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Abstract
Detection of prostate cancer (PCa) and distinguishing indolent versus aggressive forms of the disease is a critical clinical 
challenge. The current clinical test is circulating prostate-specific antigen levels, which faces particular challenges in cancer 
diagnosis in the range of 4 to 10 ng/mL. Thus, a concerted effort toward building a noninvasive biomarker panel has devel-
oped. In this report, the hypothesis that nuclear magnetic resonance (NMR)-derived metabolomic profiles measured in the 
urine of biopsy-negative versus biopsy-positive individuals would nominate a selection of potential biomarker signals was in-
vestigated. 1H NMR spectra of urine samples from 317 individuals (111 biopsy-negative, 206 biopsy-positive) were analyzed. 
A double cross-validation partial least squares-discriminant analysis modeling technique was utilized to nominate signals 
capable of distinguishing the two classes. It was observed that after variable selection protocols were applied, a subset of 29 
variables produced an area under the curve (AUC) value of 0.94 after logistic regression analysis, whereas a “master list” of 
18 variables produced a receiver operating characteristic ROC) AUC of 0.80. As proof of principle, this study demonstrates 
the utility of NMR-based metabolomic profiling of urine biospecimens in the nomination of PCa-specific biomarker signals 
and suggests that further investigation is certainly warranted.
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Prostate cancer (PCa) is a disease that is estimated to be 
diagnosed in 164 690 American men in 2018.1 As a disease 
that typically occurs late in life, morbidity rates are low, 
especially given that there are forms of PCa malignancies 
that progress slowly. However, this presents a critical chal-
lenge to clinicians responsible for diagnosing and delivering 
prognoses since there is a current lack of clinical standard for 
predicting aggressive versus indolent forms of PCa. The cur-
rent clinical screening test is circulating serum prostate-spe-
cific antigen (PSA); however, there are several issues 
associated with the PSA test.2–5 First is the low specificity of 
PCa, with multiple conditions associated with prostate swell-
ing also resulting in elevated PSA levels.6 Second is the sen-
sitivity, with a clinically challenging range of 4 to 10 ng/mL 
that is difficult to diagnose as aggressive or indolent PCa. As 
a result of these drawbacks, there have been recent reports 
suggesting that PSA testing has potentially done greater 
harm than good, primarily through overdiagnosis and the 
associated deleterious treatment side effects.7–9 Thus, there is 

a critical requirement for clinically relevant screening tests 
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capable of distinguishing aggressive and indolent forms of 
PCa with high specificity.

Biomarker discovery in relation to PCa continues to be 
an active area of research, and several recent reviews are 
available on the topic.10–16 In many cases, biomarkers are 
discovered via an “omics” approach, and thus there are 
candidate molecules representative of the genetic, protein, 
and metabolite levels. The standard clinical test relies on 
circulating PSA levels, a protein that exists both in free 
and bound forms. Thus in an effort to refine PSA testing, 
both fractions have been included, with the amount of free 
PSA (%fPSA) identified as an improved indicator.17 
Further examples of candidate protein markers include 
α-methylacyl-CoA racemase18,19 and anterior gradient 2.20 
Several peptides have also been nominated in urine as 
potential biomarkers of PCa, although care must be taken 
in sample collection and preparation.21 Several genes have 
been identified as PCa-specific biomarkers, including 
PCA3 and the TMPRSS2:ERG gene fusion. These have 
been detected in both tissue22,23 and urine,24–26 and are thus 
attractive from the standpoint of development of noninva-
sive PCa biomarker panels. In addition, DNA methyla-
tion27 and single-nucleotide polymorphisms28 have been 
explored as urinary PCa markers. Finally, metabolite bio-
markers have been identified, with a recent comprehensive 
profiling study nominating several metabolites capable of 
distinguishing biopsy-negative and biopsy-positive urine 
sediment samples.29 Among the metabolites highlighted, 
sarcosine has received particular attention and several val-
idation studies have since been reported, with a clear con-
sensus on biomarker status yet to be established.30–35

