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Abstract

In this thesis the close relationship between generalized semi-infinite prob-
lems (GSIP) and disjunctive problems (DP) is considered. We start with
the description of some optimization problems from timber industry and il-
lustrate how GSIPs and DPs arise naturally in that field. Three different
applications are reviewed.

Next, theory and solution methods for both types of problems are ex-
amined. We describe a new possibility to model disjunctive optimization
problems as generalized semi-infinite programs. Applying existing lower level
reformulations for the obtained semi-infinite program we derive conjunctive
nonlinear problems without any logical expressions, which can be locally
solved by standard nonlinear solvers.

In addition to this local solution procedure we propose a new branch-and-
bound framework for global optimization of disjunctive programs. In contrast
to the widely used reformulation as a mixed-integer program, we compute the
lower bounds and evaluate the logical expression in one step. Thus, we re-
duce the size of the problem and work exclusively with continuous variables,
which is computationally advantageous. In contrast to existing methods in
disjunctive programming, none of our approaches expects any special formu-
lation of the underlying logical expression. Where applicable, under slightly
stronger assumptions, even the use of negations and implications is allowed.

Our preliminary numerical results show that both procedures, the refor-
mulation technique as well as the branch-and-bound algorithm, are reason-
able methods to solve disjunctive optimization problems locally and globally,
respectively.

In the last part of this thesis we propose a new branch-and-bound al-
gorithm for global minimization of box-constrained generalized semi-infinite
programs. It treats the inherent disjunctive structure of these problems by
tailored lower bounding procedures. Three different possibilities are exam-
ined. The first one relies on standard lower bounding procedures from con-
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junctive global optimization. The second and the third alternative are based
on linearization techniques by which we derive linear disjunctive relaxations
of the considered sub-problems. Solving these by either mixed-integer lin-
ear reformulations or, alternatively, by disjunctive linear programming tech-
niques yields two additional possibilities. Our numerical results on standard
test problems with these three lower bounding procedures show the merits
of our approach.
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Chapter 1

Introduction

This dissertation thesis is based on a series of three articles [65–67] in which
two different types of optimization problems and their similarities are exam-
ined.

Firstly, so-called disjunctive programs (DP) are considered. Here, in con-
trast to standard conjunctive problems the description of the feasible set
may contain different logical expressions, meaning that the constraints are
not only connected by conjunctions but also disjunctive operators or nega-
tions. A large number of practical applications of DP arise in industrial and
chemical engineering. DPs are explained in more detail in Section 1.2.

Secondly, so-called standard and generalized semi-infinite programs (GSIP)
are considered whose feasible set is described by an infinite number of con-
straints. Classical applications of these problems are

• Chebyshev approximation,

• design centering,

• robust optimization and

• minimax problems.

Formally, GSIPs are described in Section 1.1. Although no logical expression
is modelled explicitly, the feasible set of generalized semi-infinite problems
may have so-called re-entrant corner points which typically arise in disjunc-
tive programming. Additionally, the feasible set does not need to be closed,
although no strict inequality occurs in the description of the problem at the
first glance. Although both kinds of problems, DPs as well as GSIPs, are
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2 Chapter 1. Introduction

usually treated completely independently from each other in literature, these
are strong indications for a certain relationship that is known for a long time.
In this dissertation thesis this is examined in more detail.

This document is structured as follows. In the next two sections, gener-
alized semi-infinite as well as disjunctive problems are described formally.

Then, in Chapter 2 applications of disjunctive as well as generalized semi-
infinite programming are explained. Three different examples from timber
industry are reviewed and it is illustrated how disjunctive as well as semi-
infinite aspects may arise in practice.

Next, in Chapter 3 it is shown, how disjunctive problems can be reformu-
lated as generalized semi-infinite programs, which reveals the close relation-
ship of both problems in more detail. Solving these reformulations by existing
GSIP solution techniques leads to local solution procedures for disjunctive
programs. Three different such possibilities are considered.

The global solution of disjunctive problems is addressed in Chapter 4. In
order to achieve this, a tailored branch-and-bound algorithm is developed
based on classical lower bounding techniques from standard conjunctive pro-
gramming.

In Chapter 5 a global solution algorithm for GSIPs based on discretization
is explained. During this algorithm several disjunctive problems have to be
solved to global optimality so that the branch-and-bound algorithm from
Chapter 4 can be applied. Additionally, lower bounding procedures tailored
to the proposed discretization method are considered.

Chapter 6 concludes this thesis with some final remarks.

The notation is standard. In particular, Df denotes the row vector of
partial derivatives of the function f and the Hessian of a twice differentiable
function f is denoted by D2f . Moreover, regarding a box B ⊂ Rn with
B = [x1, x1]× . . .× [xn, xn] for the diagonal length we put diag(B) = ∥x−x∥2
and for the geometrical midpoint we put mid(B) = 1

2
(x+ x).

1.1 Generalized Semi-infinite Programming

A generalized semi-infinite optimization problem is defined by

GSIP : min
x∈Rn

f(x) s.t. x ∈MGSIP
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with the feasible set

MGSIP := {x ∈ Rn : g(x, y) ≤ 0 for all y ∈ Y (x)}

with
Y (x) =

{
y ∈ Rm

∣∣∣ vi(x, y) ≥ 0 for i ∈ I
}
.

In case that the set-valued mapping Y (x) is constant we have a so called
standard semi-infinite program, which is an optimization problem with a fi-
nite number of variables and a possibly infinite number of constraints. As
basic references we mention [53] for an introduction to semi-infinite opti-
mization, [54,92] for numerical methods in SIP, and the monographs [44] for
linear semi-infinite optimization, as well as [88] for algorithmic aspects.

One approach to tackle standard semi-infinite problems is to consider a
finite subset of the possibly infinite number of constraints and solve the re-
sulting standard optimization problem. Subsequently adding new constraints
to the finite approximation of the original index set leads to improved approx-
imations of the (standard) semi-infinite problem. By iterating this process,
a so-called discretization method is obtained (see, e.g., [25]). This procedure
naturally yields an outer approximation at the feasible set and thus lower
bounds at the optimal value. In contrast, in [23] an inner approximation of
the feasible set is derived such that upper bounds at the globally minimal
value can also be computed. The combination of lower and upper bounding
techniques leads to a global optimization procedure for standard semi-infinite
programs with an exact termination criterion as described in [24,75]. Sim-
ilarly, the combination of the lower bounding procedure from [25] with a
different upper bounding technique is used in [82]. Local solvers for stan-
dard semi-infinite programs are introduced in [42] and [115] via an MPCC
reformulation of a relaxed lower level problem which is adaptively refined.

Even more difficult to handle are the so-called generalized semi-infinite
programs (GSIP), where the index set of constraints may vary for different
points in space. The monograph [112] contains a detailed study of generalized
semi-infinite optimization. The most recent comprehensive reviews on theory,
applications and numerical methods of standard and generalized semi-infinite
optimization are [50,77,116].

In both cases, the standard as well as generalized one, infinitely many
constraints appear, so that for checking feasibility of a given point x ∈ Rn

it turns out that the global supremal value of the following optimization
problem has to be checked for nonpositivity:

Q(x) : max
y∈Rm

g(x, y) s.t. vi(x, y) ≥ 0, i ∈ I.
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Here, as usual, the case of an inconsistent feasible set is covered by the
supremal value −∞. The feasible set of Q(x) varies in x for GSIPs while for
SIPs it does not. Some important disjunctive aspects of generalized semi-
infinite programming are illustrated in the following Example 1.1.1.

Example 1.1.1. We consider the generalized semi-infinite problem with the
feasible set described as above and defined by the function

g(x, y) :=

(
x1 −

(
3 +

1

2
y

))2

+

(
x2 −

(
3 +

1

2
y

))2

−
(
3 +

1

2
y

)2

and
Y (x) =

{
y ∈ [0, 2]

∣∣∣ v1(x, y) ≥ 0
}

with

v1(x, y) := −
(
x1 −

(
7 +

1

2
y

))2

−
(
x2 −

(
7 +

1

2
y

))2

+

(
3 +

1

2
y

)2

.

This is illustrated in Figure 1.1 where the level sets in the x-plane of g
for the three different values 0, 1 and 2 of y are the circles in the lower left
corner whereas the level sets of v1 for the same values of y are the circles in
the upper right corner.

8

8

0

x2

x1

g

v1

Figure 1.1: Level sets of g and v1 for different values of y

We now consider an arbitrary point x̃ that is assumed to be feasible for
the problem at hand. Then, for a given y ∈ [0, 2] it must not hold

g(x̃, y) > 0 and v1(x̃, y) ≥ 0, (1.1)



1.1 Generalized Semi-infinite Programming 5

because that means that the supremal value of the lower level problem would
be positive. For that reason, for our feasible point x̃ and for some y ∈ [0, 2]
the system of inequalities (1.1) must be violated and thus we either have

g(x̃, y) ≤ 0 or v1(x̃, y) < 0,

which is illustrated in Figure 1.2 for three distinct values 0, 1 and 2 of y on
top of each other. Since this must hold for all values of y ∈ [0, 2], with

x1

x2

y

Figure 1.2: Feasible set of generalized semi-infinite program

S :=
{
x ∈ R2

∣∣∣ (g(x, y) ≤ 0
)
∨
(
v1(x, y) < 0

)
∀y ∈ [0, 2]

}
we obtain for the feasible set of GSIP the relation MGSIP ⊂ S.

On the other hand, in order to show MGSIP ⊃ S we assume a point
x̃ ∈ S. Then, for the optimal value v∗(x̃) of Q(x̃) we have v∗(x̃) ≤ 0, because
otherwise there was some y ∈ [0, 2] with v1(x̃, y) ≥ 0 (thus, feasibility for
the lower level problem) and g(x̃, y) > 0 (due to the fact that for the optimal
value we then had v∗(x̃) > 0). So at least one of these two inequalities must
be violated and thus it follows

MGSIP =
{
x ∈ R2

∣∣∣ (g(x, y) ≤ 0
)
∨
(
v1(x, y) < 0

)
∀y ∈ [0, 2]

}
.

This is depicted in Figure 1.3 on the right. Here we can see that the feasible
set contains so-called re-entrant corner points and, moreover, is non-closed.
Both aspects typically arise in disjunctive programming.



6 Chapter 1. Introduction

x2

x18 8

8 8

0 0

x2

x1

Figure 1.3: Level sets of g and v1 for different values of y and feasible set of
generalized semi-infinite program

The considerations of Example 1.1.1 can be generalized as introduced in
[52]. In fact, it is stated that a generalized semi-infinite program can be
rewritten as

GSIP : min
x∈Rn

f(x) s.t. x ∈M

with

MGSIP =

{
x ∈ Rn

∣∣∣ (g(x, y) ≤ 0
)
∨
∨
i∈I

(
vi(x, y) < 0

)
∀y ∈ Rm

}
. (1.2)

Thus an inherent disjunctive structure becomes apparent that makes it dif-
ficult to extend existing methods for standard semi-infinite programs to the
generalized semi-infinite case. However, in equation (1.2) the index set does
not depend on x, although still being infinite. For that reason we can consider
this problem as a kind of disjunctive standard semi-infinite program.

This reformulation is used in [83] to solve GSIPs to global optimality.
Another approach for the global solution of generalized semi-infinite problems
is proposed in [125] where a binary search of the objective function values
is performed. The difficulties of the disjunctive structure is circumvented
by using smoothing techniques. The challenges that arise for the generalized
case but not for standard semi-infinite problems are also discussed in [117,118]
from a theoretical as well as from a computational point of view. A numerical
approach to GSIP using the discretization idea under certain limitations is
discussed in the recent paper [106].
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Under certain convexity assumptions so-called bilevel approaches are also
applicable for GSIP such as described in [33,114]. Usually, the lower level
problem is replaced by an equivalent optimality condition so that a reformu-
lated lifted problem with a finite number of constraints is obtained that can
be solved by standard nonlinear programming techniques. Similarly, in [76]
a lifting approach is proposed for a special kind of GSIP whereas in con-
trast to other approaches the resulting nonlinear problem is solved to global
optimality by means of branch-and-bound.

1.2 Disjunctive Programming

A disjunctive optimization problem is defined by

DP : min
x∈Rn

f(x) s.t. x ∈MDP

whose feasible set MDP is described by finitely many constraints of the form
gi(x) ≤ 0, i ∈ I, with I = {1, . . . , p} and p ∈ N. In contrast to standard
nonlinear programs, there the constraint functions are not only coupled by
conjunctions, but also by disjunctions.

All defining functions of DP are assumed to be continuous. Differentia-
bility is not assumed in general, however, it may be imposed later on in this
thesis depending on the configuration of algorithms or reformulations. As
already mentioned, all defining constraints are connected by finitely many
conjunctions and disjunctions. More precisely, we have

MDP = {x ∈ Rn | Ω(g1(x) ≤ 0, . . . , gp(x) ≤ 0) = true}

with a logical expression Ω : {true, false}p → {true, false} consisting of only
conjunctions and disjunctions.

If the logical expression has the form

Ω(g1(x) ≤ 0, . . . , gp(x) ≤ 0) =
∧
i∈I

∨
j∈Ji

(gij(x) ≤ 0)

with Ji ⊆ {1, . . . , p} for i ∈ I and a finite index set I, we say that the
problem is in conjunctive normal form. Then, the feasible set of DP can be
rewritten as

MDP =
∩
i∈I

∪
j∈Ji

{x ∈ Rn : gij(x) ≤ 0}

=

{
x ∈ Rn : max

i∈I
min
j∈Ji

gij(x) ≤ 0

}
.
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On the other hand, if the logical expression has the form

Ω(g1(x) ≤ 0, . . . , gp(x) ≤ 0) =
∨
i∈I

∧
j∈Ji

(gij(x) ≤ 0)

we say that the problem is in disjunctive normal form and the feasible set
can be written as

MDP =
∪
i∈I

∩
j∈Ji

{x ∈ Rn : gij(x) ≤ 0}

=

{
x ∈ Rn : min

i∈I
max
j∈Ji

gij(x) ≤ 0

}
.

In this thesis, we do not assume Ω to be in any normal form in contrast to
most of the papers from the literature. While all logical expressions consisting
of only conjunctions and disjunctions can be transformed into disjunctive or
conjunctive normal form, the number of terms may increase exponentially.
For example, the disjunctive normal form of (A1 ∨B1)∧ . . .∧ (An ∨Bn) has
2n terms.

By introducing

Yi(x) :=

{
true if gi(x) ≤ 0
false if gi(x) > 0

for i = 1, . . . , p we can equivalently rewrite the feasible set as

MDP = {x ∈ Rn | Ω(Y1(x), . . . , Yp(x)) = true} .

Note that our definition of Yi(x) differs from a standard one in disjunctive
optimization, where Yi(x) = false means that the constraint gi(x) ≤ 0 is
ignored. For the purposes of this thesis, however, our definition is more
convenient.

In the following, we briefly comment on the extensive literature available
for disjunctive programming. A well-known approach under mild assump-
tions for modeling disjunctions is the so-called Big–M reformulation. This
technique involves the introduction of a large constant as well as binary
variables. The problem can then be solved by using techniques from mixed-
integer programming. We refer to [85] for a detailed study of appropriate
algorithms. It is worth mentioning that with a slight extension [136], also
logical expressions that are not given in any normal form can be handled.
Unfortunately this approach suffers from mainly two drawbacks: firstly, there
may occur numerical instabilities due to the fact that the aforementioned con-
stant has to be chosen rather large in many applications. Secondly, relaxing
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the integrality constraints usually results in poor relaxations of the original
problem. However, the method is widely used and also reveals the close re-
lationship between disjunctive and mixed-integer optimization. In [12] it is
stated that every MILP can be reformulated as a DP, and every bounded
DP can be reformulated as a MILP. Moreover, differences and similarities of
both kinds of problems are discussed in [19,55] and the advantages as well
as disadvantages of the mixed-integer reformulations are examined.

To our knowledge, all the subsequently discussed known solution meth-
ods for disjunctive optimization problems either expect a conjunctive or a
disjunctive normal form of the constraints. Our approach does without this
assumption and may thus avoid an exponential growth in the number of
constraint terms during normalization.

A huge amount of literature is devoted to linear disjunctive programming.
For the case of linear mixed-integer programming, we mention [31] as one of
the very first articles that address this kind of problems. A review of the
early work in the field can be found in [11]. One of the main ideas is to
minimize the objective function over the convex hull of the feasible set. In
case of linear disjunctive programming this yields the same optimal value
as a minimization over the original feasible set. Moreover, then the convex
hull of the feasible set can be described as the orthogonal projection onto
the original space of some set in a higher dimensional space. This approach
is described in [12,14,15]. Further methods which explicitly consider logical
expressions in linear programming can be found in [19,55]. More generally,
logical expressions can always be modeled via linear constraints, together
with integer variables ([89,90,136]).

For a review of (generalized) nonlinear disjunctive optimization we refer
the reader to [46] and [91] as one of the very first articles in this field. In
case of convex disjunctive programming, all occurring nonlinear functions can
be approximated by multiple linear underestimators, and thus the techniques
from linear disjunctive and linear mixed-integer programming are applicable.
This leads to the so-called outer approximation algorithms as described in [37,
41]. A related method can be found in [135]. One of the first implementations
of this theory is LogMIP as explained in [128]. In [99], the concept of “basic
steps” defined for linear DPs in [12] is extended to nonlinear GDPs, thus,
leading to a so-called hierarchy of relaxations.

The above idea of considering the convex hull of disjunctive optimization
problems may also be extended to the case of nonlinear and convex problems
without linearization of the defining functions, as described in [47,72]. Similar
methods that address convex disjunctive problems can be found in [29] and
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[119].

A critical point theory for nonlinear disjunctive optimization problems
in conjunctive normal form with differentiable, but not necessarily convex
defining functions, is developed in [60].

In case of nonconvex problems, in principle all branch-and-bound algo-
rithms from global optimization are applicable via the mixed-integer refor-
mulation. We mention [73] as an example because in this branch-and-bound
algorithm, logical expressions are considered explicitly. An extension of this
algorithm covering bilinear equality constraints is proposed in [74]. In the
more recent articles [100,101] the above mentioned concept of a hierarchy
of relaxations is applied to tighten the convex relaxations of the original
problem.

Reviews of applications and solution techniques for MINLPs and GDPs,
such as branch-and-bound, outer approximation, generalized Benders decom-
position and extended cutting plane methods, can be found in [48,49,124].

One of the reasons why this area of research continues to be very active is
the long list of applications, in particular in industrial and chemical engineer-
ing. These applications include distillation column design [27,49,57,137–139],
scheduling problems [28,49,72,91,103], process synthesis and retrofit planning
[45,49,72,103,126], strip-packing problems [103,104], pooling problems, waste
water network problems, and water usage network problems [74].



Chapter 2

Applications of DP and GSIP
in Timber Industry

In applications of optimization in industry, usually different approaches are
possible. Actually, many real world problems are tackled using linear or
mixed-integer linear programming. However, as these models evolve, often
the need for more precise mathematical descriptions arises and thus nonlinear
solvers are considered. Often even more improved models are taken into
consideration that incorporate, for instance, uncertainty so that robust and
semi-infinite approaches, come into question or, moreover, certain issues have
to be expressed by disjunctive constraints.

In this section, these considerations are described along examples from
timber industry, which is a classical field of applications where the need for
optimization is recognized in the meantime. Note, that the applications of
this chapter are only to illustrate the benefits of disjunctive and generalized
semi-infinite programming on real life instances. However, the derived models
are not tackled using the solution techniques described in the remaining
chapters of this thesis (see also the explanation at the end of this chapter).

Timber industry is a broad area compromising many different aspects
and, thus, there are different requirements regarding planning and optimiza-
tion techniques. The entire workflow is described in [98] and always starts
by harvesting and cutting stems into logs which is considered to be part
of forestry. The advantages of optimization techniques are well-known in
that area for many years. We briefly sketch some classical models in Sec-
tion 2.1 and describe some possible applications of disjunctive programming
that typically arise.

These logs are then transported to sawmills and cut into lumber. Here

11
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the goal is to produce a certain required demand and, at the same time,
exploiting the raw material at its best. Some of these models are described
in Section 2.2. The waste is usually processed to wood chips which in turn
are used by paper-mills, for instance.

Many products such as furniture or complete houses can be made of
wood and also in this step of the workflow, during construction, optimization
techniques are applicable. Typical products are trusses that are the basis for
roofs as well as other wooden products and thus the whole area of truss
topology design can be applied here. This is described in Section 2.3.

2.1 Forest Management

In forestry, operations research models are applied for a very long time. A
well-known example is Forplan [62] in the United States. The operations
research methods applied in the Chilean forestry are described in [38]. Similar
systems are used in several other countries with large forests all over the
world.

The goal of forest management is to decide, which areas of the forest are
harvested by which crew at what time. This usually leads to mixed-integer
linear programs. An example of such a problem taken from [98] is given
below. Despite its simplicity in contrast to models used in practice, it covers
the most important aspects so that it can be used to illustrate how this
models basically work. The following variables and parameters are needed:

xitc . . . is 1 if area i is harvested by crew c in period t, and 0 otherwise

yijt . . . flow from area i to industry j in period t

sitc . . . supply of area i in period t if harvested by crew c

djt . . . demand of industry j in period t

fitc . . . cost if area i is harvested in period t by crew c

cijt . . . transportation cost from area i to industry j in period t per unit

Using this notation the model can be stated as follows. Here the objective
function describes the costs that consist of costs for harvesting in the first
summand as well as transportation costs in the second term for the whole
planning horizon, thus

min
∑
i

∑
t

∑
c

fitcxitc +
∑
i

∑
j

∑
t

cijtyijt.
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The following restrictions have to be taken into consideration. The first
constraint ensures that every area is harvested at most once, thus∑

t

∑
c

xitc ≤ 1 ∀i.

Moreover, every crew c can harvest only one area at time t which is repre-
sented by the inequality ∑

i

xitc ≤ 1 ∀t, c.

The transported amount of wood from area i is of course limited by the
supply of this area and can be transported only if it is harvested. This is
modeled as follows: ∑

j

yijt ≤ sitcxitc ∀i, t, c.

Moreover, only the required amount of wood should be transported to a
company j at time t which is expressed by∑

i

yijt ≤ djt ∀j, t.

The variables xitc are binary and the yijt are continuous but non-negative
and so we write

xitc ∈ {0, 1} ∀i, t, c

and

yijt ≥ 0 ∀i, j, t.

Based on this problem more constraints can be included. In general, disjunc-
tive constraints arise if the spatial structure of forests is taken into consid-
eration. For instance, road constructions give rise to such considerations as
described early in literature in [63]. Also one of the first articles addressing
this issue is [133]. Some additional aspects such as different timber qualities,
market prices, different types of roads and so on are included in the models
in [6]. Additional reasons leading to disjunctive programs in forestry are the
reduction of erosion and the improvement of water quality [132]. Other dif-
ficulties that often need to be included in these models are explained in [79].
More recent articles describe even more sophisticated approaches taking, for
example, stochastic aspects into consideration [129] or steep terrains such as
the alps where, for instance, road building requires even more constraints
[26].
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Besides road constructions there are more reasons to take the spatial
structure into account that also lead to disjunctions. For example if so-
called forest fragmentation should be avoided because of the requirements
of certain species. For instance, it might be important not to divide certain
habitats that may consist of several possible harvesting areas and so spatial
aspects come into play. Thus, so-called habitat fragmentation should be
avoided. For instance, elks are known to feed only in regions within two
hundred meters away from the forest [6] and thus appropriate areas should
be preserved. To achieve this so-called adjacency constraints are included
into the model. This is called biodiversity management and is covered in
detail in [71] and the references therein. One of the first articles addressing
this issue is [120]. Another article that covers disjunctive aspects such as
adjacency constraints in forest management is [131]. Special type of these
constraints describing certain forbidden regions can be found in [110]. In the
review [134] not only forestry resources but agricultural aspects are covered.

Regarding the solution of these problems, in [84,132] different mixed-
integer reformulations to express these disjunctions are compared. Accord-
ing to [84] these spatial constraints are the restrictive components of models
in forest planning. Consequently, it is important to deal with these disjunc-
tions efficiently. An interesting approach is proposed in [94] where the MILP
model is constructed in such a way that the linear relaxations directly yield
an integer solution so that the computationally expensive branch-and-cut
methods can be circumvented.

Usually, the idea to model adjacency is as follows. If two areas i and j
are close to each other, then either area i or area j is to be harvested but
not both of them. That means, if area i is harvested at time t by any crew,
then area j must not be harvested by any crew from time t− p to t+ p. The
time span p is assumed to be needed for an area to grow up again. This can
be modeled (cf. [71]) by adding the disjunctive constraint(∧

c

(xitc = 0)

)
∨

(∧
c

(
t+p∧

t′=t−p

(xjt′c = 0)

))
.

As the problem is mixed-integer anyway, this can be rewritten as

∑
c

xitc +
∑
c

t+p∑
t′=t−p

xjt′c ≤ 1.

The situation becomes even more difficult if two distinct areas are important
for a certain species and a corridor between both of them should be preserved.
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We consider, for instance, area 1 and area 32 in Figure 2.1 and we assume
that a way consisting of neighbouring areas between both of them must not
be harvested. Moreover, we assume that the length of this way is restricted
and, more precisely, should consist of at most 15 areas.

1 2 3 4
8

9 10 11 12 13 14 15 16

17
18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

765

33 34 35

Figure 2.1: Forest divided into different areas

For convenience we introduce the variables wijl which are 1 if such a way
from area i to area j with length at most l areas exists and 0 indicating it does
not. So in our model we require w1,32,15 = 1. By adding more constraints
this auxiliary variable has to be connected to the harvesting of areas in order
to make this construction work. The existence of such a way is equivalent to
the existence of a way of length at most 14 areas from area 1 to area 24 or
to area 31 and so we write(

(w1,24,14 = 1) ∧ (a24 = 0)
)
∨
(
(w1,31,14 = 1) ∧ (a31 = 0)

)
. (2.1)

Area 24 can be reached from area 16 and 23. Area 31 can be reached from
area 23 and 30. So we may replace the variables w1,24,14 and w1,31,14 and
rewrite the disjunctive expression (2.1) by[((

(w1,16,13 = 1) ∧ (a16 = 0)
)
∨
(
(w1,23,13 = 1) ∧ (a23 = 0)

))
∧ (a24 = 0))

]
∨
[((

(w1,30,13 = 1) ∧ (a30 = 0)
)
∨
(
(w1,23,13 = 1) ∧ (a23 = 0)

))
∧ (a31 = 0))

]
.

