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Abstract 

In machine tools, Industry 4.0 functions can increase availability through predictive maintenance, while other functions improve productivity and 

workpiece quality through process supervision and optimisation. Many of these functions rely on data communication between systems from 

different suppliers. Requirements regarding latency and computing vary widely depending on the application. Based on an analysis of these 

requirements, a smart controller for the implementation of Industry 4.0 is designed, using a hypervisor to allow for the integration of soft real-

time and best-effort applications. 
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1. Introduction 

Due to increasing demands for productivity and workpiece 

quality, the importance of process monitoring and predictive 

maintenance is increasing in production, also promising 

economic benefits [1]. However, a diverse hardware and 

software landscape hampers implementation of these Industry 

4.0 functions in new (greenfield) and existing (brownfield) 

production systems [2]. This contribution offers a concept for a 

modular smart controller to enable flexible and manufacturer-

independent solutions for process monitoring and predictive 

maintenance functions, focussing on machine tools. Relevant 

work on Industry 4.0 functions is reviewed in order to derive 

requirements. An architecture for data communication and 

computing is then proposed and implemented within an 

exemplary machine. 

1.1. Connected smart components in machine tools 

A widespread key performance indicator (KPI) in the 

operation of machine tools is the overall equipment 

effectiveness (OEE), which depends on the availability and 

productivity of the machine as well as the quality of the 

produced workpieces. High availability can be achieved by 

planning repairs based on condition monitoring. Productivity 

and workpiece quality can be improved through process 

supervision and optimisation, especially in the production of 

small batches. [2] 

In the following, metal cutting machine tools such as milling 

machines will be used as an example in order to discuss the 

relevant requirements. The main spindle and the feed axes are 

especially relevant subsystems with regard to workpiece 

quality and system availability. In the main spindle, bearings in 

particular are subject to wear and influence the quality of the 
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produced workpiece. In the feed axis, mechanical 

transmissions, such as ball screws or rack-and-pinion drives, 

and guiding systems (e.g. roll guides) have a decisive 

influence. 

These components are responsible for transmitting the 

process force, which means they constitute potential locations 

for measuring quantities required for monitoring the machining 

process. They are also susceptible to be replaced several times 

during the lifetime of a machine tool due to wear. It is therefore 

of interest to monitor the wear of these components and plan 

maintenance measures accordingly. In order to do that, 

intelligence in the form of additional sensors (typically strain 

gauges, structure-borne sound and temperature) and local 

component-specific preprocessing is required. Thus the 

mechanical component becomes a cyber-physical smart 

component. This smart component is a mechatronic system that 

is capable of recording data from the environment via sensors, 

processing the data to derive information on the status of the 

component, and passing this on to other systems. [3, 4] 

Existing solutions based on smart components rely on 

proprietary architectures within isolated applications. Another 

suitable and more flexible solution would be a modular 

controller, connecting to one or more such smart components 

within the machine. This smart controller would receive sensor 

data and other information from the components as well as 

additional data from the machine control unit. The controller 

would evaluate the data to determine if one of the following 

interventions is necessary: 

 Emergency stop 

 Adjustment of process settings 

 Planned or immediate maintenance measures 

If data from several machines is to be aggregated, or the data 

processing is too computationally expensive to be performed 

locally, it is expedient to exchange data with a server outside 

the machine. This may for example be a cloud-based prognosis 

service [5] or a manufacturing execution system (MES). 

Depending on the required computing power and reaction time, 

the data should be evaluated by the smart controller and/or 

transmitted to other computers. The resulting communication 

architecture is shown in Fig. 1. The smart controller should be 

implemented as an additional system parallel to the machine 

control system, thus reducing the need to adapt the machine 

control and limiting adverse effects of the additional functions 

on the basic functionality of the machine. 

1.2. Approaches for predictive maintenance 

Predictive maintenance aims to maximise the useful lifetime 

of machine components while avoiding unplanned production 

downtime. Many approaches based on the acquisition of data 

within such components can be found in existing publications. 

The lifetime of ball screws can be extended by adaptive 

lubrication based on data from strain gauges [6] and the current 

wear status can be monitored based on measured vibration data 

[7,8] or strain gauges [9, 10]. In ball bearings, vibration and 

acoustic emission data can be used for fault diagnosis and 

classification [11, 12] as well as remaining useful lifetime 

prognosis [13, 14, 15]. Prognostics and health monitoring can 

be enhanced by combining measured data with a digital twin of 

the monitored equipment [16]. 

