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The presence of a delay between sensing and reacting to a signal can determine the long-term
behavior of autonomous agents whose motion is intrinsically noisy. In a previous work [M. Mijalkov,
A. McDaniel, J. Wehr, and G. Volpe, Phys. Rev. X 6, 011008 (2016)], we have shown that sensorial
delay can alter the drift and the position probability distribution of an autonomous agent whose
speed depends on the illumination intensity it measures. In this work, we consider an agent whose
speed and rotational diffusion both depend on the illumination intensity and are subject to two
independent sensorial delays. Using theory, simulations and experiments with a phototactic robot,
we study the dependence of the drift, and of the probability distribution of the robot’s position on
the sensorial delays. In particular, the radial drift may have positive as well as negative sign, and
the position probability density peaks in different regions, depending on the choice of the model’s
parameters. This not only generalizes previous work, but also explores new phenomena, resulting
from the interaction between the two delay variables.

PACS numbers: 05.60.-k, 05.40.Jc
Keywords: autonomous agents, taxis, stochastic differential equations, sensorial delay

I. INTRODUCTION

Autonomous robots are increasingly being employed
both in fundamental research and in technological set-
tings [1]. One of the critical tasks in their development is
to make them capable of complex autonomous behaviors
in response to environmental cues, while keeping their
hardware, sensorial inputs and software as simple as pos-
sible [2, 3]. In fact, complex behaviors emerging from
agents obeying simple rules have the advantage of being
extremely robust and reliable [1, 4, 5]. Often, a source
of inspiration are the behaviors of simple organisms like
foraging insects [6] and chemotactic bacteria [7].
Usually, the robots are designed to react to real-time

sensorial inputs from their surroundings and make de-
cisions based on this information. In Nature, however,
there are several examples of microscopic organisms and
animals that compare current information about their
surroundings with previous information, and adjust their
behavior by making extrapolations. For example, chemo-
tactic bacteria have been shown to adjust their motion
by comparing the chemical concentration in their sur-
roundings at different times [8, 9], and insects, fishes and
humans extrapolate their positions forward in time when
navigating in groups [10–12]. These behaviors result in
the introduction of a sensorial delay between the sensorial
input perception and the ensuing behavioral response.
We have recently explored the role played by this senso-
rial delay both theoretically and experimentally [13, 14].
Using a phototactic robot whose speed depended on the
measured light intensity, we demonstrated that introduc-
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ing a sensorial delay could make the robot either stay
near or avoid the light source; furthermore, when multi-
ple light-emitting robots interacted, we showed that this
effect promoted either aggregation or segregation. The
presence of negative sensorial delay, sometimes called
“anticipation”, has also been shown to greatly influence
the dynamics of a system of interacting agents and the
patterns that are formed [15], as well as to affect the clus-
tering tendencies of agents in a two-dimensional variant
of the Vicsek model [16].

Here, using theory, simulations, and experiments with
phototactic robots, we generalize the effect we described
in Ref. [13] to the case of an agent whose speed and rota-
tional diffusion depend on the illumination intensity and
are subject to two independent sensorial delays. Using
a phototactic robot moving within an arena illuminated
with a radial light intensity pattern, we investigate how
the robot’s behavior is affected by a delay when only
its speed varies as a function of the intensity, only its
rotational diffusion varies, or both quantities vary simul-
taneously. We show that both its drift and its position
probability distribution are influenced by the presence of
these sensorial delays. In particular, the radial drift may
have positive as well as negative sign, and the position
probability distribution may peak in different regions de-
pending on the delay. The presence of multiple sensorial
delays permits us to explore the role of the interaction
between them.

II. MODEL

The robot we employ can be modelled as an au-
tonomous agent performing active Brownian motion [17]:
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FIG. 1. Model and experimental setup. (a) The robot is at
position (xt, yt) at time t and moves at a speed v with orienta-
tion φt as indicated by the arrow. This orientation is subject
to a noise so that the robot’s characteristic reorentiation time
is τ . (b) Picture of the robot (small white circle) in the arena
illuminated with a light field generated by an infrared lamp.
The robot is free to move in the region between the round
object placed at the center of the arena and the black line on
the outer edge of the arena. (Note that the outer edge of the
arena (black line) is circular and that the round white object
is placed at the center of the arena; they do not appear so
because the picture is taken at an angle.) Depending on the
scenario, the robot will either modify its speed (Fig. 2), its
rotational diffusion (Fig. 3), or both simultaneously (Figs. 4
and 5) as functions of the light intensity it measures.

it moves in the xy-plane while its orientation is subject
to noise (Fig. 1a). Its behavior can therefore be modeled
by the following stochastic differential equations (SDEs)
[18]:
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(1)

where (xt, yt) is the robot’s position at time t, φt is its
orientation, v is its speed, τ is its characteristic reorien-
tation time (i.e., the time during which its orientation
varies on average by one radian), and ηt is a normally
distributed white noise term with zero mean and unit
intensity.
Let us assume that the arena where the robot moves is

illuminated by a light intensity I(x, y). If the robot can
measure I and react to this measurement by adjusting its
speed v and rotational diffusion R, the SDEs describing
its motion become:
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where It = I(xt, yt). As in our previous work [13], we will
assume that the robot speed is bounded by a minimum
speed vmin and a maximum speed vmax, and decreases
with higher light intensity, i.e.:

v(I) = vmin + (vmax − vmin)e
−I . (3)

