

Initial tests of the high temperature SOLTEC facility for corrosion analyses

A. Onea, W. Hering, A. Weisenburger, S. Vielhaber, O. Albrecht, U. Häfner, R. Stieglitz

Institute for Neutron Physics and Reactor Technology

KIT - The Research University in the Helmholtz Association

www.kit.edu

Outline

- Introduction
- Liquid metals facilities at KIT-INR
- SOLTEC family (SOdium Loop to TEst Corrosion and materials):
 - Objectives
 - Main technical data
 - Safety issues
 - P&I diagramm
 - Test sections
- Numerical analyses and experimental tests
- Operational experience

Introduction

LIMTECH Alliance HEMCP:Helmholtz Energy Materials Characterization Platform

- CSP concept* of solar tower plant with Na as HTF and AMTEC technology as topping cycle → R&D on materials and components
- Main tasks for the SOLTEC family:
- Development of the 1000 K sodium SOLTEC test facilities (INR)**
- Material qualification for high temperature applications (collaborations with IAM-AWP, IHM)
- Soltec-1: Creep fatigue tests of innovative materials in hot Na (<u>unique</u>)
- Soltec-2: Corrosion/erosion tests for new steels in hot Na
- Soltec-3: Long term tests for new thermoelectrical converters

*W. Hering et al. – Europ. Ph. J. 33, 03003 (2012)

**Developed in the frame of the Helmholtz Energy Material Characterization Platform (HEMCP) and Helmholtz Alliance on Liquid Metal Technology (LIMTECH)

Na – Facilities: Operating, Qualifying, Preparation, Design

Status of HAC / KASOLA facilities

Facility	Fluid	Max. temp. [°C]	Status
KASOLA	Na; ∼7 to	550	In HT qualification phase
ATEFA	Na ~3 L	1000	Successfully operated up to 700°C; PhD finished.
SOLTEC-2	Na ∼14 L	720	Qualification phase with sodium up to 700°C
SOLTEC-1	Na ∼14 L	720	In final assembly phase
SOLTEC-3	Na ∼14 L	950	Finalization postponed until Q4/19 Commissioning in Q1/20
DITEFA	InGaSn		In construction
KARIFA	Na	1000	Concept finished & fixed \rightarrow detail design

Operating, Qualifying, Preparation, Design

Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology

R&D objectives SOLTEC-2

- Material development, qualification & durability at high temp. in contact with flowing liquid metals (Na, design complying also with PbBi, Sn), since no experimental data for steel corrosion in Na above 650°C is reported
- Simulation of real operation condition (rapid temperature transients Thermal cycling tests at high temperature DT: 650 – 900°C, LCF, safety & operational aspects (LOFA, LOHS)
- Development, qualification & demonstration of Long term stability of protective surface coatings (in/outer surface) (using pulsed electron beams – <u>Surface Optimization facility with</u> <u>Fast In-situ diagnostic Equipment- GESA-SOFIE</u>)
- Planned materials: austenitic steels with different chrome composition, nickel-based superalloys, Inconel-based superalloys, W-Cu laminates.

Technical data

- Na inventory: ~ 14 L
- Mass flow rate: 300 kg/h
 - \rightarrow S1: 4.8 m/s in test sample
 - \rightarrow S2: 1.1 m/s in test sample
- Temperature: cold loop 700 K; hot loop 1000 K
- Max. pressure: 3.5 bar g
- Pressure loss: S-1: ~ 1.6 bar; S-2: ~ 0.45 bar

Technical data (2)

- Compact configuration: 1.2 × 1.6 × 1.9 m³
- Main components:
 - Na-pump (3kW permanent magnet pump)
 - 7.5 kW Na-air HX coupled to a 27 kW Na-Na heat recuperator,
 - Storage tank (15 L) used as expansion tank (particular feature)
 - 6.7 kW HT heater
- Materials: Inconel (HT side), 316Ti (LT side)
- Ar is used as cover gas to fill/drain the facility and pressure monitoring
- Heating power: ~40 kW
- PLS: Siemens Simantec S7
- Instrumentation: Na/Ar pressure, temperature, Na-level meter, Na flowmeter