Metabolomic-based investigations are attractive in terms 
of sample processing, where, for example, extensive protein 
purification assays or gene amplification procedures are not 
necessary. Additionally, perturbed metabolite levels repre-
sent the end product of genetic dysfunction, and thus may be 
utilized to trace through the metabolic pathways to the dys-
functional enzymatic process. Analytical platforms com-
monly employed for metabolomic studies include mass 
spectrometry (MS) and nuclear magnetic resonance (NMR), 
each possessing complementary strengths and weaknesses.36 
PCa diagnosis continues to be a difficult clinical challenge, 
and new diagnostic techniques based on biomarker detection 
in noninvasive samples are under active research. Urine is 
perhaps the most attractive noninvasive biospecimen in 
terms of simplicity of collection, with biomarker detection 
possible in both urine supernatant and sediment. MS-based 
PCa metabolomic investigations of urine samples have been 
extensively reported; however, there is a noticeable absence 
of NMR-based reports. NMR of urine samples has been 
established in relation to various diseases;37–41 thus this 
report intends to address biomarker panel detection for PCa 
based on the hypothesis that certain metabolites detected in 
urinary 1H NMR profiles of biopsy-negative individuals will 

differ from biopsy-positive individuals. Representative 1H 
NMR spectra for biopsy-negative and biopsy-positive indi-
viduals are given in Figure 1.

Urine is a particularly challenging biospecimen to work 
with in terms of biomarker discovery due to the large com-
positional variability depending on diet, time of collection, 
gender, and medication taken by the patient.42–45 To over-
come this challenge, large sample cohorts are necessary 
and multivariate statistical modeling is essential in identi-
fying reliable candidate biomarkers. Principal components 
analysis (PCA) is a common technique utilized in metabo-
lomic studies; however, PCA failed to separate biop-
sy-negative from biopsy-positive profiles (data not shown) 
since the urine compositional variation was dominant over 
the variation attributable to PCa. Thus a partial least 
squares-discriminant analysis (PLS-DA) approach was 
applied to the data.

Auto-scaled data. As argued by Westerhuis and cowork-
ers,46 model parameters reporting on performance characteris-
tics are often difficult to judge without an idea of how the 
model operates under the null hypothesis. Thus, they proposed 
performing permutation analyses as part of the modeling pro-
cess to generate expected parameter distributions for the same 
data set assuming the null hypothesis is true. The expected 
number of misclassifications, area under the curve (AUC) val-
ues, and Q2 values after permutation of class labels are summa-
rized in Figure 2 and Table 1. Taking 30% of the data as the test 
set resulted in 96 samples comprising the test set. The number 
of misclassifications and AUC values were determined to be 48 
± 2 and 0.49 ± 0.04, respectively, indicating as expected that 
the modeling performed no better than random in class predic-
tion. Importantly, the parameter distributions are vastly differ-
ent when a double cross-validation (2CV) PLS-DA is applied 
utilizing the correct class labels. Improvement of all parame-
ters was observed (decreased number of misclassifications, 
increased Q2, and increased AUC, P < 0.0001 in all cases), sug-
gesting the models were capable of identifying signals import-
ant in distinguishing biopsy-negative versus biopsy-positive 
individuals.

Application of 2CV PLS-DA resulted in a collection of 
1000 models, each built using a randomly selected subset 
containing 70% of the samples from the full data set. Thus, 
while each model is different, all models are related.46 
Identification of a single model would facilitate the exam-
ination of standard PLS-DA parameters such as latent vari-
able loadings and scores in order to gain information on 
the variables contributing to the class separation. In the 
case where many similar models are generated, selection 
of a single “best” model is not trivial.46 Therefore, variable 
selection methods were applied to each model generated, 
resulting in a collection of important signals over all mod-
els. Variable selection continues to be an important prob-
lem in multivariate analyses,47,48 and without a clear 
consensus on a particular strategy, three methods were 
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explored. The variable importance to projection (VIP) 
score is a value based on PLS loadings and thus reports on 
the importance of each variable in contributing to the over-
all model.49 Since the average VIP score is 1, variables 
whose value is greater than 1 are then considered import-
ant. Alternatively, the absolute value of the regression 
coefficient calculated in the PLS algorithm may be used to 
rank each variable, which describes the relationship 
between the data loadings and the class label in DA.49 
Finally, a method recently proposed by Li and coworkers48 
termed CARS (competitive adaptive reweighted sampling) 
was explored as an alternative variable selection protocol. 
CARS aims to generate calibration models with variable 
subsets, with predictive power used to determine the opti-
mal variable collection.48 A variable subset is selected 
from the model with the best prediction performance.

