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ABSTRACT
Observations find a median star formation efficiency per free-fall time in Milky Way Giant
Molecular Clouds (GMCs) of the order of εff ∼ 1 per cent with dispersions of ∼0.5 dex. The
origin of this scatter in εff is still debated and difficult to reproduce with analytical models. We
track the formation, evolution and destruction of GMCs in a hydrodynamical simulation of a
Milky Way-like galaxy and by deriving cloud properties in an observationally motivated way,
we measure the distribution of star formation efficiencies which are in excellent agreement
with observations. We find no significant link between εff and any measured global property
of GMCs (e.g. gas mass, velocity dispersion). Instead, a wide range of efficiencies exist in the
entire parameter space. From the cloud evolutionary tracks, we find that each cloud follows a
unique evolutionary path which gives rise to a wide diversity in all properties. We argue that it
is this diversity in cloud properties, above everything else, that results in the dispersion of εff.

Key words: ISM: clouds – galaxies: evolution – galaxies: ISM – galaxies: star formation –
galaxies:structure.

1 IN T RO D U C T I O N

It is within Giant Molecular Clouds (GMCs) that galaxies form the
vast majority of their stars (Myers et al. 1986; Shu, Adams & Lizano
1987; Scoville & Good 1989; McKee & Ostriker 2007). In local
spiral and dwarf galaxies, star formation on galactic scales is known
to be a slow process (e.g. Bigiel et al. 2008), with gas depletion
time scales of the order of billions of years. This inefficiency is also
found on scales of individual GMCs (Krumholz & Tan 2007), with
median star formation efficiencies per cloud free-fall time εff ∼
1 per cent (Myers et al. 1986; Murray 2011; Krumholz, Dekel &
McKee 2012). While most observations of εff in GMCs find very
similar median value, different surveys find spreads in εff of different
sizes. Using the median absolute deviation to robustly estimate the
standard deviations in εff the observational data presented in Evans,
Heiderman & Vutisalchavakul (2014), Heyer et al. (2016), Lee,
Miville-Deschenes & Murray (2016), Vutisalchavakul, Evans &
Heyer (2016), Ochsendorf et al. (2017) and Utomo et al. (2018) yield
values ranging from ∼0.21 to ∼0.83 dex. In their recent review,
Krumholz, McKee & Bland-Hawthorn (2018) compiled data from
13 papers over the last decade (see their fig. 10) and discuss the
impact of the method used to estimate εff on measurements. The
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exact size and distribution of the spread in εff are therefore still a
debated topic, particularly as the origin of this diversity is not yet
understood.

As the dispersion in εff is found independently of the method
of observation, it is likely physical. Analytical models of star
formation in supersonic turbulent flows (e.g. Hennebelle & Chabrier
2011; Padoan & Nordlund 2011; Federrath & Klessen 2012) have
successfully explained the low mean εff in GMCs and provided
insight into how it can scale with global cloud properties, such
as density and virial parameter. Krumholz & McKee (2005), for
example, postulate that GMCs are turbulent gas structures which are
characterized by a lognormal distribution (determined by the Mach
number) and only regions within the cloud with density above some
threshold are able to form stars. In their model the threshold density
is determined by both the virial parameter of the cloud and its Mach
number. Lee et al. (2016) (henceforth L16; see also Ochsendorf
et al. 2017) have been critical of such models for failing to predict
a sufficiently large dispersion in εff. Furthermore, observations
indicate a decreasing εff with increasing cloud mass (MGMC).
Ochsendorf et al. (2017) argued that this is a result of massive clouds
having diffuse, non-star-forming outer envelopes. This observed
MGMC–εff relationship presents an additional constraint on any
model attempting to explain the distribution in εff. However it is
worth noting that the Mtot–εff relation could be, at least in part,
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the result of limitations in current observations to detect low-mass
clouds.

Feldmann & Gnedin (2011) developed a toy model where the
growth of stellar mass in a GMC is determined only by the mass
and free-fall time of available gas and an intrinsic efficiency per free-
fall time (εff, 0); meanwhile the change in gas mass results from a
combination of mass converted into stars, gas removed by feedback
and accretion of new gas from the surrounding environment. Using
this model they found that an ∼2 dex spread in the measured εff

can be explained by cloud evolution by adopting a constant input
εff. L16 explored the same effect but found that a fixed input εff

fails to reproduce their observed distribution of εff, with too few
clouds predicted at high (�10 per cent) and low (�0.01 per cent)
efficiencies at any given time. By assuming that all GMCs evolve in
a similar fashion, but observed at a different stage of evolution and
by allowing for a time-dependent εff, this problem was mitigated
(see their fig. 8). While each GMC observed is at a different stage of
its life, it is currently unclear if all clouds follow the same evolution,
and how (or if) the galactic environment plays a role.

A number of authors have studied the dispersion in εff using
simulations of individual GMCs as well as global disc simulations:
the former looking for an explanation in the internal properties
of clouds, while the latter allows for the impact of environment
to be studied. Semenov, Kravtsov & Gnedin (2016) studied the
impact of an explicit treatment of small-scale gas turbulence, using
simulations of entire Milky Way-like galaxies, on the parsec-scale
star formation efficiency. From the local properties of the gas, they
used the simple parametrization of Padoan, Haugboelle & Nordlund
(2012), calibrated on magneto-hydrodynamical simulations of star
formation in supersonic turbulence, to compute εff. They found
that their simulations produced values of 0.01 per cent � εff �
10 per cent. While this is an encouraging result, we will in this
work demonstrate that the mapping between the εff computed from
local properties and what is actually derived from observations is
complex and depends on the star formation history of the cloud, and
not just its instantaneous properties.