Earlier approaches focus on time-domain, frequency-

domain, and time-frequency analysis of vibration data [17]. 

More recently, support vector machines [11] and deep learning 

approaches (e.g. Auto-encoders, Restricted Boltzmann 

Machines, Convolutional Neural Networks, Recurrent Neural 

Networks) have been shown to be suitable for machine health 

monitoring problems [18]. 

1.3. Approaches for monitoring machining processes 

An overview of possible scopes for monitoring machining 

operations is given by Teti et al. [19]. The wear of cutting tools 

can be monitored based on the cutting force [20, 21], motor 

current, acceleration or a combination of these data sources 

[22]. Another type of process monitoring consists in avoiding 

or detecting collisions and overload. This is achieved by adding 

sensors to measure process forces [23], evaluating existing data 

such as motor currents [24] or predicting collisions using 

geometrical models [25]. In all three cases, a short reaction time 

is necessary in order to avoid or reduce damage to tool, 

workpiece, and machine. In metal cutting operations, vibration 

analysis can be used to detect undesirable cutting conditions 

such as chatter [26, 27] and determine process boundaries 

represented by stability lobe diagrams [28].  

Data processing methods for monitoring the machining 

process include simple thresholds, conventional time-

frequency analysis [19] and neural networks [29]. Integrating 

on-line monitoring with virtual machining simulations can 

enable more robust performance in detection tasks [30]. In 

some machining applications measured process data has been 

used to introduce an additional dynamic control loop for the 

machining process. In milling for example this may consist in 

a feed rate control based on the cutting force [31]. 

2. Requirements analysis 

The approaches shown above differ greatly with regard to 

the permissible response time. In the case of predictive 

maintenance approaches, the state of the monitored machine 

elements changes slowly over a period of several months or 

years. The reaction to the acquired data consists in scheduling 

maintenance measures. If predictive maintenance has been 

implemented effectively, failures due to wear are detected well 

in advance and no real time reaction is necessary. 

On the other hand, approaches for monitoring machining 

processes may require a fast reaction, requiring a soft real-time 

system. As described above, an important scope for process 

monitoring is detecting collisions. In this case, damage occurs 

Fig. 1. Interaction in between smart controller and machine 
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when components are subject to plastic deformation. 

Therefore, damage can only be avoided if the overload is 

detected and the machine is stopped within the initial period of 

elastic deformation. In typical machining applications this 

requires an emergency stop to be initiated within 5 ms [32].  

The examples described above also vary widely in terms of 

the complexity of the required computing, ranging from simple 

thresholds to complex machine learning architectures. The 

latter require an environment offering high flexibility with 

regard to the implementation of data processing algorithms. In 

some cases, the implementation of a model or digital twin is 

also required. In approaches aiming to learn from data from 

several machines or requiring large computational resources, it 

is necessary to exchange data with other systems located 

outside of the machine. 

Table 1. Requirements for data collection and processing. 

Function Acceptable 

latency 

(order of 

magnitude) 

Sensor data 

sampling rate 

(order of 

magnitude) 

Data 

processing 

complexity 

Collision detection 5 ms 1 kHz Low 

Remaining lifetime 

prognosis 

4 hours 50 kHz High 

 

For a prototypical implementation and validation, this 

contribution focuses on two applications representing different 

segments of the requirements spectrum: a remaining useful 

lifetime prognosis for bearings and a function for collision 

detection. The monitored component is the main spindle of a 

machining centre, equipped with sensors measuring vibrations 

and displacement. These sensors provide integrated data 

processing and use a CAN communication interface for data 

transmission. An industry 4.0 testbed at KIT consisting of a 4-

axis machining centre is used for a practical validation (Fig. 2). 

The relevant requirements for the data processing unit in these 

applications are summarised in Table 1. Additionally, an ideal 

system should enable widespread use by not depending on any 

particular control system vendor. 

 

3. Existing solutions for data collection and processing 

3.1. Existing devices for collection and processing of 

industrial data 

Conventional qualified industrial solutions for real-time 

data processing are PLCs (programmable logic controllers). 

Especially PC-based controllers are suitable for implementing 

analytic applications locally in the machine and interfacing 

with cloud computing services. Restrictions here are the limited 

system independence and the need to implement the 

application within a complex control system. Given that our 

approach is focused on providing a modular, manufacturer-

independent solution, it is advantageous to perform data 

analysis on a separate system. [33] 

Connecting the physical process to a higher-level architecture 

for analysis is one of the central topics of Industry 4.0. 

Connectivity systems for Industry 4.0 or IIoT (Industrial 

Internet of Things) are available from many different suppliers. 