Furthermore, we now vary also the normalized rotational
diffusion coefficient, so that it is bounded between mini-
mum and maximum values Rmin and Rmax, and increases
with higher light intensities, i.e.:

R(I) = Rmax − (Rmax −Rmin)e
−I . (4)

We finally introduce the sensorial delays so that
SDEs (2) become the stochastic differential delay equa-
tions (SDDEs):
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=
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(5)

where δv is the sensorial delay of the adjustment of the
speed and δR is the sensorial delay of the adjustment
of the rotational diffusion coefficient. A positive delay
value corresponds to a delay in the time it takes to react
to sensorial input, while a negative value corresponds to
making a prediction of a future measured intensity [13–
15].

III. THEORY

We theoretically study SDDEs (5) using multiscale
analysis and derive expressions for the drift and steady-
state position probability distribution of the robot. The
multiscale analysis is a homogenization technique that is
performed by taking to zero the characteristic time scales
of the processes involved in determining the dynamics of
the system, while keeping their ratios constant [19]. The
detailed derivations are provided in Appendix A, while
here we provide only an outline of the derivation and the
key theoretical results.

A. Outline of the derivation

We start by rewriting SDDEs (5) in a more convenient
form for the theoretical analysis, introducing, in particu-
lar, a parameter ǫ that will be taken to zero in the mul-
tiscale analysis [19]. We note that the speed of the robot
is a function of its position, i.e., v(x, y) = v(I(x, y)), and
that the robot changes the direction of its velocity accord-
ing to a random process, at a rate which is also a function
of the position, i.e., σ(x, y) =

√

2R(I(x, y))/τ . If the
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robot reacts to the environment with a delay δv = cǫ2,
the speed at time t is proportional to v (xt−cǫ2 , yt−cǫ2)
(the value of the function v evaluated at the position of
the particle at an earlier moment of time, if c > 0, or at
a later moment, if c < 0). Likewise, the rate of the robot
random rotation is proportional to σ (xt−kǫ2 , yt−kǫ2),
with a delay δR = kǫ2. The parameters c and k are
constants, positive or negative, and, in general, different
from one another. Thus, we can rewrite SDDEs (5) as a
set of SDDEs with a small parameter ǫ:
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ǫ
v (xt−cǫ2 , yt−cǫ2) cosφt dt

dyt =
1

ǫ
v (xt−cǫ2 , yt−cǫ2) sinφt dt

dφt =
1

ǫ
σ (xt−kǫ2 , yt−kǫ2) dWt

(6)

where Wt, t ≥ 0, denotes a Wiener process.1 Since the
factor of 1

ǫ
in the equation for φt makes the changes of

direction occur very rapidly for ǫ small, we scale the speed
v in the first two equations in the same way to obtain a
nontrivial limiting dynamics for the position of the robot.
We remark that the SDDEs (6) becomes SDDEs (5) for
ǫ = 1.

We study the limit of SDDEs (6) for ǫ → 0, which
is equivalent to accelerating the microscopic dynamics
(speed, rotation, delays) of the system while keeping its
macroscopic properties (drift, probability distribution)
fixed. We first linearize x and y as functions of time, and
then v and σ as functions of x and y, to approximate
the SDDEs (6) by a system of SDEs without delays. We
then consider the corresponding backward Kolmogorov
equation for the probability density ρ, write the function
ρ as a formal series in powers of ǫ, i.e.,

ρ = ρ0 + ǫρ1 + ǫ2ρ2 + . . . , (7)

and use the multiscale expansion method to derive the
backward Kolgomorov equation for the limiting density
ρ0:

∂ρ0
∂t

=− 1

2

δv
τ

2R

σ2
v

{

vx
∂ρ0
∂x
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∂ρ0
∂y

}

+
δR
τ

2R

σ2

v2

σ

{
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∂ρ0
∂x

+ σy

∂ρ0
∂y

}

+ v

{

∂

∂x

[

v

σ2

∂

∂x
ρ0

]

+
∂

∂y

[

v

σ2

∂

∂y
ρ0

]}

. (8)

From this equation, we derive the limiting SDEs satisfied

1 The stochastic differential in the third equation can also be writ-
ten as dWt = ηt dt, where ηt, t ≥ 0, is a unit white noise process.

by the processes xt and yt:
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τ
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2
v

σ
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t

(9)
where W (1) and W (2) are independent Wiener processes.
From SDEs (9), we obtain the associated forward Kol-

mogorov (or Fokker-Planck) equation

∂tρ0 =
1

2

δv
τ

2R

σ2
∇·(ρ0v∇v)−δR

τ

2R

σ2
∇·

(

ρ0
v2

σ
∇σ

)

+∇·
( v

σ2
∇ (vρ0)

)

,

(10)
from which the stationary probability density ρ0 can be
found by solving for ∂tρ0 = 0.

