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Abstract. This work presents a wafer-scale method of microsupercapacitor (MSC) fabrication. 

Deposition of the electrode precursor, i.e. graphene oxide, is accomplished through spin-coating 

which allows for potential application in CMOS compatible processes for future integrated on-

chip energy storage systems. Our MSCs have an areal capacitance of 0.4 mF/cm2 at 10 µA, which 

is a very promising result. Further, the MSC has good rate capability as its capacitance decreases 

by only 0.03 mF/cm2 when the current increases to 50 µA. The MSCs have a maximum energy 

density of 0.04 µWh/cm2 and a maximum power density as high as 96 µW/cm2. Additionally, 

the wafer-scale process demonstrates industrial viability. 

1.  Introduction 

As microsystems shrink and become increasingly integrated (Internet of Things (IoT)), they have ever 

increasing power demands and can therefore greatly benefit from on-chip power supply and 

management systems. Microsupercapacitors (MSCs), combined with energy harvesting, offer the 

potential to alleviate these increasing power demands [1]–[6]. However, implementation of reliable 

wafer scalable and fully CMOS compatible MSC fabrication processes remains challenging. In this 

work, we present a novel, CMOS compatible fabrication method for development of wafer scalable 

MSC technology using rGO electrodes. This method has a potential to be incorporated back-end-of-the-

line (BEOL) with other microsystems and many other carbon-based materials (such as, carbon 

nanotubes (CNTs), activated carbon (AC) and carbon nanofibers (CNFs)). These carbon materials show 

promising electrical characteristics as well as high surface to volume ratios – making them well-suited 

as MSC electrodes [7]. 

The MSC devices are comprised of metal current collectors.  On top of these current collectors, GO 

is spin-coated and selectively etched to form positive and negative high surface area electrodes. GO is 

converted to rGO after annealing at high temperature. The porous nature of the rGO allows for the 

electrolyte to penetrate into the electrode and form a double layer capacitance at the electrode/electrolyte 

interface. Consequently, rGO offers tremendous capacitive properties due to its high surface area. A 

schematic of a typical MSC device fabricated in a wafer-scale process is shown in figure 1 with the 

silicon/SiO2 substrate in black/grey, the current collectors in gold, the rGO in dark grey, and the 

electrolyte in green. 
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Figure 1.  Graphical representation of a generic carbon-based MSC with 

interdigitated electrodes. 

2.  Device Fabrication 

The wafer-scale fabrication procedure for MSCs is shown in Figure 2. A 2'' silicon wafer with 400 nm 

of SiO2 is employed as the substrate (figure 2a). Interdigitated Ti/Au (10/50 nm) current collectors are 

fabricated using metal evaporation and lift-off (figure 2b). Although gold is used for proof of concept, 

it can be replaced with CMOS compatible metals.  Next, Graphene oxide (GO) is spin-coated (figure 

2c).  A 50 nm aluminum layer is then deposited and patterned to form a hard mask (figure 2d). This hard 

mask protects the GO electrode material during oxygen plasma etching at 100 W in a 100 mTorr (figure 

2e). Aluminum is then etched away and GO is reduced (figure 2f) for 20 mins at 500 °C with hydrogen 

used as a reductant.  

 

Figure 2.  Schematic process plan for a ubiquitous carbon-based MSC. 

Figure 3a displays rGO-based MSCs fabricated on a 2” silicon wafer (fabricated to step (e) in figure 

2) where the inset presents an optical microscopy image of the interdigitated contact pattern – illustrating 

a very good etch profile from the Aluminum hard mask.  Likewise, scanning electron microscopy (SEM) 

further confirms the presence of rGO (figure 3b).  

Electrolyte

SiO2

rGO Electrode

Ti/Au Collector

Silicon
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Figure 3.  (a) Full size 2” wafer after graphene oxide etch, (inset) rGO interdigitated 

pattern post GO reduction. (b) SEM image rGO electrode after complete processing. 

To evaluate the successful reduction of GO to rGO, Raman spectroscopy measurement was 

performed. The Raman spectrum of the material after the reduction process shows two major features, 

the G band due to E2g symmetry of sp2 carbon at 1587 cm-1 and the D band corresponding to breathing 

mode of A1g symmetry at 1338 cm-1. The intensity ratio of D to G band (ID/IG) is 1.39, similar to a 

previous report on rGO [8]. Finally, 6 M KOH electrolyte is applied onto the device (figure 2g). 

Although KOH is used for initial measurements, it can be replaced by a gel-based electrolyte (e.g. 

polyvinyl alcohol based electrolyte PVA/H3PO4) for CMOS compatibility. 

 
Figure 4.  Raman spectroscopy of rGO with D and 

G bands.  rGO is suggested by the intensity ratio of 

the two bands. 

3.  Results/Discussion 

The electrochemical performance of the MSC is evaluated on Kari Suss PM 5 probe station coupled 

with Gamry Reference 3000AE potentiostat. Cyclic Voltammetry (CV) at scan rates of 1 – 10 V/s (figure 

5a) show quasi-rectangular curves that indicate electric double layer (EDL) behavior dominates the 

storage mechanism, which is further evidenced by the linear Galvanostatic Charge/Discharge (GCD) 

curves at a current of 10, 20, 30 and 50 µA (figure 5b).  

The following equations are applied for the calculation of capacitance: C = I∙t / S∙ΔV, where C is the 

areal capacitance, I is the charge/discharge current, S is surface area of the device including the space 

between fingers and ΔV is the voltage range during discharge excluding IR drop. The energy density 

can be further calculated by E = ½ C∙ΔV 2, where E stands for energy density, and average power density 

by P = E / t. The calculation shows that the MSC has an areal capacitance of 0.4 mF/cm2 at 10 µA. The 

value is comparable to 0.51 mF/cm2 of a rGO based MSC fabricated by laser writing method [9]. The 

areal capacitance can be easily controlled by increase the thickness of active material layer by repeating 
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the spin-coating step. The device also has excellent rate capability that capacitance drops by only approx. 

0.3 mF/cm2 when the current increases 5 times to 50 µA. The maximum energy of the device is around 

0.04 µWh/cm2 while the maximum power is as high as 96 µW/cm2.   

 

Figure 5.  (a) Cyclic voltammetry, (b) Galvanostatic charge/discharge. 

Although measurements for rGO are presented, the fabrication method is ubiquitously transferrable 

to other carbon materials. Due to the robust nature of the fabrication process, there is much room for 

performance enhancement with the resulting MSCs potentially being implemented on-chip with other 

microsystem technologies for future development of self-powering microsystems.   

4.  Conclusion 

We present a MSC fabrication method which uses rGO as an electrode material. Deposition of rGO is 

accomplished through spin-coating and therefore offers potential CMOS compatibility.  The process is 

scalable to wafer-scale sizes which allows for potential industrial viability. Our MSCs currently have an 

areal capacitance of 0.4 mF/cm2 at 10 µA which is comparable to previous reports. Further, the MSC 

capacitance decreases by only approx. 0.03 mF/cm2 when the current increases to 50 µA. The MSCs 

have a maximum energy density of approximately 0.04 µWh/cm2 and a maximum power density as high 

as 96 µW/cm2. The MSC fabrication method aims toward potential future application involving on-chip 

energy storage systems. 
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