However, none of the existing devices have achieved 

widespread industrial use for monitoring functions in machine 

tools yet. A comprehensive system independent of the machine 

function, combining real time capability and flexible 

programming of additional functions, has yet to be established. 

[34] 

3.2. Hypervisor-based software architectures for machine 

control and data processing 

Using hypervisor-based architectures, partitions can be 

isolated to fulfil differentiated requirements with regard to 

latency and flexibility. 

In the industrial field, the pICASSO project has investigated 

the realisation of a platform for virtualised real-time operating 

systems with deterministic timing behaviour. Its focus is on 

cloud-based machine control. The combination of KVM 

hypervisor and QEMU emulator was identified as not suitable 

for hosting real-time applications within virtual machines. 

Instead, the statically-partitioning hypervisor Jailhouse was 

enhanced by adding support for ARM processors. Its small 

code base and time-deterministic behaviour seems more 

promising for hosting real-time applications. [35] 

Biondi et al. discuss the use of virtualisation in facing the 

complexity of heterogeneous embedded computing platforms. 

It names exemplary interference channels on custom-off-the-

shelf (COTS) multi-core processors and thereby identifies 

limitations in hypervisors when it comes to hosting time critical 

applications. An automotive use case is presented, where the 

Jailhouse hypervisor is used to isolate the automotive-oriented 

ErikaOS real-time operating system (RTOS) for timing-critical 

tasks and a common Linux OS for less critical tasks. This use 

case is investigated as part of the RETINA project. [36] 

Also focusing the automotive domain, the HERCULES 

project aims at providing design methodologies as well as a 

software stack for the development of safety-critical 

applications on high-performance COTS computation 

platforms for next-generation automotive control units. For 

highly safety-critical tasks, a subsystem comprising an 

automotive-grade microcontroller is envisioned, while for 

Fig. 2. Industry 4.0 machine tool test bed 
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lower levels of safety, ARM cores are planned. Within the less 

critical part, the parallel execution of real-time and best-effort 

applications shall be realised using the Jailhouse hypervisor, 

separating a real-time ErikaOS RTOS partition from a Linux 

OS partition. To reduce interference by parallel accesses to the 

main memory, the use of a “Predictable Execution Model” is 

proposed. [37, 38] 

Considering hypervisor performance evaluations, 

Toumassian et al. compare the performance impact of Xen and 

Jailhouse hypervisors on the application execution time. 

Measurements were done on ARM processors, specifically the 

Banana Pi single-board computer, using the “cpuburn-a8” 

program, indicating that Jailhouse hypervisor leads to a relative 

overhead of 0.04% in execution time, compared to 21.6% and 

7.4% for Xen, depending on the scheduler. [39] 

Thus Jailhouse is a promising solution for realising 

hypervisor-based architectures in data processing applications. 

It remains to be shown how such an architecture can be used in 

the context of Industry 4.0 applications in manufacturing. 

4. Concept for a smart controller 

Existing Industry 4.0 approaches promise to deliver 

improvements in the OEE of machine tools, especially through 

the above mentioned application for predictive maintenance 

and process monitoring. However, their widespread 

implementation would be facilitated by adding a modular 

device to the machine, capable of running both soft real-time 

data processing and flexibly programmable best-effort 

applications. The proposed smart controller aims to fulfil this 

role. It interfaces one more smart components and other 

intelligent sensors as well as the machine control unit and an 

MES or cloud. The smart controller processes data received 

from these data sources to improve the machine availability or 

the production process. The concept is developed based on two 

representative applications, as described above: collision 

detection and remaining useful lifetime prognosis. 

To deliver the first application, the smart controller needs to 

be real-time capable. Soft real-time capability is considered 

sufficient since all safety-critical features can be assumed to be 

implemented in the machine control unit itself. Concerning the 

second application high flexibility and simplified software 

development is desired, as provided by a general-purpose 

operating system (GPOS). To combine both real-time 

capabilities and the flexibility and ease of development and use 

of a GPOS, it is proposed to use a hypervisor to run a real-time 

partition and a best-effort partition in parallel. The resulting 

software structure is shown in Fig. 3. 