Continuing recursively leads to a nested logical expression where only vari-
ables ai are involved and all occurrences of wijl are replaced. Although in
theory this disjunctive term can be modeled by using binary variables, in
real applications this leads to difficult to solve mixed-integer linear problems
that often cannot be handled by standard solvers due to weak relaxations
in branch-and-bound methods. Thus it is important to fully understand the
disjunctive structure in these models and to handle this appropriately.
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2.2 Cutting Patterns for Sawmill Optimiza-

tion

In a sawmill, first of all, logs are debarked and then cut into lumber. Usually,
this is done using either band saws, frame saws or circular saws that all
have certain advantages and disadvantages. For every log there are different
possibilities to be cut into lumber that yield certain boards and beams in
certain dimensions. These possibilities are known as cutting patterns. In
a sawmill every log is assigned to a particular cutting pattern so that the
resulting boards and beams fit the demand. A good cutting pattern should
produce a maximum value of certain types of logs.

There is a large amount of literature devoted to this topic. Assigning a
cutting pattern to each log can be modeled as a linear mixed-integer problem
as is done in [80]. Taking uncertainty into account leads to robust optimiza-
tion as applied to the sawmill scheduling problem in [5,127,140].

An approach that considers the entire supply chain from harvesting over
transportation to the sawmill and to the market is described in [107]. Usually,
cutting the stem into logs is called bucking and is done immediately in the
forest. This and the cutting of logs into lumber in a sawmill are considered
independently from each other in most cases. However, the integration of
both steps can lead to an improvement as proposed in [39]. After the sawmill,
the wood is often shortened in length. This subsequent process is called cross
cutting. Although usually performed independently from the sawmill and
often done in completely different companies, also in this step one can also
take advantage of operations research methods as explained in [30,97].

Even though the robust sawmill scheduling problem also gives rise to semi-
infinite programs we shall focus on another problem of the sawmill industry
here, namely the computation of efficient cutting patterns.

Although in theory there might be more possibilities, commonly logs are
cut into parallel slabs, also called flitches, at first which is also known as
primary log breakdown. These slabs are then in turn cut into boards and
beams which is called secondary log breakdown. Resulting possibilities to cut
a log into lumber are depicted in Figure 2.2 on the right. On the left hand
side of Figure 2.2 other cuts are sketched that might be possible in theory
but are usually not taken into consideration in practice, because this would
take too much effort as machines are usually not designed for this purpose.
Additional types of cutting patterns that can be taken into consideration in
practice but are not considered here are illustrated in Figure 2.3.
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Figure 2.2: Left: Arbitrary cuts that are usually too costly, right: Log with
live sawing pattern (based on [122])

Figure 2.3: Left: Cant sawing, right: Around sawing (based on [122])

Different possibilities to cut a flitch into boards and beams are illus-
trated in Figure 2.4. This secondary log breakdown is described in detail in
[121] whereas in [93,122] the integration of both, primary and secondary log
breakdown, are examined. Often, dynamic programming is applied which is
already done in [43] where it is also emphasized that this problem can be
considered as knapsack problem under suitable assumptions.

Here we assume that the value of lumber in certain quality and certain
dimensions does not change over the planning horizon. In real applications
this does not necessarily hold as demand for certain pieces in certain qual-
ity and dimension may vary so that a cutting pattern might be beneficial
although less volume of lumber is obtained. An integrated approach for the
computation of cutting patterns together with the sawmill planning problem
is proposed in [123].

The computation of optimal cutting patterns can be interpreted as a
design centering problem and thus generalized semi-infinite problems are a
straightforward possibility to describe this process. We now propose such
a model. To achieve this, the data of a log is assumed to be given by a
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Figure 2.4: Slab that can be sawn using different cutting patterns (based on
[122])

function g such that g(x1, x2, x3) ≤ 0. Although at the first glance, a log
can be seen as a cylinder, in reality usually there are much more complex
shapes, especially if defects, for instance knotholes that lower quality as well
as stability of the wood, are taken into consideration. Thus, writing the log
as G := {x ∈ R3|g(x) ≤ 0} allows for a great flexibility. Note that detailed
information on each log is often available in practice as modern sawmills
examine every log by scanners [96].

A certain board or beam that is cut from this log can be modeled by a
3-dimensional box X := [x′, x′]× [x′′, x′′]× [x′′′, x′′′] with X ⊂ G. The value
of this board or beam is denoted by ϑ(x′ − x′, x′′ − x′′, x′′′ − x′′′).

A whole flitch can mathematically be written as G ∩ (R2 × [x′′′, x′′′])
where x′′′ − x′′′ is the thickness of the considered slab. The maximum value
that can be cut from a given flitch can be computed by solving the following
generalized semi-infinite program with N andM chosen sufficiently large and
where N ·M is the maximum number of boards and beams that is assumed
to be cut from each slab:

GSIPF (x
′′′, x′′′) : max

N∑
i=1

M∑
j=1

ϑ(x′i+1 − x′i, x
′′
j+1 − x′′j , x

′′′ − x′′′)
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with the feasible set described by the lower level problem

max
y∈Yij(x)

g(y) ≤ 0 for i = 1, . . . , N,

j = 1, . . . ,M

with

Yij(x) = [x′i, x
′
i+1]× [x′′j , x

′′
j+1]× [x′′′, x′′′] for i = 1, . . . , N,

j = 1, . . . ,M.

Denoting the optimal value of this problems by ṽ(x′′′, x′′′), an optimal cutting
pattern can be computed by solving

P : max
x′′′
1 ,...,x′′′

L

L∑
j=1

ṽ(x′′′j , x
′′′
j+1).

Models found in literature are usually more or less simplified, often dis-
cretized, versions of this problem. For instance, it is possible to solve GSIPF

for several discrete values of x′′′ and x′′′. Then we can approximate problem
P by using these distinct optimal values instead of the continuous version
that requires the optimal value functions of GSIPF (x

′′′, x′′′).

2.3 Truss Topology Design

Although trusses can be made of different materials and thus are not neces-
sarily restricted to wood, there is an interesting theory as well as numerical
approaches in literature that can be applied in this field. Moreover, trusses
made of wood are very common for a very long time, for example in the
construction of houses and roofs.

In truss topology design, different trusses that withstand some given ex-
ternal forces are developed. Applying optimization techniques, different goals
can be achieved such as structures with minimal weight or costs, for instance.
More often the so-called compliance of a truss is minimized so that the re-
sulting structure is as stiff as possible.

There is a large amount of literature devoted to this topic and thus, not
all of the work in this field can be mentioned here. One of the first articles
is [34]. A detailed review of this area from optimization point of view can be
found in [21]. Several mathematical models are compared in [69]. Moreover,
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there are many numerical methods used to solve these problems. A tailored
interior point algorithm is presented in [58]. Often, SDP solvers are applied
to solve a robust version of the truss topology design problem as explained,
for instance, in [22]. The global solution of these problems is aimed in [2]
by using a tailored branch-and-bound algorithm. The considered models are
explained well in [1].

In the following we consider such a truss topology design problem. The
description is rather lengthy due to the explanation of some basics of engi-
neering. Note, however, that our emphasis is on the disjunctive as well as
generalized semi-infinite extensions at the end of this section.

The model described in the following is based on the above mentioned
articles. According to this, a planar truss consists of a finite number of
nodes i = 1, . . . , N with x-coordinates x̃i, i = 1, . . . , N and y-coordinates
ỹi, i = 1, . . . , N . The extension to non-planar trusses is straightforward. Two
nodes i and j can be connected by bars with cross-sectional area aij ≥ 0 and
length l̃ij. A value of aij = 0 means that no bar connecting the nodes i and j
exists. Here we use tilde over parameters in order to distinguish those from
variables of the problem.

Before we continue to describe the mathematical model, some physics
have to be introduced. Given a single bar with length l̃ and cross-sectional
area a that is stressed by a force f in axial direction, this bar is elongated
by δ according to the equation

a
Ẽ

l̃
δ = f (2.2)

where Ẽ denotes a material constant called Young’s modulus. Although
this does only hold for relatively small forces and elongations, this is a com-
mon assumption in practice.

In order to apply this principle to the whole truss we take the existence
of some external forces into consideration. Thus, if the whole structure is
under load, the nodes slightly move resulting in a small displacement ui in
x-direction and vi in y-direction of every node according to this physical law.
This is depicted exemplarily in Figure 2.5.

However, in order to apply equation (2.2) it is important to have the
elongation of every bar connecting two nodes i and j depending on the
nodal displacements in axial direction. Thus, for two nodes i and j with
corresponding displacements (ui, vi)

⊺ and (uj, vj)
⊺ of the original coordinates

(x̃i, ỹi)
⊺ and (x̃j, ỹj)

⊺, we have to compute the elongation of the bar compared
to the original length l̃ij =

√
(x̃i − x̃j)2 + (ỹi − ỹj)2.
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Figure 2.5: Left: Small truss without external forces. Right: Same truss
under load.

We start by considering the very simple case where we assume only one
displacement (ui, 0)

⊺ of one node in x-direction. So for a bar between node i
and node j with angle φ̃ij between the x-axis and the non-deformed bar as
sketched in Figure 2.6 on the left, this can be approximated by cos(φ̃ij)ui.

On the other hand, for a displacement (0, vi)
⊺ the situation is depicted

in Figure 2.6 on the right and the corresponding approximated elongation
along the axis can be computed by sin(φ̃ij)vi, again leading to an approxima-
tion error. Combining both considerations to the displacement (ui, vi)

⊺ the
resulting elongation of the bar in axial direction is approximately the sum
cos(φ̃ij)ui + sin(φ̃ij)vi.

y, v

x, u

y, v

x, u

(ui, 0)
⊺

(0, vi)
⊺

φ̃ij φ̃ij

Figure 2.6: Original bars and the corresponding displaced bars under load in
a truss

Taking the second node of the bar into consideration and applying the
same line of argumentation, letting γ̃ij := (cos(φ̃ij), sin(φ̃ij)

⊺ yields the elon-
gation

δij ≈ γ̃⊺ijdi − γ̃⊺ijdj (2.3)

in axial direction where di is the displacement (ui, vi)
⊺ and dj = (uj, vj)

⊺.
Similarly to the situation depicted in Figure 2.6 for every bar from node i
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to j some γ̃ij can be derived analogously so that the elongation δij can be
computed as in equation (2.3).

Remark 2.3.1. Note that the elongations of bars are not computed exactly
and, moreover, no approximation error is given. For that reason, trusses that
are designed by optimization methods based on these considerations have to
be checked carefully.

According to equation (2.2) this approximated elongation must be ob-
tained by a force with absolute value

aij
Ẽ

l̃ij
δij ≈ aij

Ẽ

l̃ij
(γ̃⊺ijdi − γ̃⊺ijdj)

in axial direction. To obtain the corresponding x- and y-components of this
force we multiply this value by γ̃ij. Given forces in the bar from node i to j
in x-direction fi,x and in y-direction fi,y, respectively, we then have

aij
Ẽ

l̃ij
(γ̃⊺ijdi − γ̃⊺ijdj)γ̃ij = fij

with fij = (fij,x, fij,y)
⊺.

Here, strictly speaking, the angles of the deformed truss under load should
be applied instead of γ̃ij. However, it is a standard assumption in the con-
struction of trusses that these angles do not differ too much and thus φ̃ij can
be used in the approximation. This procedure as well as the aforementioned
approximation of the elongations using the original angles is called equilib-
rium on the non-deformed system. This has to be handled with care as we
stress in the following remark. To the best of our knowledge, this aspect is
not examined in literature so far in the context of optimization.

Remark 2.3.2. Although using the equilibrium on the non-deformed system
is common in the computation of trusses we point out that it is not clear, if
this also works in optimization. First of all, it is inconsistent in some sense
to maximize the stiffness and, at the same time, assume the angles of the
bars to stay nearly constant if the truss is under load. Moreover, this gap
between reality and the mathematical model might be exploited in the solution
process so that in a computed optimal point the approximation error might
not be negligible.

We now extend these considerations for one bar to the more complex
case of a whole truss. To achieve this, in every node i we assume the ex-
istence of so-called external forces f̃i = (f̃x

i , f̃
y
i )

⊺ with x-component f̃x
i and
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y-component f̃ y
i that the truss has to withstand. In practice, usually for

many nodes we have f̃i = 0.

In a truss under load the forces within all nodes have to be balanced so
that in a normal node i we have

N∑
j=1

fij + f̃i = 0.

Moreover, some nodes (usually at the basis of the truss) can be assumed to
absorb forces, either forces in only one direction or even in x- and y-direction.
This can be modeled by introducing an additional force f̄x

i in x-direction and
f̄ y
i in y-direction that may have arbitrary values. For ease of presentation we
put f̄i = (f̄x

i , f̄
y
i )

⊺.

If, for instance, the first node i = 1 may absorb vertical forces but not
horizontal forces, we require f̄x

1 = 0 and f̄ y
1 ∈ R. Assuming all nodes that

may absorb only forces in horizontal direction are contained in the set Ax ⊂
{1, . . . , N}, all nodes that may absorb only vertical forces are in the set
Ay ⊂ {1, . . . , N} and all nodes that may absorb forces in x- as well as y-
direction are in the set Axy ⊂ {1, . . . , N}. Thus, we require

f̄x
i ∈ R, f̄ y

i = 0 for i ∈ Ax

f̄x
i = 0, f̄ y

i ∈ R for i ∈ Ay

f̄x
i ∈ R, f̄ y

i ∈ R for i ∈ Axy.

So in order to balance all these forces, for every node i = 1, . . . , N we add
the constraint

N∑
j=1

fij + f̃i + f̄i = 0. (2.4)

Note that in practice the size of the problem may be reduced by removing
many of these equations together with the artificial variable f̄i.

Usually, in applications only a certain quantity of wood ṽ is available so
that the constraint

1

2

N∑
i=1

N∑
j=1

l̃ijaij ≤ ṽ

is added to the model.

The goal of truss topology design is often to design structures that are as
stiff as possible. To achieve this, it is common that nodes with large external
forces are expected to move only slightly whereas other nodes are allowed
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to move a little bit more when the truss is under load. Hence, often the
so-called compliance as defined by

N∑
i=1

f̃⊺
i di

is considered to be a suitable objective function (see [1]). Eventually, we
arrive at the following optimization problem:

P : min
a,d,f,f̄

N∑
i=1

f̃⊺
i di

s.t. aij
Ẽ

l̃ij
(γ̃⊺ijdi − γ̃⊺ijdj)γ̃ij = fij i, j = 1, . . . , N

N∑
j=1

fij + f̃i + f̄i = 0 i = 1, . . . , N

f̄x
i ∈ R, f̄ y

i = 0 for i ∈ Ax

f̄x
i = 0, f̄ y

i ∈ R for i ∈ Ay

f̄x
i ∈ R, f̄ y

i ∈ R for i ∈ Axy

1

2

N∑
i=1

N∑
j=1

l̃ijaij ≤ ṽ

aij ≥ 0, i, j = 1, . . . , N with i ̸= j.

This is the classical truss topology design problem which can be used to derive
more complex and more realistic models that are even more appropriate
for practical applications. For instance, without additional constraints this
standard model from literature may lead to trusses that have many bars
of very thin cross-sectional areas meaning the truss is dense which is not
desirable. A possibility to avoid this is to require that bars have a certain
minimum cross-sectional area ã. To achieve this, the disjunctive constraints

(aij = 0) ∨ (aij ≥ ã)

can be added. In [2] a similar truss topology problem is considered where
the cross-sectional areas are chosen from a finite set of possibilities.

An additional reason to introduce disjunctive constraints into the model
is to avoid that bars intersect as this might lead to torsion and should be
avoided. That is, for every two possible bars between nodes i, j and p, q,
respectively, that might intersect we require

(aij = 0) ∨ (apq = 0).
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Thus, the need to tackle disjunctive problems arises.

Another difficulty that is encountered in practice is the problem of dif-
ferent load scenarios. So far, only certain given external forces are assumed.
However, it is more realistic, that different external forces from a whole set
F are possible. As long as F is finite, problem P can be extended to this
case in a straightforward manner. In contrast, for an infinite set F this leads
to so-called robust truss topology design. Such difficulties are also examined
in literature, for instance in [22], and often solved by SDP techniques.

In the following we derive a model to compute robust trusses by means
of generalized semi-infinite programming techniques. Observe, that given
the parameters γ̃ij, l̃ij, Ẽ as well as the angles φ̃ij, the truss itself can be
described simply by the cross-sectional areas aij of the bars. As long as we
have aij ≥ 0 for all i, j = 1, . . . , N with i ̸= j and, moreover, the maximum
volume of used material is not exceeded, this can be seen as a valid truss.
For convenience we put

A :=
{
a
∣∣ 1
2

N∑
i=1

N∑
j=1

l̃ijaij ≤ ṽ

aij ≥ 0, i, j = 1, . . . , N with i ̸= j
}
.

Given cross-sectional areas a ∈ A and a certain external load f̃ ∈ F , then
the minimal compliance can be computed by solving

min
d,f,f̄

N∑
i=1

f̃⊺
i di s.t. (d, f, f̄)⊺ ∈ Y (a, f̃)

with

Y (a, f̃) :=
{
(d, f, f̄)⊺

∣∣ aij Ẽ
l̃ij
(γ̃⊺ijdi − γ̃⊺ijdj)γ̃ij = fij i, j = 1, . . . , N

N∑
j=1

fij + f̃i + f̄i = 0 i = 1, . . . , N

f̄x
i ∈ R, f̄ y

i = 0 for i ∈ Ax

f̄x
i = 0, f̄ y

i ∈ R for i ∈ Ay

f̄x
i ∈ R, f̄ y

i ∈ R for i ∈ Axy

}
.

Now we introduce a whole set of external loads F where f̃ can be chosen from.
Given fixed cross-sectional areas a ∈ A, in the worst case the compliance that
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might occur can be computed by solving the problem

max
f̃∈F

min
(d,f,f̄)⊺∈Y (a,f̃)

N∑
i=1

f̃⊺
i di.

Now, in order to compute the truss described by the variables a ∈ A that is
prepared for every external load f̃ ∈ F we may solve

min
a∈A,z

z

s.t. max
f̃∈F

min
(d,f,f̄)⊺∈Y (a,f̃)

N∑
i=1

f̃⊺
i di ≤ z.

This problem can be seen as a semi-infinite problem with a difficult to solve
lower level problem. Thus, in order to avoid this, observe that for fixed f̃ ∈ F
and a ∈ A the problem

min
(d,f,f̄)⊺∈Y (a,f̃)

N∑
i=1

f̃⊺
i di

is linear in the remaining variables d, f and f̄ . Hence, we may replace this
minimization problem by its linear dual problem. Denoting the feasible of
this problem by Ỹ (a, f̃), the dual variables by y and the objective function
by b⊺y we may rewrite the robust truss topology design problem by

GSIP : min
a∈A,z

z

s.t. max
f̃∈F ,y∈Ỹ (a,f̃)

b⊺y ≤ z

and thus, the generalized semi-infinite structure becomes apparent. Note
that linearity is exploited in order to achieve this reformulation. Moreover,
a dual problem is used to replace a minimization problem by a maximiza-
tion problem which is also a standard approach in generalized semi-infinite
programming as will be described in more detail in the subsequent chapters
and used several times throughout this thesis.

Regarding the robust truss topology design problem we point out that
for certain requirements regarding the set F instead of problem GSIP much
simpler problems may be solved, for instance SDPs (see [22]). However, SDPs
can be seen as a special kind of semi-infinite programs as well, although there
are much more efficient solution methods for SDPs.

In this chapter, we described three different applications and the need to
tackle disjunctive and semi-infinite problems is illustrated. The field of tim-
ber industry is chosen only for purpose of illustration as this is a very classic
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part of industry where the need of optimization is encountered meanwhile.
Analogously, applications of DP and GSIP arise in many other fields.

In the remaining chapters of this thesis, different possibilities to solve
both kinds of problems, DPs as well as GSIPs, are developed. Although it
would be interesting to see how these methods perform on such real world
instances, we prefer a different line of research here. Even though a direct
application should be possible, at least in theory, this requires even more.
So, for example, a thorough preparation of real data is required. Moreover,
a refined interface for our implementations to these data or maybe even to
modeling languages is necessary. In contrast, we prefer to show the perfor-
mance of our methods along test problems from literature which also enables
us to compare the performance of our algorithms to other approaches. For
that reason, the solution of applications of timber industry is beyond the
scope of this thesis and left for future research.
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Chapter 3

GSIP Reformulations of
Disjunctive Problems

In this chapter, which is based on [65], we describe how techniques from
generalized semi-infinite optimization may be employed to solve disjunctive
optimization problems.

Generalized semi-infinite programs turn out to be much harder to solve
than standard semi-infinite programs, although they seem to be only a slight
extension of the standard semi-infinite case at first glance. This is mainly
due to two geometric properties, which are stable under perturbations of the
defining functions in generalized semi-infinite optimization problems, but im-
possible or unstable, respectively, in finite or standard semi-infinite optimiza-
tion as already explained in the introduction and illustrated in Example 1.1.1.
Firstly, the feasible set of a GSIP need not be closed although all defining
functions are continuous. Secondly, the feasible set of a GSIP may possess
so-called re-entrant corner points, that is, the feasible set may locally be ex-
pressed as the union of finitely many sets with smooth boundaries. The main
idea of the present chapter is to exploit this intrinsic disjunctive structure of
GSIPs for the solution of disjunctive optimization problems (DPs).

In fact, we shall show how a GSIP, corresponding to any given DP, can
be constructed and, by using lower level techniques for the generated semi-
infinite programs, we derive purely continuous and conjunctive nonlinear
problems without any logical expressions, which can be locally solved by
standard nonlinear solvers. Note that we do not impose any convexity as-
sumptions on the defining functions of the disjunctive problem.

This chapter is based mainly on the article [65] and is structured as fol-
lows. In Section 3.1, we state more precisely the definitions of the different

29
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kinds of appearing optimization problems. Section 3.2 describes how disjunc-
tive problems can be reformulated as generalized semi-infinite optimization
problems. We start by considering problems in a so-called disjunctive or
conjunctive normal form. Then, the ideas are extended to handle disjunc-
tive problems with arbitrary logical expressions. The resulting GSIPs are
treated by two solution techniques: the lower level duality reformulation
in Section 3.3.1, and replacing the lower level problem by its Karush-Kuhn-
Tucker optimality conditions combined with smoothing of the resulting math-
ematical program with complementarity constraints in Section 3.3.2. In any
case, we obtain standard nonlinear optimization problems without any logi-
cal expressions, which can be solved at least locally by common NLP-solvers.
Section 3.3.3 provides a stability analysis for the smoothing approach. In
Section 3.4, we perform computational tests on some small examples.

3.1 Definition of the Problem

In this chapter we consider generalized semi-infinite programs with multiple
semi-infinite constraints, that is problems of the form

GSIP : min
x∈Rn

f(x) s.t. x ∈MGSIP

with the feasible set

MGSIP := {x ∈ Rn : gi(x, y
i) ≤ 0 for all yi ∈ Yi(x), i ∈ I}.

Hence, for each index i from the finite index set I := {1, . . . , p} (with p ∈ N)
a set-valued mapping Yi : Rn ⇒ Rmi (with mi ∈ N, i ∈ I) describes the
index set of inequality constraints. With the so-called lower level optimal
value functions

φi(x) := sup
yi∈Yi(x)

gi(x, y
i), i ∈ I,

an obvious reformulation of the feasible set is

MGSIP = {x ∈ Rn : max
i∈I

φi(x) ≤ 0}.

The functions f and gi, i ∈ I, are assumed to be at least continuous on their
respective domains. In this thesis, we shall assume that also the index set
mappings are given in functional form as

Yi(x) = {yi ∈ Rmi : vi(x, yi) ≤ 0}
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with at least continuous functions vi : Rn × Rmi → Rsi for si ∈ N, i ∈ I.

We recall our definition of a disjunctive optimization problem by which
we mean a problem of the type

DP : min
x∈Rn

f(x) s.t. x ∈MDP ,

whose feasible set MDP is described by finitely many constraints of the form
Gℓ(x) ≤ 0, 1 ≤ ℓ ≤ m (with m ∈ N). In this chapter we assume that these
functions are connected by finitely many conjunctions and disjunctions, and
that the functions Gℓ, 1 ≤ ℓ ≤ m, are at least continuous. More precisely,
we put

MDP := {x ∈ Rn : Ω(G1(x) ≤ 0, . . . , Gm(x) ≤ 0 ) = true} ,

with a logical expression Ω : {true, false}m → {true, false} consisting of only
conjunctions and disjunctions. The structure of the logical expression Ω may
be coded in a natural way by means of its expression tree TΩ. Due to the
associativity of both conjunction and disjunction, we may assume that each
node of the expression tree TΩ either corresponds to

• a conjunction
∧

j∈J Aj, where the Aj, j ∈ J , are either disjunctions or
simple terms of the form Gℓ(x) ≤ 0 for some ℓ ∈ {1, . . . ,m}, or

• a disjunction
∨

j∈J Aj, where the Aj, j ∈ J , are either conjunctions or
simple terms of the form Gℓ(x) ≤ 0 for some ℓ ∈ {1, . . . ,m}.

For convenience, conjunctions and disjunctions of length |J | shall be called
|J |-conjunctions and |J |-disjunctions, respectively. For formal reasons, which
will become apparent below, we allow 1-conjunctions and 1-disjunctions in Ω,
that is, we put

∧
j∈{1}Aj = A1 and

∨
j∈{1}Aj = A1. Depending on whether

the root node of TΩ is a conjunction or a disjunction, we shall call TΩ a
conjunction tree or a disjunction tree, respectively. Note that the levels of
TΩ alternatingly correspond to conjunctions and disjunctions, and that the
simple terms of the form Gℓ(x) ≤ 0, ℓ ∈ {1, . . . ,m}, correspond to the leafs
of TΩ. By the height hΩ of TΩ, we shall mean the number of edges on the
longest downward path between the root and a leaf.

