
Resource Management for Multicores to
Optimize Performance under

Temperature and Aging Constraints

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Heba Khdr

aus Aleppo, Syrien

Tag der mündlichen Prüfung: 04.07.2018

Erster Gutachter: Prof. Dr. Jörg Henkel

Karlsruher Instituts für Technologie (KIT)

Zweiter Gutachter: Prof. Dr. Jürgen Teich

Friedrich-Alexander Universität (FAU)

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig

verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig

angegeben haben und dass ich die Stellen der Arbeit - einschlielich Tabellen, Karten

und Abbildungen - die anderen Werken oder dem Internet im Wortlaut oder dem Sinn

nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich

gemacht habe.

———————————

Heba Khdr

iii

Acknowledgements

First and foremost, I would like to thank God for giving me the strength, knowledge,

ability and opportunity to undertake this doctoral research and complete it successfully.

I could never have done this without the faith I have in God.

I have great pleasure to express my sincere and deep sense of gratitude to my advisor

Prof. Henkel, for his advice, support and exemplary guidance that have led me here.

I am thankful for his invaluable experience that he shared with me to help me overcome

many obstacles towards accomplishing this work. Many thanks go out to my friends and

my colleagues that have accompanied me through the previous years. I really appreciate

all the help they have given me. I would also like to extend my gratitude to my co-

advisor Prof. Teich for agreeing to co-advise my dissertation and for his valuable input

and support.

This achievement would never be done without the continued support of my family.

I would like to express my utmost heartfelt gratitude to my parents. My mother, the

inexhaustible source of love and tenderness, who has been continuously supporting me,

taking care of me, and praying for me since ever. My affectionate father, whose dream

for me to be Dr. Heba Khdr is my strongest motivation to start, continue, and complete

my PhD. I am deeply indebted to my beloved husband, Ahmad, who has been by my

side encouraging me through this journey, helping me during sleepless nights. Without

his caring and his love, this would not have been possible. My warm thanks to my dear

sister and brother who helped me a lot taking care of my sons, bringing them to and

from their kindergarten and school to let me work peacefully. I won’t forget to thank

my lovely sons, Mohamad und Abdullah, for their patience with me being far away from

them for long nights working on my research. Their smiles was accompanying me during

my work, brightening up my day, motivating me to complete my PhD successfully. Last

but not least, I would like to thank my late grandfather and my late mother in-law,

whose prayers for me gave me the strength to achieve my goal. My dear family! I will

remain grateful to all of you forever. Thank you!

v

List of First-Author Publications

[1] Heba Khdr, Hussam Amrouch and Jörg Henkel, “Aging-Aware Boosting,” IEEE
Transactions on Computers (TC), 67(9), 1217-1230, September 2018.

[2] Heba Khdr, Hussam Amrouch and Jörg Henkel, “Dynamic Guardband Selection:
Thermal-Aware Optimization for Unreliable Multi-Core Systems,” IEEE Trans-
actions on Computers (TC), 68(1). 53-66, June 2018.

[3] Heba Khdr, Santiago Pagani, Muhammad Shafique, Jörg Henkel, “Dark-Silicon-
Aware Resource Management for Many-Core Systems,” Advances in Computers:
Dark Silicon and Future of On-chip Systems, Elsevier, Vol. 110, pp. 127-170,
January 2018.

[4] Heba Khdr, Hussam Amrouch and Jörg Henkel, “Aging-Constrained Performance
Optimization for Multi Cores,” ACM/EDAC/IEEE 55th Design Automation Con-
ference (DAC), (pp. 1-6), June 2018. [HiPEAC Paper Award]

[5] Heba Khdr, Santiago Pagani, Éricles Sousa, Vahid Lari, Anuj Pathania, Frank Han-
nig, Muhammad Shafique, Jürgen Teich, Jörg Henkel, “Power-Density-Aware Re-
source Management for Heterogeneous Tiled Multicores,” IEEE Transactions on
Computers (TC), 66(3). 488 - 501, March 2017.

[6] Heba Khdr, Santiago Pagani, Muhammad Shafique, Jörg Henkel, “Thermal-Constrained
Resource Management for Mixed ILP-TLP Workloads in Dark Silicon Chips,”
ACM/EDAC/IEEE 52th Design Automation Conference (DAC), p. 179, June
2015. [HiPEAC Paper Award]

[7] Heba Khdr, Thomas Ebi, Muhammad Shafique, Hussam Amrouch, Jörg Henkel,
“mDTM: Multi-Objective Dynamic Thermal Management for On-Chip Systems,”
IEEE/ACM Design Automation and Test in Europe Conference (DATE), March
2014.

vii

List of Co-Author Publications

[8] Anuj Pathania, Heba Khdr, Muhammad Shafique, Tulika Mitra, and Jörg Henkel,
“QoS-Aware Stochastic Power Management for Many-Cores,” ACM/EDAC/IEEE
55th Design Automation Conference (DAC), pp. 1-6, June 2018. [HiPEAC Pa-
per Award]

[9] Santiago Pagani, Heba Khdr, Jian-Jia Chen, Muhammad Shafique, Minming Li,
Jörg Henkel, “Thermal Safe Power (TSP): Efficient Power Budgeting for Hetero-
geneous Manycore Systems in Dark Silicon,” IEEE Transactions on Computers
(TC), 66(1). 147-62, January 2017.

[10] Anuj Pathania, Heba Khdr, Muhammad Shafique, Tulika Mitra, and Jörg Henkel,
“Scalable Probabilistic Power Budgeting for Many-Cores”, IEEE/ACM Design,
Automation and Test in Europe Conference (DATE), pp. 864 - 869, March 2017.

[11] Santiago Pagani, Heba Khdr, Jian-Jia Chen, Muhammad Shafique, Minming Li,
Jörg Henkel, “Thermal safe power: Efficient Thermal-Aware Power Budgeting
for Manycore Systems in Dark Silicon,” The Dark Side of Silicon, Springer, pp.
125-158, January 2017.

[12] Santiago Pagani, Lars Bauer, Qingqing Chen, Elisabeth Glocker, Frank Han-
nig, Andreas Herkersdorf, Heba Khdr, Anuj Pathania, Ulf Schlichtmann, Doris
Schmitt-Landsiedel, Mark Sagi, ricles Sousa, Philipp Wagner, Volker Wenzel,
Thomas Wild, Jörg Henkel, “Dark silicon management: An Integrated and Coor-
dinated Cross-Layer Approach,” Special Issue of (De Gruyter Oldenbourg) Infor-
mation Technology on Invasive Computing, 58(6). 297-307, December 2016.

[13] Jörg Henkel, Santiago Pagani, Heba Khdr, Florian Kriebel, Semeen Rehman,
Muhammad Shafique “Towards Performance and Reliability-Efficient Computing
in the Dark Silicon Era”, IEEE/ACM 19th Design, Automation and Test in Europe
Conference (DATE), pp. 1-6, March 2016.

[14] Santiago Pagani, Muhammad Shafique, Heba Khdr, Jian-Jia Chen, Jörg Henkel
“seBoost: Selective Boosting for Heterogeneous Manycores”, International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pp. 104-113, October 2015.

[15] Jörg Henkel, Haseeb Bukhari, Siddharth Garg, Muhammad Usman Karim Khan,
Heba Khdr, Florian Kriebel, Umit Ogras, Sri Parameswaran, Muhammad Shafique
“Dark Silicon - From Computation to Communication”, 9th International Sympo-
sium on Networks-on-Chip (NOCS), p. 23, September 2015.

ix

List of Co-Author Publications x

[16] Jörg Henkel, Heba Khdr, Santiago Pagani, Muhammad Shafique “New Trends in
Dark Silicon”, ACM/EDAC/IEEE 52nd Design Automation Conference (DAC),
pp. 1-6 ,June 2015. [HiPEAC Paper Award]

[17] Waqaas Munawar, Heba Khdr, Santiago Pagani, Muhammad Shafique, Jian-Jia
Chen, Jörg Henkel “Peak Power Management for Scheduling Real-time Tasks on
Heterogeneous Many-Core Systems”, 20th IEEE International Conference on Par-
allel and Distributed Systems (ICPADS), pp. 200-209, December 2014.

[18] Santiago Pagani, Heba Khdr, Waqaas Munawar, Jian-Jia Chen, Muhammad Shafique,
Minming Li, Jörg Henkel “TSP: Thermal Safe Power - Efficient Power Budgeting
for Many-Core Systems in Dark Silicon”, IEEE/ACM International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), p. 10,
October 2014. [Best Paper Award]

[19] Jörg Henkel, Thomas Ebi, Hussam Amrouch, Heba Khdr “Thermal Management
for Dependable on-chip System”, 18th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 113-118, January 2013.

Abstract

Driven by the ever-increasing performance demand, multicore processors have emerged
enabling concurrent computations on a single chip. A multicore processor can be ex-
ploited by executing multiple applications simultaneously on the chip. Furthermore,
multiple threads of each application can be also executed in parallel on multiple cores.
To optimize for performance in multicores, it is necessary to employ resource manage-
ment techniques that manage the resources of the chip considering the running appli-
cations. Specifically, resource management can allocate more cores to applications to
exploit their parallelism and upscale the voltage and frequency levels (V/f levels) of the
cores to increase their speeds.

While such potential decisions of resource management improve the performance, they
may, unfortunately, elevate the on-chip temperatures, which have negative impacts on
reliability. One of the major temperature-dependent reliability concerns is the circuit
aging. In particular, aging leads to an increase in the threshold voltage, which, in
turn, may increase the delay of the processor’s paths and eventually induce timing
errors. Due to the adverse impacts of temperature and aging on reliability, they have
been considered as dire design constraints. Therefore, this dissertation focuses on the
relevant problem of performance optimization under temperature and aging constraints.
To achieve this goal, several resource management techniques are introduced in this
dissertation to maximize the overall system performance, while satisfying temperature
and aging constraints within the decision making process.

Firstly, temperature-constrained resource management techniques are proposed for ho-
mogenous and heterogeneous multicores. These techniques allocate cores to multi-
threaded applications, indicating the number of parallel threads of each application,
and determine the V/f level of the cores that execute each application. These decisions
are conducted while taking into account the Thread Level Parallelism (TLP) and the
Instruction Level Parallelism (ILP) of the applications, aiming at maximizing the over-
all system performance under a temperature constraint. Moreover, the positioning of
inactive (power-gated) cores throughout the chip is selected such that they facilitate
dissipating the generated heat from active cores. That, in turn, reduces the tempera-
ture of active cores and allows upscaling their V/f levels leading to further performance
improvement.

Afterwards, an aging-constrained resource management technique is introduced with
the goal of maximizing the overall system performance under an aging constraint. To-
wards achieving this goal, an aging-aware design space is explored, which translates
temperature and voltage into the resulting amount of aging quantified as an increase

xi

Abstract xii

in the threshold voltage. This aging-aware design space exploration enables the aging-
constrained resource management technique to fully exploit the available space for per-
formance optimization by selecting the numbers of parallel threads of the applications
and the V/f levels of the cores. In order to optimize for performance at runtime using
a light-weight approach, a boosting technique is presented which aims at maximizing
the performance while at the same time reducing aging effects. Finally, a thermal-aware
guardbanding technique is proposed with a new concept of dynamic guardband selection.
This technique highlights the potentials of further performance improvements when the
guardband type is dynamically selected at the system level with regard to the running
workload.

The evaluation of the presented techniques is conducted using state-of-the-art simulation
tools. The experimental results show significant performance improvements compared to
several state-of-the-art techniques, while temperature and aging constraints are satisfied.

Big Picture

The Chair of Embedded System (CES) at the Karlsruhe Institute of Technology (KIT)
has been a productive research environment for more than two decades. Its early re-
search focused on hardware/software partitioning in system on chips (SoCs). Hard-
ware/software (hw/sw) partitioning is a well-established design methodology with the
goal to optimize for one design metric, e.g., system performance, while at the same
time satisfying design constraints (e.g. total chip area). CES was the first to propose
a HW/SW partitioning technique that minimizes the power consumption of the system
[CES1]. In [CES2], a hw/sw portioning technique has been presented to minimize the
energy consumption, and a case study on an MPEG-2 encoder has been demonstrated
in [CES3]. To achieve the target optimization, it is necessary to accurately estimate
several hardware and software parameters as proposed in [CES4, CES5]. In [CES6,
CES7], performance optimization has been proposed for ASIP processors, by providing
flexibility through runtime adaptation.

Starting from 2004, the focus in the CES has shifted to multicore systems, to keep pace
with the trend of chip design, which predicted a continuous increase in the number of
cores on a single ship. In multicores, network on chip (NoC) has been employed to enable
communication between the cores. In [CES8], different NoC models with various config-
urations have been studied to analyze their impact on the performance. This analysis
shows how optimizing NoC configurations can significantly increase the performance of
multicores. An adaptive on-chip communication scheme has been proposed in [CES9] to
satisfy a required level of quality of service (QoS). Besides optimizing for communication,
the CES has proposed several schemes to optimize for the performance of computation
in multicores. In [CES10] an agent-based application mapping scheme, named ADAM,
has been presented to maximize the performance of the applications considering the
communications between the cores. ADAM, however, simplifies the problem by split-
ting the research space into virtual clusters and considers only static applications that
requires a constant number of cores. In contrast, DistRM has been proposed in [CES11]
to map at runtime dynamic applications to the cores aiming at maximizing the overall
system performance, while considering dynamic core requirements of applications. An-
other branch of techniques for multicores in the CES has focused on optimizing for power
and temperature. [CES12][CES13] have proposed thermal management techniques to
minimize the temperature in order to increase the reliability and dependability of mul-
ticores. Nevertheless, none of these aforementioned works has targeted the problem of
maximizing performance under temperature constraints.

This dissertation presents resource management techniques that aim at maximizing the
performance of multicores while at the same time satisfying temperature and aging
constraints. The proposed techniques in this dissertation contribute to two projects
funded by the German Research Foundation (DFG). These projects are (1) the DFG

xiii

Big Picture xiv

Transregional Collaborative Research Center [SFB/TR 89] \ Invasive Computing and
(2) the DFG SPP 1500 \ Dependable Embedded Systems. An overview of these projects
and their aspects that this dissertation contribute to are explained below.

Invasive Computing

The Transregional Collaborative Research Center [SFB/TR 89] \ Invasive Computing
project referred to as InvasIC is funded by the DFG in its second funding phase from
July 2014 until July 2018. Its research association aggregates researchers from three uni-
versities in Germany (Friedrich-Alexander-Universität Erlangen-Nürnberg, Karlsruher
Institut für Technologie, Technische Universität München).

The main idea of InvasIC is to investigate and develop a novel paradigm of invasive
computing [20, 21] for designing and programming future parallel computing systems,
in which a thousand or more cores are expected to be integrated on a single chip [22].
InvasIC is composed of different sub-projects to cover different aspects such as resource-
aware programming, hardware requirements to enable invasive computing, software re-
quirements like compilers and operating systems.

This dissertation contributes to the sub-project B3, which is responsible for developing
methodologies to maximize the overall system performance and energy efficiency un-
der power and temperature constraints on loosely-coupled MPSoCs. One of the new
concepts developed in CES for B3 is the Thermal Safe Power (TSP) [18], which is an
abstraction that provides thermally-safe power constraint as a function of the number
of active cores. TSP presents the maximum allowed power on the active cores that keep
the temperature below the predefined thermal constraint. TSP, however, is uniform for
all cores on the chip and does not consider the diverse power characteristics of the dif-
ferent applications. Therefore, applying TSP does not guarantee exploiting all available
safe thermal margins on the cores. Therefore, the technique in Chapter 5 is proposed
to manage the resources so that thermal violations are avoided and all available ther-
mal margins are exploited. The work in Chapter 6 presents a resource management
technique to maximize the performance for tiled heterogeneous multicore architecture
similar to the InvasIC architecture. This work is achieved through a collaboration with
the sub-project B2, which provides the integration of TCPA [23] with the employed
heterogeneous architecture. The approaches presented in chapters 7, 8, 9 also con-
tribute to B3, since their goal is also maximizing the performance under temperature
and aging constraints. Thus, this dissertation contributes to B3 through maximizing
the performance under temperature constraints. To maximize performance under power
constraints and to improve energy efficiency as well, other approaches outlined in the
CES are presented (e.g., [8, 10, 24]).

Dependable Embedded System in SPP 1500

The goal of the SPP 1500 project is to develop new methods and architectures at system
level to eliminate the effects associated when migrating to new technology nodes like mal-
functioning, performance degradation, and increased power consumption. This project
is composed of five research areas, these are: (1) Technology Abstraction, (2) Depend-
able Hardware Architectures, (3) Dependable Embedded System, (4) Design Methods,
(5) Operation, Observation, Adaptation.

This dissertation contributes to the third research area of dependable embedded Sys-
tem [25]. Specifically, aging is a serious degradation for reliability and hence depend-
ability. Aging issues are tackled by the techniques proposed in Chapters 7, 8, 9 and thus

xv Big Picture

these techniques contribute to the core of SPP. The work in Chapter 7 presents a resource
management technique that maximizes performance under an aging constraint. Satisfy-
ing the predetermined aging constraint for a processor helps to improve the dependability
of the processor during its projected lifetime. In Chapter 8, an aging-aware boosting
technique is presented to maximize performance, while at the same time minimize aging
effects. This, in turn, improves the dependability. The work in Chapter 9 selects the
guardband types with the goal to maximize performance while ensuring reliable opera-
tion of the processor. These techniques and many others from CES (e.g., [26–28]) have
covered the mains aspects of the SPP 1500 \ Dependable Embedded System.

[CES1] Jörg Henkel, “A low power hardware/software partitioning approach for core-
based embedded systems,” Design Automation Conference (DAC), 1999.

[CES2] Yanbing Li, and Jörg Henkel, “A framework for estimation and minimizing
energy dissipation of embedded HW/SW systems,” Design Automation Conference
(DAC), 1998.

[CES3] Jörg Henkel and Yanbing Li, “Energy-conscious HW/SW-partitioning of em-
bedded systems: A Case Study on an MPEG-2 Encoder,” International Workshop
on Hardware/Software Codesign, 1998.

[CES4] Jörg Henkel and Rolf Ernst, “A path-based technique for estimating hardware
runtime in HW/SW-cosynthesis,” International Symposium on System Synthesis,
1995.

[CES5] Jörg Henkel, Thomas Benner, Rolf Ernst, Wei Ye, Nikola Serafimov, Gernot
Glawe, “COSYMA: a software-oriented approach to hardware/software codesign,”
Journal of Computer and Software Engineering - Special issue: hardware-software
codesign, 1994.

[CES6] Lars Bauer, Muhammad Shafique, Simon Kramer, Jörg Henkel, “RISPP: rotat-
ing instruction set processing platform,” Design Automation Conference (DAC),
2007.

[CES7] Lars Bauer, Muhammad Shafique, Jörg Henkel, “Run-time instruction set se-
lection in a transmutable embedded processor,” Design Automation Conference
(DAC), 2008.

[CES8] Jiang Xu, Wayne Wolf, Jörg Henkel, Srimat Chakradhar, Tiehan Lv, “A case
study in networks-on-chip design for embedded video,” Design Automation and
Test in Europe Conference (DATE), 2004.

[CES9] Mohammad Abdullah Al Faruque, Thomas Ebi, Jörg Henkel, “Run-time adap-
tive on-chip communication scheme,” International Conference on Computer-Aided
Design (ICCAD), 2007.

[CES10] Mohammad Abdullah Al Faruque, Rudolf Krist, Jörg Henkel, “ADAM: run-
time agent-based distributed application mapping for on-chip communication,”
Design Automation Conference (DAC), 2008.

[CES11] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schrder-Preikschat,
Jörg Henkel, “DistRM: Distributed Resource Management for On-Chip Many-Core
Systems,” International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2011.

Big Picture xvi

[CES12] Thomas Ebi, Mohammad Abdullah Al Faruque, Jörg Henkel, “TAPE: thermal-
aware agent-based power economy for multi/many-core architectures ,” Interna-
tional Conference on Computer-Aided Design (ICCAD), 2009.

[CES13] Thomas Ebi, David Kramer, Wolfgang Karl, Jörg Henkel, “- Economic learn-
ing for thermal-aware power budgeting in many-core architectures ,” International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2011.

Contents

Acknowledgements v

List of First-Author Publications vii

List of Co-Author Publications ix

Abstract xi

Big Picture xiii

Contents 1

1 Introduction 1

1.1 Performance Optimization . 2

1.2 Temperature . 3

1.2.1 Case Study . 5

1.3 Aging Effects . 7

1.3.1 Guardband Types . 8

1.4 Key Challenges . 9

1.5 Dissertation Contributions . 10

1.6 Dissertation Outlines . 12

2 Related Work 13

2.1 Resource Management Techniques . 13

2.2 Thermal Management Techniques . 14

2.2.1 Performance Optimization under Temperature Constraints 14

2.2.2 Temperature Optimization . 16

2.3 Aging Management Techniques . 17

2.3.1 Performance Optimization under Aging Constraints 17

2.3.2 Aging Optimization . 18

2.3.3 Guardbanding Techniques . 19

3 System Model 21

3.1 Hadware Model . 21

3.2 Application Model . 22

3.3 Thermal Model . 23

3.4 Aging Model . 26

3.5 Guardband Estimation . 27

xvii

Contents xviii

4 Experimental Framework 29

4.1 Setup . 29

4.1.1 Tightly-Coupled Processor Arrays (TCPA) 32

4.2 Multicore Architectures . 33

4.2.1 Homogeneous Architecture . 34

4.2.2 Heterogeneous Architecture . 34

5 Dark Silicon-Aware Resource Management 37

5.1 Problem Definition . 38

5.2 Dark Silicon-Aware Resource Management 38

5.2.1 TDP-Constrained Optimal Resource Distribution 39

5.2.2 Thermal-aware Application Mapping 44

5.2.3 Thermal-Constrained Resource Adaptation 45

5.3 Experimental Evaluations . 47

5.3.1 Setup . 47

5.3.2 Results . 48

5.4 Summary . 53

6 Power Density-Aware Resource Management 55

6.1 Motivational Example . 56

6.2 Problem Definition . 58

6.3 Power Density-Aware Resource Management 60

6.3.1 Uniform Power Density Constraint 60

6.3.2 Application Mapping under Power Density Constraint 61

6.3.3 Runtime Power Density Adaptation 63

6.4 Experimental Setup . 64

6.5 Evaluation results . 66

6.5.1 Demonstration of PdRM . 66

6.5.2 Comparison with State-of-the-art Techniques 68

6.5.3 PdRM Overhead . 71

6.6 Summary . 72

7 Aging-Constrained Resource Management 75

7.1 Aging-Aware Design Space . 76

7.1.1 Relevance of Accurate Aging Models 76

7.1.2 Design Space Exploration (DSE) 77

7.1.3 DSE for Various Lifetimes and Aging Constraints 78

7.1.4 DSE for Various System-Level Parameters 78

7.2 Problem Formulation . 80

7.3 Aging-Constrained Performance Maximization 81

7.3.1 Finding the Root Node . 81

7.3.2 Branching and Bounding Rules . 82

7.4 Experimental Evaluation . 83

7.4.1 Comparison Candidates . 84

7.4.2 Results . 85

7.5 Summary . 87

xix Contents

8 Aging-Aware Boosting 89

8.1 Background of Long and Short-Term Aging Effects 90

8.2 Motivation . 93

8.3 Analyzing the Impact of Boosting on Aging 93

8.4 Aging-Aware Boosting . 96

8.4.1 Reducing Long and Short-Term Aging Effects 96

8.4.2 Minimizing Guardbands . 99

8.4.3 AgBoost Flow . 99

8.5 Evaluation . 101

8.5.1 Comparison Candidates . 101

8.5.2 Experimental Results . 102

8.5.3 Overhead Discussion . 106

8.6 Summary . 107

9 Thermal-Aware Guardbanding 109

9.1 Motivation . 110

9.2 Problem Formulation . 112

9.3 Thermal-Aware Guardbanding . 114

9.3.1 Dynamic Programming-Based Thermal-Aware Guardbanding . . . 115

9.3.2 Iterative Thermal-Aware Guardbanding 118

9.4 Evaluation . 121

9.4.1 Experimental Results . 121

9.5 Summary . 127

10 Conclusions 129

Bibliography 131

Bibliography 141

List of Figures 141

List of Tables 147

Glossary 149

Acronyms 151

Symbols 153

Chapter 1

Introduction

One of the guiding principles of processor design that enables fulfilling the ever increasing
performance demand is known as Moore’s Law [29], which states that the number of
transistors on a chip will roughly double each two years. This law remains valid until
the present day as technology feature sizes have steadily scaled down over the past
decades. Technology scaling has been guided by Dennard scaling [30], which states that
as transistors become smaller, their power density stays constant. Hence, both supply
voltage and current must be downscaled, so that power consumption is reduced by the
same scaling factor as area. The combination of Moore’s law and Dennard scaling has
provided over thirty years many generations of higher performance processors, in which
increasing clock frequency has been the most important contributor to performance
gains.

Since around 2002 it has become difficult to further follow Dennard scaling. In particu-
lar, supply voltage cannot be downscaled with the same factor as feature size, because
it has run into lower limits imposed by threshold voltage scaling limits [31]. Hence,
increasing clock frequency along with technology scaling must be limited to avoid high
power densities. As an alternative way for improving performance, chip designer started
integrating multiple cores on a single chip. Thus, the shift to multicore chips was a
natural evolutionary step to keep fulfilling the ever increasing performance demand.
According to ITRS [32] predictions shown in Figure 1.1, hundreds of cores will exist in
mobile devices over the next decade, while in servers thousands of cores are predicted
to exist. Today, an example of a commercial multicore chip is Intel Xeon Phi [33] with
64 cores.

Unfortunately, the problem does not end here; although Dennard scaling has discontin-
ued, technology node sizes are continuously shrinking, and power densities are increas-
ing. Figure 1.2 shows the estimated increase in the power density of the chip along
with technology scaling, which has been estimated based on technological data from
ITRS [32] and Intel [34]. High power densities lead to increasing temperature on the
chip. To avoid thermal emergencies, not all cores on the chip can run simultaneously
at full speed, but a fraction of cores needs to be power-gated (dark). This problem is
known as dark silicon, and it is expected to be dominant in the upcoming technology
nodes. Such a problem prevents obtaining the expected performance gain of multicore
chips and technology scaling.

1

1. Introduction 2

0

50

100

150

200

250

300

350
CPU cores # GPU cores Total

P

ro
ce

ss
in

g
El

em
en

ts

Number of cores is
continuously increasing making

the need to employ resource
management more pressing

Figure 1.1: ITRS predictions for the number of cores in mobile devices.

Figure 1.2: The estimated increase
in the power density along with
technology scaling based on tech-
nological data from ITRS [32] and
Intel [34]. Area, power, and power
density values are normalized to
the corresponding values at 22 nm.

N
o

rm
. A

re
a

N
o

rm
. P

o
w

er

N
o

rm
. P

o
w

er
 D

en
si

ty

Technology nodes

0

1

2

3

0

0.5

1

22 nm 16/14 nm 11/10 nm 8/7 nm

High temperature not only leads to dark silicon problem, but also has severe negative
impacts on reliability. Among others, it is a main contributor to accelerated aging
process. Circuits have always aged, but this aging has only become significant when
high-K oxides and metal gate have been applied in transistors at recent technology
nodes [35]. Circuit aging may lead to an increase in the delay of processors’ critical path
over time which may eventually result in timing violations and errors.

To limit the adverse impacts stemming from elevated temperatures and accelerated
aging, it is necessary to enforce temperature and aging constraints, under which it is
deemed to be a safe range. Enforcing such constraints, however, will limit performance
improvement. That makes the problem of performance optimization under temperature
and aging constraints of paramount importance, and therefore this dissertation has the
aim of solving this problem.

1.1 Performance Optimization

The emergence of multicores required a shift of programming paradigm to paralleliza-
tion. First, multiple applications can be executed simultaneously on different cores
on the chip. Furthermore, multi-threaded applications are introduced providing fine-
grained parallelization to further exploit the available concurrent execution capabilities
on multicores by running application threads in parallel on different cores.

As computing systems are continuously becoming more complex with increasing num-
ber of cores, number of simultaneous applications, and number of parallel threads per

3 1. Introduction

application, it becomes indispensable to employ resource management techniques that
allocate cores to applications with the goal of maximizing the overall system perfor-
mance. To achieve this goal, resource management techniques must first consider the
diverse TLP of the applications. In particular, each application has a sequential part
and a parallelizable part. The dominance of the parallelizable part of the application
indicates its TLP. The speedup in execution time of an application when running par-
allel threads is limited by its sequential part. The more dominant the sequential part,
the less speedup is. Thus, allocating more cores and thereby more parallel threads to
applications with higher TLP will improve the overall system performance.

An additional means can be employed by resource management techniques to improve
the overall system performance is Dynamic Voltage and Frequency Scaling (DVFS) [36].
DVFS is a feature implemented in most of recent processors [37] that allows setting
different V/f levels to the cores in order to tune their speed and power. Intuitively,
when high V/f level is selected, the application performance will be increased, as more
instructions per second will be executed. The increase in application performance when
V/f level is increased is related to its ILP, as ILP indicates how many instructions of the
application can be executed simultaneously. Analogous to the previous discussion, the
overall system performance can be improved, when setting high V/f levels to the cores
that execute applications with high ILP. An example of two applications that expose
different TLP and ILP is shown in Figure 1.3. Evidently, for the first application more
performance gain is obtained when allocating more cores to it rather than increasing
the V/f level of its cores. Contrarily, for the second application, more performance can
be obtained when the V/f levels of cores are increased compared to the obtained perfor-
mance when allocating more cores to the application.

Thus, an efficient resource management must consider the TLP and ILP of the appli-
cations to maximize the overall system performance.

Unfortunately, the utilized means by resource management to maximize the performance
can lead to increasing both temperature and aging. Specifically, as seen in Figure 1.4,
increasing the number of parallel threads of the applications and upscaling the V/f levels
of the cores lead to increasing the number of active cores and the switching activity in
the circuits. That, in turn, elevates the temperature on the chip. Elevated temperature
and increased voltage accelerate aging mechanisms. This impact of resource manage-
ment means on temperature and aging emphasizes more the importance of enforcing
temperature and aging constraints at the system level within the decision making pro-
cess of resource management. In the following sections, the current practices to cope
with temperature and aging are investigated and the key challenges are highlighted.

1.2 Temperature

The front line of defense against elevated temperatures on the chip is the cooling system.
However, the cost of the cooling system is proportionally increasing per watt of the heat
dissipated [38]. Therefore, it is typically designed to dissipate a specific power amount,
referred to as Thermal Design Power (TDP). By definition, TDP is not the maximum
power consumption on the chip; it might be exceeded to satisfy performance surges, and
in this case the chip might overheat.

1. Introduction 4

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6

Avg. ∆t = 21 ms Avg. ∆t = 11 ms

Number of parallel threads Frequency [GHz]

(a) Application “blackscholes” (High TLP)
Ex

ec
u

ti
o

n
 T

im
e

[s
]

Number of parallel threads

Ex
ec

u
ti

o
n

 T
im

e
 [

s]

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5 6

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5 6

(b) Application “ferret” (High ILP)

Avg. ∆t = 13 ms Avg. ∆t = 21 ms
Ex

ec
u

ti
o

n
 T

im
e

[s
]

Ex
ec

u
ti

o
n

 T
im

e
 [

s]

∆t1

3 4 5 6 7 8

3 4 5 6 7 8

→ The resulting performance gain of increasing the number of cores (# parallel
threads) is 82% more than the resulting one of increasing the V/f level

→ The resulting performance gain of increasing the V/f level is 58% more than the
resulting one of increasing the number of cores (# parallel threads)

2.2 2.4 2.6 2.8 3.0 3.2

Frequency [GHz]

2.2 2.4 2.6 2.8 3.0 3.2

Figure 1.3: The impact of increasing number of cores or V/f level on the performance
of two applications with different TLP and ILP.

Active Cores

Temperature

Performance

Aging

Supply Voltage (Vdd)

Voltage/Frequency
 (up)-scaling

Increasing
parallel threads

“positive” impact “negative” impact

Figure 1.4: The impact of resource management means on temperature and aging.

The current practice to protect the chip from potential overheating is to employ Dynamic
Thermal Management (DTM). Typically, DTM is a reactive technique implemented on
the hardware to quickly react to thermal violations. Particularly, if some part of the
chip heats up above a predefined critical temperature (Tcrit), DTM is triggered in order
to reduce the temperature by increasing fan speed, downscaling V/f levels of the cores,
and power-gating some cores.

5 1. Introduction

By downscaling V/f levels and/or power-gating cores, DTM contradicts resource man-
agement decisions and ultimately hinders it from achieving its goal of performance
maximization.

With the purpose of avoiding thermal violations and thereby DTM consequences, state-
of-the-art techniques employ TDP as a chip-level power constraint on the chip. Hence,
the total power consumption of the cores is enforced to be below TDP. This might
potentially reduce the temperature on the chip but it is not sufficient to avoid thermal
violations, as will be discussed in the following case study.

1.2.1 Case Study

This case study shows the resulting thermal maps of a homogeneous 64-core chip1,
considering various scenarios. The employed chip has a critical temperature (Tcrit) of
80 ◦C and a TDP of 220 W, which is enforced as a chip-level power constraint. This case
study consists of two parts explained below.

82 80 78 76 74 72 70 68

Dark Core

Active Core

Scenario (1):
64 active cores

Contiguous Active Cores

[°C]Ptotal = 220 W
Tcrit = 80 °C

Scenario (2):
32 active cores

Contiguous Active Cores

Scenario (3):
32 active cores

Non-Contiguous Active Cores

Legend

Thermal ViolationsNo Thermal Violations No Thermal Violations

Figure 1.5: Different thermal maps using the same total power consumption and dif-
ferent positioning of active and dark cores.

The first part (illustrated in Figure 1.5) shows three scenarios differing from each other
by the number of active cores and the positioning of active and dark cores throughout
the chip. In these three scenarios, the TDP is distributed evenly among the active cores.
In scenario (1), all cores on the chip are active, and hence each core consumes 3.4 W.
As it can be noticed from Figure 1.5-(1), no thermal violation occurs. In scenario (2),

1Alpha cores in 22 nm, simulated with gem5 [39] and McPAT [40]. Further details are presented in
Chapter 4.

1. Introduction 6

only 32 cores are active, and since the same TDP is used, each active core consumes
6.8 W. As Figure 1.5-(2) shows, thermal violations occur. Hence, consuming TDP by a
smaller number of cores on the chip results in a higher power density and thereby ther-
mal violations. Scenario (3) has the same number of active cores and per-core power
consumption as scenario (2), but it has different distribution of active and dark cores
on the chip. Particularly, the active cores are contiguous in scenario (2), while they are
non-contiguous in scenario (3). This non-contiguous positioning of active cores in sce-
nario (3) enables higher heat dissipation. Specifically, being dark cores in close vicinity
to active cores facilitates dissipating more heat from the active cores, and thereby, their
temperatures are decreased.

These scenarios reveal that considering TDP as a power constraint is not enough to
avoid thermal violations. Moreover, different positioning of active and dark cores can
lead to diverse thermal maps, even if the active cores have the same power consump-
tion.

The second part (illustrated in Figure 1.6) shows two scenarios differing from the pre-
vious ones (Figure 1.5) by considering realistic power consumptions resulting from ex-
ecuting applications on the cores. Specifically, two instances of two applications from
the PARSEC benchmark [41] (i.e., “x264” and “canneal”) are executed simultaneously
on the chip. Executing “x264” leads to higher power consumption than executing “can-
neal”. The resulting total power consumption on the chip is 217 W. These two scenarios
share the same number of active cores and the same positioning of active and dark cores,
but they differ in the application-to-core mapping.

82 80 78 76 74 72 70 68

Dark Core

Active Core

Scenario (2):
32 active cores

Non-Contiguous Active Cores
Application Mapping 2

[°C] Ptotal = 220 W
Tcrit = 80 °C

Legend:

Thermal Violations No Thermal Violations

Scenario (1):
32 active cores

Non-Contiguous Active Cores
Application Mapping 1

canneal

x264

Figure 1.6: Scenarios with different application-to-core mapping result in different ther-
mal maps, although the total power consumption and the positioning of active and dark

cores are the same in these scenarios.

As shown in Figure 1.6, although both scenarios have the same total power consumption,
i.e., 217 W, which is below TDP and the dark cores are in close vicinity to the active
cores, thermal violations occur only in scenario (2). This is because in scenario (2) the
instances of high-power application (“x264”) are mapped close to each other and allo-
cated to the interior cores, which have high susceptibility to temperature increase. In
contrast, in scenario (1), the instances of “x264” are mapped to the outer cores near the

7 1. Introduction

chip edges, where more heat can be dissipated.

According to this case-study, the power properties of applications and application-to-
core mapping have a significant impact on the generated temperature, and this impact
cannot be considered using power constraints.

It is noteworthy that many thermal management techniques have attempted to max-
imize performance while directly considering a temperature constraint. In particular,
they allow the system to operate at the maximum allowable power that keeps core
temperatures as close to a specified temperature constraint as possible. This, how-
ever, cannot be translated into maximizing the overall system performance, since these
techniques do not determine the number of cores that should be allocated to each multi-
threaded application, and also they do not consider application properties, such as TLP
and ILP to optimize their performance. Having these parameters to be determined or
considered calls for resource management solutions.

1.3 Aging Effects

As previously discussed, technology scaling and elevated temperature accelerate aging
mechanisms on transistors [42]. Among different aging mechanisms, Bias Temperature
Instability (BTI) has become one of the major reliability concerns due to its considerable
ability to degrade the electrical characteristics of pMOS and nMOS transistors [43]. In
particular, applied BTI leads to charge buildup within the gate dielectric and hence it
weakens the electric field. That increases the threshold voltage (Vth) of transistors [43]
over time. In effect, transistors with higher Vth switch more slowly due to the smaller
drain current (Id) as it is seen from the first order approximation of Id in Equation (1.1)2.

Id ≈ (Vdd − Vth − ∆Vth︸ ︷︷ ︸
due to aging

) (1.1)

Transistor delay ∝ 1

Id
⇒ aged transistors are slower

This slowdown in transistor speed leads to prolonging the critical path delay of the pro-
cessor (tcritpath) during its lifetime. However, the processor’s clock delay (tclk) is specified
at design time according to the nominal specifications of the processor (i.e., without any
increase in Vth). Hence, tcritpath might become longer than tclk during lifetime resulting
in timing violations and errors, as Figure 1.7 illustrates. This well-known phenomenon of
the gradual increase in Vth and hence in the delay of the processor’s paths is referred to
as long-term aging effects. The common practice to avoid aging-induced timing errors is
to add a time slack (guardband), referred to as tGB, to the clock delay, as Figure 1.7-(c)
shows.

Determining the width of tGB necessitates specifying an upper bound (constraint) for
the increase in the threshold voltage during the targeted lifetime, denoted as ∆V m

th . To
keep the amount of aging (i.e., Vth) below a predetermined aging upper bound ∆V m

th ,

2It is to be noted that only for the sake of simplicity, Equation (1.1) uses the simplified relation
between the transistor delay and the drain current of transistor which does not consider the MOSFET
short channel effects. However, the aging modeling in this dissertation employs a detailed modeling of Id
using the state-of-the-art industrial standard compact modeling for MOSFET (Berkeley Short-channel
IGFET Model (BSIM)) [44, 45].

1. Introduction 8

Timing violation!

tGB

(a) Before Aging (b) After Aging (c) After Applying Guardband

tclk tclk tclk

tcritpath tcritpath tcritpath

tclk
nom tclk =

tcritpath = tclk

tclk
nom tclk =

tcritpath > tclk

tclk
nom tclk =

tcritpath = tclk

+ tGB

Figure 1.7: A preliminary example illustrating the impact of aging on the critical path
delay of the processor during its lifetime. To avoid timing violations induced by aging,

a timing guardband tGB can be added to the processor’s clock delay.

state-of-the-art techniques impose conservative temperature and Vdd bounds.

The drawback of this practice is that the resource management’s goal of maximizing
performance is then limited by such conservative bounds.

Although the aging constraint can be enforced, the problem, however, does not end here
as the work proposed in [46] has (through measurements) discovered that a “sudden”
increase in the critical path delay of the processor temporally arises during applying
DVFS, and particularly when the voltage of the processor (Vdd) is downscaled. This
phenomenon has been also studied in [28], where it is demonstrated that the conjunc-
tion between voltage scaling and the increase in the threshold voltage (∆Vth) results in
increases in the critical path delay that are observable in short time scale (i.e., in order
of microseconds). These effects are referred to as short-term aging. To compensate for
this additional temporal increase in the critical path delay, a guardband wider than tGB
is required. Intuitively, a wider guardband leads to higher performance losses.

As a result, these recently discovered aging effects will challenge the efficacy of DVFS,
which is an essential means to optimize for performance.

1.3.1 Guardband Types

As illustrated in Figure 1.7, timing violations can be avoided by adding a guardband to
the clock delay. That implies that the operating frequency of the processor needs to be
reduced as shown in the following equation:

fGB =
1

t nomclk + tGB
< fnom =

1

t nomclk

(1.2)

There, fnom refers to the nominal frequency without any reduction. This type of guard-
banding is referred to as frequency guardband (F GB). The disadvantage of F GB is
that it prohibits the system from utilizing the possible full speed of the processor, and
hence limiting the performance.

As an alternative to frequency guardband, some state-of-the-art guardbanding tech-
niques suggest applying a voltage guardband. Particularly, to compensate for the reduc-
tion in the Id shown in Equation (1.1), a voltage guardband can be added to the supply
voltage Vdd, as Equation (1.3) shows, ensuring that any increase in Vth due to aging will

9 1. Introduction

always be compensated for. Thus, the processor can still be clocked with the nominal
frequency without exhibiting timing errors, even though aging effects may occur during
its lifetime.

V GB
dd = V nom

dd + ∆Vth > V nom
dd (1.3)

This type of guardbanding is referred to as voltage guardband (V GB). The disadvantage
of V GB is that the power consumption will be increased, since Vdd has been increased.

State-of-the-art techniques determine at design time of the processor (circuit level) to
employ either frequency guardband (F GB) (e.g., [47]) or voltage guardband (V GB)
(e.g., [48]) with respect to the system requirements. For instance, when the performance
of the targeted system cannot be scarified, V GB is employed as it enables using the
nominal frequency without any reduction. For low-power systems, F GB is employed
since it does not lead to a power increase. However, this traditional view of the impact
of the guardband type is only valid at the circuit level. Traversing towards the sys-
tem level, V GB is not necessarily able to sustain the performance (as revealed by our
case study that will be presented in Chapter 9). This is because V GB increases the
power consumption which may lead to thermal violations. Consequently, DTM will be
triggered leading to performance losses. Hence, the performance would decrease unlike
what is expected.

Thus, selecting a fixed guardband type at the circuit level might not be efficient at
the system level.

1.4 Key Challenges

This dissertation proposes to solve the problem of performance optimization under tem-
perature and aging constraints through resource management decisions at the system
level. Such resource management needs to address the following challenges:

The current practice to cope with thermal issues within resource management is to em-
ploy the TDP as a chip-level power constraint. However, adopting a chip-level power
constraint is not enough to avoid thermal violations. Thermal violations, in turn, trig-
ger DTM on the chip, which downscales V/f levels and/or power-gates cores with the
purpose of reducing the temperature. That, however, contradicts resource management
decisions and ultimately hinders it from achieving its goal of performance maximization.
Additionally, there are several factors that affect the core temperatures and must be con-
sidered by resource management to solve the problem of performance optimization under
temperature constraint. These factors are the positioning of active and dark cores within
the chip, the diverse power properties of the applications and the application mapping
to the cores.

Significantly, the problem will be even more complicated for heterogeneous multicore
chips, where the power and performance characteristics of applications significantly dif-
fer from a core type to another. Moreover, thermal characteristics of heterogeneous mul-
ticores are also different. Even if two heterogeneous cores have the same power value, the
resulting temperatures, the two exhibit, might be different if they have different areas.
Thus, these different characteristics need to be taken into account when optimizing the
performance of heterogeneous multicore chips under temperature constraint.