Each variable selection protocol was applied to each 
model generated, and thus 1000 variable collections were 
obtained. All variables selected by CARS were examined 
and the frequency with which a variable was selected was 
calculated. In the case of VIP and regression coeffi-
cient-ranked variables, only the top 2% of variables from 
each model were collected (therefore, VIP score >4.26), fol-
lowed by calculation of the frequency of selection 

(summarized in Table 2). Regardless of the variable selection 
protocol, variables that appeared in at least 50% of the mod-
els generated were considered important. This resulted in a 
collection of 21, 21, and 29 variables for the VIP, regression 
coefficient, and CARS variable selection protocols, respec-
tively. It was observed that the 21 variables identified using 
VIP scores were identical to those selected using regression 
coefficients. Additionally, 12 variables were found to be 
common with the CARS variable list (all variable lists pro-
vided in the Supplemental Data). Selecting these variable 
subsets, logistic regression analysis was performed and 
receiver operating characteristic (ROC) curves generated, 
resulting in AUC values of 0.83 and 0.94 using all regression 
coefficient and CARS variables, respectively (Figure  3). 
Additionally, 2CV PLS-DA with permutation analysis was 
performed utilizing the regression coefficient and CARS 
variable subsets, with the results presented in Figure 4 and 
summarized in Table 1. Clearly, the predictive power of the 
models was enhanced when selecting variable subsets, with 
particular improvement using the CARS variable subset.

Variable changes relative to biopsy-negative data. The 
effect of centering and scaling all variables with respect to the 
mean and standard deviation of the normal samples (i.e., biop-
sy-negative) is a common approach to gain insight into 

Figure 1.   The 900 MHz 1H NMR spectra of a selected biopsy-negative (blue) and biopsy-positive (red) urine supernatant sample. 
Spectra were referenced to 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP), probabilistic quotient normalized, and aligned. 
Inset: expansion of chemical shift region from 0.7 to 3.0 ppm, with vertical scale increased by a factor of 10. Selected assignments 
of common prostate cancer biomarkers reported in the literature are given (see text for references): Crn, creatinine; CCC, choline 
containing compounds region; Cit, citrate; Ala, alanine; Lac, lactate.
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variables whose levels are different specifically in comparison 
with normal samples. Holding all modeling procedures other-
wise constant, the resulting performance parameters are 
reported in Table 3. As in the case of auto-scaling, performance 
after class permutation yielded results consistent with random 
sample class prediction. Utilizing the correct class labels, the 
predictive performance was observed to slightly increase when 
z-score changes with respect to biopsy-negative variables were 
used. Variable selection resulted in 34, 31, and 9 signals 

appearing in at least 50% of the models, ranked according to 
VIP scores (resulting in scores >2.46 collected), regression 
coefficients, and CARS, respectively (Table 2). In contrast to 
the auto-scaled data, all VIP-ranked variables were unique in 
comparison with the regression coefficient-ranked signals, 
while 5 of the 9 CARS-selected variables were also selected 
utilizing regression coefficient ranking .

Interestingly, only modest improvement in modeling 
parameters was observed when selecting variable subsets 
(Table 3). In particular, CARS failed to improve the modeling 
parameters as observed with the auto-scaled data, perhaps a 
result of the severe reduction in modeled variables. This is in 
contrast to the VIP score variable subset, where the increase in 
modeled variables degraded the classification parameters in 
comparison with the auto-scaled data. Close examination of 
the correct classification rates for each class (biopsy-negative 
and biopsy-positive) revealed a high rate for the biopsy-nega-
tive samples, but a poor rate for the biopsy-positive samples, 
contributing to an overall poor classification rate (Table  4). 
This is particularly true for the VIP variable subset which had 
the lowest modeling performance.

Variable subset comparisons—univariate statistics and cor-
relations. The variable selection protocols identified signals 
important in multivariate 2CV-PLS-DA modeling. Once these 
signals are identified, it is interesting to determine their univar-
iate capability in distinguishing PCa-positive versus PCa-
negative groups (variable lists and P-values for each value are 
available in the Supplemental Data). Wilcoxon rank-sum tests 
were done for each variable along with the appropriate data 
scaling procedure. The number of variables deemed significant 
(i.e., P < 0.05) for each model are summarized in Figure 5. A 
potential explanation for the poor performance of the VIP-
selected variable subset after z-score calculation relative to nor-
mal samples is evident. Despite having the largest variable 
subset, only 4 of the signals identified from the multivariate 
modeling were found to be significant using univariate statis-
tics. In contrast, the variable subset with the best multivariate 
modeling parameters (auto-scaled data, CARS variable selec-
tion) was comprised of signals where greater than 50% were 
significant using univariate statistics.