Example 3.1.1. Consider the problem

DP : min
x∈R2

f(x) s.t. x ∈MDP
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with

MDP =
{
x ∈ R2 :

((
G1(x) ≤ 0 ∧G2(x) ≤ 0

)
∨G3(x) ≤ 0 ∨G4(x) ≤ 0

)
∧
(
G5(x) ≤ 0 ∨G6(x) ≤ 0)

)}
,

and

f(x) := −x1,

G1(x) := x21 + (x2 −
1

2
)2 − 1,

G2(x) := x21 + (x2 +
1

2
)2 − 1,

G3(x) := (x1 − 3)2 + (x2 −
1

2
)2 − 1,

G4(x) := (x1 − 3)2 + (x2 +
1

2
)2 − 1,

G5(x) := x1,

G6(x) := −x1 + 3.

The set MDP is illustrated in Figure 3.1. The expression tree TΩ of Ω, a
conjunction tree of height hΩ = 3, is depicted in Figure 3.2, where k-C stands
for a k-conjunction, and k-D for a k-disjunction.

Since our proposal for a GSIP reformulation of DP in Section 3.2 will
hinge on the structure of the expression tree for Ω, ‘nicely structured’ ex-
pression trees will result in a clear structure of the GSIP. For this clarity
reason, we will assume that the expression tree TΩ is full in the sense that all
its leaf nodes possess the same depth, that is, the number of edges between
the root and each leaf node equals the tree height hΩ. We also assume that
TΩ is leaf disjunctive, by which we mean that the level of leafs corresponds
to a disjunction level in TΩ.

These two assumptions may always be achieved by artificially introduc-
ing 1-conjunctions and 1-disjunctions into Ω. We emphasize that, from a
computational point of view, this is not desirable, but that our modeling
approach is most transparent for full and leaf disjunctive expression trees
TΩ. For computational purposes, it will be clear how to modify the GSIP
reformulation of DP when the artificial nodes are removed.

Figure 3.3 shows the modification of the expression tree from Figure 3.2
to a full and leaf disjunctive tree.
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Figure 3.1: Feasible set MDP in Example 3.1.1
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2-D3-D
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Figure 3.2: Expression tree in Example 3.1.1
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G1 G2

2-C

2-D3-D

2-C

G3 G4 G5 G6

1-C 1-C 1-C 1-C

Figure 3.3: Full and leaf disjunctive expression tree in Example 3.1.1

3.2 GSIP Reformulations of DPs

For disjunctive optimization problems in conjunctive normal form, a GSIP
reformulation is well-known from [112]. In fact, for

MDP =
∩
i∈C

∪
j∈Di

{x ∈ Rn : Gij(x) ≤ 0}

with finite index sets C and Di, i ∈ C, we put p = |C|, mi = 1, gi(x, y
i) = yi,

and vi(x, yi) = (yi−Gi1(x), . . . , y
i−Gi,|Di|(x))

⊺, i ∈ C. Then, for each i ∈ C
and x ∈ Rn the index set Yi(x) is one-dimensional and can explicitly be
written as

Yi(x) = ]−∞,min
j∈Di

Gij(x) ].

Hence we obtain φi(x) = minj∈Di
Gij(x),

MGSIP = {x ∈ Rn : 0 ≥ max
i∈C

φi(x) = max
i∈C

min
j∈Di

Gij(x)},

and thus the following result.

Proposition 3.2.1. For any problem DP in conjunctive normal form, let
GSIP be constructed as described above. Then, we have MGSIP =MDP .

Next, we consider DPs which are not expressed in conjunctive normal
form. We describe the main idea to cover this case first for problems in
disjunctive normal form, that is, for

MDP =
∪
i∈D

∩
j∈Ci

{x ∈ Rn : Gij(x) ≤ 0}
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with finite index sets D and Ci, i ∈ D. In fact, for each conjunction we
introduce an additional variable zi ∈ R, i ∈ D, put p = 1, m = 1, g(x, z, y) =
y, v(x, z, y) = (y− z1, . . . , y− z|D|)

⊺, and we introduce additional constraints
Gij(x) ≤ zi, j ∈ Ci, i ∈ D. The corresponding GSIP then possesses a lifted
feasible set and reads

min
x,z

f(x) s.t. (x, z) ∈ M̃GSIP

with

M̃GSIP = {(x, z) ∈ Rn × R|D| : y ≤ 0 for all y ∈ Y (z)

Gij(x) ≤ zi, j ∈ Ci, i ∈ D},

and with the (x-independent) index set

Y (z) = {y ∈ R : y ≤ zi, i ∈ D}.

Note that not even the function φ(x, z) = supy∈Y (z) y depends on x, so that
we will denote it as φ(z).

In the following, for any N ∈ N let prx : Rn × RN → Rn denote the
orthogonal projection to the ‘x-space’ Rn.

Proposition 3.2.2. For any problem DP in disjunctive normal form, let
GSIP be constructed as described above. Then, we have MDP = prxM̃GSIP .

Proof. For (x, z) ∈ Rn ×R|D|, the index set Y (z) is one-dimensional and can
explicitly be written as

Y (z) = ]−∞,min
i∈D

zi ].

This implies φ(z) = mini∈D zi and

M̃GSIP =

{
(x, z) ∈ Rn × R|D| : min

i∈D
zi ≤ 0, max

j∈Ci

Gij(x) ≤ zi , i ∈ D

}
.

Hence, for each x ∈ prxM̃GSIP there exist some z ∈ R|D| and some i ∈ D with
zi ≤ 0 and maxj∈Ci

Gij(x) ≤ zi. This implies mini∈D maxj∈Ci
Gij(x) ≤ 0, and

thus prxM̃GSIP ⊆MDP .

On the other hand, for each x ∈MDP we may set zi = maxj∈Ci
Gij(x), i ∈

D, and immediately obtain (x, z) ∈ M̃GSIP and thus MDP ⊆ prxM̃GSIP .
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For DPs which are neither given in conjunctive nor in disjunctive normal
form, we may combine the above ideas to derive a GSIP reformulation. For
the ease of exposition, we will assume the expression tree TΩ to be full and
leaf disjunctive.

In the following, we shall index the nodes V of TΩ recursively by multi-
indices. The root node will be denoted by V1. Since it either is a |J |-
conjunction or a |J |-disjunction, we may index its child nodes with multi-
indices of length 2 by V11, . . . , V1,|J |. Continuing in this way recursively for
the child nodes, we index all nodes down to the leaf level hΩ + 1, where leaf
nodes are indexed with multi-indices of length hΩ + 1. The set of all indices
of child nodes of a node V is denoted by C(V ). Furthermore, all indices of
nodes in level ℓ of the expression tree form the set I(ℓ), that is, we have
I(1) = {1}, I(2) = {11, . . . , 1|J |}, and so on.

For a full and leaf disjunctive expression tree of height hΩ, the second
to last level hΩ consists of conjunctions Cj, j ∈ I(hΩ). We then introduce
additional variables zj, j ∈ I(hΩ), as well as the additional constraints

Gi(x) ≤ zj, i ∈ C(Cj), j ∈ I(hΩ).

Furthermore we replace each node Cj, j ∈ I(hΩ), in Ω by the term zj ≤ 0,
so that the height of the expression tree decreases by one. Then, the orthog-
onal projection of the feasible set onto the ‘x-space’ of this lifted disjunctive
program is the feasible set of DP again. This is due to the following lemma
which is shown with the ideas from the proof of Proposition 3.2.2.

Lemma 3.2.3. The conjunction
∧

i∈I(Gi(x) ≤ 0) is true if and only if there
exists some z ∈ R such that z ≤ 0, and Gi(x) ≤ z hold for all i ∈ I.

We illustrate this step for the disjunctive program from Example 3.1.1
(Fig. 3.3).

Example 3.2.4. We have hΩ = 3, and thus we consider the set I(3) =
{111, 112, 113, 121, 122}. We start by introducing one new variable z111 and
rewrite the feasible set of DP as M2, where M2 is defined by

M2 :=
{
(x, z111) ∈ R2 × R :

(
z111 ≤ 0 ∨G3(x) ≤ 0 ∨G4(x) ≤ 0

)
∧
(
G5(x) ≤ 0 ∨G6(x) ≤ 0

)
,

G1(x) ≤ z111, G2(x) ≤ z111

}
.
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With the same line of arguments, we introduce further variables z112, z113,
z121, z122 for the remaining 1-conjunctions. We can then further rewrite M2

as

M3 :=
{
(x, z) ∈ R2 × R5 :

(
z111 ≤ 0 ∨ z112 ≤ 0 ∨ z113 ≤ 0

)
∧
(
z121 ≤ 0 ∨ z122 ≤ 0

)
,

G1(x) ≤ z111 , G2(x) ≤ z111,

G3(x) ≤ z112 , G4(x) ≤ z113,

G5(x) ≤ z121 , G6(x) ≤ z122

}
with z = (z111, z112, z113, z121, z122)

⊺.

Let us now continue with level hΩ − 1 of the remaining expression tree.
In the case hΩ − 1 = 0 we already arrived at the root node, and thus no
further reformulation is necessary. Otherwise the level hΩ − 1 consists of
disjunctions Dj, j ∈ I(hΩ−1), which we want to remove from the remaining
expression tree by using the following lemma, whose proof follows the lines
of the proof of Proposition 3.2.1. The height of the expression tree will then
again decrease by one.

Lemma 3.2.5. The disjunction
∨

i∈I(zi ≤ 0) is true, iff maxy∈Y (z) y ≤ 0
holds, where Y (z) is defined by

Y (z) := {y ∈ R : y ≤ zi, i ∈ I}.

Hence, in order to drop the disjunctions Dj, j ∈ I(hΩ − 1), we introduce
new variables yj and sets

Yj(z) = {yj ∈ R : yj ≤ zi, i ∈ C(Cj)}, j ∈ I(hΩ − 1).

Furthermore we replace each term Dj, j ∈ I(hΩ − 1), in the remaining
expression tree by the term maxyj∈Yj(z) yj ≤ 0. We continue to demonstrate
our reformulation process along Example 3.1.1.

Example 3.2.6. In the way described above we replace the term

z121 ≤ 0 ∨ z122 ≤ 0 (3.1)

in the description of the set M3 (Example 3.2.4) by inserting a new variable
y12 and the semi-infinite constraint y12 ≤ 0 for all y12 ∈ Y12(z) with

Y12(z) := {y12 ∈ R : y12 ≤ z121 and y12 ≤ z122}.
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According to Lemma 3.2.5, this semi-infinite constraint is equivalent to the
inequalities (3.1) and thus we can modify the description of the feasible set
to

M4 :=
{
(x, z) ∈ R2 × R5 :

(
z111 ≤ 0 ∨ z112 ≤ 0 ∨ z113 ≤ 0

)
∧
(

max
y12∈Y12(z)

y12 ≤ 0
)
,

G1(x) ≤ z111 , G2(x) ≤ z111,

G3(x) ≤ z112 , G4(x) ≤ z113,

G5(x) ≤ z121 , G6(x) ≤ z122

}
.

Due to the explanation above we have M3 =M4. Analogously, we replace the
term z111 ≤ 0 ∨ z112 ≤ 0 ∨ z113 ≤ 0 by a semi-infinite constraint and obtain

M5 :=
{
(x, z) ∈ R2 × R5 :

(
max

y11∈Y11(z)
y11 ≤ 0

)
∧
(

max
y12∈Y12(z)

y12 ≤ 0
)
,

G1(x) ≤ z111 , G2(x) ≤ z111,

G3(x) ≤ z112 , G4(x) ≤ z113,

G5(x) ≤ z121 , G6(x) ≤ z122

}
with

Y11(z) = {y11 ∈ R : y11 ≤ z11j , 1 ≤ j ≤ 3}.

Next, consider level hΩ − 2 of the remaining expression tree. Again,
in the case hΩ − 2 = 0 we are done. Otherwise we add new variables zj,
j ∈ I(hΩ − 2), which represent the conjunctions Cj on that level. The idea
is the same as the one of Lemma 3.2.3, except that we replace functions of
type maxy∈Y (z) y instead of functions of type G(x). So, for every conjunction
Cj on level hΩ − 2 we introduce some zj with additional constraints

max
yi∈Yi(z)

yi ≤ zj, i ∈ C(Cj), j ∈ I(hΩ − 2).

Similarly to the conjunctions above, we replace each Cj in level hΩ−2 of the
remaining expression tree by the term zj ≤ 0. Again, we explain this step
along our running example.

Example 3.2.7. We replace the term(
max

y11∈Y11(z)
y11 ≤ 0

)
∧
(

max
y12∈Y12(z)

y12 ≤ 0
)
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in the description of the set M5 (Example 3.2.6) by

max
y11∈Y11(z)

y11 ≤ z1 , max
y12∈Y12(z)

y12 ≤ z1 , z1 ≤ 0.

Altogether, the GSIP reformulation of this DP turns out to be

GSIP : min
x,z

f(x) s.t. z1 ≤ 0, max
y11∈Y11(z)

y11 ≤ z1 , max
y12∈Y12(z)

y12 ≤ z1

G1(x) ≤ z111 , G2(x) ≤ z111,

G3(x) ≤ z112 , G4(x) ≤ z113,

G5(x) ≤ z121 , G6(x) ≤ z122

with the vector z = (z1, z111, z112, z113, z121, z122)
⊺ and the sets Y11(z), Y12(z)

as defined above.

In this way, for both conjunctive and disjunctive expression trees TΩ we
obtain GSIP reformulations after finitely many steps. We will denote the
(lifted) feasible set of the resulting GSIP by M̃GSIP .

Note that the variable z1 appearing in the reformulation of a conjunctive
tree (as in the above example) is a mere dummy variable, which may be
eliminated in computations. As mentioned earlier, also variables which are
only introduced to obtain a full and leaf disjunctive expression tree TΩ may
be eliminated. For example, our construction requires a tree of height three
(i.e., with four levels), to model a logical expression Ω given in conjunctive
normal form. Here, not only the variable corresponding to the root node,
but also all variables corresponding to 1-conjunctions in the third level may
be eliminated. In the following we shall omit further discussions of these
elimination options.

The next theorem is proved by recursively applying Lemmata 3.2.3 and
3.2.5.

Theorem 3.2.8. For any problem DP , whose expression tree TΩ is full and
leaf disjunctive, let GSIP be constructed as described above. Then, we have

MDP = prxM̃GSIP .

3.3 GSIP Solution Techniques for DPs

The GSIP reformulation of DPs from Section 3.2 generates generalized semi-
infinite constraints, which all share the simple structure

φ(z) ≤ ζ
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with
φ(z) = max

y∈Y (z)
y

and
Y (z) = {y ∈ R : y ≤ zk, 1 ≤ k ≤ s},

where the variable ζ ∈ R does not belong to the auxiliary variables listed in
the vector z ∈ Rs. Note that the original decision vector x ∈ Rn does not
explicitly appear in these generalized semi-infinite constraints, but enters via
the simple coupling constraints between the entries of z and the functions
G1, . . . , Gm (see Section 3.2).

In the following, we shall describe different approaches to handle a con-
straint of the form φ(z) ≤ ζ algorithmically. The application of the respective
approaches to all appearing generalized semi-infinite constraints then leads
to a solution method for the original DP. We will briefly describe the main
ideas of the methods, before applying them to the problem at hand. For
more details we refer to [116] and the references therein.

All subsequent approaches rely on the bilevel structure of generalized
semi-infinite constraints, that is, the function φ is interpreted as the optimal
value function of the so-called lower level problem

Q(z) : max
y∈R

y s.t. y ≤ zk , 1 ≤ k ≤ s.

Since the problem Q(z) is a one-dimensional linear optimization problem, one
may expect that sophisticated GSIP techniques collapse to rather obvious
approaches. We shall see, however, that this is only partly the case.

3.3.1 The Lower Level Duality Reformulation

For convex lower level problems in generalized semi-infinite optimization,
the idea to employ duality arguments goes back at least to [76] (for convex-
quadratic problems). Similar approaches have been used in robust optimiza-
tion and lead to a systematic treatment of GSIPs with smooth and convex
lower level problems in [33]. There, the function φ is rewritten as the optimal
value function of the corresponding Wolfe dual of the lower level problem,
and the additional dual variables are included by lifting the feasible set.

In the present setting of the above problem Q(z), this approach of course
collapses to standard linear programming duality. The dual problem is

D(z) : min
γ∈Rs

γ⊺z s.t. γ ∈ Σ
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with the standard simplex

Σ = {γ ∈ Rs : γ ≥ 0, e⊺γ = 1}
and the all-ones vector e. In view of strong duality we may rewrite the GSIP
constraint as

ζ ≥ φ(z) = min
γ∈Σ

γ⊺z,

or, equivalently, as

∃ γ ∈ Rs : γ ≥ 0, e⊺γ = 1, γ⊺z ≤ ζ.

Replacing each generalized semi-infinite constraint by this construction and
lifting the feasible set to the corresponding set M̂P transforms the GSIP re-
formulation of DP into a finite and purely conjunctive optimization problem.

Example 3.3.1. The lower level duality reformulation for the GSIP for-
mulation of the DP from Example 3.1.1 in Example 3.2.7 is constructed as
follows. Since the index set

Y11(z) = {y11 ∈ R : y11 ≤ z11j , 1 ≤ j ≤ 3}
is described by three constraints, we introduce the vector

γ̂11 = (γ111, γ112, γ113)
⊺ ∈ R3

and may rewrite the constraint

max
y11∈Y11(z)

y11 ≤ z1

as

∃ γ̂11 ∈ R3 : γ̂11 ≥ 0, e⊺γ̂11 = 1, γ111 z111 + γ112 z112 + γ113 z113 ≤ z1.

Analogously, we replace the constraint

max
y12∈Y12(z)

y12 ≤ z1

by
∃ γ̂12 ∈ R2 : γ̂12 ≥ 0, e⊺γ̂12 = 1, γ121 z121 + γ122 z122 ≤ z1.

This results in the finite conjunctive optimization problem

P : min
x,z,γ

f(x) s.t. z1 ≤ 0,

γ̂11 ≥ 0, e⊺γ̂11 = 1, γ111 z111 + γ112 z112 + γ113 z113 ≤ z1,

γ̂12 ≥ 0, e⊺γ̂12 = 1, γ121 z121 + γ122 z122 ≤ z1,

G1(x) ≤ z111 , G2(x) ≤ z111,

G3(x) ≤ z112 , G4(x) ≤ z113,

G5(x) ≤ z121 , G6(x) ≤ z122

with z defined as in Example 3.2.7, and γ = (γ111, γ112, γ113, γ121, γ122)
⊺.
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The subsequent result follows from our above discussions.

Theorem 3.3.2. For any problem DP , whose expression tree TΩ is full and
leaf disjunctive, let the purely conjunctive problem P be constructed as de-
scribed above. Then, we have MDP = prxM̂P .

We emphasize that resorting to GSIP techniques would actually not be
necessary to come up with this reformulation of DP . In fact, the vertex the-
orem of linear programming immediately implies that the discrete minimum
min1≤k≤s zk may be rewritten as the continuous minimum minγ∈Σ γ

⊺z, from
which the presented lifting approach follows along the lines sketched above.

Either way, this reformulation approach possesses the drawback that it
may produce spurious Karush-Kuhn-Tucker points, in which an NLP solver
for the problem P may terminate without identifying a locally minimal point
of DP . Here, we call a KKT point (x̄, z̄, γ̄) of P spurious, iff in the original
problem DP there exist feasible first order descent directions at x̄, so that
in terms of any stationarity concept for DPs (e.g., a generalization of the
concept from [60]) x̄ may only be stationary in a weak sense.

We shall illustrate this effect for a so-called re-entrant corner point of the
disjunctive program

DP : min f(x) s.t. G1(x) ≤ 0 ∨ . . . ∨ Gn(x) ≤ 0

with continuously differentiable functions f , G1, . . . , Gn and n ≥ 2. In
fact, x̄ ∈ Rn is called a re-entrant corner point of MDP , iff Gi(x̄) = 0 holds
for all i = 1, . . . , n, and iff the gradients ∇Gi(x̄), i = 1, . . . , n, are linearly
independent. Obviously, the feasible set of DP may then locally be expressed
as the union of finitely many sets with smooth boundaries. In Example 3.1.1
the point (3 +

√
3/2, 0) is a re-entrant corner point.

After the deletion of auxiliary variables, the lifted problem P correspond-
ing to DP is

P : min
x,γ

f(x) s.t. γ⊺G(x) ≤ 0, γ⊺e = 1, γ ≥ 0.

Proposition 3.3.3. For a re-entrant corner point x̄ of DP , let there exist
multipliers ρ̄i > 0, i = 1, . . . , n, with

∇f(x̄) +
n∑

i=1

ρ̄i∇Gi(x̄) = 0.

Then, there exists a vector γ̄ ∈ Σ such that (x̄, γ̄) is a Karush-Kuhn-Tucker
point of P , at which the linear independence constraint qualification, as well
as strict complementary slackness, are satisfied.
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Proof. The vector γ̄ := ρ̄/∥ρ̄∥1 lies in γ̄ ∈ Σ and satisfies γ̄ > 0, that is, none
of the constraints γi ≥ 0, i = 1, . . . , n, in P is active at (x̄, γ̄). In view of
G(x̄) = 0, on the other hand, the constraint γ⊺G(x) ≤ 0 is active at (x̄, γ̄).

The gradients, with respect to (x, γ), of the two active constraints are
linearly independent as the nontrivial linear combination ∇G(x̄)γ̄ of the gra-
dients ∇Gi(x̄), i = 1, . . . , n, cannot vanish under the linear independence as-
sumption at re-entrant corner points. Furthermore, the Karush-Kuhn-Tucker
condition (

∇f(x̄)
0

)
+ λ

(
∇G(x̄)γ̄

0

)
+ µ

(
0
e

)
=

(
0
0

)
of P at (x̄, γ̄) possesses the unique solution λ̄ = ∥ρ̄∥1 > 0 and µ̄ = 0. In
particular, also strict complementary slackness holds.

The following result shows, at least, that algorithms using second order
information when solving P should not terminate in a spurious Karush-Kuhn-
Tucker point from Proposition 3.3.3, since a second order descent direction
always exists.

Proposition 3.3.4. In addition to the assumptions of Proposition 3.3.3, let
the functions f , Gi, i = 1, . . . , n, be twice continuously differentiable. Then,
a second order descent direction for P exists at (x̄, γ̄).

Proof. With the notation from the proof of Proposition 3.3.3, recall the re-
lations γ̄ > 0 and λ̄ > 0. Let us define the vectors

δ :=

(
1, . . . , 1,−

(
n−1∑
i=1

γ̄i

)
/γ̄n

)⊺

,

d(c) := c(∇G(x̄))−⊺δ with c > 0,

as well as
η := (−1, . . . ,−1, n− 1)⊺.

Then, for any c > 0, the vector (d(c), η) lies in the tangent space to the
feasible set of P at (x̄, γ̄), since we have⟨(

∇G(x̄)γ̄
0

)
,

(
d(c)
η

)⟩
= c⟨γ̄, δ⟩ = 0

and ⟨(
0
e

)
,

(
d(c)
η

)⟩
= ⟨e, η⟩ = 0.
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Moreover, the Hessian with respect to (x, γ) of the corresponding Lagrangian
of P ,

L(x, γ, λ, µ) = f(x) + λγ⊺G(x) + µ(γ⊺e− 1)

at (x̄, γ̄, λ̄, µ̄) is

D2
(x,γ)L(x̄, γ̄, λ̄, µ̄) =

(
D2f(x̄) + λ̄

∑n
i=1 γ̄iD

2Gi(x̄) λ̄∇G(x̄)
λ̄∇G(x̄)⊺ 0

)
,

and we obtain(
d(c)
η

)⊺
D2

(x,γ)L(x̄, γ̄, λ̄, µ̄)

(
d(c)
η

)
= d(c)⊺

(
D2f(x̄) +

n∑
i=1

ρ̄iD
2Gi(x̄)

)
d(c) + 2λ̄d(c)⊺∇G(x̄)η

= c2δ⊺∇G(x̄)−1

(
D2f(x̄) +

n∑
i=1

ρ̄iD
2Gi(x̄)

)
(∇G(x̄))−⊺δ

+2λ̄cδ⊺η.

Due to λ̄ > 0 and

δ⊺η = −(n− 1)− n− 1

γ̄n

n−1∑
i=1

γ̄i < 0,

the latter is negative for a sufficiently small value c̄ > 0, so that (d(c̄), η) is
the asserted second order descent direction.

3.3.2 The Outer and Inner Smoothing Reformulations

From an algorithmic point of view it is often useful to know outer and in-
ner approximations of the feasible set of an optimization problem. For the
set MDP this section shows how smoothing methods from generalized semi-
infinite optimization may be employed to this end.

In fact, for any generalized semi-infinite optimization problem of the gen-
eral form

GSIP : min
x∈Rn

f(x) s.t. x ∈MGSIP

with the feasible set

MGSIP = {x ∈ Rn : gi(x, y
i) ≤ 0 for all yi ∈ Yi(x), i ∈ I}
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and
Yi(x) = {yi ∈ Rmi : vi(x, yi) ≤ 0}, i ∈ I,

in [111] the equivalence of GSIP with the problem

SG : min
x,y1,...,yp

f(x) s.t. g(x, yi) ≤ 0, yi is a solution of Qi(x), i ∈ I

is shown, as long as Yi(x) is nonempty for all x ∈ Rn and i ∈ I. Here, the
lower level problem of the constraint indexed with i ∈ I is denoted by

Qi(x) : max
yi∈Rmi

gi(x, y
i) s.t. vi(x, yi) ≤ 0.

Note that the former index variables yi, i ∈ I, are treated as additional
decision variables in SG, so that already this step of the reformulation is
a lifting approach. Since a part of the decision variables is constrained to
solve an optimization problem depending on the other decision variables, this
problem has the structure of a Stackelberg game ([16,32]).