1. Introduction 10

The current approach to prevent aging-induced timing errors is to add a timing guard-
band to the clock delay. Determining the necessary guardband width necessitates spec-
ifying an upper bound for ∆Vth. This upper bound or so-called aging constraint is
typically satisfied by enforcing conservative temperature and Vdd bounds. That, how-
ever, limits the system performance. Nevertheless, the determined guardband width
might still not be enough to avoid timing errors, due to short-term aging effects that
might be stimulated by DVFS. Consequently, a wider guardband is required to compen-
sate for the delays induced by long and short-term aging effects, or using DVFS should
be limited. Besides the guardband width, the guardband type has a significant impact
on the system performance. Typically, the guardband type is selected at the circuit
level. However, its impact on the system performance cannot be accurately estimated
irrespective of the running workload at the system level.

1.5 Dissertation Contributions

To cope with the aforementioned challenges, this dissertation makes the following con-
tributions with the goal to maximize the performance under temperature and aging
constraints. An overview of the dissertation contributions is shown in Figure 1.8.

Dark Silicon-Aware Resource Management
First a novel dark silicon-aware resource management, named DsRM, is presented.
DsRM aims at maximizing the overall system performance in multicore chips under
temperature constraint. To achieve its goal, DsRM determines the number of cores that
should be allocated to each application and the V/f level of these cores, while taking
into account the the ILP and TLP of the applications. Furthermore, DsRM maps the
applications to the chip considering their power consumptions. Particularly, high-power
applications are mapped to the cores that have high susceptibility to dissipate heat (e.g.,
the cores near the chip edges). Moreover, the positioning of dark cores is selected to be
in close vicinity to the active cores that execute high-power applications, to facilitate
dissipating the generated heat on the active cores, and hence reducing the tempera-
tures of the active cores. That might allow to increase the V/f levels leading to further
performance improvement.

Power Density-Aware Resource Management
For heterogeneous tiled multicores, where the problem of performance optimization un-
der temperature constraint becomes more complicated, we introduce power density as a
novel system-level constraint to abstract from thermal issues. Nevertheless, the adopted
power density constraint is derived based on the thermal model of the chip such that it
guarantees avoiding thermal violations. Then, a resource management PdRM technique
is developed to assign applications to tiles by choosing the number of parallel threads of
each application and the V/f level of each tile, such that the power density constraint is
satisfied. Moreover, PdRM adapts the power density constraint at runtime to consider
the resulting power consumptions of the running applications on the heterogeneous cores,
and to react to the workload changes. This adaptation enables exploiting any available
thermal headroom on the cores, and that, in turn, helps maximizing performance.

Aging-Constrained Resource Management
To enable maximizing performance under an aging constraint, a new aging-aware design
space is explored which translates temperature and Vdd into the amount of aging, quanti-
fied by ∆Vth, using an accurate physics-based aging model. Then, an aging-constrained

11 1. Introduction

Application Level

System Level

Dark-Silicon-Aware Resource
Management (DsRM)

Power/
Performance

 Tables

Hardware Level Power-On
(Active)

Power-Gated
(Dark)

V/f Level

Dissertation Contributions

……
M

u
lt

ic
o

re
 C

h
ip

Core Core Core

Core Core Core

Core Core Core

…..

…..

…..
…

…

Application K Application 2 Application 1

Threads Threads Threads

Power-Density-Aware
Resource Management (PdRM)

Aging-Constrained Resource
Management(AgRM)

Aging-Aware Boosting
(AgBoost)

Thermal-Aware
Guardbanding (sGuard)

Multicore
Architecture

Constraints:
TDP, 𝑇𝑐𝑟𝑖𝑡, ∆𝑉𝑡ℎ

𝑚

 Thread-to-
Core affinity

 Core Power
States

Core/Tile
V/f Levels

 Guardband
Type & width

Guardband
type

Power State

V_GB

F_GB

Thermal &
Aging Models

Inputs/Outputs

Application
Workload

Application Profiling

 #Parallel Threads
of Applications

Figure 1.8: An overview of the contributions presented in this dissertation.

resource management technique AgRM is tailored to fully exploit the performance/aging
trade-off within this design space without the restrictions inherent to current state-of-
the-art. More specifically, AgRM adjusts the system level parameters, i.e. the number
of parallel threads of the applications and the V/f levels of the cores, such that the
performance is maximized under an aging constraint.

Aging-Aware Boosting
To provide a deeper insight about the recently-discovered short-term aging effects, a
timing analysis is conducted at the circuit level to demonstrate how the conjunction
between ∆Vth and DVFS influences the processor’s critical path delay. This analysis
enables estimating the induced delays by both long-term and short-term aging effects
as well as the required guardband to compensate for these delays. Furthermore, the
impacts of a traditional DVFS-based boosting mechanism on long-term and short-term
aging effects are analyzed. Such analyses help to derive a boosting mechanism that
limits the stimuli of these effects, and hence reducing aging-induced delays. As a result,
the required guardbands to compensate for these delays are reduced. On that basis, a
comprehensive, yet efficient, boosting technique is proposed in this dissertation that is

1. Introduction 12

able to maximize the performance, while at the same time minimizing the long-term
and short-term aging effects.

Thermal-Aware Guardbanding
The impact of the different guardband types (i.e., V GB and F GB) on the system per-
formance is investigated. This investigation reveals that the generated temperatures by
running the workload have the potential to play a key role in determining the appropri-
ate guardband type with respect to the system performance. Therefore, a thermal-aware
guardbanding technique, named sGuard is proposed to select the guardband types at
runtime according to the the workload-induced temperatures aiming at optimizing for
performance under temperature and reliability constraints. Moreover, different guard-
band types for different cores can be selected simultaneously when multiple applications
with diverse properties suggest this to be useful. Our dynamic guardband selection,
which can be considered as a paradigm shift in designing guardbands, allows for a higher
performance compared to techniques that employ a fixed (at design time) guardband
type throughout.

1.6 Dissertation Outlines

The remainder of this dissertation is organized as follows:

• Chapter 2 discusses the related work that either concerns the problem of perfor-
mance optimization under temperature and aging constraints or the dual problem.

• Chapter 3 presents the adopted system model in this dissertation, which consists
of power, thermal, aging, and application models.

• Chapter 4 explains the utilized simulation tools throughout the dissertation.

• Chapter 5 presents the details of the dark silicon-aware resource management
technique.

• Chapter 6 presents the power density-aware resource management technique for
heterogeneous multicores.

• Chapter 7 introduces a new aging-aware design space exploration and a resource
management technique that exploits this design space to maximize the performance
under aging constraint.

• Chapter 8 presents the proposed aging-aware boosting technique.

• Chapter 9 presents the thermal-aware guardbanding technique.

• Chapter 10 concludes the dissertation and discusses future work.

Chapter 2

Related Work

This chapter summarizes the related work to the problem of performance optimization
under temperature and aging constraints. We categorize the related work into three main
categories which are resource management techniques, thermal management techniques
and aging management techniques. Under each of them, sub-categories might be defined.

2.1 Resource Management Techniques

The need to employ resource management techniques is becoming more and more press-
ing due to the continuous increase in the number of cores on chip. In response to this
need, many resource management techniques have emerged using different policies and
considering different constraints. The main task of resource management is to distribute
the cores among multi-threaded applications that run simultaneously on the chip. The
objective is to maximize the overall system performance. The work proposed in [49]
distributes the cores among the applications based on the speedup curve of each appli-
cation. More cores will be assigned to the applications which have higher speedup gain.
The speedup model is based on an enhanced version of Downey’s speedup models [50]
for parallel applications. Similar work is presented in [51], but additionally the hetero-
geneity of the cores is considered. In [52], an adaptive clustering policy is proposed to
distribute the resources among the applications. Each application is assigned to one
virtual cluster, so that the cluster adapts and changes its size at runtime to increase
the performance of its application. The proposed policy in [53] maps the applications
to the chip, so that the fragmentation of the chip is reduced as much as possible. Re-
ducing the fragmentation allows better mapping for new arriving applications, which,
in turn, improves the performance of the system. The work of [54] has proposed an
incremental mapping algorithm that maps the applications to the cores so that the re-
quired communication between the application tasks over NoC is reduced. None of these
techniques [49, 51–54] considers power or temperature constraints.

As a response to the challenges stemming from elevated temperatures on the chip, like
dark silicon, researchers have started to enforce power constraints by resource manage-
ment as an abstraction from thermal issues. The reason for avoiding to directly deal with
temperature constraints is that the complexity of resource management that allocates
cores to multi-threaded applications is known to be NP-hard problem [49]. Considering
temperature will further increase the complexity of the problem. Therefore, to avoid

13

2. Related Work 14

further complexity, chip-level power constraints are considered instead. To enforce a
chip-level power constraint, resource management techniques consider it as a power
budget for the chip and distribute it among the applications similar to the cores. For
example, the presented work in [55] distributes a power budget among the applications,
and then each application distributes its power quota among its threads according to
their criticality. Based on their determined power quota, the V/f levels of the cores are
selected. An auction-based multi-agent system is introduced in [56] which distributes
a chip-level power budget among the chip clusters and determines the number of ac-
tive cores of each cluster based on their assigned power budgets. In [57], a hierarchical
resource management technique for tiled heterogeneous architecture is presented aim-
ing at maximizing the overall system performance without exceeding the TDP. This is
achieved by employing PID controllers that allocate cores to applications and adjust the
V/f levels of the tiles, considering the given goal and constraint. A resource manage-
ment technique presented in [58] employs linear programming to determine the number
of cores allocated to each application considering the power and performance character-
istics of the applications. A new concept for power budgeting, named TSP, is presented
in [18] which provides a thermally-safe per-core power constraint based on the thermal
model of the chip and the number of active cores. However, as shown in Figure 1.6,
applications can lead to diverse power consumptions on the cores, and thus considering
the same power constraint (e.g.,TSP) for all cores hinders potential performance gains.

As a result, none of the resource management techniques that distribute the cores
among the applications directly consider temperature constraints. In contrast, this
dissertation presents resource management techniques that distribute the cores among
the applications aiming at maximizing the overall system performance while at the
same time satisfying temperature constraints.

2.2 Thermal Management Techniques

A large body of system-level techniques has emerged to control the temperature on the
chip. A class of these techniques targets the problem of performance optimization under
temperature constraints. Another class aims at optimizing the thermal profile of the
chip in order to mitigate the severe impacts of temperature on reliability. These two
classes are explained in Section 2.2.1 and Section 2.2.2, respectively.

2.2.1 Performance Optimization under Temperature Constraints

Several system-level approaches aimed at optimizing performance under temperature
constraints. Some of them attempted to achieve this goal by mitigating dark silicon
problem and thereby enabling the activation of more cores on the chip. In particular, the
technique proposed in [59] allows exceeding the TDP constraint for a very short period
of time, in order to activate some extra cores and thereby increase the performance
of the multi-threaded applications. To dissipate the additional heat generated during
this period, a phase-change material is utilized in the thermal packaging. In [60], an
application mapping technique exploits dark silicon to balance the temperature of active
cores. As a result, a higher power budget can be used to increase performance without
leading to thermal violations. In particular, the applications are greedily mapped to the

15 2. Related Work

coolest regions on the chip and then the mapping inside the regions are determined to
distribute the heat as much as possible. The technique in [61] determines the mapping
of application threads to the cores and hence the locations of dark cores, so that the core
temperatures are reduced. As a result, more cores can be activated to run more threads
and thereby the performance is increased while the core temperatures are kept below
a predetermined temperature constraint. This thread-to-core mapping also account for
the impact of process variations on the speed and the power of the cores. Additionally,
to reduce the overhead of making such decisions at runtime, a lightweight temperature
prediction mechanism is utilized to estimate the resulting temperature distribution for
candidate solutions. The drawback of these techniques (i.e., [59–61]) is that they do
not consider DVFS within their decisions, although DVFS has been widely adopted by
multicore processors, because it provides fine-grain control with the power and the speed
of the cores.

Therefore, several techniques can be found on the literature that employ DVFS to achieve
the goal of performance optimization under temperature constraint. An early approach
is presented in [62], which introduced a closed-loop thermal controller that iteratively in-
crease the V/f levels of the cores to maximize the performance without leading to thermal
violations. A similar approach is presented in [63], but distributed thermal controllers
are employed on the cores in order to provide scalability with the increasing number
of cores. A thermal management technique is proposed in [64] to assign tasks to cores,
besides adjusting the V/f levels of the cores, aiming at maximizing performance under a
predetermined temperature constraint. Similarly, the technique proposed in [65] assigns
tasks to cores and adjusting the V/f levels of the cores, but additionally heterogeneous
multicores are considered. The main drawback of these two techniques, i.e., [64, 65], is
that they ignore the lateral heat flow between the cores in order to reduce the time com-
plexity of their algorithms at runtime. Ignoring the lateral heat flow might be acceptable
in the adopted architectures by those techniques. Specifically, in [64] the floorplan of
the adopted multicores has four cores separated by four large L2 caches. That in turn
reduces the lateral heat flow between the cores. The proposed technique in [65] is imple-
mented on Exynos 5 Octa (5410) chip [66]. This platform has two tiles with two cores
each. These tiles are separated by a substantial distance, and thereby the heat flow be-
tween the cores of these tiles is found to be negligible. However, in general ignoring the
heat flow between cores is unrealistic assumption in the recent multicores, where more
cores are integrated on the chip near each other, e.g. Intel Xeon Phi [33]. Moreover, our
case study presented in Section 1.2.1 demonstrates the influence of the heat flow between
the cores on the temperatures. A selective boosting technique (seBoost) is presented
in [14] based on an Resistance-Capacitance (RC) thermal network that does consider
the lateral heat flow between the cores. seBoost upscales the V/f levels of the cores that
execute high-priority applications to satisfy their performance demands. Meanwhile, it
downscales the V/f levels of the cores that execute low-priority applications, so that no
thermal violations occur. To be able to select these V/f levels that satisfy the perfor-
mance demand and avoid thermal violations, seBoost requires prior knowledge about
the applications, i.e., their performance and power consumptions at different V/f levels.

The state of the art for maximizing performance under temperature constraints without
depending on prior knowledge of the applications is the DVFS-based turbo boosting
technique, which is widely adopted by several processor manufacturers like Intel Turbo
Boost [67, 68] and AMD Turbo Core [69]. The Intel Turbo Boost technique has been
first implemented in Nehalem architecture at 2008 [67], but it is still adopted in the
recent Intel processors, like Intel Core i7 [68]. In order to maximize the performance,

2. Related Work 16

boosting techniques allow processor cores to run faster than the base operating frequency
and hence they can exceed TDP. To keep the processor operating within safe margins, a
simple closed-loop control system is employed to upscale the V/f level of the cores when
the power and temperature are below specific limits, and downscale it otherwise. These
techniques have shown superiority in improving the performance [70], and therefore,
processor manufacturers keep improving and implementing these techniques with the
new generations of the processors [68].

All of these techniques presented under this category attempted to optimize perfor-
mance under temperature constraints by allowing the system to run at the maximum
power level that keeps core temperatures as close to a specified temperature con-
straint as possible. This is, however, cannot be translated into maximizing the overall
system performance (the target of this dissertation), since the problem of resource
allocation (distributing the cores among application) has not been addressed by these
techniques. Moreover, the application characteristics; TLP and ILP, which have a
significant impact on the system performance, have not been considered.

2.2.2 Temperature Optimization

Optimizing for temperature means minimizing temperature and/or balancing it among
the cores on the chip. That allows mitigating reliability concerns induced by high tem-
peratures and high variations.

Several techniques optimize for temperature by mitigating hot spots on the chip and
balancing the temperature between the cores. This problem has been solved optimally at
design time using integer linear programming for a known set of tasks as presented in [71].
Contrarily, the work in [72] presents a runtime task allocation policy that balances the
workload among the cores based on the predicted temperatures. If a thermal imbalance
is predicted between the cores, the tasks will be migrated from the hottest core to the
coldest one. The number of task re-allocations is bounded to reduce the performance
overhead of such a technique. The temperature is predicted using auto-regressive moving
average model. Another technique in [73] proposes a distributed thermal management
that aims at balancing the temperature and the workload throughout the chip. For
this purpose, it migrates tasks between only neighboring cores, so that the overhead
of task migration is reduced. Similarly, the technique proposed in [74] migrates tasks
among the cores to balance the temperature throughout the chip. To achieve their goal,
these thermal management techniques rely solely on task migration which comes with
a significant performance cost [75], while using DVFS leads to a cubic power reduction
with an expense of linear performance degradation [64].

Therefore, several techniques (e.g., [76–80]) employ DVFS to optimize temperature.
The work in [78] presents a distributed thermal management technique, referred to as
TAPE. The TAPE approach focuses on balancing the power consumptions and thereby
the resulting temperatures over a multicore architecture while at the same time meeting
the performance constraints of the running tasks. This is achieved by incorporating
an agent system, in which each agent is responsible for adjusting the V/f level of one
core. In particular, based on the temperature of its own core, an agent can trade the
so-called power units with its neighboring agents, based on the current temperatures of
their cores. When an agent receives additional power units, it upscales the V/f level of
its core, and downscales it otherwise. During runtime, if an agent does not have enough

17 2. Related Work

power units to meet the performance constraint of the currently running task, the task
will be migrated. A similar goal is targeted by the work in [79], but with considering
a tiled architecture, in which each tile has its own domain of V/f levels and the cores
inside each tile share the same V/f level. Therefore, a hierarchical thermal management
approach is used by employing high-level agents at the tile level, and low-level agents at
the core level.

As mentioned above, the techniques in this category do not have the same goal as
this dissertation. Specifically, they optimize for temperature, while this dissertation
optimizes for performance under temperature constraints.

2.3 Aging Management Techniques

This section discusses the state-of-the-art techniques that optimize for performance un-
der an aging constraint (Section 2.3.1) and the techniques that optimize for aging at the
system level (Section 2.3.2). Additionally, Section 2.3.3 summarizes guardbanding-aware
techniques.

2.3.1 Performance Optimization under Aging Constraints

Few recent works share with this dissertation the goal of improving the performance
under aging constraints, like those proposed in [81], [82], [83]. In [81], a resource man-
agement technique is presented to control the aging of the chip at runtime. If the aging
constraint is violated at any point of time, the presented technique downscales the V/f
levels of the cores proportional to the amount of the aging constraint violation. The
purpose of the V/f level downscaling is decreasing the temperature of the cores and
hence improving the aging. The drawback of this technique, however, is that it does
not consider the positive impact of reducing the Vdd on the aging, and that, in turn,
leads to dispensable V/f level downscaling and thereby performance losses. In [83], a
runtime application mapping scheme is proposed aiming at maximizing the performance
under an aging constraint, while considering applications with various communication
characteristics. The proposed scheme meets the aging constraint in a long-term scale.
That is, if the application is communication-intensive, it is mapped to a near-square area
to reduce communication overhead. In contrast, the computation-intensive applications
are mapped to an area with a higher dispersion to avoid increasing temperature and
accelerating aging. The limitation of this technique is that it does not consider DVFS.

In contrast to these techniques, the work proposed in [82] considers the impact of both,
the temperature and Vdd, on the aging. In particular, it estimates the maximum values
of the voltage and the temperature that should not be exceeded in order to meet the
targeted aging constraint. These values are used as references by a resource management
technique that assigns the tasks to the cores and determines the V/f levels of the cores in
order to improve the performance without exceeding the reference values of the voltage
and temperature. This is, however, conservative, because it enforces one temperature
constraint suitable to the selected reference value of the voltage rather than determining
the temperature constraint based on the selected V/f level as proposed in Chapter 7.

2. Related Work 18

In summary, state-of-the-art techniques aim at keeping the aging below a specific
constraint, by enforcing conservative bounds on the temperature and Vdd. These
conservative bounds hinder resource management at the system level from maximizing
the performance.

2.3.2 Aging Optimization

Optimizing for aging means minimizing it or balancing it among the cores. That allows
increasing processor lifetime. Several techniques have emerged aiming at minimizing
aging effects by reducing the delays induced by aging mechanisms in multicores. In [84],
a task mapping technique is proposed in order to minimize NBTI-induced aging while
satisfying performance demands. In particular, the aging (i.e., ∆Vth) on the cores is
monitored using aging sensors as described in [85]. When a core becomes weak according
to a predetermined weakness-criterion, the technique checks the availability of a healthier
core. If there is a healthier core available, the task will be migrated to it allowing to
reduce the temperature of the weak core and hence it can recover. Otherwise, the
task will not be migrated in order to keep satisfying performance demands. The work
presented in [86] aims at minimizing and balancing the NBTI-induced aging as much
as possible without considering a performance constraint. Specifically, it balances the
workload and thus the temperatures among healthy cores only, while keeping weak cores
inactive in order to recover. An aging aware register file allocator (ARGO) is proposed
in [87] for general-purpose graphic processing units (GPGPUs). This allocator uniformly
distributes the stress and hence the generated heat throughout the register file without
any performance penalty. That allows minimizing the aging on the register file, which is
the most highly stressed GPGPU components. The technique presented in [88] assigns
the tasks to the cores so that the peak temperature is minimized and the thermal cycles
on the cores are mitigated. The goal is to reduce the aging effects induced by both NBTI
and electro migration. All of these aforementioned techniques consider the temperature
as the only means to decelerate aging. However, the voltage of the processor has even a
more significant impact on aging mechanisms [89] and it should be considered.

An early approach proposed in [90] considers the impact of reducing voltage on aging,
and therefore it statically reduces the maximum allowed voltage level of the processor at
specific points during its lifetime, in order to decelerate the aging. A dynamic reliability
management is presented in [91] that employs DVFS, in order to mitigate NBTI- and
TDDP-induced aging effects. A comprehensive aging management (ARTEMIS) is pro-
posed in [92] that aims at minimizing the aging in both the cores and the NoC routers.
This is achieved through balancing both computations and communications among cores
and routers by means of application-to-core mapping, NoC routing path allocation, and
DVFS.

As can be noticed, some of these techniques (e.g., [87]) decrease the temperature of
the cores to reduce aging, while others (e.g., [92]) decrease both the voltage and the
temperature, resulting in a more significant reduction in aging. Regardless of their
utilized means to minimize the aging, these techniques target a different goal from the
targeted one in this dissertation, which is optimizing performance under temperature
and aging constraints.

19 2. Related Work

2.3.3 Guardbanding Techniques

Typically, the required guardband width is estimated at the design time of the proces-
sor (circuit level) either by means of aging models [47, 93] or through measuring the
increase in the processor delay after testing a prototyping chip under accelerated aging
conditions [94]. Hence, the guardband width is set to compensate for worst-case de-
lays. This is, however, pessimistic and prevents exploiting the current capabilities of the
processor. Motivated by that, guardbanding techniques (e.g., [95–98]) have emerged to
adapt the guardband width to compensate for the actual delay increase in the processor’s
paths at runtime. The technique of [95] proposes to adapt the width of the guardband
that compensates for the delays induced by long-term aging effects in order to maintain
the optimal performance of an aged circuit. A more recent technique [28] presents an
adaptive guardbanding that compensates for the delays induced by both long-term and
short-term aging effects. There is another class of techniques that focuses on reduc-
ing the guardband that compensates for voltage noises and fluctuations, e.g., [97, 98].
In particular, in [97] a thread scheduler is proposed in order to control the activity
within the multicores so that the voltage is smoothed and thereby a reduced voltage
guardband will be enough to avoid timing errors. In [98], a synchronization mechanism
between threads is used in order to eliminate voltage fluctuations, thereby reducing the
voltage guardband. A more comprehensive guardbanding technique is presented in [96]
determines the width of the necessary guardband to sustain reliability according to the
monitored critical path delay of the processor at runtime, which is influenced by both
voltage fluctuations and aging effects.

More precisely, although these guardbanding techniques adapt the guardband width
at the system level considering the workload, they still employ one fixed guardband
type throughout the lifetime of the processor. In contrast, this dissertation suggests
selecting the guardband type dynamically with regard to the running workloads, which
allows additional potentials for performance optimization.

Chapter 3

System Model

This dissertation considers both homogeneous and heterogeneous multicore systems.
This chapter illustrates the adopted hardware model, power model, thermal model and
application model that are used for these multicore systems.

3.1 Hadware Model

The considered multicore systems are tiled architectures with L tiles. Every tile ` has
N` cores. N` ∈ [1, N], where N is the total number of cores, i.e., N =

∑L
`=1N`. In

homogenous multicore systems, the cores are identical and N` is identical for all tiles.
While in heterogeneous systems, the tiles might have different types of cores τ1, . . . τmax
and also different N`. Each tile has an L2 cache memory shared between its cores.
Moreover, the L2 caches of the tiles are fully coherent.

This dissertation focuses on two DVFS policies; per-core DVFS and per-tile DVFS. In
per-core DVFS policy, each core may operate at different voltage Vdd and frequency f
levels. A minimum voltage Vdd is necessary for a core to stably run at a given frequency
f . In order to avoid consuming unnecessary power, the voltage Vdd of a core is always
set to the minimum value so that a stable execution can be achieved on the core for the
desired frequency f . These V/f levels are enumerated as {V F1, V F2, . . . , V FY }, where
Y is the number of the V/f levels available on the chip. Hence, V FY is the maximum
V/f level of the cores. The selected V/f level for core i is denoted as vf core

i . In per-tile
DVFS policy, all cores inside a tile share the same V/f level. In heterogeneous systems,
each tile has its own range of V/f levels. We enumerate the available V/f levels of tile
` as {V F`,1, V F`,2, . . . , V F`,y}, where V F`,y is the maximum V/f level of tile `. The
selected V/f level for tile ` is denoted as vf tile

` .

Each core has two power states: active (i.e., power-on) or dark (i.e., power-gated). Ac-
tive cores can run at different speeds according to their V/f levels. The total power
consumption of core i is denoted as pi and comprises dynamic and leakage power. Dy-
namic power relies on workload activities on the core, i.e, the running application on
the core and the selected V/f level of the core as shown later in the application model.
However, the leakage power relies on only the voltage Vdd and the core’s temperature.
The dynamic and leakage power consumptions of the cores are obtained using the state-
of-the-art power model McPAT [40] as elaborated later in the next chapter.

21

3. System Model 22

3.2 Application Model

The application model consists of K multi-threaded applications, of which each can be
mapped to a set of cores so that application threads can run in parallel on these cores.
Each core can execute one thread at a time; which is a suitable model for multicore
systems [99]. These applications are malleable, i.e., they can adapt the number of threads
dynamically at runtime according to the number of cores assigned to them [100]. The
number of threads of application k at a given time point is denoted as hk, such that
1 ≤ hk ≤ Hk, where Hk is the maximum number of threads of application k. To identify
application-to-tile assignment, a binary matrix A = [a`,k]L×K is defined. If application k
is assigned to tile ` then a`,k = 1, and a`,k = 0 otherwise. We assume that multiple
applications can be assigned to one tile, but each application is executed on only one
tile at any given time, such that

∑L
`=1 a`,k ≤ 1 for all k = 1, 2, . . . ,K. Similarly, to

represent application-to-core mapping, a binary matrix M = [mi,k]N×K is defined. If
application k is mapped to core i then mi,k = 1, and mi,k = 0 otherwise. Since only one

application thread can be executed at one core at a time, that implies
∑K

k=1mi,k ≤ 1

for all i = 1, 2, . . . , N . Moreover, it holds that
∑N

i=1mi,k = hk for all k = 1, 2, . . . ,K.

The set of cores that application k is mapped to is referred to as mapk. To avoid
synchronization stalls between the threads of an application, the cores of each application
(mapk) must be executed at the same speed. Thus, at a given time point, the cores that
execute application k must share the same V/f level denoted as vfk.

As aforementioned, the dynamic power of the cores is related to the running application.
The resulting power consumption of running the application is quantified according to
its number of threads hk and the V/f level vfk that its cores run at. Therefore, a
table Pk for each application is defined to store the average power consumption for all
possible values of the number of threads, h = 1, 2, . . . ,Hk, and all available V/f levels,
vf = V F1, V F2, . . . , V FY . When an application thread is mapped to a core, the average
power consumption on that core will be equal to Pk(hk, vfk)/hk, assuming that the
resulting average power consumptions on all application cores are similar.

Throughout this dissertation, two application performance metrics are used. The first
metric (used in Chapters 5, 6) defines the application performance as the inverse func-
tion of the execution time of the application. This performance metric is shown in
Equation (3.1), in which Ek(h, vf) indicates the execution time of application k, when
running h parallel threads and the V/f level of the cores is set to vf , and Rk(h, vf)
represents the corresponding performance.

Rk(h, vf) =
1

Ek(h, vf)
(3.1)

As seen in Equation (3.1), the execution time and thus the performance is related to
the number of threads the V/f level of the application. When hk and/or vfk are in-
creased, the execution time of the application will be reduced, and hence the application
performance becomes higher.

The second metric (used in Chapters 7, 8, 9) defines the application performance as a
ratio of the Instructions Per Second (IPS) of the application to its maximum IPS that
can be obtained at the maximum number of threads Hk and the maximum V/f level.

23 3. System Model

This performance metric is shown in Equation (3.2).

Rk(h, vf) =
IPSk(h, vf)

IPSk(Hk, V FY)
∈ [0, 1] (3.2)

Hence, the maximum possible performance for all applications is 1. This performance
metric enables direct and fair comparisons between diverse applications, because the
IPS of different applications might have a different order of magnitude and cannot be
directly compared without this normalization.

Similar to the power table Pk, the table Rk is defined to store the performance of
application k for all possible number of threads h = 1 . . . Hk, and all available V/f
levels, vf = V F1, V F2, . . . , V FY .

In the case of heterogeneous cores, a new dimension representing the core type must
be added to these tables, in order to store the resulting power and the performance of
application k considering all available core types τ1, . . . τmax, as shown in Figure 3.1. It
is important to note that these tables are obtained by profiling the applications at design
time as explained later in Chapter 4 and considered as inputs to the presented techniques
in Chapters 5, 6, 7, 8, and 9. Nevertheless, these techniques are not limited to how these
profiles are obtained; they can be obtained using other profiling tools like [101, 102]
either at design time or at runtime (similar to the technique proposed in [103]).

1 2 .. Y

1

2

3

:

K

1 2 .. Y

1
2
3
:
K

1 2 .. Y

1

2

3

:

H

hvf

τmax

τ2

τ1

V/f Levels

#
T

h
re

ad
s

Rk(τ,h,vf)

1 2 .. Y

1

2

3

:

K

1 2 .. Y

1
2
3
:
K

1 2 .. Y

1

2

3

:

H

hvf

τmax

τ2

τ1

V/f Levels

#
 T

h
re

ad
s

Pk(τ,h,vf)

Figure 3.1: The performance and power tables for the applications.

3.3 Thermal Model

The most widely thermal model adopted in architectural-level thermal analysis is the
RC thermal model [104], which is based on the well-known duality between thermal and
electrical circuits [105]. In particular, the heat flow can be described as a current. The
passing of this heat flow through a thermal resistance leads to a temperature difference
equivalent to the voltage drop resulting from the passing of the current through the
electrical resistance. Although the power flow changes instantaneously , there is a delay
before the temperature changes and reaches a steady state. Describing the heat flow
during time requires thermal capacitance. The combination of thermal resistance and
capacitance leads to exponential rise and fall times characterized by a thermal RC time
constant similar to the electrical RC constant.

This dissertation adopts an RC thermal network similar to [104], which models the heat
dissipation from the die to the ambient temperature. Figure 3.2-a shows the stacked
layers between the die and the ambient temperature that are considered by this thermal

3. System Model 24

Heatsink (hs)

Heat spreader

IC package

Thermal Interface
Material (TIM)

Silicon die

PCB

Tamb

Tcore

Pcore
Cdie

Chs

Rhs

Rdie-hs

a) Stacked Layers of IC package with heatsink b) Simple RC-thermal model

(

(

Figure 3.2: Sub-figure (a) illustrates the IC package layers considered by the employed
RC-thermal model in this dissertation. Sub-figure (b) shows a simplified RC-thermal

model.

Core
+

L1 Cache

L2 Cache

Core
1

Core
2

Core
3

Core
4

Core
9

Core
10

Core
11

Core
12

Core
17

Core
18

Core
19

Core
20

Core
25

Core
26

Core
27

Core
28

Core
1

Core
2

Core
3

Core
4

Core
9

Core
10

Core
11

Core
12

Core
17

Core
18

Core
19

Core
20

Core
25

Core
26

Core
27

Core
28

L2
L2

L2
L2

L2Core
+

L1 Cache

3
.4

 m
m

3.4 mm
5

.6
 m

m

0.8 mm 0.8 mm

0
.4

 m
m

3
.0

 m
m

3.2 mm

Figure 3.3: Examples of floorplans that can be considered by the RC-thermal model.

network. Figure 3.2-b illustrates a simplified RC thermal network that consists of only
three thermal nodes which represent the die, the heatsink, and the ambient temperature
Tamb. The temperature associated with each thermal node is represented by the volt-
age on the node. Thermal nodes are interconnected with each other through thermal
resistances. There is a thermal capacitance associated with every thermal node, except
the thermal node of the ambient temperature, because the latter is considered to be
constant for a long time. Only the thermal nodes that represent the die layer will be
connected with current sources to represent the power consumptions on the die.

The adopted thermal network in this dissertation is composed of Z thermal nodes to
represent the die, Thermal Interface Material (TIM), the heat spreader and the heatsink.
There are at least N thermal nodes, which belong to the die layer, so that each core on
the chip is represented by one thermal node. Besides the cores, there might be other
blocks on the chip, like L2 caches and memory controllers, which can be represented by
additional thermal nodes.

25 3. System Model

Figure 3.3 shows two examples of 4x4 homogenous multicore floorplans, where each
block on a floorplan corresponds to a thermal node in the RC thermal network. In the
first floorplan, each block represents a core, an L2 cache, or a memory controller. In the
second floorplan, the blocks have higher granularity, so that each block represents a core
with its L2 cache. The power consumptions of the cores and the other blocks on the
floorplan are the heat sources on the chip, and thereby the corresponding thermal nodes
in the RC thermal network are associated with current sources, as seen in Figure 3.2.

The temperatures of the thermal nodes can be calculated using the following system of
differential equations1:

ΛT′ + B̃T = P + TambG (3.3)

There, matrix Λ is a diagonal matrix that contains the thermal capacitance values of the
thermal nodes. Matrix B̃ contains the thermal conductance values between the nodes,
the values in column vector T = [Ti(t)]Z×1 are the temperatures on the thermal nodes,
where the first-order derivative of these temperatures with respect to time are stored in
column vector T′. The power consumptions of the thermal nodes are stored in column
vector P = [pi]Z×1. Column vector G = [gi]Z×1 contains the values of the thermal
conductance between each node and the ambient temperature Tamb.

When only considering the steady-state temperatures, the first-order derivative of the
temperature becomes zero, and thus (3.3) can be re-written as follows:

Tsteady = BP + TambBG (3.4)

The values in column vector Tsteady = [Ti]Z×1 are the steady-state temperatures on the

thermal nodes. Matrix B = [bi,j]Z×Z is the inverse of Matrix B̃ and it contains the
amount of the heat contribution of the thermal nodes.

Thus, the steady-state temperature of core i, can be calculated as follows:

Ti =
Z∑
j=1

bi,j · pj + Tamb

Z∑
j=1

bi,j · gj (3.5)

There, bi,j represents the heat contribution of node j into the temperature of node i,
pj is the power consumption of node j, and gj corresponds to the thermal conduc-
tance between node j and Tamb. For each core i,a constant ci is defined, such that
ci =

∑Z
j=1 bi,j · gj , since this term is a constant for each core. By substituting ci in

Equation (3.5), the following equation is obtained:

Ti =
Z∑
j=1

bi,j · pj + Tamb · ci (3.6)

Additionally, we can estimate the change in the steady-state temperature resulting due
to a change in the core power ∆pj , as follows:

∆Ti =

N∑
j=1

bi,j ·∆pj (3.7)

1The details of mathematical steps to reach to (3.3) are elaborated in details in [104].

3. System Model 26

For the considered multicore systems, the critical temperature (under which it is deemed
to be a safe range) is denoted as Tcrit.

3.4 Aging Model

In order to model the impact of aging, different abstraction levels must be jointly con-
sidered starting from the level where aging originates (i.e. the physical level) all the way
up to the level where they manifest themselves as delay increases (i.e., the circuit level).

Physical Level: In this dissertation, state-of-the-art physics-based aging model [43,
106] is employed. It precisely estimates the resulting number of interface and oxide
traps (i.e. ∆NIT and ∆NOT) due to Negative Bias Temperature Instability (NBTI) and
Positive Bias Temperature Instability (PBTI) effects for various aging stress conditions.
Each of these conditions corresponds to a combination of specific voltage (Vdd) and
temperature values that are applied to pMOS and nMOS transistors. The worst-case
aging stress corresponds to the combination of the maximum voltage V max

dd and the
worst-case temperature, Tcrit. The model has been validated against semiconductor
measurements for wide ranges of Vdd and temperature and the detailed equations and
validations are presented in [106].

Transistor Level: After estimating the number of interface and oxide traps (i.e. ∆NIT

and ∆NOT), the resulting threshold voltage increase ∆Vth can be estimated using Equa-
tion (3.8) similar to [43].

∆Vth =
q

Cox
· (∆NIT + ∆NOT) (3.8)

Figure 3.4 shows the estimated ∆Vth for various aging stress conditions that correspond
to the combinations of various temperature and Vdd values in the ranges [0 ◦C, · · · , 100 ◦C]
and [0.6 V, · · · , 1.4 V], respectively.

Figure 3.4: The in-
crease in Vth (i.e. ag-
ing) as a function
of Vdd and temper-
ature obtained with
a physics-based aging

model.

1.41.31.21.1
Vdd[V]
1.00.90.80.70.60Temperature[/C]

20406080

0.07

0.05

0.03

0.01

100

"
V

th
[V

]

Gate Level: Afterwards, any estimated ∆Vth value can be translated into the corre-
sponding delay increase at the gate level. To achieve that, varied combinational and
sequential cells from the open-source “NanGate” standard cell library [107, 108] have
been re-characterized using SPICE [109] to create an aging-aware standard cell library
in which the delay of every gate has been estimated under the effect that ∆Vth has on
pMOS and nMOS transistors. This is achieved by applying similar methods to what

27 3. System Model

proposed in [27, 110], For every gate, the SPICE simulation employs the Berkeley Short-
channel IGFET Model (BSIM) [44] along with the Predictive Technology Model (PTM)
of pMOS/nMOS transistors [111] after setting the threshold voltage based on the esti-
mated increase (∆Vth) at the transistor level.

Circuit Level: To analyze the impact of aging on increasing the delay of paths of
a circuit, a Static Timing Analysis (STA) available in standard EDA tool flows (e.g.
Synopsys [109]) is conducted for the circuit’s netlist using the aging-aware cell library
created in the previous step. This enables an accurately estimation of the total delay
increase due to aging in a circuit. This analysis is conducted for the open-source Berkeley
out-of-order Machine (BOOM) [112].

Circuit Level

Gate Level

Transistor Level

Physical Level

Creating Aging-Aware Cell Library
using SPICE, BSIM, PTM

Physics-based Aging Model

∆Vth

Synthesized
Processor netlist

Static Timing Analysis (STA)
using Synopsys

Estimating ∆Vth (Eq.(3.8))

Gates netlist
(NanGate)

A
gi

n
g

M
o

d
el

in
g

Aging-Aware Cell Library

∆NIT , ∆NOT

Processor’s Path
Delay

Stress Condition
(T, Vdd)

Figure 3.5: The adopted flow of modeling aging from physical level to circuit level [27,
110, 113].

3.5 Guardband Estimation

As aforementioned, the amount of aging, i.e., ∆Vth, can be estimated for any given
stress condition which corresponds to a combination of specific temperature and Vdd.
For estimating the required timing guardband (tGB) to compensate a specific ∆Vth, it
is necessary to estimate first the delay increase in the processor’s paths caused by ∆Vth
(aging-induced delay) through conducting the steps shown in Figure 3.5.

Since the adopted system model in this dissertation supports several V/f levels, and
hence various Vdd values, we estimate the aging-induced delay resulting from each of the
available Vdd values along with the maximum allowed temperature (i.e., Tcrit). Thus, the
difference between each of these delays and the corresponding processor’s clock delay
(without aging) indicates the required timing guardband. Figure 3.6 illustrates the
process of estimating the timing guardbands.

3. System Model 28

Synopsys Static
Timing Analysis (STA)

Synopsys Static
Timing Analysis (STA)

Aging-Aware Cell
Libraries

Synthesized
Gate-Level

Circuit’s Netlist

-

Guardbands
GB

Various Vdd Values

Aging-Unaware Cell
Libraries

Various ∆Vth Values Estimating ∆Vth

Figure 3.6: Estimation of timing guardbands considering considering various Vdd values.

In Chapter 9, different guardband types are utilized; which are voltage guardband
(V GB), and frequency guardband (F GB), but only the maximum V/f level, i.e., V FY
is used. Thus, estimating the width of voltage guardband is straightforward; it is equal
to ∆Vth at the maximum Vdd as shown in Equation (1.3). While estimating the width
of frequency guardband requires first estimating the timing guardband tGB similar to
what explained above but only for the maximum Vdd value. After estimating tGB, the
corresponding frequency guardband is calculated as shown in Equation (1.2).

Chapter 4

Experimental Framework

For the evaluation of the resource management techniques that will be presented in the
following chapters, a common experimental setup is utilized, while different homogenous
and heterogeneous multicore architectures are used. In homogeneous architectures, out-
of-order (O3) Alpha cores [114] are used. While in heterogeneous architectures, four
types of cores are used, which are O3 Alpha cores, simple Alpha cores, in-order ARM-A7
cores, and O3 ARM-A15 cores. In addition to these cores, the Tightly-Coupled Proces-
sor Arrays (TCPAs) are used as accelerators, further details about it are explained in
Section 4.1.1. In this chapter, the common experimental setup and the various multicore
architectures are illustrated.

4.1 Setup

An overview of the experimental framework is shown in Figure 4.1. This experimental
framework integrates the gem5 [39] and McPAT [40] simulators to simulate Alpha cores
using full-system mode. Additionally (for heterogeneous architecture), it integrates real
measurements for ARM cores from an Exynos 5 Octa (5422) chip [66] with ARM’s
“big.LITTLE” architecture and the post-synthesis results for TCPA from the Cadence
Encounter RTL Compiler.

For benchmarks, realistic multi-threaded applications from the PARSEC benchmark
suite [41] are utilized. This suit was designed to be representative of next-generation
shared-memory applications for multicore architectures. It contains different applica-
tions from many different areas such as computer vision, video encoding, and financial
analytics, etc. These applications can be executed on Alpha and ARM cores. Be-
sides PARSEC applications, additional computationally-intensive applications are used,
which are “SAD”, “Edge Detection”, “FIR”, “Optical Flow”, “Matrix Multiplication”,
and “Harris Corner” that can be executed either on Alpha and ARM cores as single-
threaded applications, or on the adopted TCPA accelerator, which provides the ability
of parallelizing these applications to speedup the execution.

For the simulations with gem5 and McPAT, each application is first executed in gem5
on the different types of Alpha cores (O3 and simple) and for all possible V/f levels
and for different numbers of parallel threads. From the output statistics of gem5, the
performance tables of the applications are built as illustrated in Section 3.2 and also

29

4. Experimental Framework 30

Resource
Management

gem5 McPAT

 Alpha Core
 Traces

Exynos 5
Octa

TCPA

 ARM Core
 Traces

 TCPA
Traces

Performance/
Power Tables

PARSEC
Applications

Computation-
intensive Applications

 Multicore Architecture Constraints:
TDP, 𝑇𝑐𝑟𝑖𝑡, ∆𝑉𝑡ℎ

𝑚
Rc thermal Network

Physics-based
aging models

Aging-Aware
DSE

Estimating
Guardbands

GB

HotSpot DTM
Power states, V/f

levels, Guardbands,
Thread-to-core aff.