With the development of variable subsets containing a 
relatively large number of signals, it is reasonable to ques-
tion whether each signal is acting independently of the oth-
ers. For example, since these variables are NMR signals it 
might be assumed that multiple resonances from a single 
molecule may be contributing to the model. To address this 
point, the two scaled data sets were subjected to a statistical 
total correlation spectroscopy analysis and the correlation 
between each signal within each subset of variables was 
examined.50 In general there were a small number of correla-
tions greater than 0.8, and even fewer correlations with r > 
0.9, above which correlations suggest molecular structure 
connectivity51 (Figure  6). However, the VIP data set sub-
jected to normalization and scaling relative to biopsy-nega-
tive samples strongly deviates from this trend. A set of strong 

Figure 2.  Distributions of the number of misclassifications, Q2, 
and AUC after 2CV-PLS-DA modeling of the full NMR data set. 
Data were auto-scaled prior to modeling; 1000 models were 
generated using the correct class labels (red), and 500 models 
using permuted class labels (blue). In all cases, the distributions 
using the correct class labels were significantly different compared 
to the permuted models (P < 0.0001 for each parameter). The 
data are summarized in Table 1. AUC, area under the curve; 2CV-
PLS-DA, double cross-validation partial least squares-discriminant 
analysis; NMR, nuclear magnetic resonance.
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correlations was observed, with a high percentage possess-
ing r > 0.9. The correlated variables primarily involved sig-
nals in the range of 3.2 to 3.9 ppm and most likely originate 
from a sugar molecule (e.g., glucose). This model contains a 
large number of highly correlated signals which may further 
explain the poor predictive performance since a large amount 
of redundant information is included. Interestingly the CARS 
model with auto-scaled data (i.e., the best multivariate 
model) had the lowest ratio of correlated signals to total 
number of variables modeled. This is an indication that the 
CARS method selected the greatest number of independent 
variables and thus had the maximum information content for 
reliable modeling.

An optimal biomarker panel for PCa? In total, 6 sets of 
signals were nominated as potential biomarker panels. From 
these variables subsets, 82 unique variables out of 145 were 
identified and 18 were selected in at least 50% of the 6 data 
sets. Boxplots of a selection of these variables are given in 
Figure 7, where biopsy-positive responses are varied relative 

to biopsy-negative. It should be noted that of the 18 common 
variables, none were found uniquely in the data centered and 
scaled relative to biopsy-negative samples. This is somewhat 
unexpected since such data processing would be thought to 
amplify the differences between the negative and positive 
cases. This suggests that auto-scaling may be a sufficient 
data processing protocol. Nevertheless, the top 18 variables 
were taken as a final variable subset, a so-called “master list” 
of differential signals (Table S3, Supplemental Data). The 
modeling procedure was repeated with this master list and 
the performance characteristics are summarized in Table 5. 
In the case of the auto-scaled data, the results are intermedi-
ate of those obtained for the regression coefficient and CARS 
model data sets. This is not entirely unexpected since a large 
proportion of the “master” variables are common to both of 
these lists. Also encouraging are the results for the biop-
sy-negative centered and scaled data, which are essentially 
equivalent to the auto-scaled results. Thus through the anal-
ysis of two data processing techniques and three variable 
selection procedures, a final list of potential biomarkers has 
been identified which provides stable modeling results inde-
pendent of the data processing technique.

NMR detection of metabolite markers of PCa has been 
primarily performed on prostate tissue (ex vivo or in vivo), 
prostatic secretions, or seminal fluid. From these studies (and 
others), citrate, choline containing compounds, spermine, 
myo-inositol, lactate, alanine, omega-6 fatty acids, creatine, 
and various signal ratios of these metabolites have been 
reported as potential markers of PCa.53–68 Interestingly, 
while each of these metabolites possesses a clearly resolved 
NMR signal, not a single one was nominated in our analysis 
of urine supernatant. Urine-based MS has identified several 
metabolites correlated with PCa; however, these studies 
were performed on urine sediment. The sediment from urine 

Table 1.  Summary of Model Performance Parameters for 2CV-PLS-DA Modeling Based on NMR Data That Was Auto-Scaled; 1000 
Models Were Generated Using Original Labels and 500 Models Were Generated Using the Permuted Labels. In All Cases, the Test Data 
Set Contained 96 Randomly Selected Samples (30% of the Total Data Set). All Values Are Reported as Mean ± Standard Deviation. In the 
Case of Permuted Data, Mean Parameter Values Were First Calculated Over the 20 Models Per Label Permutation Followed by Mean ± 
Standard Deviation Calculation Over All 500 Permutations. The List of Variables Used in These Models Is Provided in the Supplementary 
Data.

