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Abstract: Evapotranspiration is often estimated by numerical simulation. However, to produce accurate simulations, 
these models usually require on-site measurements for parameterization or calibration. We have to make sure that the 
model realistically reproduces both, the temporal patterns of soil moisture and evapotranspiration. In this study, we 
combine three sources of information: (i) measurements of sap velocities; (ii) soil moisture; and (iii) expert knowledge 
on local runoff generation and water balance to define constraints for a “behavioral” forest stand water balance model. 
Aiming for a behavioral model, we adjusted soil moisture at saturation, bulk resistance parameters and the parameters of 
the water retention curve (WRC). We found that the shape of the WRC influences substantially the behavior of the 
simulation model. Here, only one model realization could be referred to as “behavioral”. All other realizations failed for 
a least one of our evaluation criteria: Not only transpiration and soil moisture are simulated consistently with our 
observations, but also total water balance and runoff generation processes. The introduction of a multi-criteria evaluation 
scheme for the detection of unrealistic outputs made it possible to identify a well performing parameter set. Our findings 
indicate that measurement of different fluxes and state variables instead of just one and expert knowledge concerning 
runoff generation facilitate the parameterization of a hydrological model. 
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INTRODUCTION 
 
Extraction of water from the soil by the root system and re-

turn of water to the atmosphere as plant transpiration are im-
portant processes in the global circulation of water (Kramer and 
Boyer, 1995). Quantitative means of describing transpiration 
are essential for an improved understanding of water and ener-
gy exchange processes between the land surface and the atmos-
phere. Transpiration is controlled by a combination of biotic 
factors (e.g. stomatal functions; leaf area; root depth and distri-
bution, and hydraulic characteristics) and abiotic factors (e.g. 
soil water availability; climate, and depth to groundwater) 
(Durigon et al., 2016).  

There is a variety of techniques to measure transpiration at 
different scales such as direct measurements of sap flow on 
individual trees (Lu et al., 2004), eddy flux gradient analyses 
(Saugier et al., 1997), or gauged watersheds (Wilson et al., 
2001). Alternatively, simulation models are used to estimate 
transpiration. However, to produce accurate simulations, these 
usually require on-site parameterization or calibration (Durigon 
et al., 2016; Vose et al., 2003). Recently, a simple approach 
was developed by Ayyoub et al (2017) relating the normalized 
daily sap velocities and the daily reference evapotranspiration 
(ET0). This method used both, FAO-Penman-Monteith (FAO-
PM) method and Hargreaves-Samani (HARG) method to esti-
mate ET0. The FAO-PM method produced the highest correla-
tions to daily sap velocities (Ayyoub et al., 2017). 

System state (“soil moisture”) and actual evapotranspiration 
are known to be highly correlated. Therefore, all water balance 
models directly couple these two components. Wrong estimates 
of temporal or spatial patterns of soil moisture result in errone-
ous temporal or spatial patterns of transpiration (Casper and 
Vohland, 2008; Koch et al., 2017). Therefore, soil parameteri-

zation, and especially the representation of the Water Retention 
Curve - as one of the most important soil-physical characteris-
tics - strongly influence the simulation of evapotranspiration. A 
similar effect can be observed when canopy resistances are 
wrongly estimated (Bie et al., 2015). In order to find an appro-
priate model parametrization, we have to verify that the model 
realistically reproduces both, the temporal patterns of soil mois-
ture and evapotranspiration. This has been done in a study 
carried out by Holst et al. (2010) where the water balance of two 
beech stands in Southwest Germany was investigated using two 
different forest hydrological models (DNDC and BROOK90). 
They demonstrated that both models were able to reproduce the 
observed dynamics of the soil water content in the uppermost 
30 cm and the transpiration estimates from sap flow measure-
ments (Holst et al., 2010). 