Floorplan

Performance
Power

Temperature

Prepare
Workload

Implemented
Functionality

State-of-the-art
Tools

Input/output
Date

Tables
Legend

Figure 4.1: Overview of the experimental framework employed to evaluate the resource
management techniques presented in this dissertation.

the relevant statistics required by McPAT are extracted. Then, McPAT is executed in
order to estimate the areas and the power consumptions of the cores and other blocks in
the architecture, like L2 caches and memory controllers. These power statistics are used
to build the power tables of the applications, while the estimated areas of the different
blocks are utilized to build the floorplans of the employed mutlicore architectures as will
be explained in Section 4.2. For the measurements of ARM cores on the Odroid-XU3
platform, each application is executed on the different types of ARM cores (O3 and
in-order) for all possible V/f levels and for different number of parallel threads. During
execution, the power sensors of the cores are read and at the end the total execution
time is measured. For running the applications on TCPA, the codes are generated
using PARO [115], where the problem of resource constrained scheduling and binding
is solved by mixed integer linear programming (MILP) as described in [116]. PARO
contains a back end targeting programmable hardware accelerators. Here, for mapping
loop programs, symbolic parallelization techniques [117] are implemented as a compiler
transformation to partition and schedule loop nests using parametrized tile sizes. The
power and performance traces for the TCPA are derived based on post-synthesis results
from the Cadence Encounter RTL Compiler. Similar to the traces of Alpha cores, the
measurements for ARM cores and the traces for TCPA will be also used to build the
corresponding power and performance tables for the applications.

31 4. Experimental Framework

Time

V
/f

 L
ev

el
s

DTM cycle of downscaling
and upscaling V/f levels

DTM interval = 1ms

VF1

VF2

VF3

VF4

VF5

VF6 Figure 4.2: Illustrating a
control step of a stan-
dard DTM that typically
implemented in commer-
cial processors. The fig-
ure is adapted from the
data sheet of Intel Xeon

Phi [118].

The proposed resource management techniques need to estimate the temperatures within
their decision making process. Therefore, a thermal model is employed based on RC-
thermal network as explained in Section 3.3. To obtain the required metrics of the
adopted RC-thermal network, such as B and G in Equation (3.4), the HotSpot simulator
is utilized with its default configurations, which are: Chip thickness of 0.15 mm, silicon
thermal conductivity of 100 W

m·K , silicon specific heat of 1.75 ·106 J
m3·K , a heat sink of 6×

6 cm and 6.9 mm thick, heat sink convection capacitance of 140.4 J
K , heat sink convection

resistance of 0.1 K
W , heat sink and heat spreader thermal conductivity of 400 W

m·K , heat
sink and heat spreader specific heat of 3.55·106 J

m3·K , a heat spreader of 3×3 cm and 1 mm
thick, interface material thickness of 20 um, interface material thermal conductivity of
4 W

m·K , and interface material specific heat of 4 · 106 J
m3·K . The ambient temperature is

45 ◦C.

Moreover, this framework incorporates the aging modeling explained in Figure 3.5 in or-
der to enable the aging-ware design space exploration that will be presented in Chapter 7.
Also, the guardband estimation process (Figure 3.6) is incorporated to enable resource
management techniques to apply the required guardbands for sustaining reliability.

All of the previous steps are required to be prepared for one time (at design time) before
running the management loop. In particular, this framework employs a management
loop that runs at each time interval of 10 ms, similar to the scheduling epoch in Linux.
In this management loop, the proposed techniques and the comparison candidates (both
represented in this framework as ”Resource Management”) will first make their decisions
of allocating the resources to the applications of the current workload and mapping these
applications to the cores. The resulting transient temperature will be calculated using
the HotSpot simulator. We assume that the standard DTM technique is implemented
on the chip similar to commercial processors [33]. Thus, if the transient temperature of
any core exceeds the critical temperature Tcrit, DTM will be triggered to cool down the
cores. DTM has a control interval of 1 ms, since it is supposed to be implemented on
the hardware to provide a quick reaction to thermal violations. Thus, at each control
interval, DTM examines the transient temperatures and downscales the V/f levels to the
minimum level, if the temperature exceeds Tcrit. Otherwise, if it drops back below Tcrit,
DTM will upscale the V/f levels again to the original V/f level determined by the resource
management technique. Figure 4.2 shows details of the DTM technique implemented in
Intel Xeon Phi according to its data sheet. It is important to be noted that not all of
the presented resource management techniques will necessarily be executed at each time
interval. Some of them will be executed only when the workload changes, some of them
accept only a static workload and therefore they will be executed only one time at the
beginning of the management loop. The execution details of each resource management
technique will be clarified in the respective chapters.

4. Experimental Framework 32

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

Core
8

Core
9

Core
10

Core
11

Core
12

Core
13

Core
14

Core
15

Core
16

Core
17

Core
18

Core
19

Core
20

Core
21

Core
22

Core
23

Core
24

Core
25

Core
26

Core
27

Core
28

Core
29

Core
30

Core
31

Core
32

Core
33

Core
34

Core
35

Core
36

Core
37

Core
38

Core
39

Core
40

Core
41

Core
42

Core
43

Core
44

Core
45

Core
46

Core
47

Core
48

Core
49

Core
50

Core
51

Core
52

Core
53

Core
54

Core
55

Core
56

Core
57

Core
58

Core
59

Core
60

Core
61

Core
62

Core
63

Core
64

28.7 mm

2
4

.0
 m

m

L2
L2

L2
L2

L2
L2

L2
L2

Tile:
8 Cores

+ L2 Cache
+ Memory Controller

Core
+

L1 Cache 3
.0

 m
m

3.2 mm

Figure 4.3: The floorplan of a 64-core chip adopted in Chapter 5.

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

Core
8

Core
9

Core
10

Core
11

Core
12

Core
13

Core
14

Core
15

Core
16

Core
17

Core
18

Core
19

Core
20

Core
21

Core
22

Core
23

Core
24

Core
25

Core
26

Core
27

Core
28

Core
29

Core
30

Core
31

Core
32

Core
33

Core
34

Core
35

Core
36

Core
37

Core
38

Core
39

Core
40

Core
41

Core
42

Core
43

Core
44

Core
45

Core
46

Core
47

Core
48

Core
49

Core
50

Core
51

Core
52

Core
53

Core
54

Core
55

Core
56

Core
57

Core
58

Core
59

Core
60

Core
61

Core
62

Core
63

Core
64

27.2 mm

2
7

.2
 m

m

Core
+

L1 Cache

L2 Cache
3

.4
 m

m

3.4 mm

Figure 4.4: The floorplan of a 64-core homogeneous chip adopted in Chapters 7, 8,
and 9.

4.1.1 Tightly-Coupled Processor Arrays (TCPA)

The TCPA tile used in our experiments [119, 120] is a highly parameterizable archi-
tecture template, and thus offers a high degree of flexibility. The heart of this acceler-
ator tile comprises a massively parallel array of tightly coupled Very Long Instruction
Word (VLIW) Processing Elements (PEs) complemented by peripheral components such
as I/O buffers as well as several control, configuration, and communication companions.
This TCPA can exploit a parallel and direct PE-to-PE communication, where data is
streaming from the surrounding buffers through the array. Through the VLIW nature
of each PE and the parallel and synchronous execution of loop iterations assigned by
the compiler to each PE, the hardware accelerator nicely exploits both instruction- and

33 4. Experimental Framework

loop-level parallelism while achieving a better energy efficiency compared with general
purpose commercial off-the-shelf embedded processors [121]. Some parameters, such
as the number of PEs, basic interconnect topology, the number of functional units as
well as the register organization within the PEs, have to be defined at synthesis time,
whereas other parameters such as programmable delays between neighbor processors
and inter-PE interconnect selection can be reconfigured at runtime. Each PE at the
boundary can read/write data directly from/to a local buffer connected to it and each
PE can exchange data with its neighbor PE in a single cycle. In our experiments each
TCPA consists of the same number of 16 PEs each.

Since TCPAs are envisioned to be used as programmable accelerators in MPSoCs, there
is often the question how they differ from other accelerators, for example, embedded
general purpose graphics processing units (GPGPU) such as those used in smart phones
or tablets. From the architectural point of view, TCPAs and GPGPUs both have a
huge number of light-weight processing units. However, there exist also a few funda-
mental differences. The programming model of GPGPU is limited to perfect SIMD
parallelism and therefore may not handle any loop nests with loop-carried data depen-
dencies, whereas the TCPA used in this paper supports well the general case of kernels
for streaming applications including (multidimensional) loop-carried data dependencies.
For that reason, a TCPA tile is adopted in the proposed heterogeneous chip that it is
used as programmable massively parallel processor array to speedup a myriad of com-
putationally intensive applications like linear algebra and image processing algorithms.

ARM A15
Tile

O3 Alpha
Tile

Simple Alpha
Tile

TCPA
Tile

ARM A7
Tile

TCPA with 4x4
Processing Elements

O3 Alpha Core

Simple Alpha Core

ARM A15 Core

ARM A7 Core

TCPA Accelerator

L2 Cache

Extra Hardware

Figure 4.5: Five different types of tiles are considered in the heterogeneous architecture
employed in Chapter 6.

4.2 Multicore Architectures

This section explains the homogenous and heterogeneous multicore architectures that
are used for the experimental evaluations of the presented techniques in this dissertation.

4. Experimental Framework 34

4.2.1 Homogeneous Architecture

For our experiments in Chapter 5, a simulated 64-core chip is employed. This chip is
tiled-architecture similar to Intel’s Single Chip Cloud computer (SCC) [122], but with
more cores and more tiles. The number of the tiles in the system is 8. Each tile has 8
cores and one shared L2 cache of 2 MB, and a memory controller. Each core is an out-
of-order Alpha and composed by several units: an instruction fetch unit, an execution
unit, a load and store unit, an out-of-order issue/dispatch, and a private L1 cache.

The floorplan of the chip that will be used by HotSpot consists of 80 thermal blocks, one
for each core, and the rest of the blocks correspond to the L2 caches and the memory
controllers. Figure 4.3 shows the adopted floorplan, with its dimensions, where each core
has an area of 9.6 mm2. The combined area of the L2 cache and the memory controller
of each tile is 9.4 mm2.

For the experiments of Chapters 7, 8, 9, a chip composed of 64 out-of-order Alpha cores
is employed, and this chip has a 16 MB shared L2 cache physically distributed on the
cores. The tile in this chip contains only one core and its L2 cache. The floorplan of
the chip consists of 64 thermal blocks, one for each core and its L2 cache resulting in an
area of 11.96 mm2 for each block, as shown in Figure 4.4.

In these homogeneous cores, each core has its own voltage and frequency domain. The
minimum V/f level corresponds to a Vdd of 0.45 V and a frequency of 0.2 GHz, while the
maximum one corresponds to a Vdd of 0.45 V and a frequency of 0.2 GHz. The voltage
and frequency steps between the V/f levels are 0.05 V and 0.2 GHz, respectively.

O3 Alpha

O3 Alpha

O3 Alpha

ARM A15

Simple
Alpha

Simple
Alpha

ARM
A7

ARM
A7

ARM A15

TCPA

TCPA

TCPA

23.33 mm

1
9

.5
 m

m

Figure 4.6: The floorplan of the adopted tiled heterogeneous multicore architecture in
Chapter 6.

4.2.2 Heterogeneous Architecture

For the experiments in Chapter 6, a heterogeneous tiled multicore is considered with 94
heterogeneous cores, where 30 of them are TCPA accelerators (Figure 4.6). The adopted
heterogeneous multicores consists of 12 tiles of 5 different types with respect to the type
of the cores in the tile, as shown in Figure 4.5. Each tile has one domain of V/f levels,

35 4. Experimental Framework

Tile Core Type
#Cores /

#Accelerators
Frequency Range of the
supported V/f levels

1, 2, 3 O3 Alpha 8 {0.2, 0.4, 0.6, . . . , 4.0} GHz

4, 5 Simple Alpha 16 {0.2, 0.4, 0.6, . . . , 4.0} GHz

6,7 ARM-A15 4 {1.2, 1.3, 1.4, . . . , 2.0} GHz

8,9 ARM-A7 16 {0.2, 0.3, 0.4, . . . , 1.4} GHz

10, 11, 12 TCPA 10 {50, 100, 150, . . . , 650} MHz

Table 4.1: Tile information for experimental evaluation.

such that all cores or accelerators inside a tile share the same V/f level at any given
time point. The details of all tiles, including the type of cores, the number of cores, and
the available V/f levels of the tiles, are shown in Table 4.1.

Chapter 5

Dark Silicon-Aware Resource
Management

Traditional resource management techniques do not consider dark silicon problem. Specif-
ically, they distribute the chip resources among the applications, considering that all
cores can be active and run at the maximum speed. That, however, might lead to ther-
mal violations, and hence DTM on the chip will be triggered. To cool down the cores,
DTM downscales the V/f levels and/or power-gate some cores. As a result, DTM will
lead to performance degradation, but it is necessary to save the chip from undesired
overheating. To mitigate triggering DTM and its unpredictable performance losses,
some resource management techniques (e.g., [57]) enforce TDP as a chip-level power
constraint. Particularly, the number of active cores and their V/f levels are chosen so
that TDP is not exceeded. However, restricting the system to run below TDP is not
enough to avoid thermal violations as shown in the presented case study in Chapter 1.
As a result, resource management techniques need to determine the number of active
cores and the V/f levels considering a temperature constraint rather than considering
only a power constraint.

In this chapter, we present a dark silicon-aware resource management technique, called
DsRM [3, 6], that aims at maximizing the overall system performance under a temper-
ature constraint. To achieve its goal, DsRM determines the number of active cores that
should be allocated to each application and the V/f levels of these cores, and also maps
the applications to the cores. Moreover, DsRM distributes the dark cores among the
applications; that is for each application, some number of dark cores will be in close
vicinity to its active cores to facilitate dissipating their generated heat. Importantly,
these decisions are taken according to the TLP and the ILP of the applications. Specif-
ically, to increase the performance of a high-ILP application, DsRM needs to upscale
the V/f level of the active cores that execute that application. To enable this without
violating the temperature constraint, DsRM sets more dark cores in close vicinity to the
active cores of that application to dissipate the potential increase in the generated heat.
Contrarily, to increase the performance of a high-TLP application, DsRM allocates more
active cores to high-TLP application with lower V/f level.

In the following section,the problem of the proposed resource management technique is
formulated. Section 5.2 presents details about our presented technique. The evaluation
of DsRM is demonstrated in Section 5.3.

37

5. Dark Silicon-Aware Resource Management 38

5.1 Problem Definition

For a given chip composed of N cores and a set of K applications, the focus of DsRM
is to select for each application the number of active cores, which is equivalent to the
number of its parallel threads, and the V/f level of the application cores, as well as
the mapping of these applications to cores. The goal is to maximize the overall system
performance under the temperature constraint Tcrit. Mathematically, this problem can
be expressed as finding hk, vfk, and mapk, for all k = 1, 2, . . . ,K, in order to:

Maximize
∑K

k=1Rk(hk, vfk)

Subject to:
K∑
k=1

hk ≤ N and Ti < Tcrit for all i = 1, 2, . . . , N

There, the application performance Rk(hk, vfk) is estimated using Equation (3.1). Ti
is the steady-state temperature of core i estimated using Equation (3.6). Finding the
optimal solution by exhaustive search through all the possible combinations of mapk, hk,
vfk for all applications requires exponential time complexity. Therefore, there is a need
to decompose this problem into sub-problems. The first sub-problem is finding hk and
vfk for all applications, so that the overall system performance, i.e.,

∑K
k=1Rk(hk, vfk),

is maximized, where the total number of allocated cores should not exceed N . However,
the resulting solutions from solving this problem could lead to many thermal violations,
because the highest V/f levels would be chosen, as the goal is to maximize the perfor-
mance. Hence, in order to mitigate the potential thermal violations, TDP is considered
as a power budget for the chip only in this sub-problem. Thus, the two constraints
of the first sub-problem are as follows:

∑K
k=1 hk ≤ N and

∑K
k=1 Pk(hk, vfk) ≤ TDP .

The second sub-problem is determining the mapping of the applications to the available
cores, i.e., mapk, according to their allocated resources. The last sub-problem is adapt-
ing the application resources hk, vfk and the application mapping mapk to consider the
temperature constraint Tcrit and remove the TDP constraint. This resource adaptation
should avoid thermal violations and exploit thermal headroom (if existing).

5.2 Dark Silicon-Aware Resource Management

The presented dark silicon-aware resource management technique, DsRM, manages the
system resources and distributes them among multiple applications by performing the
following three steps that correspond to the aforementioned sub-problems. At the first
step, DsRM considers that TDP is the total power budget of the chip. Therefore, it
optimally distributes both the cores and the TDP budget among the applications. To
achieve this, DsRM employs a dynamic programing algorithm that jointly determines
for each application the number of the cores (threads) and the V/f levels of these cores
considering the TLP and ILP of the applications, so that the maximum overall system
performance is obtained. At the second step, the applications are mapped to the cores
according to their allocated resources in the first step. The goal of this step is to
minimize the core temperatures, because this helps to reduce thermal violations on the
chip. To achieve this, the available dark cores are distributed among the applications
in proportional to their power consumptions. Then, the applications are mapped in
such a way that the locations of active and dark cores of each application are close

39 5. Dark Silicon-Aware Resource Management

Inputs:

Dark silicon aware Resource Management (DsRM)

Optimal Resource
Allocation

(Step 1)

DsRM Functionality

Application
Mapping
(Step 2)

Resource
Adaptation

(Step 3)

TDP #Cores (N) Tcrit

Power &
 Performance

Tables

Multicore
 Architecture

 Constraints:
TDP, Tcrit

Thermal
Model

Application
Workload

Outputs:

 # Parallel Threads
of Applications

 Thread-to-Core
Affinity

 Core Power
States

Core V/f
Levels

Figure 5.1: Overview of the presented dark silicon-aware resource management tech-
nique, DsRM.

to each other in order to allow the dark cores of each application to dissipate more
heat from its active cores. The final step of DsRM considers the predefined temperature
constraint and accordingly modifies the application resources obtained from the previous
two steps in order to avoid thermal violations and exploit thermal headroom. In this
step, TDP constraint is not considered and it might be exceeded if there is available
thermal headroom and the resources are adapted to exploit it. Figure 5.1 shows an
overview of the DsRM technique.

5.2.1 TDP-Constrained Optimal Resource Distribution

At the first step of DsRM, the system resources, i.e., the available cores and the power
budget (TDP), will be distributed optimally among the applications in order to maximize
the overall system performance, which is the first sub-problem defined in Section 5.1.

To solve this problem, DsRM employs an algorithm based on dynamic programming.
Dynamic programming breaks down the problem into smaller sub-problems, and builds
up the final solution gradually. The benefit here is that by storing the obtained sub-
solutions at every step in tracking tables, the algorithm can reuse them in further steps,
thus reducing the number of combinations that should be tested. That, in turn, reduces
the complexity and the required time for finding the final optimal solution.

The inputs of this algorithm are the application set with their power and performance
tables (see Section 3.2), besides the total number of cores N and the available power
budget, referred to as pmax, which is equal to TDP. The output will be the optimal
settings hk, vfk for all k = 1, 2, . . . ,K applications, that result in the maximum overall
system performance. To achieve this goal, the algorithm needs to divide the total avail-
able power budget pmax to smaller power budgets (portions) p to be distributed among

5. Dark Silicon-Aware Resource Management 40

the applications similar to the cores. The final determined power quota for application
k is denoted as qk.

Before explaining how this algorithm works, it is necessary to define the following aux-
iliary function that the algorithm uses in finding the sub-solutions:
MaxV FBudget (k, n, p) returns the V/f level that results in the maximum performance
for application k under a given power budget p, where the number of threads is equal to
n. If there is no V/f level available for the given power budget p, this function returns
0. An example of the work of this function is illustrated in Figure 5.2.

Pk
VF1

(2.0GHz)
VF2

(2.2GHz)
VF3

(2.4GHz)
VF4

(2.6GHz)
VF5

(2.8GHz)

1 3.6 4.3 5.2 6.1 7.3

2 6.1 7.3 8.7 10.4 12.4
3 7.9 9.2 11.0 13.2 16.0
4 9.3 11.0 13.1 15.9 17.8

5 10.0 12.0 14.2 15.9 19.6
6 11.8 14.0 16.6 18.2 21.9
7 12.8 15.2 18.0 21.0 24.9
8 13.3 16.3 19.1 22.3 26.5

Inputs: Power table for application k, Number of threads h = 6, Power budget p = 15W

MaxVF Budget

Output: The maximum possible voltage and frequency level under the given power budget

11.8 14.0 16.6 18.2 21.9

Pk (6,5) > p
Pk (6,4) > p
Pk(6,3) > p

Pk(6,2) < p → Return VF2 (2.2GHz)

h

Pk(6,5)Pk(6,1)

MaxVF Budget searches in the row of
Pk that corresponds to h, for the
maximum power value that is less
than p.

Figure 5.2: Example of the work of function MaxV FBudget (k, n, p).

To find the optimal solution, the algorithm builds a table GR, whose entries are repre-
sented by all possible unique triple (k, n, p), such that k = 1, 2, . . . ,K, n = 1, 2, . . . , N ,
p = p1, p2, . . . , pmax. Each cell of this table, GR(k, n, p), contains the maximum per-
formance for the first k applications (assuming an arbitrary order for the applications)
using n cores and a peak power consumption less than or equal to p. It starts from the
first application k = 1 and calculates its maximum performance at all possible combina-
tions between n and p, as shown in Equation (5.1). This equation represents the initial
boundary condition of building GR table.

GR (1, n, p) =

−∞ if MaxV FBudget(1, n, p) = 0

Rk(n,MaxV FBudget(1, n, p)) otherwise
(5.1)

Besides GR, the algorithm builds an auxiliary table called GP to store the resulting
power consumption from obtaining the maximum performance at each step. GP has
the same dimensions as GR (see Figure 5.3). The initial boundary condition of building
GP is shown in Equation (5.2).

GP (1, n, p) =

∞ if MaxV FBudget(1, n, p) = 0

Pk(n,MaxV FBudget(1, n, p)) otherwise

(5.2)

41 5. Dark Silicon-Aware Resource Management

To calculate GR for (k > 1) and (k <= n), the following recursive function is used:

GR (k, n, p) =

max
k − 1 ≤ n′ < n

p1 ≤ p′ < p

−∞
if GP

(
k − 1, n′, p′

)
+

Pk

(
n− n′,MaxV FBudget(k, n− n′, p− p′)

)
> p

GR
(
k − 1, n′, p′

)
+

Rk

(
n− n′,MaxV FBudget(k, n− n′, p− p′)

) otherwise

(5.3)

Using Equation (5.3), the algorithm finds the maximum performance out of all the
possible divisions of n and p between the application k and the previous k−1 applications.
To represent these divisions, the parameters, n′ and p′ are used. n′ will be set to the
values from k − 1 to n, because at least k − 1 cores should be allocated to the previous
k − 1 applications. We assume that K ≤ N , and each application will get at least
one core. p′ will be set to the values from p1 to p, covering the whole range of the
power budgets, because there is no constraint on the minimum power budget that each
application should have. The resulting performance of all possible combinations of n′

and p′ will be calculated in order to choose the maximum one. As can be noticed from
Equation (5.3), the previous computations of GR(k − 1, n′, p′) are reused in order to
reduce the number of required calculations. When the maximum performance out of
these combinations is found, it is stored in GR, and the resulting power consumption
from obtaining this performance is stored in GP, as follows:

GP (k, n, p) = GP (k − 1, n′, p′) + Pk(n− n′,MaxV FBudget(k, n− n′, p− p′)) (5.4)

where n′ and p′ are the values that result in the maximum performance according to
Equation (5.3). In case there is no feasible solution for the given power budget p or
there are more applications than n cores, GR (k, n, p) is set to −∞ and GP (k, n, p) is
set to ∞.

1 2 .. N

1

2

3

:

K

1 2 .. N

1
2
3
:
K

1 2 .. N

1

2

3

:

K

k
n

p1
p2

TDP

1 2 .. N

1

2

3

:

K

1 2 .. N

1
2
3
:
K

Cores

A
p
p
lic
at
io
n
s

1 2 .. N

1

2

3

:

K

k
n

p1
p2

TDP

Figure 5.3: The employed dynamic programming tables, GR and GP, that store the
resulting performance and power values for different combinations.

At the same time of building GR and GP, the values of the parameters n−n′, p−p′ and
MaxV FBudget(k, n− n′, p− p′), which lead to the maximum performance that is stored
in GR(k, n, p) at this step, are stored in tracking tables TrackN , TrackP , TrackV F ,

5. Dark Silicon-Aware Resource Management 42

Algorithm 1 Build GR and GP tables

Input: Application set with their power and performance tables Pk and Rk;
Output: Tables GR,GP, T rackN, TrackP, TrackV F ;

1: for k = 1 to K do
2: for n = 1 to N do
3: for p = p1 to pmax do
4: vf = MaxV FBudget(k, n, p);
5: if vf = 0 or k > n then
6: GP (k, n, p)←∞;
7: GR(k, n, p)← −∞;
8: else if vf > 0 and k ≤ n then
9: if k = 1 then

10: Build GR according to Equation (5.1);
11: Build GP according to Equation (5.2);
12: else if GP (k − 1, n′, p′) + Pk(n − n′,MaxV FBudget(k, n − n′, p − p′)) ≤ p

then
13: Build GR according to Equation (5.3);
14: Build GR according to Equation (5.4);
15: end if
16: Save the parameters n − n′, p − p′,MaxV FBudget(k, n − n′, p − p′) that

result in the maximum performance at this step in the tracking tables
TrackN, TrackP, TrackV F .

17: end if
18: end for
19: end for
20: end for
21: return Tables GR,GP, T rackN, TrackP, TrackV F ;

respectively. The dimensions of these tracking tables are the same as the dimensions of
GR and GP tables.

After building the tables, the final optimal solution, i.e., the maximum performance, can
be found in GR at the cell that holds the maximum value. Finding this cell is performed
by searching through the cells whose entries hold (K, pmax), to find the one that holds
the maximum value. When this value is extracted, the corresponding n will be the total
number of active cores nmax that the applications can run on so that the maximum
performance is obtained without exceeding the given power budget pmax, i.e., TDP. The
optimal number of cores, the V/f level and the power quota for each application will be
derived from the tracking tables, starting from the entry (K,nmax, pmax) (which holds
the maximum performance). The values at this entry of the tracking tables TrackN ,
TrackP , and TrackV F hold n−n′, p− p′,MaxV FBudget(k, n−n′, p− p′), respectively.
These values represent the optimal settings (hK , qK , vfK) of application K. For appli-
cation K − 1, its optimal settings will be stored at the cell whose entry is (K − 1, n′, p′),
as can be observed from Equation (5.3). The values of n′ and p′ can be extracted by
subtracting the found values of n− n′ and p− p′ from n and p, respectively. A similar
process is repeated for further applications until reaching k = 1. The corresponding
pseudo-code for building the tables GR and GP in a bottom-up manner is presented in
Algorithm 1. The pseudo-code for extracting the solutions from the tracking tables is
presented in Algorithm 2.

43 5. Dark Silicon-Aware Resource Management

Algorithm 2 Extract optimal application settings hk, qk, vfk, from dynamic program-
ming tracking tables

Input: Tables GR,GP, T rackN, TrackP, TrackV F ;
{Find the total number of active cores}

1: nmax = 0;
2: Rmax = 0
3: for n = N to 1 do
4: if GR(K,N, pmax) > Rmax then
5: Rmax = GR(K,N, pmax);
6: nmax = n;
7: end if
8: end for
{Find the optimal settings of applications}

9: n = nmax;
10: p = pmax;
11: for k = K to 1 do
12: hk = Track N(k, n, p);
13: qk = Track P (k, n, p);
14: vfk = Track V H(k, n, p);

{The entries for the optimal settings of the previous k − 1 applications}
15: n = n− Track N(k, n, p);
16: p = p− Track P (k, n, p);
17: end for
18: return hk, qk, vfk for all applications.

Hence, by the end of this step, the optimal settings of each application k are determined,
namely, the number of threads (its active cores), hk, the V/f level of its cores vfk, and
its power quota qk.

Proof of optimality: We prove the optimality of the presented resource distribution
algorithm by induction. Initially, ∀n, p,GR(1, n, p) is optimal because all the values of
R1(n, p) and P1(n, p) are tested, and the maximum performance under the given power
budget p is stored in GR(1, n, p). Now we need to prove that GR(k, n, p) is optimal
assuming that GR(k − 1, n, p) is optimal.
To achieve this, we first assume that Eq. (5.3) does not result in the maximum perfor-
mance for GR(k, n, p). According to Eq. (5.3), the value of GR(k, n, p) is obtained by
calculating the resulting performance for all possible combinations of dividing n and p
between the previous k − 1 applications and the current k application.
Thus, for each combination, different portions n′, p′ are given to the previous k − 1
applications while n′′ = n − n′ and p′′ = p − p′ are given to the current application
k. ∀n, p, the term Rk(n

′′,maxV FBudget(k, n′′, p′′)) gives the performance of the appli-
cation k at n′′ cores and at V/f level equal to maxV FBudget(k, n′′, p′′). The function
maxV FBudget(k, n′′, p′′) returns the maximum V/f level that leads to a power consump-
tion less than p′′ where the number of cores is n′′. By definition the maximum V/f level
(for n′′ and p′′) will give the maximum performance of application k (for n′′ and p′′). As
a result, the term Rk(n

′′,maxV F (n′′, p′′)) will give the optimal solution for application
k for a specific n′′, p′′. Consequently, ∃n′, p′ that make the term GR(k− 1, n′, p′) not op-
timal, and that, however, contradicts the assumption. As a result, by the mathematical
induction hypothesis, we reach the conclusion that GR(k, n, p) is optimal ∀n, p.

5. Dark Silicon-Aware Resource Management 44

(1) (2) (3) (4)

After application
mapping, Tcrit needs to be
tested to avoid thermal
violations and to exploit
thermal headroom

(5) (6) (7) (8)

(9) (10)

List of applications sorted in descending order
according to their power consumptions:

Application Mapping Steps in DsRM

80 70 60 50

Dark Core

Active Core [°C]

Figure 5.4: Example of the application mapping policy of DsRM, in which the applica-
tions are iteratively mapped to the chip. At each iteration, the core temperatures will
be estimated, in order to map the application with the highest power consumption to

the coldest region on the chip.

5.2.2 Thermal-aware Application Mapping

After determining the optimal number of hk and vfk of each application k in the previous
step, DsRM employs a heuristic for application mapping that specifies which cores the
each application will be mapped to. Since the previous dynamic programming algorithm
considers the TDP constraint, some cores might be left dark and not allocated to any
application. In this step, DsRM aims to exploit dark silicon to dissipate the generated
heat on the active cores. Therefore, DsRM will first distribute the dark cores among
the applications proportional to their power consumptions. Thus, the applications with
higher power consumptions get more dark cores than the applications with lower power
consumptions. The amount of dark cores specified for application k is denoted as dk.
After determining the number of dark cores of each application, the application mapping
policy tries to specify close locations for the active and dark cores of each application, in
order to allow the dark cores of each application to dissipate some of the generated heat
on its active cores. Afterwards, the worst fit decreasing (WFD) algorithm is employed
within the application mapping policy in order to map the applications with high power
consumption to tiles with low average temperature. That also helps in reducing the
resulting temperatures of the cores.

Thus, the application mapping policy of DsRM consists of the following steps: (1) Find
the unmapped application k that has the highest power consumption. (2) Find the
coldest tile `, i.e., the average of its core temperatures is the lowest compared to the

45 5. Dark Silicon-Aware Resource Management

other tiles. (3) If tile ` does not have hk+dk available cores, the policy reserves only the
available cores of ` and searches for available cores in neighboring tiles until the whole
hk+dk cores are reserved. Hence, a subset of cores are reserved for application k, namely,
mapk. Afterwards, (4) the policy chooses the coldest core of mapk, then (5) maps one
thread to it and re-estimates the core temperatures. The last two steps are repeated
until all application threads are mapped. As a result of this policy, the active cores are
distributed loosely through the region of the application cores mapk and the dark cores
will be surrounding them. Moreover, the region of cores that will be allocated to the
next application will be automatically far from the first application region, because the
presented policy will re-estimate the core temperatures after mapping each application
and then searches for the coldest tile. The entire steps are repeated until mapping all
applications. Figure 5.4 illustrates an example of mapping a list of applications to the
chip.

5.2.3 Thermal-Constrained Resource Adaptation

Although the presented mapping policy in the previous section aims at minimizing the
potential temperature increase, it is still insufficient to avoid thermal violations. There-
fore, a heuristic to adapt the resources considering the temperature constraint is pro-
posed in order to avoid thermal violations and to exploit available thermal headroom.
The flow chart of the proposed heuristic is shown in Figure 5.5. The first step of this
heuristic is to compute the core temperatures using Equation (3.5) considering the ap-
plication settings and mapping determined in the previous steps. In case any core of
application k exceeds Tcrit, the power quota qk allocated to that application at step 1 (see
Section 5.2.1) should be decreased. Contrarily, if there is available thermal headroom on
some of the cores of an application, the allocated power quota of the application qk will
be increased to ultimately increase the performance. Note that DsRM does not increase
the power quota of the application if the peak temperature of the application cores is
slightly below the critical temperature, because this increase might lead to exceed Tcrit,
and therefore qk must be reduced in the next iteration of the algorithm leading to un-
stable behavior. To prevent this, DsRM employs a parameter ε to determine if there is
a sufficient thermal headroom to increase the power quota or not. This value needs to
be empirically determined.

Algorithm 3 Find the settings of application k that maximize its performance under
a power budget p

Input: Power and performance tables Pk and Rk (Section 3.2);
Output: hk, vfk;
1: R? = 0; h? = 0; vf? = 0;
2: for h = Min(Hk, hk + dk) to 1 do
3: for vf = V FY to V F1 do
4: if Pk(h, vf) < p and Rk(h, vf) > R? then
5: R? = Rk(h, vf);
6: h? = h;
7: vf? = vf ;
8: end if
9: end for

10: end for
11: return h?, vf?;

5. Dark Silicon-Aware Resource Management 46

After increasing or decreasing the power quota qk, new application settings hk, vfk
should be obtained, so that the performance of application k is maximized under the
new power quota. Finding these new settings can be done by searching within the
performance and power tables of that application, as shown in Algorithm 3. It is to
be noted that the new hk can be increased up to min {Hk, hk + dk}. In other words,
the application will adapt its own resources for maximizing its performance under the
new power quota. In case this algorithm leads to increase hk, that means dark cores of
application k need to be activated to run threads. In this case, the coldest dark cores
are activated. In contrast, if hk is decreased, the hottest active cores of application k
are darken.

After obtaining the new application settings, the steady-state temperatures of the cores
will be re-estimated again. If there are still some cores that exceed Tcrit, qk will be
decreased again. If qk is decreased to a value, at which not even one thread at the
lowest V/f level can run without exceeding Tcrit, hk is set to zero. In other words, all
the cores of that application become dark. That means, running application k under
the temperature constraint Tcrit is not feasible. Figure 5.5 shows the flow chart of the
resource adaptation heuristic.

Yes

No

Start

Increase qk

dk = dk– (hk*–hk)

hk* > hk

Estimate the temperature and find hottest
core i, and the application k that runs on it

Ti > Tcrit

Power-on the coldest
(hk*– hk) cores

of application k

Set the V/f
level of all
cores of

application k
to vfk*

Ti < Tcrit - ε

Yes

Reduce qk

Obtain the new application settings, hk*, vfk*, for the
modified power budget qk*

by using the function presented in Algorithm 3

dk = dk + (hk – hk*)

hk* < hk

Power-gate the hottest
(hk – hk*) cores

of application k

No

Yes

No

Yes

No
End

Figure 5.5: The flow chart of the third step of DsRM, i.e., resource adaptation.

47 5. Dark Silicon-Aware Resource Management

Applicationk

Power Quota

v/f Level

#Active Cores
#Dark Cores

Optimal Resource Distribution
(Step.1)

Applicationk

Power Quota
v/f Level
#Active Cores

- Obtain the optimal settings of the
applications
- To achieve the maximum performance
under TDP constraint

Application Mapping
(Step.2)

- Determine the number of dark cores to
assign to each application
- Map the applications using Worst Fit
Decreasing

Resource Adaptation (Step.3)

- Adapt application resources under temperature constraint (Tcrit)
- To avoid thermal violations and exploit available thermal headroom.

Thermal headroom

Thermal violation

Activated

Power-Gated

Figure 5.6: The steps of the presented dark silicon-aware resource management tech-
nique, DsRM.

In summary, applying the first and the second steps of DsRM results in a thermal-aware
application mapping with optimal resource distribution under TDP constraint. It is
referred to this combination as TDPmap. Nevertheless, having a TDP-constrained solu-
tion might still lead to thermal violations or to thermal headroom. Thus, the third step
(resource adaptation) is applied and it might change the optimal resource distribution
obtained by the first step, in order to consider the temperature constraint. Considering
the temperature constraint, DsRM at the third step can adapt the resources in order to
avoid thermal violations and to exploit available thermal headroom, while taking into
account the performance and the power models of the applications, aiming at maximiz-
ing the overall system performance under the temperature constraint. An overview of
the three steps of DsRM is shown in Figure 5.6.

5.3 Experimental Evaluations

5.3.1 Setup

To evaluate DsRM, the 64-core chip shown in Figure 4.3 is used. The critical tempera-
ture, Tcrit, is set to 80 ◦C. The TDP is 220 W, which is near the practical numbers used
in a real processor, i.e., Intel Xeon Phi [33], that consists of 64 cores.

5. Dark Silicon-Aware Resource Management 48

Scenario blackscholes x264 bodytrack ferret

Mix1 1 2 2 3

Mix2 - 3 1 4

Mix3 - 4 - 4

Mix4 4 - - 4

Mix5 4 - 4 -

Table 5.1: The adopted scenarios of different applications. Each scenario consists of
multiple instances of different applications. Each cell represents the number of instances

of each application in the corresponding scenario.

For applications, “x264”, “ferret”, “blackscholes”, and “bodytrack”, from PARSEC
benchmark suite [41] are utilized. Some of them have TLP more than ILP, like “blacksc-
holes”, and some have ILP more than TLP, like “ferret”. Thus, these benchmarks are
suitable examples to evaluate the efficiency of DsRM. As shown in Table Table 5.1, five
scenarios (Mix1, Mix2, Mix3, Mix4, Mix5) of multiple instances of these applications
are composed in order to provide various workloads with different ILP and TLP. Using
gem5, each application is executed under a different number of threads {1, 2, . . . , 8} and
different V/f levels. The complete tool flow of the experimental setup is illustrated in
Figure 4.1.

It is assumed that DsRM will be implemented at design time, because deriving the opti-
mal solution at step.1 requires a considerable time (2.36 s). However, runtime evaluation
is performed as well to check the resulting transient temperatures, when the decisions of
DsRM with regard to the application resources and their mappings are given as inputs
to runtime simulation. In the following subsectionsvarious results of comparing DsRM
with different state-of-the-art techniques are demonstrated.

5.3.2 Results

Before evaluating DsRM in general and comparing it to state-of-the-art techniques, it is
important to evaluate its individual steps. The first step of DsRM results in the optimal
solution, therefore, there is no need to evaluate it or compare it with other techniques.
However, the second and the third steps of DsRM are heuristics. Therefore, they are
evaluated in the following first two subsections.

(1) Evaluation of the presented mapping policy (the second step of DsRM):
As aforementioned, at the second step of DsRM, i.e., application mapping, a heuristic
based on WFD is employed and aims at reducing the temperature while mapping the
applications. To evaluate this heuristic, it is compared to another application mapping
policy, referred to as ContiguousMap, which tries to keep both the active cores, that
applications are mapped to, and the unused (dark) cores contiguous. Several application
mapping techniques, e.g., [53, 54], adopt the concept of contiguous mapping and map
the applications close to each other in order to reduce the area fragmentation of the
chip.

For fair comparison, the results of the first step of DsRM, i.e., the optimal application
settings, are provided as inputs to ContiguousMap. As mentioned above, the version of
DsRM that only executes the first and second steps is referred to as TDPmap. Hence,
the comparison is conducted between TDPmap and ContiguousMap. Both of these

49 5. Dark Silicon-Aware Resource Management

b) TDPmap: DsRM (Steps 1+2)

a) ContiguousMap: DsRM (Step 1) + Mapping
applications continuously on the cores

 Mappings (a) and (b)
have the same
application settings:
• # Active cores
• V/f levels

 Mappings (a) and (b)

have different locations
of active and dark cores

 TDPmap (a) leads to less
temperatures than
ContigousMap (b),
because it leverages the
positioning of dark cores

Dark Core

Active Core

[°C]

Legend

86

80

74

68

Figure 5.7: Comparison between the presented mapping policy, TDPmap, i.e., the
second step of DsRM, and a contiguous mapping policy. Both policies utilize the same

optimal application settings obtained by the first step of DsRM.

techniques consider the same application settings; the number of active cores (threads)
of the applications, and the V/f levels of their cores, while each of them applies its
own mapping policy. The resulting thermal maps of applying the ContiguousMap and
TDPmap are compared as seen in Figure 5.7. As can be observed, the incurred tem-
peratures on the cores when applying the mapping policy TDPmap are less than the
incurred ones when applying ContiguousMap. Decreasing the core temperatures helps
reduce the potential thermal violations and increase the available thermal headroom on
the cores. That facilitates achieving the goal of the third step of DsRM, i.e, avoiding
thermal violations and exploiting thermal headroom.

(2) Evaluation of the presented resource adaptation policy (the third step of
DsRM):
The focus of this subsection is to evaluate the importance of the last step of DsRM,
i.e., resource adaptation. For this purpose, several experiments for various workload
scenarios are conducted to evaluate the resulting system performance when applying
DsRM without resource adaptation, which means applying only the first and the second
step of DsRM, i.e., TDPmap. Then, the resulting performance of TDPmap is compared
with the resulting one when applying DsRM with all its three steps. Besides the system
performance, the resulting amount of dark silicon is evaluated as well. Moreover, these
experiments are conducted for two TDP values, i.e., 220 W and 180 W. The resulting
performance of these experiments are shown in Figure 5.8.

The first observation of this figure is that the differences between the results of DsRM
and TDPmap (w.r.t. the amount of dark silicon and the system performance) are more
at the lower value of TDP. The reason is that setting TDP to a low value leads to less
temperatures on the cores, and potentially larger thermal headroom exists on the cores.
Hence, the last step of DsRM would have more possibilities to adapt the resources so
that the available thermal headroom is exploited. The second observation is that the
resource adaptation step either increases dark silicon amount or decreases it according to
the TLP and ILP of the applications. For instance, at mix3 of scenario (b), the resource

5. Dark Silicon-Aware Resource Management 50

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

DsRM (steps: 1+2)

 % Active Cores

 % Dark Cores

 Performance

DsRM (steps:1+2+3)

 % Active Cores

 % Dark Cores

 Performance

Sy
st

em
 P

er
fo

rm
an

ce
 [

1
/s

]

D
ar

k
Si

lic
o

n
 A

m
o

u
n

t

Dark silicon is increased in order to allow increasing
the V/f level for high ILP applications

12% Performance gain, although
dark silicon is increased

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

D
ar

k
Si

lic
o

n
 A

m
o

u
n

t

Sy
st

em
 P

er
fo

rm
an

ce
 [

1
/s

]

Mix3 Mix4 Mix1 Mix2 Mix5 Mix3 Mix4 Mix1 Mix2 Mix5

Mix3 Mix4 Mix1 Mix2 Mix5 Mix3 Mix4 Mix1 Mix2 Mix5

(a) Thermal Design Power (TDP) = 220 W

(b) Thermal Design Power (TDP) = 180 W

Figure 5.8: Evaluation of the presented resource adaptation, i.e., the third step of
DsRM, by comparing DsRM with TDPmap, i.e., the combination of the first and the

second steps of DsRM.

adaptation decreases the amount of dark silicon while the performance is increased.
That means there was available thermal headroom at some cores, and it is exploited by
increasing the number of threads of one or more applications from the running workload.
On the other hand, at mix4 the amount of dark silicon is increased by the resource
adaptation. Nevertheless, the performance is increased as well. Since the performance
is increased, that means the adaptation in this case is also to exploit available thermal
headroom, and not to avoid thermal violations. As a result, the resource adaptation in
this case increases the performance by increasing the amount of dark cores of one or
more applications from the workload and at the same time increasing the V/f levels of
their active cores. In summary, the gain in the system performance resulting by applying
the resource adaptation step is 12% compared to TDPmap.