In a next step, for each i ∈ I the fact that yi solves Qi(x) is equivalently
replaced by an optimality condition. If the problems Qi(x), i ∈ I, are convex,
if the Slater condition holds in each set Yi(x), x ∈ Rn, i ∈ I, and if all
functions gi, v

i, i ∈ I, are continuously differentiable on their respective
domains, then this may be achieved by the Karush-Kuhn-Tucker conditions

∃ γi ∈ Rsi : ∇ygi(x, y
i)−∇yv

i(x, yi) γi = 0,

0 ≤ γi ⊥ −vi(x, yi) ≥ 0

for each i ∈ I, where the second line stands for a complementarity condition.
The introduction of the additional variables γi, i ∈ I, leads to another lift-
ing of the feasible set whose description, however, contains complementarity
constraints. The resulting problem is thus the mathematical program with
complementarity constraints

MPCC : min
x,y1,...,yp,γ1,...,γp

f(x) s.t. g(x, yi) ≤ 0,

∇ygi(x, y
i)−∇yv

i(x, yi) γi = 0,

0 ≤ γi ⊥ −vi(x, yi) ≥ 0, i ∈ I.

MPCCs turn out to be numerically challenging, since the so-called Mangasa-
rian-Fromovitz constraint qualification (MFCQ) is violated everywhere in
their feasible set ([105]).

A first numerical approach to the MPCC reformulation of a general GSIP
was given in [112,113] by applying the smoothing procedure for MPCCs from
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[40]. In fact, each scalar complementarity constraint 0 ≤ γik ⊥ −vik(x, yi) ≥ 0,
1 ≤ k ≤ si, i ∈ I, is first replaced by the equation ψ(γik,−vik(x, yi)) = 0 with
a complementarity function ψ like the natural residual function

ψNR(a, b) = min(a, b)

or the Fischer-Burmeister function

ψFB(a, b) = a+ b−
√
a2 + b2.

The nonsmooth function ψ is then equipped with a smoothing parameter
τ > 0, for example

ψNR
τ (a, b) =

1

2

(
a+ b−

√
(a− b)2 + 4τ 2

)
or

ψFB
τ (a, b) = a+ b−

√
a2 + b2 + 2τ 2,

so that ψτ is smooth and ψ0 coincides with ψ. This gives rise to the family
of smoothed problems

Pτ : min
x,y1,...,yp,γ1,...,γp

f(x) s.t. g(x, yi) ≤ 0,

∇ygi(x, y
i)−∇yv

i(x, yi) γi = 0,

ψτ (γ
i,−vi(x, yi)) = 0, i ∈ I

with τ > 0, where ψτ is extended to vector arguments componentwise. Under
mild assumptions, in [112,113] it is shown that Pτ is numerically tractable,
and that stationary points of Pτ tend to a stationary point of GSIP for
τ → 0.

While MPCC still is an equivalent formulation of GSIP , the smoothed
problem Pτ only is an approximation. In [112] it is shown that its feasible

set M̂τ at least satisfies prxM̂τ ⊇ MGSIP , that is, it constitutes an outer
approximation of MGSIP for τ > 0. This means, unfortunately, that the
x-parts of optimal points of Pτ must be expected to be infeasible for GSIP .

However, in [114] it could be shown that a simple modification of Pτ leads
to inner approximations ofMGSIP , and thus to feasible optimal points of the
approximating problems. In fact, an error analysis for the approximation of
the lower level optimal value proves that the feasible set M̂◦

τ of

P ◦
τ : min

x,y1,...,yp,γ1,...,γp
f(x) s.t. g(x, yi) + siτ

2 ≤ 0,

∇ygi(x, y
i)−∇yv

i(x, yi) γi = 0,

ψτ (γ
i,−vi(x, yi)) = 0, i ∈ I
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satisfies prxM̂
◦
τ ⊆MGSIP (where si denotes the number of lower level inequal-

ity constraints). A combination of the outer and inner smoothing approaches
leads to ‘sandwiching’ procedures for MGSIP ([114]).

For each lower level problem of the form

Q(z) : max
y∈R

y s.t. y ≤ zk , 1 ≤ k ≤ s

appearing in the GSIP reformulation of DPs, the convexity and differentia-
bility assumptions, as well as the Slater condition are obviously satisfied, so
that outer smoothing is achieved by the constraints

y ≤ 0, e⊺γ = 1, ψτ (γk , zk − y) = 0, 1 ≤ k ≤ s,

whereas inner smoothing results from

y + sτ 2 ≤ 0, e⊺γ = 1, ψτ (γk , zk − y) = 0, 1 ≤ k ≤ s.

Example 3.3.5. We construct the outer smoothing reformulation for the
GSIP formulation of the DP from Example 3.1.1 in Example 3.2.7 as follows.
For the index set

Y11(z) = {y11 ∈ R : y11 ≤ z11j , 1 ≤ j ≤ 3}

we again introduce the vector γ̂11 ∈ R3, but now subject to the constraints

y11 ≤ z1, e⊺γ̂11 = 1, ψτ (γ11j , z11j − y11) = 0, 1 ≤ j ≤ 3

with some τ > 0. An analogous construction for the second generalized semi-
infinite constraint leads to the finite conjunctive optimization problem

Pτ : min
x,y,z,γ

f(x) s.t. z1 ≤ 0,

y11 ≤ z1, e
⊺γ̂11 = 1, ψτ (γ11j, z11j − y11) = 0, 1 ≤ j ≤ 3,

y12 ≤ z1, e
⊺γ̂12 = 1, ψτ (γ12j, z12j − y12) = 0, 1 ≤ j ≤ 2,

G1(x) ≤ z111 , G2(x) ≤ z111,

G3(x) ≤ z112 , G4(x) ≤ z113,

G5(x) ≤ z121 , G6(x) ≤ z122

with y = (y11, y12)
⊺ and the vectors z and γ defined as in Examples 3.2.7 and

3.3.1.
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The inner smoothing problem, on the other hand, is given by

P ◦
τ : min

x,y,z,γ
f(x) s.t. z1 ≤ 0,

y11 + 3τ 2 ≤ z1, e
⊺γ̂11 = 1,

ψτ (γ11j, z11j − y11) = 0, 1 ≤ j ≤ 3,

y12 + 2τ 2 ≤ z1, e
⊺γ̂12 = 1,

ψτ (γ12j, z12j − y12) = 0, 1 ≤ j ≤ 2,

G1(x) ≤ z111 , G2(x) ≤ z111,

G3(x) ≤ z112 , G4(x) ≤ z113,

G5(x) ≤ z121 , G6(x) ≤ z122 .

Figure 3.4 shows the projected feasible sets resulting from outer and inner
smoothings for the set MDP from Figure 3.1, for several values of τ .
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Figure 3.4: Outer and inner smoothings from Example 3.3.5

We summarize our discussion so far in the following result.

Theorem 3.3.6. For any problem DP , whose expression tree TΩ is full and
leaf disjunctive, let the purely conjunctive smoothing problems Pτ and P ◦

τ be

constructed as described above. Then, we have prxM̂
◦
τ ⊆MDP ⊆ prxM̂τ .
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Unfortunately, smoothing does not prevent the appearance of the spuri-
ous Karush-Kuhn-Tucker points from Section 3.3.1. This is a consequence of
typical nondegeneracy of spurious Karush-Kuhn-Tucker points in the un-
perturbed problem P and the implicit function theorem. In fact, these
Karush-Kuhn-Tucker points then prevail under small perturbations, and
small smoothing parameters τ > 0 may be interpreted as such perturba-
tions. We omit the details of this analysis for space reasons.

Instead, in the following we shall provide explicit estimates for the fea-
sibility and optimality errors occurring in the smoothing reformulation from
Theorem 3.3.6. General results for generalized semi-infinite optimization
problems which could be applied here are not available in the current liter-
ature, so that we shall at least show how to derive such estimates for the
outer smoothing reformulation.

3.3.3 Stability Analysis for Outer Smoothing

For τ > 0, let the problem Pτ corresponding to DP be constructed as above.
Recall that this construction involves first lifting the original variables x to
(x, z), and in a second step to (x, y, z, γ). Subsequently we will not work with

the set M̂τ of (x, y, z, γ)-variables, but first consider its orthogonal projection

M̃τ := pr(x,z)M̂τ to the space of (x, z)-variables, and then deduce stability
results in the space Rn of x-variables.

In the description of the set M̃GSIP (Section 3.2), instead of lifting each
appearing semi-infinite constraint

φ(z) = max
y∈Y (z)

y ≤ ζ with Y (z) = {y ∈ R : y ≤ zk, 1 ≤ k ≤ s}

by employing optimal points and their multipliers, and then smoothing the
complementarity constraints, we may equivalently use the logarithmic barrier
approach for the lower level problem. It is not hard to see ([112]) that, for
any τ > 0, with

yτ (z) := argmax
y

(
y + τ 2

s∑
k=1

log(zk − y)

)
,

a functional description of M̃τ results from the description of M̃GSIP by
replacing each inequality of the form φ(z) ≤ ζ by yτ (z) ≤ ζ. Note that this
reformulation is not suitable for numerical purposes, as checking feasibility
for M̃τ involves the computation of the optimal points yτ (z). It is helpful,
however, for proving the announced bounds.
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In fact, from [18,114] we know the estimates

0 ≤ φ(z)− yτ (z) ≤ sτ 2

for any z. While the lower bound yields the inclusion M̃GSIP ⊆ M̃τ , the
upper bound allows us to bound the feasibility error, measured as the excess
of M̃τ over M̃GSIP ,

ex(M̃τ , M̃GSIP ) := sup
(x,z)∈M̃τ

dist((x, z), M̃GSIP ),

where
dist((x, z), M̃GSIP ) := inf

(y,η)∈M̃GSIP

∥(y, η)− (x, z)∥2

denotes the Euclidean distance of (x, z) from M̃GSIP .

The main assumption for our error estimate will be the validity of a global
error bound for the inequality system describing the set M̃GSIP . To state it,
let φi(z) ≤ ζi, i ∈ I, denote the semi-infinite constraints in the description of

M̃GSIP , and gj(x, z) ≤ 0, j ∈ J , the remaining constraints. Then, the system
of inequalities φi(z) ≤ ζi, i ∈ I, gj(x, z) ≤ 0, j ∈ J , satisfies a global error
bound with Hoffman constant γ > 0 iff

dist((x, z), M̃GSIP ) ≤ γ max{(φi(z)− ζi)
+, i ∈ I, g+j (x, z), j ∈ J}

holds for all (x, z), where a+ := max(0, a) denotes the plus function. For
surveys on global error bounds we refer to [8,9,87].

Lemma 3.3.7. Let the system of inequalities φi(z) ≤ ζi, i ∈ I, gj(x, z) ≤ 0,

j ∈ J , describing M̃GSIP satisfy a global error bound with Hoffman constant
γ > 0, and let s̄ denote the length of the longest disjunction appearing in the
problem DP . Then, for any τ > 0 the feasibility error in the (x, z)-space
satisfies

ex(M̃τ , M̃GSIP ) ≤ γτ 2s̄.

Proof. For any (x, z) ∈ M̃τ and any j ∈ J we have gj(x, z) ≤ 0 and hence
g+j (x, z) = 0. Moreover, as for any i ∈ I we have yi,τ (z) ≤ ζi, we may
conclude

φi(z)− ζi ≤ (φi(z)− ζi)− (yi,τ (z)− ζi) ≤ siτ
2.

This implies
(φi(z)− ζi)

+ ≤ siτ
2
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and, altogether, the validity of the error bound results in the estimate

dist((x, z), M̃GSIP ) ≤ γτ 2max
i∈I

si = γτ 2s̄.

We arrive at the assertion

ex(M̃τ , M̃GSIP ) = sup
(x,z)∈M̃τ

dist((x, z), M̃GSIP ) ≤ γτ 2s̄.

By means of the following result, we will be able to transfer the estimate
from Lemma 3.3.7 from the space of (x, z)-variables to the corresponding sets
in Rn.

Lemma 3.3.8. Let A,B ⊆ Rn ×Rm with A ⊇ B, and let Rn be the space of
x-variables. Then, the relations

prxA ⊇ prxB and ex(prxA, prxB) ≤ ex(A,B)

hold.

Proof. The inclusion is obvious. Moreover, for any (x, z) ∈ A we find

dist((x, z), B) = inf
(y,η)∈B

∥(y, η)− (x, z)∥2 ≥ inf
(y,η)∈B

∥y − x∥2

= inf
y∈prxB

∥y − x∥2 = dist(x, prxB).

This implies

ex(A,B) = sup
(x,z)∈A

dist((x, z), B) ≥ sup
(x,z)∈A

dist(x, prxB)

= sup
x∈prxA

dist(x, prxB) = ex(prxA, prxB).

Combining Lemmata 3.3.7 and 3.3.8 with the identities prxM̃τ = prxM̂τ

and prxM̃GSIP =MDP yields the following main stability result for the outer
approximation approach.

Theorem 3.3.9. Let the system of inequalities φi(z) ≤ ζi, i ∈ I, gj(x, z) ≤
0, j ∈ J , describing M̃GSIP satisfy a global error bound with Hoffman con-
stant γ > 0, and let s̄ denote the length of the longest disjunction appearing
in the problem DP . Then, for any τ > 0 the feasibility error satisfies

ex(prxM̂τ ,MDP ) ≤ γτ 2s̄.
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Corollary 3.3.10. In addition to the assumptions of Theorem 3.3.9 let the
objective function f of DP satisfy a global Lipschitz condition on prxM̂τ

with Lipschitz constant L > 0 (independently of τ). Assume that f possesses

globally minimal points on MDP as well as on prxM̂τ , and denote the corre-
sponding optimal values by v and vτ , respectively. Then, the optimality error
satisfies

0 ≤ v − vτ ≤ Lγτ 2s̄.

Proof. The first asserted inequality is due to the inclusion MDP ⊆ prxM̂τ .

Moreover, with a globally minimal point x⋆τ of f on prxM̂τ the optimality
error satisfies

v − vτ ≤ f(x)− f(x⋆τ ) ≤ L∥x− x⋆τ∥2
for all x ∈MDP and, in view of Theorem 3.3.9,

v − vτ ≤ L inf
x∈MDP

∥x− x⋆τ∥2 = L dist(x⋆τ ,MDP )

≤ L ex(prxM̂τ ,MDP ) ≤ Lγτ 2s̄.

The estimates derived above may not be expected to hold for the outer
approximation of any disjunctive optimization problem, since they crucially
depend on the global error bound assumption made on the inequality system
describing M̃GSIP . The statement of sufficient conditions for the global error
bound is beyond the scope of this thesis, but at least we point out that the
nonconvexity of the appearing functions

φi(z)− ζi = min
k=1,...,si

zk − ζi, i ∈ I,

does not interfere with the existence of a Hoffman constant. In fact, for a sin-
gle i ∈ I define the sublevel set Φi := {(z, ζi) : mink=1,...,s zk ≤ ζi} and choose
(z̄, ζ̄i) from its set complement Φc

i . Then, z̄k > ζ̄i and (z̄ − (z̄k − ζ̄i)ek, ζi) ∈ Φi

hold for all k ∈ {1, . . . , si}, where ek denotes the k-th unit vector. As a con-
sequence, dist((z̄, ζ̄i),Φi) ≤ z̄k − ζ̄i holds for any k ∈ {1, . . . , si}, so that we
arrive at

dist((z̄, ζ̄i),Φi) ≤ min
k=1,...,si

z̄k − ζ̄i = (φi(z̄)− ζ̄i)
+.

As the latter inequality trivially holds for any (z̄, ζ̄i) ∈ Φi, we have shown
that the single nonconvex constraint φi(z)− ζi satisfies a global error bound
with Hoffman constant γi = 1. Unfortunately, a Hoffman constant for the
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whole system of inequalities is not easily constructed from this information,
but at least our remark shows that the discussed nonconvexity is not harmful.

Finally, let us note that the corresponding stability analysis for the inner
approximation prxM̂

◦
τ ofMDP is not completely analogous, as an error bound

for the τ -dependent set pr(x,z)M̂
◦
τ has to be assumed. Since the behavior of

the corresponding Hoffman constants γτ for τ → 0 is not clear, we leave the
analysis of this question for future research.

3.4 Preliminary Numerical Results

In this section, we present our numerical results. Our computational tests
are performed on a Intel Pentium CPU 987, 1.5 GHz with 4 GB of RAM
running Linux. As a solver for the occurring nonlinear problems we used
Ipopt [130], version 3.11.7. The termination tolerance is set to 10−6. The
algorithm is implemented in C++ and compiled with GNU g++, version 4.7.

In the largest part of our implementation we make heavy use of operator
overloading to construct the conjunctive optimization problem based on the
given disjunctive problem. This makes it is rather convenient to model even
complex logical expressions since both the lower level duality reformulation
as well as the outer and inner smoothing reformulations can be constructed
automatically.

However, no automatic or numerical differentiation is implemented, and
thus the first derivatives have to be entered manually so far. All Hessians
are approximated using a feature of Ipopt.

For the test problem

DP : min
x∈R2

f(x) s.t. x ∈MDP

with

MDP =
{
x ∈ R2 :

(
G1(x) ≤ 0 ∨G2(x) ≤ 0

)
∧G3(x) ≤ 0

}
and

f(x) := −x2,
G1(x) := x21 + x22 − 1,

G2(x) := (x1 − 1)2 + x22 − 1,

G3(x) := −x2,
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the feasible set can be described as the union of two semi-discs, both with
radius 1. Their midpoints are the origin and (1, 0)⊺, respectively, and the
globally minimal points of the problem are (0, 1)⊺ and (1, 1)⊺. There are no
further locally minimal points, while we do have a re-entrant corner point at
(0.5,

√
3
2
)⊺ that leads to a spurious Karush-Kuhn-Tucker point in the lower

level duality reformulation, as described in Section 3.3.

Using the lower level duality reformulation and starting Ipopt from the
point (x01, x

0
2, 0, . . . , 0)

⊺ with (x01, x
0
2) = (0, 0), the algorithm converges to

a point with first components (x∗1, x
∗
2)

⊺ = (0.00000, 1.00000)⊺, which corre-
sponds to one of the globally minimal points of the original problem, within
10 iterations. We obtained very similar results for various different starting
points of the form (x01, x

0
2, 0, . . . , 0)

⊺, where x01 and x02 are chosen from the
set {−1, 0, 1}. The algorithm then always converges to one of the globally
minimal points. The results are presented in the upper part of Table 3.1,
where (x01, x

0
2) denotes the first two coordinates for the initial point, (x∗1, x

∗
2)

denotes the first coordinates of the limit point computed by the nonlinear
solver and v∗ is the value of the objective function at that point.

There seems to be one notable exception to this observation, that we
show in the lower part of Table 3.1. If in the initial point we set x01 = 0.5,
x02 ∈ R, and the remaining variables to zero, then the algorithm is likely to
converge to the spurious Karush-Kuhn-Tucker point mentioned above. This
even holds for more points with x01 = 0.5, but not for all, as can be seen
from the very last row. This is in accordance with Proposition 3.3.4, which
guarantees the existence of a second order descent direction at the spurious
KKT point, and thus convergence to this point at most along some lower
dimensional manifold.

In principle the numerical observations from the paragraph above remain
true if we switch from the lower level duality reformulation to the smoothed
mathematical program with complementarity constraints. This can be seen
from Table 3.2 and Table 3.3. With τ = 0.1 the smoothing parameter is
chosen rather large to demonstrate the effects from the outer and inner ap-
proximation. Starting from (0, 0, 0 . . . , 0)⊺ the algorithm converges to a point
with (x∗1, x

∗
2)

⊺ = (0.00010, 1.00504)⊺ within 15 iterations. For the inner ap-
proximation with the same value of τ it takes 14 iterations to approximate
a point with the first two components (x∗1, x

∗
2)

⊺ = (0.00010, 0.99504)⊺. Thus,
in both cases we generate a point close to one of the globally minimal points
of the original problem.

There are two test runs in Table 3.2 and Table 3.3, respectively, that
do not work properly. The according lines are marked by ‘-’. For these
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Table 3.1: Lower level duality reformulation of the first test problem

(x01, x
0
2) (x∗1, x

∗
2) v∗

(−1.0,−1.0) (0.000000, 1.000000) −1.000000
(−1.0, 0.0) (0.000000, 1.000000) −1.000000
(−1.0, 1.0) (0.000000, 1.000000) −1.000000
(0.0,−1.0) (1.000000, 1.000000) −1.000000
(0.0, 0.0) (0.000001, 1.000000) −1.000000
(0.0, 1.0) (0.000000, 1.000000) −1.000000
(1.0,−1.0) (0.000000, 1.000000) −1.000000
(1.0, 0.0) (0.999999, 1.000000) −1.000000
(1.0, 1.0) (1.000000, 1.000000) −1.000000

(0.5,−2.0) (0.500000, 0.866025) −0.866025
(0.5,−1.0) (0.500000, 0.866025) −0.866025
(0.5, 0.0) (0.500000, 0.866025) −0.866025
(0.5, 1.0) (0.500000, 0.866025) −0.866025
(0.5, 2.0) (0.000000, 1.000000) −1.000000

instances Ipopt reports that no feasible point could be found. However,
finding a feasible point is usually not an issue for Ipopt, as the remaining
results indicate.

We also tested our reformulation approaches for the problem from Ex-
ample 3.1.1. The numerical results are similar. For the lower level duality
approach these are presented in Table 3.4. With τ = 10−4 the parameter
for the smoothed mathematical programs is still chosen moderately but al-
ready sufficiently small, as can be seen from Table 3.5 and Table 3.6. From
certain starting points, also in this example convergence to the spurious
Karush-Kuhn-Tucker point (3 +

√
3/2, 0) occurs in all of our reformulation

approaches, as has to be expected from Proposition 3.3.4 and the correspond-
ing remark at the end of Section 3.3.2.

For larger problem instances, one might want to refine the smoothing
parameter τ adaptively, if necessary. With respect to outer smoothing, Fig-
ure 3.4 suggests to start with a rather large parameter, since the set prxM̂τ

then looks ‘almost convex’. One may ask under which conditions this can
be guaranteed for the outer smoothing of disjunctive optimization problems,
how the degree of convexity can be measured appropriately, and when tracing
solutions of the smoothed problems for τ → 0 may approximate a globally
minimal point of the original problem. We leave this question for future
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Table 3.2: Outer smoothing reformulation of the first test problem with
τ = 0.1

(x01, x
0
2) (x∗1, x

∗
2) v∗

(−1.0,−1.0) - -
(−1.0, 0.0) (0.000100, 1.005037) −1.005037
(−1.0, 1.0) (0.999900, 1.005037) −1.005037
(0.0,−1.0) (0.000100, 1.005037) −1.005037
(0.0, 0.0) (0.000100, 1.005037) −1.005037
(0.0, 1.0) (0.000100, 1.005037) −1.005037
(1.0,−1.0) (0.999900, 1.005037) −1.005037
(1.0, 0.0) (0.999900, 1.005037) −1.005037
(1.0, 1.0) (0.999900, 1.005037) −1.005037

(0.5,−2.0) (0.000100, 1.005037) −1.005037
(0.5,−1.0) - -
(0.5, 0.0) (0.500000, 0.877496) −0.877496
(0.5, 1.0) (0.500000, 0.877496) −0.877496
(0.5, 2.0) (0.000100, 1.005037) −1.005037

research.
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Table 3.3: Inner smoothing reformulation of the first test problem with τ =
0.1

(x01, x
0
2) (x∗1, x

∗
2) v∗

(−1.0,−1.0) - -
(−1.0, 0.0) (0.000100, 0.995038) −0.995038
(−1.0, 1.0) - -
(0.0,−1.0) (0.999900, 0.995038) −0.995038
(0.0, 0.0) (0.000100, 0.995038) −0.995038
(0.0, 1.0) (0.000100, 0.995038) −0.995038
(1.0,−1.0) (0.000100, 0.995038) −0.995038
(1.0, 0.0) (0.999900, 0.995038) −0.995038
(1.0, 1.0) (0.999900, 0.995038) −0.995038

(0.5,−2.0) (0.000100, 0.995038) −0.995038
(0.5,−1.0) (0.500000, 0.866025) −0.866025
(0.5, 0.0) (0.500000, 0.866025) −0.866025
(0.5, 1.0) (0.500000, 0.866025) −0.866025
(0.5, 2.0) (0.999900, 0.995038) −0.995038
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Table 3.4: Lower level duality reformulation of the second test problem

(x01, x
0
2) (x∗1, x

∗
2) v∗

(−1.0,−1.0) (0.000000,−0.088129) 0.000000
(−1.0, 0.0) (0.000000, 0.000000) 0.000000
(−1.0, 1.0) (0.000000, 0.088129) 0.000000
(0.0,−1.0) (0.000000, 0.001944) 0.000000
(0.0, 0.0) (0.000000, 0.000000) 0.000000
(0.0, 1.0) (0.000000,−0.001944) 0.000000
(1.0,−1.0) (0.000000,−0.038948) 0.000000
(1.0, 0.0) (0.000000, 0.000000) 0.000000
(1.0, 1.0) (0.000000, 0.038948) 0.000000
(2.0,−1.0) (4.000000, 0.500000) −4.000000
(2.0, 0.0) (3.866026, 0.000001) −3.866026
(2.0, 1.0) (4.000000,−0.500000) −4.000000
(3.0,−1.0) (4.000000, 0.500000) −4.000000
(3.0, 0.0) (4.000000, 0.500000) −4.000000
(3.0, 1.0) (4.000000,−0.500000) −4.000000
(4.0,−1.0) (0.000000,−0.041141) 0.000000
(4.0, 0.0) (0.000000, 0.000000) 0.000000
(4.0, 1.0) (0.000000, 0.041143) 0.000000
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Table 3.5: Outer smoothing reformulation of the second test problem with
τ = 10−4

(x01, x
0
2) (x∗1, x

∗
2) v∗

(−1.0,−1.0) (0.000000,−0.240750) 0.000000
(−1.0, 0.0) (0.000000, 0.000000) 0.000000
(−1.0, 1.0) (0.000000, 0.240750) 0.000000
(0.0,−1.0) (0.000000, 0.195208) 0.000000
(0.0, 0.0) (0.000000, 0.000000) 0.000000
(0.0, 1.0) (0.000000,−0.195208) 0.000000
(1.0,−1.0) (0.000000, 0.020345) 0.000000
(1.0, 0.0) (0.000000, 0.000000) 0.000000
(1.0, 1.0) (0.000000,−0.020345) 0.000000
(2.0,−1.0) (4.000000,−0.500000) −4.000000
(2.0, 0.0) (0.000000, 0.000000) 0.000000
(2.0, 1.0) (4.000000, 0.500000) −4.000000
(3.0,−1.0) (4.000000,−0.500000) −4.000000
(3.0, 0.0) (3.866025, 0.000000) −3.866025
(3.0, 1.0) (4.000000, 0.500000) −4.000000
(4.0,−1.0) (4.000000,−0.499999) −4.000000
(4.0, 0.0) (3.866025, 0.000000) −3.866025
(4.0, 1.0) (4.000000, 0.499999) −4.000000
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Table 3.6: Inner smoothing reformulation of the second test problem with
τ = 10−4

(x01, x
0
2) (x∗1, x

∗
2) v∗

(−1.0,−1.0) (0.000000,−0.240750) 0.000000
(−1.0, 0.0) (0.000000, 0.000000) 0.000000
(−1.0, 1.0) (0.000000, 0.240750) 0.000000
(0.0,−1.0) (0.000000, 0.195205) 0.000000
(0.0, 0.0) (0.000000, 0.000000) 0.000000
(0.0, 1.0) (0.000000,−0.195205) 0.000000
(1.0,−1.0) (0.000000, 0.020345) 0.000000
(1.0, 0.0) (0.000000, 0.000000) 0.000000
(1.0, 1.0) (0.000000,−0.020345) 0.000000
(2.0,−1.0) (4.000000,−0.500000) −4.000000
(2.0, 0.0) (0.000000, 0.000000) 0.000000
(2.0, 1.0) (4.000000, 0.499999) −4.000000
(3.0,−1.0) (4.000000,−0.500000) −4.000000
(3.0, 0.0) (3.866025, 0.000000) −3.866025
(3.0, 1.0) (4.000000, 0.500000) −4.000000
(4.0,−1.0) (4.000000, 0.500000) −4.000000
(4.0, 0.0) (3.866025, 0.000000) −3.866025
(4.0, 1.0) (4.000000,−0.500000) −4.000000



Chapter 4

Global Solution of Disjunctive
Programs

In this chapter, which is based on [66], we consider the solution of box-
constrained disjunctive programs to global optimality, that is problems where
the feasible set is described by

MDP = {x ∈ B | Ω(g1(x) ≤ 0, . . . , gp(x) ≤ 0) = true}

with a box B ⊆ Rn and a logical expression Ω : {true, false}p → {true, false}
consisting of only conjunctions and disjunctions. As is common in global
optimization, we are interested in computing an ε-global optimal point, i.e.,
a point x∗ ∈MDP with f(x) ≥ f(x∗)− ε for all x ∈MDP .