Recently, Grudić et al. (2018) carried out 17 magnetohydrody-
namic simulations of isolated GMCs of varying mass, radii and
feedback models but identical surface density. They found that the
spread in εff seen in observations is similar to the spread in εff

measured throughout a cloud’s lifetime. However, as pointed out
by the authors, their GMCs have ‘fairly artificial’ initial conditions
and lack the effects of the larger galactic environment in which
GMCs are found. As shown by observations (e.g. Rosolowsky et al.
2003; Heyer et al. 2009), GMCs have a large range of properties
that cannot be captured by 17 overlapping models. Therefore, full
galactic (disc) simulations, which produce self-consistent GMCs
with a range of properties, are needed to better model and investigate
the entire evolution of such clouds.

In this study we will go beyond previous work by using parsec
resolution simulations of entire disc galaxies and investigate the
emerging GMC star formation efficiencies and how they evolve.
This allows us to explore whether such a diversity in εff and the
observed mass–εff relation is an artefact of observational methods
or a physical result. The large number of GMCs found in our
simulations allows us to look for correlations between different
properties of a GMC and its εff, thus determining if a single
property is responsible for the observed scatter in εff. Furthermore,
taking advantage of the high temporal resolution of our simulations,
we explore how GMCs evolve over their lifetime in a number of
different properties and how this contributes to the diversity in εff.
Finally, combining our simulated data with analytical models we

determine whether a single model is able to explain our simulations
or observations.

This paper is organized as follows. In Section 2 we summarize
our simulations and methods for identifying and tracking GMCs; in
Section 3 we present the measured values of εff and how it relates
to global GMC properties; in Section 4 we explore the source of the
dispersion in εff and finally we present our conclusions in Section 5.

2 M E T H O D

2.1 Simulations

We make use of the two Milky Way-like galactic disc simulations
in Grisdale et al. (2017), henceforth G17. The simulations are
identical, apart from one being run with stellar feedback (our
fiducial simulation) and one without. The simulations account for
a dark matter halo, stellar and gaseous disc and a bulge. The initial
conditions of both simulations are identical to the AGORA disc
initial conditions described in Kim et al. (2016). They were run
using the hydro + N-body, Adaptive Mesh Refinement (AMR)
code RAMSES (Teyssier 2002). A cell is refined if it reaches a
threshold mass of 9300 M� and the minimum allowed cell size
is �x ∼ 4.6 pc.

The adopted cooling, feedback and star formation models are
outlined in G17 and Grisdale et al. (2018), hereafter G18 (see also
Agertz et al. 2013; Agertz, Romeo & Grisdale 2015). Briefly, the
feedback model accounts for the injection of momentum, energy,
mass loss and enrichment from stellar winds, supernovae (II and Ia)
and radiation pressure from young stars. Star formation occurs on
a cell-by-cell basis according to the star formation law:

ρ̇� = εff,SFfH2

ρg

tff
, (1)

where fH2 is the local mass fraction of molecular hydrogen (H2), ρg

is the gas density, tff = √
3π/32Gρg is the local free-fall time and

εff, SF is the local star formation efficiency per free-fall time of gas
in the cell. For all star-forming cells εff, SF is set to 10 per cent in the
simulation with feedback and 1 per cent in the simulation without.
As shown in G17, these choices lead to comparable galactic star
formation histories in the two simulations. All star particles form
with an initial mass of 300 M�.

G17 demonstrated that the simulation with stellar feedback
gives rise to a supersonically turbulent ISM, with a density and
velocity structure in close agreement with local spiral galaxies.
Furthermore, the resulting GMC population has masses, sizes,
velocity dispersions and scaling relations (‘Larson’s relations’)
closely matching that of the Milky Way (e.g. Heyer et al. 2009), as
shown in G18. This makes our simulations a suitable platform for
investigating the evolution and star formation properties of GMCs.

2.2 Cloud identification and analysis

We identify GMCs in two separate ways: (1) in projection (2D)
using the CLUMPFIND algorithm (Williams, de Geus & Blitz 1994)
as implemented in the clump finding identification and analysis
package CUPID1 and (2) in 3D using the on-the-fly clump finding
module PHEW (Parallel HiErarchical Watershed; Bleuler et al. 2015)
built into RAMSES. The methods yield similar distributions of

1Part of the Starlink Project (see Manset & Forshay 2014; Starlink 2015, for
details)
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GMC properties, albeit with the 3D method giving slightly larger
masses and sizes. The adopted cloud finding parameters and the
resulting GMC properties are discussed in detail in G18. We adopt
both methods when comparing simulated GMC star formation
efficiencies in Section 3.1 but restrict all other analysis in this
work to the 3D approach. This allows for higher time resolution,
hence allowing for cloud tracking as well as better statistics (due
to the number of clouds identified). Throughout this work, data
from the 2D clump finder were obtained from simulation snapshots
between t = 150 and 450 Myr, separated by �t = 25 Myr. For the
3D clump finder, data were obtained at t = 325–380 Myr, with a
temporal spacing of, on average, �t ∼ 25 000 yr (see G17 for more
details). Clouds that lie within the central kiloparsec of the galaxy
are removed from the analysis. In total, during the period of analysis
we identify 8201 (3434) GMCs using 2D clump finding in the
simulation with(out) feedback and 655 499 (212 056) clouds with
the 3D clump finder.