Labels Data set Misclassification Q2 AUC

Full 33 ± 4 -0.06 ± 0.16 0.69 ± 0..05

Original CARS 20 ± 4 0.35 ± 0.08 0.86 ± 0.03

Labels Reg. coeff. 28 ± 4 -0.01 ± 0.14 0.76 ± 0.04

VIP 28 ± 4 0.01 ± 0.14 0.76 ± 0.04

Full 48 ± 2 -0.68 ± 0.24 0.49 ± 0.03

Permuted CARS 48 ± 3 -1.6 ± 0.4 0.49 ± 0.04

Labels Reg. coeff. 47 ± 3 -2.8 ± 0.9 0.49 ± 0.04

VIP 47 ± 3 -2.9 ± 0.8 0.49 ± 0.01

2CV-PLS-DA, double cross-validation partial least squares-discriminant analysis; NMR, nuclear magnetic resonance; CARS, competitive adaptive 
reweighted sampling; VIP, variable importance to projection; Reg. coeff., regression coefficient; AUC, area under the curve.

Table 2.  The Number of Variables Selected for Each Data 
Treatment Procedure and Variable Selection Protocol. The Value 
Indicates the Number of Variables That Appeared in at Least 50% 
of the Models Generated, and Values in Parentheses Are the Total 
Number of Unique Variables Identified Over the 1000 Models 
Generated.

Data set VIP
Regression 
coefficient CARS

Auto-scaled 21 (723) 21 (692) 29 (1891)

Scaled wrt biopsy-
negative

34 (169) 31 (342) 9 (1773)

VIP, variable importance to projection; CARS, competitive adaptive 
reweighted sampling.
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collected post-digital rectal exam (DRE) is expected to con-
tain prostate cells which may be the source for these signals. 
Thus, urine supernatants, which may carry a greater fraction 
of hydrophilic water-soluble metabolites, appear to be exhib-
iting a different metabolomic profile compared to tissue and 
urine sediment profiles and may be a useful orthogonal route 
to PCa detection.

Such a biomarker panel is important in the context of 
PCa since there remains a population of PCa cases that are 
clinically challenging to diagnose. In an attempt to address 

this issue, it is worth re-emphasizing that “normal cases” in 
this study referred to patients experiencing non-cancerous 
prostate disorders. It is common for patients possessing 
such disorders to display elevated levels of PSA, the current 
clinical standard for PCa diagnosis. This therefore compli-
cates the diagnosis of PCa, and further invasive procedures 
are required. This study demonstrated the capability of 
NMR data to distinguish PCa patients from the biopsy-neg-
ative population. This suggests that a metabolomic analysis 
of urine (supernatant and sediment separately), a noninva-
sive biospecimen, may be further explored for PCa diagnos-
tic potential. In combination with genetic and protein 
urinary biomarker diagnostics under active investigation, a 
completely noninvasive clinical test may be on the horizon 
capable of outperforming PSA levels for PCa 
identification.

It is encouraging that taken as potential biomarker panels 
the variable subsets perform exceptionally well in differenti-
ating biopsy-negative versus biopsy-positive profiles. While 
it is certainly the case that the variable selection protocols 
utilized here are not completely independent (particularly 
VIP and regression coefficient ranking), a certain level of 
confidence is gained by more than one method selecting 
common variables. It is envisioned that a single variable 
selection protocol will not dominate, and instead a combina-
tion of techniques will generate the most reliable variable 
nominations. The next challenge becomes signal identifica-
tion so that the biological significance of these variables may 
be investigated. Currently, the signal assignments remain 
unknown (attempted using Chenomx and MetaboID69), 
pointing to a primary challenge in NMR-based urinary 
metabolomics. Due to the complexity of the samples, assign-
ment is a significant challenge which is slightly alleviated by 
utilizing high magnetic field strengths (900 MHz in this 
case). Unfortunately, the signals identified appear at low 
concentration (thus poor SNR) resulting in increased diffi-
culty in obtaining suitable multidimensional NMR data, 
which is essential for confident assignment of the otherwise 
unknown resonances. Speculation of the most likely chemi-
cal functionality is possible. For example, the signal centered 
at 1.164 ppm most likely arises from small organic acid mol-
ecules containing CH2 moieties. Nevertheless, this study 
demonstrates the utility of NMR-based metabolomics of 
urine for the nomination of a PCa metabolite biomarker 
panel.

Experimental

Materials

3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt 
(TSP), D2O, and potassium phosphate (monobasic, dibasic) 
were obtained from Sigma/Aldrich (Milwaukee, USA) and 
used as received. All water was of MilliQ purity.