Usually all of the solution methods for DPs as well as GDPs either ex-
pect a conjunctive or a disjunctive normal form of the constraints, or they
introduce a list of additional binary variables. Our approach in this thesis
is to solve GDPs to global optimality without the assumption of a normal
form, to avoid an exponential growth in the number of constraints during
normalization, and without introducing binary variables, to avoid numerical
instabilities and poor relaxations. In the following section we shall present a
general branch-and-bound framework for global optimization of disjunctive
programs and prove its convergence in Section 4.2. Note that the approach
in Chapter 3 only provides locally optimal solutions.

This chapter is mainly based on the article [66], which in turn is based on
the master thesis [95] of Fabian Rigterink who also performed the numerical
computations explained in Section 4.4 as well as parts of the computational
tests in Example 4.1.2. This chapter is structured as follows. In Section 4.1,
our branch-and-bound framework, some assumptions, the main ideas as well

61
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as benefits over the mixed-integer reformulation are described. The proof
of convergence is given in Section 4.2. More general logical expressions that
also involve negations and implications are considered in Section 4.3. We
discuss some computational results in Section 4.4.

4.1 The Branch-and-Bound Framework

Our framework is based on standard branch-and-bound algorithms from
global optimization, see for example [56]. The main idea is to successively
construct a tessellation of the box B and to keep a list of sub-boxes that
may contain globally minimal points. We start by dividing the box B into
two sub-boxes X1 and X2 along the midpoint of a longest edge and compute
lower bounds for the globally minimal value on both sub-boxes. The smaller
one of these values provides a lower bound for the globally minimal value of
the optimization problem. In order to compute the lower bounds, many of
the well-known procedures from conjunctive global optimization are appli-
cable. For example, we allow the use of the αBB-relaxation from [3,4,7], or
centered and optimal centered forms from [17,70]. The direct application of
interval arithmetic is also possible [86], in contrast to its indirect use in the
aforementioned lower bounding procedures. There are also lower bounding
procedures based on duality, see e.g. [35,36].

In our branch-and-bound framework, we propose how these standard ap-
proaches can be used to solve disjunctive programs. The main assumption is
that the lower bounding procedure isM -independent, convergent and mono-
tone according to the following definition taken from [64]. All of the afore-
mentioned lower bounding procedures can be used in a straightforward man-
ner such that this assumption is satisfied.

Definition 4.1.1.

a) A function ℓf from the set of all sub-boxes X of B to R is called M -
independent lower bounding procedure for a function f if it satisfies
ℓf (X) ≤ minx∈X f(x) for all sub-boxes X ⊆ B.

b) A lower bounding procedure ℓf is called monotone if ℓf (X1) ≥ ℓf (X2)
holds for all boxes X1 ⊆ X2 ⊆ B.

c) We call lower bounding procedures convergent if

lim
k→∞

ℓf (Xk) = lim
k→∞

min
x∈Xk

f(x)
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holds for any exhaustive sequence of boxes (Xk)k∈N (i.e., a sequence of
boxes (Xk)k∈N with Xk+1 ⊆ Xk, k ∈ N, and limk→∞ diag(Xk) = 0) and
any choice of the function f , respectively.

Using this definition for a box X ⊆ B, with a lower bounding procedure
ℓgi we put

Ŷi(X) :=

{
true if ℓgi(X) ≤ 0
false if ℓgi(X) > 0

for i = 1, . . . , p. Observe that Ŷi depends on boxes whereas Yi as defined in
the introduction depends on single points x ∈ X. Furthermore, Yi is linked
to a value of the constraint gi, whereas Ŷi is linked to a lower bound for gi on
the considered box. It will make sense to replace the terms Yi(x) by Ŷi(X)
in the logical expression Ω, as we will see soon.

After the division of a box into two sub-boxes, we will check if both sub-
boxes still have to be kept in the list. There are typically two reasons why
boxes may be fathomed: either it can be shown that they do not contain
points with sufficiently small objective function values, or it can be shown
that they do not contain any feasible points.

In branch-and-bound algorithms, one of the most important questions
regarding the feasible set is to decide if it is possible that a given box X
contains feasible points, or if the box can be excluded from further consid-
erations, otherwise. We propose to exclude the box X from the list if the
expression

Ω(Ŷ1(X), . . . , Ŷp(X)) (4.1)

is false. We will show in Section 4.2 that by applying this rule no box that
contains feasible points is excluded. If expression (4.1) yields true, then the
box X may or may not contain feasible points. Note that the evaluation
of expression (4.1) is just a function evaluation of the logical expression Ω
at the vector defined by the lower bounds ℓgi(X) and, as such, numerically
inexpensive.

We are now ready to state our branch-and-bound framework where the
main difference to standard branch-and-bound algorithms from global mini-
mization is in Step 3. Here, mid(B) denotes the geometrical midpoint of the
box B.
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Algorithm 1: Branch-and-bound framework for disjunctive programs

Input: Tolerance ε > 0, initial lower bound v̂0 = ℓf (B), initial upper
bound u0 = +∞, list L = {(B, ℓ(B))}, currently best known
point x∗0 = mid(B) and iteration counter k = 1.

Output: ε-global optimal point x∗, or certificate for MDP = ∅.
while uk−1 − v̂k−1 > ε and L ̸= ∅ do

Step 1: Choose (Xk, vk) ∈ L with vk = v̂k−1;
Step 2: Divide Xk along the midpoint of a longest edge into X1

k

and X2
k ;

Step 3: For j = 1, 2, if Ω(Ŷ1(X
j
k), . . . , Ŷp(X

j
k)) is true, calculate

lower bound vjk = ℓf (X
j
k), and add the pair (Xj

k, v
j
k) to the list L;

Step 4: For j = 1, 2 choose xjk ∈ Xj
k and define

f j
k :=

{
f(xjk) if xjk ∈MDP ∩Xj

k

+∞ else.

Step 5: Put uk = min{uk−1, f
1
k , f

2
k} and choose x∗k ∈ {x∗k−1, x

1
k, x

2
k}

with f(x∗k) = uk;
Step 6: Fathoming:
for (X, v) ∈ L with v > uk do

Remove (X, v) from L;
end
Step 7: Update of lower bound:
if L ̸= ∅ then

v̂k = min{v ∈ R | (X, v) ∈ L}
end
Step 8: Increment k;

end

In the convergence analysis of Algorithm 1 we will have to address mainly
two issues corresponding to Step 3: firstly, boxes that do contain feasible
points must not be excluded from the list as long as they may contain suffi-
ciently small objective function values. This is discussed at the beginning of
the next section. Secondly, boxes that do not contain feasible points should
not affect the algorithm for more than finitely many iterations. This is mainly
an immediate consequence of the convergence of the lower bounding proce-
dure as we will also show in the next section.

We emphasize that Algorithm 1 only provides a branch-and-bound frame-
work which leaves much room for improvement, at least in Steps 3 and 4.
However, our main convergence result in Theorem 4.2.9 below will work under
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these minimal assumptions and does not rely on any sophisticated improve-
ments. Thus, a main advantage of the framework formulated in Algorithm 1
is its high flexibility. Clearly, improvements in Step 3 and 4 may lead to a
significant acceleration in the performance of the algorithm.

In fact, the lower bounds computed in Step 3 do not explicitly take the
constraints into account, but only bound the objective function on the current
box. The constraints are only enforced implicitly by fathoming boxes during
the branch-and-bound procedure. On the other hand, this leaves room to
apply special lower bounding procedures tailored to applications. Moreover,
also in the mixed-integer reformulation good lower bounds are generated by
branching on the binary variables.

Analogously, since our convergence result does not rely on the particular
choice of the points xjk ∈ Xj

k in Step 4 of Algorithm 1, we do not specify them
here. Beyond just putting xjk = mid(Xj

k) or using construction heuristics,
good upper bounds may result from computing these points by local NLP
methods, where employing either standard conjunctive methods for fixed
choices of the logical values is possible, or the local disjunctive method from
Chapter 3.

We shall comment on further implementation details in Section 4.4.

Before we prove the convergence of Algorithm 1 in the next section, we
illustrate the benefits of the proposed framework with the following example.

Example 4.1.2. Consider the problem

C : max
x

(1− x1)(1− x2)

s.t. x21 + x22 ≥ 1, (4.2)

x ∈ [0, 1]2.

The unique optimal point of C is (x∗1, x
∗
2) = (1/

√
2, 1/

√
2) with optimal value

f(x∗1, x
∗
2) = 3/2−

√
2. The feasible set MC of C is shown in Figure 4.1.

Let us approximate the nonlinear constraint (4.2) by p disjunctive linear
constraints of the form

gi(x) = m̃ix1 − x2 + b̃i ≤ 0, i ∈ I = {1, . . . , p},

where with the coordinates of supporting points

x̃1i = cos(1/(p+ 1) · π/2 · i),
x̃2i = sin(1/(p+ 1) · π/2 · i),
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1

1

x2

x1

(x∗1, x
∗
2)

⊺

Figure 4.1: Feasible set MC of problem C

we define m̃i = −x̃1i /x̃2i as well as b̃i = x̃2i − m̃i · x̃1i . This leads to the inner
approximation

MIA(p) =

{
x ∈ [0, 1]2 |Ω(g1(x) ≤ 0, . . . , gp(x) ≤ 0) =

∨
i∈I

(gi(x) ≤ 0) = true

}

of MC for any value of p. Figure 4.2 illustrates this construction for the
values p ∈ {3, 9}.

1

1

x2

x1

1

1

x2

x1

(x∗1, x
∗
2)

⊺ (x∗1, x
∗
2)

⊺

Figure 4.2: The set MIA(p) for p ∈ {3, 9}

In fact, for no odd value of p the constraint

g(p+1)/2(x) = −x1 − x2 +
√
2 ≤ 0
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cuts off (x∗1, x
∗
2). Therefore, for odd p the inner-approximation problem

IA(p) : max
x

f(x) s.t. x ∈MIA(p)

even has the same optimal point and optimal value as problem C.

Obviously IA(p) is a disjunctive program, and its mixed-integer reformu-
lation is

IAR(p) : max
x,y

f(x)

s.t. m̃ix1 − x2 + b̃iyi ≤ 0, i ∈ I,∑
i∈I

yi ≥ 1, (4.3)

x ∈ [0, 1]2,

y ∈ {0, 1}p.

We now investigate how well IA(p) performs using Algorithm 1 in com-
parison to IAR(p) using an off-the-shelf solver. More specifically, we compare

• IA(p) using Algorithm 1 (implemented in C++),

• IAR(p) using CPLEX (modelled in AMPL and using CPLEX’ “reqcon-
vex 3” option).

Table 4.1 compares IA(p) using Algorithm 1 and IAR(p) using CPLEX. We
see that our implementation of Algorithm 1 clearly outperforms CPLEX. In
fact, for p ≥ 351, CPLEX could not solve IAR(p) within the time limit of
3,600 seconds. However, even for p = 1, 000, 001, Algorithm 1 could solve
IA(p) in just over 90 seconds.

4.2 Convergence Analysis

4.2.1 Logical Expressions and Lower Bounds

To guarantee that v̂k in iteration k of Algorithm 1 is in fact a lower bound
for the globally minimal value, we have to ensure that boxes which contain
feasible points are not excluded from the list in Step 3. For simple disjunctive
problems this is done in the next results. The ideas are then extended to
more general disjunctive problems.
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Table 4.1: Comparison of IA(p) using Algorithm 1 and IAR(p) using CPLEX

IA(p) using Algorithm 1 IAR(p) using CPLEX

p # Iters Time [s] # MIP iters # B&B nodes Time [s]

51 32,738 2.09 687 223 0.41
101 32,826 2.09 1,862 411 2.21
151 33,575 2.19 2,815 611 6.78
201 33,569 2.17 5,394 1,155 34.00
251 33,675 2.19 6,659 1,003 24.58
301 33,621 2.19 161,993 48,712 1,918.66
351 33,645 2.26 - - -
401 33,751 2.36 - - -
451 33,717 2.37 - - -
501 33,746 2.35 - - -

1,001 33,798 2.35 - - -
10,001 33,804 3.46 - - -
100,001 33,804 9.95 - - -

1,000,001 33,804 90.04 - - -

- could not be solved within the time limit of 3,600 seconds

From the definition of a lower bound, for all x ∈ X we have ℓgi(X) ≤ gi(x)
and thus we also have the implication

Yi(x) =⇒ Ŷi(X).

In case of a standard nonlinear program, all constraints are understood in a
conjunctive manner. Thus, if ℓgi(X) > 0 for at least one constraint gi, the
box cannot contain any feasible point. Otherwise, the box X may or may
not contain feasible points. In terms of logic, this can be expressed as∧

i∈I

Yi(x) =⇒
∧
i∈I

Ŷi(X) (4.4)

for all x ∈ X. If gi(x) > 0 for some i ∈ I, then implication (4.4) is trivially
true, and if gi(x) ≤ 0 for all i ∈ I, then the expression is true due to the fact
that ℓgi(X) ≤ gi(x) holds for all x ∈ X. These considerations lead to the
following lemma.

Lemma 4.2.1. Let Ω be a conjunction Ω(Y1(x), . . . , Yp(x)) =
∧

i∈I Yi(x).

Then we have Ω(Y1(x), . . . , Yp(x)) =⇒ Ω(Ŷ1(X), . . . , Ŷp(X)) for all boxes
X ⊆ B and for all x ∈ X.
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Let us now consider the special disjunctive problem where all constraints
are understood in a disjunctive manner:

min
x∈Rn

f(x) s.t.
∨
i∈I

Yi(x).

Then a given boxX can be excluded from further considerations if ℓgi(X) > 0
for all i = 1, . . . , p. Otherwise, the box X may or may not contain feasible
points. We conclude similarly to the conjunctive case: if x ∈ X is infeasible,
then the implication ∨

i∈I

Yi(x) =⇒
∨
i∈I

Ŷi(X) (4.5)

is trivially true. If x ∈ X is feasible, then Ω(Ŷ1(X), . . . , Ŷp(X)) is true
due to ℓgi(X) ≤ gi(x) ≤ 0 for at least one i ∈ {1, . . . , p}, and thus the
implication (4.5) is true again. In summary we have the following result.

Lemma 4.2.2. Let Ω be a disjunction Ω(Y1(x), . . . , Yp(x)) =
∨

i∈I Yi(x).

Then we have Ω(Y1(x), . . . , Yp(x)) =⇒ Ω(Ŷ1(X), . . . , Ŷp(X)) for all boxes
X ⊆ B and for all x ∈ X.

Let us now consider more general disjunctive expressions consisting of
only conjunctions and disjunctions for which we derive an analogous result.
We illustrate this in the following where a logical expression is given which
is neither a simple conjunction or disjunction nor in any normal form. The
problem considered in the example below is a slight modification of the one
in Example 3.1.1 in Chapter 3.

Example 4.2.3.
min
x∈R2

f(x) := x1 s.t. x ∈MDP

with
MDP = {x ∈ B | Ω(Y1(x), . . . , Y6(x)) = true}

and
Ω(Y1, . . . , Y6) =

((
Y1 ∧ Y2

)
∨ Y3 ∨ Y4

)
∧
(
Y5 ∨ Y6

)
,

B = [−1, 1]× [−1, 1] and some constraints gi, i = 1, . . . , 6.

Adopting the notation from Chapter 3 and [65], for every logical expres-
sion Ω there is a corresponding expression tree TΩ. Again, we denote its
height by hΩ. The expression tree corresponding to the logical expression in
Example 4.2.3 is already shown in Figure 3.2 in the previous chapter and has
height three.
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For convenience we recall the most important considerations regarding
expression trees of logical expressions. Due to the associativity of both con-
junction and disjunction, we can assume that each node of the expression
tree TΩ either corresponds to

• a conjunction
∧

j∈J Aj where the Aj, j ∈ J , are either disjunctions or
simple terms Yi(x) for some i ∈ I, or

• a disjunction
∨

j∈J Aj where the Aj, j ∈ J , are either conjunctions or
simple terms Yi(x) for some i ∈ I.

Conjunctions and disjunctions of length |J | will be called |J |-conjunctions
and |J |-disjunctions, respectively. In the following, we index the nodes V of
TΩ recursively by multi-indices. The root node will be denoted by V1. Since
the root node is either a |J |-conjunction or a |J |-disjunction, we index its
child nodes with multi-indices of length two by V11, . . . , V1|J |. Continuing this
way recursively for the child nodes, we index all nodes down to the leaf level
hΩ+1, where leaf nodes are indexed with multi-indices of length hΩ+1. The
set of all indices of child nodes of a node V is denoted by C(V ). Furthermore,
all indices of nodes on level ℓ of the expression tree form the set I(ℓ), that
is, we have I(1) = {1}, I(2) = {11, . . . , 1|J |}, and so on.

We will now use Lemmas 4.2.1 and 4.2.2 to show that an analogous result
also holds for general logical expressions. Consider a node on level hΩ of the
tree. For some j ∈ I(hΩ) this is either a conjunction of Yi(x), i ∈ C(j), or
a disjunction of Yi(x), i ∈ C(j). In the first case, we have for a box X ⊆ B
and all x ∈ X the implication∧

i∈C(j)

Yi(x) =⇒
∧

i∈C(j)

Ŷi(X)

due to Lemma 4.2.1. In the second case, we have∨
i∈C(j)

Yi(x) =⇒
∨

i∈C(j)

Ŷi(X)

due to Lemma 4.2.2. In both cases we can simplify the logical expression by
introducing a new symbol Yj(x), j /∈ I, and by replacing all occurrences of∧

i∈C(j) Yi(x) or
∨

i∈C(j) Yi(x) by Yj(x) together with the additional constraint

Yj(x) =
∧

i∈C(j)

Yi(x) or Yj(x) =
∨

i∈C(j)

Yi(x),
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respectively. Using this reformulation, we continue to replace all disjunc-
tions or conjunctions on level hΩ by introducing Yj(x) for all j ∈ C(hΩ).
Furthermore, we define

Ŷj(X) :=
∧

i∈C(j)

Ŷi(X) resp. Ŷj(X) :=
∨

i∈C(j)

Ŷi(X).

Note that in both cases we have Yj(x) =⇒ Ŷj(X), j ∈ C(i), for all x ∈ X.
For the purpose of illustration, we show this reformulation for the expression
tree in Example 4.2.3.

Example 4.2.4. We have I(hΩ) = {111} and C(111) = {1, 2}. We introduce
Y111 := Y1(x) ∧ Y2(x) and rewrite the feasible set as

MDP =
{
x ∈ B | true = Ω2(Y111(x), Y1(x), . . . , Y6(x)) =((

Y111(x) ∨ Y3(x) ∨ Y4(x)
)
∧
(
Y5(x) ∨ Y6(x)

)
,

Y111(x) = Y1(x) ∧ Y2(x)
}
.

Note that after this reformulation step, the height of the expression tree
decreases by one and hence the height of the new logical expression tree for
Ω2 is hΩ2 = hΩ − 1. While hΩ2 ≥ 2, we continue to replace nodes on level
hΩ2 − 1 again by introducing new Yi(x), i ∈ C(j), for all j ∈ I(hΩ2). We will
illustrate this in our running example.

Example 4.2.5. The feasible set of the disjunctive problem from Exam-
ple 4.2.3 can be rewritten as

MDP ={
x ∈ B | true =

Ω3(Y11(x), Y12(x), Y111(x), Y1(x), . . . , Y6(x)) = Y11(x) ∨ Y12(x),
Y11(x) = Y111(x) ∨ Y2(x) ∨ Y3(x),
Y12(x) = Y5(x) ∨ Y6(x),

Y111(x) = Y1(x) ∧ Y2(x)
}
.
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In the last step of the recursion, the feasible set is

MDP =
{
x ∈ B | true =

Ω4(Y1(x), Y11(x), Y12(x), Y111(x), Y1(x), . . . , Y6(x)) = Y0(x),

Y0(x) = Y11(x) ∨ Y12(x),
Y11(x) = Y111(x) ∨ Y2(x) ∨ Y3(x),
Y12(x) = Y5(x) ∨ Y6(x),

Y111(x) = Y1(x) ∧ Y2(x)
}
.

For a box X ⊆ B and for all x ∈ X, we can now conclude Y111(x) =⇒
Ŷ111(X) due to the definition of Y111, the definition of Ŷ111 and Lemma 4.2.1.

Using this, the definition of Y11, Y12, Ŷ11 and Ŷ12 and Lemma 4.2.2, we obtain

Y11(x) =⇒ Ŷ11(X) and Y12(x) =⇒ Ŷ12(X).

With the same line of arguments we have

Y0(x) =⇒ Ŷ0(X)

and equivalently

Ω(Y1(x), . . . , Y6(x)) =⇒ Ω(Ŷ1(X), . . . , Ŷ6(X)).

For the general case, we conclude analogously to the arguments at the end
of Example 4.2.5. So, with x ∈ X, from Yi(x) =⇒ Ŷi(X), i = 1, . . . , p, the

implications Yj(x) =⇒ Ŷj(X), j ∈ C(hΩ) follow. By applying Lemmas 4.2.1
and 4.2.2 recursively, we obtain(

Yi(x) =⇒ Ŷi(X), i ∈ {1, . . . , p}
)

=⇒
(
Yj(x) =⇒ Ŷj(X), j ∈ C(hΩ)

)
and continuing recursively yields(

Yi(x) =⇒ Ŷi(X), i ∈ {1, . . . , p} ∪ C(hΩ)
)

=⇒
(
Yj(x) =⇒ Ŷj(X), j ∈ C(hΩ − 1)

)
and so on until we arrive at the root node of the expression tree with(

Yi(x) =⇒ Ŷi(X), i ∈ {1, . . . , p} ∪ C(hΩ) ∪ . . . ∪ C(2)
)

=⇒
(
Yj(x) =⇒ Ŷj(X), j ∈ C(1)

)
.
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Putting all the aforementioned implications together we have(
Yi(x) =⇒ Ŷi(X), i = 1, . . . , p

)
=⇒

(
Yj(x) =⇒ Ŷj(X), j ∈ C(1) = {1}

)
and we arrive at the following result.

Proposition 4.2.6. Let Ω be a general logical expression consisting of only
conjunctions and disjunctions. Then we have

Ω(Y1(x), . . . , Yp(x)) =⇒ Ω(Ŷ1(X), . . . , Ŷp(X))

for all boxes X ⊆ B and for all x ∈ X.

In particular, this implies that a box containing feasible points is not
excluded from the list in Step 3 of Algorithm 1.

4.2.2 Convergence of the Branch-and-Bound Frame-
work

To show the convergence of Algorithm 1, we additionally have to prove that
boxes which do not contain any feasible point affect the algorithm for at most
a finite number of iterations. This is done in the following lemma.

Lemma 4.2.7. Let the box X ⊆ B \ MDP be contained in the list L.
Furthermore, assume that some convergent lower bounding procedures ℓgi,
i = 1, . . . , p, are used in Algorithm 1. Then in Step 1 of the algorithm a box
X ⊆ X is selected at most in finitely many iterations.