To accurately compare simulations to observations (e.g. L16), we
use the estimator

εff = tff

t�,y

M�,y

(MGMC + M�,y)
(2)

for each GMC, where M�, y is the mass of stars with the GMC
which has an age less than t�, y, MGMC is the (molecular) gas mass
of the GMC, tff = √

3π/32GρGMC is the mean free-fall time across
the GMC and ρGMC is MGMC divided by the GMC’s volume (i.e.
its mean density). Stellar masses are calculated by considering only
stars that overlap with gas belonging to a GMC,2 either in projection
(2D method) or in 3D.

To allow for a comparison to the stellar clusters detected by free–
free emission (e.g. L16), we adopt t�,y = 4 Myr. We emphasize
that εff should not be confused with εff, SF in equation (1). The
former is the efficiency per free-fall time averaged over the whole
GMC (∼10 − 70 pc), while the latter is the efficiency at which an
individual computational cell converts gas into stars (∼4.6 pc).

2.3 Cloud tracking

All GMC quantities are followed over time by employing the cloud
tracking algorithm described in Tasker & Tan (2009). Briefly, for
clouds found using the 3D,3 we use the position (x) and velocities
(v), of each GMC at a time t0, we adopt a linear approximation,
where the change in position vector over one tracking step is �x =
v�t , to predict where the cloud should be at the next clump finder
output, t1 = t0 + �t. Next, separations (S) between a cloud’s
predicted position at t = t1 and the positions of all clouds found at
this time are calculated. Cloud identities are matched for clouds with
the smallestS and satisfying eitherS ≤ 2RGMC,t0 orS ≤ 〈RGMC,t1 〉,
where RGMC,t0 is the radius of the cloud at t0 and 〈RGMC,t1 〉 is the
mean cloud radius at t1. In the case of multiple clouds from t0 being
linked to the same cloud at t1, the cloud at t1 inherits the identity of
the most massive cloud from t0, while the other progenitor cloud(s)
are considered to have merged and are not tracked further.

To ensure that only clouds with a complete life-cycle are
considered we exclude those formed in (or before) the first snapshot
of our analysis, or those destroyed after the last.

2Other methods for matching stars to GMCs were explored and found to
have little impact on the results presented in this work.
3We only apply the tracking routine to clouds identified with the 3D clump
finding method, as the time resolution in the 2D method is insufficient for
accurate tracking.

Furthermore, it is important to note that because we are detecting
clouds based on a fixed density threshold (100 cm−3; see G18)
it is possible for a cloud to drop below the detection limit but
remain a coherent structure and then, at later times, pass back above
the threshold. In such situations, our methods would register the
cloud as having been destroyed and a new cloud forming. A ‘new’
cloud of this type may be detected with a significant young stellar
mass (M�, y), hence giving the appearance of beginning its life with
a high εff. To mitigate this, we only considered GMCs with an
initial M�,y ≤ 1500 M�, equivalent to five (or less) star particles. An
alternative method, which would better reflect the complex cycle
of gas ending up in GMCs, would be to employ tracer particles to
track the gas of each GMC (e.g. Semenov et al. 2016), or to identify
stellar clusters and their associated molecular gas. We leave this for
a future investigation.

Finally, clouds with lifetimes shorter than a million years are also
discarded. After the tracking is complete, and the above criteria are
applied, 1879 unique GMCs evolutionary tracks remain, which we
focus on in Section 3.2.

3 R ESULTS

3.1 Distribution of star formation efficiencies

3.1.1 The GMC mass–star formation efficiency relation

We begin our analysis by calculating εff, 2D (equation 2) for the
clouds identified in projection, as outlined in Section 2.3. In the left
hand panel of Fig. 1 we show how εff, 2D varies with total cloud mass
(Mtot = MGMC + M�, y, as defined in L16) in our fiducial simulation
(i.e. including feedback) and compare these to the observational
data in L16. The simulated GMC population has a wide range of
εff, 2D values which agree well with observations (see Fig. 1).

Both simulated and observed εff, 2D decrease with increasing Mtot

(see also Ochsendorf et al. 2017), raising the question as to whether
this is due to a physical process, or a result of the cloud identification
method. In our simulation M�, y = N · M�, where M� = 300 M�4 is
the mass resolution of the star particles and N is the number of star
particles in the GMC. This defines a lower limit of the estimated
εff, 2D in our simulation,

εff,lim = tff

t�,y

1

(1 + MGMC/300 M�)
, (3)

below which our simulation cannot sample star formation. This
‘sampling limit’ is shown in Fig. 1 for tff = t�, y, illustrating how this
introduces a bias in how εff, 2D relates to Mtot. Star clusters identified
via free–free emission, as done by L16, have a similar bias; such
identification requires the presence of UV-emitting massive stars
to ionize the surrounding ISM, hence setting a lower limit to the
detectable star formation efficiency for all cloud masses, which
scales in a similar fashion as equation (3) (see also Murray 2011;
Grudić et al. 2018). This is likely a contributing factor as to why
the simulation and observations agree on the low εff, 2D end of
the distribution. Indeed, with the exception of a single GMC,5 the
observed GMCs shown in Fig. 1 (from L16) have M�,y � 100 M�,
close to the mass resolution of the simulation.