B. Key results in circular geometry

Given the circular geometry of our experiment (see
Section IV), we can assume v and σ in SDEs (9) and
in Eq. (10) to be rotationally invariant. We can there-
fore study these equations in polar coordinates focusing

specifically on the radial coordinate r =
√

x2 + y2.2 We
therefore obtain the following homogenized SDE for the
radial coordinate:

drt = d(r) dt + s(r) dW̃t, (11)

where W̃t is a Wiener process, the radial drift coefficient
is

d(r) = −1

2

δv
τ

2R

σ2
vvr +

δR
τ

2R

σ2

v2σr

σ
+ v

( v

σ2

)

r
+

1

r

v2

σ2

(12)

and the noise coefficient is

s(r) =
√
2
v(r)

σ(r)
. (13)

The steady-state radial probability distribution is

ρ0(r) =
B

s2(r)
exp

{
∫

2b(r)

s2(r)
dr

}

, (14)

where B has to be adjusted to make the integral of ρ
equal 1.

2 The results for the azimuthal coordinate are trivial: because of
rotation symmetry, the azimuthal drift must be null and the
azimuthal position probability distribution must be uniform.



4

IV. ROBOT EXPERIMENT

The experimental setup is shown in Fig. 1b. We use
an Elisa-3 [20] robot, which is an autonomous robot with
a circular shape that measure 50 mm in diameter and
30 mm in height. The robot moves at a maximum speed
of 60 cm s−1 thanks to two wheels on either side powered
by direct-current (DC) motors. It is equipped with eight
infrared (IR) sensors that measure ambient light placed
along the perimeter of the robot at equal intervals of 45
degrees to create a detection field of 360 degrees. Fur-
thermore, the robot features proximity sensors that per-
mit it to detect the presence of objects at a distance of
6 cm and four ground sensors that permit it to detect the
presence of a black border on the ground.

We have programmed the robot using Aseba studio
[21]. The robot can perform Brownian motion through a
cycle of two phases: a “forward phase” when the robot
moves forward at constant speed along a straight line for
0.1 s; and a “rotation phase” when the robot changes
its direction by a random angle for 0.1 s. This cycle is
repeated to emulate a Brownian motion.

We delimit a region where the robot can move freely by
placing a circular object at the center of the arena and a
black tape along its outer edge, as shown in Fig. 1b. The
robot uses the proximity sensors to detect the circular
object and the ground sensors to detect the black tape,
and it avoids them by changing its direction away from
them, i.e. until it does not detect their presence any
more.

We generate a radially decaying light intensity field by
placing a 150-W IR lamp above the arena where the robot
moves. The robot measures the local value of this light
intensity using the IR sensors and adapts its behavior
accordingly. Following the approach in our previous work
[13], we estimate the values of It−δv and It−δR by an
expansion to the first order, i.e., I(t−δv) = I(t)−δvI

′(t)
and I(t − δR) = I(t) − δRI

′(t), respectively. Practically,
the robot stores the value of the intensity in the previous
and current motion cycles, and uses them to approximate
the intensity derivative.

During the experiments, the robot’s positions are
recorded with a videocamera at 32 fps and tracked us-
ing standard digital video microscopy algorithms. Each
experiment runs for 60 minutes.

From the acquired trajectories, we estimate the radial
probability distribution of the robot’s position and its ra-
dial drift. The radial probability distribution is the prob-
ability of finding a robot at a certain radial distance from
the center of the arena and is directly measured from the
histogram of the robot’s positions (note that to avoid any
dependence of the radial probability distribution on the
start position of the robot, we have only used data data
acquired after the robot was allowed to freely move in
the arena for 10 minutes). The radial drift shows how
the robot moves on average relative to the center of the
arena depending on its location and is measured using

the following equation [13]:

d(r) =
1

∆t
〈rn+1 − rn|rn ∼= r〉, (15)

where rn is the series of robot’s positions and ∆t is the
time step (note that the radial drift is independent of the
start position of the robot). If the radial drift is positive,
the robot on average moves away from the center of the
arena, whereas a negative drift means that it moves on
average towards the center.

V. RESULTS

We consider three scenarios. First, we vary only the
speed as a function of light intensity (as in our previous
work [13]). Second, we vary the rotational diffusion co-
efficient. Third, we vary both quantities simultaneously
so that the presence of multiple sensorial delays permits
us to explore how they interact. In all cases, we present
the theoretical, simulation and experimental results. The
simulations are realized by a finite-difference algorithm
[17] that implements SDDEs (5) using the experimental
parameters.3