Proof. Suppose not. Then an exhaustive sequence of boxes is created by the
algorithm, i.e., we have a sequence of boxes with Xkj , j ∈ N, Xkj+1

⊆ Xkj ⊆
X, j ∈ N, and limj→∞ diag(Xkj) = 0. Because of the assumption none of
these boxes contain any feasible point. From property c) in Definition 4.1.1,
we know that for j sufficiently large we have

gi(x) > 0 ⇐⇒ ℓgi(Xkj) > 0

for all x ∈ Xkj and i = 1, . . . , p. Then for all x ∈ Xkj and i = 1, . . . , p we

have Y (x) ⇐⇒ Ŷi(Xkj) and hence

Ω(Y1(x), . . . , Yp(x)) ⇐⇒ Ω(Ŷ1(Xkj), . . . , Ŷp(Xkj)).
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As x cannot be feasible, Ω(Y1(x), . . . , Yp(x)) is false, and therefore

Ω(Ŷ1(Xkj), . . . , Ŷp(Xkj)) = false .

However, boxes with this property are excluded in Step 3, and thus we have
derived a contradiction.

Using the previous lemma we can show the convergence of the lower
bounds in the branch-and-bound algorithm.

Lemma 4.2.8. Assume that in Algorithm 1 some convergent and monotone
lower bounding procedures ℓf and ℓgi, i = 1, . . . , p, are used. If the infinite
branch-and-bound procedure corresponding to ε = 0 does not terminate, then
the feasible set MDP is nonempty and we have limk→∞ v̂k = v∗ where v∗

denotes the globally minimal value of DP .

Proof. First observe that, by the assumption, an exhaustive sequence of
boxes Xkj , j ∈ N, is generated by the algorithm. Consider the unique ele-
ment x which is contained in all sets Xkj , j ∈ N. If x was infeasible then we
had

false = Ω(Y1(x), . . . , Yp(x)) = Ω(Ŷ1(Xkj), . . . , Ŷp(Xkj))

for all sufficiently large j due to the same line of arguments as in the proof
of Lemma 4.2.7. Thus Xkj does not contain any feasible point and, by
Lemma 4.2.7, does not affect the algorithm for all sufficiently large j ∈ N.
This, however, contradicts the construction of the boxes Xkj , j ∈ N. Hence
x is feasible and, as asserted, the set MDP is nonempty.

Next, by the monotonicity of ℓf , the sequence (v̂k)k∈N, is monotonically
increasing, bounded above by the finite value v∗ and thus convergent. Its
limit is then also bounded above by v∗, so that the inequality limk→∞ v̂k ≥ v∗

remains to be shown. In fact, as the subsequence (ℓf (Xkj))j∈N of (v̂k)k∈N
inherits its limit, the convergence of the lower bounding procedure ℓf and
the feasibility of x lead to

lim
k→∞

v̂k = lim
j→∞

ℓf (Xkj) = lim
j→∞

min
x∈Xkj

f(x) = f(x) ≥ v∗.

After this analysis of an approximation procedure for the optimal value,
we state an approximation procedure for an optimal point. It is shown along
the same lines as [64, Proposition 4.4].



4.3 Integration of Negations into the Logical Expression 75

Theorem 4.2.9. Assume that in Algorithm 1 some convergent and mono-
tone lower bounding procedures ℓf and ℓgi, i = 1, . . . , p, are used, and that
the infinite branch-and-bound procedure does not terminate. Furthermore,
let (Xk)k∈N be a subsequence of boxes chosen in Step 2, and let (xk)k∈N be a
sequence of points with xk ∈ Xk, k ∈ N. Then (xk)k∈N possesses a cluster
point, and any such cluster point is a globally minimal point of DP .

By Theorem 4.2.9, Algorithm 1 with convergent and monotone lower
bounding procedures ℓf and ℓgi , i = 1, . . . , p, terminates after finitely many
iterations for any prescribed tolerance ε > 0. Note that Lemma 4.2.7 with
X = B implies that an empty feasible setMDP is detected after finitely many
steps. In this case, the algorithm terminates with L = ∅ and uk−1 = +∞.

4.3 Integration of Negations into the Logical

Expression

In this section an enhancement for disjunctive programs whose logical expres-
sions also involve negations is considered. Using this we can also handle impli-
cations like Y1(x) =⇒ Y2(x) via the equivalent reformulation ¬Y1(x)∨Y2(x).

Formally, negations ¬(gi(x) ≤ 0) can be included by considering gi(x) > 0
instead. We define additional symbols

Yp+i(x) :=

{
true if gi(x) > 0
false if gi(x) ≤ 0

, i ∈ I,

and replace all occurrences of ¬Yi(x) in Ω by Yp+i(x) for i ∈ I. The resulting

logical expression is denoted by Ω̂(Y1(x), . . . , Y2p(x)) and the feasible set can
be written as

MDP =
{
x ∈ B | Ω̂(Y1(x), . . . , Y2p(x)) = true

}
.

Unfortunately, while this feasible set is bounded, due to the strict inequalities
it may not be closed. Thus, solvability is no longer guaranteed and numerical
difficulties may occur. In the following, we will present two remedies for this
problem, namely outer and inner approximation of the feasible set.
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4.3.1 Outer Approximation

This approach relaxes the feasible set by considering gi(x) ≥ 0 instead of
¬(gi(x) ≤ 0). We define additional symbols

Ŷp+i(x) :=

{
true if gi(x) ≥ 0
false if gi(x) < 0

, i ∈ I,

and the feasible set is now

M̂DP := {x ∈ B | Ω̂(Y1(x), . . . , Yp(x), Ŷp+1(x), . . . , Ŷ2p(x)) = true}.

Observe that the closed set M̂DP is a relaxation of the possibly open setMDP

due to Proposition 4.2.6.

If the enlargement of the original feasible set is small in some sense, we
may have

inf
x∈MDP

f(x) = min
x∈M̂DP

f(x).

Unfortunately, this does not hold in general, as we will illustrate in Exam-
ple 4.3.1.

Example 4.3.1. Consider the following disjunctive problem that is defined
by

min
x∈R

f(x) = −x s.t. x ∈MDP

together with the constraint function

g1(x) := −x(x− 1)2

and the logical expression Ω(Y1(x)) := ¬Y1(x) so that we have the feasible set

MDP = {x ∈ R | Ω(Y1(x)) = ¬Y1(x) = true}
=
{
x ∈ R | x(x− 1)2 < 0

}
= {x ∈ R | x < 0}.

It is easy to see that we have infx∈MDP
f(x) = 0. The relaxed problem can be

written as

D̂P : min
x∈R

f(x) = −x s.t. x(x− 1)2 ≤ 0

and here, in contrast to the original problem, not only the origin but also
the point x̂∗ = 1 becomes feasible. In fact, we have minx∈M̂DP

f(x) = −1
and thus the relaxed problem cannot be seen as a good approximation of the
original one.
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Unfortunately, after solving D̂P we cannot estimate errors as they appear
in Example 4.3.1. For that reason we will introduce a constraint qualification
for relaxed (i.e., “negation-free”) DPs which ensures that the enlargement of

the feasible set is not too big. Observe that the optimal point of problem D̂P
in Example 4.3.1 is degenerated since the gradient of the constraint vanishes
at the optimal point. We say that a point x is not degenerated if the following
constraint qualification holds.

Definition 4.3.2. Let DP be a disjunctive optimization problem whose log-
ical expression Ω only contains conjunctions and disjunctions. Then, at
x ∈ MDP the Mangasarian-Fromovitz constraint qualification for disjunc-
tive programs (MFCQDP) is said to hold if and only if there exists a set of
indices I ⊆ I such that

yi :=

{
true if i ∈ I
false if i /∈ I

yields Ω(y1, . . . , yp) = true as well as yi =⇒ Yi(x), i ∈ I, and there is a
direction d ∈ Rn such that d⊺∇gi(x) < 0, i ∈ I0(x), holds where I0(x) = {i ∈
I | gi(x) = 0} is the set of active indices.

Remark 4.3.3. Note that in case of a standard conjunctive nonlinear prob-
lem, the choice I = {1, . . . , p} is mandatory and thus the definition of MFC-
QDP coincides with the definition of the standard MFCQ from nonlinear
programming for inequality constrained problems.

To illustrate that MFCQDP is a natural extension of the standard MFCQ
for our purposes, consider the following example.

Example 4.3.4. Consider the feasible set MDP ⊆ R2 defined by the logical
expression Ω(Y1(x), Y2(x)) = Y1(x) ∨ Y2(x) and the constraints

g1(x) := x21 + x22 − 1,

g2(x) := (x1 − 1)2.

The feasible set is described by MDP = M1 ∪ M2 where M1 = {x ∈ R2 |
g1(x) ≤ 0} is the unit disk and M2 = {x ∈ R2 | g2(x) ≤ 0} contains all
points from R2 with x1 = 1.

The standard MFCQ from conjunctive programming is satisfied at every
point inM1, but violated at every point inM2. Then MFCQDP should also be
satisfied at every point x ∈M1 \M2 and violated at every point x ∈M2 \M1.
This can easily be checked by choosing I = {1} resp. I = {2}. The most
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interesting case is the point x = (0, 1)⊺ ∈ M1 ∩M2. As there is a direction
d ∈ R2 pointing into the interior of the feasible set, or more precisely, into the
part of MDP that is described by M1, we would naturally expect MFCQDP to
hold at x. This turns out to be true since we may ignore the malign activity of
g2 at x by choosing I = {1}, which results in the active index set I0(x) = {1}.

In fact, by assuming MFCQDP we can show the equality of the infimum of
the original problem DP and the minimal value of the relaxed problem D̂P .
In the following, for better readability it is convenient to have a definition of
functions gi, i = p+ 1, . . . , 2p, and so we put gp+i(x) := −gi(x), i ∈ I.

Proposition 4.3.5. If MFCQDP holds at some globally minimal point of
D̂P , then MDP is nonempty, and we have

inf
x∈MDP

f(x) = min
x∈M

D̂P

f(x).

Proof. Due to the inclusion MDP ⊆MD̂P we have

inf
x∈MDP

f(x) ≥ min
x∈M

D̂P

f(x).

We now show that the strict inequality cannot hold.

Let x̂∗ be a globally minimal point of D̂P at which MFCQDP holds
in M̂DP . By Definition 4.3.2, there are yi, i = 1, . . . , 2p, together with a
corresponding set I such that Ω̂(y1, . . . , y2p) = true and yi =⇒ Yi(x̂

∗), i ∈ I,
as well as a direction d ∈ Rn with d⊺∇gi(x̂∗) < 0, i ∈ I0(x̂

∗).

By a Taylor expansion (as is common in conjunctive nonlinear program-
ming under MFCQ), for all i ∈ I0(x̂

∗) and all sufficiently small λ > 0 we
obtain gi(x̂

∗+λd) < 0. Furthermore, for all i ∈ I \ I0(x̂∗) we have gi(x̂∗) < 0
and thus gi(x̂

∗ + λd) < 0 due to continuity arguments. In terms of logical
expressions, for all sufficiently small λ > 0 and all i ∈ I we have shown
Yi(x̂

∗ + λd) = true and hence

yi =⇒ Yi(x̂
∗ + λd)

for these i and λ. Due to yi = false, i ∈ {1, . . . , 2p} \ I, the latter trivially
holds also for all i ∈ {1, . . . , 2p} \ I, and with Proposition 4.2.6 we arrive at

true = Ω̂(y1, . . . , y2p) =⇒ Ω̂(Y1(x̂
∗ + λd), . . . , Y2p(x̂

∗ + λd)).

This shows that x̂∗+λd ∈MDP for sufficiently small λ > 0 and, in particular,
that MDP is nonempty. Moreover, due to infx∈MDP

f(x) ≤ f(x̂∗ + λd), the
continuity of f for λ↘ 0 yields infx∈MDP

f(x) ≤ f(x̂∗) = minx∈M
D̂P
f(x), as

desired.
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Remark 4.3.6. We conjecture that the assumption of MFCQDP at all feasi-
ble points of some DP is mild in the following sense: in standard conjunctive
optimization, MFCQ is weaker than the so-called linear independence con-
straint qualification (LICQ), and in [59] it is shown that generically even
LICQ holds at every feasible point. Since the feasible set of DP may be writ-
ten as the union of finitely many sets with conjunctive description (via the
disjunctive normal form), this genericity result should hold for DPs as well.
A detailed analysis, however, is beyond the scope of this thesis.

4.3.2 Inner Approximation

While the relaxation of the feasible set yields an outer approximation method,
we now propose an idea which will result in an inner approximation of the
feasible set. To this end, with some parameter δ > 0 we put

Y δ
p+i(x) :=

{
true if gi(x) ≥ δ
false if gi(x) < δ

and with

M δ
DP := {x ∈ B | Ω̂(Y1(x), . . . , Yp(x), Y δ

p+1(x), . . . , Y
δ
2p(x)) = true}

we obtain another closed set that can be considered instead of the original
one. Observe that for all sub-boxes X ⊆ B and δ > 0 we have the implica-
tions

Ω̂(Y1(X), . . . , Yp(X), Y δ
p+1(X), . . . , Y δ

2p(X))

=⇒ Ω̂(Y1(X), . . . , Yp(X), Yp+1(X), . . . , Y2p(X)) (i.e., M δ
DP ⊆MDP )

=⇒ Ω̂(Y1(X), . . . , Yp(X), Ŷp+1(X), . . . , Ŷ2p(X)) (i.e., MDP ⊆ M̂DP ),

and thus the chain of inclusions M δ
DP ⊆ MDP ⊆ M̂DP holds. In particular,

for any δ > 0 the set M δ
DP is compact, but possibly empty. The latter

sandwiching result implies that for any δ > 0, lower and upper bounds for
the infimum of DP are

min
x∈M

D̂P

f(x) ≤ inf
x∈MDP

f(x) ≤ inf
x∈Mδ

DP

f(x).

Here, the lower bound is tight under MFCQDP at some optimal point of
D̂P (cf. Proposition 4.3.5) and the infimum in the upper bound is attained
if M δ

DP is nonempty. In the following, we will show that for sufficiently small
δ > 0 this is the case, and that for δ ↘ 0 and without the assumption of any
constraint qualification, the upper bound also becomes arbitrarily tight.
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Proposition 4.3.7. If MDP is nonempty, then the identity

inf
x∈MDP

f(x) = lim
δ↘0

min
x∈Mδ

DP

f(x)

holds.

Proof. For δ ↘ 0 the values infx∈Mδ
DP
f(x) are monotonically decreasing,

and due to M δ
DP ⊆ MDP for all δ > 0, they are also bounded below by

infx∈MDP
f(x). Hence, the asserted limit exists and satisfies

inf
x∈MDP

f(x) ≤ lim
δ↘0

inf
x∈Mδ

DP

f(x).

To see the reverse inequality, for arbitrary ε > 0 we choose some ε-global
optimal point x∗ε of DP and put δ∗ε = mini∈I{gi(x∗ε) | Yp+i(x

∗
ε) = true}. Then

Yi(x
∗
ε) =⇒ Y

δ∗ε
i (x∗ε)

for all i = p+1, . . . , 2p, and thus with Proposition 4.2.6 it is ensured that x∗ε
lies in M

δ∗ε
DP . This also implies x∗ε ∈M δ

DP for any 0 < δ < δ∗ε and hence

inf
x∈MDP

f(x) + ε ≥ f(x∗ε) ≥ min
x∈Mδ

DP

f(x)

for all such δ. In particular, the sets M δ
DP are nonempty for all sufficiently

small δ > 0 so that the infima of f over these sets are attained. Taking the
limit in this inequality for δ ↘ 0 yields

inf
x∈MDP

f(x) + ε ≥ lim
δ↘0

min
x∈Mδ

DP

f(x)

and, as ε > 0 was chosen arbitrarily, the assertion.

Note that while this inner approximation procedure does not rely on a
constraint qualification, numerically one may only use small positive param-
eters δ > 0 instead of taking the limit, so that the optimal value is only
approximated rather than computed exactly. Furthermore, it may not al-
ways be clear how small to choose δ > 0 for M δ

DP to be nonempty.

4.4 Computational Results

A detailed computational study of Algorithm 1 including running times for
different test problems is performed in [66]. In this section, we briefly dis-
cuss the computational results presented in this article. The method was
implemented by Fabian Rigterink as part of his master thesis [95].
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We emphasize, that the implementation from [66] is still preliminary and,
moreover, is not meant to be competitive to other approaches like solving
the mixed-integer reformulation with additional binary variables by Baron
and CPLEX. In fact, in Step 3 lower bounds are computed using a simple
αBB implementation which, for example, does not exploit convex hulls of
special functions. Moreover, in Step 4 xjk = x̂jk for j = 1, 2 is chosen where
x̂jk is the minimizer corresponding to the lower bound computed in Step 3.
Already in these lower and upper bounding procedures, there is much room
for improvement, as discussed earlier at the end of Section 4.1. Furthermore,
we neither use presolves nor bound tightening and the implementation is
in Matlab with a Java interface for the evaluation of logical expressions.
Matlab’s “fmincon” routine is used to determine the αBB lower bounds (see
Section 4.4.2 for details).

4.4.1 Instances

In [66] Algorithm 1 is tested on a total of 14 problem instances from the
literature [37,47,49,72,73,99,100,103]. Most of these instances are illustrative
examples (some test problems from [47,49,72,73,99,100]). The remaining in-
stances have applications in industrial and chemical engineering, for example

• optimal positioning of a new product in a multiattribute space from
[37] – a convex problem,

• a job shop scheduling problem from [49] – a linear problem,

• strip-packing problems from [49,103] – also linear problems.

The problem instances differ significantly in size: from illustrative examples
with only two variables and three constraints (taken from [99]) to much
more challenging instances. Some of the instances’ logical expressions involve
negations, for which, however, the MFCQDP holds. Negations are handled
as explained in Section 4.3.1.

Note that the test problems also vary in the type of problem. While
many instances only have linear or convex constraints, there are also several
instances that involve nonconvexities. While there are certainly better suited
algorithms to solve the linear and convex instances, in [66] these test problems
are solved in order to demonstrate the versatility of the proposed method.
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4.4.2 Computational Results

It is compared how Algorithm 1 performs on the original logical expression
Ω versus how the algorithm performs if Ω is required to be in disjunctive
or conjunctive normal form (DNF or CNF). One method which, given a
logical expression Ω, finds an equivalent logical expression Ω′ in minimal
DNF or CNF, is the Quine-McCluskey algorithm that is also called method
of prime implicants and is used in [66] to transform the logical expressions
into normalform. The time limit for converting Ω to an equivalent Ω′ in
minimal DNF or CNF is set to two hours.

Moreover, Algorithm 1 is implemented in Matlab (release R2011b, version
7.13.0.564). The tolerance for the stopping criterion is set to ε = 0.001. The
lower bounds in Step 3 of the algorithm computed using the αBB-relaxation
from [3,4,7] and “fmincon” from the Matlab Optimization Toolbox. The
INTLAB Toolbox (version 6) is used for interval arithmetic. Again, the time
limit for the overall algorithm is set to two hours.

It is worth noting that for some instances from [37,49,103], Ω could not
be converted to a minimal normal form within the time limit. Those are the
more challenging instances.

It turns out that running the algorithm on the original logical expression
without requiring any normal form is computationally advantageous. If the
“wrong” minimal normal form is chosen, the algorithm performs much worse.
In general, it can be concluded that the less literals, the better the algorithm’s
performance (see [66]).

Unfortunately, many of the instances from the literature are already in
some minimal normal form, and only choosing the other minimal normal
form demonstrates how poorly classical GDP algorithms can perform if one
requires the conversion of Ω to a specific normal form. However, one can
easily think of applications with nested logical expressions in which both,
the minimal disjunctive and conjunctive normal form, will perform poorly.
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Global Solution of GSIPs

In this chapter, which is based on [67], we consider the global minimization
of box-constrained generalized semi-infinite programs, that is, problems of
the type

GSIP : min
x∈Rn

f(x) s.t. x ∈M

where M is defined by infinitely many constraints

M =
{
x ∈ X

∣∣∣ g(x, y) ≤ 0 for y ∈ Y (x)
}

with
Y (x) =

{
y ∈ Y

∣∣∣ vi(x, y) ≥ 0 for i ∈ I
}

and boxes X ⊂ Rn and Y ⊂ Rm. All defining functions of GSIP are assumed
to be at least continuous on their respective domains.

As already mentioned in the introduction of this thesis, a well-known
numerical approach for dealing with standard semi-infinite programs is to
consider a relaxed problem by choosing a finite subset of the infinitely many
constraints. The resulting problem can be solved by applying standard NLP
techniques. Then for the computed optimal point x the feasibility problem

Q(x) : max
y∈Rm

g(x, y) s.t. vi(y) ≥ 0, i ∈ I, y ∈ Y

can be solved in order to obtain an index y of a constraint that cuts off x.
Adding the corresponding restriction g(x, y) ≤ 0 to the relaxed problems
yields a new optimization problem that provides a tighter approximation of
the original problem.

Unfortunately, this approach cannot be applied to GSIPs without further
considerations. Nevertheless, in this chapter we propose different possibilities

83
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to achieve this by using certain reformulations and develop a tailored branch-
and-bound algorithm together with appropriate lower bounding procedures
to solve these problems.

This chapter is based on the article [67] and is organized as follows. In
the next section we illustrate the difficulties that occur when trying to solve
GSIPs by the aforementioned discretization approach in a straightforward
manner and sketch our main idea to circumvent this issue by using disjunctive
problems in conjunctive normalform. In Section 5.2 we describe some lower
bounding procedures for solving this special kind of disjunctive optimization
problems. In Section 5.3 these will be used to state a branch-and-bound
algorithm for disjunctive programs which in turn will be applied to solve the
subproblems that arise in the discretization method for GSIPs. In Section 5.4
we give computational results as a proof of concept.

5.1 Discretizations of GSIPs

Unfortunately, the discretization method sketched in the introduction cannot
be applied to GSIPs without further considerations as already mentioned.
This can be seen from the test problems in [75,83] and is illustrated in the
following example.

Example 5.1.1. The following test instance is taken from [75] (see also
[83]). Let us consider the problem

GSIP : min
x∈R2

f(x) =

(
x1 −

1

4

)2

+ x22 s.t. x ∈M

where M is defined as

M =
{
x ∈ [−1, 1]2

∣∣∣ g(x, y) = y + x2 ≤ 0 for y ∈ Y (x)
}

with
Y (x) =

{
y ∈ [−1, 1]

∣∣∣ v(x, y) = −y2 + x1 ≥ 0
}
.

It is not hard to see that the unique optimal point of GSIP is x∗ = (0, 0)⊺.

Assume that we want to solve this problem by a simple discretization
approach for standard semi-infinite programs. We might start by solving

P : min
x∈R2

f(x) =

(
x1 −

1

4

)2

+ x22 s.t. x ∈ [−1, 1]2
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and obtain x∗ = (1
4
, 0)⊺. Inserting x∗ into the feasibility problem yields

Q(x∗) : max
y∈R

y s.t. v(x∗, y) = −y2 + 1

4
≥ 0, y ∈ [−1, 1]

with the unique optimal point y∗ = 1
2
. Unfortunately, adding the correspond-

ing constraint g(x, 1
2
) = 1

2
+ x2 ≤ 0 cuts off the optimal point x∗ = (0, 0)⊺ of

GSIP.

However, as introduced in [52] and already described in the introduction,
a generalized semi-infinite program can be rewritten as

GSIP : min
x∈Rn

f(x) s.t. x ∈M

with

M =

{
x ∈ X

∣∣∣ (g(x, y) ≤ 0
)
∨
∨
i∈I

(
vi(x, y) < 0

)
∀y ∈ Y

}
. (5.1)

In equation (5.1) the index set Y does not depend on x, although still being
infinite. For that reason we can consider this problem as a kind of disjunctive
standard semi-infinite program.

The aggregation of the single inequality constraints into one constraint
function seems nontrivial, since one of them is nonstrict while the others are
strict. However, with the definition v0(x, y) = g(x, y) and I0 = I ∪ {0} at
least the relaxation

M̂ =

{
x ∈ X

∣∣∣ ∨
i∈I0

(
vi(x, y) ≤ 0

)
∀y ∈ Y

}

of the feasible set M of GSIP can be written in the aggregated form

M̂ =

{
x ∈ X

∣∣∣ (min
i∈I0

vi(x, y)
)
≤ 0 ∀y ∈ Y

}
.

Note that M̂ has the format of a standard semi-infinite feasible set with the
constraint functionG(x, y) = mini∈I0 vi(x, y). Due to the relaxation property,

the minimization of f over M̂ will generate a lower bound for the optimal
value of GSIP.

In [51,52] it is shown that generically M̂ is not much larger than the
feasible set of GSIP, but just describes the topological closure of the, in
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general, nonclosed setM . In this case the minimal value of f over M̂ actually
coincides with the minimal value of GSIP and, from the numerical point
of view, it thus makes sense to use the solution of the relaxation as the
appropriate solution concept for GSIP.

Let us stress, however, that the relaxation M̂ of M may be much coarser
than the topological closure of M , if the genericity assumptions from [51,52]
are not met. This happens, for example, for the (degenerate) reformulation
of an equality constraint u(x, y) = 0 in the description of the index set Y (x)
by two inequalities ±u(x, y) ≥ 0. On the other hand, even in such degenerate

cases, the minimization of f over M̂ provides a lower bound for the minimal
value of GSIP.

As consequences, firstly the minimization of f over M̂ motivates another
feasibility problem for GSIP, whose own feasible set no longer depends on x,
namely

Q̂(x) : max
y∈Rm

min
i∈I0

vi(x, y) s.t. y ∈ Y .

Secondly, the application of the usual discretization approach for standard
semi-infinite programs to the above description of M̂ , that is, replacing the
infinite set Y by a finite subset Y ⊂ Y , yields a further relaxation of GSIP
by the problem

DP (Y ) : min
x∈Rn

f(x) s.t. x ∈MDP (Y )

with

MDP (Y ) =

{
x ∈ X

∣∣∣ ∧
y∈Y

∨
i∈I0

(
vi(x, y) ≤ 0

)}
.

This disjunctive optimization problem is in conjunctive normal form. The
main idea of our approach in the present chapter is to determine a lower
bound at the globally optimal value of GSIP by solving an iterated sequence
of such disjunctive optimization problems and feasibility problems.