4Particles in the feedback simulation lose mass; however during the first
4 Myr of their evolution they only lose a maximum of 10 per cent of their
initial mass.
5The exception, found with εff = 1.8 × 10−4 and Mtot = 2.8 × 104 M�,
only has 16 M� in stellar mass.
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Figure 1. Left: εff as a function of total mass (Mtot) for clouds identified using the 2D clump finder. GMCs from the simulation with feedback are shown by
the red 2D histogram, while those from the simulation without are given by the blue contours (≥1, ≥5 GMCs). The sampling limit of the 2D clump finder is
given by the dashed black line (assuming tff/t�, y = 1; see text for details). Middle and right: Histograms showing the fraction of GMCs (fGMC) with a given
εff for clouds identified using the 2D and 3D clump finders, respectively. GMCs from the simulation with feedback are shown in red, while those from the
simulation without are shown in blue. The dashed lines show the median efficiency (〈εff〉med) for each data set. The values of the 〈εff〉med and the standard
deviation in log ε (σ log ε ) are given. For comparison with observations, data from table 3 of L16 are included in the left and middle panels (black points and
black histogram, respectively) and 〈εff〉med, Lee16 is shown (dashed black line).

3.1.2 Dispersion of star formation efficiencies

To quantify the spread of εff, 2D we show the normalized distribution,
the median value of εff, 2D (〈εff, 2D〉med) and the standard deviation of
log εff, 2D, σlog εff,2D ,6 for both the simulation and L16’s observations
in the middle panel of Fig. 1. The shape of the εff, 2D distribution
in our simulation is in excellent agreement with observations.
We find a median star formation efficiency per free-fall time of
∼2 per cent, also matching observations. The simulated σlog εff,2D is
not as large a value as L16’s data (0.72 dex compared to 0.83 dex)
but is within the range of values reported in the literature (see
Section 1). This is likely due to the simulated population of GMCs
being better sampled at low masses compared to observation (see
also G18), where the spread in εff, 2D is smaller, as well the observed
population having a couple of extremely inefficiently star-forming
clouds (εff ∼ 10−4). From Fig. 2, which shows how 〈εff, 2D〉med and
σlog εff,2D vary with Mtot, we find that 〈εff, 2D〉med in the simulation
is compatible with observations at almost all cloud masses: low-
mass clouds (∼a few ×104 M�) reaching almost εff ∼ 10 per cent,
whereas clouds in excess of 106 M� have εff � 1 per cent, on aver-
age. This result can be summarized as εff ∝ M

β
tot with β ∼ −0.34

and −0.36 for our simulation and L16’s observations, respectively.
Finally, a qualitative agreement is found for σlog εff,2D − Mtot, with
an increasing scatter with increasing cloud mass.

It is important to note that Fig. 2 and the values of β given above
do not account for the sampling limit (see Section 3.1.1). As shown
by the L16’s data in Fig. 1, clouds below this sampling limit do exist
and therefore need to be accounted for when calculating true value
of β. For example, if we ignore clouds in our feedback simulation
that sit on or close to the sampling limit we find β decreases, i.e.

6The standard deviation (σlog εff,2D ) is robustly estimated via the median
absolute deviation (MAD): σlog εff,2D = 1/0.6745 MAD (Müller 2000;
Romeo & Fathi 2016).

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
log(Mtot [M ])

−5

−4

−3

−2

−1

0

lo
g(

ff
m

ed
)

Feedback, 2D

no Feedback, 2D

Lee et al. (2016)

Sampling limit

Figure 2. 〈εff〉med as a function of Mtot. Shown are measurements for GMCs
identified using the 2D clumpfinder in the simulation with feedback, without
feedback and from L16, shown using red, blue and black points, respectively.
The error bars show σlog εff for each mass bin. The solid red, blue and black
lines show a χ2 least-squares fit to their corresponding data set. We note
the fits do not account of the sampling limit shown by the dashed-black line
(see text).

the relationship becomes steeper. The steeping in due to the fact
that sampling limit preferentially impacts lower mass (< 105 M�)
clouds, indeed 〈εff, 2D〉med at these masses is only ∼1σlog εff,2D from
the sampling limit. Given that β will be biased in both simulation
and observation, determining the impact of the sampling limit is of
significant importance. One way to assess how the sampling limit
biases measurements of β would be to compare data with a simple

MNRAS 486, 5482–5491 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/4/5482/5484902 by C
halm

ers U
niversity of Technology user on 24 Septem

ber 2019



5486 K. Grisdale et al.

Bayesian model. Such a comparison is beyond the scope of this
study and we leave it for future work.

We calculate the efficiency per free-fall time (εff) for GMCs
identified using the 3D clump finder and repeat the above analysis
(see right most panel of Fig. 1). We find similar median efficiencies
as before (〈εff〉med ∼ 1 per cent), but the spread in εff, which still
covers several orders of magnitude, is smaller: σlog εff = 0.37.

In summary, the measured star formation efficiency per free-
fall time in a cloud tells us little, if anything at all, about the
input efficiency on smaller scales, i.e. 〈εff〉med �= εff, SF. The former
depends not only on the turbulent density substructure (as discussed
below) and global properties of the cloud but also on its evolution
and therefore the rate of star formation, which results in the young
stellar population observed at any instance.