(3) Comparison between DsRM and a state-of-the-art technique in perfor-
mance maximization:
To achieve this comparison, the DVFS policy presented in [64] is implemented, and de-
noted as MaxSpeed. MaxSpeed aims at maximizing the system performance under the
temperature constraint. Hence, DsRM and MaxSpeed share the same goal. However,
the authors in MaxSpeed assume that the lateral heat flow between cores is neglected,
because their adopted floorplan contains large caches around cores similar to a chess

51 5. Dark Silicon-Aware Resource Management

MaxSpeed leads to
Thermal violations,
→ DTM triggered
→ Performance Losses

Dark Core

Active Core

a) MaxSpeed

b) DsRM 100

90

80

70

[°C]

DsRM avoids any
thermal violation
→ DTM not triggered
→ Performance Gain

Legend

Figure 5.9: Comparison between DsRM and MaxSpeed, where the latter leads to thermal
violations because it neglects the lateral heat transfer between the cores.

0

20

40

60

80

100

Sy
st

em
 P

er
fo

rm
an

ce
 [

1
/s

]

46% Performance Gain

MaxSpeed DsRM

Mix02 Mix01 Mix03 Mix04 Mix05

Figure 5.10: Comparison be-
tween the resulting system
performance of DsRM and
MaxSpeed [64]. The perfor-
mance gain of DsRM is up to

46% compared to MaxSpeed.

board pattern. Therefore, to enable comparison with MaxSpeed, the chess board pat-
tern is adopted for the active and dark cores, as shown in Figure 5.9, MaxSpeed is applied
to the active cores. Furthermore, MaxSpeed does not target multi-threaded applications
and thereby does not determine the number of cores to allocate to each application.
Therefore, it is assumed that the active cores will be equally distributed to the com-
ing applications in the case of MaxSpeed. Then, MaxSpeed determines the V/f levels
of the active cores, so that the performance is maximized while the core temperatures
are kept below Tcrit, regarding their adopted thermal model that neglects the lateral
heat transfer. MaxSpeed is applied to all scenarios (Mix1, ..., Mix5) of different applica-
tions. For example, in Figure 5.9, the resulting thermal maps are shown after applying
MaxSpeed and DsRM on mix5. Note that the thermal maps are calculated using the
adopted thermal model (Section 3.3), in which the lateral heat transfer between the
cores are considered. As can be noticed from the shown thermal maps, MaxSpeed leads
to a temperature increase more than 100 ◦C, because it neglects the heat contribution
of the neighboring cores. This experiment demonstrates the importance of consider-
ing the heat transfer among the cores in the employed thermal model to estimate the
temperatures more accurately.

In general, when the decisions of a resource management technique leads to thermal

5. Dark Silicon-Aware Resource Management 52

72

74

76

78

80

82

100 125 150 175 200 225 250 275 300

Our DsRem ArbitraryMap+Boosting

26% average
performance gain

of DsRM

Pe
ak

 T
em

p
er

at
u

re
 [
°C

]

0

1

2

3

4

100 125 150 175 200 225 250 275 300

Pe
rf

o
rm

an
ce

 [
G

IP
S]

Time [ms]

DsRM
does not lead to

any thermal
violation

Time [ms]

Tcrit

Boosting DsRM

Figure 5.11: Runtime evaluation of DsRM and comparison with the boosting technique.

violations, DTM on the chip will be triggered to throttle down the cores and save the
chip from burning out. Therefore, a simple thermal management technique is imple-
mented in this experiment to check the core temperatures after the resource allocation
decisions. If there is any thermal violation, the employed thermal management throttles
down the V/f levels to keep the core temperatures below Tcrit. Since MaxSpeed leads
to thermal violations, the employed thermal management will throttling down the V/f
levels, and consequently the system performance will be decreased. Contrarily, DsRM
does not lead to any thermal violation. Figure 5.10 shows the resulting performance of
DsRM compared to the resulting one of MaxSpeed after throttling down the V/f levels
by the employed thermal management. As shown in the figure, the performance gain of
DsRM compared to MaxSpeed reaches up to 46%. On average, the performance gain of
DsRM is 34%.

(4) Comparison between DsRM and the state-of-the-art boosting technique:
As noticed, the first comparison candidate results in severe thermal violations due to its
employed thermal model that ignores the heat transfer among the cores. Therefore, we
adopt another comparison candidate, which is a boosting technique that determines the
V/f level of the cores based on measuring the temperatures of the cores at runtime within
a control loop, similar to Intel Turbo Boost [67]. This boosting technique shares the same
goal of DsRM, i.e., maximizing the performance under the temperature constraint. To
achieve its goal, the boosting technique checks the peak temperature of the cores at each
control period; if the peak temperature is below Tcrit, the boosting technique increases
the V/f levels of the cores by one step. Otherwise, if the peak temperature is higher than
Tcrit, the V/f levels are decreased by one step. This process will be repeated over the
execution time. Hence, the boosting technique exploits any available thermal headroom
at runtime.

However, the boosting technique does not determine the number of active and dark cores.
Moreover, it does not determine the number of the cores that should be allocated to each

53 5. Dark Silicon-Aware Resource Management

application. Therefore, we adopt the chess board pattern for the active and dark cores,
and consider that the active cores will be equally distributed to the coming applications.
After that, Boosting will boost the V/f levels of the cores at runtime. Therefore, a
simulation loop is executed for 500 ms, and the boosting technique is activated to take
its decision at each control period (5 ms). To compare DsRM with Boosting, DsRM is
applied at design-time to determine the application mapping with their settings. Then,
a simulation loop is executed for 500 ms, and at each control period (5 ms), the transient
temperatures of the cores are checked. If DsRM leads to thermal violations, the DTM
technique will be triggered to throttle down the V/f level in order to reduce the core
temperatures.

Figure 5.11 shows first the resulting peak temperature over execution time when applying
DsRM and Boosting. It can be observed, DsRM does not lead to any thermal violation
and thereby DTM has not been triggered. However, Boosting leads to an increase in
the peak temperature (due to the increase in the V/f levels) until exceeding Tcrit. Once
exceeded, Boosting throttles down the V/f levels. This process will be repeated over the
simulation time. The second curve of Figure 5.11 shows the resulting IPS of the running
workload in the case of DsRM and Boosting. As noticed, Boosting can lead to higher
IPS at some points of the execution time, but on average, DsRM has 26% higher IPS
than Boosting.

As a summary of the evaluation, DsRM efficiently manages the resources of the chip
considering dark silicon. The performance gain that DsRM achieved is up to 46%,
and an average of 34%. Moreover, the evaluation shows that maximizing the overall
performance over time (DsRM) results in better performance gain on average, compared
to maximizing the performance during short time intervals (Boosting).

5.4 Summary

Although dark silicon phenomenon can be considered as a problem, it can also be lever-
aged by resource management techniques in order to deliver more performance. In this
chapter, we have discussed a resource management technique, called DsRM, that lever-
ages the positioning of dark silicon to dissipate more heat from the active cores, which
ultimately allows increasing the V/f levels of the active cores, and thereby improving
the overall system performance.

Considering dark silicon, DsRM efficiently distributes the resources among applications
by jointly deciding the number of the cores that should be allocated to each application
and the V/f level of these cores, so that the overall system performance is maximized.
The temperature constraint of the chip is considered as an essential factor by the decision
making process of DsRM. As the conducted evaluation shows, the decisions of DsRM do
not lead to any thermal violations and it exploits available thermal headroom in order
to maximize the performance.

Chapter 6

Power Density-Aware Resource
Management

Dark silicon is the direct result of the continuous power density increments along with
technology scaling and the corresponding thermal problems. Heterogeneous architec-
tures that include different types of cores and accelerators have attracted a major fo-
cus in recent years, as they provide many possibilities for performance and power effi-
ciency [123], especially in the dark silicon era. Given that the voltage and frequency re-
quirements as well as capabilities vary among cores and accelerators, an efficient method
to design such systems is by considering multiple tiles, in which elements inside a tile
share the same voltage and frequency, but different tiles can execute at different voltage
and frequencies at any given time point. An example of such an architecture is the
Exynos 5 Octa (5422) chip [66] with ARM’s ”big.LITTLE” architecture composed of
three tiles: a quad-core Cortex-A7 (ARM-A7), a quad-core Cortex-A15 (ARM-A15),
and a Mali T-628 GPU with six shader cores.

Solving the problem of performance optimization under a temperature constraint for
such heterogeneous architecture is much more complicated than solving it for homoge-
nous multicores as presented in the previous chapter. The reason is that in heterogeneous
multicores power and performance characteristics of applications significantly differ from
a core type to another. Moreover, thermal characteristics of heterogeneous multicores
are also different. Even if two heterogeneous cores have the same power value, the re-
sulting temperatures, the two exhibit, might be different if they have different areas.
Thus, these different characteristics need to be taken into account when optimizing the
performance of heterogeneous multicore chips under a temperature constraint.

Therefore, in this chapter we introduce power density as a novel system-level constraint
that serves as an abstraction from thermal issues. However, the case study presented
in Section 1.2.1 shows how a power density constraint is not enough to avoid thermal
violation, because the distribution of active and dark cores has a significant impact
on the generated temperature. To address this challenge, we derive the power density
constraint based on the thermal model of the chip so that it guarantees avoiding thermal
violations. Also it considers core heterogeneity within a chip. Then, we present a power-
density-aware resource management, referred to as PdRM, that manages the resources
of heterogeneous tiled multicores, aiming at maximizing the overall system performance
without violating the critical temperature. In particular, PdRM assigns applications to

55

6. Power Density-Aware Resource Management 56

1.2

0.8

0.4

0.0

Chip-level Power Budget (TDP):
TDP = 160 W

Po
w

er
 D

en
si

ty

[W
/m

m
2
]

Chip Width
[mm]

Chip Length[mm]

Power-gated
cores due to TDP

constraint

L2 Caches

Critical
Temperature

 = 80 °C

[°C]

84

80

76

72

68

64

60

56 5 10 15 20

10

0

5

Figure 6.1: The power densities and temperatures of all cores when a chip-level power
budget is used. The resulting thermal profile contains several thermal violations that

lead to excessive DTM triggers, which in turn cause performance losses.

tiles, maps them to cores, and determines both the parallelism level of the applications
and the V/f levels of the tiles, so that the performance is maximized under the derived
power density constraint. After application mapping, the power density constraint can
be adapted at run time to exploit any available thermal headroom on the cores and to
react to workload changes.

In the following section, a motivational example is presented to show the potential
benefits of such a power density constraint against a standard chip-level power constraint.
Section 6.3 presents details about our presented technique. The evaluation results of our
technique are presented in Section 6.5.

6.1 Motivational Example

In this example, we analyze the power densities and the thermal profile of a 36-core het-
erogeneous tiled multicore under three different constraints. The adopted chip consists
of three tiles: a tile with 12 O3 Alpha cores, a tile with 16 simple Alpha cores, and a
tile with 8 ARM-A15 cores. The nominal frequencies are 4 GHz for both Alpha tiles and
2 GHz for the ARM-A15 tile (further details of the setup are explained in Section 6.4).
For applications, 18 instances of an H.264 video encoder from the PARSEC benchmark
suite [41] are considered, where each application instance runs two parallel dependent
threads. For simplicity of presentation, a simple mapping policy is considered for all
three scenarios. Specifically, in order to distribute the applications throughout the tiles
as much as possible, we assign them to tiles in a round robin manner and then map
them to the cores in a tile consecutively.

In the first scenario shown in Figure 6.1, a chip-level power constraint (namely, TDP)
is used. The applications are mapped to cores (running at nominal frequency) until the
total power consumption reaches the predefined constraint, and the rest of the cores
stay dark. For this constraint in this example (TDP = 160 W), only 12 applications of
the 18 are mapped, resulting in 24 active cores and 12 dark ones. Figure 6.1 shows the
resulting power densities and the temperature profile of the cores. It can be observed

57 6. Power Density-Aware Resource Management

Uniform Power Density Constraint:
PD = 0.89 W/mm2

Po
w

er
 D

en
si

ty

[W
/m

m
2
]

1.2

0.8

0.4

0.0

Chip Width
[mm]

Chip Length[mm]

5 10 15 20

10

0

5

[°C]

84

80

76

72

68

64

60

56

Critical
Temperature

 = 80 °C

Figure 6.2: The power densities and temperatures of all cores when a uniform power
density constraint is used. The resulting thermal profile does not have any thermal

violation, but large thermal headroom exists.

Po
w

er
 D

en
si

ty

[W
/m

m
2
]

1.2

0.8

0.4

0.0

Chip Length[mm]

Adapted Power Density Constraint:
PD = 0.97, 0.51, 0.57 W/mm2 for O3 Alpha, ARM-A15, Simple Alpha,
respectively.

Chip Width
[mm]

5 10 15 20

[°C]

84

80

76

72

68

64

60

56

Critical
Temperature

 = 80 °C

10

0

5

Figure 6.3: The power densities and temperatures of all cores when a selective or
adapted power density constraint is used. The resulting thermal profile does not have
any thermal violation, thermal headroom is exploited and thus improving the perfor-

mance.

that adopting such a chip-level power constraint results in a big variance of the resulting
power densities, which in turn leads to thermal violations on some cores and considerable
thermal headroom on others. These thermal violations will trigger DTM leading to
degrading the overall performance. The unbalanced thermal profile results due to the
heterogeneity of the cores, namely the big variance of the power consumptions between
the cores. Therefore, such a chip-level constraint might be efficient on homogenous cores
in some scenarios, but certainly inefficient on heterogeneous ones.

In the scenario shown in Figure 6.2, all cores share a uniform power density constraint
which cannot be exceeded. Using a power density constraint rather than a power con-
straint is more suitable for heterogeneous multicores, because the bigger cores will get
more power budget than the smaller ones. That will help in improving the thermal pro-
file. In particular, it reduces thermal violations and thermal headroom, and thereby the
performance will improve. The power density constraint can be empirically computed

6. Power Density-Aware Resource Management 58

based on the geometric and thermal properties of the cores, so that no thermal violations
incur when the power density on all cores is equal to or less than the power density con-
straint. After mapping the applications to all cores according to the considered mapping
policy, DVFS is applied at the tile level in order to satisfy the power density constraint.
As a result, the frequency of the O3 Alpha tile is scaled down to 3.0 GHz (gray cores),
while the other tiles execute at nominal frequencies, and thus all 18 applications are
mapped. Given that this power density constraint is empirically extracted to be ther-
mally safe, we notice from Figure 6.2 that no thermal violation occurs and DTM is not
triggered. However, it can be observed that the power density on simple Alpha cores
and ARM-A15 cores is less than the uniform power density constraint. That means,
these cores cannot fully utilize their allowed power budget. On the other hand, there
are some cores that can consume more power if their power budgets are increased.

Therefore, in order to maximize the utilization of the cores, we re-adapt the power
density constraint (Figure 6.3) by decreasing it for low power cores/applications and
increasing it for high power cores/applications. Hence, this adaptation considers the
power characteristics of the executed applications on the heterogeneous cores and thereby
more thermal headroom is exploited, resulting in higher performance. Furthermore, this
adaptation can also be applied when the workload changes at runtime, for example,
when an application finishes its execution or a new application arrives.

From this motivational example it is clear that chip-level power constraint is not well
suited for heterogeneous multicores, and adopting a power density constraint is a simple
and effective approach for avoiding any thermal violation. Moreover, to be able to exploit
the available thermal headroom, it is important to provide a mechanism that adapts this
constraint by considering the power characteristics of the executed applications and the
workload changes at runtime.

6.2 Problem Definition

Given a set of K weighted applications with weights W = {w1, w2, . . . , wK}, the objec-
tive is to distribute the chip resources, i.e., power and cores, among the applications, so
that the overall weighted system performance1 is maximized under the predefined critical
temperature of the chip (Tcrit). More specifically, we need to find the application-to-
tile assignment, the V/f levels of each tile, the degree of parallelism of each mapped
application, and the mapping of application threads to cores inside a tile.

The purpose of using the weights W is to balance the impact of the execution time of the
applications on the overall system performance and to assign priorities to applications.
For example, if the weights would not be used, an application with long execution
time, but with high priority, would receive a small number of resources compared to
some applications with short execution time but low priority. Besides their importance
for balancing the impact of execution time on the performance, the weights can be
additionally used to assign different priorities to the applications according to the desire
of the user.

Mathematically, this problem can be expressed as finding the settings for each applica-
tion k = 1, 2, . . . ,K (i.e., its number of threads (hk), the tile ` and its corresponding

1The performance of an application is defined as the inverse function of its execution time as shown
in Equation (3.1).

59 6. Power Density-Aware Resource Management

Inputs:

Outputs:

Power density aware Resource Management (PdRM)

Uniform Power
Density Constraint

(Phase 1)

Input/Output PdRM Functionality

Application-to-Tile &
Thread-to-Core

Mapping
(Phase 2)

Power Density
Adaptation & DVFS

(Phase 3)

 Thread-to-Core
Affinity

Core Power
States

Tile V/f
Levels

Power &
 Performance

Tables

Multicore
 Architecture

 Constraint:
Tcrit

Thermal
Model

Application
Workload

 # Parallel Threads
of Applications

Figure 6.4: Overview of the proposed technique, PdRM.

core type τ , as well as its vfk), the application assignment matrix A and the mapping
matrix M, in order to:

Maximize

L∑
`=1

K∑
k=1

a`,k · wk ·Rk (τ, hk, vfk) (6.1)

subject to:
∑K

k=1 a`,k ≤ N` for all ` = 1, 2, . . . , L∑L
`=1 a`,k ≤ 1 for all k = 1, 2, . . . ,K

Ti ≤ Tcrit for all i = 1, 2, . . . , N

There, τ indicates the corresponding core type of the tile `, the application performance
Rk(τ, hk, vfk) is estimated using Equation (3.1). Ti is the steady-state temperature
of core i estimated using Equation (3.6). This problem is equivalent to Generalized
Assignment Problem (GAP) as illustrated in [124]. GAP is known to be an NP-hard
problem in the strong sense [125]. Therefore, finding an optimal solution will result in
an exponential time complexity.

Therefore and given that our technique is assumed to work at runtime, we need to find a
simple, lightweight, yet efficient scheme to achieve the required goal in polynomial-time.
For this reason, we decompose the problem into the three sub-problems: (1) Deriving
a uniform power density constraint for all cores as an abstraction from thermal issues,
while the heat transfer among cores is implicitly considered. (2) Under the derived
power density constraint, we need to find the application-to-tile assignment and the cor-
responding core mapping so that the overall weighted performance is optimized. (3) In
order to exploit any available headroom, the power density constraint needs to be re-
adapted to consider the resulting assignment and power characteristics of the executed
applications on the heterogeneous cores.

6. Power Density-Aware Resource Management 60

6.3 Power Density-Aware Resource Management

This section presents our power density-aware resource management, PdRM, which con-
sists of three phases, as seen in Figure 6.4, detailed in the following subsections.

6.3.1 Uniform Power Density Constraint

A uniform power density constraint is derived so that it guarantees avoiding thermal
violations and considers core heterogeneity within a chip and heat transfer among cores.
It is considered that there might be some thermal nodes whose power consumption
values are given, and thus there is no need to optimize the power density for such nodes.
Hence, a binary vector X = [xj]Z×1 is defined such that xj = 0 implies that the power
consumption on node j is given, while xj = 1 implies that we want to compute our
power density constraint on node j. In this way, Equation (8.4) is arranged as follows:

Ti =
∑Z

j=1 bi,j · areaj · Pdj · xj +
∑Z

j=1 bi,j · pj · (1− xj) + Tamb
∑Z

j=1 bi,j · gj (6.2)

There, areaj is the area of node j, and Pdj =
pj

areaj
represents the power density of

node j.

From Equation (6.2), Ti can be set to Tcrit. Then, a uniform power density value, defined
as Pduniform, can be derived such that the temperature on node i is equal to Tcrit when
all cores of interest, i.e., all cores for which xj = 1, have the uniform power density
Pduniform. Specifically, Pduniform is computed as follows:

Pduniform =
Tcrit −

∑Z
j=1 bi,j ·pj ·(1−xj)− Tamb

∑Z
j=1 bi,j ·gj∑Z

j=1 bi,j · areaj · xj
(6.3)

In order to compute a safe power density constraint and given that different nodes will
have different temperatures even when all active cores have the same power density, it
is necessary to compute Pduniform for all nodes i = 1, 2, . . . , Z and use the minimum
computed power density as a thermally-safe power density constraint, referred to as
Pd safe. Specifically, by extending Equation (4 in [18]) to focus on power density rather
than on power, Pd safe can be computed according to Equation (6.4).

Pd safe = min
1≤i≤Z

Tcrit −

Z∑
j=1

bi,j ·pj ·(1−xj)− Tamb

Z∑
j=1

bi,j ·gj

Z∑
j=1

bi,j · areaj · xj

 (6.4)

Finally, although Equation (6.4) is general for any vector X, Pd safe is computed in
Phase 1 of PdRM by assuming that xj = 1 for all cores on the chip, only considering given
power consumption for the thermal nodes that represent caches, memory controllers, etc.
For example, the uniform power density constraint shown in Figure 6.2 can be computed
through Equation (6.4) by assuming that xj = 1 for all cores.

61 6. Power Density-Aware Resource Management

6.3.2 Application Mapping under Power Density Constraint

The derived power density constraint in the previous section enables making the map-
ping decision abstracted from thermal issues. Moreover, as the derived power density
constraint Pd safe is given for each core, the complexity of the mapping problem is re-
duced. The reason is that it is possible to evaluate if a mapping decision satisfies Pd safe

without the need of calculating the resulting temperature on other cores or dealing with
heat transfer among cores, as these problems are already handled by executing below
Pd safe. In this section, the focus is on the second problem of assigning applications to
tiles and threads to cores inside a tile. To solve this problem, we propose a heuristic,
MapAlgo. Its main steps are explained in Figure 6.5, while its pseudo-code is listed in
Algorithm 4.

MaxAppPerf
(Algorithm 5)

Choose application k* and tile
l* that achieve the maximum

performance in GR

Assign application k* to tile l*

Update GR, Tracktile, Trackapp

Are there any
available cores?

Build Tracktile, G
R,

Trackapp

Map Threads of application k*
to unoccupied cores of tile l*

Application
Queue

Hardware
Model

Yes

Yes

No

No

Uniform Power Density
Constraint

Start

End

Is there any
application to map?

Figure 6.5: Application Mapping Heuristic, MapAlgo.

Algorithm MapAlgo relies on a table denoted as GR whose entries correspond to all
unique combinations (`, k) for all ` = 1, 2, . . . , L and for all k = 1, 2, . . . ,K. Each
cell in row ` and column k of this table, i.e., GR (`, k), will contain the maximum
weighted performance of application k under the power density constraint Pd safe, when
the application is assigned to tile `, by taking into account the current available number
of cores in tile `, denoted as A`, and the selected execution frequency of the tile vf tile

` .
These values, i.e., A` and vf tile

` , are stored in an auxiliary table denoted as Tracktile,
and will be updated every time an application is assigned to a tile.

The first step of MapAlgo is to build table GR. To achieve that, we first define an
auxiliary function MaxAppPerf

(
`, k, A`, vf

tile
` , Pd safe

)
. For a given tile ` of a core type

τ and application k, function MaxAppPerf performs a search in table Rk (τ, vf, h),
starting from h = A` and vf = vf tile

` . At each step, the resulting power density is
computed from the corresponding cell of the same entries in table Pk (τ, vf, h) and
compared to the given power density constraint Pd safe. If the power density constraint
is not satisfied, the algorithm moves to the next cell in the table Rk, whose entry is
(τ, vf − 1, h) if Rk (τ, vf − 1, h) > Rk (τ, vf, h− 1), or (τ, vf, h− 1) otherwise.

6. Power Density-Aware Resource Management 62

Algorithm 4 Applications to Tiles and Threads to Cores Mapping

Input: Power density constraint Pdsafe and the set of applications with their power and execu-
tion time tables Pk and Rk;

Output: Matrices A and M, and the V/f levels of the tiles;
{Initialization of tables}

1: for all ` in 1, 2, . . . , L do
2: Initialize Tracktile (`) with values (N`, V F`,y);
3: for all k in 1, 2, . . . ,K do

{Calculate GR (`, k) and Trackapp (`, k)←}
4: MaxAppPerf

(
`, k, A`, vf

tile
` , Pdsafe

)
;

5: end for
6: end for
{Assigning applications to tiles}

7: U ← {1, 2, . . . ,K}; {Assign applications to empty set}
8: while U 6= ∅ and

∑N
i=1

∑K
j=1mi,j < N do

9: `?, k? ← Row & column in GR with highest performance;
10: a`?,k? ← 1; {Application-to-tile assignment}
11: Assign the settings in Trackapp (`?, k?) to application k?;
12: Delete column k? from table GR;
13: Update table Tracktile (`?) by subtracting hk? from the set of available cores A` and by

setting the V/f level of the tile vf tile` according to Trackapp (`?, k?);
14: Update the values of row `? in table GR by considering the new A` and vf tile` values;
15: U \ {k}; {Removing application k from set U}
16: Mapping application to the unoccupied cores of tile `?;
17: end while
18: return Matrices A and M, and vf tile` for all ` = 1, 2, . . . L;

In this way, function MaxAppPerf greedily finds the maximum performance of applica-
tion k when assigned to tile ` under the given inputs of the tile, i.e. A` and vf tile

` , and the
given power density constraint Pd safe. Once the maximum performance under Pd safe is
found, it is stored in GR, and the application settings that achieve it are stored in an
auxiliary table called Trackapp. This table has the same dimensions as GR, i.e., KxL,
and it is simultaneously built with GR to store the application settings that achieve the
maximum performance stored in GR. Each cell in row ` and column k of this table, i.e.,
Trackapp (`, k), contains a tuple 〈h, vf〉, which represents the settings of application k
(number of threads and V/f level) that achieve the maximum weighted performance of
this application under Pd safe, when it is assigned to tile `. When first building table
GR, function MaxAppPerf is called by considering A` = N` and vf tile

` = V F`,y.

Now the table GR has been built, the next step of MapAlgo is to perform a search
through GR in order to find the maximum weighted performance in the table. Once
found, we assign application k? to tile `?, such that a`?,k? = 1, where k? and `? are
respectively the column and row index of the found maximum performance in table
GR. The settings of application k? are taken from the stored values in table Trackapp
at cell (`?, k?). Afterwards, column k? is deleted from table GR, while the settings of tile
`? in table Tracktile are updated so that the number of available cores A` is reduced by
h?k, and the V/f level of the tile vf tile

` is set according to Trackapp (`?, k?). Furthermore,
it is necessary to update the values of row `? in tables Trackapp (`, k) and GR (using
function MaxAppPerf again) for all unmapped applications by considering the new A`
and vf tile

` values. This is necessary because the tile now has less available cores and
might be set to execute at lower V/f levels, and therefore the original values of row `?

in tables Trackapp (`, k) and GR are no longer valid.

63 6. Power Density-Aware Resource Management

Algorithm 5 MaxAppPerf : Calculate the maximum performance for an application
k within tile ` under Pd safe

Input: Power density constraint Pd safe, `, k, A`, vf
tile
` ;

Output: GR (`, k) , T rackapp(`, k);
1: h = A`;
2: vf = vf tile` ;
3: while h > 0 and vf > 0 do
4: PowerDensity = Pk(τ, vf, h)/h/coreAreaτ ;
5: if PowerDensity > Pd safe then
6: if Rk(τ, h− 1, vf) > Rk(τ, h, vf − 1) then
7: h = h− 1;{Decrease the number of threads}
8: else
9: vf = vf − 1;{Decrease the V/f level}

10: end if
11: else
12: Trackapp(`, k).h = h;
13: Trackapp(`, k).vf = vf ;

14: GR (`, k) = wkṘk(τ, h, vf);
15: Break;
16: end if
17: end while

After assigning an application to a tile, the application threads are greedily mapped to
the available cores in that tile. The steps for assigning and mapping an application are
repeated until all applications are mapped or all cores are assigned.

Algorithm 6 Runtime Power Density Adaptation

Input: Original power density constraint Pd safe when xj = 1 for all cores;
Output: Adapted V/f levels;
1: xj ← 1 for all cores;
2: repeat
3: for all j in 1, 2, . . . , Z do
4: `← tile number of core j;
5: if xj = 1 and vf corej = V F`,y then
6: pj ← Power of the application mapped to core j when executing at V F`,y;
7: xj ← 0;
8: end if
9: end for

10: Compute new Pd safe according to Equation (6.4) for the new xj and pj values;
11: Increase the V/f levels of the tiles holding cores with xj = 1, while satisfying the new

Pd safe.
12: until

∑Z
j=1 xj = 0 or no core underutilizes the power density budget

13: return New V/f levels;

6.3.3 Runtime Power Density Adaptation

The uniform power density constraint derived in Section 6.3.1 is a very efficient approach
for heterogeneous multicores, since it is based on geometric and thermal properties of the
different cores. However, it ignores the power characteristics of the executed applications
on the different types of cores and accelerators, as seen in Figure 6.2. Therefore, this
section presents a runtime adaptation scheme that exploits available thermal headroom

6. Power Density-Aware Resource Management 64

and also reacts to workload changes at runtime. A pseudo-code for this scheme is
presented in Algorithm 6.

For example, when considering Figure 6.2, it can be seen that the ARM-A15 tile is
producing much less power density than that assigned by the constraint from Equa-
tion (6.4). This could happen for two reasons: either the frequency steps for this core
type are far from each other so that executing the tile at the next available frequency
violates the power density constraint, or the tile is already executing at the maximum
frequency and the power density still does not reach the constraint. The latter case
means that the power density budget assigned to the ARM-A15 tile is underutilized and
thus we can decrease it in order to increase the power density budget assigned to the
other tiles. This can be done very simply through Equation (6.4) by setting xj of these
cores to zero and their power consumptions to the resulting power values for the given
number of threads and highest V/f levels (Lines 6, 7 of Algorithm 6).

In this way, a new value of Pd safe is derived and applied to the rest of the cores, whose
xj holds the value 1. Hence, the V/f levels are adapted by using DVFS according
to this new power density constraint. The process is then repeated until xj = 0 for all
j = 1, 2, . . . , Z, or there are no more cores that under-utilize their assigned power budget
constraint (Line 12 of Algorithm. 6). For example, the adaptation shown in Figure 6.3
can be computed through Algorithm 6. Furthermore, this runtime adaptation is also
triggered when there is a workload change at runtime, e.g., when an application finishes
or a new application arrives.

Scenario
#PARSEC
applications

#TCPA
applications

Scenario
#PARSEC
applications

#TCPA
applications

Mix01 10 10 Mix07 12 35

Mix02 5 50 Mix08 3 20

Mix03 10 5 Mix09 6 6

Mix04 8 25 Mix10 2 40

Mix05 12 3 Mix11 11 7

Mix06 8 16 Mix12 10 30

Table 6.1: Mixed application scenarios.

TCPA applications Weights PARSEC applications Weights

FIR 1.14E-04 x264 1.55E+00

Harris Corner 7.71E-02 bodytrack 4.68E-01

Edge Detection 5.69E-02 blackscholes 2.20E-01

Matrix Multiplication 6.65E-05 swaptions 1.01E-01

SAD 1.11E-02 ferret 1

Optical Flow 3.43E-02 - -

Table 6.2: The weights of applications in WS1.

6.4 Experimental Setup

The employed heterogeneous multicore architecture for evaluating the presented tech-
nique PdRM is explained in Section 4.2.2 and shown in Figure 4.6. Several multi-
threaded applications from the PARSEC benchmark suite [41] are considered, which are
“x264”, “bodytrack”, “blackscholes”, “swaptions” and “ferret”. These applications can

65 6. Power Density-Aware Resource Management

TCPA applications Weights PARSEC applications Weights

FIR 5.69E-05 x264 1.55E+00

Harris Corner 3.86E-02 bodytrack 4.68E-01

Edge Detection 2.85E-02 blackscholes 2.20E-01

Matrix Multiplication 3.33E-05 swaptions 1.01E-01

SAD 5.55E-03 ferret 1

Optical Flow 1.71E-02 - -

Table 6.3: The weights of applications in WS2.

TCPA applications Weights PARSEC applications Weights

FIR 5.1-05 x264 1

Harris Corner 1 bodytrack 1

Edge Detection 1 blackscholes 1

Matrix Multiplication 1 swaptions 1

SAD 1 ferret 1

Optical Flow 1 - -

Table 6.4: The weights of applications in WS3.

TCPA applications Weights PARSEC applications Weights

FIR 7.87E+04 x264 2.89E+00

Harris Corner 1.16E+02 bodytrack 9.56E+00

Edge Detection 1.57E+02 blackscholes 2.03E+01

Matrix Multiplication 1.35E+05 swaptions 4.45E+01

SAD 8.06E+02 ferret 4.48E+00

Optical Flow 2.61E+02 - -

Table 6.5: The weights of applications in WS4.

be executed on Alpha and ARM cores. Additionally, computational-intensive applica-
tions are used, which are “SAD”, “Edge Detection”, “FIR”, “Optical Flow”, “Matrix
Multiplication”, and “Harris Corner” that can be executed either on Alpha and ARM
cores as single-threaded applications, or on the adopted TCPA accelerator, which has
the ability to parallelize these applications. The application scenarios adopted in our
experiments are shown in Table 6.1.

For the weights of the targeted applications, four sets of weights are defined, namely,
WS1, WS2, WS3, and WS4. The first set of weights, WS1 is listed in Table 6.2. In WS1,
the weights are set in two steps. First, we adjust the weights so that the weighted perfor-
mance of all applications are normalized to the performance of one application, namely
“ferret”. Hence, to calculate the weight of any application, we divide its performance
by the performance of “ferret”. In this case, the weight of “ferret” is equal to 1, and
the performances of all applications are normalized to the performance of “ferret”. The
performance of application k, that is used in calculating its weight, is the maximum one
from its table Rk(τ, h, f), which is obtained at the best configuration; i.e., highest V/f
level and highest number of threads. As mentioned above, the weights can be used to
assign different priorities to the applications. Thus, it is arbitrarily chosen to give TCPA
applications higher priorities than PARSEC applications by doubling their weights, as
an example. These weights, referred to as WS1, are listed in the Table 6.2.

6. Power Density-Aware Resource Management 66

In the second set of weights, WS2, we choose the weights of the applications, so that their
weighted performances are normalized to the performance of the application “ferret”,
similar to WS1, but without assigning different priorities to the applications. Thus, all
the applications will have the same priority.

In WS3, the weights of all applications are set to 1. In the last set, WS4, we choose the
weights to normalize the performance of all applications to the value 1. For that purpose,
we obtain the maximum performance of each application k from its table Rk(τ, h, f), and
assign this value to wk. Hence, the maximum weighted performance of any application
(wk.Rk) will be equal to 1. The new set of weights are listed in Table 6.5.

Phase 1: Deriving the initial uniform power
density constraint

Phase 2: Application assignment and mapping
under the uniform power density constraint

Phase 3: Power density adaptation &
adjusting tile V/f levels accordingly

0

0.2

0.4

0.6

0.8

55
60
65
70
75
80
85

0

0.2

0.4

0.6

0.8
Po

w
er

 D
en

si
ty

 [
W

/m
m

2
]

Te
m

p
er

at
u

re
 [

°C
]

Tcrit

Adapted Pdsafe

Average Total Weighted Performance
64.6 [weights*apps/s]

55
60
65
70
75
80
85

Tcrit

Po
w

er
 D

en
si

ty
 [

W
/m

m
2]

Te

m
p

er
at

u
re

 [
°C

]

Average Total Weighted Performance
75.1 [weights*apps/s]

16%
 Performance

 gain

O3
Alpha

Sim.
 Alpha

ARM
A15

TCPA ARM
 A7

Initial Pdsafe

O3
Alpha

Sim.
 Alpha

ARM
A15

TCPA ARM
 A7

O3
Alpha

Sim.
 Alpha

ARM
A15

TCPA ARM
 A7

O3
Alpha

Sim.
 Alpha

ARM
A15

TCPA ARM
 A7

PdRM Phases

Figure 6.6: Demonstration of applying the proposed phases of PdRM. The cores shown
in the X-axis of the charts are located according to the floorplan shown in Figure 4.6.

6.5 Evaluation results

In this section, the evaluation of our technique is presented. Firstly, the phases of
PdRM and how it adapts to any workload changes are demonstrated. Secondly, several
experimental evaluations are conducted to compare PdRM with several state-of-the-art
techniques. Finally, the overhead of PdRM is discussed.

6.5.1 Demonstration of PdRM

In order to illustrate the behavior of our proposed technique PdRM, we conduct a demon-
stration experiment considering Floorplan A (Figure 4.6) and executing 6 applications

67 6. Power Density-Aware Resource Management

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

P
o

w
er

 D
en

si
ty

[W
/m

m
2
]

P
o

w
er

 D
en

si
ty

[W
/m

m
2
]

P
o

w
er

 D
en

si
ty

[W
/m

m
2
]

Po
w

er
 D

en
si

ty
[W

/m
m

2
]

Adaptation 2

Adaptation 3

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

P
o

w
er

 D
en

si
ty

[W
/m

m
2
]

Po
w

er
 D

en
si

ty
[W

/m
m

2
]

Adaptation 1

Adaptation 5 Adaptation 6

Adaptation 4

Power Density ConstraintActual core Power Density

O3
Alpha

Sim.
Alpha

ARM
A15

TCPA ARM
A7

O3
Alpha

Sim.
Alpha

ARM
A15

TCPA ARM
A7

O3
Alpha

Sim.
Alpha

ARM
A15

TCPA ARM
A7

O3
Alpha

Sim.
Alpha

ARM
A15

TCPA ARM
A7

O3
Alpha

Sim.
Alpha

ARM
A15

TCPA ARM
A7

O3
Alpha

Sim.
Alpha

ARM
A15

TCPA ARM
A7

Figure 6.7: Demonstration of the runtime adaptation of PdRM under workload changes.
The power density budget in active cores is increased when applications finish, and it
is later decreased when new applications arrive. The cores shown in the X-axis of the

charts are located according to the floorplan shown in Figure 4.6.

on it as detailed in Figure 6.6-Phase 2. In this experiment, the intermediate results and
phases are detailed, as shown in Figure 6.6.

In the first phase, we derive the power density constraint for our adopted chip that
allows running all the cores under the critical temperature, which is set to 80 ◦C. Given
the floorplan of the chip and the critical temperature, according to Equation (6.4) from
Section 6.3.1, we derive a safe power density equal to Pdsafe = 0.534 W/mm2, as shown
in Figure 6.6-Phase 1. Afterwards, under the initial power density constraint, we apply
our mapping scheme presented in Section 6.3.2. The resulting weighted performance,
temperature profile and the actual power density values are shown in Figure 6.6-Phase 2.
From the temperature profile, it can be observed that a large thermal headroom exists
on all cores. Furthermore, by looking at the resulting power density on the cores, it is
noticed that, while some cores utilize almost the whole budget, there are several cores
that have a resulting power density which is much smaller than the given 0.534 W/mm2

budget. This happens because different core types have different power consumption
behaviors, even when they execute the same applications at the same V/f levels and
occupy similar areas.

To exploit this issue, the runtime power density adaptation algorithm presented in Sec-
tion 6.3.3 is applied. Thus, the budget assigned to low power density cores/applications
is reduced, and the budget assigned to high power density cores/applications is increased,
under the specific workload and mapping. As a result, the thermal headroom is decreased
and hence the overall weighted performance is increased, as shown in Figure 6.6-Phase 3.

6. Power Density-Aware Resource Management 68

Figure 6.7 shows how PdRM adapts the power density budgets at runtime in order
to react to workload changes and optimize the overall weighted system performance.
From this figure, it is observed how the budget in active cores is increased when some
applications finish, and how it is later decreased when new applications arrive. Moreover,
PdRM prevents any thermal violations even when new applications arrive. This is
achieved by the power density adaptation in Equation (6.4), that provides a thermally
safe power density constraint.

6.5.2 Comparison with State-of-the-art Techniques

After evaluating the phases of our technique and the thermal profile for a specific scenario
as an example, we conduct other experiments considering various mixed application
scenarios in order to compare the overall system weighted performance achieved by our
PdRM and other state-of-the-art approaches that share the same goal of maximizing the
performance under a temperature constraint.

The first comparison candidate is the Intel’s Turbo Boost [67, 126] and with the solution
proposed in [57], in terms of the overall weighted performance, temperature, and power
efficiency. Besides implementing these two techniques, a DTM technique similar to the
one proposed in [118], which is a reactive control that reduces the V/f levels of the cores
when the critical temperatures are exceeded. When the temperatures on the chip are
reduced again, the V/f levels will be returned to their original nominal values. The
control period of the adopted DTM is set to 1 ms. DTM will be activated on the chip
along with all comparison candidates, except TurboBoost, which has its own thermal
control methodology as explained in [67].

Intel’s Turbo Boost [67, 126] allows cores to run at high V/f levels when there is available
headroom. Particularly, the V/f levels of the cores are boosted in single steps (within
a control period). If the temperature exceeds the critical threshold, the V/f levels are
reduced in single steps until the temperature goes below the threshold.

The second comparison candidate is the solution presented in [57], which performs power
management for heterogeneous tiled multicores under a unified chip-wide power budget
(TDP). We referred to this technique as TDPcontrol. TDPcontrol reduces the power
consumption of the tiles in proportion to the number of tasks the tile is executing, so
that the overall power is brought below TDP. Since the results of this scheme depend
on the value of TDP, these three cases are considered: 160 W, 200 W, and 240 W.

The last comparison candidate is a simple baseline technique, MaxSpeed, that sets the
V/f level at the maximum possible values without considering any power constraint, but
it rather depends on the DTM of the chip to throttle down the V/f levels when a thermal
violation happens. Once the temperatures are decreased, the V/f levels are again set to
the maximum values. The purpose of this technique is to evaluate the efficiency of only
depending on the default DTM of the chip, while keeping setting the frequencies to the
maximum values when possible.

To perform the comparison, experiments are conducted for each technique and for all
the workloads of the application scenarios defined in Table 6.1. For fair comparison, the
mapping scheme proposed in Section 6.3.2 are used with all comparison candidates, while
each technique controls the V/f levels based on its methodology. Moreover, some cores
might be power-gated in order to satisfy the constraints of these techniques. As above

69 6. Power Density-Aware Resource Management

mentioned, DTM will be activated with all techniques except TurboBoost. That holds
when the technique could not prevent the thermal violations, DTM will be triggered. In
these experiments, each workload is executed in a closed system manner. That means
the applications of each workload will be re-executed until the end of the simulation,
which is set to 10 s. Afterwards, the overall weighted performance is measured for all
comparison candidates. Intuitively, the more efficient the technique, the higher the
performance will be.

Figure 6.13 shows the comparison of the resulting overall weighted performance achieved
by our PdRM and the evaluated state-of-the-art solutions and for all sets of weights,
WS1, WS2, WS3 and WS4, defined in Section 6.4 and shown in Tables 6.2, 6.3, 6.4,
and 6.5. From this figure, it is notcied that PdRM outperforms all of the evaluated
state-of-the-art approaches for all sets of weights. For example, for WS1, PdRM achieves
average improvements in the total weighted performance of 1.16x, 1.91x, 12.8x compared
to TurboBoost, MaxSpeed, TDPcontrol, respectively. In WS3, where the weights of all
applications are set to 1, we notice that the performance of the different applications are
not balanced. For example, we observe incomparable performance between TDPcontrol
and other techniques. The reason is: TDPcontrol, due to the power budget limitation,
could execute only PARSEC applications which have much longer execution time (less
performance) than TCPA ones, and that results in very less final total performance
in compared to the other techniques that could execute TCPA applications, as well.
Indeed, these experiments stress the importance of using the weights. The results of
applying WS4 are similar to the ones of WS2, but with different absolute values of the
total weighted performance.

Avoiding DTM triggers is an essential benefit of PdRM which contributes to the per-
formance gain achieved by it, as illustrated in the detailed comparison in Figure 6.9.
However, there is another factor that also contributes to the performance gain, which is
exploiting thermal headroom on the chip. PdRM considers the power properties of the
applications and cores, in order to decrease the budget assigned to low power density
cores/applications, and increase the budget assigned to high power density cores/appli-
cations. That will exploit any potential thermal headroom and maximize the utilization
of the chip cores. Figure 6.8 shows comparison of the average utilization of the chip
between our PdRM and the other state-of-the-art techniques. The utilization of each
core is calculated by dividing its assigned frequency by the maximum possible frequency
of that core. When a core is power-gated, its utilization will be zero. By averaging the
utilization of all cores through the whole simulation time, the average utilization of the
chip is obtained. Figure 6.8 shows that PdRM maximizes the utilization of the chip by
1.24x and 2.63x compared to TurboBoost and TDPcontrol, respectively. To this end, we
can observe the efficacy of PdRM in dark silicon era, because maximizing the utilization
of the chip resources will alleviate dark silicon problem.