Our focus is on the development of efficient branch-and-bound algorithms
tailored to the occurring disjunctive problemsDP (Y ). This complements the
related approach in [83] where also f is minimized over the relaxed feasible set

M̂ , but auxiliary integer variables are introduced to reformulate the problems
DP (Y ) as mixed integer NLPs. For the latter problems [83] computes upper
and lower bounds by state-of-the-art solvers in order to take advantage of
their sophisticated implementation. Our approaches, on the other hand,
neither necessarily need to increase the problem dimension nor leave the
setting of purely continuous optimization.
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5.2 Lower Bounding Procedures for DPs

In this section we propose some lower bounding procedures for disjunctive
optimization problems DP (Y ) that arise during the solution process of our
branch-and-bound algorithm. Although the following considerations will be
applicable to other kinds of disjunctive optimization problems, we will re-
strict the descriptions to problems in so-called conjunctive normal form for
simplicity.

As seen in Section 5.1 of this chapter, the appearing disjunctive programs
are of the form

DP (Y ) : min
x∈Rn

f(x) s.t.
∧
y∈Y

∨
i∈I0

(
vi(x, y) ≤ 0

)
, x ∈ X.

They can be solved to global optimality within a branch-and-bound frame-
work. To achieve this, for a given box X ⊂ X lower bounds at the glob-
ally minimal value of DP (Y ) restricted to the box X have to be computed.
Therefore, we define the problem

DP (X,Y ) : min
x∈Rn

f(x) s.t. x ∈MDP (X,Y )

where we put

MDP (X,Y ) :=

{
x ∈ X

∣∣∣ ∧
y∈Y

∨
i∈I0

(
vi(x, y) ≤ 0

)}
.

There are different approaches to compute lower bounds for problems of the
type DP (X,Y ). In this chapter we shall examine three different possibilities.
The first one is based on the previous chapter and allows to take advantage of
existing lower bounding procedures of standard conjunctive global optimiza-
tion. The main ideas are sketched in Section 5.2.1. Secondly, in Section 5.2.2
we use standard ideas to further relax the problem DP (X,Y ) to a linear dis-
junctive problem LDP (X,Y ). We study two alternatives for its algorithmic
treatment, namely the widely-used mixed-integer reformulation technique as
described in, for example, [46]. Our third way to tackle DP (X,Y ) is based
on linear disjunctive programming for the relaxation LDP (X,Y ).

5.2.1 Lower Bounds Based on Standard Procedures in
Global Optimization

Our first approach is to use the solution method for disjunctive programs from
Chapter 4. To make this work, we need an M -independent and monotone
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lower bounding procedure. As already mentioned, most of the lower bounding
procedures commonly used in global optimization can be used here. In this
chapter we propose to apply optimal centered forms [17,70] although other
methods like, for example, αBB relaxations are also applicable.

In Algorithm 2 we can now state our first lower bounding procedure,
which essentially is a part of the branch-and-bound algorithm of the previous
chapter tailored to the special type of disjunctive problem DP (X,Y ).

Algorithm 2: Lower bounding procedure for DP (X,Y ) based on a
logical expression

Input: Box X ⊂ X, finite set Y ⊂ Y .
Output: Lower bound ℓ(X) to the minimal value of problem

DP (X,Y ).
Compute M -independent lower bounds ℓvi(·,y)(X) for i ∈ I0, y ∈ Y ;
For i ∈ I0 and y ∈ Y put

Ŷi,y(X) :=

{
true if ℓvi(·,y)(X) ≤ 0
false else.

if
∧

y∈Y
∨

i∈I0 Ŷi,y(X) is true then

calculate lower bound ℓ(X) = ℓf (X);
else

put ℓ(X) = +∞;
end

Insertion of this lower bounding procedure into a generic branch-and-
bound framework as in Algorithm 5 below leads to a convergent solution
method for DPs. A more detailed description as well as a formal proof is
given in Chapter 4 as well as in [66].

5.2.2 Lower Bounds Based on Linearization

Our second approach is to use the lower bounding procedure for disjunctive
programs described in the following. Our method is related to ideas presented
in [20]. In order to explain the method we start by quickly reviewing the
standard procedure for the conjunctive program

P : min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i = 1, . . . , p,

where all defining functions are assumed to be factorable, meaning that they
can be evaluated in a finite number of steps. The calculation of the lower
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bound is divided into two steps:

• a symbolic reformulation step

• and a linearization step.

During the reformulation step the problem is transformed into a lifted equiv-
alent nonlinear problem. To achieve this we consider the expression trees of
the defining functions as done in [108,109]. All leaves are described either
by constants or variables. In contrast, the nodes are described by operators
such as +, −, ·, /, powers or sin, cos, exp and log. These are the only ele-
mentary functions that we consider here although the extension to others is
straightforward.

We describe the main ideas along Example 5.2.1. The method is formally
explained in [81,102,108,109].

Example 5.2.1. The conjunctive nonlinear problem

P : min
x∈R2

f(x) := − exp(x1) s.t. g1(x) := sin(x1x2) ≤ 0, x ∈ [−1, 1]2

can be reformulated as follows. We first introduce new variables xf , xg1 so
that instead of P we can equivalently solve the problem

P1 : min
x∈R4

xf s.t. xg1 ≤ 0

xg1 = sin(x1x2)

xf = − exp(x1)

x ∈ [−1, 1]2 × R2.

With the same technique we continue to lift the problem by introducing a new
variable x3 together with the constraint x3 = x1x2. Analogously we proceed
with the objective function and thus we obtain

P2 : min
x∈R6

xf s.t. xg1 ≤ 0

x3 = x1x2

xg1 = sin(x3)

x4 = exp(x1)

xf = −x4
x ∈ [−1, 1]2 × R4.

We have thus replaced the constraint g1(x) ≤ 0 by an equality constraint
system g̃1(x) = 0 and an inequality constraint xg1 ≤ 0 in a lifted space, as
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well as the objective function f(x) by an equality constraint f̃(x) = 0 and
an additional variable xf . Appropriate box constraints at the new variables
can be determined by interval arithmetic, see [86] for example. Given the
original box constraints x ∈ X these new ones are denoted by B(X) so that
in summary we have x ∈ X ×B(X) ⊂ Rn.

So far we have derived an equivalent optimization problem P2 that is still
nonconvex and thus still difficult to solve to global optimality. However, in a
next step we may convexify and even linearize the equality constraints of P2,
to obtain an easier to solve relaxation of the problem that provides at least a
lower bound at the globally minimal value of P .

The first nonlinear constraint x3 = x1x2 can be linearized by its convex
envelope, see [81].

Similarly, the equality constraint x4 = exp(x1) can be relaxed by some
convex constraints, such as x4 ≥ exp(x1). Due to monotonicity of expo-
nentiation and due to the box constraints on x1 we also have exp(−1) ≤
x4 ≤ exp(1). Some additional calculations yield x4 ≤ ax1 + b with a =
0.5(exp(1)− exp(−1)) and b = exp(1)− a.

The constraint xg1 = sin(x3) is handled in different ways in the literature.
We simply propose to use interval arithmetic [86] to compute a lower bound
ℓg1 and an upper bound ug1 at xg1 and insert the constraints ℓg1 ≤ xg1 ≤ ug1.

In summary we can compute a lower bound at the optimal value of P
over [−1, 1] × [−1, 1] by solving a convex relaxation, or we can even further
relax these convex constraints and obtain a linear program where Aexpx ≤ bexp
denotes the linear relaxation of the exponential function and AMCx ≤ bMC

stands for the McCormick relaxation.

P̂ : min
x∈R6

xf s.t. xg1 ≤ 0

AMCx ≤ bMC

ℓg1 ≤ xg1 ≤ ug1
Aexpx ≤ bexp

xf = −x4
x ∈ [−1, 1]2 ×B([−1, 1]2).

Aggregating all these linear relaxations of the constraint g1 to Ag1x ≤ bg1 and
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the linear relaxations regarding the objective function to Afx ≤ bf yields

P̂ : min
x∈R6

xf s.t. xg1 ≤ 0

Ag1x ≤ bg1
Afx ≤ bf

x ∈ [−1, 1]2 ×B([−1, 1]2)

where x consists of the original variables x as well as auxiliary variables x′

introduced during the reformulation, that is,

x =

(
x
x′

)
with x =

(
x1
x2

)
and x′ =


x3
x4
xf
xg1

 .

By applying these ideas every factorable inequality constraint g(x) ≤
0 can be equivalently reformulated in a lifted space by xg ≤ 0 together
with some additional equality constraints g̃(x) = 0 and appropriate box
constraints. Those can then be relaxed by the linear constraints Agx ≤ bg
where x consists of the original variables x as well as the new variables x′,
that is,

x =

(
x
x′

)
,

where the variables xg and xf are components of x′. Note that the matrices
Ag and the vector bg differ for different boxes X which will only be expressed
explicitly by Ag(X) and bg(X) if needed. We assume these linearizations of
a constraint to be convergent in the following sense.

Definition 5.2.2. Linearizations of a constraint g(x) ≤ 0 are said to be
convergent if for any exhaustive sequence of boxes (Xk)k∈N and x̃ ∈ Xk,
k ∈ N, the following correspondences hold for all k sufficiently large:

g(x̃) ≤ 0

⇐⇒ ∃ x ∈ Xk ×B(Xk) : xg ≤ 0, g̃(x) = 0

⇐⇒ ∃ x ∈ Xk ×B(Xk) : Ag(Xk)x ≤ bg(Xk).

This convergence is a mild assumption as it holds for all commonly
used linearization techniques in global optimization and, additionally, can
be achieved by using interval arithmetic. In fact, the first equivalence can
be seen easily by considering points (x̃, x′) ∈ Xk × B(Xk) and sequentially
solving the equality system g̃(x̃, x′) = 0.
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Next we explain how to extend this lower bounding procedure to the
special case of the disjunctive programs

DP (Y ) : min
x∈Rn

f(x) s.t.
∧
y∈Y

∨
i∈I0

(
vi(x, y) ≤ 0

)
, x ∈ X

that arise when solving a GSIP.

The lifted and reformulated constraints of vi(x) ≤ 0 are denoted by xvi ≤
0, ṽi(x) = 0 and the relaxed linear approximations of vi(x, y) by Ai,yx ≤ bi,y.
Similarly, the reformulation of the objective function and its relaxation are
f̃(x) = 0 and Ax ≤ b, respectively, so that we obtain the relaxed subproblem

LDP (Y ) : min
x∈Rn

xf s.t.
(
Ax ≤ b

)
∧
∧
y∈Y

∨
i∈I0

(
Ai,yx ≤ bi,y

)
,

x ∈ X ×B(X),

where xf ∈ R is the x-component that represents the objective function in the
reformulation described above. Note that due to the innermost conjunctive
system of linear inequalities, LDP (Y ) is no longer stated in conjunctive
normal form.

As before, for the branch-and-bound framework we also consider restric-
tions of the problems DP (Y ) and LDP (Y ) to certain boxes X ⊂ X, that is,
the problems

DP (X,Y ) : min
x∈Rn

f(x) s.t.
∧
y∈Y

∨
i∈I0

(
vi(x, y) ≤ 0

)
, x ∈ X

and

LDP (X,Y ) : min
x∈Rn

xf s.t.
(
Ax ≤ b

)
∧
∧
y∈Y

∨
i∈I0

(
Ai,yx ≤ bi,y

)
,

x ∈ X ×B(X),

respectively. Note again that the matrices A and Ai,y as well as the right-
hand sides b and bi,y may differ for different boxes X, but that in our notation
we omit this dependency for the ease of presentation.

Lower Bounds Based on a Mixed-Integer Reformulation

The first and straightforward idea to tackle LDP (X,Y ) is to reformulate it
as a mixed integer linear program and thus to shift the difficulties of the
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disjunctions to the linear solver. This can be achieved by applying the well-
known big-M reformulation, see [136] for example. We rewrite LDP (X,Y )
as

MILP (X,Y ) : min
x,z

xw s.t. Ax ≤ b

Ai,yx ≤ bi,y + (1− zi,y)M, y ∈ Y∑
i∈I0

zi,y ≥ 1, y ∈ Y

x ∈ X ×B(X), z ∈ {0, 1}

withM sufficiently large. Note that in this formulation y ∈ Y serves as an
index variable. Also observe that, due to the compactness of the feasible set,
there are appropriate values for M . Problem MILP (X,Y ) is equivalent to
LDP (X,Y ) in the sense that the optimal values of both problems coincide
and, moreover, the orthogonal projection of any optimal point (x∗, z∗) of
MILP (X,Y ) onto the x-space is an optimal point of LDP (X,Y ). Thus
a straightforward idea to compute a lower bound at the globally minimal
value of DP (X,Y ) on a given box X ⊂ X is to solve the mixed-integer
reformulation MILP (X,Y ) of its relaxation LDP (X,Y ) instead. Formally
this is described in Algorithm 3.

Algorithm 3: Lower bounding procedure for DP (X,Y ) based on a
mixed-integer reformulation

Input: Box X ⊂ X, finite set Y ⊂ Y
Output: Lower bound ℓ(X) to the minimal value of problem

DP (X,Y ).
Construct problem MILP (X,Y );
Compute the optimal value ℓ(X) of MILP (X,Y ).

We now show that the aforementioned ideas really lead to an applicable
lower bounding procedure.

Lemma 5.2.3. For any box X ⊂ X and finite set Y ⊂ Y , the value ℓ(X)
computed by Algorithm 3 satisfies ℓ(X) ≤ minx∈M(X,Y ) f(x).

Proof. In case that M(X,Y ) is empty the result is true due to the usual
setting minx∈M(X,Y ) f(x) = +∞.

Otherwise let x∗ ∈M(X,Y ) be a global minimal point of DP (X,Y ). We
shall construct a feasible point ofMILP (X,Y ) with objective function value
f(x∗). This will imply ℓ(X) ≤ f(x∗) and, thus, the assertion.
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Due to the construction of the lifted and reformulated problem, there is
a point x = (x∗, x′) ∈ X ×B(X) with

ṽi(x) = 0, xvi ≤ 0 for i ∈ I0 (5.2)

as well as
f̃(x) = 0, xf = f(x∗). (5.3)

Equation (5.2) ensures the requirements regarding the constraints of the orig-
inal problem whereas equation (5.3) is important for the objective function
value. As the linear constraints Ax ≤ b, Ai,yx ≤ bi,y are relaxations of these
constraints, the point x is also feasible to LDP (X,Y ). As already mentioned,
the problems LDP (X,Y ) and MILP (X,Y ) are equivalent, and thus there
is a point (x, z) which is feasible for MILP (X,Y ) with objective function
value f(x∗).

The convergence properties of this method in the continuous case can be
extended to show that this lower bounding procedure is also convergent for
our disjunctive problems, as we state in the following result.

Theorem 5.2.4. For a finite set Y ⊂ Y let Algorithm 3 use convergent
linearizations. Then for any exhaustive sequence of boxes (Xk)k∈N and x̃ ∈
Xk, k ∈ N, and for lower bounds ℓ(Xk) computed by Algorithm 3 we have

lim
k→∞

ℓ(Xk) = f(x̃)

if x̃ is feasible for DP (Y ), and

lim
k→∞

ℓ(Xk) = ∞

otherwise.

Proof. In case that x̃ is infeasible for DP (Y ) we have∧
y∈Y

∨
i∈I0

(
vi(x̃, y) ≤ 0

)
= false

and, due to Definition 5.2.2, we also have

vi(x̃, y) ≤ 0 ⇐⇒ Ai,yx ≤ bi,y, i ∈ I0, y ∈ Y

for every x ∈ Xk × B(Xk) and k sufficiently large. This means that we also
have ∧

y∈Y

∨
i∈I0

(
Ai,yx ≤ bi,y

)
= false
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for all x ∈ Xk×B(Xk), k sufficiently large, and thus the problems LDP (Xk, Y )
and MILP (Xk, Y ) are inconsistent, meaning that ℓ(Xk) = ∞.

We now consider the case of x̃ being feasible forDP (Y ). The values ℓ(Xk)
are computed as the optimal values ofMILP (Xk, Y ) or LDP (Xk, Y ), respec-
tively, and in view of Lemma 5.2.3 we have ℓ(Xk) ≤ minx∈M(Xk,Y ) f(x) ≤
f(x̃) for all k ∈ N. Let us assume the existence of some d > 0 such that
ℓ(Xk) ≤ f(x̃)− d holds for all sufficiently large k. Then for these k there is
a point x ∈ Xk ×B(Xk) such that

xf ≤ f(x̃)− d

Ax ≤ b∧
y∈Y

∨
i∈I0

(
Ai,yx ≤ bi,y

)
= true .

Due to Definition 5.2.2 for k sufficiently large this is equivalent to the exis-
tence of a point x ∈ Xk ×B(Xk) that fulfills

xf ≤ f(x̃)− d

f̃(x) = 0∧
y∈Y

∨
i∈I0

(
ṽi(x, y) = 0, xvi ≤ 0

)
= true

and this again is equivalent to the existence of some point x ∈ Xk with

f(x) ≤ f(x̃)− d∧
y∈Y

∨
i∈I0

(
vi(x, y) ≤ 0

)
= true .

However, since the sets Xk, k ∈ N, shrink to the singleton {x̃}, the continuity
of f rules out the first inequality, and thus we derived a contradiction.

Lower Bounds Based on Linear Disjunctive Programming

The mixed-integer reformulation of LDP (X,Y ) might be a practical possibil-
ity to solve the problem and, at the same time, it enables us to take advantage
of existing, well developed software packages for linear programming. On the
other hand, in case of large parameters M numerical instabilities may occur
and, moreover, the corresponding continuous relaxations needed to solve the
problem are known to be not too tight in general. Fortunately, a large amount
of literature is devoted to disjunctive problems, especially for the case where
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all defining functions are linear and, thus, there are algorithms tailored to
this kind of problem. The present section discusses one such approach for
lower bounding the problem LDP (X,Y ).

Many algorithms in the literature on disjunctive programming actually
aim at solving problems of the form

DP : min
x∈X

c⊺x s.t.
∨
i∈I

(
Aix ≤ bi

)
whose feasible set that can be regarded as the union of the polyhedra {x ∈
Rn|Aix ≤ bi}, i ∈ I. Often this is achieved by constructing the convex hull
of the latter union. It is well-known that the optimal value of DP coincides
with the optimal value of

P : min
x∈Rn

c⊺x s.t. x ∈ conv

(∪
i∈I

{
x ∈ X

∣∣∣ Aix ≤ bi

})

due to the linear objective function ([12]). For our solution method presented
below we propose to adapt the cutting plane algorithm from [13] in order to
iteratively compute the convex hull of the union of the polyhedra. For the
sake of completeness we briefly review this procedure. A main concept will
be that a linear constraint a⊺x − b ≤ 0 with parameters a ∈ Rn and b ∈ R
is said to be implied by the constraints

∨
i∈I(Aix ≤ bi) if it is fulfilled for all

the corresponding feasible points of DP .

The idea of the cutting plane algorithm is to successively cut away a
point x∗ ∈ Rn by introducing a new constraint a⊺x − b ≤ 0 that is implied
by
∨

i∈I(Aix ≤ bi) and satisfies a⊺x∗ > b. In order to find appropriate
parameters a and b the so-called cut generating linear program has to be
solved which we will derive in the following.

For x ∈ conv
(∪

i∈I {x ∈ X | Aix ≤ bi}
)
we can compute a valid cut by

solving

LP1(x
∗) : max

a,b
a⊺x∗ − b

s.t. a⊺v ≤ b for all v ∈ V

V :=

{
v ∈ Rn

∣∣∣∨
i∈I

(Aiv ≤ bi)

}
− 1 ≤ b ≤ 1, a ∈ [−1, 1]n
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which, from a semi-infinite point of view, can be rewritten as

LP2(x
∗) : max

a,b
a⊺x∗ − b

s.t. max
v∈Vi

a⊺v ≤ b, i ∈ I

− 1 ≤ b ≤ 1, a ∈ [−1, 1]n

with Vi :=
{
v ∈ Rn

∣∣∣Aiv ≤ bi

}
, i ∈ I. Replacing the lower level problems by

their duals immediately yields

LP3(x
∗) : max

a,b
a⊺x∗ − b

s.t. min
wi∈Wi

b⊺iwi ≤ b, i ∈ I

− 1 ≤ b ≤ 1, a ∈ [−1, 1]n

with Wi := {wi|A⊺
iwi = a, wi ≥ 0}, i ∈ I. This is equivalent to the final cut

generating problem

LP (x∗) : max
a,b,w

a⊺x∗ − b

s.t. b⊺iwi ≤ b, i ∈ I

A⊺
iwi = a, i ∈ I

wi ≥ 0, i ∈ I

− 1 ≤ b ≤ 1, a ∈ [−1, 1]n.

Although not presented in a semi-infinite context, this result is well-known
from the literature on disjunctive programming [13]. In fact, the technique
itself already appeared in 1977 in a slightly different context [10].

These observations lead to cutting plane methods for DPs as outlined in
the following. Formally they are described in [13].

1. Solve a relaxation of the original problem DP .

2. If the computed optimal point x∗ of the relaxation is feasible for DP ,
then Stop.

3. Otherwise: Solve the cut generating linear program LP (x∗) in order to
find a new constraint a⊺x ≤ b and add this to the relaxation of DP .

4. Go to Step 1.
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Unfortunately, like many algorithms in the field of disjunctive program-
ming, this method does not address problems like LDP (X,Y ) since these are
not stated in conjunctive normal form. At least the feasible set of LDP (X,Y )
can be described as the intersection of the union of polyhedra. The corre-
sponding logical expression is then said to be in regular form [12].

For LDP (X,Y ) the effort to compute the convex hull of the feasible set
is much higher, but if we use the techniques from literature to compute the
convex hull of the union of polyhedra we have at least

conv

(∩
y∈Y

∪
i∈I

{x ∈ X ×B(X)|Ai,yx ≤ bi,y}

)

⊂
∩
y∈Y

conv

(∪
i∈I

{x ∈ X ×B(X)|Ai,yx ≤ bi,y}

)
(5.4)

although equality does not necessarily hold [12].

Figure 5.1 illustrates this fact for the depicted example sets Mi,y = {x ∈
R2|Ai,yx ≤ bi,y} with i ∈ I = {1, 2, 3} and y ∈ Y = {1, 2}. For instance the
point x̃ does not lie in the original feasible set but is contained in its superset∩

y∈Y conv
(∪

i∈I {x ∈ X ×B(X)|Ai,yx ≤ bi,y}
)
.

x̃ M3,1

M1,2

M3,2

M2,2

M1,1 M2,1

Figure 5.1: Convex hull of feasible set of a regular disjunctive program and
its relaxation
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These observations lead to a possibility to at least determine a lower
bound at the optimal value of LDP (X,Y ) by computing the optimal value
of the relaxed problem

L̂DP (X,Y ) : min
x∈Rn

xf

s.t. Ax ≤ b

x ∈
∩
y∈Y

conv

(∪
i∈I

{x ∈ X ×B(X)|Ai,yx ≤ bi,y}

)
.

In order to solve L̂DP (X,Y ) we extend the cutting plane method de-
scribed above. We start by computing an initial lower bound by omitting
the constraints ∧

y∈Y

∨
i∈I0

(Ai,yx ≤ bi,y)

of LDP (X,Y ) and solving the conjunctive problem

L̂DP 1(X,Y ) : min xf s.t. Ax ≤ b

x ∈ X ×B(X).

Since L̂DP 1(X,Y ) relaxes the problem DP (X,Y ), the minimal value of

L̂DP 1(X,Y ) is a lower bound for the minimal value of DP (X,Y ). Now

let us consider the computed optimal point x∗1 of L̂DP 1(X,Y ). If for ev-
ery y ∈ Y we have x∗1 ∈ conv

(∪
i∈I {x ∈ X ×B(X)|Ai,yx ≤ bi,y}

)
then x∗1

is feasible for L̂DP (X,Y ), so that we are not able to further improve the
lower bound by adding more cutting planes of this type. Otherwise, for ev-
ery y ∈ Y for which the latter is not the case, we may add a new constraint
and, thus, improve the approximation of the feasible set by solving the cut
generating problem

LP (x∗1, y) : max
a,b,w

a⊺x∗1 − b

s.t. b⊺i,ywi ≤ b, i ∈ I

A⊺
i,ywi = a, i ∈ I

wi ≥ 0, i ∈ I

− 1 ≤ b ≤ 1, a ∈ [−1, 1]n.

Then, for every such y, we add the new cutting plane to the conjunctive
linear lower bounding problem. Formally this is described in Algorithm 4.
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Algorithm 4: Lower bounding procedure forDP (X,Y ) based on linear
disjunctive programming

Input: Box X ⊂ X, finite set Y ⊂ Y .
Output: Lower bound ℓ(X) to the minimal value of problem

DP (X,Y ).
Step 1: Set iteration counter i = 1;
Step 2:

if L̂DP i(X,Y ) is consistent then

Compute an optimal point x∗i of L̂DP i(X,Y );
else

Stop: put ℓ(X) = ∞;
end
Step 3: Set feasible bool = true;
For every y ∈ Y improve convex hull approximations:
if optimal value of cut generating problem LP (x∗i , y) is positive then

add corresponding cutting plane a⊺x ≤ b to conjunctive linear
lower bounding problem;
feasible bool = false;

end
if feasible bool then

No improvement is possible, Stop: define ℓ(X) as the optimal value

of L̂DP i(X,Y );

end
Step 4: Increment iteration counter i and go to Step 2;

Despite the obvious discrepancy between the problems LDP (X,Y ) and

their relaxations L̂DP (X,Y ), we will be able to present a convergence re-
sult on this lower bounding procedure. We start by confirming that ℓ(X)
computed as shown above actually is a lower bound for DP (X,Y ).

Lemma 5.2.5. For any box X ⊂ X and finite set Y ⊂ Y , the value ℓ(X)
computed by Algorithm 4 satisfies ℓ(X) ≤ minx∈M(X,Y ) f(x).

Proof. The result is due to the following chain of relaxations: as seen above,

LDP (X,Y ) is a relaxation of DP (X,Y ), by (5.4) the problem L̂DP (X,Y )
is a relaxation of LDP (X,Y ) and, by construction of the cutting planes, for

any i the problem L̂DP i(X,Y ) is a relaxation of L̂DP (X,Y ).