A. Speed dependent on the light intensity

We set the speed to vary between the vmax =
25.7 mms−1 and vmin = 4.3 mms−1 according to Eq. (3)
(Fig. 2a), while the rotational diffusion is kept constant
at DR = τ−1 = 0.29 rad2s−1 (Fig. 2b). This case is
equivalent to that we had previously studied [13].
The qualitative behavior of the robot can be seen from

its trajectories in the presence of different sensorial de-
lays. In the absence of any delay (Fig. 2d), the robot
has a slight preference to spend time in the regions with
low speed (corresponding to high light intensity). This
tendency is accentuated when a positive sensorial delay
is introduced (δv = +10τ , Fig. 2c), while it can be re-
versed by introducing a sufficiently large negative delay
(δv = −10τ , Fig. 2e).
These qualitative observations can be made more pre-

cise by measuring the radial probability distribution
ρ0(r) (Figs. 2f-h) and the radial drift d(r) (Figs. 2i-k)
of the robot in each case. The theoretical results (solid
lines) agree well with the simulations (dashed lines) and
experiments (symbols). As we qualitatively discussed
above (Figs. 2c-e), the sensorial delay δv influences the
robot probability distribution ρ0(r) so that ρ0(r) peaks
in the regions with higher light intensity and lower speed

3 As in the experiments, we introduce the sensorial delays by esti-
mating the values of It−δv and It−δR

by an expansion to the first
order, i.e., I(t−δv) = I(t)−δvI

′(t) and I(t−δR) = I(t)−δRI′(t),
respectively.
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FIG. 2. Robot behavior with sensorial delay in the speed. (a) Speed v(r) and (b) rotational diffusion coefficient DR(r) as a
function of radial position. (c-e) 60-minute-long trajectories of the robot within the arena for positive, zero and negative delays;
the small white circles indicates the robot’s start position. (f-h) Radial probability distributions ρ0(r)/r and (i-k) radial drift
d(r) of the robot for positive, zero and negative delays; the symbols represent experimental data with standard deviation, the
dashed lines represent simulations, and the solid lines represent the theory (Eqs. (12) and (14)).

for δv = +10τ (Fig. 2f), and in the regions with lower
light intensity and higher speed for δv = −10τ (Fig. 2h).
The radial drift d(r) is also influenced by δv so that d(r)
is mostly negative when δv = +10τ pulling the robot to-
wards the center of the arena (Fig. 2i), and it is positive
when δv = −10τ pushing the robot towards the edge of
the arena (Fig. 2k).4

We observe that there are significant deviations be-
tween the theoretical ρ0(r) and d(r) and those obtained
from experiments and simulations, especially towards the
edges of the arena. These deviations emerge because the
experiments and simulations implement SDDEs (5), cor-
responding to ǫ = 1 in SDDEs (6), while the theory is

4 Note that in this case (i.e. constant rotational diffusion) the
critical value where the sign change of d(r) occurs is δv = −

2

σ
,

as we have shown in Ref. [13].

strictly valid for ǫ → 0. This is discussed in more detail
in Section VD.

B. Rotational diffusion dependent on the light
intensity

In this second case, we set the rotational diffusion
to vary between DR,max = 1.4 rad2s−1 and DR,min =
0.014 rad2s−1 (Fig. 3b) according to Eq. (4), while keep-
ing v = 17.1 mms−1 (Fig. 3a).
Figs. 3c-e show the trajectories of the robot for various

sensorial delays. For positive delay (δR = +10τ , Fig. 3c),
the robot spends most of its time close to the center of the
arena, where the light intensity and the rotational diffu-
sion take larger values. For zero delay (δR = 0, Fig. 3d),
in full agreement with Eq. (A36), the space explored by
the robot does not seem to be influenced by the light in-
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FIG. 3. Robot behavior with sensorial delay in the rotational diffusion. (a) Speed v(r) and (b) rotational diffusion coefficient
DR(r) as a function of radial position. (c-e) 60-minute-long trajectories of the robot within the arena for positive, zero and
negative delays; the small white circles indicates the robot’s start position. (f-h) Radial probability distributions ρ0(r)/r and
(i-k) radial drift d(r) of the robot for positive, zero and negative delays; the symbols represent experimental data with standard
deviation, the dashed lines represent simulations, and the solid lines represent the theory (Eqs. (12) and (14)).

tensity and rotational diffusion values. For negative delay
(δR = −10τ , Fig. 3e), the robot spends most of its time
in the region close to the edge of the arena, where the
light intensity and the rotational diffusion take smaller
values.

The radial probability distribution ρ0(r) (Figs. 3f-h)
and the radial drift d(r) (Figs. 3i-k) confirm these qual-
itative observations. In particular, we observe that the
theoretical ρ0(r) when δR = 0 corresponds to a uniform
distribution (solid line in Fig. 3g), and the correspond-
ing d(r) is almost zero (solid line in Fig. 3j). For δR > 0,
ρ0(r) is peaked towards the high intensity and rotational
diffusion regions near the center of the arena (Fig. 3f),
and d(r) assumes mostly negative values, pulling the
robot towards the arena center (Fig. 3i). For δR > 0,
the reverse is true: ρ0(r) is peaked towards the low in-
tensity and rotational diffusion regions near the edge of
the arena (Fig. 3f), and d(r) assumes positive values,

pushing the robot towards the arena edge (Fig. 3i).5

Also in this case there are some discrepancies between
the theory (gray lines) and the simulations (dashed lines)
and experiments (symbols), which can be explained by
the fact that simulations and experiments are not realized
at the limit for ǫ → 0 (see Section VD).