Figure 3.  Logistic regression analysis performed on the auto-
scaled NMR data set taking the (a) CARS variables and (b) 
regression coefficient-ranked variable subsets identified from 
2CV-PLS-DA analysis. ROC curves were generated using the first 
10, 20, and 29 variables of the CARS subset, and the first 5, 10, 
15, and 21 variables of the regression coefficient-ranked subset. 
The corresponding AUC values for each ROC curve are given in 
the legend. NMR, nuclear magnetic resonance; CARS, competitive 
adaptive reweighted sampling; 2CV-PLS-DA, double cross-
validation partial least squares-discriminant analysis; ROC, receiver 
operating characteristic; AUC, area under the curve.
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Urine Specimens and Sample Treatment
Urine samples were collected according to a protocol 
approved by the Institutional Review Board. Briefly, after 
administering a DRE, urine samples were collected in pre-
servative-free urine collection cups (minimum 10 mL) and 
centrifuged at 4000 rpm for 15 minutes at 4°C. The resulting 
supernatants were carefully separated from the pellets and 
stored separately at −80°C until used for analysis. NMR 
sample preparation involved aliquoting 450 µL of neat urine 
supernatant with 50 µL of phosphate buffer (pH 7.2) contain-
ing TSP as a chemical shift and concentration reference 
([phosphate]f = 100 mM, [TSP]f = 3.7 mM). The sample was 
subjected to centrifugation for 1 minute to remove insoluble 

material and transferred to a 5 mm NMR tube. All samples 
were prepared on the day of measurement.

NMR Spectroscopy
All NMR measurements were performed on a Bruker 
AVANCE™ 900 MHz (Bruker Biospin, Rheinstetten, 
Germany) at the Michigan State University (East Lansing) 
with a TCI cryoprobe operating at a 1H frequency of 889.79 
MHz at 298 K. Each 1D 1H spectrum was collected using a 30o 
flip angle, 128 scans containing 32 K data points, with a spec-
tral width of 16 ppm and recycle delay of 2 seconds. Water 
suppression by gradient-tailored excitation was utilized.

Figure 4.  Distributions of the number of misclassifications, Q2, and AUC after 2CV-PLS-DA modeling using variable subsets. The NMR 
data was auto-scaled prior to modeling. The subsets are the CARS variable subset (a-c), regression coefficientranked subset (d-f), and 
the VIP-ranked subset (g-i). In all cases, 1000 models were generated using the correct class labels (red) and 500 models were generated 
using permuted class labels (blue). The distributions using the correct class labels were all significantly different in comparison with the 
permuted distributions (P < 0.0001 for each parameter and each subset). The data are summarized in Table 3, and the number of variables 
included in each model is given in Table 2. The full variable lists are available in the supplemental data. AUC, area under the curve; 2CV-
PLS-DA, double cross-validation partial least squares-discriminant analysis; NMR, nuclear magnetic resonance; CARS, competitive adaptive 
reweighted sampling; VIP, variable importance to projection.
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Data Preparation
The raw Free induction decay were imported in ACD/Labs 
NMR Processor (ACD/Labs, Toronto, Canada) and were 
subjected to zero filling to 64 K points and exponential mul-
tiplication equivalent to 0.3 Hz line broadening prior to 
Fourier transformation. Each spectrum was manually phase- 
and baseline-corrected and referenced to the TSP signal at 0 
ppm prior to exporting the data as an ASCII file. All further 
processing, including statistical analyses, was performed in 
Matlab R2010b (V 7.11.0.584, The Mathworks, Natick, MA, 
USA).

Spectra were normalized using the probabilistic quo-
tient normalization method, which has been shown to 
effectively reduce dilution variation.52 The reference 
spectrum for normalization was selected according to a 
closeness index,70 a scaled correlation coefficient which 

identifies the spectrum most similar to all other spectra. 
In order to reduce data variation arising from small 
chemical shift variation, spectral alignment was per-
formed using the variable reference alignment method.71 
Prior to statistical modeling, the data set was binned (bin 
size = 0.005 ppm) in order to reduce the number of vari-
ables to a computationally manageable number, and 
scaled. Two scaling procedures were tested: first, each 
variable had the mean subtracted and scaled to unit vari-
ance (z-scores, auto-scaling72). Second, each variable 
had the mean of the biopsy-negative samples subtracted 
followed by division by the standard deviation of the 
biopsy-negative samples. In the latter scaling method, 
changes in variable z-score were then relative to the 
biopsy-negative cases.