3.1.3 Role of feedback on εff

Figs 1 and 2 include analysis from the simulation without feedback.
We find very similar trends as before, i.e. εff,2D ∝ M

β
tot with

β ∼ −0.69 and a smaller scatter in 3D compared to 2D (i.e.
σlog εff,2D = 1.1 → σlog εff = 0.2). As with simulation with feedback
we emphasize that the value of β given above does not account
for the sampling limit and therefore may not accurately represent
the correlation between εff, 2D and Mtot. Given that the simulation
without feedback has a propensity to produce unphysical (see G18),
massive (MGMC > 107 M�), low εff, 2D(�10−5) clouds, we expect
that clouds will be below the sampling limit at all masses, but
particularly at high mass (see left panel of Fig. 1) which makes
predicting the impact of the sampling limit on β much more difficult
in this case.

The primary difference between the GMCs from the simulation
with feedback and the simulation without is the latter has a
population of long lived massive (�107 M�) and very inefficiently
star-forming (εff � 10−3) clouds. Interestingly, we find that in 3D
the simulation with feedback yields GMCs able to reach higher εff

values than clouds in the simulation without, which is a result of
stellar feedback removing gas from the clouds. From these results
we conclude that, while stellar feedback plays a role in determining
the shape of the distribution of measured εff, 2D and εff, it is not the
source of the dispersion in either.

Given the reasonable match between GMCs in the simulation
without feedback and the observations, it might seem just as
reasonable to use this simulation as the simulation with feedback
in further analysis. However, as shown in both G17 and G18, this
simulation fails to produce a realistic neutral ISM and distribution
of GMC properties, therefore we focus all further analysis on the
simulation with feedback.

Having established that star formation efficiencies in the simu-
lated GMC population closely match observations, we next aim to
quantify why this is the case.

3.1.4 Role of cloud properties on εff

From this point forward we focus our analysis to clouds identified
using the 3D clump finder. Fig. 3 shows the relation between εff of
GMCs and gas mass (MGMC), galactocentric radius (Rgal, 2D), veloc-
ity dispersion (σ v, GMC), size (RGMC), gas density (ρGMC) and virial
parameter (αvir, GMC) in the simulation with feedback (we refer the
reader to G18 for discussion on how these quantities are calculated.).
No strong correlation is found between any cloud property and
εff; clouds with similar physical parameters show a great diversity

of εff. Not surprisingly, there is a trend for dense GMCs to have
higher εff and likewise, as tff ∝ ρ−0.5, a trend for clouds with short
free-fall times to be efficient at forming stars. We find a signature
of clustering in the different εff-spaces, e.g. in the εff − MGMC

space, clouds cluster around [εff, MGMC] ∼ [−1.25, 106 M�] and
∼[−2.3, 105.4 M�], suggesting there are some preferential values
that clouds are drawn to.

Given that εff in the former of these two regions is centred on
εff ∼ 5 per cent and therefore within a factor of 2 from εff, SF,
this region could be an artefact of the star formation model
employed in the simulations. To test this we reproduce Fig. 3
using clouds identified in the simulation without feedback (Fig. 4
shows the εff-ρGMC panel). While the vast majority (∼70 per cent)
of clouds are highly inefficient at forming stars at higher density,
i.e. ρGMC � 10 M� pc−3, there is a tendency for εff → εff, SF. By
directly comparing the εff-ρGMC panel in Fig. 3 to Fig. 4 we find that
general shape of the two distributions is very similar, but that latter
is missing most of the εff > 10−1.5 clouds. We therefore conclude
that the high ρGMC–high εff region is at least partially a result of
the star formation prescription employed in our simulations. In
future work we explore in detail to what degree the star formation
prescription drives clouds into this region and if other factors play a
role.

Next we explore how cloud properties evolve and the role this
plays in establishing the wide range of observed star formation
efficiencies.

3.2 Cloud evolution

3.2.1 Individual clouds

Fig. 3 includes evolutionary tracks of eight randomly selected
GMCs, with their positions shown every 0.25 Myr. Each cloud has
a unique path through the seven parameter spaces explored. For
example, most clouds tend to become more gravitationally bound
over their lifetime (αvir, GMC decreases) while the crimson cloud
becomes less bound (αvir, GMC increases).

GMCs are not confined to a single area of parameter space but
can move from one region to another and in a variety of ways.
Comparing the black and grey clouds with either of the blue clouds
shows that some clouds explore only a small fraction of a given
parameter space while others might explore a large portion. The
one possible exception to this is a cloud’s progression in εff–
Rgal, 2D space, where we see that clouds are ‘born’ and ‘die’ at
approximately the same galactic radius (Rgal, 2D), with very little
variations over the clouds’ lifetime. This is due to the short cloud
evolution time-scale (∼10 Myr) compared to the galactic dynamical
time-scale (∼100 − 200 yr). Cloud evolution in the εff–σ v, GMC

space is similar to εff–Rgal, 2D, i.e. evolution in εff occurs while
σ v, GMC remains largely unchanged.

A visual inspection of the evolution of these eight clouds (see
additional online material) reveals that the environment of a GMC
is as important as its internal processes. For example, the red cloud is
situated in a particularly dense spiral arm which feeds the cloud with
gas, allowing MGMC to increase by almost an order of magnitude
during the first 0.5 Myr of its life. In contrast the grey cloud forms
in a much lower density environment, which is quickly disrupted
by shear from galactic rotation. Furthermore only one of the eight
clouds (dark blue) is clearly destroyed by supernovae, with the other
seven instead appearing to be destroyed by shear, demonstrating that
environment plays a role in the evolution of a cloud throughout its
life.
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Figure 3. 2D histograms showing how the distribution of εff is correlated with MGMC, Rgal, 2D, σ v, GMC, RGMC, ρGMC and αvir, GMC of the GMCs identified
with the 3D clump finder in the simulation with feedback. All histograms use the same colour scale (shown on the right), which is normalized to the total
number of GMCs included in the data. Additionally, each panel shows the evolution tracks of eight randomly selected GMCs.
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Figure 4. 2D histograms showing how the distribution of εff is correlated
with ρGMC for the GMCs identified with the 3D clump finder in the
simulation without feedback.