C. Both speed and rotational diffusion dependent
on the light intensity

It is also interesting to consider the hybrid cases when
both the speed and the rotational diffusion depend on

5 Note that in this case (i.e. constant speed) the critical value
where the sign change of d(r) occurs is δR = 0.
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FIG. 4. Robot behavior with equal sensorial delays in both the speed and the rotational diffusion. (a) Speed v(r) and (b)
rotational diffusion coefficient DR(r) as a function of radial position. (c-e) 60-minute-long trajectories of the robot within the
arena for positive, zero and negative delays; the small white circles indicates the robot’s start position. (f-h) Radial probability
distributions ρ0(r)/r and (i-k) radial drift d(r) of the robot for positive, zero and negative delays; the symbols represent
experimental data with standard deviation, the dashed lines represent simulations, and the solid lines represent the theory
(Eqs. (12) and (14)).

the light intensity. In Fig. 4, we consider the case where
both sensorial delays have the same sign, and reinforce
each other. Figs. 4a and 4b show v(r) and DR(r), re-
spectively. Some samples of the resulting trajectories are
shown in Figs. 4c-e. The two sensorial delays reinforce
each other and produce a more pronounced effect on the
way the particle explores the space: when δv = +10τ
and δR = +10τ , the robot is attracted towards the high-
light-intensity regions at the center of the arena where the
speed is low and the rotational diffusion is high (Fig. 4c);
when δv = −10τ and δR = −10τ , the robot moves to-
wards the low-light-intensity regions near the edges of the
arena where the speed is high and the rotational diffusion
is low (Fig. 4e). This enhancement of the robot motion
is further confirmed by the changes in the corresponding
ρ0(r) (Figs. 4f-h) and d(r) (Figs. 4i-k).

In Fig. 5, we consider the case when the two senso-
rial delays have opposite signs, and compete with each
other. Figs. 5a and 5b show v(r) and DR(r), respec-
tively. Some sample trajectories are shown in Figs. 5c
and 5d: when δv = +10τ and δR = −10τ , the robot
is attracted towards the regions with low-light-intensity
regions where the speed is high and the rotational diffu-
sion is low (Fig. 5c); when δv = −10τ and δR = +10τ ,
the robot is attracted towards the high-light-intensity re-
gions where the speed is low and the rotational diffusion
is high (Fig. 5d). These results are supported by ρ0(r)
(Figs. 5e-f) and D(r) (Fig. 5g-h).
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FIG. 5. Robot behavior with opposite sensorial delays in the speed and the rotational diffusion. (a) Speed v(r) and (b)
rotational diffusion coefficient DR(r) as a function of radial position. (c-d) 60-minute-long trajectories of the robot within the
arena; the small white circles indicates the robot’s start position. (e-f) Radial probability distributions ρ0(r)/r and (g-h) radial
drift d(r) of the robot; the symbols represent experimental data with standard deviation, the dashed lines represent simulations,
and the solid lines represent the theory (Eqs. (12) and (14)).

D. Differences between theory and
simulations/experiments

In all data presented in Figs. 2, 3, 4, and 5, we ob-
tain a very good agreement between the experiments and
simulations, while there are certain discrepancies when
it comes to the theory, particularly for the cases of the
drift with negative delays. This can be explained taking
into consideration that the theory assumes taking the
value ǫ → 0 in SDDEs (6) (while keeping δv/τ and δR/τ
constant), while the simulations and experiments are per-
formed at the finite value of ǫ = 1. We tested this hypoth-
esis by running simulations where ǫ was taken towards
zero while keeping the ratio between the time scales of
the system the same as in the experiments. In Fig. 6, the
results can be observed for a simulated robot whose speed
varies as a function of the intensity under the influence of
a negative delay of δv = −10τ . The radial probability dis-

tribution of the robot can be seen to converge towards the
theoretical distribution when ǫ → 0 (Figs. 6a-c). An even
more significant change can be observed for the robot’s
radial drift: while for ǫ = 1 (Fig. 6d) there is a sig-
nificant difference between the simulated and theoretical
radial drifts, this difference is significantly reduced when
ǫ = 0.5 (Fig. 6e) and, even more, when ǫ = 0.1 (Fig. 6f).
Note also that in all cases there is a sharp drop in the
simulated robot radial drift near the boundary, which is
due to the fact that the theory does not account for the
boundary’s presence.

VI. CONCLUSIONS

We have explored the role that sensorial delays play in
determining the motion of an autonomous robot. Ex-
tending our previous work [13], we have considered a
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FIG. 6. Convergence of the simulation results to the theoretical predictions for a simulated agent with sensorial delay in the
speed. The simulated (a-c) radial probability distribution ρ0(r)/r and (d-f) radial drift d(r) converge towards the theoretical
prediction as ǫ → 0 (while keeping the δv/τ and δR/τ constant).