Among the state-of-the-art, it is obvious that TurboBoost is the most efficient tech-
nique. PdRM results in better performance than TurboBoost, thanks to the adopted
power density constraint that enables the former from increasing the V/f levels of the
tiles safely without exceeding the critical temperature. On the other hand, TurboBoost
keeps increasing the V/f levels for all active cores, and when the critical temperature is
exceeded, it throttles down again the V/f levels until the cores are cooled down. Thus,
it keeps oscillating around the critical threshold through the execution time (see Fig-
ure 6.9). From Figure 6.9, we observe that TurboBoost can result in an instantaneous
higher frequency, but on average, PdRM has 12% higher frequency. Additionally, to

6. Power Density-Aware Resource Management 70

provide detailed comparison between PdRM and the most efficient state-of-the-art tech-
nique, TurboBoost, the power efficiency of both of them is calculated. Figure 6.10 first
shows how PdRM outperforms TurboBoost by 16% on average. While the power con-
sumption of PdRM is 46% less. As a result, the power efficiency of PdRM is 105% more
than TurboBoost. This adds more significant value to our PdRM.

U
ti

liz
at

io
n

[%
]

0%

25%

50%

75%

100%

Mix01 Mix02 Mix03 Mix04 Mix05 Mix06 Mix07 Mix08 Mix09 Mix10 Mix11 Mix12

PdRM TurboBoost MaxSpeed

TDPcontrol240 TDPcontrol200 TDPcontrol160

Average utilization gains of PdRM compared to TurboBoost, MaxSpeed,
TDPcontrol are 1.24x, 1.89x, 2.63x, respectively.

Figure 6.8: Comparison between the average chip utilization of our PdRM and several
state-of-the-art techniques, while executing various scenarios of workloads.

The solution presented in [57], TDPcontrol, is the one that results in the lowest per-
formance for all tested TDP values. In order to satisfy TDP constraint, TDPcontrol
reduces the power consumption of each tile in proportion to the number of active cores
in the tile, and without considering the heterogeneity in the power characteristics of the
cores. As a result, the cores that have high power consumption (power hungry cores)
can achieve the required power reduction of their tiles, with scaling down their V/f
levels with few steps. On the other hand, the cores that have low power consumption
will reach their minimum V/f levels before achieving the required power reduction of
their tiles, and thus, these cores are power-gated. As a consequence, a considerable
subset of applications could not be executed resulting in a very low total weighted per-
formance. Additionally, TDPcontrol might lead to excessive triggers of DTM, like the
case of 240 W and 200 W power budgets, because the power hungry cores will run at
high V/f levels and consume the major part of the power budget, and that, in turn,
leads to thermal violations. Thermal violations will trigger DTM, which significantly
degrades the performance. Details about the work of DTM are illustrated in Figure 4
of the supplementary material. Additionally, we show the resulting thermal profile of
the chip from applying PdRM and TDPcontrol at 240 W without activating DTM (see
Figure 6.12). This figure shows how PdRM results in a safe thermal profile without the
need of triggering DTM.

Additionally, in order to demonstrate the robustness of PdRM, additional experiments
are conducted to evaluate PdRM with probabilistic power and execution time values. In
particular, a normal distribution is adopted to generate for each application k random
power variations over time, so that the mean of these values is equal to the average
power value stored in Pk, while the deviation of these values is set to 20%. Similarly,
variations in the execution time of each application k are generated. The results of
these new experiments (Figure 6.11) do not significantly differ from the original ones.
However, PdRM does not guarantee avoiding the thermal threshold in this case, and

71 6. Power Density-Aware Resource Management

0.9

1.0

1.1

1.2

1.3

1.4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Frequency throttling down

76
77
78
79
80
81
82
83

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

PdRM TurboBoost

Te
m

p
er

at
u

re
 [

°C
]

Time [ms]

Fr
eq

u
en

cy
 [

G
H

z]

Tcrit
Thermal Violations

Instantaneous better frequency
by TurboBoost

12% better average frequency
by PdRM

Time [ms]

Figure 6.9: Comparison between the resulting temperatures and the frequencies of
PdRM and TurboBoost.

two thermal violations are observed in the experiment of mix10. Nevertheless, PdRM
still outperforms all other comparison candidates.

6.5.3 PdRM Overhead

The overhead of PdRM consists of the following parts: The first part is the overhead of
calculating the uniform PdRM based on the RC thermal network. The second part is
the application mapping overhead, which depends on the number of applications that
are mapped. The last part is the overhead of the the power density adaptation. From
the experiments that conducted on different workloads (Table 6.1), the average overhead
of the aforementioned parts are as follows: 2.6 ms for the first phase of PdRM, which is
executed only once at design time, 3 ms for application mapping, which is executed at
the startup time of the applications, and 2.5 ms for power density adaptation, which is
required after any change in the workload. Additionally, in order to test the overhead
of the power density adaptation in the case of frequent workload changes, an additional
scenario is considered, which has one workload change at each second. For that scenario,
the total overhead of our PdRM is about 0.4% of the total execution time. According
to these results, the overhead of PdRM is very small compared to the performance gain
achieved by it.

6. Power Density-Aware Resource Management 72

W
ei

gh
te

d
 P

er
fo

rm
an

ce
[w

ei
gh

ts
*a

p
p

s/
s]

0

100

200

300

PdRM TurboBoost

0.0

0.6

1.2

1.8

0

100

200

300

Po
w

er
 [

W
]

Po
w

er
 E

ff
ic

ie
n

cy
[w

ei
gh

ts
*a

p
p

s/
s*

W
]

16% Average Performance Gain

46% Average Power Reduction

105% Average Power Efficiency Improvement

Figure 6.10: Comparison between the performance, power and power efficiency of PdRM
and TurboBoost.

0

100

200

300

Mix01 Mix02 Mix03 Mix04 Mix05 Mix06 Mix07 Mix08 Mix09 Mix10 Mix11 Mix12

PdRM TurboBoost MaxSpeed

TDPcontrol240 TDPcontrol200 TDPcontrol160

W
ei

gh
te

d
 P

er
fo

rm
an

ce

[w
ei

gh
t*

ap
p

s/
s]

Average performance gains of PdRM compared to TurboBoost, MaxSpeed, TDPcontrol
are 1.31x, 2.12x, 14x, respectively.

Figure 6.11: The resulting weighted performance under probabilistic power and execu-
tion time values.

6.6 Summary

This chapter has presented an efficient resource management technique based on power
density constraint, which aims at maximizing the overall system performance on hetero-
geneous tiled multicores without violating a predefined critical temperature. The intro-
duced novel power density constraint is a potent yet simple approach that guarantees

73 6. Power Density-Aware Resource Management

b) PdRMa) TDPcontrol

88

78

68

[°C]

Figure 6.12: Comparison of the resulting steady-state temperatures of our PdRM and
TDPcontrol [57] running Mix10 workload and assuming that DTM is deactivated.

avoiding thermal violations and considers the underlying core heterogeneity. Further-
more, it is shown that runtime adaptation of this power density constraint by consid-
ering the power characteristics of the executed applications on different types of cores
and accelerators can result in further performance improvements. The evaluation has
demonstrated that PdRM results in up to 14x higher average performance compared to
state-of-the-art approaches. Therefore, this approach can motivate researchers to move
from chip-level power budgets to dynamically adapted power density constraints, which
are more efficient and heterogeneity-aware.

6. Power Density-Aware Resource Management 74

0

50

100

150

200

250

300

Mix01 Mix02 Mix03 Mix04 Mix05 Mix06 Mix07 Mix08 Mix09 Mix10 Mix11 Mix12

DsDense TurboBoost MaxSpeed

TDPcontrol240 TDPcontrol200 TDPcontrol160

W
e

ig
h

te
d

 P
e

rf
o

rm
a

n
ce

[w

e
ig

h
t*

a
p

p
s/

s]

Table of the average performance
gains of PdRM compared to
comparison candidates for
different weight sets:

W
e

ig
h

te
d

 P
e

rf
o

rm
a

n
ce

[w

e
ig

h
t*

a
p

p
s/

s]

(a) WS1

(b) WS2

WS1 WS2 WS3 WS4

TurboBoost 1.16x 1.12x 1.23x 1.15x

MaxSpeed 1.91x 1.58x 1.79x 1.59x

TDPcontrol 12.8x 7.11x 1E+4x 7.04x

0

25

50

75

100

125

150

Mix01 Mix02 Mix03 Mix04 Mix05 Mix06 Mix07 Mix08 Mix09 Mix10 Mix11 Mix12

17% Performance
Gain

0.E+0

5.E+5

1.E+6

2.E+6

2.E+6

Mix01 Mix02 Mix03 Mix04 Mix05 Mix06 Mix07 Mix08 Mix09 Mix10 Mix11 Mix12

W
e

ig
h

te
d

 P
e

rf
o

rm
a

n
ce

[w

e
ig

h
t*

a
p

p
s/

s]

29% Performance
Gain

(c) WS3

0

10

20

30

Mix01 Mix02 Mix03 Mix04 Mix05 Mix06 Mix07 Mix08 Mix09 Mix10 Mix11 Mix12

W
e

ig
h

te
d

 P
e

rf
o

rm
a

n
ce

[w

e
ig

h
t*

a
p

p
s/

s]

18% Performance
Gain

(d) WS4

19% Performance
Gain

PdRM

Figure 6.13: Comparison between the resulting overall system performance of our PdRM
and several state-of-the-art techniques, while executing various scenarios of workloads.
The experiments are conducted for four different sets of weights, WS1, WS2, WS3, and

WS4, as defined in Section 6.4.

Chapter 7

Aging-Constrained Resource
Management

As discussed earlier, system-level decisions may be the cause of circuit aging: Aiming at
maximizing performance, resource management might increase the number of parallel
threads of the applications and upscale the V/f levels of the cores, and that, in turn,
raises the temperature. Increased Vdd and high temperature induce an accelerated aging
manifesting as an increase in the threshold voltage (Vth). An increase in the threshold
voltage (∆Vth), in turn, may increase the critical path of the processor and eventually
lead to timing violations and/or errors. To sustain reliability, chip designers add to
the clock delay a timing guardband to compensate for ∆Vth. Determining the width
of the guardband necessitates enforcing an upper bound (or constraint) for the aging
(i.e., ∆Vth). This aging constraint is referred to as ∆V m

th .

The state of the art imposes conservative Vdd and temperature bounds so that the
amount of aging (i. e. ∆Vth) is safely kept below a predetermined aging constraint
∆V m

th . The disadvantage of this practice is that the resource management’s goal of
maximizing performance is then limited. Hence, it is indispensable to explore the trade-
offs between all involved relevant parameters and constraints, i.e. V/f levels, number
of parallel threads, temperature, aging, and performance (see Figure 1.4) in order to
achieve the optimization goal of maximizing performance under aging constraints.

Given this motivation, this chapter presents a new aging-aware design space that trans-
lates temperature and Vdd into an amount of aging, quantified by ∆Vth, based on an
accurate physics-based aging model (Section 3.4). This new design space and its ex-
ploration enables a resource management to maximize the performance without the
restrictiveness of the state of the art. Thus, a novel aging-constrained resource man-
agement technique referred to as AgRM is presented to exploit this aging-aware design
space with the goal of maximizing the performance under an aging constraint. More
specifically, the presented AgRM technique adjusts the system level parameters, i.e. the
number of parallel threads of the applications and the V/f levels of the cores, so that
the performance is maximized (optimization goal) under an aging constraint. The de-
sign flow for the presented aging-constraint resource management technique is shown in
Figure 7.1.

75

7. Aging-Constrained Resource Management 76

Inputs:

Outputs:

Aging-constrained Resource Management (AgRM)

Aging-Aware
Design Space
Exploration

AgRM Functionality

Application
Mapping

Resource Allocation:
Determining numbers of

parallel threads of
applications & core V/f levels

Core Power
States

Core V/f
Levels

Power &
 Performance

Tables

Multicore
 Architecture

 Constraint:
∆𝑉𝑡ℎ

𝑚
Thermal &

Aging Models
Application
Workload

LUTs

 # Parallel Threads
of Applications

Figure 7.1: An overview of the proposed aging-constrained resource management.

7.1 Aging-Aware Design Space

7.1.1 Relevance of Accurate Aging Models

State-of-the-art aging models are empirical as they estimate ∆Vth [127] through heuris-
tics i.e. without modeling the physical mechanisms. Thus, they only work for those
temperature and Vdd values where measurements have been conducted. The purpose
of these models is to provide a rapid estimation of aging for a projected lifetime un-
der worst-case conditions. Therefore, it is infeasible to employ these empirical aging
models for the purpose of a design space exploration where wide ranges of temperature
and Vdd must be considered and where accuracy is key. In fact, temperature and Vdd
are not independent with regard to aging. For instance, the reduction in ∆Vth due to
lower Vdd can be diminished if temperature increases and vice versa. Hence, the joint
impact of temperature and Vdd on Vth needs to be considered. In other words, system-
level decisions like number of threads, V/f levels etc. indispensably necessitate an aging
model that is able to correctly and accurately quantify the physical mechanisms that
induce degradation (∆Vth). The underlying differential equations in a physics-based
aging model describe precisely the diverse defect generation mechanisms under the de-
pendency of temperature and voltage. This is what gives the physics-based aging model
the capability to consider any arbitrary combination of temperature, Vdd, contrary to em-
pirical aging models. Therefore, the state-of-the-art physics-based aging model [106] is
employed as seen in Figure 3.5. The details of the adopted aging modeling are discussed
in Section 3.4.

77 7. Aging-Constrained Resource Management

1.41.31.21.1

Vdd[V]

10.90.80.70.60
20

Temperature[/C]

40
60

80

0.06

0.07

0.01

0.02

0.03

0.04

0.05

100

"
V

th
[V

]

"V
th

=0.05V

"V
th

=0.03V

"V
th

=0.01V

Figure 7.2: A new aging-aware design space: Accurate interdependencies between
amount of aging (i.e. ∆Vth), temperature and Vdd, as demonstrated in Section 3.4

Vdd[V]

0.6 0.8 1.0 1.2 1.4

T
em

p
er

at
u
re

[/
C
]

0

20

40

60

80

100

Vdd[V]

0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

100

Vdd[V]

0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

100

Vdd[V]

0.6 0.8 1.0 1.2 1.4

T
em

p
er

at
u
re

[/
C
]

0

20

40

60

80

100

Vdd[V]

0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

100

Vdd[V]

0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

100

Infeasible design spaceFeasible design space

6 = 1 year
"V

th
50.01V

6 = 1 year
"V

th
50.03V

6 = 1 year
" V

th
50.05V

6 = 5 years
"V

th
50.05V

6 = 5 years
"V

th
50.01V

6 = 5 years
"V

th
50.03V

Figure 7.3: Feasible design spaces for varying aging constraints and lifetimes.

7.1.2 Design Space Exploration (DSE)

This section presents a new design-space and its exploration that links parameters and
constraints as presented in Figure 1.4. Firstly, several design spaces are generated for
various targeted lifetimes and aging constraints. Secondly, we explore one of these design
spaces along with varying system-level parameters, i.e., V/f levels and number of parallel
threads.

7. Aging-Constrained Resource Management 78

Vdd[V]
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

T
em

p
er

at
u
re

[/
C
]

0

20

40

60

80

100

A
C

"V
th
50.03V "V

th
>0.03V

B

The desgin space
that is un-exploited
by state-of-the-art

B, C

The limited
design space
 that can be utilized
by state-of-the-art

A

Figure 7.4: The entire design space that satisfies the aging constraint and the limited
design space resulting from applying conservative temperature and Vdd bounds (dashed

area) by the state of the art.

7.1.3 DSE for Various Lifetimes and Aging Constraints

Using the aging model presented in Section 3.4, we estimate the amount of aging for
temperatures and Vdd within the ranges [0 ◦C · · · 100 ◦C] and [0.6 V · · · 1.4 V], respec-
tively, and considering different targeted lifetimes (λ), i.e., 1 year, 5 years and 10 years.
For an example, ∆Vth after one year is shown in Figure 7.2. The three cut-off lines
represent specific aging constraints1. The design space of Vdd and temperature below
each of these cut-off lines represents feasible options since they satisfy the aging con-
straint. Figure 7.3 shows different feasible design spaces for various aging constraints
and lifetimes. Apparently, higher targeted lifetimes reduce the feasible design space.

Without loss of generality, we consider the scenario of the aging constraint V m
th = 0.03 V

and the lifetime λ = 1 year as an example and explore it further in Figure 7.4. The first
observation is that the (blue) cut-off line can be translated into a set of temperature
constraints, each corresponds to a specific Vdd so that the aging constraint is satisfied.
For instance, if Vdd is set to 1.25 V, the temperature constraint will be equal to 52◦C.
However, if a lower Vdd is selected, e.g. 1.15 V, the temperature may reach 86◦C, without
violating the aging constraint. This is a key observation. However, the state-of-the-art
technique [82] enforces one pair of temperature and Vdd. For instance, if the maximum
allowed Vdd is 1.225 V, the temperature constraint is 60◦C (two dashed lines in Fig-
ure 7.4). Therefore, a resource management cannot, by principle, select temperature
and Vdd outside this limited space. In contrast, considering the entire aging-aware de-
sign space enables the selection of more temperature and Vdd values and hence opens
new optimization potential.

7.1.4 DSE for Various System-Level Parameters

The new aging-aware design space is explored with (varying) system-level parame-
ters: number of threads and V/f levels of the cores. The V/f level range is from
(0.6 V, 0.8 GHz) to (1.4 V, 4.0 GHz). The step between these levels is 0.05 V and 0.2 GHz.
The following application scenarios are discussed:

1All assumptions for parameter values are exemplary. The presented technique does not depend on
these specific values nor these values are the limits or recommendations of any data sheets etc. They
are solely chosen for illustrative purposes of the presented technique.

79 7. Aging-Constrained Resource Management

vf
1

vf
2

vf
3

vf
4

vf
5

vf
6

vf
7

vf
8

vf
9

vf
10

vf
11

vf
12

vf
13

vf
14

vf
15

vf
16

vf
17

T
em

pe
ra

tu
re

 [°
C

]

0

20

40

60

80

100

vf
12

vf
13

vf
14

vf
15

vf
16

T
em

pe
ra

tu
re

 [°
C

]

40

45

50

55

60

65

vf
i
 2(0.6V, 0.8GHz), ... ,(1.4V,4GHz)cannealo" x264

Zoom in

V/f Levels

V/f Levels

Figure 7.5: The resulting temperatures (Equation (8.4)) of running one single-threaded
application on one core for different V/f levels whose Vdd values cover the adopted Vdd
range, i.e., [0.6 V, 1.4 V]. The red design points represent the temperature points that
are outside the feasible design space. The blue ones are within. Considering the entire

design space allows choosing vf14, which corresponds to (1.25 V, 1.34 GHz).

The first scenario considers two applications from PARSEC benchmark suite [41], “x264”
and “canneal”, each runs only a single thread individually on the chip. Figure 7.5 shows
the resulting temperatures from running these applications for different V/f levels. As
seen, the aging constraint is violated at vf14 (i.e., when the Vdd reaches 1.25 V), in the
case of “x264”. While in the case of “canneal”, the V/f level can be reached (i.e., Vdd
can be set to 1.25 V) without violating the aging constraint because “canneal” has lesser
power consumption and therefore lower temperature. Again, it is of key importance
that this opportunity of exceeding the V/f level is not possible by the the state of the
art that must stick with a specific pair of temperature and Vdd.

Figure 7.6 illustrates the second scenario, in which 8 instances of “x264” are running
simultaneously on the chip. Varying numbers of threads for these applications (i.e., 1,
2, 4, 8) are examined. It can be noticed that the maximum performance that can be
obtained considering the entire design space is 54% more than the maximum obtained
performance when the limited (region A) design space (as used by the state of the art)
is employed.

In summary, there is a great potential advantage when employing the entire design space
since it opens new optimization potential for system-level techniques that determine pa-
rameters like number of threads, V/f levels of the cores etc. To provide the resource
management techniques with the aging-aware design space, we construct look-up tables

7. Aging-Constrained Resource Management 80

Vdd [V]

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

T
em

p
er

at
u
re

[/
C
]

0

20

40

60

80

100
P
er

fo
rm

an
ce

[I
P
S
]

#1010

0

0.5

1

1.5

2

Frequency [GHz]

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

8 threads
4 threads
2 threads
1 thread

"
"
"

"

54%
Performance

gain

Figure 7.6: The maximum temperatures and the average performance, resulting from
running eight instances of “x264”, with multiple threads for each, and for different
V/f levels. The points that are surrounded by circles represent the maximum obtained
performance within the limited space and the complete one. Considering the whole
design space allows increasing both the number of threads and the V/f levels, and

hence increasing the performance.

(LUT) for different pairs of aging constraints and lifetimes. Each table stores the tem-
perature constraints that satisfy the given aging constraint after the targeted lifetime
for all possible V/f levels.

7.2 Problem Formulation

Based on the explored aging-aware design space, a new resource management technique
is proposed to exploit the full potential of performance maximization under an aging
constraint ∆V m

th for a specific lifetime λ and a workload of K applications running on
N cores. The objective is to select for each application k the number of threads hk and
the V/f level, vfk, so that the system performance is maximized:

Select hk, vfk for all k = 1, 2, . . . ,K, in order to:

Maximize
∑K

k=1
Rk(hk, vfk) , s.t:

T appk ≤ LUT∆Vm
th ,λ

(vfk) And
∑K

k=1
hk ≤ N

81 7. Aging-Constrained Resource Management

There, the application performance Rk(hk, vfk) is estimated using Equation (3.2). T appk

denotes the maximum temperature of the cores that execute application k. LUT∆Vm
th ,λ

refers to a look-up-table (constructed based on the aging-aware design space) that stores
the temperature constraints that satisfy the aging constraint V m

th after a lifetime of λ
for all possible V/f levels. This combinatorial optimization problem, unfortunately,
cannot be reduced to any kind of Knapsack problem because, among others, the con-
straints are not global but local at the level of the cores of each application. Each
combination C consists of a list of K pairs of a V/f level and a number of threads, i.e.,
{(vf1, h1), (vf2, h2), · · · , (vfK , hK)}, such that each pair corresponds to one application.
Enumerating all combinations is of exponential complexity. However, there are bounds
of the parameter space: For example, as seen in Figure 7.5, each application has a maxi-
mum feasible (without violating the aging constraint) V/f level. This along with further
existing bounds (explained later on), makes the branch and bound algorithm the best
choice.

7.3 Aging-Constrained Performance Maximization

The aforementioned problem is solved using a branch and bound algorithm. The algo-
rithm starts from an initial combination C? as the root node of the search tree. this
root node represents an upper bound of the performance but it might still violate the
aging constraint. Thus, the algorithm repeatedly creates further nodes (combinations),
that have lower V/f levels and/or lesser number of threads aiming to satisfy the aging
constraint with a minimum performance reduction with regard to the performance of
C?. It is to be noted that during this search, the resulting steady-state temperatures
of each combination must be estimated. That requires determining the mapping of the
applications to the cores. For this purpose, a simple2 mapping scheme is applied, i.e. the
applications are mapped to the cores in their default ordering within the workload set.

7.3.1 Finding the Root Node

Starting with a good root node is crucial for finding the best solution quickly.
Firstly, as seen in Figure 7.5, there is a maximum V/f level that the application can run
at without violating the aging constraint. This maximum V/f level (denoted as vf?k)
depends on the running application (it can be higher for low-power applications), the
number of parallel threads, and the number of simultaneously running applications. It
is maximized when the application is executed on one core and the rest of the cores are
inactive (i.e. no heat contributions from other cores). Thus, we find the maximum values
of vf?k for all applications and assign them to the corresponding combination pairs of
the root node C? as the upper bounds for the V/f levels. Secondly, the trivial upper
bound for the number of threads of each application is Hk. However, assigning Hk cores
to each application k might lead to a total number of threads more than the number of
the cores on the chip. Thus, it is necessary to find the number of threads of each appli-
cation hk so that the overall system performance is maximized while the total number of
threads does not exceed the number of the cores. This can be obtained through dynamic
programming inspired by what is proposed in the literature for similar problems [128].

2It is important to note that the presented resource management technique in this chapter works
irrespective of the application mapping and a better mapping would improve the final results further.

7. Aging-Constrained Resource Management 82

Algorithm 7 Branch & Bound to maximize performance under aging constraint

Input: C?, LUT ;
1: Create RootNode; RootNode← C?;
2: GLB ← 0; k = 0; Level[k].AddNode(RootNode);
3: while k ≤ K do
4: k = k + 1;
5: if T appk > LUT (vfappk) then
6: for all Node in Level[k − 1].listNodes do
7: Node.Branch(k,GLB,AC,Node?);
8: Level[k].AddNodes(Node.ChildNodes);
9: if AC and Node?.R > GLB then

10: GLB ← Node?.R; BestNode← Node?;
11: end if
12: end for
13: end if
14: end while
15: return BestNode;

After finding the optimal number of threads of each application h?k, the root node C?

is set as follows: {(h?1, vf?1), (h?2, vf
?
2), · · · , (h?K , vf?K)}. It represents the upper bound of

the performance with the aging constraint still to be examined. Therefore, the resulting
temperatures of the cores are estimated. If for each application k, T appk does not exceed
the corresponding temperature constraint to vf?k , then that means the root node satisfies
the aging constraint and the search is pruned. Otherwise, the algorithm needs to search
further for the combination that does satisfy the aging constraint. Before starting to
search, the list of pairs of the combination is sorted in a descending order according
to the amount of the thermal violation of the cores of the corresponding application
i.e. T appk -LUT∆Vm

th ,λ
.

7.3.2 Branching and Bounding Rules

The algorithm starts with branching on the root node as reductions on the V/f level and
the number of threads (to satisfy the aging constraint) of the first pair only (i.e. first
application) resulting in child nodes representing the first level of the tree. Intuitively,
the maximum number of the tree levels is K.

At each tree level k, the algorithm creates nodes from changing the pair k from the
parent nodes at level k− 1. It starts by reducing the V/f level and afterwards continues
with reducing the number of threads. The reason is: When the V/f level is reduced first,
the temperature constraint (upper bound) will be raised and therefore the possibility
to satisfy the aging constraint is increased. In practice, this property also significantly
reduces the number of examined steps.

Hence, the V/f levels are reduced step by step until a node is found that satisfies the aging
constraint. Then, the resulting performance at this node is considered the local lower
bound for the branching at the current parent node, and denoted as LLB. Afterwards,
the algorithm continues with branching by reducing the number of threads without
reducing the V/f level and then by reducing both simultaneously. In either way, the
algorithm stops branching once the resulting performance is lower than LLB.

83 7. Aging-Constrained Resource Management

Algorithm 8 Branch on a Node

Input: k,GLB; {Branching on V/f level};
1: vfSteps← 1; LLB ← 0;
2: repeat
3: create a new ChildNode; ChildNode← Node;
4: Subtract vfSteps from ChildNode.C[k].vf ;
5: if (ChildNode.R < GLB) or (ChildNode.R < LLB and

T appk (ChildNode.C[k]) > LUT (ChildNode.C[k].vf)) then
6: Remove ChildNode and Break; {Stop Branching};
7: else
8: Node.AddNode(ChildNode); vfSteps← vfSteps+ 1;
9: end if

10: if T appk (ChildNode.C[k]) ≤ LUT (ChildNode.C[k].vf) then
11: if ChildNode.R > LLB then
12: LLB ← ChildNode.R;
13: end if
14: if AC = true then
15: Node? ← ChildNode;
16: end if
17: end if
18: until T appk (ChildNode.C[k]) ≤ LUT (ChildNode.C[k].vf) or vfSteps >

vfMaxSteps
{Branching on number of threads}
{Branching on both V/f levels and number of threads}

19: return AC,Node?;

During branching, if any node leads to satisfying the aging constraint on all cores, it is
considered as a promising node for the final solution and its performance is considered
a global lower bound for the search tree, and denoted as GLB. If the aging constraint is
satisfied by another node with higher performance than GLB, then the performance of
the new node replaces GLB. The last level to branch is the one that corresponds to the
last application, whose T appk exceeds the aging constraint. Once the aging constraint is
satisfied at this level, the promising node that has the highest performance represents the
final solution. This algorithm is presented in Algorithm 7. The function that explains
the branching process on one node is shown in Algorithm 8. Note that a flag called AC
is used in the algorithms to indicate a satisfied aging constraint on all cores. The data
structure of each node consists of the following fields: the combination C, the resulting
performance R, and the list of child nodes.

7.4 Experimental Evaluation

The main metric of the evaluating AgRM is the overall system performance. The tar-
geted multicore system is a 64-core chip shown in Figure 4.4. The complete setup is
explained in details in Chapter 4, in which the tool flow is illustrated in Figure 4.1.
Varying representative application scenarios are employed (Figure 8.9), so that single
and multiple application mapping are considered. The scenarios S10, S11, and S12 con-
sider only a single application. Each application runs a varied number of threads 1, .., 8.

7. Aging-Constrained Resource Management 84

Scenarios S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
blackscholes 2 3 1 4 - - 5 - 4 12 - -

bodytrack 2 3 2 - 4 4 - - 1 - - -
swaptions 2 3 3 4 - 4 5 6 4 - 12 -

ferret 2 3 1 - 4 - - - 1 - - -
canneal 2 3 2 4 - - 5 - 1 - - -

x264 2 3 3 - 4 4 - 6 4 - - 12

Aging
Constraints

∆𝑉𝑡ℎ
𝑚

[V]
Lifetime
[year]

(i) 0.03 1

(ii) 0.05 5

(iii) 0.05 10

Figure 7.7: The first table contains the application scenarios. Each cell contains a
number of application instances in each scenario. The second table shows the considered

aging constraints.

Vdd[V]

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

T
em

p
er

at
u
re

[/
C
]

0

20

40

60

80

100

BoundRM_B1

BoundRM_B2

AgRMB1

B2

Figure 7.8: The adopted constraints by the comparison candidates.

The range of the voltage and frequency employed V/f level is from (0.6 V, 0.8 GHz) to
(1.4 V, 4 GHz).

7.4.1 Comparison Candidates

The technically closest (it shares with us the same goal of maximizing the performance
under aging constraint) related resource management, that also has reported the best re-
sults so far, is [82], which is referred to as BoundRM. They first estimate the max. voltage
and temperature bounds for a targeted lifetime. Then they assign applications to cores
and determine V/f levels aiming at maximizing the performance without violating the
predetermined voltage and temperature bounds. It is to be noted that their BoundRM
considers only single-threaded applications. To enable a fair comparison with AgRM
which considers multi-threaded applications and hence it determines the number of the
cores to assign to each application, it is assumed that in the case of the BoundRM tech-
nique, the cores are evenly distributed among the applications. Additionally, our policy
of determining the number of threads is combined with BoundRM resulting in a new
combined version referred to as CombRM 3. Both BoundRM and CombRM are tested
for two pairs of temperature and voltage bounds; B1 and B2, estimated using the same
physics-based aging model that AgRM employs (see Figure 7.8). It is to be noted that
the temperature bound of B1 is higher than that of B2, while the voltage bound of B2
is higher than that of B1. That makes these pairs of bounds representative.

3The reason for extending the state-of-the-art technique is to allow it to benefit from our policy of
determining the number of threads. This way we diminish the magnitude of AgRM benefit compared
with CombRM but still AgRM outperforms CombRM because of the use of the entire design space.

85 7. Aging-Constrained Resource Management

The work proposed in [82] enforces one pair of voltage and temperature bounds in the
resource manager. However, comparing against [82] using only one pair of these bounds
might not be fair and representative. Therefore, to provide a deeper evaluation, we
evaluated [82] using two different pairs of voltage and temperature bounds, i.e., B1 and
B2. In general, these bounds will be different from one multicore system to another based
on its specifications, i.e., the possible temperature and voltage ranges. The important
rule of choosing the bounds is that they must fulfill the given aging constraint, and that
can be checked using the aging model, e.g., when a higher temperature bound is chosen, a
lower voltage bound must be accordingly selected to fulfill the aging constraint. Thus, to
evaluate [82],two pairs of bounds are selected from the allowed temperature and voltage
ranges of the adopted system model. The first pair B1 considers a temperature bound of
80 ◦C, and therefore the maximum voltage bound that fulfills the given aging constraint
is 1.2 V, as shown in Figure 7.8. The second pair B2 considers a lower temperature
bound of 60 ◦C, and therefore the maximum voltage bound is 1.25 V.

7.4.2 Results

For the experiments, three representative aging constraints are evaluated with varying
V m
th and lifetimes (see Figure 8.9). For each scenario in Figure 8.9, we present: the

resulting overall system performance for the aging constraint (i) and (ii) in the bar chart
of Figure 7.94. This chart shows that our AgRM outperforms the BoundRM for all
application scenarios with an average of 23% and 79% for B1 and B2, respectively. The
maximum performance gain reaches up to 43% and 115% at scenario S11. For elabora-
tion, the amount of aging is estimated after applying the resulting decisions of AgRM
and BoundRM at scenario S11 and considering aging constraint (ii)(see Figure 7.10).
As seen, the amount of aging resulting from AgRM decisions is closer to the aging con-
straint, but still fulfilling it. That is why AgRM is able to gain more performance than
BoundRM, which is, by principle, too conservative. Additionally, AgRM adjusts both
the number of threads and the V/f levels of the cores to exploit the entire design space.
BoundRM, in contrast, adjusts only the V/f levels of the cores. That also elaborates
why CombRM achieves higher performance compared to BoundRM ; it is because our
policy of determining the number of threads is employed within CombRM.

Most importantly, these application scenarios fully utilize the system (each consists of
multiple applications, and each application can run up to 8 parallel threads). Aging mat-
ters for such scenarios most and is of lesser interest in underutilized system scenarios.
But for completeness and discussion, we run 6 scenarios with only two application in-
stances leading to utilizing only 25% of the system. In these scenarios, the average
performance gain of AgRM compared to BoundRM is 7%. Explanation: In Figure 7.4
a smaller number of active cores results in lower temperature and therefore the design
points are in the regions A and C. Whereas Region A can be exploited by both our
AgRM and the state of the art, region C only by our AgRM, but that provides less
benefit (but still some) compared to design points in region B. In summary it means
AgRM are having higher benefits where it counts, i.e. highly utilized systems (that age
faster) and lesser benefits where it hardly counts, i.e. underutilized systems (that age
slower).

4The results for aging constraint (iii) are not shown due to brevity, but a summary of these results
is shown in the table of Figure 7.9.

7. Aging-Constrained Resource Management 86

0

2

4

6

8

10

12

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Our AgRM BoundRM_B1 BoundRM_B2 CombRM_B1 CombRM_B2

0

2

4

6

8

10

12

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

O
ve

ra
ll

Sy
st

em
 P

er
fo

rm
an

ce

(i) ∆𝑉𝑡ℎ
𝑚 = 0.03𝑉, 𝜆 = 1 𝑦𝑒𝑎𝑟 (ii) ∆𝑉𝑡ℎ

𝑚 = 0.05𝑉, 𝜆 = 5 𝑦𝑒𝑎𝑟𝑠 (iii) ∆𝑉𝑡ℎ
𝑚 = 0.05𝑉, 𝜆 = 10 𝑦𝑒𝑎𝑟s

Avg Min Max Avg Min Max Avg Min Max

43% 27% 73% 46% 27% 72% 44% 27% 73%

The performance gain of our AgRM compared to the average performance of BoundRM under
various aging constraints:

O
ve

ra
ll

Sy
st

em
 P

er
fo

rm
an

ce

Aging Constraint (ii): ∆𝑉𝑡ℎ
𝑚 = 0.05𝑉, 𝜆 = 5 𝑦𝑒𝑎𝑟𝑠

0

2

4

6

8

10

12

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Aging Constraint (i): ∆𝑉𝑡ℎ
𝑚 = 0.03𝑉, 𝜆 = 1 𝑦𝑒𝑎𝑟

Aging Constraint (iii): ∆𝑉𝑡ℎ
𝑚 = 0.05𝑉, 𝜆 = 10 𝑦𝑒𝑎𝑟𝑠

O
ve

ra
ll

Sy
st

em
 P

er
fo

rm
an

ce

Figure 7.9: Comparison between the resulting overall system performance by our AgRM,
BoundRM [82], and CombRM, where the last two techniques are examined with under
two different pairs of voltage and temperature B1 and B2. The two bar charts illustrate

the results under two aging constraint (i) and (ii).

The last observation is the impact of adopting the two pairs of bounds (B1 and B2) by
the state-of-the-art technique. In general, adopting B1 by both BoundRM and CombRM
results in higher performance than adopting B2 because in B1 a higher temperature value
can be reached. But when the workload is small, B2 might result in higher performance
compared to B1, since a higher Vdd can be applied and that can be exploited when
the workload results in a lower temperature than the temperature bound of B2. State-
of-the-art technique BoundRM is, by principle, not able to apply more than one pair
of bounds (either B1 or B2). This demonstrates again that enforcing a predetermined
pair of temperature and voltage bounds (to satisfy aging constraint) is a too conservative
approach.

87 7. Aging-Constrained Resource Management

Figure 7.10: Amount of aging : Closer to the blue plane (constraint) means better
exploitation leading to higher performance. An exemplary scenario showing why our

AgRM is advantageous compared to the state-of-the-art technique.

Finally, the table shown in Figure 7.9 summarizes the average and the maximum per-
formance gains of the presented AgRM for the relevant scenarios. In summary, the
AgRM technique achieves an average of 43% compared to the average performance of
BoundRM, with the identical aging constraint applied.

7.5 Summary

This chapter showed that the new aging-aware design space enables an aging-constrained
resource management that is superior to the best known approach reported in the state
of the art. The presented aging-aware design space depended on a precise physical mod-
els that have been validated against various batches of silicon dies. The experimental
evaluation reported performance increase in comparison with the state-of-the-art tech-
nique from average of 43% to a maximum of 73% while fulfilling a set of aging constraints
(The aging-constraints are varied to show the validity of the approach over various aging
design goals). These results were possible since AgRM uses points in the design space
that, by principle, cannot be exploited by the state of the art.

Chapter 8

Aging-Aware Boosting

The state-of-the-art technique that maximizes the performance at runtime without de-
pending on any prior knowledge of the running applications is the DVFS-based boosting
technique, which is widely adopted by several processor manufacturers like Intel Turbo
Boost1 [67, 68] and AMD Turbo Core [69]. In order to maximize the performance, boost-
ing techniques allow processor cores to run faster than the base operating frequency. To
keep the processor operating within safe margins, a simple closed-loop control system
is employed to upscale the V/f level of the cores when the power and temperature are
below specific limits, and downscale it otherwise. Boosting techniques have shown supe-
riority in improving the performance [70], and therefore, processor manufacturers keep
improving and issuing these techniques with the new generations of the processors [68].
However, boosting techniques have negative impact on the processor aging, since they
stress the circuits and stimulate aging mechanisms. Particularly, boosting techniques
increase long-term aging effects because they increase the V/f level and hence the supply
voltage Vdd, which, in turn, increases the power density and thereby the temperature
of the processor. As mentioned above, high voltage and temperature accelerate aging
mechanisms. Furthermore, boosting techniques raise the so-called short-term aging ef-
fects (presented in Section 1.3) whenever they downscale the voltage level of the processor
with the goal of satisfying the power and temperature constraints.

Therefore, to sustain reliability under boosting (i.e., to prevent any potential timing
errors that would be incurred due to aging), the induced delays stemming from both long-
term and short-term aging effects should be compensated for. That would necessitate
employing a wider guardband than what would be dimensioned to solely compensate
for long-term aging effects. However, a wider guardband leads to higher performance
losses and thus hinders boosting techniques. The interdependencies between these partly
contradictory constraints and goals are illustrated in Figure 8.1.

As a result, there is a pressing need to reduce the aging-induced delays and thereby
the corresponding guardbands and their associated performance losses. The challenge
here is that these aging effects originated due to the mechanism of the boosting tech-
nique that leads to frequent cycles of upscaling V/f levels to increase the performance
and downscaling V/f levels to decrease the temperature. As discussed above, upscal-
ing Vdd increases long-term aging, while downscaling Vdd causes short-term aging (see
Figure 8.1).

1Intel Turbo Boost technique has been first implemented in Nehalem architecture in 2008 [67], but
it is still adopted in recent Intel processors, like Intel Core i7 [68].

89

8. Aging-Aware Boosting 90

DVFS-Based Boosting

Upscaling V/f Level Downscaling V/f Level

Performance Temperature

Long-term Aging Short-term Aging Employ Guardbands

Reliability

increase

increase decrease

decrease

increase

decrease decrease

increase

decrease

sustain

Goals/constraint

Process

Positive Impact

Negative Impact

Invoke Process Legend

Figure 8.1: Illustrating the interdependencies between the partly contradictory con-
straints and goals of boosting.

Given this challenge, we present in this chapter a boosting technique that limits the
stimuli of long and short-term aging effects, leading to reducing the delays induced
by long and short-term aging effects, and thereby reducing the required guardbands
to compensate for these delays. This way our proposed boosting technique is able to
maximize the performance while at the same time reducing both long and short-term
aging effects.

In the following section, a deeper insight into the well-known long-term aging effects
and the recently-discovered short-term aging effects is provided. Section 8.2 presents an
overview of the impact of employing guardbands on the efficiency of boosting, i.e., its
ability of maximizing the performance. An analysis of the impact of the boosting tech-
nique on the aging effects is conducted in Section 8.3. Afterwards, Section 8.4 presents
the proposed boosting technique. Finally, the evaluation of our proposed technique is
demonstrated in Section 8.5.

8.1 Background of Long and Short-Term Aging Effects

As discussed in Chapter 1, long-term aging effects refer to the gradual increase in the
threshold voltage (Vth) of transistors [43] over time. This increase in the threshold
voltage, denoted as ∆Vth, leads to prolonging the critical path delay of the processor
(tcritpath). However, the processor’s clock delay (tclk) is specified at design time according
to the nominal specifications of the processor (i.e., Vth without any degradation). Hence,
tcritpath might become longer than tclk resulting in timing violations and errors, as the
following equations2 show:

2As noted previously, only for the sake of simplicity, the equations in (8.1) use the simplified relation
between the transistor delay and the drain current of transistor which does not consider the MOSFET
short channel effects. However, the aging modeling in this dissertation employs a detailed modeling of Id
using the state-of-the-art industrial standard compact modeling for MOSFET (Berkeley Short-channel
IGFET Model BSIM) [44, 45].

91 8. Aging-Aware Boosting

*The values of tcritpath , tclk , tclk are normalized to tclk at Vdd
max

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.401.351.301.251.201.151.101.051.00

Vdd
max

N
o

rm
al

iz
ed

 D
el

ay
*

tcritpath tclk

Nominal critical path
delay w/o aging

Clock delay after adding
a timing guardband tGB

Actual critical path delay

Timing Errors

tcritpath > tclk

tGB

Downscaling Vdd

Vdd [V]

2.6x tGB
is required

tclk
nom

nom nom

Figure 8.2: The BOOM processor has been analyzed in order to obtain its critical path
delay. During Vdd downscaling caused by DVFS, the increase in tcritpath is higher than
the increase in tclk, because the impact of ∆Vth on tcritpath is magnified at lower Vdd
values. The value of ∆Vth that caused by V maxdd has been considered for a lifetime of

10 years.

Long-term aging effect:

tclk = tnomclk ∝
1

(Vdd − Vth)

tcritpath ∝
1

(Vdd − Vth −∆Vth)

⇒ tcritpath > tclk ⇒ Timing Errors

∆tL = tcritpath − tclk (at V max
dd) (8.1)

∆tL is the maximum increase in tcritpath that results from the maximum value of ∆Vth
that occurs at the maximum temperature (Tcrit) and the maximum voltage (V max

dd).

To avoid timing errors, it is necessary to add a timing guardband, referred to as tGB, to
the nominal clock delay tnomclk . tGB must be equal to ∆tL to consider the maximum delay
increase, as seen in Equation (8.2), in order to guarantee avoiding any timing errors that
would be induced by long-term aging throughout the processor’s lifetime.

tclk = tnomclk + tGB; tGB = ∆tL (8.2)

This timing guardband results in a reduction in the operating frequency by a certain
ratio, referred to as fGB. Nevertheless, this guardband might not be sufficient to prevent
timing errors when DVFS is applied, because recent measurements [46] and a research
study [28] have reported a sudden increase in the critical path delay of circuit that
temporarily arises when Vdd is downscaled.