3.2.2 General trends in evolution

To aid in teasing out general trends in cloud evolution, we create 2D
histograms of MGMC, M�,y and εff as functions of GMC age (tage)
for all 1879 evolutionary tracks (see Section 2.3) in Fig. 5. There is a
wide range of different evolutionary paths taken by GMCs and that
most clouds only live for 3–4 Myr. Furthermore, this demonstrates
that the eight randomly selected GMCs overlaid in both Figs 3 and 5
are not the only GMCs with unique evolutionary paths.

The gas mass of a GMC when it is first detected tends to
be the maximum gas mass (MGMC, max) that the cloud reaches.
However, some GMCs reach their MGMC, max at tage �= 0 and have
therefore gained mass through cloud–cloud collisions and accretion.
Despite this, the general trend is for GMCs to lose mass as they
evolve.

Interestingly, Kawamura et al. (2009) infer from observations
that MGMC(tage = 0) �= MGMC, max and that over a period of ∼30 Myr
that MGMC increases by up to a factor of 3, even after star formation
begins (see their section 4.2 and table 4). This discrepancy could be
due to any number of factors such as: how we account for cloud–
cloud interactions, clouds dropping below our detection threshold
(see Section 2.3), differences in how we define and detect clouds or
inaccuracies in the model used to infer evolution of GMCs from
observations. We leave further exploration of this difference to
future work.

An obvious assumption would be that the lost gas mass is
converted into stars. This is at least partially true, as the young stellar
mass (M�, y) tends to increase during the first few million years of
a cloud’s life. At tage � 4 Myr, M�, y decreases with increasing age,
yet clouds continue to lose significant fractions of their gas mass.
Therefore, the lost gas mass is removed from the GMC by other
means (e.g. feedback and shear).

In general we find that εff tends to increase during the first 4–
6 Myr of a GMC’s life; after this point we see that εff tends to
either plateau or decrease. This corresponds to the age at which star
particles will experience their first supernova event and therefore is
a strong indicator of feedback limiting εff.
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Figure 5. Distribution of MGMC, M�,y, and εff as a function of GMC age (tage). We normalize the y-axes by the maximum recorded gas mass of GMC during
its lifetime (MGMC, max). The three red lines show the predicted evolution given by the L16 model (see Section 4.1) for εff, L16 ∝ t δage where δ = 0, 1 or 2, while
the blue lines show evolution of clouds with different lifetimes (10, 15 and 20 Myr) and δ = 2. Also shown are the evolution tracks for the same eight GMCs
shown in Fig. 3.

To summarize, at any given tage it is possible for clouds to have
a large variety in εff, MGMC and M�, y and the exact value of given
property at a given age is unique to each cloud.

4 D ISCUSSION

4.1 Cloud conformity or diversity?

As shown by the observational data present in L16 and included in
Fig. 1 and discussed in Section 1, there is a significant dispersion
in the values of εff for GMCs in the Milky Way. Feldmann &
Gnedin (2011) put forward a model that is able to produce a wide
spread in measured εff values (1 � εff � 100 per cent, see their
fig. 2) by adopting a fixed universal efficiency per free-fall time εff, 0

(analogous to εff, SF used in our simulations) and allowing the GMC
to evolve with time. L16 combined Feldmann & Gnedin (2011)’s
model with the star formation prescription given in Krumholz &
McKee (2005) to allow for a time-dependent εff, 0 which results in
a pair of coupled ordinary differential equations:

dMGMC

dt
= −εff,0

(
tage

tff, fixed

)δ
MGMC(tage)

tff, fixed
− αM�,tot(tage) + γ, (4)

and

dM�,tot

dt
= εff,0

(
tage

tff, fixed

)δ
MGMC(tage)

tff, fixed
, (5)

where γ is the rate of gas accretion on to the GMC and α is a
parametrization of the disruption of GMCs due to feedback. Having
solved the above equations the young stellar mass

M�,y(tage) = M�,tot(tage) − M�,tot(tage − t�,y), (6)

and the model equivalent of εff

εff, L16(tage) = tff, fixed

t�,y

M�,y(tage)

MGMC(tage) + M�,tot(tage)
(7)

can be calculated at each and every tage. In this model, the evolution
of MGMC/MGMC,max, M�,y/MGMC,max and εff, L16 is the same for
all clouds, for a given choice of δ, εff, 0 and fixed free-fall time
(tff, fixed). In essence, this model requires conformity in the evolution

of all GMCs and the dispersion in εff is produced by observing a
population of GMCs, with each cloud at a different stage in its
evolution.