phototactic robot whose speed and rotational diffusion
depend on the local value of the light intensity. We have
shown that the introduction of sensorial delays leads to
an alteration of both the position probability distribu-
tion and the drift of the robot. These results can be used
to engineer the motion of autonomous agents using sen-
sorial delays as well as to explain how multiple sensorial
delays can interplay to obtain the desired behavior of a
system. Furthermore, robots can also be used to mimic
active matter systems [22], as for example they tend to
accumulate at and move along walls, as observed in var-
ious works on active matter [23–27], they can move in
complex environments with different strategies [28], and
they can feature complex adaptive behaviors that have
been recently mimicked in colloidal systems with feed-
back control [29].
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Appendix A: Mathematical Derivation

Starting from SDDEs (6), we approximate them with
a system of SDEs without delays by linearizing x and y
as functions of time, and then v and σ as functions of x
and y. As a result, we obtain:

v (xt−cǫ2 , yt−cǫ2) ≈ v (xt, yt)−vx (xt, yt) cǫ
2ẋt−vy (xt, yt) cǫ

2ẏt
(A1)

with vx and vy denoting the partial derivatives of v, and
dots denoting time derivatives. Substituting this expres-
sion into the first two equations of SDDEs (6), we obtain
approximate versions of these equations:















ẋt =
1

ǫ
v cosφt − cǫvx cosφtẋt − cǫvy cosφtẏt

ẏt =
1

ǫ
v sinφt − cǫvx sinφtẋt − cǫvy sinφtẏt

(A2)

From this point on, v, vx and vy are always evaluated at
(xt, yt) and we omit their arguments from the notation.
Eqs. (A2) constitute a system of linear equations for ẋt

and ẏt, whose solution is















ẋt =
1

ǫ
v cosφt [1 + cǫ (vx cosφt + vy sinφt)]

−1

ẏt =
1

ǫ
v sinφt [1 + cǫ (vx cosφt + vy sinφt)]

−1

(A3)
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For small ǫ, we can approximate further, obtaining the
first two equations of the system we will study:















ẋt =
1

ǫ
v cosφt [1− cǫ (vx cosφt + vy sinφt)]

ẏt =
1

ǫ
v sinφt [1− cǫ (vx cosφt + vy sinφt)]

(A4)

To obtain the third equation, we start from a similar
approximation of the function σ:

σ (xt−kǫ2 , yt−kǫ2) ≈ σ (xt, yt)−σx (xt, yt) kǫ
2ẋt−σy (xt, yt) kǫ

2ẏt.
(A5)

We further approximate the expression on the right-hand
side, replacing ẋt and ẏt by their leading order terms6

from Eqs. (A6):















ẋt ≈
1

ǫ
v cosφt

ẏt ≈
1

ǫ
v sinφt

(A6)

to obtain the third equation of the approximate system:

dφt =

[

1

ǫ
σ (xt, yt)− kσxv cosφt − kσyv sinφt

]

dWt.

(A7)
In order to study the limiting behavior of the pro-

cess (xt, yt), we introduce the associated (backward) Kol-
mogorov operator.7 In our case,

L =
1

2

[

1

ǫ
σ − kσxv cosφ− kσyv sinφ

]2

∂2
φφ

+

(

1

ǫ
v cosφ− cvvx cos

2 φ− cvvy cosφ sinφ

)

∂x

+

(

1

ǫ
v sinφ− cvvx sinφ cosφ− cvvy sin

2 φ

)

∂y.

(A8)

6 Including higher order terms in the approximations for ẋt and
ẏt, substituted into Eqs. (A5), would give rise to terms of or-
der ǫ in the equation for φt (Eq. (A7)). As can be seen from
the asymptotic analysis that follows, this would not change the
equation obtained in the ǫ → 0 limit.

7 The general rule is the following: consider a system of SDE

dxi
t = bi(xt) dt +

l∑

α=1

σi
α(xt) dW

α
t

where i = 1, . . . k and W 1, . . .W l are independent Wiener pro-
cesses. The generator is then the differential operator

L =
1

2

k∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

k∑

i=1

bi(x)
∂

∂xi

where the aij are matrix elements of the matrix a = σσT , i.e.
aij =

∑
α σi

ασ
j
α. Consult [18] for more details.

Considering the corresponding backward Kolmogorov
equation for a function p(t, x, y, φ),

∂tρ = Lρ, (A9)

we have

L = ǫ−2L−2 + ǫ−1L−1 + L0, (A10)

where

L−2 =
1

2
σ2∂2

φφ

L−1 =(−kσσxv cosφ− kσσyv sinφ) ∂
2
φφ

+ v cosφ∂x + v sinφ∂y

L0 =

(

1

2
k2σ2

xv
2 cos2 φ+ k2σxσyv

2 cosφ sinφ

+
1

2
k2σ2

yv
2 sin2 φ

)

∂2
φφ

−
(

cvvx cos
2 φ+ cvvy cosφ sinφ

)

∂x

−
(

cvvx sinφ cosφ+ cvvy sin
2 φ

)

∂y

(A11)

We write the function ρ as a formal series in powers of ǫ:

ρ = ρ0 + ǫρ1 + ǫ2ρ2 + . . . , (A12)

substitute it into Eq. (A9), and equate coefficients of the
same powers of ǫ on both sides of the resulting equation.
The goal is to obtain a differential equation for ρ0, which
(in view of Eq. (A12)) is the limit of ρ as ǫ → 0.
In order ǫ−2, we obtain