To understand this phenomenon, the values of tnomclk , tclk, and tcritpath of the BOOM
processor are analyzed using the employed aging modeling (details are in Section 3.4).
Intuitively, all of these values (tnomclk , tclk, tcritpath) will increase when Vdd is downscaled, as

8. Aging-Aware Boosting 92

seen in Figure 8.2. Before downscaling, i.e., Vdd = 1.4 V, the critical path delay tcritpath
is equal to tclk, because of the added guardband tGB. However, as can be noticed in
Figure 8.2, when Vdd is downscaled, tcritpath diverges from the corresponding tclk, leading
to timing errors.

The reason for this phenomenon is the combination between the lower Vdd values and
the ∆Vth that is incurred at the previous higher Vdd. In practice, ∆Vth increases with
increasing Vdd. However, when Vdd is downscaled, ∆Vth does not directly decrease, be-
cause the recovery process is much slower than Vdd switching process [28] which occurs
in less than one microsecond in the presence of ultra-fast voltage regulators [129]. Con-
sequently, the impact of the ∆Vth on tcritpath (see Equation (8.1)) is magnified at smaller
Vdd values, as seen in Figure 8.2. Thus, t′critpath at V ′dd is larger than t′clk at V ′dd, as shown
in Equation (8.3). When Vdd remains at lower levels for sufficient time (few millisec-
onds according to our model (Section 3.4)), ∆Vth decreases due to the partial recovery.
Consequently, the temporal sudden increase in tcritpath will diminish. This phenomenon
of the sudden increase in tcritpath that temporally arises due to Vdd downscaling is the
so-called short-term aging effect.

Short-term aging effect:

Vdd → V ′dd such that V ′dd < Vdd

Due to the impact of ∆Vth in Equation (8.1)

and the fixed value of tGB :

⇒ t′critpath > t′clk ⇒ Timing Errors!

∆tS = t′critpath − t′clk (at V ′dd) (8.3)

∆tS is the delay increase in tcritpath induced by short-term aging, when Vdd is downscaled
to V ′dd. Thus, a guardband wider than tGB is indispensably required.

To estimate the required guardband to compensate for short-term aging effects as well,
it is necessary to extend the guardband estimation process explained in Section 3.5 to
additionally consider the transitions between Vdd levels. As previously mentioned, Y
aging-aware cell libraries need to be created, where each corresponds to a specific Vdd
and the ∆Vth that results from the given Vdd. However, when Vdd is downscaled to V ′dd,
Vth does not directly recover to the corresponding value of the new voltage, i.e., V ′dd.
Therefore, for each voltage transition from Vdd to V ′dd we need to create an aging-aware
library that corresponds to V ′dd and the Vth that results from the previous voltage value,
i.e., Vdd. As a result, the total number of the aging-aware libraries will be Y xY in order
to consider all transitions between available Vdd values. The obtained guardbands are
stored in a look-up table GB that will be used later by our technique.

It is noteworthy that while the research study of short-term aging at the system level
is still preliminary, the research community at the physical and transistor levels has
already focused on this new phenomenon in the last few years. The physics-based aging
models [89], which describe in detail the underlying mechanisms of the defect generation
under voltage dynamics, had predicted the magnified impact of aging-induced degra-
dation when voltage is downscaled. Moreover, an evidence from silicon measurements
has been presented in [46] demonstrating how the delay of circuits becomes higher than
it should be when switching from a high to a low voltage due to the combined effect
of aging-induced degradation at the high voltage together with higher susceptibility of
circuits to aging at the lower voltage. The reason of such a high susceptibility to aging

93 8. Aging-Aware Boosting

at lower voltage can be seen in Equation (8.1), i.e., the smaller the Vdd, the larger the
impact of ∆Vth becomes, and hence the higher susceptibility to aging.

8.2 Motivation

This section presents an experimental example that illustrates the impact of considering
the guardbands on the efficiency of boosting techniques. In this example, we consider a
64-core chip (shown in Figure 4.4 simulated with gem5 [39] and McPAT [40] as illustrated
in detail in Chapter 4. The application “x264” from PARSEC benchmark suite [41] is
considered. We consider nominal voltage and frequency of 1.1 V and 2.8 GHz, respec-
tively. The maximum voltage and frequency values are 1.4 V and 4.0 GHz, respectively.
The critical temperature of the chip Tcrit is set to 100 ◦C. A boosting technique is im-
plemented similar to the state-of-the-art Intel boosting technique [67], that upscales the
V/f levels of the cores when the peak temperature is below Tcrit, and downscales it,
otherwise. This process is repeated at each control period (i.e., 1 ms) during boosting.

The goal of this experiment is to evaluate the efficiency of boosting under three scenarios
that vary in the way aging is considered. The first scenario does not consider any aging
effects (i.e. neither long nor short-term). The second scenario considers only long-term
aging effects. The last scenario considers both long and short-term aging effects. When
aging is not considered (scenario 1), no timing guardbands with regard to aging are
considered, and hence reliability is not insured, because timing violations might occur
due to aging-induced delays. When aging is considered the frequency will be reduced
with a certain ratio fGB. Based on our aging estimation presented in Section 3.4, two
values of guardband width are estimated; one compensates for the induced delay by
long-term aging effects (fGB = 13%), while the second compensates for the induced
delays by both long and short-term effects (fGB = 21%). That implies the reliability
in the second scenario is also not ensured, because the delays induced by short-term
aging effects are not compensated for. Only the last scenario sustains reliability. The
performance is evaluated using the IPS of the running application. Figure 8.3 shows the
resulting performance when boosting is applied normalized to the nominal performance
under the nominal voltage and frequency where no boosting is applied. Intuitively, the
wider guardband fGB means lower operating frequency, and that leads to lower IPS,
hence less performance. The results show that applying the necessary wider guardband
(that considers both long and short-term aging effects) almost erases the performance
gain that is expected to be achieved by boosting.

Thus, considering the required guardband to compensate the delays induced by long
and short-term aging effects hinders the boosting technique from improving the per-
formance.

8.3 Analyzing the Impact of Boosting on Aging

In this section, the impact of boosting on long and short-term aging effects is analyzed.
Similar to the motivational example, we consider a 64-core chip simulated with gem5 [39]
and McPAT [40] and executing an H.264 video encoder application. Further details
of our experimental setup are discussed in Section 8.5. The maximum voltage and
frequency values are 1.4 V and 4 GHz, respectively. The critical temperature of the

8. Aging-Aware Boosting 94

0.6

0.8

1.0

1.2

Aging-Unaware
Boosting

Aging-Aware Boosting
(Long-Term)

Aging-Aware Boosting
(Long- & Short-Term)

Boosted PerformanceBoosted Performance
(Turbo Boost is applied)

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

*
20%

10% 3%

fGB=0 fGB=13% fGB=21%

Nominal Performance
(No Boosting is applied)

Performance Loss

* Boosted performance is normalized to the nominal Performance

Figure 8.3: The resulting boosted performance under varied scenarios of considering
aging effects.

chip is: Tcrit = 100◦C. The boosting technique upscales the V/f level when the peak
temperature of the cores is below Tcrit, and downscales it otherwise. This process is
repeated at each control period (i.e., 1 ms) during the boosting time.

We examine in this experiment two scenarios “a” and “b” for the maximum Vdd boosting
level, i.e., 1.4 V and 1.3 V, respectively, that lead to two different V max

dd . Figure 8.4 first
illustrates how the boosting technique employs DVFS over execution time. Secondly,
we show the resulting aging-induced delays, which are derived by calculating the delays
induced by long-term aging effects, ∆tL, and short-term aging effects, ∆tS . ∆tL is
calculated using Equation (8.1), where V max

dd is equal to the maximum boosting level of
each scenario. ∆tS is calculated using Equation (8.3) for the V ′dd levels, to which the
boosting technique downscales the voltage. As shown in Figure 8.4, when the boosting
technique starts executing, it upscales the V/f level until reaching the maximum boosting
level. It remains at this V/f level as long as Tcrit is not exceeded. Once exceeded, for
instance, at time t = 0.38 s in scenario “a” (see the first graph in Figure 8.4-a), the
boosting technique starts downscaling the V/f level step by step until the maximum
temperature becomes below Tcrit. Again, it upscales the V/f level until reaching Tcrit.
Hence, it keeps scaling the V/f level up and down and oscillating around Tcrit.

The aging-induced delays are shown in the third row of Figure 8.4. These curves demon-
strate how long-term aging effects sustain throughout the execution time, while short-
term aging effects only arise during Vdd downscaling. Additionally, short-term aging
effects are influenced by the range between the maximum and the minimum levels that
Vdd are scaling to. Particularly, the higher the range of Vdd downscaling, the higher
the short-term aging effects are. By comparing the short-term aging effects at the time
points t1 = 0.45 s and t2 = 0.55 s of scenario “a”, it is noticed that 20% higher short-
term effects are incurred at t2, because the Vdd is downscaled to 1.15 V, while at t1 the
Vdd is downscaled only to 1.2 V. When scenario “a” is compared to scenario “b”, it can
be observed that reducing the maximum boosting Vdd level leads to reducing both long
and short-term aging effects, but the performance gain of the boosting will be reduced
as well. Namely, the resulting performance (without adopting guardbands) of scenario
“a” and “b” is 22% and 16%, respectively. However, less aging effects require thinner

95 8. Aging-Aware Boosting

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

0.0 0.2 0.4 0.6 0.8 1.0
90

92

94

96

98

100

102

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95

V
d

d
[V

]

a) Maximum Vdd boosting level is 1.4V

1.15
1.20
1.25
1.30
1.35
1.40

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56

1.15

1.20

1.25

1.30

1.35

1.40

0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95

V
d

d
[V

]
N

o
rm

al
iz

ed
 A

gi
n

g
D

el
ay

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56

Time [s]

Long-term aging:
the base

Short-term aging:
the spikes

Time [s]

- The resulting performance gain of boosting is 22%
- Compensating for short-term aging effects requires a
wider guardband by 80% than the one that compensates
for long-term aging effects

- The resulting performance gain of boosting is 16%
- Compensating for short-term aging effects will require a
wider guardband by 40% than the one that compensates for
long-term aging effects

Aging-induced delays is derived by calculating ∆tL and ∆tS then normalized them to ∆tL at 1.4V, which is equal to 59.4ps.

*

*

Scaling down Vdd,
when Tcrit is exceeded

Zoom-in

Tcrit

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

0.0 0.2 0.4 0.6 0.8 1.0
90

92

94

96

98

100

102

Te
m

p
er

at
u

re
 [
°C

]

Long-term aging:
the base is thinner
than the one at (a)

Short-term aging:
the spikes are shorter
than the ones at (a)

Scaling down Vdd,
when Tcrit is

exceeded

Zoom-in

b) Maximum Vdd boosting level is 1.3V

Te
m

p
er

at
u

re
 [
°C

]

V
d

d
[V

]
V

d
d

[V
]

N
o

rm
al

iz
ed

 A
gi

n
g

D
el

ay

*

Tcrit

Time [s] Time [s]

Figure 8.4: Analysis of the resulting long and short-term aging effects after applying
a boosting technique under two maximum Vdd boosting levels. It demonstrates the
factors that influence the aging effects, i.e., the occurrences of Vdd downscaling, the
range between the maximum and the minimum levels that Vdd is scaled to, and the

maximum Vdd boosting level.

guardbands and hence, the performance losses associated with the guardbands will be
reduced.

Summary of the presented analysis:

• Boosting technique increases the delay induced by long-term aging, since it up-
scales the V/f levels of the cores, thereby increasing their temperatures.

• Short-term aging effects frequently arise during boosting, due to the frequent cycles
of Vdd downscaling.

• Short-term aging effects can be reduced by reducing the range between the maxi-
mum and the minimum boosting levels that Vdd is scaled to during boosting.

• The fewer occurrences of Vdd downscaling, the less often short-term aging effects
arise over time.

8. Aging-Aware Boosting 96

Inputs:

Outputs:

Aging-aware Boosting (AgBoost)

AgBoost Functionality

Application
Mappings

Selecting core V/f levels
& guardband width

 Core Guardband
Width

Core V/f
Levels

Core Power
Consumption

Multicore
 Architecture

 Constraint:
𝑇𝑐𝑟𝑖𝑡

Thermal
Model

Adapting TSAP

Estimated
Guardbands

Figure 8.5: Overview of our Aging-Aware Boosting, AgBoost, that adjusts at runtime
the V/f levels of the cores and the corresponding guardbands considering both long and

short-term aging effects.

• Both long and short-term aging effects can be reduced by reducing the maximum
Vdd boosting level.

8.4 Aging-Aware Boosting

According to the previous analysis, we propose an aging-aware boosting, AgBoost, that
maximizes the performance while at the same time reducing both long and short-term
aging effects. To achieve this goal, our technique reduces first the aging effects by employ-
ing a thermally-safe adaptive power constraint, that helps in decreasing the maximum
Vdd boosting level (the main stimulus of long-term aging effects) and the occurrences of
Vdd downscaling (the main stimulus of short-term aging effects). By reducing the aging
effects, the required guardband to compensate for these effects will be reduced, as well.
Secondly, our technique dynamically selects the required guardbands to compensate for
the resulting aging-induced delays using a look-up table GB (built offline), in order to
avoid unrequired performance losses incurred by static (pessimistic) guardbands. An
overview of our technique is presented in Figure 8.5. The details about the design time
and runtime processes that are required by AgBoost are shown in Figure 8.6.

8.4.1 Reducing Long and Short-Term Aging Effects

In order to reduce long and short-term aging effects, it is necessary to reduce three
factors; the occurrences of Vdd downscaling, the range between the maximum and the
minimum levels that Vdd is scaled to, and the maximum Vdd boosting level, as observed
in the previous analysis. Additionally, we observe that the hidden player behind the first
two factors is the temperature. That is, when the temperature exceeds Tcrit, thermal
violations occur, which, in turn, cause Vdd downscaling, and thereby, short-term aging
effects arise. To return the temperature below Tcrit, downscaling the Vdd for one level is
not sufficient, rather Vdd needs to be downscaled multiple levels, inducing higher short-
term aging effects. As a result, the first two factors can be reduced by mitigating thermal

97 8. Aging-Aware Boosting

Power
readings

Boosting V/f Levels
(runtime : at each workload change)

Application mapping
(runtime: at each workload

change)

Adapting TSAP
(runtime: at each workload change)

V/f,
guardbands

Multicore system

Estimating
guardbands

(design time)

RC thermal model of the
multicore systemApplications

Creating
degradation-aware

Cell Libraries
(design time)

GB

Critical path
delay evaluation

(design time)

Physics-
based aging

models

Figure 8.6: The design time and runtime processes that are required by AgBoost.

violations. Reducing the third factor, i.e., maximum Vdd boosting level, contradicts the
goal of boosting, which upscales the V/f levels in order to maximize the performance.
However, the obtained performance by upscaling the V/f levels might be erased if the
higher Vdd leads to thermal violations and thereby Vdd downscaling, which in turn causes
short-term aging effects that lead to high performance losses.

Solving this trade-off requires finding the maximum V/f level that keeps the temperature
below Tcrit. By revisiting state-of-the-art techniques we find that this requirement can
be fulfilled by employing the thermally-safe power constraint (TSP) derived in [18], since
it guarantees avoiding thermal violations before they occur. In particular, the boosting
technique can upscale the V/f levels of the cores until reaching this constraint. However,
this constraint is static and uniform for all cores, and does not consider the diversity of
power consumptions between the cores that might be resulting due to running different
applications on the chip at the same time. To elaborate on this point, we show in
Figure 8.7 an example of applying a static thermally-safe power constraint (TSP [18])
on a 16-core chip, where three different applications are running on the cores. These are:
“blackscholes” runs on four cores (Core 1, .., Core 4); “x264” running on the next four
cores (Core 5, .., Core 8); “canneal” running on the rest of the cores. For Tcrit = 70◦C,
TSP is equal to 7.7 W. The V/f level of each core is selected so that its power consumption
remains below TSP. For the cores that execute “blackscholes” and “x264”, the upscaling
of the V/f levels is stopped before reaching the maximum V/f level available on the chip,
in order to satisfy TSP constraint. Contrarily, the cores that run “canneal” reach the
maximum V/f level (f = 4 GHz). Nevertheless, the power consumptions of these cores
are still far from TSP. As a result, there is still available power and thermal margins
on the cores. To exploit them, the TSP constraint can be increased on the cores,
where upscaling the V/f levels is limited due to the initial TSP constraint, as shown in
Figure 8.7. This adaptation of TSP constraint allows higher V/f levels and thereby more

8. Aging-Aware Boosting 98

Static TSP = 7.7 W

Core_13

4.8W

Core_14

4.8W

Core_15

4.8W

Core_16

4.8W

Core_9

4.8W

Core_10

4.8W

Core_11

4.8W

Core_12

4.8W

Core_5

7.0W

Core_6

7.0W

Core_7

7.0W

Core_8

7.0W

Core_1

7.1W

Core_2

7.1W

Core_3

7.1W

Core_4

7.1W

Adaptive TSP = 10 W

Core_13

4.8W

Core_14

4.8W

Core_15

4.8W

Core_16

4.8W

Core_9

4.8W

Core_10

4.8W

Core_11

4.8W

Core_12

4.8W

Core_5

10W

Core_6

10.0W

Core_7

10W

Core_8

10W

Core_1

8W

Core_2

8W

Core_3

8W

Core_4

8W

Static TSP is applied on all cores Adaptive TSP is applied on the
cores [Core_1, .., Core_8]

70

65

60

[°C]

Figure 8.7: Illustrating how applying static TSP leads to unexploited thermal margin
on some cores. Exploiting it can be achieved by adapting TSP constraint.

performance can be obtained. More importantly, this adaptation of TSP must still be
thermally-safe.

Thus, Thermally-Safe Adaptive Power (TSAP) is derived by adapting the equations used
in [9]. This requires employing an RC thermal network that represents the targeted chip.
For this purpose, an RC thermal network is used as explained in Section 3.3. Then, the
equation, that calculates the steady-state temperature of core i, i.e, Equation (3.6),
is modified to differentiate between the cores that have available power and thermal
margins and the ones that are able to exploit the available margins by calculating TSAP.
Particularly, a column vector, X = [xi]N×1 is defined, where xi = 1, when the core i
requires to calculate TSAP, and xi = 0 otherwise. X can be involved into Equation (3.6)
as follows:

Ti =

N∑
j=1

bi,j · xj · pj +

N∑
j=1

bi,j · (1− xj) · pj + Tamb · ci (8.4)

Then, we need to assume that all cores that require calculating TSAP (xi = 1), consume
the same power consumption Pequal and rewrite Equation (8.4) as follows:

Ti = Pequal ·
N∑
j=1

bi,j · xj +
N∑
j=1

bi,j · (1− xj) · pj + Tamb · ci (8.5)

To derive the power value of the cores that make the temperature of the core i equal to
Tcrit, Ti in Equation (8.5) is set to Tcrit, as shown in the following equation:

Pequal =
Tcrit −

∑N
j=1 bi,j · (1− xj) · pj − Tamb · ci∑N

j=1 bi,j · xj
(8.6)

This equation means, if the power consumptions of the cores with xi = 1 are set to
Pequal, the temperature of core i will be equal to Tcrit. However, the temperature of the
rest of the cores might be higher or lower than Tcrit, even if these cores consume the
same power Pequal. Therefore, to obtain a safe power constraint (TSAP), Pequal needs
to be computed for all cores i = 1, 2, . . . , N and adopt the minimum computed power

99 8. Aging-Aware Boosting

value as our constraint TSAP.

TSAP = min
1≤i≤N

Tcrit −

N∑
j=1

bi,j ·pj ·(1−xj)− Tamb · ci

N∑
j=1

bi,j · xj

 (8.7)

Thus, this equation is used to calculate TSAP constraint for any core i with xi = 1. The
power consumptions of the other cores (xi = 0) will be used in this equation, in order
to exploit any available power and thermal margins on these cores, while calculating
TSAP.

8.4.2 Minimizing Guardbands

Besides determining the V/f levels of the cores such that aging effects are reduced, our
technique determines the minimum necessary guardbands to compensate for long and
short-term aging effects incurred due to the determined V/f levels. For this purpose, we
first conduct an offline analysis to estimate the necessary guardbands to overcome long
and short-term aging effects for different Vdd scaling levels (as explained in Section 3.4).
Based on the conducted analysis, we build a look-up table GB whose entries are rep-
resented by all possible transitions between available Vdd levels. For instance, the table
cell (i, j) holds that Vdd is scaled from V i

dd to V j
dd. For upscaling, i.e., V j

dd > V i
dd, the cell

will contain the guardband for long-term aging effect at V j
dd. If V j

dd < V i
dd, the cell will

contain the guardband to compensate for long and short-term aging effect, when Vdd is
downscaled to V j

dd. Our technique selects from this table the necessary guardband to
compensate for the current delay induced by aging effects.

8.4.3 AgBoost Flow

Figure 8.8 illustrates the flow of our proposed boosting technique that employs TSAP
to reduce the aging effects and selects the minimum necessary guardband to compensate
for the aging-induced delays. AgBoost is implemented using a control loop, that runs
at each specific control period and depends on reading current power values in making
its decisions, similar to Intel Turbo Boost, which is implemented in modern processor
chips [68]. Additionally, our AgBoost requires the matrices of the RC thermal network
that represents the chip (see Equation (8.4), in order to calculate TSAP. The latter is not
calculated at each control period, but calculated at each workload change. In particular,
when the workload (set of running applications) changes, there is no guarantee that
the obtained TSAP constraint for the previous workload will still be efficient (exploit
available power and thermal margins) and thermally-safe. Therefore, TSAP needs to
be adapted for all cores at each workload change. The initial values of vector X for the
new workload are set to 1 for all active cores and to 0 for inactive ones. Afterwards,
when the new workload starts running on the cores, the boosting technique can modify
the vector X considering the diverse power consumptions on the cores resulting from
running different applications. After modifying vector X, TSAP is calculated again.

After calculating TSAP, the V/f levels of the cores need to be selected. Since the power
consumptions of the cores are not known in advance, it is not possible to directly select

8. Aging-Aware Boosting 100

AgBoost takes as an input the table GB
that contains the estimated
guardbands at design-time

Calculate TSAP

Workload Change?

Get power values p

Upscale v/f level
vf[i]→vf'[i]
Vdd →V'dd

F →F'

Control period?

TSAP_Violated = [False]

For all cores
 1 <= i <= N

p[i] >= TSAP

V'dd > Vdd
max

Vdd
max=V'dd

Downscale v/f level
vf[i]→vf'[i]
Vdd →V'dd

F →F'

TSAP_Violated[i] =
True

FGB = GB (Vdd
max,V'dd)

F’ = F’-FGB

Yes

No

Yes

No

FGB = GB (Vdd
max,V'dd)

F’ = F’-FGB

TSAP_Violated[i]? vf[i] < vfmax

For all active cores i, x[i] = 1

Yes

x[i]=0

Adaptation_
Required = true

Adaptaion_Required=true

Adaptation_Required?

No

Yes

No

Yes

No

Yes

Yes

No No

Yes

x[i] = 1
No

Yes

Adaptaion_Required=false

Start AgBoost

Apply the new v/f level for
each core,

vf'[i]: (V'dd, F')

Figure 8.8: The flow chart of our Aging-Aware Boosting, AgBoost. The required guard-
bands to compensate for the delays induced by long and short-term aging effects are

estimated at design time and stored in a table GB to be used by AgBoost.

101 8. Aging-Aware Boosting

the V/f levels of the cores that satisfy TSAP; rather, the V/f level of each core is upscaled
step by step until reaching TSAP. Therefore, at each control period, AgBoost checks the
current power consumptions of the cores (sampled from power sensors for example). If
the power of the core is below TSAP, the V/f level is upscaled by one step. If TSAP is
exceeded, that means the previous V/f level satisfies TSAP, and therefore, the V/f level
is downscaled only by one step, and the core will remain at this level until a new TSAP is
calculated. Hence, the maximum Vdd level of each core, i.e., V max

dd , that it is possible to
sustain on, is determined. Thus, the obtained performance by this Vdd level is sustained.
After upscaling or downscaling the Vdd of the core to V ′dd, the corresponding required
guardband is chosen from the look-up table GB according to the applied transitions of
the Vdd levels, i.e., GB(V max

dd ,V ′dd). It is to be noted that the parameters Vdd, Vdd and
V max
dd are local parameters for each core, because our target system enables DVFS per

core (see the system model in Chapter Chapter 3).

As can be observed, AgBoost leads to downscaling Vdd one time whenever a new TSAP
is calculated. As mentioned above, TSAP is calculated for each workload change and
when adaptation is required to consider the power properties of the new workload. It
is important to note that typically the boosting is meant to be applied for a short
period of time and for a specific workload. Therefore, the workload changes should be
limited during boosting. As a result, AgBoost significantly reduces the occurrences of
downscaling Vdd, and also the range between the maximum and the minimum levels
that Vdd is scaled to, so that the aging effects are reduced, while the performance is
maximized.

8.5 Evaluation

In this section, the required experimental setup to evaluate our technique is explained.
Afterwards, the conducted experiments and the results are illustrated. At the end of
this section, the overhead of our technique is discussed.

The targeted multicore system is a 64-core chip shown in Figure 4.4. The complete setup
is explained in detail in Chapter 4, in which the tool flow is illustrated in Figure 4.1.
Figure 8.9 lists the various application scenarios employed in our experiments. Each
scenario of the first eight scenarios consists of multiple instances of the same application.
The rest of scenarios represent workloads with multiple different applications.

8.5.1 Comparison Candidates

Since there is no other state-of-the-art boosting technique that considers aging, we com-
pare our AgBoost with the state-of-the-art boosting, i.e., Turbo Boost [67], after combin-
ing it with two different guardbanding policies that consider both long and short-term
aging effects. The first one employs a static guardband throughout the execution time.
The size of this guardband must be equal to the maximum potential delay induced by
short-term aging effect, i.e., 21%, according to our analysis, in order to avoid any tim-
ing errors. We refer to the combination of TurboBoost and the static guardband as,
TurboBoost-StaticGB. The second guardbanding policy is the one proposed in [28] that

8. Aging-Aware Boosting 102

Single- Application
Scenarios

S1 S2 S3 S4 S5 S6 S7 S8

x264 (8, 8) - - - (12, 4) - - -
bodytrack - (8, 8) - - - (12, 4) - -

canneal - - - (8, 8) - - - (12, 4)
blackscholes - - (8, 8) - - - (12, 4) -

Multiple-Application
Scenarios

S9 S10 S11 S12 S13 S14 S15 S16

x264 (4, 8) (4, 8) - (4, 8) (6, 4) (6, 4) - (6, 4)
bodytrack - (4, 8) (4, 8) - - (6, 4) (6, 4) -

canneal (4, 8) - - - (6, 4) - - -
blackscholes - - (4, 8) (4, 8) - - (6, 4) (6, 4)

Figure 8.9: Table of application scenarios. Each cell contains the number of instances
and the number of threads of each application in the scenario.

Pe
rf

o
rm

an
ce

 L
o

ss

TurboBoost-StaticGB TurboBoost-AdaptGB Our AgBoost

Performance Loss =
PG (Aging-Unaware Boosting) - PG (Aging-Aware Boosting)

PG (Aging-Unaware Boost)

Performance Gain (PG) =
Performance (Boosting) – Performance (No Boosting)

Performance (No Boosting)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
Various Application Scenarios

Figure 8.10: Performance loss comparison between our AgBoost, TurboBoost-StaticGB,
and TurboBoost-AdaptGB. It is to be noted that TurboBoost-AdaptGB is not an ex-
isting technique, but we merge two existing techniques, i.e.,[67], [28], for fair compar-
ison. Performance loss reduction of AgBoost is 47%, 15%, on average, compared to

TurboBoost-StaticGB, TurboBoost-AdaptGB, respectively.

adapts the guardband during execution time according to the current aging-induced de-
lay. We refer to the combination of Turbo Boost and the adaptive guardbanding [28] as
TurboBoost-AdaptGB.

8.5.2 Experimental Results

We conduct experiments for each technique under different applications with a different
number of threads. Application mapping to the cores is considered as an input to all
comparison candidates. Each technique determines at runtime the V/f levels of the cores
and the required guardbands. The evaluation metric is the incurred performance loss

103 8. Aging-Aware Boosting

-3

2

7

12

17

22

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

Pe
rf

o
rm

an
ce

 G
ai

n
%

TurboBoost-StaticGB TurboBoost-AdaptGB Our AgBoost

AgBoost achieves an average of
2.6X of the performance gain of
TurboBoost if it employs a static

guardband (TurboBoost-StaticGB)

At S5, TurboBoost-StaticGB leads to performance less than nominal performance

Various Application Scenarios

Figure 8.11: Performance gain of AgBoost is an average of 21% compared to TurboBoost
if it employs an adaptive guardband.

0.0

0.5

1.0

1.5

2.0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

N
o

rm
al

iz
ed

 A
gi

n
g-

In
d

u
ce

d
 D

el
ay

*

TurboBoost-AdaptGB

Our AgBoost

*Aging-induced delay is derived by calculating ∆tL and ∆tS , then they are normalized to ∆tL at 1.4V

Avg Max

Various Application Scenarios

Figure 8.12: Comparing the resulting aging-induced delay by our AgBoost and
TurboBoost-AdaptGB. AgBoost achieves up to 54% and an average of 27% reduction
in the maximum aging-induced delay throughout the boosting execution compared to

TurboBoost-AdaptGB.

from applying the determined guardband by each technique. The performance loss is
calculated as shown in the equations in Figure 8.10.

The incurred performance losses of the evaluated boosting techniques are shown in Fig-
ure 8.10. As expected, applying a static guardband, TurboBoost-StaticGB almost erases
the performance gain that the aging-unaware boosting can achieve. In particular, the
performance loss in several scenarios of TurboBoost-StaticGB is near 1, which means
it is almost equal to the performance gain. In contrast, applying adaptive guardbands
by TurboBoost-AdaptGB reduces the performance losses, compared to applying a static

8. Aging-Aware Boosting 104

Lo
n

g-
Te

rm
-A

gi
n

g-
In

d
u

ce
d

 D
el

ay
*

TurboBoost-AdaptGB Our AgBoost

*Long-Term-Aging-induced delay is derived by calculating ∆tL and normalized to the ∆tL at the
maximum Vdd, i.e., 1.4V.

Various Application Scenarios

0.6

0.7

0.8

0.9

1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

1.10

1.15

1.20

1.25

1.30

1.35

1.40

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

Se
le

ct
ed

 V
d

d
le

ve
l [

V
]

Figure 8.13: The resulting delay increase due to long-term aging effects when applying
our AgBoost and the state-of-the-art TurboBoost [67].

guardband. While reducing the aging effects and applying adaptive guardbands achieve
the most reduction in performance loss as the result of our AgBoost shows. In particular,
AgBoost results in up to 62% and 39%, and an average of 47% and 15%, less perfor-
mance loss compared to TurboBoost-StaticGB, TurboBoost-AdaptGB, respectively. The
performance gain percentages compared to these techniques are shown in Figure 8.11.

Figure 8.12 shows the resulting delays induced by long and short-term aging effects
when the evaluated boosting techniques are applied. It is to be noted that these resulting
delays are normalized to the delay induced by long-term aging at the maximum available
Vdd, i.e., 1.4 V. As it can be noticed from Figure 8.12, our AgBoost reduces aging-induced
delay with an average of 27% compared to TurboBoost-AdaptGB. Moreover, it can be
observed that the resulting normalized aging-induced delay by our technique is less than
1, which means it is less than the delay induced by only long-term aging effects that are
induced at 1.4 V. This demonstrates how our AgBoost reduces both long and short-term
aging effects. Additionally, Figure 8.13 illustrates the resulting delays induced by only
long-term aging effects in order to show the ability of our technique to reduce long-term
aging effects, since it selects lower Vdd compared to TurboBoost-AdaptGB.

Figure 8.14 demonstrates a more detailed comparison between AgBoost and TurboBoost-
AdaptGB. When AgBoost starts execution, it calculates TSAP for the given application
mapping, and finds the Vdd level that satisfies this TSAP value by upscaling Vdd one level
per each control step, and at each step it checks if the resulting power consumption of
the core reaches TSAP or not yet. Once the Vdd level that satisfies this TSAP is found,
AgBoost remains at that level until the workload changes. Typically, boosting aims at
maximizing the performance for a specific workload during a short period of time [67].
However, to evaluate our technique’s ability to adapt to workload changes, if occurred,
we change the workload of this scenario at two points of the execution time, namely
W1 and W2, which represent the fifth and ninth seconds, respectively. At the first

105 8. Aging-Aware Boosting

1.10

1.30

1.50

0 1 2 3 4 5 6 7 8 9 10

1.10

1.30

1.50

0 1 2 3 4 5 6 7 8 9 10

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10

90

95

100

1.15

1.25

1.35

1.45

4
.9

7

4
.9

8

4
.9

9

5
.0

0

5
.0

1

5
.0

2

5
.0

3

90

95

100
V

d
d

[V
]

(b) TurboBoost-AdaptGB

V
d

d
[V

]
G

u
ar

d
b

an
d

[f
G

B
%

]

Time [s]Time [s]

Tcrit

Te
m

p
er

at
u

re
 [
°C

]

V
d

d
[V

]

V
d

d
[V

]

Te
m

p
er

at
u

re
 [
°C

]

(a) Our AgBoost

1.15

1.25

1.35

1.45

8
.9

7

8
.9

8

8
.9

9

9
.0

0

9
.0

1

9
.0

2

9
.0

3

0%

5%

10%

15%

20%

4
.9

7

4
.9

8

4
.9

9

5
.0

0

5
.0

1

5
.0

2

5
.0

3
0%

5%

10%

15%

20%

8
.9

7

8
.9

8

8
.9

9

9
.0

0

9
.0

1

9
.0

2

9
.0

3

Pe
rf

o
rm

an
ce

 [
G

IP
S]

1.15

1.25

1.35

1.45

4
.9

7

4
.9

8

4
.9

9

5
.0

0

5
.0

1

5
.0

2

5
.0

3

1.15

1.25

1.35

1.45
8

.9
7

8
.9

8

8
.9

9

9
.0

0

9
.0

1

9
.0

2

9
.0

3

0%

5%

10%

15%

20%

4
.9

7

4
.9

8

4
.9

9

5
.0

0

5
.0

1

5
.0

2

5
.0

3

0%

5%

10%

15%

20%

8
.9

7

8
.9

8

8
.9

9

9
.0

0

9
.0

1

9
.0

2

9
.0

3

G
u

ar
d

b
an

d
[f

G
B
%

]
Pe

rf
o

rm
an

ce
 [

G
IP

S]

 At the points of, workload changes, i.e., W1 and W2,
AgBoost adapts power constraint and finds the Vdd level
that meets this constraint.

W1 W2

W1 W2

W1 W2

W1

 TurboBoost-AdaptGB keeps controlling the temperature
and performing DVFS at each 1ms, and not only at
workload changes (W1, W2).

Time [s]Time [s]

 Vdd downscaling raises short-term aging effects, and
thus high guardband is required only at the points of
workload changes, W1 , W2.

 TurboBoost-AdaptGB keeps scaling Vdd up and down
during the boosting time, and hence high guardband is often
required to compensate the induced short-term aging.

 TurboBoost-AdaptGB results in higher instantaneous
performance, but this gain is reduced due to the required
high guardband.

 AgBoost results in a higher average performance due
to its reduction of long- and short-term aging effects and
their incurred performance losses.

W1 W2

W1 W2

TSAP = 7.2W TSAP=6.1W TSAP=10W

W2
Workload-Change Points

Time [s]Time [s]Time [s]Time [s]

Time [s]Time [s]Time [s]Time [s]

Tcrit

Figure 8.14: AgBoost minimizes long and short-term aging effects leading to 19% less
performance loss compared to TurboBoost-AdaptGB.

point W1 a new application arrives. Thus, our AgBoost calculates at this point a new
TSAP value for the new application mapping. Then, it finds the Vdd level that satisfies
this constraint. Evidently, when a new application arrives, the Vdd level is downscaled
in order to avoid thermal violations. At the second point W2 two applications finish
execution, and hence AgBoost needs to find the Vdd level that satisfies the new TSAP
value, which has a higher value than the old one, because less applications are running.
As observed, AgBoost needs to downscale Vdd only when a new TSAP is calculated. That
means short-term aging effects are rarely arisen, compared to the traditional boosting
techniques that frequently downscale Vdd and thereby frequently cause short-term aging

8. Aging-Aware Boosting 106

effects. Additionally, the maximum Vdd level that satisfies TSAP is lower than the
maximum available Vdd level and that, in turn, reduces the long-term aging effect as well.
Consequently, the necessary guardband to compensate for the delays induced by aging
effects is reduced as it can be noticed from Figure 8.14. Contrarily, TurboBoost-AdaptGB
upscales Vdd to the maximum available Vdd level and downscales Vdd whenever Tcrit is
exceeded. That, in turn, leads to higher aging effects and thereby higher guardbands
are required. Although TurboBoost-AdaptGB adapts the guardbands during execution
time, AgBoost results in 19% less performance loss due to its ability of reducing the
aging effects besides adapting the guardbands.

8.5.3 Overhead Discussion

The overhead of our proposed boosting technique AgBoost consists of two parts. The
first part is the required time to calculate TSAP. The second part is the required time
to execute the control loop over all cores, in order to determine the V/f level and the
associated guardbands of the cores. The complexity of the second part is similar to our
comparison candidate TurboBoost-AdaptGB, which represents the combination between
the state-of-the-art Intel Turbo Boost [67] and the adaptive guardbanding [28]. Simi-
lar to our AgBoost, TurboBoost-AdaptGB determines the V/f levels and the associated
guardbands for all cores. It can be noticed that the second part, which is similar to
the state of the art, does not contain any internal search loop, it simply goes through
all cores to assign their V/f levels and obtain the required guardbands from a look-up
table GB as explained in 8.4.2. Therefore, we need to calculate only the overhead of
the first part of AgBoost, i.e., calculating TSAP, which is the additional overhead that
our technique has, compared to the state of the art, and the major contributor to the
total overhead.

According to our experiments, the required time of calculating TSAP is 0.1 ms, where
the experiments are conducted on a desktop PC (Intel core i5). As discussed above,
TSAP will be calculated only at each workload change or when adaptation is required
to consider diverse power properties of the applications that comprise the workload.
Typically, boosting is meant to be for a specific workload that temporally demands a
higher performance for a short period of time. That implies that it is not supposed to
have workload changes during boosting period. With respect to the potential number
of adaptation within a specific workload, the worst-case number of TSAP adaptation
within a specific workload is equal to the number of applications that comprise the
workload.

As a pessimistic example, we assume a workload consisting of 10 different applications,
and this workload is changing every one second, because the approximate average exe-
cution time of parsec applications is about 1 s as reported in [130] for the smallest input
set. It is to be noted that two parsec applications (i.e., “x264”, “canneal”) are executed
on the same desktop PC, that executes the experiments, and similar average execution
time is observed for the smallest input set. The overhead of calculating TSAP will be
10 ∗ 0.1 = 1 ms for each 1 s, and that means it represents only 0.1% of the boosting
time. It is significant to note that TSAP in our experiments is calculated in software at
application level. Implementing our technique in hardware similar to Intel Turbo Boost
would even minimize its overhead further. More concisely, our AgBoost is a light-weight
technique suitable to be applied at runtime.

107 8. Aging-Aware Boosting

8.6 Summary

This chapter presented AgBoost the first aging-aware boosting that reduces both long-
term and short-term aging effects, while selecting the maximum allowed V/f level (gov-
erned by the thermally-safe adaptive power TSAP metric). We analyzed boosting in
representative scenarios from where we designed our simple-to-apply, yet highly efficient
boosting technique. Through several evaluations with varying parameters (like number
of threads), we demonstrated a reduction of 47% (average) in performance loss that oth-
erwise incurs if current state-of-the art boosting (like Intel Turbo Boost [67]) is deployed
(which we enhanced with an aging-aware guardband for fair comparison). Moreover,
AgBoost reduces the maximum aging-induced delay by 27% on average.

Chapter 9

Thermal-Aware Guardbanding

To sustain reliability, it needs to employ a guardband to compensate for the slowdown
that arises as transistors age. Otherwise, errors due to timing violations occur during
processor lifetime. There are two main guardband types that satisfy reliability, which
are frequency guardband (F GB) and voltage guardband (V GB). State-of-the-art
techniques select one of these guardband types at design time of the processor (circuit
level) and adopt it throughout the processor’s lifetime, based on the traditional view
of the impact of the guardband type; that is F GB causes a performance loss, whereas
V GB causes a power increase.

In this chapter we investigate the impact of the guardband type at the system level
through the case study that will be presented in Section 9.1. This case study shows that
V GB is not necessarily able to sustain the performance even though it allows employing
the maximum frequency without any reduction. This is because V GB increases the
power consumption which, in turn, may lead to triggering DTM to cool down the cores,
leading to performance degradation. Hence, the performance would decrease contrary
to what is expected. Therefore, traversing from the circuit level to the system level is
necessary to be capable of considering the workload-induced temperatures and thereby
accurately estimating the impact of the guardband type on performance. This implies
that performance can be optimized through selecting the best fitting guardband type
with regard to the workload.

To exploit this potential of performance maximization under reliability and temperature
constraints, this chapter presents a thermal-aware guardbanding that determines at the
system level the appropriate guardband type based on the estimated temperatures of
the running workload. When the workload consists of multiple applications with diverse
power properties, different guardband types might be selected for the cores that run
different applications. Moreover, when the workload changes; a new application starts,
or an application finishes its execution, the guardband types need to be selected again.
In practice, these guardband types can be implemented similar to the implementation
of different voltage and frequency levels. As a matter of fact, manufactures started
implementing ultra-fast voltage regulator, in which switching between different voltage
and frequency levels occur within less than 1µs [129]. Hence, the overhead of switching
between guardband types can be also considered as negligible.

In the following section, we present a case study showing that the ultimate impact of a
guardband type can not be accurately estimated at the circuit level irrespective of the

109

9. Thermal-Aware Guardbanding 110

workload at the system level. Section 9.2 presents the problem formulation. Afterwards,
our presented technique is explained in Section 9.3. Finally, the evaluation results of
our technique are demonstrated in Section 9.4.1.

9.1 Motivation

In this section, we conduct a case study that motivates dynamic guardband selection
at system level. We consider a 64-core chip simulated by gem5 [39] and McPAT [40]
(shown in Figure 4.4. Various applications from the PARSEC benchmark suite [41] are
considered to cover different scenarios with respect to on-chip power and temperatures.
We considered a nominal voltage V nom

dd and a nominal frequency fnom of 1.4 V and 4 GHz,

respectively. The estimated V gb
dd and fgb according to our aging modeling (Section 3.4)

are 1.491 V and 3.42 GHz, respectively. Our targeted multicore system features a thermal
management unit (TMU), that is responsible for avoiding thermal violations by power-
gating the cores that exceed the predefined critical temperature Tcrit, which is set to
100◦C.

Firstly, we show the impact of the guardband type on the power consumption and
the performance for two different applications, i.e., “canneal” and “x264”. For each
application, we run two experiments to test V GB and F GB. In each experiment,
8 instances of the application are executed on the cores, with 8 parallel threads for
each. The average power consumptions of the active cores and the resulting system
performance are shown in Figure 9.1.

The power consumption will always increase when applying V GB compared to F GB,
since V GB leads to increase the value of the supply voltage as seen in Equation (1.3),
thereby augmenting the power consumption of the core (see Equation (9.1).

P = α · Ceff · V 2
dd · f + Pleak (Vdd, T) (9.1)

There, α represents the activity factor or utilization of the core, Ceff represents the effec-
tive switching capacitance of the core. Pleak is the leakage power, which depends on the
supply voltage and the core’s temperature T . Considering the worst-case temperature
on the chip (Tcrit) and according to our simulation using McPAT, Pleak is equal to 3.5 W

and 4.2 W for V nom
dd and V gb

dd , respectively. As an example, in the case of “x264”, α and
Ceff are equal to 0.3 and 2.2, respectively. To calculate the resulting power consump-
tions of applying F GB and V GB, we apply Equation (9.1) for (V nom

dd , fgb) and for

(V gb
dd , fnom), respectively. That results in total power consumptions of 8 W and 10 W, as

shown in Figure 9.1. As expected, V GB results in higher power consumption compared
to F GB.