Table 3.  Summary of Model Performance Parameters for 2CV-PLS-DA Modeling Based on NMR Data That Was Centered and Scaled 
Relative to the Biopsy-Negative Samples; 1000 Models Were Generated Using Original Labels and 500 Models Were Generated Using 
the Permuted Labels. In All Cases, the Test Data Set Contained 96 Randomly Selected Samples (30% of the Total Data Set). All Values 
Are Reported as Mean ± Standard Deviation. In the Case of Permuted Data, Mean Parameter Values Were First Calculated Over the 20 
Models Per Label Permutation Followed by Mean ± Standard Deviation Calculation Over All 500 Permutations. The List of Variables Used 
in These Models Is Provided in the Supplemental Data.

Labels Data set Misclassification Q2 AUC

Full 32 ± 4 0.01 ± 0.11 0.74 ± 0..05

Original CARS 27 ± 4 -0.03 ± 0.13 0.74 ± 0.04

Labels Reg. coeff. 27 ± 4 0.06 ± 0.11 0.80 ± 0.04

VIP 41 ± 4 -0.4 ± 0.04 0.71 ± 0.04

Full 47 ± 5 -4 ± 6 0.49 ± 0.04

Permuted CARS 48 ± 3 -5 ± 3 0.49 ± 0.03

Labels Reg. coeff. 49 ± 3 -3 ± 1 0.49 ± 0.03

VIP 46 ± 6 -6 ± 3 0.49 ± 0.03

2CV-PLS-DA, double cross-validation partial least squares-discriminant analysis; NMR, nuclear magnetic resonance; CARS, competitive adaptive 
reweighted sampling; VIP, variable importance to projection; Reg. coeff., regression coefficient.

Table 4.  Correct Classification Rates Calculated for Each Model. After Each Model Was Determined, It Was Used to Predict the Classes 
of the Test Data Set. This Was Done Over the 1000 Models Generated, and the Number of Times Each Sample Was Part of the Test Set 
and Classified Correctly Was Determined. Classification Rates Were Then Calculated for Biopsy-Negative and Biopsy-Positive Samples as 
Individual Groups, and Over All Samples.

Data treatment Data set Biopsy-negative (%) Biopsy-positive (%) Overall (%)

Full 69 ± 34 63 ± 39 65 ± 37

Auto-scaled CARS 86 ± 27 75 ± 37 79 ± 34

Reg. coeff. 69 ± 36 72 ± 40 71 ± 38

VIP 70 ± 37 72 ± 40 71 ± 39

Full 80 ± 32 59 ± 41 66 ± 39

Biopsy-negative CARS 74 ± 41 71 ± 41 72 ± 41

centered and scaled Reg. coeff. 88 ± 28 64 ± 45 72 ± 41

VIP 87 ± 27 41 ± 43 57 ± 44

CARS, competitive adaptive reweighted sampling; VIP, variable importance to projection; Reg. coeff., regression coefficient.
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Statistical Analyses

Model development
A 2CV-PLS-DA method46 was used in order to develop mod-
els capable of classifying biopsy-negative versus biop-
sy-positive individuals. Briefly, the full data set was first 
randomly divided into a calibration and test set. The 

calibration set is utilized to develop a PLS-DA model accord-
ing to the traditional single cross-validation (1CV), whereby 
the data is randomly divided into training and validation sets. 
The training sets are used to generate PLS-DA models which 
are used to predict the classifications of the validation set. All 
prediction errors are stored and the PLS-DA model with 
optimal prediction performance is selected. After 1CV is 
performed on the calibration data, an optimal number of PLS 
components is identified and a final model is generated using 
the full calibration data set. Finally, this model is used to 
predict the classifications of the test set and all prediction 
errors are stored. The entire procedure is repeated several 
times, generating a series of different, but related, models.

Model performance was measured by three parameters: the 
number of misclassifications, a prediction error measure (Q2), 
and the AUC of an ROC curve. Reference distributions for the 
null hypothesis of the three parameters were generated by per-
forming 2CV on the full data set after class label permutation. 
Significant values are expected only when using the correct 

Figure 5.  Bar plots representing the number of significant and 
non-significant variables identified in each variable subset using 
univariate statistics (Wilcoxon rank-sum test). (a) NMR data 
was auto-scaled; (b) NMR data was centered and scaled relative 
to the biopsy-negative samples. All P-values were corrected for 
multiple comparisons using the Bonferroni correction. Significance 
was tested at α = 0.05. The shaded bar indicates the number 
of significant variables and the white bar the number of non-
significant variables for each subset. NMR, nuclear magnetic 
resonance; CARS, competitive adaptive reweighted sampling; 
VIP, variable importance to projection; Reg. coeff., regression 
coefficient.