L−2ρ0 = 0, (A13)

which implies ∂2
φφρ0 = 0. While the general solution

of this equation is an affine function of φ, that is, has
a form a(x, y) + b(x, y)φ, we choose a solution ρ0(x, y)
which does not depend on φ, since we expect that the
limiting equation does not involve the fast variable φ.
In order ǫ−1, we have

L−2ρ1 = −L−1ρ0, (A14)

which implies the equation

∂2
φφρ1 = −2v

σ2
∂xρ0 cosφ− 2v

σ2
∂yρ0 sinφ (A15)

whose solution, periodic in φ, is

ρ1 =
2v

σ2
∂xρ0 cosφ+

2v

σ2
∂yρ0 sinφ. (A16)

In order ǫ0, we obtain

∂tρ0 = L−2ρ2 + L−1ρ1 + L0ρ0. (A17)
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This can be rewritten as ∂tρ0 − L−1ρ1 − L0ρ0 = L−2ρ2,
which implies that the function ∂tρ0 −L−1ρ1 −L0ρ0 be-
longs to the range of the operator L−2, and is thus or-
thogonal to the null space of the adjoint operator L∗

−2.
8

L−2 is considered here as an operator in the variable φ.
Since σ does not depend on φ, L∗

−2 = L−2 and the null
space of this operator is spanned by the constant function
1. The orthogonality relation becomes

∂tρ0 =
1

2π

∫ π

−π

(L0ρ0 + L−1ρ1) dφ. (A18)

Substituting

L0ρ0 = −
(

cvvx cos
2 φ∂xρ0 + cvvy sin

2 φ∂yρ0
)

(A19)

and

L−1ρ1 =
2kv2

σ
(σx cosφ+ σy sinφ) (∂xρ0 cosφ+ ∂yρ0 sinφ)

+ v cosφ∂x

(

2v

σ2
∂xρ0 cosφ+

2v

σ2
∂yρ0 sinφ

)

+ v sinφ∂y

(

2v

σ2
∂xρ0 cosφ+

2v

σ2
∂yρ0 sinφ

)

,

(A20)

and using the trigonometric integrals

1

2π

∫ π

−π

cos2 φdφ =
1

2π

∫ π

−π

sin2 φdφ =
1

2
(A21)

and

1

2π

∫ π

−π

cosφ sinφdφ = 0, (A22)

we obtain

∂tp0 = Lρ0 =− 1

2
cvvx∂xρ0 −

1

2
cvvy∂yρ0

+ k
v2

σ
σx∂xρ0 + k

v2

σ
σy∂yρ0

+ v∂x

( v

σ2
∂xρ0

)

+ v∂y

( v

σ2
∂yρ0

)

(A23)

or, in vector notation,

∂tρ0 = −1

2
cv∇v · ∇ρ0 + k

v2

σ
∇σ · ∇ρ0 + v∇ ·

( v

σ2
∇ρ0

)

.

(A24)
This is the limiting backward Kolmogorov equation for
a function ρ0 of the variables x and y, from which we

8 This is a general fact about linear operators on Hilbert spaces.
A discussion in the present context can be found e.g. in [19].

obtain the system of SDEs, satisfied by the processes xt

and yt:



















dxt =

[

−1

2
cvvx + k

v2

σ
σx + v∂x

( v

σ2

)

]

dt+
√
2
v

σ
dW

(1)
t

dyt =

[

−1

2
cvvy + k

v2

σ
σy + v∂y

( v

σ2

)

]

dt+
√
2
v

σ
dW

(2)
t

(A25)
whereW (1) andW (2) are independent Wiener processes.9

Note that in the case when σ is identically equal to 1, we
obtain the system studied previously in Ref. [13].
Passing to formal adjoints, we obtain the associated

forward Kolmogorov (i.e., Fokker-Planck) equation:

∂tρ0 = L∗ρ0 =
1

2
c∂x (vvxρ0) +

1

2
c∂y (vvyρ0)

− k∂x

(

v2

σ
σxρ0

)

− k∂y

(

v2

σ
σyρ0

)

− ∂x

(

v∂x

( v

σ2

)

ρ0

)

− ∂y

(

v∂y

( v

σ2

)

ρ0

)

+ ∂2
xx

(

v2

σ2
ρ0

)

+ ∂2
yy

(

v2

σ2
ρ0

)

,

(A26)

which, in vector form, becomes

∂tρ0 =
1

2
c∇·(ρ0v∇v)−k∇·

(

ρ0
v2

σ
∇σ

)

+∇·
( v

σ2
∇ (vρ0)

)

.