The resulting performance when applying V GB is increased compared to F GB in the
case of “canneal”. This observation is expected because F GB leads to lower frequency
(see Equation (1.2)) and thereby lower processor speed. However, in the case of “x264”,
applying V GB reduces the performance by 24% compared to F GB. This is because
the higher increase in the power consumption in the case of “x264”, when V GB is
employed, triggers the TMU which power-gates additional 14 cores whose estimated
temperatures exceed Tcrit. Consequently, the system performance is degraded in this
case. This is unlike the case of “canneal” in which the increase in the power consumption
due to employing V GB does not lead to thermal violations.

111 9. Thermal-Aware Guardbanding

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Average Core Power [W]

12%

-24%

20%

25%

V_GB F_GB

x264

canneal

Figure 9.1: Even though V GB allows operating at a higher frequency compared to
F GB, this does not always provide a better performance in a thermally-constrained
system. For x264, employing V GB leads to less performance, due to the incurred

thermal violations.

Additionally, the impact of the guardband type on the performance is investigated un-
der different chip loads. The chip load in the context of this work is the percentage of
cores demanded by the running workload to the total number of cores within the chip.
Therefore, we execute in parallel multiple instances of an application, in which every
instance runs 8 threads, so that the total number of the executed application threads
corresponds to the chip load that we aim to examine. For example, we simulate 8 in-
stances of an application when a 100% chip load is required since the chip consists of
64 cores. Fig 8.3 summarizes our results for 5 different applications under two chip load
scenarios. When the chip is fully loaded (Fig 8.3-a), only “canneal” gains a performance
improvement (12%) from employing V GB, while all other studied applications suffer
from performance losses when V GB is employed even though it allows a higher op-
erating frequency than F GB. This is because the increased power consumption due
to V GB by all applications (except “canneal”) lead to triggering TMU which in turn
power-gates the cores that exceed Tcrit. When the chip load is reduced to 62% all ap-
plications except “x264” gain more performance when V GB is employed, as shown in
Fig 8.3-b. This is because when the chip load becomes less, the generated tempera-
tures by the running workload become less and thus the possibility of having thermal
violations when V GB is employed becomes smaller. This, in turn, results in higher
performance when V GB is employed compared to F GB.
It is to be noted that when the workload consists of different applications running simul-
taneously, exploring the impact of the guardband type becomes even more complicated.
The reason is that the generated temperatures by one running application might affect
the temperatures of the cores that run another application.

Summary of our motivational case study:

• V GB is not always able to provide better performance than F GB despite the
higher operating frequency.

• The resulting system performance, when the guardband is applied, depends on the
running application as well as the chip load.

9. Thermal-Aware Guardbanding 112

0
8
16
24
32
40
48
56
64

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

A

ct
iv

e
C

o
re

s

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

A

ct
iv

e
C

o
re

s

V_GBF_GB

a) 100% Chip Load

b) 62% Chip Load

0
8
16
24
32
40
48
56
64

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Normalized Performance

Active Cores

Figure 9.2: Motivational case study demonstrating the role of workload characteristics
(chip load and application properties) on determining the impact of aging guardbands
on performance. V GB may not provide better performance than F GB as assumed.
The potential of gaining performance when applying V GB diminishes while the chip

load increases.

9.2 Problem Formulation

The purpose of this chapter is to explore the performance optimization potentials of
selecting the guardband types at the system level, apart from any other optimization
means like DVFS. Therefore, in this chapter we assume that all active cores run on
the maximum V/f level, i.e., V FY . Each core i is associated with a specific guardband
type, referred to asGtcore

i , which can be set to V GB or F GB at a specific point of
time. When any guardband type is applied on the core, its voltage or frequency will be
changed. We refer to the original voltage and frequency of the core before applying the
guardband as V nom

dd and fnom, respectively. When Gtcore
i is set to V GB, the applied

voltage and frequency pair is (V gb
dd ,fnom). Otherwise, i.e., if Gtcore

i is set to F GB,
(V nom
dd ,fgb) is applied. This new applied voltage and frequency pair is denoted as V F ′.

It is to be noted that the same guardband type must be assigned to the cores of one
application, because these cores must run at the same speed (frequency) to avoid any
synchronization stall between the application threads. We refer to the guardband type
of the cores that run application k, i.e., mapk, as Gtappk .

Since the selected guardband type affects the applied voltage and frequency values of the
cores, it consequently affects the power and performance of the applications. As seen in
Chapter 3, the power table Pk stores the resulting power consumptions when running
application k at all possible number of threads and V/f levels. In this chapter, one V/f
level is considered (V FY) and two guardband types. Therefore, we store in Pk(h,Gt)

113 9. Thermal-Aware Guardbanding

the power consumptions for all possible number of threads (h = 1 . . . Hk) and for the
two guardband types (Gt ∈ V GB,F GB). Similarly, Rk(h,Gt) stores the application
performance values for all possible number of threads and guardband types, which is
estimated using IPS metric as follows:

Rk(h,Gt) =
IPSk(h, V F

′
Y)

IPSk(Hk, V FY)
∈ [0, 1] (9.2)

As revealed by the motivation example, the resulting system performance of apply-
ing guardband types V GB and F GB depends on the temperatures generated by the
workload. Therefore, we propose to dynamically selects the appropriate guardband type
according to the running workload, with the objective of maximizing the overall system
performance under reliability and temperature constraints. The overall system perfor-
mance is the summation of the performance of all running applications at their current
settings as Equation (9.3) shows:

System Performance =

K∑
k=1

Rk(hk, Gtk) (9.3)

Selecting the appropriate guardband types according to the running workload implies
that different guardband types might be selected over time if the workload changes.
Moreover, when the workload consists of multiple applications that are mapped to the
chip at the same time, different guardband types might be selected for the cores that
execute different applications, because these applications might have diverse power prop-
erties, thereby leading to different temperatures on the cores. Thus, for each application
k, we need to select the appropriate guardband type Gtappk for the cores that execute it,
i.e., mapk. Besides selecting the guardband type, there is a need to adjust the power
states of the cores in order to proactively avoid thermal violations. It is to be noted
when some cores that run an application are power-gated, the number of threads of that
application hk will be reduced. Hence, the problem can be formulated as follows:

For a workload of K applications mapped to N cores, it is required to select for each
application k: the guardband type Gtappk of the cores in mapk, the number of threads
hk, and the power-states Si of the cores in mapk, in order to maximize the overall sys-
tem performance (Equation (9.3)) while the steady-state temperatures (Equation (8.4))
of the cores are kept below the critical temperature Tcrit. The reliability constraint
is satisfied through applying the required guardbands to prevent timing violations, as
Equation (1.2) and Equation (1.3) show.

This problem can be formulated as a Multiple-Choice Knapsack Problem (MCKP) [131],
in which several items need to be packed to a knapsack of a certain capacity, where
each item has multiple configurations. Each configuration has a profit and a weight.
The problem is how to choose one configuration from each item so that the profit sum
is maximized without having the weight sum to exceed the knapsack capacity. The
knapsack in our problem is the chip, where its capacity is the available thermal budget
(TB) on the chip, which is estimated as: Tcrit − Tmax, where Tmax is the maximum
steady-state temperature among the cores. The items are the K applications, where
each application has multiple configurations of the number of threads and the guardband
type, as shown in the application model. Each configuration (h,Gt) has a profit, i.e.,
application performance (Rk), and a weight ∆T appk , which is the temperature increase

9. Thermal-Aware Guardbanding 114

on the cores caused by executing the application. For a given number of threads h
and a given guardband type Gt, ∆T appk is calculated by employing Equation (3.7) and
considering that the core power before mapping application k is zero as the following
equation shows:

∆T appk (h,Gt) = [∆Ti]N×1 where ∆Ti =

Hk∑
`=1

(bi,mapk(`) · (Pk(h,Gt) · Smapk) (9.4)

The summation of the weights means in this problem the total temperature increase on
the chip cores resulting from executing K applications. Thus, the knapsack capacity will
be satisfied if the maximum temperature increase of the resulting weight sum is within
the available thermal budget. Mathematically, this problem can be expressed as follows:

Select Gtk, hk for all k = 1, 2, . . . ,K and

Si for each i ∈ mapk, in order to:

Maximize

K∑
k=1

Rk(hk, Gtk) , subject to:

Max(
K∑
k=1

∆T appk (hk, Gtk)) < TB

This problem is NP-hard problem [131], and solving it through an exhaustive search
results in an exponential time complexity.

9.3 Thermal-Aware Guardbanding

Knapsack problems can be solved in polynomial time using dynamic programming, be-
cause dynamic programming reduces the number of combinations that need to be ex-
amined. In particular, dynamic programming breaks down the problem into smaller
sub-problems. Then, it solves the sub-problems optimally and builds up the final solu-
tion gradually based on the found sub-solutions. Storing the obtained sub-solutions at
every step in tracking tables enables dynamic programming algorithms to reuse these
sub-solutions in further steps. Hence, the combinations required to test are much less
compared to exhaustive search. Nevertheless, dynamic programming algorithms cannot
be considered as light-weight solutions, and their time complexity needs to be taken into
account. We propose a dynamic programming algorithm referred to as sGuard-DP in
order to solve the defined problem for static workloads.

Additionally, we propose a heuristic referred to as sGuard-H, which has a less time
complexity than sGuard-DP (as it will be evaluated in Section 9.4), to be used for
dynamic workloads. The proposed heuristic sGuard-H might not reach the maximum
performance that sGuard-DP reaches, because it greedily tests some combinations of
the feasible solutions. An overview of the proposed algorithms for our thermal-aware
guardbanding is shown in Figure 9.3.

115 9. Thermal-Aware Guardbanding

Inputs:

Outputs:

Selective Thermal-Aware Guardbanding (sGuard)

sGuard Functionality

Core Power
States

 Core Guardband
Type

Power &
 Performance

Tables

 # Parallel Threads
of Applications

sGuard-H
Step1: Iterative selection
of guardband types and

#parallel threads

sGuard-DP
Dynamic programming to select

guardband types, #parallel
threads, and power states

Application
Mappings

Multicore
 Architecture

 Constraint:
𝑇𝑐𝑟𝑖𝑡

Thermal
Model

Estimated
Guardbands

F_GB, V_GB

sGuard-H
Step2: Selecting

power states

for dynamic workloads for static workloads

Figure 9.3: Overview of the proposed thermal-aware guardbanding sGuard, where two
approaches are proposed, i.e.,sGuard-DP and sGuard-H, to be applied for static work-

loads and dynamic workloads, respectively.

9.3.1 Dynamic Programming-Based Thermal-Aware Guardbanding

The inputs of the algorithm are: the available thermal budget TB (i.e., Tcrit−Tmax), the
set of K applications with their power and performance models, (Pk, Rk), as well as their
mapping sets (mapk). The outputs of the algorithm are: the guardband type Gtappk and
the number of threads hk of each application k as well as the power states of all cores, so
that the overall performance is maximized under the predefined critical temperature. To
break down the problem, the proposed algorithm divides the available thermal budget on
the chip to smaller thermal budgets (portions), tb1, tb2, · · · , tbm, where m is the number
of the portions and tbm = TB.

To obtain the sub-solutions, our algorithm uses an auxiliary function, opt(k, tb), defined
in Algorithm 9, that finds the optimal settings of application k under a given thermal
budget tb. More precisely, it finds the guardband type and the number of threads of
application k that maximizes the application performance without leading to an increase
in temperature more than the thermal budget tb. To achieve that, opt(k, tb) employs
a linear search on the Pk table to find the entry (Gt, h) that results in a change in
temperature less than tb. It is to be noted that the application performance stored in
Rk increases with increasing the number of threads, and also it will be higher when
V GB is selected rather than F GB. Thus, it can be considered that the table Pk
is sorted in ascending order according to the application performance. Therefore, the
index of the search in opt(k, tb) starts from the entry that holds the maximum number
of threads Hk rather than starting from the first row. Moreover, V GB is checked before
F GB, as the former leads to a higher performance.

9. Thermal-Aware Guardbanding 116

Algorithm 9 Find the optimal settings for application k that maximize its performance
under thermal budget tb (the auxiliary function opt(k, tb))

Input: Power and performance tables Pk and Rk (Section 3.2);
Output: hk, Gt

app
k ;

1: for h = Hk to 1 do
2: if Max(T appk (Pk(h, V GB)) < tb then
3: return h, V GB
4: else if Max(T appk (Pk(h, F GB)) < tb then
5: if Max(T appk (Pk(h− 1, V GB)) < tb and Rk(h− 1, V GB) > Rk(h, F GB) then
6: return h− 1, V GB
7: else
8: return h, F GB
9: end if

10: end if
11: end for
12: return ∅;

Starting from the entry (Hk, V GB), opt(k, tb) checks the maximum increase in tem-
perature, Max(T appk (Pk(Hk, V GB)), that would be incurred if application k runs the
maximum number of threads Hk (default mapping) and the guardband type of its cores
is set to V GB (see Equation (9.4)). For this entry the power states of all cores
in mapk will be equal to 1, because the application runs the maximum number of
threads Hk. If Max(T appk (Hk, V GB)) is equal or less than tb, opt(k, tb) returns the
values of (Hk, V GB). Otherwise, opt(k, tb) checks both Max(T appk (Hk, F GB) and
Max(T appk (Hk − 1, V GB)) in order to select the one that achieves a higher perfor-
mance within tb. If none of them was within tb, opt(k, tb) checks the next pair, i.e.,
Max(T appk (Hk−1, F GB)) and Max(T appk (Hk−2, V GB)), and so on until reaching the
last entry (1, F GB). If the search is finished and no feasible settings within the given
tb are found, the function returns ∅.

During the search, when opt(k, tb) examines the maximum temperature increaseMax(T appk)
for number of threads h less than Hk (in case running Hk threads violated tb), it needs
to power-gate some cores in mapk so that the number of active cores will be equal to h.
Since mapk is sorted in ascending order according to their susceptibility to temperature
increase, opt(k, tb) will set the power state of the last Hk−h cores in mapk to 0, because
they will be the cores that would violate this budget.

Our dynamic programming algorithm builds two tables, DP , DP T . The entries of these
tables are represented by all possible unique entries (k, tb). Each cell of the first table,
DP (k, tb), contains the maximum performance for the first k applications (assuming an
arbitrary order for the applications) so that the maximum temperature increase resulting
from mapping these applications is equal or less than tb. The corresponding temperature
increase on the cores resulting from mapping the first k applications is stored as a vector
in the cell DP T (k, tb), of the second table. Our algorithm starts from the first application
k = 1 and calculates its maximum performance at all available thermal budgets tb, as
shown in Equation (9.5), which is the initial boundary condition of building DP table.

DP (1, tb) =
0 if opt(1, tb) = ∅

R1(opt(1, tb) h, opt(1, tb) Gt) otherwise

(9.5)

117 9. Thermal-Aware Guardbanding

Simultaneously, DP T (1, tb) is initialized as follows:

DP T (1, tb) =
[0] if opt(1, tb) = ∅

T app1 (opt(1, tb) h, opt(1, tb) Gt) otherwise

(9.6)

To calculate DP (k, tb) for (k > 1) and (k <= K), the following recursive function is
used:

DP (k, tb) =

max

DP
(
k − 1, tb′

)
if opt(k, tb′′) = ∅

0
if Max(DP T (k − 1, tb′)

+T appk (opt(k, tb′′) h, opt(k, tb′′) Gt)) > tb

DP
(
k − 1, tb′

)
+

Rk
(
opt(k, tb′′) h, opt(k, tb′′) Gt

) otherwise

where 0 ≤ tb′ ≤ tb , 0 ≤ tb′′ ≤ tb | tb′ + tb′′ ≥ tb

(9.7)

Using Equation (9.7), our algorithm finds the maximum performance out of all the
possible combinations of assigning different portions tb′′, tb′ from the given thermal
budget tb to application k and the previous k − 1 applications. tb′′ and tb′ will be set
to values from the range 0, tb1, tb2, . . . , tb. To avoid re-calculating combinations that
have been examined for the previous thermal budgets that are less than tb, we added
the condition tb′ + tb′′ ≥ tb that must be satisfied in order to examine the combination
tb′, tb′′.

For each combination (tb′, tb′′), we assign to application k the thermal budget tb′′ and call
the auxiliary function opt(k, tb′′). If there are no feasible settings of application k under
tb′′, the performance of this combination is set to the performance of the previous k− 1
applications at tb′, i.e., DP (k−1, tb′). If there are feasible settings of application k under
tb′′, we check the sum of two vectors of temperature increase; the first one induced by
application k at tb′′ and calculated using Equation (9.4), while the second one is induced
by previous k−1 applications, which is already stored in DP T (k−1, tb′). If the resulting
sum does not contain a temperature increase larger than tb, the combination is accepted
and the resulting performance of this combination will be the sum of the performance
of the previous k− 1 applications and the resulting performance of application k at the
thermal budget tb′′.

Once the the maximum performance is found out of these combinations, it is stored in
DP (k, tb) which represents the maximum performance of the first k applications under
the thermal budget tb. The corresponding sum of the temperature increase vectors is
stored in DP T (k, tb), which represents the temperature increase induced by the first k
applications where their performance is maximized under tb, as Equation (9.8) shows.

9. Thermal-Aware Guardbanding 118

DP T (k, tb) =

DP T
(
k − 1, tb′

)
if opt(k, tb′′) = ∅

[0]
if Max(DP T (k − 1, tb′)

+T appk (opt(k, tb′′) h, opt(k, tb′′) Gt)) > tb

DP T
(
k − 1, tb′

)
+

T appk

(
opt(k, tb′′) h, opt(k, tb′′) Gt

) otherwise

(9.8)

There, tb′ and tb′′ are the values that result in the maximum performance that is stored
in DP (k, tb) as seen in Equation (9.7). Additionally, these values (tb′′ and tb′) are
stored in a tracking table called Track tb. Thus, in the cell Track tb(k, tb) both values
tb′′ and tb′ are stored to track the thermal budgets assigned to the current applica-
tion k, and to the previous k − 1 applications, respectively. Furthermore, the values
opt(k, tb′′) h, opt(k, tb′′) Gt that result in the maximum performance of application k
according to Equation (9.7) will be stored in tracking tables Track h, Track Gt, re-
spectively.

The final solution is found in the last cell of the table, i.e., DP (K, tbm), which holds the
overall maximum performance of K applications under the maximum available thermal
budget. However, that does not necessarily mean that all K applications are mapped,
rather the configurations of all K applications are examined. Extracting the settings of
the applications starts from the last application k = K until reaching the first one k = 1.
We begin from table Track tb at the same entry (K, tbm) of the maximum performance.
Track tb(K, tbm) contains two values tb′′, tb′, as previously mentioned. If tb′′ = 0, that
means application K is not mapped, and hence all of its cores (mapk) are power-gated.
If it is greater than 0, that implies that application K is mapped where the number of
its threads is stored in Track h(K, tbm) and the selected guardband type is stored in
Track Gt(K, tbm). For application K − 1, its assigned thermal budget will be stored at
the cell Track tb(K−1, tb′). Similarly, we extract the settings of application K−1 from
the rest of tracking tables. We continue with this process until extracting the settings
of all applications, which will be the output of the algorithm.
It is noteworthy that the power-gated cores of each application k are the last Hk − hk
cores of the set mapk, because these cores will be the cores that exceeded the available
thermal budget in the sub-solutions, as mentioned before in the explanation of the
auxiliary function opt.
Algorithm 10 presents building table DP , while Algorithm 11 presents how the final
solutions are extracted.

9.3.2 Iterative Thermal-Aware Guardbanding

As mentioned above, we propose a heuristic sGuard-H to select the guardband type
of the cores considering the running workload but with less time complexity than the
proposed dynamic programming algorithm, i.e., sGuard-DP. sGuard-H decomposes the
problem into two steps. Firstly, it selects the guardband type of the cores. Secondly, it
adjusts the power states of the cores in order to avoid any thermal violation. Iterative
search is employed in this heuristic. The input of sGuard-H are the application set K
with their power and performance models, as well as the application mapping sets mapk.

119 9. Thermal-Aware Guardbanding

Algorithm 10 Building dynamic programming tables

Input: Application set with their power and performance tables Pk and Rk and the
mapping decision mapk;

1: for tb = tb1 to tbm do
2: Set DP (1, tb) according to Equation (9.5);
3: Set DP T (t, tb) according to Equation (9.6);
4: end for
5: for k = 2 to K do
6: for tb = tb1 to tbm do
7: MaxDP ← −∞
8: for tb′ = 0 to tb do
9: for tb′′ = 0 to tb do

10: if tb′ + tb′′ ≥ tb then
11: Set DP (k, tb) according to Equation (9.7);
12: Set DP T (k, tb) according to Equation (9.8);
13: if DP (k, tb) > MaxDP then
14: MaxDP = DP (k, tb);
15: MaxDP T = DP T (k, tb);
16: tb′? = tb′;
17: if DP (k, tb) = 0 or DP (k, tb) = DP (k − 1, tb′) then
18: tb′′? = 0;
19: else
20: tb′′? = tb′′;
21: end if
22: end if
23: end if
24: end for
25: end for
26: DP (k, tb) = MaxDP ;
27: DP T (k, tb) = MaxDP T ;
28: Track tb(k, tb) = (tb′′?, tb′?);
29: Track h(k, tb) = opt(k, tb′′?) h;
30: Track Gt(k, tb) = opt(k, tb′′?) Gt;
31: end for
32: end for
33: return Tables DP, Track h, Track Gt, Track tb;

For selecting the guardband types, sGuard-H first initiates Gti with V GB for all cores,
since V GB allows a higher frequency and hence a better performance can be achieved
if no thermal violation occurs. After that, sGuard-H estimates the resulting power
consumption and the corresponding steady-state temperatures of the cores (see Equa-
tion (8.4)). If the estimated temperatures of all cores do not exceed Tcrit, V GB will
be the selected guardband type for all cores. Otherwise (i.e. if a thermal violation is
foreseen), sGuard-H needs to change the guardband type of the application cores iter-
atively. To achieve that, sGuard-H, during temperature estimation, obtains the hottest
core i? whose guardband type is still V GB in order to change it to F GB. At the
same time, the guardband types of all cores in mapk? , where k? is the application that
runs on core i?, are changed to F GB. Note, that sGuard-H changes the guardband
type for the hottest core, rather than only for the core that violates Tcrit, because the

9. Thermal-Aware Guardbanding 120

Algorithm 11 Extract application settings hk, Gt
app
k and the core power states Si

Input: Tables DP,DP T , T rack h, Track Gt, Track tb;
1: tb = tbm;
2: for k = K to 1 do
3: if Track tb(k, tb) tb′′ > 0 then
4: hk = Track h(k, tb);
5: Gtappk = Track Gt(k, tb);
6: else
7: hk = 0;
8: Gtappk = ∅;
9: end if

10: for i = HK to hk do
11: Smapk(i) = 0;
12: end for
13: tb = Track tb(k, tb) tb′;
14: end for
15: return hk, Gt

app
k for all applications and Si for all cores.

Estimate Steady-State
Temperatures for all cores Ti

Find the hottest application, k*,
whose guardband type is V_GB

If found

If Max(Ti) > Tcrit

For each core i in N,
Set Gti to V_GB

Set Gti
 to F_GB for each

core i in mapk*

Yes

Yes

No

No

Start

End

Figure 9.4: Flow diagram of the iterative guardband selection of sGuard-H

latter might have been set to F GB in a previous iteration, nevertheless, it still violates
Tcrit. Thus, changing the guardband type of the hottest core will lead to decreasing the
temperatures on the chip. Afterwards, the steady-state temperatures of the cores are
estimated again. This process is repeated as long as thermal violations are foreseen and
there is at least one core whose Gti is still V GB. The flow diagram of this iterative
selection of the guardband types is demonstrated in Fig.9.4.

The second step of our heuristic is to specify the power states of the cores, because ther-
mal violations might still occur, even if sGuard-H set F GB to all cores due to many
reasons like high chip load and/or high-power applications. For this purpose, sGuard-H
estimates the steady-state temperatures considering that the guardband types deter-
mined in the previous step are employed. If a thermal violation is foreseen, the hottest
core is power-gated. When a core is power-gated, the number of threads of the applica-
tion that runs on that core will be reduced. This process is repeated until none of the
cores exceeds the critical temperature, Tcrit.

121 9. Thermal-Aware Guardbanding

9.4 Evaluation

The targeted multicore system is a 64-core chip shown in Figure 4.4. The complete setup
is explained in details in Chapter 4, in which the tool flow is illustrated in Figure 4.1.
We considered a nominal voltage and frequency of 1.4V and 4GHz, respectively. The
estimated guardband width for F GB and V GB are 14% and 91mv, respectively. We
consider a critical temperature of 100 circC, similar to the critical temperature of Intel
Xeon Phi [33].

Scenario Applications

Mix1 x264, canneal

Mix2 blackscholes, ferret

Mix3 canneal, bodytrack

Mix4 x264, canneal, blackscholes

Mix5 canneal, bodytrack, dedup

Mix6 ferret, x264

Table 9.1: Scenarios of workloads with multiple applications

9.4.1 Experimental Results

To evaluate the effectiveness of our thermal-aware guardbanding techniques sGuard-DP
and sGuard-H, we additionally implemented two other techniques vGuard and fGuard,
that constantly employ V GB [48] and F GB [47], respectively, on all cores. As dis-
cussed, our targeted system is thermally-constrained, and thus, thermal violations must
be prevented. sGuard-DP jointly selects the guardband types and the power states of
the cores, so that the performance is maximized without leading to thermal violations.
The second step of sGuard-H power-gates cores so that no thermal violation occurs. For
vGuard and fGuard, it is necessary also to prevent thermal violations. Therefore, the
same process of avoiding thermal violation in sGuard-H, i.e., the second step of sGuard-
H, is applied in vGuard and fGuard, to allow fair comparison.

The metric used to evaluate the efficiency of the four guardbanding techniques is the
overall system performance (Equation (9.3)). It is to be noted that the performance
values in all figures are always normalized to the performance of fGuard. We summarize
our evaluation results for various scenarios of static and dynamic workloads under five
categories (as seen below). As discussed in Section.9.3, sGuard-DP is more suitable for
static workloads. Therefore, we evaluate it for the first and second categories, because
the rest of categories are testing dynamic workloads.

1) Static Workload – Single Application: First we study static workloads (i.e. no
changes in the application set over time) consisting of several instances (determining the
chip load) from the same application. This is analogous to our motivational case study
in Section 9.1. As shown in Figure 9.5, the resulting performance of sGuard-DP and
sGuard-H in most cases is similar to the performance of vGuard or the performance of
fGuard. The reason is that the workload is static and a single application is executed,
and thus sGuard-DP and sGuard-H select most likely one guardband type of the cores
that is appropriate to the given single application of the static workload.

9. Thermal-Aware Guardbanding 122

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

0.7

0.8

0.9

1

1.1

1.2

0.7

0.8

0.9

1

1.1

1.2

0.7

0.8

0.9

1

1.1

1.2

fGuard vGuard sGuard-H sGuard-DP

8%

a) 100% Chip Load b) 75% Chip Load

c) 62% Chip Load

Average a b c
fGuard 5% 5% 8%
vGuard 15% 3% 3%

Maximum a b c
fGuard 12% 12% 15%
vGuard 23% 13% 16%

Maximum and Average Performance Gain
of sGuard-DP compared to fGuard, vGuard:

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Figure 9.5: Comparison results of the average system performance between sGuard-DP,
sGuard-H, vGuard and fGuard techniques under static workloads.

In few cases, like the case of “dedup” application at scenario (a) of Figure 9.5, sGuard-
DP outperforms both vGuard and fGuard. In this case, a thermal violation is foreseen
at the cores that run one instance of the application; although the instances are identical
and consume the same power, but due to the geometrical locations of the cores on the
chip, some cores are more subject to temperature increase than others. Since sGuard-
DP jointly determines the guardband types and the power states of the cores after
examining a lot of feasible combinations, it finds that, in this scenario power-gating the
cores that exceed the Tcrit is more efficient (result in more performance) than converting
the guardband type of the cores to F GB. However, sGuard-H will not be able to test
this feasible option, since it solves the problem through two steps; first determining
the guardband types, and then determining the power states of the cores. As a result,
sGuard-DP achieves 8% more performance compared to sGuard-H in this particular
scenario. The benefit of sGuard-DP over sGuard-H becomes more evident when the
workload consists of different applications as seen in category (2).

As a summary of this category, our sGuard-DP achieves a performance gain up to 23%,
15% compared to vGuard and fGuard, respectively, in which a fixed guardband type is
constantly employed throughout without considering the workload.
This demonstrates again why a thermal-aware guardbanding is indispensable to optimize
performance.

2) Static Workload – Multiple Applications: Here we study static workloads,
where each of them consists of multiple different applications (see Table 9.1). sGuard-DP
achieves a performance gain up to 16% and an average of 6% compared to sGuard-H. We
notice that the difference in performance between sGuard-DP and sGuard-H is higher in

123 9. Thermal-Aware Guardbanding

0.7

0.8

0.9

1.0

1.1

1.2

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Performance gain of
Guard-DP compared
to fguard, vGuard is
up to 15%, 26% and
on average of 5% and
20%, respectively.

16%

fGuard vGuard sGuard-H sGuard-DP

Figure 9.6: Comparison results of the average performance between sGuard-DP,
sGuard-H, vGuard and fGuard techniques under static workloads that consist of differ-

ent multiple applications.

this category compared to the first one where each workload consists of multiple instances
of the same application. The reason is that when different applications exist in the
workload, more combinations need to be studied in order to obtain higher performance.
Our dynamic programming algorithm sGuard-DP studies more feasible combinations
than the proposed heuristic sGuard-H, and thus better performance is obtained.

3) Dynamic Workload – Single Application: This category considers a dynamic
workloads in which the chip load (i.e. number of demanded cores by the running work-
load) varies over time. An example of dynamic workloads is illustrated in Fig.9.7, in
which the workload consists of multiple instances of “x264” application. The number of
instances running on the cores are changing over the execution time of the experiment.
Hence, the chip load percentage is changing as shown in the upper graph in Fig.9.7
resulting in an average of 66%. Our sGuard-H reacts to these changes and accordingly
selects the appropriate guardband type at any workload change resulting in different
frequencies over time. For instance, when the chip load increases above 50% (at t=8s)
sGuard-H selects F GB to avoid potential thermal violations that might occur if V GB
remained in use, and thereby the frequency is reduced to 3.4 GHz at t=8 s. Thanks to
this thermal-aware guardbanding, the performance gain of our sGuard-H reaches up to
32% more than the resulting one at V GB and up to 13% more than the resulting one
at F GB.

A similar experiments are run for the rest of applications and the resulting average
performance is plotted in Fig.9.8(a). Similar experiments are conducted for 54% average
chip load, and the results are shown in Fig.9.8(b). As noticed, in this category the
achieved performance by sGuard-H in not similar to either vGuard or fGuard, unlike
static workloads. Rather, sGuard-H outperforms both of vGuard and fGuard in most
applications because in this case the decision of sGuard-H with regard to the selected
guardband will vary over time according to the workload changes.

4) Dynamic Workload – Multiple Applications: For a more general evaluation,
this category considers a dynamic workload in which the chip load varies over time,
and the workload consists of different applications. Thus, we use the scenarios defined
in Table 9.1 and additionally let the chip load change over time, i.e., the number of
instances of each application in the scenarios will vary over time. Fig.9.9 shows the
minimum, the maximum and the average performance gain of sGuard-H compared to
vGuard and fGuard over the execution time of each scenario. While Figure 9.11 shows
comparison of the average performance resulting from these techniques.

9. Thermal-Aware Guardbanding 124

0

25

50

75

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Fr
eq

u
en

cy
 [

G
H

z]
C

h
ip

 L
o

ad
 [

%
]

Chip Load ranges between 16% and 100% (Avg: 66%)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
3.2

3.4

3.6

3.8

4.0

4.2

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

fGuard vGuard sGuardH

Time [s]

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

32% Maximum Performance gain
10% Average Performance gain

Figure 9.7: Demonstrating how the selected guardband type by sGuard-H changes
between V GB and F GB over time following the changes in the chip load. Accordingly,
the frequency changes between 4GHz and 3.42GHz. The resulting performance gain of

sGuard-H reaches up to 32% and 13% compared to V GB and F GB, respectively.

As mentioned above, when the workload consists of multiple instances of the same
application as in category (1 and 3), sGuard-H most likely assigns the same guardband
type for all cores at one point of time, because every application instance consumes the
same power. However, when the workload consists of multiple instances from different
applications, sGuard-H may select different guardband types at one point of time due to
variances in the power consumptions resulting from running different applications. To
demonstrate that, Figure 9.10 shows how different guardband types are selected at one
time for Mix1 that composed of “x264” and “canneal” applications.

5) Evaluating our sGuard-H at a chip, instead of core, granularity: In our
system model, we assume that the V and f can be changed for every core individually,
similar to some commercial processors, like [37]. However, such a feature may not be
available in all processors like in Intel Xeon Phi [33].Therefore, we implemented a version
of our technique, referred to as sGuard-H (chip), which considers that all cores share
the same V and f and hence the same guardbands. Our experiment in Figure 9.11
shows that the performance gain of sGuard-H (chip) is less than the one of our original
technique sGuard-H. The reason is that at the chip granularity the selected guardband

125 9. Thermal-Aware Guardbanding

Average a b
fGuard 6% 7%
vGuard 4% 6%

a) Dynamic Chip Load (Avg: 66%)

fGuard vGuard sGuard-H

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

0.7

0.8

0.9

1.0

1.1

1.2
b) Dynamic Chip Load (Avg: 54%)

0.7

0.8

0.9

1.0

1.1

1.2

Maximum and Average
Performance Gain of sGuard-H
compared to fGuard, vGuard:

Maximum a b
fGuard 12% 12%
vGuard 11% 10%

Figure 9.8: Comparison results of the average system performance under dynamic work-
loads.

Pe
rf

o
rm

an
ce

 G
ai

n
 o

f
sG

u
a
rd
-H

[%
]

0

5

10

15

20

25

Min Max Average v: Compared to vGuard
f: Compared to fGuard

v f

Mix1

v f

Mix2

v f

Mix3

v f

Mix4

v f

Mix5

v f

Mix6

Figure 9.9: Comparison of the minimum, maximum and average performance gain of
sGuard-H compared to vGuard and fGuard over the execution time of each workload
scenario. The maximum performance gain of sGuard-H reaches up to 25% and 15%

compared to vGuard and fGuard, respectively.

type will be appropriate for the dominant application (i.e. the one that leads to generate
the highest temperature on the cores). Particularly, if the estimated temperatures of the
cores that execute the dominant application exceed the Tcrit, F GB must be selected for
these cores. Since only per-chip VF scaling is possible, the guardbands of all cores will be
set also to F GB, although their temperatures might still be far from Tcrit, and V GB
is more appropriate for them. Such an unexploited thermal margin on these cores leads
to the less performance gain. As an example from our experiments shown in Fig. 12,
sGuard-H achieves 4% more performance than sGuard-H (chip) in the case of Mix4.
However, sGuard-H (chip) still achieves better performance than fixed guardbanding,
i.e., the performance gains of sGuard-H (chip) are 11% and 9% compared to vGuard
and fGuard, respectively. The performance gains of sGuard-H in this experiment are
14% and 10% compared to vGuard and fGuard, respectively.

Overhead Discussion: As mentioned before, sGuard-DP is utilized for static workload,

9. Thermal-Aware Guardbanding 126

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3.2

3.4

3.6

3.8

4.0

4.2
fGuard vGuard sGuard-H(canneal) sGuard-H(x264)

Fr
eq

u
en

cy
 [

G
H

z]

Time [s]

Figure 9.10: Mapping multiple applications leads to selecting different guardband types
at one time at the cores that run different applications.

0.7

0.8

0.9

1.0

1.1

1.2

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6

fGuard vGuard sGuard-HsGuard-H (chip)

4%

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Figure 9.11: Average Performance Comparison for different scenarios. The Performance
gain of sGuard-H is up to 14% and 10% compared to vGuard and fGuard, respectively.

because the required time to take its decision might not be affordable if the workload
frequently changes (the workload changes when an application finishes or a new applica-
tion arrives). To provide a deeper insight into the overhead of sGuard-DP, we measure
the required time to take its decisions for the adopted scenarios shown in Table 9.1. The
maximum required time is 184 ms. Although we assume that sGuard-DP is utilized for
static workloads, it can be utilized in dynamic workloads as well, if the period of time
between workload changes is much longer than the required time of the decision making
of sGuard-DP, so that its overhead becomes affordable. Otherwise, sGuard-H is utilized
which has much lower overhead. Specifically, we measure the overhead of sGuard-H for
the same adopted scenarios, and it is 2 ms, which means it has 85X less overhead than
sGuard-DP.

The overhead of the comparison candidates, i.e., vGuard and fGuard, is similar to the
overhead of sGuard-H (around 2 ms), due to the same time complexity of these heuristics.
In particular, sGuard-H, vGuard and fGuard have a cubic time complexity, due to their
iterating through all cores to check thermal violations, and at each iteration the steady-
state temperatures are estimated, where estimating the steady-state temperatures has
a quadratic time complexity (Equation (8.4)).

127 9. Thermal-Aware Guardbanding

9.5 Summary

This chapter introduced thermal-aware guardbanding that selects the appropriate guard-
band type for every core while taking the workload-induced temperatures into account
and thereby optimizing performance. The diverse evaluations demonstrated that the pre-
sented guardband selection can significantly improve system performance (up to 32%)
compared to employing a single fixed guardband type throughout the processor lifetime,
while the same reliability and temperature constraints are considered. Concisely, this
investigation can motivate researchers to move from circuit-level fixed guardbanding
to system-level thermal-aware guardbanding, in order to be able to consider workload-
induced temperatures.

Chapter 10

Conclusions

This dissertation focused on the problem of performance optimization under tempera-
ture and aging constraints. The first part of the dissertation (Chapters 5, 6) focused on
performance optimization under temperature constraints, while the second part (Chap-
ters 7, 8, 9) considered both temperature and aging.

Chapter 5 showed how dark silicon brings new challenges as well as opportunities for
the targeted problem. Thus, a dark silicon-aware resource management, named DsRM,
is proposed in Chapter 5 to manage resources for homogeneous multicores. DsRM
leveraged the existence of dark cores to dissipate heat from active cores. That allowed
DsRM to upscale the V/f levels of active cores that execute high ILP applications,
thereby obtaining further performance improvements. Thus DsRM was able to obtain
significant performance improvements with an average of 34%. This technique, however,
could not be extended for heterogeneous multicores. Therefore, in Chapter 6, a resource
management technique is proposed that aims at maximizing the performance under a
temperature constraint while considering the diverse power, performance and thermal
characteristics of heterogeneous cores.

In Chapter 7, a new aging-aware design space is explored enabling the resource man-
agement technique from maximizing the performance under temperature and aging con-
straints. The evaluation of this technique showed the potentials of performance im-
provements when considering the entire aging-aware design space rather than employing
conservative bounds on the design space. An aging-aware, yet efficient, boosting tech-
nique is developed in Chapter 8, which was able to maximize the performance while at
the same time reduce the delays stemming from both the well-known long-term aging
effects and the recently-discovered short-term aging effects. Chapter 9 demonstrated
that the dynamic selection of guardband types can significantly improve system perfor-
mance (up to 32%) compared to employing a single fixed guardband type throughout
the processor lifetime, while the same temperature constraint is considered. Concisely,
our investigation in Chapter 9 can motivate researchers to move from circuit-level fixed
guardbanding to system-level thermal-aware guardbanding in order to be able to con-
sider workload-induced temperatures and optimize for performance accordingly.

A future work for this dissertation will be to develop more dynamic techniques that
account for the uncertainty and variability of the execution behavior of applications at
runtime. Such uncertainty and variability might result due to the use of shared resources
or due to changes in input data. As can be noticed, most of the techniques proposed

129

10. Conclusions 130

in the dissertation depend on power and performance models for the applications that
are extracted at design time. On the one hand, considering these profiles enables un-
derstanding the application characteristics; their TLP and ILP, thereby maximizing the
performance accordingly. On the other hand, if changes in these characteristics hap-
pen, it might not be possible to obtain the expected performance gain. In contrast,
the technique proposed in Chapter 8 does not depend on any design-time modeling, it
depends only on the current values of the power and temperature form the multicores
and takes its decisions accordingly. Hence, this technique is not able to optimize for
application performance based on their characteristics. As a result, an improvement on
these works could be achieved by considering first the design time profiles and attempt-
ing to modify it based on runtime observations. This way could combine the benefits of
both approaches. To achieve this improvement, machine learning algorithms are good
candidates, due to their ability to learn dynamic behaviors.

Bibliography

[1] H. Khdr, H. Amrouch, and J. Henkel, “Aging-Aware Boosting,” IEEE Transac-
tions on Computers, 2018.

[2] ——, “Dynamic Guardband Selection: Thermal-Aware Optimization for Unreli-
able Multi-Core Systems,” IEEE Transactions on Computers, 2018.

[3] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, “Dark-Silicon-Aware Resource
Management for Many-Core Systems,” in Proceedings of the 52nd Annual Design
Automation Conference. ACM, 2015, p. 179.

[4] H. Khdr, H. Amrouch, and J. Henkel, “Aging-Constrained Performance Opti-
mization for Multi Cores,” in Proceedings of the 55nd Annual Design Automation
Conference. ACM, 2018.

[5] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig, M. Shafique,
J. Teich, and J. Henkel, “Power-Density-Aware Resource Management for Hetero-
geneous Tiled Multicores,” IEEE Transactions on Computers, vol. 66, no. 3, pp.
488–501, 2017.

[6] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, “Thermal Constrained Resource
Management for Mixed ILP-TLP Workloads in Dark Silicon Chips,” in Proceedings
of the 52nd Annual Design Automation Conference. ACM, 2015, p. 179.

[7] H. Khdr, T. Ebi, M. Shafique, H. Amrouch, and J. Henkel, “mdtm: Multi-objective
dynamic thermal management for on-chip systems,” in Proceedings of the confer-
ence on Design, Automation & Test in Europe. European Design and Automation
Association, 2014, p. 330.

[8] A. Pathania, H. Khdr, M. Shafique, T. Mitra, and J. Henkel, “Qos-aware stochastic
power management for many-cores,” 2018.

[9] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel, “Thermal
safe power (tsp): Efficient power budgeting for heterogeneous manycore systems
in dark silicon,” IEEE Transactions on Computers, vol. 66, no. 1, pp. 147–162,
2017.

[10] A. Pathania, H. Khdr, M. Shafique, T. Mitra, and J. Henkel, “Scalable proba-
bilistic power budgeting for many-cores,” in 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2017, pp. 864–869.

[11] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel, “Thermal
safe power: efficient thermal-aware power budgeting for manycore systems in dark
silicon,” in The Dark Side of Silicon. Springer, 2017, pp. 125–158.

131

Bibliography 132

[12] S. Pagani, L. Bauer, Q. Chen, E. Glocker, F. Hannig, A. Herkersdorf, H. Khdr,
A. Pathania, U. Schlichtmann, D. Schmitt-Landsiedel et al., “Dark silicon manage-
ment: an integrated and coordinated cross-layer approach,” it-Information Tech-
nology, vol. 58, no. 6, pp. 297–307, 2016.

[13] J. Henkel, S. Pagani, H. Khdr, F. Kriebel, S. Rehman, and M. Shafique, “Towards
performance and reliability-efficient computing in the dark silicon era,” in Pro-
ceedings of the 2016 Conference on Design, Automation & Test in Europe. EDA
Consortium, 2016, pp. 1–6.

[14] S. Pagani, M. Shafique, H. Khdr, J.-J. Chen, and J. Henkel, “seboost: selective
boosting for heterogeneous manycores,” in Proceedings of the 10th International
Conference on Hardware/Software Codesign and System Synthesis. IEEE Press,
2015, pp. 104–113.

[15] J. Henkel, H. Bukhari, S. Garg, M. U. K. Khan, H. Khdr, F. Kriebel, U. Ogras,
S. Parameswaran, and M. Shafique, “Dark silicon: From computation to communi-
cation,” in Proceedings of the 9th International Symposium on Networks-on-Chip.
ACM, 2015, p. 23.