Theorem 5.2.6. For a finite set Y ⊂ Y let Algorithm 4 use convergent
linearizations. Then for any exhaustive sequence of boxes (Xk)k∈N and x̃ ∈
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Xk, k ∈ N, and for lower bounds ℓ(Xk) computed by Algorithm 4 we have

lim
k→∞

ℓ(Xk) = f(x̃)

if x̃ is feasible for DP (Y ), and

lim
k→∞

ℓ(Xk) = ∞

otherwise.

Proof. In case that x̃ is infeasible for DP (Y ), with the same lines of argu-
ments as in the proof of Theorem 5.2.4 we obtain∧

y∈Y

∨
i∈I0

(
Ai,yx ≤ bi,y

)
= false

for all x ∈ Xk × B(Xk) and k sufficiently large. This means that there is
some ỹ ∈ Y such that ∨

i∈I0

(
Ai,ỹx ≤ bi,ỹ

)
= false

holds and, thus,∪
i∈I0

{
x ∈ Xk ×B(Xk) | Ai,ỹx ≤ bi,ỹ

}
= ∅,

conv

(∪
i∈I0

{
x ∈ Xk ×B(Xk) | Ai,ỹx ≤ bi,ỹ

})
= ∅,

and
∩
y∈Y

conv

(∪
i∈I0

{
x ∈ Xk ×B(Xk) | Ai,yx ≤ bi,y

})
= ∅.

For this reason the feasible set of L̂DP (Xk, Y ) is empty. Thus there is an

i ∈ N such that also the feasible set of L̂DP i(Xk, Y ) is empty after sufficiently
many cutting planes have been added ([13]). It follows that for all sufficiently
large k Algorithm 4 terminates with ℓ(Xk) = ∞.

We now consider the case of x̃ being feasible for DP (Y ). Then all prob-

lems L̂DP (Xk, Y ), k ∈ N, are consistent, and Algorithm 4 computes the

lower bound ℓ(Xk) as the optimal value of L̂DP i(Xk, Y ) for some i ∈ N.
Moreover, in view of Lemma 5.2.5 the inequalities ℓ(Xk) ≤ minx∈M(Xk,Y ) f(x) ≤
f(x̃) are satisfied for all k ∈ N.
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Let us assume that the sequence ℓ(Xk) does not converge to f(x̃). Then
there is some d > 0 so that for every k ∈ N it holds ℓ(Xk) ≤ f(x̃)− d. This

means that there is some feasible point x ∈ Xk × B(Xk) of L̂DP i(Xk, Y )
with xf ≤ f(x̃)− d.

The feasibility of x for L̂DP i(Xk, Y ) particularly implies Ax ≤ b. Ac-
cording to Definition 5.2.2 this is equivalent to the existence of some x ∈
Xk with f(x) ≤ f(x̃) − d for all sufficiently large k. However, due to
limk→∞ diag(Xk) = 0 and the continuity of f this is not possible and, thus,
we have derived a contradiction.

5.3 A Branch-and-Bound Framework for GSIPs

Roughly, our method for solving GSIPs works as follows:

1. Solve a problem DP (Y ) with Y ⊂ Y . If the problem is not solvable,
then terminate.

2. Check if the resulting optimal point x∗ is feasible by solving Q̂(x∗).

Note that, despite its non-smooth objective function, Q̂(x∗) can be
solved by tailored branch-and-bound algorithms in a straightforward
manner.

3. If x∗ lies in M̂ , then terminate. Else improve Y and continue.

To make this more specific, the present section is divided into two parts.
In Subsection 5.3.1 we start by stating a branch-and-bound algorithm for
solving nonlinear programs to global optimality. Due to the use of the lower
bounding procedures from Section 5.2 our method is able to cope with dis-
junctive programs. An additional important property of this method is its
ability to perform warm starts. This allows us to add constraints to a cur-
rently solved problem and then continue to solve the updated problem with-
out the need to start at the root node of the branch-and-bound tree. In
Subsection 5.3.2 we will take advantage of this algorithm to state our new
discretization method for GSIPs.

5.3.1 Global Solution of DPs with Warm Starts

The algorithm for generalized semi-infinite problems solves a sequence of
discretizations, such as DP (Y ) with Y ⊂ Y . In fact, for given Y ⊂ Y and
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the resulting optimal point x, the corresponding feasibility problem Q̂(x)
is solved to global optimality. If the optimal value is nonpositive, then x
is feasible and thus a globally minimal point of f over M̂ . Otherwise, the
obtained optimal point y∗ of the feasibility problem is added to Y , and an
improved discretized problem DP (Y ∪ {y∗}) has to be solved.

In order to implement this procedure, a repeated sequence of similar
problems has to be solved, and our goal in this section is to exploit this
similarity in order to develop an efficient solver. In this regard our approach
significantly differs from the one in [83] because there the occurring problems
are solved independently from each other, in order to take advantage of state
of the art solvers in global optimization.

Basically two types of similarity can be addressed, one between successive
disjunctive problems, and another between successive feasibility problems.
Especially when the discretization procedure eventually converges, we may
hope that many points x1 and x2 are generated that are close to each other
and thus, due to the continuity of the objective function, it is a reasonable
idea to try to take advantage of information gained before. However, al-
though the constraints might differ only slightly in the parameter x, a global
branch-and-bound solver has to consider all constructed boxes again to com-
pute the correct lower bounds and to ensure that the slight change does not
lead to significant effects regarding the new feasible set.

However, there is a second similarity in the proposed solution method
for GSIPs that can be exploited much better and this is the one between
the problems DP (Y1) and DP (Y2) with Y2 = Y1 ∪ {y∗}. Instead of solving
problem DP (Y2) from scratch, we propose to continue the branch-and-bound
procedure from the solution of DP (Y1) to obtain a globally minimal point of
DP (Y2).

For this warm start ability it is important that during the solution of
DP (Y1) boxes that contain a globally minimal point of DP (Y2) are not fath-
omed due to bad objective function values from the list L of candidate boxes
for globally minimal points of DP (Y1). In fact, adding a new constraint in
DP (Y2) may cut off the optimal point of DP (Y1) and, at the same time, the
optimal value of DP (Y2) becomes larger than the one of DP (Y1). A fath-
oming procedure for DP (Y1) may thus delete boxes which do not contain
optimal points of DP (Y1), but very well optimal points of DP (Y2).

To rectify this, we propose instead to remove such boxes from the list
L, but save them to a second list M which is not further considered during
the algorithm, as long as no additional constraints are added. Especially the
current best lower bound is only determined by considering boxes in the list
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L. Thus for the current cycle boxes in the list M are treated as if they were
fathomed. If we add new constraints to the optimization problem we can
join the boxes from the list M to L and continue to solve the problem. In
this way the proposed algorithm is able to cope with warm starts.

Observe that, on the other hand, boxes can always be removed due to
infeasibility in DP (Y1) because adding a new constraint cannot make them
feasible again inDP (Y2). If the algorithm terminates with L = ∅ the problem
DP (Y ) is inconsistent.

In principle all methods from Section 5.2 are applicable as a lower bound-
ing procedure. We are now ready to state our branch-and-bound framework.
The term mid(X) will stand for the geometrical midpoint of the box X.
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Algorithm 5: Branch-and-bound framework for DP (Y )

Input: Finite set Y ⊂ Y , initial lower bound v̂0 = ℓf (X), initial upper
bound u0 = +∞, list L = {(X, ℓ(X))}, best known point so
far x∗0 = mid(X) and iteration counter k = 1.

Output: Global optimal point x∗ of DP (Y ), or certificate for
MDP (Y ) = ∅.

while uk−1 − v̂k−1 > 0 and L ̸= ∅ do
Step 1: Choose (Xk, vk) ∈ L with vk = v̂k−1;
Step 2: Divide Xk along the midpoint of a longest edge into X1

k

and X2
k ;

Step 3: For j = 1, 2 calculate lower bounds vjk = ℓ(Xj
k) by applying

Algorithm 2, 3 or 4;

For j = 1, 2, if vjk <∞, add the pair (Xj
k, v

j
k) to the list L;

Step 4: For j = 1, 2 choose xjk ∈ Xj
k and define

f j
k :=

{
f(xjk) if xjk ∈MDP (X

j
k, Y )

+∞ else.

Step 5: Put uk = min{uk−1, f
1
k , f

2
k} and choose x∗k ∈ {x∗k−1, x

1
k, x

2
k}

with f(x∗k) = uk;
Step 6: Fathoming:
for (X, v) ∈ L with v > uk do

Remove (X, v) from L and put it into M;
end
Step 7: Update of lower bound:
if L ̸= ∅ then

v̂k = min{v ∈ R | (X, v) ∈ L}
end
Step 8: Increment k;

end

5.3.2 The Discretization Method for GSIPs

In this section we will use Algorithm 5 for disjunctive optimization problems
to lower bound GSIPs by means of a discretization method.

In the first iteration we obtain a lower bound of GSIP by setting Y1 = ∅
and solving DP (Y1). According to the theorem of Weierstrass it is clear that

an optimal point x∗1 is obtained. We then continue to solve Q̂(x∗1) which is
solvable for the same reason. In case that its optimal value is nonpositive,
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x∗1 is already feasible for the semi-infinite program and thus we are done.
Otherwise we set Y2 = Y1 ∪ {y∗1} where y∗1 denotes the obtained optimal

point of Q̂(x∗1) and solve the new discretization DP (Y2). Formally, this is
described in Algorithm 6.

Algorithm 6: Discretization method for GSIP

Input: Initial index set Y1 = ∅ and iteration counter k = 1.
Output: global optimal point x∗ of f over M̂ , or certificate for

M̂ = ∅.
while true do

Step 1: Apply Algorithm 5 to DP (Yk);
if DP (Yk) is not solvable then

M̂ is empty, terminate;
end
Step 2: Let x∗k be an optimal point of problem DP (Yk);
Step 3: Determine an optimal point y∗k and the optimal value v∗k of

Q̂(x∗k);
if v∗k ≤ 0 then

x∗k is an optimal point, terminate;
end
Step 4: Put Yk+1 = Yk ∪ {y∗k}
Step 5: Increment k;

end

Theorem 5.3.1. Assume that in Algorithm 6 the discretization method does
not terminate. Then, the sequence (x∗k)k∈N possesses a cluster point, and any
such cluster point is a globally minimal point of GSIP .

Proof. The convergence of this method immediately follows from established
results on the numerics of standard semi-infinite programming [53].

Step 3 of Algorithm 6 can possibly be accelerated by avoiding the effort
of computing a globally optimal y∗k of Q̂(x∗k). In fact, as soon as any feasible

point yk of Q̂(x
∗
k) with positive objective function value has been determined,

the infeasibility of x∗k is clear, and yk may be used to refine the discretization
Yk in Step 4. Such a point yk may occur, for example, as an iterate in a
branch-and-bound procedure for the solution of Q̂(x∗k), or as the output of a
local NLP solver. To still achieve convergence of this modified discretization
method, the objective function values of the used feasible points yk have to
tend to globally maximal values while the algorithm proceeds.
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5.4 Numerical Results

In this section we present our numerical results. Algorithms 2–6 are imple-
mented in C++ and compiled with GNU g++, version 6.3. To integrate
interval arithmetic, the library PROFIL/BIAS V2, see [68], is linked in. All
occurring linear optimization problems are solved with GNU Linear Program-
ming Kit 4.61, see [78]. All computations are performed on a laptop computer
with Intel Core i5-2540M (2.60GHz, 3M cache) running Linux 4.9.0.

The termination tolerance of the overall semi-infinite solver is set to ε =
0.01. A point x is accepted as a feasible point with a feasibility tolerance
εf = 0.01. All occurring global optimization problems are solved up to a
tolerance of 0.001.

5.4.1 The Main Approach

All 16 test problems from [75] (cf. [83]) are solved. An overview is given in
Table 5.1. The columns of the following tables are denoted as follows. The
first one named “Problem” contains the name of the test problem. By n the
number of x-variables is given in column two and m stands for the number
of y-variables in column three. The term |I| describes the number of lower
level constraints. For every instance there is only one upper level constraint.
The last column f(x∗) contains the optimal value as reported in literature.

For test problem “L02” we could even correct the usually reported opti-
mal point (0, 0)⊺ with objective function value 0 to (−1,−1)⊺ with optimal
value −1. Note that the point (0, 0)⊺ actually is optimal for the original
problem statement from [61]. However, for the test set in [75] the lower level
constraint y ≥ −1 and the upper level constraints x ∈ [−1, 1]2 were added
to the problem statement which result in the extension of the feasible set
{x ∈ R2|x21 < 2x2} ∪ {0} by the line segment [−1, 1]× {−1}, which consists
of optimal points with value −1. The fact that previous numerical tests in
the literature still identified (0, 0)⊺ as an optimal point may be due to the de-
generate geometry of this feasible set. This also shows that, on the contrary,
our approach does not run into troubles here.

Table 5.2 shows the results of Algorithm 6 with Algorithm 2 as lower
bounding procedure in the global branch-and-bound framework. Besides the
name of the problem, lower and upper bounds as well as number of iterations
and the time needed to solve the problem are reported. Time is wall clock
time given in seconds. In case a problem could not be solved within a time
frame of two hours, the algorithm is terminated. In the following tables this
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Table 5.1: Overview of the test problems

Problem n m |I| f(x∗)

L01 2 1 1 0.0625
L02 2 1 1 -1.0
L03 2 3 1 -0.5
L04 1 1 1 0.0
L05 2 2 2 -5.0
L06 2 3 3 -6.0
L07 2 1 1 -0.5
L08 2 1 1 -1.0
L09 1 1 1 0.043264
L10 2 1 2 -1.0
L11 3 1 1 0.5
L12 1 1 1 0.5
L13 3 1 1 2.935930275
L14 3 2 1 0.381924
L15 2 1 1 -3.710448
L16 6 2 1 -10.666

is indicated by ‘-’.

Analogously, the results of Algorithm 6 with lower bounding procedures
from Algorithm 3 and Algorithm 4 in the global solver are presented in
Table 5.3 and Table 5.4, respectively.

A comparison of the lower and upper bounds with the optimal values from
Table 5.1 shows the effect of our several relaxation steps for the feasible set:
the computed lower bounds are all valid as expected because lower bounds
at a relaxation are also lower bounds for the original problem. On the other
hand, upper bounds for a relaxed problem are not necessarily valid for the
original problem and, in fact, several of the upper bounds from Tables 5.2,
5.3 and 5.4 are smaller than the optimal values from Table 5.1. In order to
obtain valid values a combination with other techniques such as restriction of
the right hand side from [83] is possible which might be incorporated into the
global branch-and-bound solver so that the upper and the lower bounding
problem can be solved simultaneously. This idea is left for future research.

It can be seen that the lower bounding procedure from Algorithm 2 is
much faster compared to the other two algorithms for most of the problems.
However, in applications often problems with many linear functions arise.
For such problems, lower bounding procedures based on linearizations can
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Table 5.2: Results with lower bounding procedure Algorithm 2

Problem lower bound upper bound iterations time

L01 0.055176 0.061111 8 0.003621
L02 -1.000000 -1.000000 1 0.000545
L03 -0.539062 -0.531193 20 99.414400
L04 -0.000000 0.000000 1 0.000674
L05 -5.000000 -5.000000 5 0.001807
L06 - - - -
L07 -0.503906 -0.500977 6 0.005659
L08 -1.000000 -1.000000 1 0.000403
L09 0.041260 0.044495 2 0.009682
L10 -1.023438 -1.015625 7 0.003129
L11 0.491142 0.501084 2 0.017399
L12 0.494385 0.499893 2 0.000319
L13 2.925935 2.935930 2 0.024932
L14 0.371338 0.380920 4 0.005458
L15 -3.717773 -3.709412 6 0.010374
L16 -10.666667 -10.666667 2 0.000887

Table 5.3: Results with lower bounding procedure Algorithm 3

Problem lower bound upper bound iterations time

L01 0.060469 0.064758 9 0.304246
L02 -1.000000 -0.992188 1 0.011050
L03 -0.536792 -0.531005 17 4.040980
L04 - - - -
L05 -5.000000 -4.990234 1 0.016379
L06 -6.000004 -5.993896 1 0.026348
L07 -0.507170 -0.503906 6 0.217583
L08 -1.000000 -0.992188 1 0.011842
L09 0.041618 0.047852 2 0.012854
L10 -1.013671 -1.003906 7 0.220980
L11 0.495301 0.497818 2 0.193993
L12 0.499268 0.505432 2 0.014410
L13 2.934678 2.942978 2 0.067032
L14 0.381277 0.381409 4 0.222761
L15 -3.715931 -3.709412 3 0.143179
L16 - - - -
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Table 5.4: Results with lower bounding procedure Algorithm 4

Problem lower bound upper bound iterations time

L01 0.060350 0.063553 8 1.203560
L02 -1.000000 -0.992188 1 0.013772
L03 -0.533370 -0.531005 19 93.45110
L04 - - - -
L05 -5.000000 -4.990234 1 0.028632
L06 -6.000004 -5.993896 1 0.052105
L07 -0.507170 -0.503906 6 10.84950
L08 -1.000000 -0.992188 1 0.016547
L09 0.041618 0.047852 2 0.181970
L10 - - - -
L11 0.495301 0.497818 2 3.584430
L12 0.499268 0.505432 2 0.074808
L13 2.934678 2.942978 2 1.378540
L14 0.381277 0.381409 4 10.039500
L15 -3.715931 -3.709412 3 21.333300
L16 - - - -

be expected to be beneficial.

Numerical results for a similar algorithm using standard mixed-integer
reformulations for the disjunctions and state-of-the-art solvers such as Baron
and LindoGlobal can be found in [83]. It can be seen that our tailored
lower bounding procedures lead to significant savings in time. The results
are developed under similar conditions so that a comparison of the solution
times is valid to a certain degree. However, we point out that the algorithm
in [83] involves an additional upper bounding procedure leading to additional
effort.

5.4.2 Additional Approaches

In the following some additional experiments are described which, however,
did not lead to the expected improvement of the solver. For example, in
each iteration of the semi-infinite solver there are two nonlinear problems,
that have to be solved to global optimality, namely the discretization of
the original GSIP and the feasibility problem. However, especially at the
beginning of the solution process one might try to proceed faster without
solving the subproblem to the highest possible accuracy.
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Consider for instance the solution of the feasibility problem. It is well-
known that many global optimization solvers often find the global optimal
point early in the solution process and then spend most of the time to im-
prove the lower bound in order to have a certificate of optimality. In our
setting, this optimal point corresponds to the new constraint that is added
to the discretization and, of course, we need to have a global optimal point
in order to ensure convergence of our method. However, especially at the
beginning of the solution process we might accept any such point and add
the corresponding cutting plane, without the need to have accurate lower
bounds that ensure global optimality of this point. Similarly, there is no
need to solve every discretization of the generalized semi-infinite problem up
to the highest accuracy, as the optimal point of this problem might be cut
off later in the same iteration anyway. However, especially towards the end
of the solution process global optimality is crucial to ensure convergence of
the overall method.

As it turns out, our experiments in this direction are not very promising.
For instance if we start with a termination tolerance of the global optimiza-
tion solver of ε1 = 2.0 and improve this value in every further iteration k by
setting

εk = max
{εk−1

2
, 0.001

}
only few solution times strictly improve. Moreover, most of the test prob-
lems even take more time to solve. The same effect is observed for different
sequences of tolerances (εk)k∈N.

Analogously, one might try to accelerate the semi-infinite solver by re-
stricting the number of iterations of the global nonlinear solver at the be-
ginning of the solution process. The motivation behind this approach is the
same because higher accuracy comes at the cost of more iterations which
is needed only later in the solution process of the semi-infinite framework.
However, also here the test problems take more time to solve.

A possible explanation for the failure of these attempts is the increased
number of iterations that lead to more discretization points and thus more
disjunctions that have to be handled in later iterations of the semi-infinite
solver. Although possible in principle, this seems to be very expensive from
a computational point of view.
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Chapter 6

Conclusions and Future
Research

In this thesis, the close relationship between disjunctive problems and gen-
eralized semi-infinite programs is examined. We close this thesis by summa-
rizing the main contributions and point out some additional questions that
are left for future research.

6.1 Conclusions

In Chapter 3, we presented a reformulation of disjunctive programs with
relatively general logical expressions into standard nonlinear programs. This
opens the possibility to solve DPs locally by applying existing semi-infinite
solution techniques. In contrast, the remaining part of this document covers
the global solution of both kinds of problems.

In Chapter 4, we proposed a new branch-and-bound framework for global
minimization of disjunctive programs with general logical expressions. We
proved the convergence of our algorithm and discussed how to integrate nega-
tions and implications into logical expressions. The main novelty of our al-
gorithm is that it neither requires the logical expressions to be in any normal
form, nor introduces additional binary variables. Our computational results
indicate how poorly classical algorithms can perform if one requires a nor-
mal form, and that running our algorithm on the original logical expression
(which does not require any normal form) is computationally highly advan-
tageous on those instances.

Based on these results, in Chapter 5 we presented an algorithm for the
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global solution of generalized semi-infinite optimization problems by means
of three different lower bounding procedures.

6.2 Outlook

However, there are still some issues which have to be addressed. For ex-
ample, many applications involve logical expressions, which also make use
of negations and implications. Since it is well-known that implications can
be transformed into conjunctions or disjunctions involving negations, this
raises the need to extend our reformulation method to cope with negated
constraints of the type ¬(G(x) ≤ 0) or, in other words, constraints of the
type −G(x) < 0. Unfortunately, for continuous functions G the feasible set
then does not need to be closed, and one needs to take special care when
showing solvability of such a problem. Moreover, relaxing the feasible set
by considering the constraint −G(x) ≤ 0 instead of −G(x) < 0 may heavily
enlarge the feasible (at least in the absence of constraint qualifications), so
that a computed solution of the nonlinear program may have little to do with
a solution of the original disjunctive problem. For the branch-and-bound al-
gorithm in Chapter 4 a possibility for inner and outer approximations of
these types of DPs is discussed in Section 4.3. These considerations could be
applied to the reformulation techniques in Chapter 3 analogously.

Similarly, it may also be beneficial to integrate even more operators into
logical expressions, such as biconditional (“if and only if”, Yi ↔ Yj), NAND
(“not both”, Yi ↑ Yj), NOR (“neither. . . nor”, Yi ↓ Yj), XOR (“either. . . or”,
Yi ⊕ Yj), etc. These issues will be subject of future research.

Moreover, our GSIP solver described in Chapter 5 provides lower bounds
at the globally minimal value due to the relaxations of the feasible set. Ad-
ditional techniques such as restriction on the right-hand-side as proposed
in [83] are also applicable to compute valid upper bounds for the objective
function on the original feasible set.

Additionally, current state-of-the-art solvers in global optimization are
much more developed than our simple branch-and-bound solvers and involve
much more sophisticated techniques to problems, for example bound tight-
ening and presolve strategies, that help to reduce the size of the problem
in advance. In contrast, our simple branch-and-bound algorithm is tailored
to the disjunctive problems that arise in the solution process of generalized
semi-infinite problems and thus it has its own advantages. A perfect solution
would, of course, have to combine all these ideas in one solver.
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Finally, beside the test problems solved in this document, there are many
real applications with nested logical expressions or generalized semi-infinite
constraints. A few examples are reviewed in Chapter 2. Thus, it would be
interesting to see, how the different reformulations and solution methods of
this thesis perform on these real-world instances. A thorough preparation of
real data provided, a direct application should be possible, at least in theory.
Moreover, if necessary, the described algorithms could be adapted to these
problems. Again, this is left for future research.
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[44] M.A. Goberna, M.A. López, Linear Semi-infinite Optimization, John
Wiley & Sons, Chichester (1998)

[45] I.E. Grossmann, H. Yeomans, Z. Kravanja, A rigorous disjunctive op-
timization model for simultaneous flowsheet optimization and heat in-
tegration, Computers & Chemical Engineering, 22 (1998), S157-S164

[46] I.E. Grossmann, Review of nonlinear mixed-integer and disjunctive pro-
gramming techniques, Optimization and Engineering, 3 (2002), 227-252

[47] I.E. Grossmann, S. Lee, Generalized convex disjunctive programming:
nonlinear convex hull relaxation, Computational Optimization and Ap-
plications, 26 (2003), 83-100

[48] I.E. Grossmann, J.P. Ruiz, Generalized disjunctive programming: a
framework for formulation and alternative algorithms for MINLP opti-
mization, In: J. Lee, S. Leyffer, Mixed Integer Nonlinear Programming,



Bibliography 123

The IMA Volumes in Mathematics and its Applications, 154 (2012),
93-115

[49] I.E. Grossmann, F. Trespalacios, Systematic modeling of discrete-
continuous optimization models through generalized disjunctive pro-
gramming, AIChE Journal, 59 (2013), 3276-3295

[50] F. Guerra Vázquez, J.J. Rückmann, O. Stein, G. Still, Generalized
semi-infinite programming: a tutorial, Journal of Computational and
Applied Mathematics, 217 (2008), 394-419

[51] F. Guerra Vázquez, H.T. Jongen, V. Shikhman, General semi-infinite
programming: symmetric Mangasarian-Fromovitz constraint qualifica-
tion and the closure of the feasible set, SIAM Journal on Optimization,
20 (2010), 2487-2503

[52] H. Günzel, H.T. Jongen, O. Stein, On the closure of the feasible set
in generalized semi-infinite programming, Central European Journal of
Operations Research, 15 (2007), 271-280

[53] R. Hettich, K.O. Kortanek, Semi-infinite programming: theory, meth-
ods, and applications, SIAM Review, 35 (1993), 380-429

[54] R. Hettich, P. Zencke, Numerische Methoden der Approximation und
semi-infiniten Optimierung, Teubner, Stuttgart (1982)

[55] J.N. Hooker, M.A. Osorio, Mixed logical-linear programming, Discrete
Applied Mathematics, 96-97 (1999), 395-442

[56] R. Horst, H. Tuy, Global Optimization: Deterministic Approaches,
Springer, Berlin (1996)

[57] J.R. Jackson, I.E. Grossmann, A disjunctive programming approach
for the optimal design of reactive distillation columns, Computers &
Chemical Engineering, 25 (2001), 1661-1673
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erklärt und nichts verschwiegen habe.

Ort und Datum Unterschrift

131