(A27)
If the system possesses a stationary probability density
ρ0, then ρ0 has to satisfy the stationary Fokker-Planck
equation

L∗ρ0 = 0 . (A28)

We are now going to consider some special cases, where
the solutions of the stationary Fokker-Planck equation
actually satisfy a stronger condition. Ref. [30] explains in
detail that in these situations we actually obtain an equi-
librium distribution, i.e., a stationary distribution satis-
fying the detailed balance condition.

a. Constant rotational diffusion

Suppose σ is constant, which correspond to the special
case we studied in Ref. [13]. In this case the stationary
Fokker-Planck equation becomes

1

2
c∇ · (ρ0v∇v) +

1

σ2
∇ · (v∇ (vρ0)) = 0. (A29)

9 This step is a reversal of the previous operation by which we
obtained a Kolmogorov equation from an SDE system. Having
passed to the limit at the level of Kolmogorov equations, we
revert back to the corresponding SDEs.
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We search for a solution of

1

2
cρ0v∇v +

1

σ2
v∇ (vρ0) = 0, (A30)

which can be rewritten as

∇ (vρ0)

vρ0
= −σ2

2
c
∇v

v
(A31)

and integrated to yield

ρ0 = Bv
−

(

1+σ
2
c

2

)

. (A32)

In a bounded domain, a positive value of B can always be
chosen, so as to make ρ0 a probability distribution. For
c > − 2

σ2 , the points (x, y) with smaller values of v are

preferred by this distribution; for c < − 2
σ2 the tendency

is reversed.

b. Constant speed

Suppose v is constant. In this case the stationary
Fokker-Planck equation becomes

−k∇ ·
(

ρ0
v2

σ
∇σ

)

+∇ ·
( v

σ2

)

∇ (vρ0) = 0. (A33)

A function ρ0 will satisfies this equation if it satisfies the
equation

−kv2
ρ0
σ
∇σ +

v

σ2
∇ (vρ0) = 0. (A34)

For this, it is enough to find a solution of

∇ (vρ0)

vρ0
= kσ∇σ, (A35)

i.e.,

∇ log (vρ0) =
1

2
k∇

(

σ2
)

, (A36)

which has a general solution

ρ0 = B exp

(

1

2
kσ2

)

. (A37)

This can be normalized to become a probability density
if the point (x, y) is restricted to a bounded domain. For
k > 0, it shows that the particle is more likely to be
found in the region where its rate of rotation is bigger.
For k < 0 it has the opposite tendency.

c. Speed proportional to the rotational diffusion

Yet another case in which the stationary Fokker-Planck
equation can be integrated explicitly is the case when
v/σ2 is a constant, i.e., when the speed is proportional
to the rotational diffusion. The calculation is straight-
forward.

d. Radial coordinates

Suppose both v and σ are functions of r =
√

x2 + y2,
which is the special case of the experiment we performed.

We are going to find an SDE satisfied by rt =
√

x2
t + y2t

and use it to derive the stationary distribution of the
particle’s distance from the origin. To this end, we use

the Itô formula for the function r =
√

x2 + y2,

drt =
xt

rt
dxt+

yt
rt

dyt+
1

2

r2t − x2
t

r3t
(dxt)

2
+
1

2

r2t − y2t
r3t

(dyt))
2,

(A38)
and substitute the expressions for dxt and dyt from
Eqs. (A25). Noting that for a function f(x, y) we have
fr = fxxr + fyyr = x

r
fx + y

r
fy, and using the fact that

xt

rt
dW

(1)
t + yt

rt
dW

(2)
t is a differential of a Wiener process,

which we will denote by W̃t, we obtain

drt =

(

−1

2
cvvr + k

v2σr

σ
+ v

( v

σ2

)

r
+

1

r

v2

σ2

)

dt+
√
2
v

σ
dW̃t.

(A39)
Denoting the drift and the noise coefficients in the above
SDE by b(r) and s(r) respectively, we have the standard
formula for the density ρ0 of the stationary distribution
of r:

ρ0(r) =
B

s2(r)
exp

(
∫ r

r0

2b(u)

s(u)2

)

du. (A40)

Here, r0 > 0 is the minimal distance of the particle from
the origin, allowed by the experimental restrictions [30]
and B is the constant, normalizing the integral of g to 1.
The integrand 2b

s2
can be written explicitly as

2b

s2
= −1

2
c
σ2vr
v

+ kσσr +
σ2

v

( v

σ2

)

r
+

1

r
. (A41)

Here is a short derivation of Eq. (A40): according to
the general rule, the generator of the process rt is given
by

L =
1

2
s(r)2

d2

dr2
+ b(r)

d

dr
; (A42)

the adjoint generator is thus acting on functions of r ac-
cording to the formula

(L∗f)(r) =
1

2

d2

dr2
(

s(r)2f(r)
)

− d

dr
(b(r)f(r)) ; (A43)

to find the stationary density we solve the equation
L∗ρ0 = 0, searching for a solution, satisfying the
(stronger) equation

1

2

d

dr

(

s(r)2ρ0(r)
)

− (b(r)ρ0(r)) = 0; (A44)

to solve this first-order ODE, we substitute g = s2ρ0 and
obtain

1

2

dg

dr
− b

s2
g = 0, (A45)
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which can be solved by separation of variables, i.e.,

g = B exp

(
∫

2b(r)

s2(r)
dr

)

(A46)

where B is a constant; from this formula, we obtain

ρ0(r) =
B

s2(r)
exp

(
∫

2b(r)

s2(r)
dr

)

(A47)

where B has to be adjusted to make the integral of ρ0
equal 1.
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