LIMTECH Alliance Karlsruhe HEMCP:Helmholtz Energy Materials Characterization Platform

Manufacturing: SAAS GmbH, SOWEC GmbH

Institute for Neutron Physics and Reactor Technology

Safety issues

- Dedicated infrastructure for LM facilities (KASOLA facility, LM lab)
- Fail safe design:
 - Fast drainage is to be made at any malfunction
 - Sample rupture: vacuum monitored in the test chamber
 - Heater and pump to be stopped either by the process control system (PCS) or by signals from sensors operating separately from the PCS
- Limited amount of Na
- Ar used as cover gas. All argon/sodium interfaces protected by filters
- All Na valves have a NO configuration
- Low overpressure in any operation state
- Any leackage to be detected by the leackage detection system
- Na collection tray integrated in the bottom part of the framework of the housing
- Any possible fire/smoke limited within the insulated metallic housing

SOLTEC – SOdium Loop to TEst materials and Corrosion

Karlsruhe Institute of Technology

AMTEC

CENTER

Numerical analyses and experimental tests

- FEM analysis: Na-Na heat recuperator, Na-air HX
- CFD analysis: Na-Na heat recuperator, Na-air HX.
 - Validation against heat balance analysis
- TRACE analysis:
 - SOLTEC-1-2 drainage: high temperature region drained in < 30 s</p>
 - Transient and steady-state simulations: filling/drainage process, steadystate simulations
- Experimental tests:
 - Pressure tests of the main components successfully performed
 - Experimental tests of screw connections

Numerical analyses and experimental tests

- Theoretical analyses*:
 - Pressure loss: (good agreement with TRACE model)
 - Heat balance analysis

Apeatz	S-1	$ \Delta m / 9/$	
Ansatz	${\scriptstyle riangle p}$ / Pa	Δμ / /o	
Prandtl-	1 625+5	2,47	
Kármán	1,02E+5		
Ghanbari	1,67E+5	5,39	
TRACE	1,58E+5	/	

Location	Temperature [°C] FEM	Temperature [°C] TRACE	ΔT	∆ T / %
Inlet Na-Na HX	420,00	419,94	-0,06	0,01
Outlet Na-Na HX	689,80	715,56	+25,76	3,73
Inlet Na-Air HX	740,00	740,20	+0,20	0,02
Middle section Na-Air HX	469,50	444,52	-24,98	5,32
Outlet Na-Air HX	388,80	378,85	-9,95	2,55

Location	Temperature [°C] FEM	Temperature [°C] TRACE	ΔT	∆ <i>T</i> [%]
Inlet Na-Na HX	420,00	420,05	+0,05	0,01
Outlet Na-Na HX	689,80	715,68	+25,9	3,75
Inlet Na-Air HX	740,00	740,35	+0,35	0,05
Middle section Na-Air HX	469,50	444,64	-24,86	5,29
Outlet Na-Air HX	388,80	378.95	-9,85	2,53

SOLTEC-2

SOLTEC-1

D. Fischer – TRACE simulation SOLTEC-1, -2, KIT

Institute for Neutron Physics and Reactor Technology

Results and operational experience

- Loop evacuation prior to the loop filling
- Filling under low Ar pressure and vacuum
- HT heater set to operational temperature once the loop is filled
- Na thermal expansion compensated in the ST
- Temperature in the LT side < 450°C</p>
- HT heater off / low power before drainage to avoid thermal shocks in the ST
- No leakage / fire
- However, one Na valve exchanged due to plugging (replacement under Ar atmosphere and at RT)

Temperature distibution

- Temperature in LT region < 550°C</p>
- Fast thermal transients

Pressure distribution

- Low pressure difference across the pump
- Low pressure levels < 3.5 bar g</p>

Karlsruhe Institute of Technology

Set-into-operation

Institute for Neutron Physics and Reactor Technology Karlsruhe Institute of Technology

Looking forward for future collaborations!

Friday, Session 1, C2, 10:00: A. Onea, W. Hering, S. Perez Martin, et al. - Numerical and experimental investigations of temperature investigation in an AMTEC test cell

17 03.07.2019

Institute for Neutron Physics and Reactor Technology Karlsruhe Institute of Technology