We adopt the values of α, γ and tff, fixed given in L16 (3.5, 0 and
6.7, respectively) and reproduce their model for δ = 0, 1 and 2. L16
employed εff, 0 = 0.014 to ensure that all models produce clouds
with lifetimes of ∼20 Myr and argued that εff,0 ∝ t δ

age with δ =
2 was required to match observations. We adopt several different
values for εff, 0. First, we use 0.27, 0.52 and 0.47 for the three
values of δ. respectively, as these values ensure that all models
convert 10 per cent of their gas mass to stars by the time the cloud
is destroyed (MGMC/MGMC, max ≤ 0.01). This ensures that all models
have the same initial and final conditions (i.e. enforces conformity
between models). Thus allowing us to determine if the diversity
in our simulated GMCs can be explained by conformity to a single
evolutionary path. The second set of values, 0.091, 0.019 and 0.006,
produces cloud lifetimes of 10, 15 and 20 Myr, respectively, for
δ = 2 (i.e. assuming that GMCs will have different evolutionary
paths). This set of models will allow for a determination on whether
simply allowing for different GMC lifetimes is enough to explain
the diversity in clouds efficiencies.

Testing this model against the evolutionary tracks of all GMCs
in our simulation, i.e. the red and blue lines in Fig. 5, shows that
due to the large spread in our data, the model (independent of δ and
εff, 0) overlaps with our simulated GMCs in each parameter space.
However, to reproduce the diversity seen in the simulated GMCs
would require a significant number of models, each with a different
values for δ and εff, 0: therefore a model which produces diversity
is required.

In their recent work, Grudić et al. (2018) carried out isolated GMC
simulations for three different mass clouds (2 × 104, 5, 6 M�). They
found that by observing a population of clouds, all with the same
mass, at random points during their lifetime they could reasonably
reproduce L16’s observed distribution in εff. Furthermore, this
was found independently of cloud mass (see their fig. 4). Their
simulations and conclusion support the models presented in L16:
i.e. all clouds follow (nearly) identical evolutions and the spread
in εff is a result of observing a population of different aged
clouds.
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Fig. 6 shows how εff evolves for clouds with gas mass at ‘birth’7

(Mbirth). The clouds with the largest Mbirth tend to reach higher εff

and have a (marginally) higher 〈εff〉med. The most noteworthy result
from Fig. 6 is that birth mass plays only a small role in determining
the initial value of εff as shown by εff (tage ≤ 0.8 Myr) having at least
a 2 dex spread in each mass bin. Furthermore, while the dispersion
in εff decreases as clouds age, it never reaches zero. This implies
that knowing the birth mass of a GMC is not enough to predict
the efficiency at which it converts gas into stars, and thus its star
formation history. Carrying out a similar experiment using Rbirth

(not shown) yields nearly identical results: clouds are born with a
range of different εff independent of their initial size.

Unlike the model presented in L16 and the isolated GMCs
simulations of Grudić et al. (2018), the GMCs in this work are
simulated in a (realistic8) galactic environment which can heavily
influence their evolution. In Section 3.2 we found that different
GMCs were affected by their environment in different ways, i.e.
some experience mergers and others are sheared apart, etc. Indeed
recent observations of NGC 2276 have found that galactic-scale
tidal forces and ram pressure have lead to large variations in
molecular content of the galaxy, resulting in some regions with
variations in the depletion time-scale (the ratio of the molecular
gas mass to the star formation rate) as large as several orders of
magnitude when measured on scales of ∼450 pc (Tomı̆cić et al.
2018). It is therefore likely that measurements of εff on cloud scales
in such a galaxy also find large variations. We therefore argue that
the initial, intrinsic properties of GMCs (Mbirth and Rbirth) are not
sufficient to set the initial value and evolution of εff: other factors
such as the galactic environment (e.g. shear) must be taken into
account. It is the combination of a wide range of possible cloud
properties and the environment in which GMCs live that naturally
give rise to the observed and simulated spread in εff.

Additionally, we note that Figs 5 and 6 show that in our simulation
εff does not follow a smooth, systematic evolution, instead it is
able to both increase and decrease as clouds age. This is a direct
contradiction of the prediction made by the L16 model, which
predicts a continually increase in εff, L16 with tage. The evolution
seen in εff for our simulated clouds, as discussed above, results from
combination of time-dependent factors (e.g. mergers, gas accretion,
feedback, shear and galactic tides) that are difficult to model as
constant parameter in any given model and thus further evidence
that the environment of clouds need to be accounted for when
exploring their evolution.

Finally, we note that the analytical model we have adopted from
L16 is not the only model. For example, the model present in
Vázquez-Semadeni et al. (2018) predicts different star formation
histories (and hence instantaneous εff) for clouds of different mass.
Their results and conclusions support this work and our conclusion
that it is the evolution history of a cloud that needs to be known to
be able to determine its εff at any given age. Therefore any model
(numerical or analytical) must be able to capture the full range of
physical processes that occur within a GMC and its interactions
with its environment.

4.2 Limitations of the simulations

The instantaneous H2 fraction calculated at run-time to determine
the star formation rate of a computational-cell (see Section 2.1) is

7Defined as the first time a cloud is detected by the clump finder.
8As shown by the analysis of the simulation in G17 and G18.

not stored or advected through the simulation. As a result we have
to determine the molecular content within the simulation in post-
processing. For simplicity we chose to adapt a density threshold
of ρmol = 100 cm−3, with all gas above this value considered to be
molecular. This limits the maximum value of tff, which in turn acts
as a limiting factor in determining εff from the simulations. If larger
values of tff could be reached, smaller values of εff may be detected.
A simple solution would be to rerun the simulations but including a
treatment of the chemistry and thus allowing the molecular fraction
of the gas to be self-consistently determined by the simulation,
which could then be used to identify GMCs. However given that
the current simulation is able to not only reproduce the median value
of εff but also the size and distribution of the spread in values (and
does so using a universal efficiency on the scale of computational
cells, i.e. εff, SF) we leave re-simulation for future work.

