare the AE per-
formance to an ML detector and benchmark the
obtained AIRs using known capacity bounds.

Proposed Autoencoder Structure
In machine learning, an AE is a neural network
(NN) which consists of two parts: an encoder
maps an input s (e.g., an image) to a lower-
dimensional representation or code and a de-
coder attempts to reconstruct the input from the
code. It has recently been proposed to interpret
all components of a communication system, con-
sisting of a transmitter, channel, and receiver, as
an AE9. This allows for end-to-end learning of
good transmitter and receiver structures.

The AE structure used in this paper is shown in
Fig. 1 and will be described in the following. The
goal is to transmit a message s chosen from a
set of M possible messages {1, 2, ...,M} , M.
Following9, the messages are first mapped to M -
dimensional ”one-hot” vectors where the s-th ele-
ment is 1 and all other elements are 0. The one-
hot vectors denoted by u are the inputs to a trans-
mitter NN, which consists of multiple dense layers
of neurons. Each neuron takes inputs from the
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Fig. 1: Autoencoder structure assuming 2 hidden layers in both the transmitter and receiver neural network.

previous layer and generates an output accord-
ing to zout = f(wᵀzin + b), where w is a vector
of weights, b ∈ R is a bias, and f(·) is an acti-
vation function, here considered to be a sigmoid
or tanh function. The values of the two transmit-
ter output neurons (zr and zi in Fig. 1) are used
to form the channel input. To meet the average
power constraint, a normalization is applied us-
ing M different training inputs to the NN. Then
the normalized output is assumed to be sent over
the channel, leading to an observation y. The
real and imaginary parts of y are taken as the
input to a receiver NN, the output of which we
denote by fy(s′) ∈ [0, 1], s′ ∈ M, where we as-
sume a sigmoid in the last layer and then normal-
ize the sum of the output to 1. Finally, we set
ŝ = argmaxs′ fy(s

′).
The AE is trained using many batches of train-

ing data averaging over different messages and
channel noise configurations. In particular, the
weights and biases of all neurons in both the
transmitter and receiver NN are optimized with re-
spect to 1

N

∑N
i=1 `(u

(i)
s , fy(s

′)(i)), where

`(u(i)s , fy(s
′)(i)) = −u(i)s log fy(s

′)(i). (2)

is the cross-entropy loss, N is the batch size (a
multiple of M ), and the superscript refers to dif-
ferent training data realizations, the subscript s
refers to the sth element of u(i). The optimization
is performed using a variant of stochastic gradient
descent with an appropriate learning rate.

Achievable Information Rates

The AE can be used to determine lower bounds
on the mutual information

I(X,Y ) =
∑
x

∫
p(x, y) log2

p(y|x)
p(y)

dy (3)

as follows16–19. We normalize fy(s′) with respect
to s′ and consider it as a distribution over x. Then,
fy(x)p(y) is a valid joint distribution over x and y,
so that, due to the non-negativity of the Kullback-
Leibler divergence, KL(p(x, y)||p(y)fy(x)) ≥ 0.

Tab. 1: Autoencoder parameters

transmitter receiver

layer 1 2–6 7 1 2–7 8
neurons M M 2 2 M M
f(·) - tanh linear - tanh sigm.
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Fig. 2: SER as a function of Pin for M = 16.

Straightforward manipulations then yield

I(X,Y ) ≥
∑
x

∫
p(x, y) log

fy(x)

p(x)
dy, (4)

which can easily be evaluated via Monte Carlo in-
tegration. The right-hand side of (4) is the AIR of
the AE. Both the mutual information and the AIR
are lower bounds on the channel capacity.

Performance Analysis
For the numerical results, we assume L =

5000 km, γ = 1.27, and PN = −21.3 dBm. The
number of iterations to simulate the fiber model
(1) is set to K = 50, which is sufficient to approxi-
mate the true asymptotic channel PDF1. The AE
is trained separately for different values of Pin us-
ing the Adam optimizer in TensorFlow. The AE
parameters are summarized in Tab. 1.

We start by comparing the symbol error rate
(SER), i.e., p(s 6= ŝ), of the AE to the SER of an
ML detector applied to (a) standard 16-QAM and
(b) the signal constellation optimized by the AE.
The results are shown in Fig. 2. The optimal input
power for 16-QAM under ML detection is around
−2 dBm, after which the SER increases due to
NLPN. The SER of the AE decreases with input
power, showing that the AE can find more suitable



Fig. 3: ML decision boundaries for the AE constellation at
Pin = 0 dBm (left) and learned AE decision regions (right).

constellations in the presence of NLPN. If we re-
place the receiver part of the AE with an ML de-
tector, the SER improves only slightly. This indi-
cates that the AE can not only learn good constel-
lations, but also learn to approximate the correct
channel distribution, thus achieving near-ML per-
formance. To visualize this, in Fig. 3, we compare
the effective decision regions implemented by the
AE after training (right) to the optimal ML deci-
sion regions for the optimized AE constellation at
Pin = 0 dBm (left), showing excellent agreement.

In Fig. 4, the AIR of the AE for M = 16 and
M = 256 is shown. We first compare the case
M = 16 to the mutual information I(X;Y ) assum-
ing 16-QAM as the input distribution. Note that the
mutual information (3) can also be evaluated via
Monte Carlo integration since the channel PDF
p(y|x) is known. As expected, the mutual infor-
mation for 16-QAM decreases with input power,
whereas the AIR of the AE flattens out at the max-
imum value log2 16 = 4. Lastly, we compare the
AIR of the AE for M = 256 to three information-
theoretic bounds on the channel capacity: the
solid black line corresponds to a recently derived
upper bound6, whereas the dashed and dash-
dotted lines correspond to lower bounds based
on a Gaussian6 and half-Gaussian8 input distri-
bution, respectively. The AIR of the AE closely
follows the maximum of the two lower bounds,
slightly exceeding them at the crossover point at
around 0 dBm. These results indicate that the
optimized AE constellations are close to being
capacity-achieving and that the upper capacity
bound can be further tightened.

Conclusions
We have presented an autoencoder approach to
communicating over a simplified nonlinear fiber
channel. The approach allows for end-to-end
learning of good signal constellations and the
channel posterior distribution. It was shown that
the autoencoder can learn constellations that are
robust to nonlinear phase noise and outperform
conventional M -QAM constellations. Moreover,
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Fig. 4: Comparison of the AIR of the AE to various
information-theoretic capacity bounds and 16-QAM.

near-ML performance can be obtained without ex-
plicit channel knowledge. We also evaluated the
achievable information rate of the AE, showing
that the obtained lower capacity bounds are com-
parable to, and sometimes slightly exceed, two
existing lower bounds for the considered nonlin-
ear fiber channel model.
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