Figure 6.  Correlations between variables within each subset for 
each data normalization/scaling procedure. A Pearson correlation 
coefficient greater than 0.80 was chosen as a threshold. In the 
case of the auto-scaled data, the number of correlations with 
r > 0.80 was 2, 6, and 6 for the CARS, regression coefficient-
ranked, and VIP-ranked variable subsets, respectively. In the case 
of normalization and scaling relative to the biopsy-negative data, 
the number of correlations with r > 0.80 were 1, 5, and 131 for 
the CARS, regression coefficient-ranked, and VIP-ranked variable 
subsets, respectively. CARS, competitive adaptive reweighted 
sampling; VIP, variable importance to projection.
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class labels, which are directly comparable to the null hypoth-
esis distributions using the permutation strategy.

In this work, null hypothesis distributions for the three per-
formance parameters were generated by performing 500 class 
label permutations, with 20 models developed for each per-
mutation (i.e., 2CV was performed 20 times for each permuta-
tion). For each permutation, 70% of the samples were 
randomly selected as the calibration set and the average value 

of the number of misclassifications, Q2, and AUC was calcu-
lated over the 20 models. The 2CV procedure was then 
repeated 1000 times using the correct class labels (each model 
taking a different random selection of the calibration set), 
resulting in a collection of 1000 different, but related models. 
Both the distribution over all 1000 models and mean ± stan-
dard deviation of the three performance parameters are 
reported.

Figure 7.  Representative signal boxplots of selected variables identified in the “master list.” The intensity was integrated at the 
signal indicated for the biopsy-negative (N) and biopsy-positive (P) spectra after all NMR data were normalized according the PQN 
procedure.52 The Wilcoxon P-values were P < 0.0001, P < 0.0001, P = 0.0002, and P = 0.01 for the signals at 1.162, 3.871, 1.134, and 
1.362 ppm, respectively. All P-values were corrected for multiple comparisons using the Bonferroni method. PQN, probabilistic quotient 
normalization; NMR, nuclear magnetic resonance.

Table 5.  Summary of Model Performance Parameters for 2CV-PLS-DA Modeling Based on the “Master List” Variable Subset; 1000 
Models Were Generated Using Original Labels and 500 Models Were Generated Using the Permuted Labels. In All Cases, the Test Data 
Set Contained 96 Randomly Selected Samples (30% of the Total Data Set). All Values Are Reported as Mean ± Standard Deviation. In the 
Case of Permuted Data, Mean Parameter Values Were First Calculated Over the 20 Models Per Label Permutation Followed by Mean ± 
Standard Deviation Calculation Over All 500 Permutations. The List of Variables Used in These Models Is Provided in the Supplemental 
Data.

Labels Data set Misclassification Q2 AUC

Original Auto-scaled 26 ± 4 0.15 ± 0.11 0.80 ± 0.04

  BNCS 27 ± 4 0.10 ± 0.11 0.79 ± 0.04

Permuted Auto-scaled 48 ± 3 -2.8 ± 0.9 0.49 ± 0.04

  BNCS 48 ± 3 -5 ± 2 0.49 ± 0.03

BNCS, biopsy-negative centered and scaled; AUC, area under the curve.
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Variable selection

Three methods were explored for their ability to select vari-
ables strongly contributing to the PLS-DA models developed. 
The first method involved ranking variables according to their 
absolute regression coefficient value calculated for each 
PLS-DA model. The frequency with which a variable appeared 
in the top 2% ranking was calculated across the models. 
Variables that appeared in the top 2% in at least 50% of the 
models were considered important. The second method 
involved the calculation of the VIP score of each variable for 
all models calculated.49 The variables were ranked according 
to their VIP score, and a frequency was calculated in the same 
fashion as for the regression coefficient analysis. The final 
method involved a more rigorous calculation of variable 
importance, known as CARS, described by Li and cowork-
ers.48 Briefly, in this method a series of PLS-DA models, built 
upon a data subset selected by Monte Carlo sampling of the 
calibration data, are generated and variables are exponentially 
filtered and subjected to competitive weighting according to 
their ability to affect model performance. A subset of variables 
is finally realized after selecting the model with best perfor-
mance characteristics (lowest prediction error). The CARS 
method was applied to each model developed using 100 Monte 
Carlo samplings, and variables that were selected in at least 
50% of the models were considered important.

Logistic regression analysis was performed using the 
selected variables with ROC curves generated and AUC val-
ues calculated.

Univariate statistics were performed on the selected vari-
ables as an alternative measure of variable importance. The 
Wilcoxon U-test was used to compare the normalized intensi-
ties of the selected variables, and all P-values were subjected to 
the Bonferroni correction for multiple comparisons.
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