Isolated GMC simulations are able to completely resolve the
internal structure of the GMC but at the cost of the galactic
environment (e.g. see Padoan et al. 2016; Grudić et al. 2018). The
simulations used throughout this work have such an environment
but they are limited in spatial resolution (i.e. �x ∼ 4.6 pc; see
Section 2.1). This resolution results in GMCs being made up of
several computational cells and thus stars form and inject feedback
into specific regions with the clouds. This allows one generation
of stars to alter the gas structure within a GMC and even remove
gas, thus determining where the next generation of stars form and
how a GMC evolves. Despite the limited resolution, our simulation
is able to accurately reproduce the galaxy wide gas probability
distribution function (PDF), the range and distribution of cloud
properties, including εff (see G17 and G18). We therefore argue
that accurately fully resolving the internal structure of GMCs is not
as important as accurately reproducing the large (≥100 pc) scale
galactic environment.

5 C O N C L U S I O N S

In this work we explore the efficiency of GMCs at forming stars
in hydrodynamical simulations of Milky Way-like galaxies. The
primary goal of this work is to explain the observed spread in the
star formation efficiency per free-fall time (εff). To this end we
calculate εff for each GMC found within two simulations: one with
stellar feedback and one without. Using a tracking algorithm we
follow the evolution of εff (and other properties) of each cloud
throughout its lifetime. Our key results are as follows:

(i) Galactic disc simulations where star formation is determined
by a Schmidt star formation law (applied to molecular gas) are
able to produce the observed spread in the measured values of εff

for GMCs. A large spread in values is found independently of the
presence of stellar feedback; however the inclusion of feedback
in the simulation prevents highly inefficient (εff < 10−4) massive
(Mtot > 107 M�) clouds from forming. Stellar feedback is not the
main source of the dispersion in εff.

(ii) No single GMC property determines the εff of a cloud.
Comparing seven key properties (gas mass, free-fall time, galactic
radius, velocity dispersion, radius, density and virial parameter) of
GMCs with εff shows no significant correlation. Instead we find that
a cloud with a given value in any of the above properties is able to
have a wide range of values in εff.

(iii) Each GMC evolves in a unique way, determined by both its
initial properties and its environment. It is therefore not possible
to describe the evolution of all clouds by a single analytical model
neglecting environmental effects. Furthermore, the evolution of a
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Figure 6. 2D histogram of εff as a function of GMC age (tage) for GMCs with different ‘birth’ masses (Mbirth). The three red lines show the predicted evolution
of GMC as given by the L16 model (see Section 4.1) for εff, L16 ∝ t δage where δ = 0, 1 or 2, while the blue lines show evolution of clouds with different
lifetimes (tlt = 10, 15 and 20 Myr) and δ = 2, as in Fig. 5. The purple solid and dashed lines in each pane show 〈εff〉med and 〈εff〉med ± σlog εff for each mass
range (ignoring GMC age).

particular property for a given cloud is not smooth or uniform: a
cloud is able to explore a wide range of values during its lifetime.
This leads to a natural spread in properties and in particular the
value of εff.

(iv) The evolution of εff throughout a GMC’s lifetime does not
follow a systematic increase, contrary to predictions of simple
analytical models. Instead the measured value of εff for a cloud
is driven by a number of time-dependent factors, including stellar
feedback and galactic environment, which can cause both increases
and decreases as the clouds ages. This allows for a variety of
different star formation histories.

In future work we will explore the processes that drive cloud
evolution and how this leads to diversity in cloud properties.

AC K N OW L E D G E M E N T S

We thank the anonymous referee for their valuable and insightful
comments. KG acknowledges support from the Science and Tech-
nology Facilities Council (grant ST/N002717/1), as part of the UK
E-ELT Programme at the University of Oxford. KG also thanks and
acknowledges support from New College, University of Oxford via
the Balzan Fellowship. OA acknowledges support from the Swedish
Research Council (grant 2014- 5791). OA and FR acknowledge sup-
port from the Knut and Alice Wallenberg Foundation. The research
of JD and AS is supported by Adrian Beecroft and the STFC.
This work used the DiRAC Complexity system, operated by the
University of Leicester IT Services, which forms part of the STFC
DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded
by BIS National E-Infrastructure capital grant ST/K000373/1 and
STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of
the National E-Infrastructure.

RE F EREN C ES

Agertz O., Kravtsov A. V., Leitner S. N., Gnedin N. Y., 2013, ApJ, 770, 25
Agertz O., Romeo A. B., Grisdale K., 2015, MNRAS, 449, 2156

Bigiel F., Leroy A., Walter F., Brinks E., de Blok W. J. G., Madore B.,
Thornley M. D., 2008, AJ, 136, 2846

Bleuler A., Teyssier R., Carassou S., Martizzi D., 2015, Comput. Astrophys.
Cosmol., 2, 16

Evans N. J., II, Heiderman A., Vutisalchavakul N., 2014, ApJ, 782, 13
Federrath C., Klessen R. S., 2012, ApJ, 761, 156
Feldmann R., Gnedin N. Y., 2011, ApJ, 727, L12
Grisdale K., Agertz O., Romeo A. B., Renaud F., Read J. I., 2017, MNRAS,

466, 1093 (G17)
Grisdale K., Agertz O., Renaud F., Romeo A., 2018, MNRAS, 479, 3167

(G18)
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