[16] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in dark silicon,” in
Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE. IEEE,
2015, pp. 1–6.

[17] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J.-J. Chen, and J. Henkel, “Peak
power management for scheduling real-time tasks on heterogeneous many-core
systems,” in Parallel and Distributed Systems (ICPADS), 2014 20th IEEE Inter-
national Conference on. IEEE, 2014, pp. 200–209.

[18] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and J. Henkel,
“TSP: Thermal Safe Power - efficient power budgeting for many-core systems in
dark silicon,” in International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2014, pp. 10:1–10:10.

[19] J. Henkel, T. Ebi, H. Amrouch, and H. Khdr, “Thermal management for depend-
able on-chip systems,” in Design Automation Conference (ASP-DAC), 2013 18th
Asia and South Pacific. IEEE, 2013, pp. 113–118.

[20] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-
Preikschat, and G. Snelting, “Invasive computing: An overview,” in
Multiprocessor System-on-Chip - Hardware Design and Tool Integration., 2011,
pp. 241–268. [Online]. Available: https://doi.org/10.1007/978-1-4419-6460-1 11

[21] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari, A. Grud-
nitsky, J. Heisswolf, A. Zaib, B. Vogel et al., “Invasive manycore architectures.”
in ASP-DAC, 2012, pp. 193–200.

[22] M. Shafique and J. Henkel, “Agent-based distributed power management for
kilo-core processors,” in The IEEE/ACM International Conference on Computer-
Aided Design, ICCAD’13, San Jose, CA, USA, November 18-21, 2013, 2013, pp.
153–160. [Online]. Available: https://doi.org/10.1109/ICCAD.2013.6691112

[23] S. Muddasani, S. Boppu, F. Hannig, B. Kuzmin, V. Lari, and J. Teich, “A proto-
type of an invasive tightly-coupled processor array,” in Design and Architectures
for Signal and Image Processing, 2012.

https://doi.org/10.1007/978-1-4419-6460-1_11
https://doi.org/10.1109/ICCAD.2013.6691112

133 Bibliography

[24] S. Pagani, A. Pathania, M. Shafique, J.-J. Chen, and J. Henkel, “Energy efficiency
for clustered heterogeneous multicores,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 28, no. 5, pp. 1315–1330, 2017.

[25] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty,
M. Engel, R. Ernst, H. Härtig, L. Hedrich et al., “Design and architectures for
dependable embedded systems,” in Proceedings of the seventh IEEE/ACM/I-
FIP international conference on Hardware/software codesign and system synthesis.
ACM, 2011, pp. 69–78.

[26] H. Amrouch, T. Ebi, and J. Henkel, “Stress balancing to mitigate nbti effects
in register files,” in Dependable Systems and Networks (DSN), 2013 43rd Annual
IEEE/IFIP International Conference on. IEEE, 2013, pp. 1–10.

[27] H. Amrouch, S. Mishra, V. van Santen, S. Mahapatra, and J. Henkel, “Impact of
bti on dynamic and static power: From the physical to circuit level,” in Reliability
Physics Symposium (IRPS), 2017 IEEE International. IEEE, 2017, pp. CR–3.

[28] V. M. van Santen, H. Amrouch, N. Parihar, S. Mahapatra et al., “Aging-aware
voltage scaling,” in 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2016, pp. 576–581.

[29] I. Present, “Cramming more components onto integrated circuits,” Readings in
computer architecture, vol. 56, 2000.

[30] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[31] Y. Taur and E. J. Nowak, “Cmos devices below 0.1/spl mu/m: how high will
performance go?” in Electron Devices Meeting, 1997. IEDM’97. Technical Digest.,
International. IEEE, 1997, pp. 215–218.

[32] “International technology roadmap for semiconductors 2.0,” http://www.itrs2.
net/, 2015.

[33] Intel Corporation, “Intel xeon phi processor datasheet,” https://ark.intel.
com/products/94709/Intel-Xeon-Phi-Processor-7210F-16GB-1.30-GHz-64-core,
December 2017.

[34] R. Borkar, M. Bohr, and S. Jourdan, “Advancing moore’s law in 2014.”

[35] E. Maricau and G. Gielen, “Cmos reliability overview,” in Analog IC Reliability
in Nanometer CMOS. Springer, 2013, pp. 15–35.

[36] S. Hppner, C. Shao, H. Eisenreich, G. Ellguth, M. Ander, and R. Schffny, “A
power management architecture for fast per-core dvfs in heterogeneous mpsocs,”
in 2012 IEEE International Symposium on Circuits and Systems, May 2012, pp.
261–264.

[37] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer, “An
energy efficiency feature survey of the intel haswell processor,” in Parallel and Dis-
tributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International.
IEEE, 2015, pp. 896–904.

http://www.itrs2.net/
http://www.itrs2.net/
https://ark.intel.com/products/94709/Intel-Xeon-Phi-Processor-7210F-16GB-1.30-GHz-64-core
https://ark.intel.com/products/94709/Intel-Xeon-Phi-Processor-7210F-16GB-1.30-GHz-64-core

Bibliography 134

[38] S. H. Gunther, F. Binns, D. M. Carmean, and J. C.Hall, “Managing the impact
of increasing microprocessor power consumption,” Intel Tchnology Journal, Q1,
2001.

[39] N. Binkert, B. Beckmann, G. Black et al., “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[40] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “McPAT:
An integrated power, area, and timing modeling framework for multicore and
manycore architectures,” in 42nd IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), 2009, pp. 469–480.

[41] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite:
Characterization and architectural implications,” in Proceedings of the 17th In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), 2008, pp. 72–81.

[42] X. Guo and M. R. Stan, “Work hard, sleep well-avoid irreversible ic wearout with
proactive rejuvenation,” in Design Automation Conference (ASP-DAC), 2016 21st
Asia and South Pacific. IEEE, 2016, pp. 649–654.

[43] K. Joshi, S. Mukhopadhyay, N. Goel, and S. Mahapatra, “A consistent physical
framework for N and P BTI in HKMG MOSFETs,” in Reliability Physics Sympo-
sium (IRPS), IEEE International, 2012, pp. 5A–3.

[44] Y. Chauhan, S. Venugopalan, M. Karim, S. Khandelwal, N. Paydavosi, P. Thakur,
A. Niknejad, and C. Hu, “BSIM - Industry standard compact MOSFET models,”
in ESSCIRC, 2012.

[45] “BSIM Compact MOSFET Models for SPICE Simulation,” http://www-device.
eecs.berkeley.edu/bsim/?page=BSIM4.

[46] C. Zhou, X. Wang, W. Xu, Y. Zhu, V. J. Reddi, and C. H. Kim, “Estimation
of instantaneous frequency fluctuation in a fast dvfs environment using an empir-
ical bti stress-relaxation model,” in 2014 IEEE International Reliability Physics
Symposium, June 2014, pp. 2D.2.1–2D.2.6.

[47] M. Ebrahimi, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Aging-aware logic syn-
thesis,” in Proceedings of the International Conference on Computer-Aided Design,
ser. ICCAD ’13, 2013.

[48] T. B. Chan, W. T. J. Chan, and A. B. Kahng, “Impact of adaptive voltage scal-
ing on aging-aware signoff,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, pp. 1683–1688.

[49] S. Kobbe, L. Bauer, D. Lohmann, W. Schroder-Preikschat, and J. Henkel, “Dis-
tRM: Distributed Resource Management for On-Chip Many-Core Systems,” in
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2011 Pro-
ceedings of the 9th International Conference on, 2011, pp. 119–128.

[50] A. B. Downey, “A model for speedup of parallel programs,” CALIFORNIA UNIV
BERKELEY COMPUTER SCIENCE DIV, Tech. Rep., 1997.

[51] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris, “Distributed run-
time resource management for malleable applications on many-core platforms,” in
50th Design Automation Conference (DAC), 2013, pp. 168:1–168:6.

http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4
http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4

135 Bibliography

[52] G. Castilhos et al., “Distributed resource management in NoC-based MPSoCs with
dynamic cluster sizes,” in IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Aug 2013, pp. 153–158.

[53] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill climbing
for agile dynamic mapping in many-core systems,” in 50th Design Automation
Conference (DAC), 2013, pp. 39:1–39:6.

[54] C.-L. Chou, U. Ogras, and R. Marculescu, “Energy- and performance-aware incre-
mental mapping for networks on chip with multiple voltage levels,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 27, no. 10, pp. 1866–1879, Oct. 2008.

[55] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable Power Control for Many-core
Architectures Running Multi-threaded Applications,” ser. ISCA ’11, 2011, pp.
449–460.

[56] X. Wang, B. Zhao, T. Mak, M. Yang, Y. Jiang, M. Daneshtalab, and M. Palesi,
“Adaptive power allocation for many-core systems inspired from multiagent
auction model,” in Design, Automation Test in Europe Conference Exhibition
(DATE), March 2014, pp. 1–4.

[57] T. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin, “Hi-
erarchical power management for asymmetric multi-core in dark silicon era,” in
50th Design Automation Conference (DAC), 2013, pp. 174:1–174:9.

[58] C. Hankendi and A. K. Coskun, “Scale & cap: Scaling-aware resource manage-
ment for consolidated multi-threaded applications,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 22, no. 2, p. 30, 2017.

[59] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F.
Wenisch, and M. M. Martin, “Computational sprinting,” in High Performance
Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on.
IEEE, 2012, pp. 1–12.

[60] A. Kanduri, M.-H. Haghbayan, A.-M. Rahmani, P. Liljeberg, A. Jantsch, and
H. Tenhunen, “Dark silicon aware runtime mapping for many-core systems: A
patterning approach,” in Computer Design (ICCD), 2015 33rd IEEE International
Conference on. IEEE, 2015, pp. 573–580.

[61] M. Shafique, D. Gnad, S. Garg, and J. Henkel, “Variability-aware dark silicon
management in on-chip many-core systems,” in Design, Automation and Test in
Europe (DATE), 2015.

[62] M. Kadin and S. Reda, “Frequency and voltage planning for multi-core proces-
sors under thermal constraints,” in Computer Design, 2008. ICCD 2008. IEEE
International Conference on. IEEE, 2008, pp. 463–470.

[63] M. Kadin, S. Reda, and A. Uht, “Central vs. distributed dynamic thermal man-
agement for multi-core processors: which one is better?” in Proceedings of the
19th ACM Great Lakes symposium on VLSI. ACM, 2009, pp. 137–140.

[64] V. Hanumaiah, S. Vrudhula, and K. Chatha, “Performance optimal online dvfs
and task migration techniques for thermally constrained multi-core processors,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 30, no. 11, pp. 1677–1690, Nov. 2011.

Bibliography 136

[65] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive dynamic thermal
and power management for heterogeneous mobile platforms,” in Proceedings of
Design, Automation & Test in Europe (DATE). IEEE, 2015, pp. 960–965.

[66] “Exynos 5 octa (5422),” http://www.samsung.com/exynos.

[67] Intel Corporation, “Intel turbo boost technology in intel CoreTM microarchitec-
ture (nehalem) based processors,” White Paper, November 2008.

[68] “7th generation intel processor families for u/y platforms,” ser. January, 2017.

[69] S. Nussbaum, “AMD trinity APU,” in Hot Chips: A Symposium on High Perfor-
mance Chips, 2012.

[70] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova, “Evaluation of the
intel R©corei7 turbo boost feature,” in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC), ser. IISWC ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 188–197.

[71] A. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Temperature-aware mpsoc
scheduling for reducing hot spots and gradients,” in the Asia and South Pacific
Design Automation Conference (ASP-DAC), 2008, pp. 49–54.

[72] A. K. Coskun, T. S. Rosing, and K. C. Gross, “Proactive temperature balancing for
low cost thermal management in mpsocs,” in Proceedings of the 2008 IEEE/ACM
International Conference on Computer-Aided Design. IEEE Press, 2008, pp.
250–257.

[73] Y. Ge et al., “A Multi-Agent Framework for Thermal Aware Task Migration in
Many-Core Systems,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems,, vol. 20, no. 10, pp. 1758–1771, 2012.

[74] Z. Liu et al., “Task migrations for distributed thermal management considering
transient effects,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 23, no. 2, pp. 397–401, 2015.

[75] J. Jahn, M. A. Al Faruque, and J. Henkel, “Carat: Context-aware runtime adap-
tive task migration for multi core architectures,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[76] S. Sharifi, A. K. Coskun, and T. S. Rosing, “Hybrid dynamic energy and thermal
management in heterogeneous embedded multiprocessor socs,” in Proceedings of
the 2010 Asia and South Pacific Design Automation Conference, 2010, pp. 873–
878.

[77] D. Puschini et al., “Temperature-Aware Distributed Run-Time Optimization on
MP-SoC Using Game Theory,” in IEEE Computer Society Annual Symposium on
VLSI, 2008.

[78] T. Ebi, M. Faruque, and J. Henkel, “TAPE: Thermal-aware agent-based power
econom multi/many-core architectures,” in Computer-Aided Design - Digest of
Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on,
2009, pp. 302–309.

http://www.samsung.com/exynos

137 Bibliography

[79] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic learning for thermal-aware
power budgeting in many-core architectures,” in Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2011 Proceedings of the 9th International Con-
ference on, 2011, pp. 189–196.

[80] M. A. Faruque, J. Jahn, T. Ebi, and J. Henkel, “Runtime thermal management
using software agents for multi- and many-core architectures,” IEEE Design Test
of Computers, vol. 27, no. 6, pp. 58–68, 2010.

[81] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen,
“Performance/reliability-aware resource management for many-cores in dark sili-
con era,” IEEE Transactions on Computers, vol. 66, no. 9, pp. 1599–1612, Sept
2017.

[82] P. Mercati, F. Paterna, A. Bartolini, L. Benini, and T. . Rosing, “Warm:
Workload-aware reliability management in linux/android,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 9, pp.
1557–1570, Sept 2017.

[83] L. Wang, X. Wang, H.-f. Leung, and T. Mak, “Throughput optimization for life-
time budgeting in many-core systems,” in Proceedings of the on Great Lakes Sym-
posium on VLSI 2017, ser. GLSVLSI ’17. New York, NY, USA: ACM, 2017, pp.
451–454.

[84] V. Rathore, V. Chaturvedi, and T. Srikanthan, “Performance constraint-aware
task mapping to optimize lifetime reliability of manycore systems,” in Proceedings
of the 26th Edition on Great Lakes Symposium on VLSI, ser. GLSVLSI ’16. New
York, NY, USA: ACM, 2016, pp. 377–380.

[85] P. Singh, E. Karl, D. Blaauw, and D. Sylvester, “Compact degradation sensors for
monitoring nbti and oxide degradation,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 9, pp. 1645–1655, 2012.

[86] J. Sun, R. Lysecky, K. Shankar, A. Kodi, A. Louri, and J. Roveda, “Workload
assignment considering nbti degradation in multicore systems,” J. Emerg. Technol.
Comput. Syst., vol. 10, no. 1, pp. 4:1–4:22, Jan. 2014.

[87] T. R. Mück, Z. Ghaderi, N. D. Dutt, and E. Bozorgzadeh, “Exploiting hetero-
geneity for aging-aware load balancing in mobile platforms,” IEEE Transactions
on Multi-Scale Computing Systems, vol. 3, no. 1, pp. 25–35, Jan 2017.

[88] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar,
and B. Veeravalli, “Reinforcement learning-based inter- and intra-application
thermal optimization for lifetime improvement of multicore systems,” in
Proceedings of the 51st Annual Design Automation Conference, ser. DAC ’14.
New York, NY, USA: ACM, 2014, pp. 170:1–170:6. [Online]. Available:
http://%doi.acm.org/10.1145/2593069.2593199

[89] N. Goel, T. Naphade, and S. Mahapatra, “Combined trap generation and transient
trap occupancy model for time evolution of nbti during dc multi-cycle and ac
stress,” in 2015 IEEE International Reliability Physics Symposium, April 2015,
pp. 4A.3.1–4A.3.7.

http://%doi.acm.org/10.1145/2593069.2593199

Bibliography 138

[90] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in multi-
cores,” in Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM Interna-
tional Symposium on. IEEE, 2008, pp. 129–140.

[91] M. G. Moghaddam, A. Yamamoto, and C. Ababei, “Investigation of dvfs based
dynamic reliability management for chip multiprocessors,” in High Performance
Computing & Simulation (HPCS), 2015 International Conference on. IEEE,
2015, pp. 563–568.

[92] V. Y. Raparti, N. Kapadia, and S. Pasricha, “Artemis: An aging-aware runtime ap-
plication mapping framework for 3d noc-based chip multiprocessors,” IEEE Trans-
actions on Multi-Scale Computing Systems, vol. 3, no. 2, pp. 72–85, April 2017.

[93] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-aware de-
sign to suppress aging,” in Proceedings of the 53rd Annual Design Automation
Conference, 2016, p. 12.

[94] J. Keane and C. H. Kim, “Transistor aging,” IEEE Spectrum, 2011.

[95] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock, J. A. Tierno,
and J. B. Carter, “Active management of timing guardband to save energy in
power7,” in proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2011, pp. 1–11.

[96] Y. Zu, C. R. Lefurgy, J. Leng, M. Halpern, M. S. Floyd, and V. J. Reddi, “Adap-
tive guardband scheduling to improve system-level efficiency of the power7+,” in
Proceedings of the 48th International Symposium on Microarchitecture. ACM,
2015, pp. 308–321.

[97] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei, and
D. Brooks, “Voltage smoothing: Characterizing and mitigating voltage noise in
production processors via software-guided thread scheduling,” in Microarchitecture
(MICRO), 2010 43rd Annual IEEE/ACM International Symposium on. IEEE,
2010, pp. 77–88.

[98] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu, “Vrsync: Characterizing
and eliminating synchronization-induced voltage emergencies in many-core pro-
cessors,” in Computer Architecture (ISCA), 2012 39th Annual International Sym-
posium on. IEEE, 2012, pp. 249–260.

[99] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the case for
a scalable operating system for multicores,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 2, pp. 76–85, 2009.

[100] S. Buchwald, M. Mohr, and A. Zwinkau, “Malleable invasive applications.” in
Software Engineering (Workshops), 2015, pp. 123–126.

[101] L. Mukhanov, D. S. Nikolopoulos, and B. R. de Supinski, “ALEA: fine-grain energy
profiling with basic block sampling,” CoRR, 2015.

[102] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron, “Powerpack: En-
ergy profiling and analysis of high-performance systems and applications,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 21, no. 5, pp. 658–671, May
2010.

139 Bibliography

[103] G. Liu, J. Park, and D. Marculescu, “Procrustes: Power constrained performance
improvement using extended maximize-then-swap algorithm.” Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1664–1676, 2015.

[104] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. Stan, “HotSpot: a compact thermal modeling methodology for early-stage
VLSI design,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 14, no. 5, pp. 501–513, May 2006.

[105] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of heat transfer. Cengage
learning, 2012.

[106] N. Parihar, N. Goel, A. Chaudhary, and S. Mahapatra, “A modeling framework
for nbti degradation under dynamic voltage and frequency scaling,” IEEE Trans-
actions on Electron Devices, vol. 63, no. 3, pp. 946–953, March 2016.

[107] “Nangate, Open Cell Library,” http://www.nangate.com/.

[108] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and
J. Michelsen, “Open cell library in 15nm freepdk technology,” in Proceedings of
the 2015 Symposium on International Symposium on Physical Design, ser. ISPD
’15. New York, NY, USA: ACM, 2015, pp. 171–178.

[109] “Synopsys,” http://www.synopsys.com/.

[110] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-aware de-
sign to suppress aging,” in Proceedings of the 53rd Annual Design Automation
Conference. ACM, 2016, p. 12.

[111] “Predictive Technology Model,” http://ptm.asu.edu/.

[112] C. Celio, D. A. Patterson, and K. Asanovi, “The Berkeley Out-of-Order Machine
(BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Pro-
cessor,” Berkeley, Tech. Rep., Jun 2015.

[113] “Discussions with Hussam Amrouch with Chair for Embedded Systems (CES),
KIT.”

[114] R. Kessler, “The alpha 21264 microprocessor,” IEEE Micro, vol. 19, no. 2, pp.
24–36, Mar. 1999.

[115] F. Hannig, H. Ruckdeschel, H. Dutta, and J. Teich, “PARO: Synthesis of Hardware
Accelerators for Multi-Dimensional Dataflow-Intensive Applications,” in Proceed-
ings of the Fourth International Workshop on Applied Reconfigurable Computing
(ARC), ser. Lecture Notes in Computer Science (LNCS). London, United King-
dom: Springer, Mar. 2008, pp. 287–293.

[116] J. Teich, L. Thiele, and L. Zhang, “Scheduling of partitioned regular algorithms
on processor arrays with constrained resources,” in ASAP96- Proc. Int. Conf.
on Application-Specific Systems, Architectures, and Processors, Chicago, U.S.A.,
Aug. 1996, pp. 131–144.

[117] J. Teich, A. Tanase, and F. Hannig, “Symbolic mapping of loop programs onto
processor arrays,” Journal of Signal Processing Systems, pp. 31–59.

[118] Intel Corporation, “Intel xeon phi coprocessor datasheet,” June 2013.

http://www.nangate.com/
http://www.synopsys.com/

Bibliography 140

[119] D. Kissler, F. Hannig, A. Kupriyanov, and J. Teich, “A Highly Parameterizable
Parallel Processor Array Architecture,” in Proceedings of the IEEE International
Conference on Field Programmable Technology (FPT). IEEE, Dec. 2006, pp.
105–112.

[120] F. Hannig, V. Lari, S. Boppu, A. Tanase, and O. Reiche, “Invasive tightly-coupled
processor arrays: A domain-specific architecture/compiler co-design approach,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 13, no. 4s, pp.
133:1–133:29.

[121] D. Kissler, A. Strawetz, F. Hannig, and J. Teich, “Power-efficient reconfigura-
tion control in coarse-grained dynamically reconfigurable architectures,” Journal
of Low Power Electronics, pp. 96–105, 2009.

[122] Intel Corporation, “Single-chip cloud computer (SCC),” www.intel.com/content/
www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html, 2009.

[123] R. Ubal, D. Schaa, P. Mistry, X. Gong, Y. Ukidave, Z. Chen, G. Schirner, and
D. Kaeli, “Exploring the heterogeneous design space for both performance and
reliability,” in 51st Design Automation Conference (DAC), 2014, pp. 1–6.

[124] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, Inc., 1990.

[125] P. Brommesson, “Solving the generalized assignment problem by column enumer-
ation based on lagrangian reduced costs,” 2006.

[126] J. Casazza, “First the tick, now the tock: Intel microarchitecture (nehalem),” Intel
Corporation, White Paper, 2009.

[127] J. Henkel, T. Ebi, H. Amrouch, and H. Khdr, “Thermal management for de-
pendable on-chip systems,” in 18th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2013, pp. 113–118.

[128] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler, and D. Burger, “Mul-
titasking workload scheduling on flexible-core chip multiprocessors,” in Parallel
Architectures and Compilation Techniques (PACT), 2008 International Confer-
ence on. IEEE, 2008, pp. 187–196.

[129] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert, K. Radhakrish-
nan, and M. J. Hill, “Fivr; fully integrated voltage regulators on 4th generation
intel; core; socs,” in 2014 IEEE Applied Power Electronics Conference and Expo-
sition - APEC 2014, March 2014, pp. 432–439.

[130] C. Bienia and K. Li, “The parsec benchmark suite tutorial - parsec 2.0,” May
2008.

[131] D. Pisinger, “Algorithms for knapsack problems,” 1995.

www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html
www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html

List of Figures

1.1 ITRS predictions for the number of cores in mobile devices. 2

1.2 The estimated increase in the power density along with technology scaling
based on technological data from ITRS [32] and Intel [34]. Area, power,
and power density values are normalized to the corresponding values at
22 nm. 2

1.3 The impact of increasing number of cores or V/f level on the performance
of two applications with different TLP and ILP. 4

1.4 The impact of resource management means on temperature and aging. . . 4

1.5 Different thermal maps using the same total power consumption and dif-
ferent positioning of active and dark cores. 5

1.6 Scenarios with different application-to-core mapping result in different
thermal maps, although the total power consumption and the positioning
of active and dark cores are the same in these scenarios. 6

1.7 A preliminary example illustrating the impact of aging on the critical
path delay of the processor during its lifetime. To avoid timing violations
induced by aging, a timing guardband tGB can be added to the processor’s
clock delay. 8

1.8 An overview of the contributions presented in this dissertation. 11

3.1 The performance and power tables for the applications. 23

3.2 Sub-figure (a) illustrates the IC package layers considered by the employed
RC-thermal model in this dissertation. Sub-figure (b) shows a simplified
RC-thermal model. 24

3.3 Examples of floorplans that can be considered by the RC-thermal model. 24

3.4 The increase in Vth (i.e. aging) as a function of Vdd and temperature
obtained with a physics-based aging model. 26

3.5 The adopted flow of modeling aging from physical level to circuit level [27,
110, 113]. 27

3.6 Estimation of timing guardbands considering considering various Vdd values. 28

4.1 Overview of the experimental framework employed to evaluate the re-
source management techniques presented in this dissertation. 30

4.2 Illustrating a control step of a standard DTM that typically implemented
in commercial processors. The figure is adapted from the data sheet of
Intel Xeon Phi [118]. 31

4.3 The floorplan of a 64-core chip adopted in Chapter 5. 32

4.4 The floorplan of a 64-core homogeneous chip adopted in Chapters 7, 8,
and 9. 32

141

List of Figures 142

4.5 Five different types of tiles are considered in the heterogeneous architec-
ture employed in Chapter 6. 33

4.6 The floorplan of the adopted tiled heterogeneous multicore architecture
in Chapter 6. 34

5.1 Overview of the presented dark silicon-aware resource management tech-
nique, DsRM. 39

5.2 Example of the work of function MaxV FBudget (k, n, p). 40

5.3 The employed dynamic programming tables, GR and GP, that store the
resulting performance and power values for different combinations. 41

5.4 Example of the application mapping policy of DsRM, in which the ap-
plications are iteratively mapped to the chip. At each iteration, the core
temperatures will be estimated, in order to map the application with the
highest power consumption to the coldest region on the chip. 44

5.5 The flow chart of the third step of DsRM, i.e., resource adaptation. 46

5.6 The steps of the presented dark silicon-aware resource management tech-
nique, DsRM. 47

5.7 Comparison between the presented mapping policy, TDPmap, i.e., the
second step of DsRM, and a contiguous mapping policy. Both policies
utilize the same optimal application settings obtained by the first step of
DsRM. 49

5.8 Evaluation of the presented resource adaptation, i.e., the third step of
DsRM, by comparing DsRM with TDPmap, i.e., the combination of the
first and the second steps of DsRM. 50

5.9 Comparison between DsRM and MaxSpeed, where the latter leads to ther-
mal violations because it neglects the lateral heat transfer between the
cores. 51

5.10 Comparison between the resulting system performance of DsRM and
MaxSpeed [64]. The performance gain of DsRM is up to 46% compared
to MaxSpeed. 51

5.11 Runtime evaluation of DsRM and comparison with the boosting technique. 52

6.1 The power densities and temperatures of all cores when a chip-level power
budget is used. The resulting thermal profile contains several thermal
violations that lead to excessive DTM triggers, which in turn cause per-
formance losses. 56

6.2 The power densities and temperatures of all cores when a uniform power
density constraint is used. The resulting thermal profile does not have
any thermal violation, but large thermal headroom exists. 57

6.3 The power densities and temperatures of all cores when a selective or
adapted power density constraint is used. The resulting thermal profile
does not have any thermal violation, thermal headroom is exploited and
thus improving the performance. 57

6.4 Overview of the proposed technique, PdRM. 59

6.5 Application Mapping Heuristic, MapAlgo. 61

6.6 Demonstration of applying the proposed phases of PdRM. The cores
shown in the X-axis of the charts are located according to the floorplan
shown in Figure 4.6. 66

143 List of Figures

6.7 Demonstration of the runtime adaptation of PdRM under workload changes.
The power density budget in active cores is increased when applications
finish, and it is later decreased when new applications arrive. The cores
shown in the X-axis of the charts are located according to the floorplan
shown in Figure 4.6. 67

6.8 Comparison between the average chip utilization of our PdRM and several
state-of-the-art techniques, while executing various scenarios of workloads. 70

6.9 Comparison between the resulting temperatures and the frequencies of
PdRM and TurboBoost. 71

6.10 Comparison between the performance, power and power efficiency of
PdRM and TurboBoost. 72

6.11 The resulting weighted performance under probabilistic power and exe-
cution time values. 72

6.12 Comparison of the resulting steady-state temperatures of our PdRM and
TDPcontrol [57] running Mix10 workload and assuming that DTM is
deactivated. 73

6.13 Comparison between the resulting overall system performance of our
PdRM and several state-of-the-art techniques, while executing various
scenarios of workloads. The experiments are conducted for four different
sets of weights, WS1, WS2, WS3, and WS4, as defined in Section 6.4. . . 74

7.1 An overview of the proposed aging-constrained resource management. . . 76

7.2 A new aging-aware design space: Accurate interdependencies between
amount of aging (i.e. ∆Vth), temperature and Vdd, as demonstrated in
Section 3.4 . 77

7.3 Feasible design spaces for varying aging constraints and lifetimes. 77

7.4 The entire design space that satisfies the aging constraint and the limited
design space resulting from applying conservative temperature and Vdd
bounds (dashed area) by the state of the art. 78

7.5 The resulting temperatures (Equation (8.4)) of running one single-threaded
application on one core for different V/f levels whose Vdd values cover the
adopted Vdd range, i.e., [0.6 V, 1.4 V]. The red design points represent the
temperature points that are outside the feasible design space. The blue
ones are within. Considering the entire design space allows choosing vf14,
which corresponds to (1.25 V, 1.34 GHz). 79

7.6 The maximum temperatures and the average performance, resulting from
running eight instances of “x264”, with multiple threads for each, and for
different V/f levels. The points that are surrounded by circles repre-
sent the maximum obtained performance within the limited space and
the complete one. Considering the whole design space allows increasing
both the number of threads and the V/f levels, and hence increasing the
performance. 80

7.7 The first table contains the application scenarios. Each cell contains a
number of application instances in each scenario. The second table shows
the considered aging constraints. 84

7.8 The adopted constraints by the comparison candidates. 84

List of Figures 144

7.9 Comparison between the resulting overall system performance by our
AgRM, BoundRM [82], and CombRM, where the last two techniques are
examined with under two different pairs of voltage and temperature B1
and B2. The two bar charts illustrate the results under two aging con-
straint (i) and (ii). 86

7.10 Amount of aging : Closer to the blue plane (constraint) means better ex-
ploitation leading to higher performance. An exemplary scenario showing
why our AgRM is advantageous compared to the state-of-the-art technique. 87

8.1 Illustrating the interdependencies between the partly contradictory con-
straints and goals of boosting. 90

8.2 The BOOM processor has been analyzed in order to obtain its critical
path delay. During Vdd downscaling caused by DVFS, the increase in
tcritpath is higher than the increase in tclk, because the impact of ∆Vth on
tcritpath is magnified at lower Vdd values. The value of ∆Vth that caused
by V max

dd has been considered for a lifetime of 10 years. 91

8.3 The resulting boosted performance under varied scenarios of considering
aging effects. 94

8.4 Analysis of the resulting long and short-term aging effects after applying
a boosting technique under two maximum Vdd boosting levels. It demon-
strates the factors that influence the aging effects, i.e., the occurrences
of Vdd downscaling, the range between the maximum and the minimum
levels that Vdd is scaled to, and the maximum Vdd boosting level. 95

8.5 Overview of our Aging-Aware Boosting, AgBoost, that adjusts at runtime
the V/f levels of the cores and the corresponding guardbands considering
both long and short-term aging effects. 96

8.6 The design time and runtime processes that are required by AgBoost. . . . 97

8.7 Illustrating how applying static TSP leads to unexploited thermal margin
on some cores. Exploiting it can be achieved by adapting TSP constraint. 98

8.8 The flow chart of our Aging-Aware Boosting, AgBoost. The required
guardbands to compensate for the delays induced by long and short-term
aging effects are estimated at design time and stored in a table GB to be
used by AgBoost. 100

8.9 Table of application scenarios. Each cell contains the number of instances
and the number of threads of each application in the scenario. 102

8.10 Performance loss comparison between our AgBoost, TurboBoost-StaticGB,
and TurboBoost-AdaptGB. It is to be noted that TurboBoost-AdaptGB is
not an existing technique, but we merge two existing techniques, i.e.,[67], [28],
for fair comparison. Performance loss reduction of AgBoost is 47%, 15%,
on average, compared to TurboBoost-StaticGB, TurboBoost-AdaptGB, re-
spectively. 102

8.11 Performance gain of AgBoost is an average of 21% compared to Turbo-
Boost if it employs an adaptive guardband. 103

8.12 Comparing the resulting aging-induced delay by our AgBoost and TurboBoost-
AdaptGB. AgBoost achieves up to 54% and an average of 27% reduction
in the maximum aging-induced delay throughout the boosting execution
compared to TurboBoost-AdaptGB. 103

8.13 The resulting delay increase due to long-term aging effects when applying
our AgBoost and the state-of-the-art TurboBoost [67]. 104

145 List of Figures

8.14 AgBoost minimizes long and short-term aging effects leading to 19% less
performance loss compared to TurboBoost-AdaptGB. 105

9.1 Even though V GB allows operating at a higher frequency compared to
F GB, this does not always provide a better performance in a thermally-
constrained system. For x264, employing V GB leads to less performance,
due to the incurred thermal violations. 111

9.2 Motivational case study demonstrating the role of workload characteris-
tics (chip load and application properties) on determining the impact of
aging guardbands on performance. V GB may not provide better per-
formance than F GB as assumed. The potential of gaining performance
when applying V GB diminishes while the chip load increases. 112

9.3 Overview of the proposed thermal-aware guardbanding sGuard, where two
approaches are proposed, i.e.,sGuard-DP and sGuard-H, to be applied for
static workloads and dynamic workloads, respectively. 115

9.4 Flow diagram of the iterative guardband selection of sGuard-H 120

9.5 Comparison results of the average system performance between sGuard-
DP, sGuard-H, vGuard and fGuard techniques under static workloads. . . 122

9.6 Comparison results of the average performance between sGuard-DP, sGuard-
H, vGuard and fGuard techniques under static workloads that consist of
different multiple applications. 123

9.7 Demonstrating how the selected guardband type by sGuard-H changes
between V GB and F GB over time following the changes in the chip
load. Accordingly, the frequency changes between 4GHz and 3.42GHz.
The resulting performance gain of sGuard-H reaches up to 32% and 13%
compared to V GB and F GB, respectively. 124

9.8 Comparison results of the average system performance under dynamic
workloads. 125

9.9 Comparison of the minimum, maximum and average performance gain
of sGuard-H compared to vGuard and fGuard over the execution time
of each workload scenario. The maximum performance gain of sGuard-H
reaches up to 25% and 15% compared to vGuard and fGuard, respectively. 125

9.10 Mapping multiple applications leads to selecting different guardband types
at one time at the cores that run different applications. 126

9.11 Average Performance Comparison for different scenarios. The Perfor-
mance gain of sGuard-H is up to 14% and 10% compared to vGuard and
fGuard, respectively. 126

List of Tables

4.1 Tile information for experimental evaluation. 35

5.1 The adopted scenarios of different applications. Each scenario consists
of multiple instances of different applications. Each cell represents the
number of instances of each application in the corresponding scenario. . . 48

6.1 Mixed application scenarios. 64

6.2 The weights of applications in WS1. 64

6.3 The weights of applications in WS2. 65

6.4 The weights of applications in WS3. 65

6.5 The weights of applications in WS4. 65

9.1 Scenarios of workloads with multiple applications 121

147

Glossary

A | B | C | D | F | G | H | M | N | P | S | X

A

AgBoost Aging-aware boosting.

AgRM Aging-constrained resource management.

Alpha (Alpha 21264) Superscalar microprocessor with out-of-order execution.

ARM-A15 (ARM Cortex-A15) the big cores of ARM’s “big.LITTLE” architecture.

ARM-A7 (ARM Cortex-A7) the small cores of ARM’s “big.LITTLE” architecture.

B

blackscholes Application from the PARSEC benchmark suite.

bodytrack Application from the PARSEC benchmark suite.

C

canneal Application from the PARSEC benchmark suite.

D

dedup Application from the PARSEC benchmark suite.

DsRM Dark silicon-aware resource management.

F

ferret Application from the PARSEC benchmark suite.

G

gem5 Multicore simulator.

H

HotSpot Temperature modeling and computation tool.

M

McPAT Power consumption simulator.

N

nMOS N-type Metal-Oxide-Semiconductor Field-Effect Transistor.

149

Glossary, Acronyms, and Symbols 150

P

PARSEC Benchmark suite for multi-threaded applications.

PdRM Power-density-aware resource management.

pMOS P-type Metal-Oxide-Semiconductor Field-Effect Transistor.

S

sGuard Selective guardbanding.

sGuard-DP Selective guardbanding based on dynamic programming.

sGuard-H Selective guardbanding based on heuristic.

SPICE General-purpose analog electronic circuit simulator.

swaptions Application from the PARSEC benchmark suite.

Synopsys Commercial tool for electronic design automation.

X

x264 Application from the PARSEC benchmark suite.

Acronyms

B | D | I | L | M | N | O | P | R | T | V

B

BOOM Berkeley out-of-order Machine.

BSIM Berkeley Short-channel IGFET Model.

BTI Bias Temperature Instability.

D

DPM Dynamic Power Management.

DTM Dynamic Thermal Management.

DVFS Dynamic Voltage and Frequency Scaling.

I

ILP Instruction Level Parallelism.

IPS Instructions Per Second.

L

LUT Look-up-table.

M

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor.

N

NBTI Negative Bias Temperature Instability.

O

O3 out-of-order.

P

PBTI Positive Bias Temperature Instability.

PE Processing Element.

PTM Predictive Technology Model.

R

RC Resistance-Capacitance.

151

Glossary, Acronyms, and Symbols 152

T

TCPA Tightly-Coupled Processor Array.

TDP Thermal Design Power.

TIM Thermal Interface Material.

TLP Thread Level Parallelism.

TSAP Thermally-Safe Adaptive Power.

TSP Thermal Safe Power.

V

V/f level voltage and frequency level.

Symbols

A | B | D | F | G | H | K | L | M | N | P | Q | R | S | T | V | Z

A

A Matrix of application-to-tile assignment.

B

B Matrix of the thermal conductance values between thermal nodes.

D

dk Selected number of dark cores of application k.

F

fgb clock frequency of the core after applying the frequency guardband F GB.

F GB Frequency guardband type.

fnom Nominal clock frequency of the core.

G

G Matrix of the values of the thermal conductance between each node and the ambient temperature.

GB Table of guardbands.

GLB Global Lower bound of performance.

Gtcorei Selected guardband type for core i.

Gtappk Selected guardband type for application k.

H

hk Selected number of threads of application k.

Hk Maximum thread-level parallelism of application k.

K

K Number of applications.

L

L Number of tiles on the chip.

LLB Local Lower bound of performance.

M

153

Glossary, Acronyms, and Symbols 154

M Matrix of application-to-core mapping.

mapk Set of cores that application k is mapped to.

N

N Number of cores on the chip.

N` Number of cores in tile `.

P

Pd safe Thermally-safe power density constraint.

pi Power consumption of core i.

Pk Power table of application k.

Q

qk Selected power budget of application k.

R

Rk Performance table of application k.

S

Si Selected power state for core i.

T

T Matrix of the core temperatures.

Tamb Ambient temperature.

tclk Processor’s clock delay after adding timing guardband tGB specified at design time.

tnom
clk Nominal processor’s clock delay specified at design time.

tcritpath Processor’s critical path delay at runtime.

Tcrit Critical temperature of the chip.

tGB Timing guardband.

Ti Steady-state temperature of core i.

V

Vdd Supply voltage of a core.

V max
dd Maximum supply voltage on the chip.

vfcore
i Selected V/f level for core i.

vfk Selected V/f level for the cores of application k.

vf tile
` Selected V/f level for tile `.

V F`,y Maximum V/f level of tile `.

V FY Maximum V/f level of the cores.

Y Number of available V/f levels on the chip.

V gb
dd Supply voltage of the core after applying the voltage guardband V GB.

V GB Voltage guardband type.

155 Glossary, Acronyms, and Symbols

V nom
dd Nominal supply voltage of the core.

Vth Threshold voltage of transistors.

∆V m
th Constraint for the increase in the threshold voltage of transistors.

∆Vth Increase in the threshold voltage of transistors.

Z

Z Number of the thermal nodes in the RC thermal Network.

	Acknowledgements
	List of First-Author Publications
	List of Co-Author Publications
	Abstract
	Big Picture
	Contents
	1 Introduction
	1.1 Performance Optimization
	1.2 Temperature
	1.2.1 Case Study

	1.3 Aging Effects
	1.3.1 Guardband Types

	1.4 Key Challenges
	1.5 Dissertation Contributions
	1.6 Dissertation Outlines

	2 Related Work
	2.1 Resource Management Techniques
	2.2 Thermal Management Techniques
	2.2.1 Performance Optimization under Temperature Constraints
	2.2.2 Temperature Optimization

	2.3 Aging Management Techniques
	2.3.1 Performance Optimization under Aging Constraints
	2.3.2 Aging Optimization
	2.3.3 Guardbanding Techniques

	3 System Model
	3.1 Hadware Model
	3.2 Application Model
	3.3 Thermal Model
	3.4 Aging Model
	3.5 Guardband Estimation

	4 Experimental Framework
	4.1 Setup
	4.1.1 Tightly-Coupled Processor Arrays (TCPA)

	4.2 Multicore Architectures
	4.2.1 Homogeneous Architecture
	4.2.2 Heterogeneous Architecture

	5 Dark Silicon-Aware Resource Management
	5.1 Problem Definition
	5.2 Dark Silicon-Aware Resource Management
	5.2.1 TDP-Constrained Optimal Resource Distribution
	5.2.2 Thermal-aware Application Mapping
	5.2.3 Thermal-Constrained Resource Adaptation

	5.3 Experimental Evaluations
	5.3.1 Setup
	5.3.2 Results

	5.4 Summary

	6 Power Density-Aware Resource Management
	6.1 Motivational Example
	6.2 Problem Definition
	6.3 Power Density-Aware Resource Management
	6.3.1 Uniform Power Density Constraint
	6.3.2 Application Mapping under Power Density Constraint
	6.3.3 Runtime Power Density Adaptation

	6.4 Experimental Setup
	6.5 Evaluation results
	6.5.1 Demonstration of PdRM
	6.5.2 Comparison with State-of-the-art Techniques
	6.5.3 PdRM Overhead

	6.6 Summary

	7 Aging-Constrained Resource Management
	7.1 Aging-Aware Design Space
	7.1.1 Relevance of Accurate Aging Models
	7.1.2 Design Space Exploration (DSE)
	7.1.3 DSE for Various Lifetimes and Aging Constraints
	7.1.4 DSE for Various System-Level Parameters

	7.2 Problem Formulation
	7.3 Aging-Constrained Performance Maximization
	7.3.1 Finding the Root Node
	7.3.2 Branching and Bounding Rules

	7.4 Experimental Evaluation
	7.4.1 Comparison Candidates
	7.4.2 Results

	7.5 Summary

	8 Aging-Aware Boosting
	8.1 Background of Long and Short-Term Aging Effects
	8.2 Motivation
	8.3 Analyzing the Impact of Boosting on Aging
	8.4 Aging-Aware Boosting
	8.4.1 Reducing Long and Short-Term Aging Effects
	8.4.2 Minimizing Guardbands
	8.4.3 AgBoost Flow

	8.5 Evaluation
	8.5.1 Comparison Candidates
	8.5.2 Experimental Results
	8.5.3 Overhead Discussion

	8.6 Summary

	9 Thermal-Aware Guardbanding
	9.1 Motivation
	9.2 Problem Formulation
	9.3 Thermal-Aware Guardbanding
	9.3.1 Dynamic Programming-Based Thermal-Aware Guardbanding
	9.3.2 Iterative Thermal-Aware Guardbanding

	9.4 Evaluation
	9.4.1 Experimental Results

	9.5 Summary

	10 Conclusions
	Bibliography
	Bibliography
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Symbols