In the real-time partition, a real-time operating system can 

be used to run a fixed set of real-time tasks. In the best-effort 

partition, Linux can be run, allowing for the dynamic starting 

and stopping of multiple applications, and providing various 

drivers, easing development. The hypervisor isolates the 

partitions and defines partition resource access. Concerning 

isolation, resources, such as memory and peripherals, are 

statically assigned to partitions. A communication channel 

between the partitions is established to transfer sensor data and 

status information from the real-time partition to the best-effort 

partition. The smart controller’s external communication 

interfaces as well as their assignment to its partitions are shown 

in Fig. 4. The real-time partition controls the interfaces to the 

smart components and the machine control unit while the best- 

effort partition controls the interface towards management 

units, such as cluster controllers, the MES or the cloud. 

Using a static partitioning approach as proposed in this 

publication allows for the parallel use of a real-time OS and a 

general-purpose OS such as Linux. It effectively isolates the 

two OS concerning access to specific memory regions (and 

thereby memory-mapped peripherals). However, accesses to 

shared resources such as caches, memory busses, and memory 

banks can still cause interference between the partitions. This 

may lead to unexpected delays in the execution of software in 

one partition, based on the other partition’s behaviour. The use 

of this platform is therefore envisioned for soft real-time 

applications only, where single deadline misses are acceptable. 

5. Implementation and preliminary assessment 

A prototype for the smart controller concept is realised on 

the Lemaker BananaPi M1 single-board computer. It is based 

on an Allwinner A20 System-on-Chip (SoC) featuring an 

ARM Cortex-A7 dual-core CPU and 1 GB DDR3 SDRAM. 

For connectivity, the SoC supports Gigabit USB, Ethernet and 

an on-chip CAN controller, among others. 

For partitioning, Jailhouse was chosen. The hypervisor 

implements static partitioning of a system, i.e. isolates bare-

metal applications or operating systems from each other. It 

does not implement VM scheduling and does not allow for 

overcommitting of resources. CPU cores are statically mapped 

to one partition (“cell”) each. Due to its minimal design it 

avoids VM exits and leads to low overhead in comparison to a 

non-virtualized system, while efficiently isolating the partitions 

concerning accessible memory and interrupts [39]. Its small 

Fig. 4. Communication interfaces of the Smart Controller 

Fig. 3. Smart Controller software architecture 
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codebase simplifies attempts for certification for the use in 

safety-critical applications. 

On the A20 SoC, the hypervisor Jailhouse was set up to 

realise two partitions: the best-effort partition hosts a 

Bananian Linux, a Debian installation optimized for the use on 

the Banana Pi [40]. FreeRTOS, a small-footprint open-source 

real-time operating system, is used in the real-time partition. It 

provides basic kernel services, such as scheduling, inter-task 

communication, and synchronization [41]. Since CAN is 

envisioned as an interface for connecting smart components, a 

first proof-of-concept was set up, where CAN is used to control 

a SCHUNK LWA 4D lightweight robotic arm. In this setup, 

the control application was running on Linux, which was 

accessing the CAN controller. Current work focuses on the 

realisation of CAN control from the FreeRTOS partition. 

6. Summary and outlook 

Based on a review of approaches for predictive maintenance 

and the monitoring of machining processes, requirements 

regarding computing and communication were derived for the 

implementation of these Industry 4.0 functions in machine 

tools. Within the wide range of requirements, two 

representative examples were chosen, both related to the same 

subsystem within the machine (main spindle). The first task 

consists in triggering a machine stop in the event of a collision, 

requiring a simple threshold-based data processing with a low 

latency. The second task is to monitor the condition of bearings 

in the spindle and predict their remaining lifetime. For this task 

latency is not a critical issue, the focus is on flexible 

implementation of complex models.  

The proposed smart controller concept represents a 

comprehensive system combining soft real-time capability in 

one partition and flexible programming in a general-purpose 

operating system in the best-effort partition, thus enabling the 

fulfilment of the requirements mentioned above. Both 

partitions can communicate with embedded sensors and smart 

components, using CAN in the real-time partition and Ethernet 

in the best-effort partition. Additionally, the best-effort 

partition can communicate with further smart controllers or 

with a cloud service via OPC UA. 

An important strength of this concept is its flexibility: the 

architecture is independent of any particular supplier, does not 

rely on a specific chip, and enables the implementation of state-

of-the-art Industry 4.0 functions with few restrictions. In cases 

where it is preferable to process data on a central server or a 

cloud service, the smart controller enables data to be 

aggregated locally before being sent to other devices. 

 Building on this, the next step will be to carry out tests in a 

real production environment on the Industry 4.0 test bed 

shown. In this production environment, further intelligent 

components are to be integrated and tested in order to assess 

the functionality of the concept. Further research will also be 

carried out in the area of connecting and embedding the Smart 

Controller in higher-level architectures. 
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