To analyze different assumptions on catchment behavior and 
hydrological processes, it is necessary to evaluate the model 
performance with respect to multiple indicators that evaluate 
the contribution of different sources of data (Gupta et al., 
1998). The value of these additional data sources has been 
demonstrated by Fenicia et al. (2008a). They evaluated the 
accuracy of a hydrological simulation with respect to the ob-
served discharge, groundwater level dynamics, and isotope 
signatures. If appropriate data is lacking, incorporation of ex-
pert knowledge (as an alternative source of information) into 
hydrological modeling and water management issues becomes 
more important (Bromley et al., 2005; Cash et al., 2003; Mo-
hajerani et al., 2017). As recent studies suggest, use of expert 
knowledge in choosing parameter sets and introducing con-
straints by forcing the model to reproduce the processes ob-
served in the real system, can also improve the model perfor-
mance even without traditional calibration (Bahremand, 2016; 
Gharari et al., 2014; Hrachowitz et al., 2014). For instance, 
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having expert knowledge on local runoff generation processes, 
as a potential source of information in every hydrologic unit, 
can considerably improve hydrological simulations (Antonetti 
and Zappa, 2018; Casper et al., 2015; Franks et al., 1998; 
Seibert and McDonnell, 2002). Modelers need to consider a 
proper balance between parameter identifiability and the mod-
el's ability to precisely represent the observed system response. 
This has prompted the development of alternative approaches to 
hydrological modeling including the dominant process concept 
(Fenicia et al., 2008b; Grayson and Blöschl, 2001; Wagener et 
al., 2001). The concept of dominant runoff generation process 
(DRGP) assumes that at a particular location one particular 
runoff generation mechanism is dominant (Blöschl, 2001). In 
most of the studies, however, modelers have evaluated the 
model performance with respect to discharge data alone. This 
may cloud model realism and hamper understanding of catch-
ment behavior. In fact, to accurately evaluate hydrological 
models, one has to carefully look at the hydrological responses 
that a model is challenged to represent rather than just being 
satisfied with a simple calibration. This interestingly takes us 
back to what Fenicia et al. (2008a) call the “Art of Modeling” 
and what Gupta et al. (2005) call the “Behavioral Model”. The 
former says: “…modeling is both an Art and a Science. The 
science lies in the use of fundamental scientific principles and 
the formality of analysis; the art accounts for professional expe-
rience, insight, creativity and intuition. The latter is particularly 
important in developing a perceptual and conceptual model that 
captures the main processes at play, while maintaining mini-
mum levels of complexity…”. A “behavioral”model has the 
following characteristics: (i) the input-state-output behavior of 
the model is consistent with the measurements, (ii) the model 
predictions are accurate (i.e. they have negligible bias) and  
(iii) model structure and behavior are consistent with our hy-
drologic understanding of reality (Fenicia et al., 2008a; Gupta 
et al., 2005). 

The present study combines three sources of information: 
measurements of sap velocities; soil moisture data; and expert 
knowledge of local runoff generation and water balance to 
define constraints for a “behavioral” forest stand water balance 
model. We evaluated the model by defining multi-criteria  
performance measures according to the constraints that data are 
supposed to impose on model behavior. In particular, we inves-
tigated the following research questions: (i) How can we  
combine different sources of information to modify the parame-
terization scheme in order to achieve a “behavioral model”?  
(ii) How does the implementation of expert knowledge of site-
specific dominant runoff generation processes affect the simu-
lation results? (iii) What are the impacts of model setup, i.e. the 
parameterization approach and the parameter allocation strategy 
on the simulated soil moisture and evapotranspiration dynamics 
(e.g. the effect of different parameterizations of the water reten-
tion curve of the soil)?  

To address the research questions listed above, we used a 
one-dimensional (1-D) hydrological model (WaSiM-ETH) to 
simulate the soil water content as well as the actual transpira-
tion at stand level. The basic motivation of 1-D models is often 
to simulate soil water content, and water balance components 
such as evapotranspiration, deep drainage and runoff. In the 1-
D models, no groundwater flow is simulated and the upper and 
lower limits are soil water content at field capacity and perma-
nent wilting point, and upper and lower loss of soil water is 
caused by evapotranspiration and deep percolation, respectively 
(Walker and Zhang, 2002). WaSiM-ETH was selected due to 
its highly differentiated 1-D model structure. The model repre-
sents all relevant hydrological processes at the point scale in a 

physically meaningful way (Schulla, 2017). As all measured 
data including soil moisture and sap velocity are point meas-
urements, setting up a “1-D model” is sufficient for our pur-
pose. A site in the sandstone region of western Luxembourg 
was used as a test case. On sandstone, we expect neither stream 
channels nor surface runoff due to the high hydraulic conduc-
tivities of the sandy soils. The headwaters start at springs on top 
of the less permeable marls underlying the sandstone. While 
this work is not going to provide new insights of the behavior 
of the study catchment, it arguably is going to contribute to 
understanding of the value of different sources of data and 
information for hydrological modeling. The test case is used as 
a “proof-of-concept” location to investigate how different pa-
rameterization with different content of information can affect 
the model behavior. Our investigation is subdivided into four 
scenarios, i.e. different soil parameterizations. For each scenar-
io the simulation results are evaluated by the model perfor-
mance criteria defined in the section 2.4. In scenario A, the soil 
parameterization is taken from Tepee et al. 2003. In the two 
scenarios B1 and B2, we parameterize the water retention curve 
with three different variations of the van Genuchten parameters 
according to (Sauer, 2007). In a last step (scenario C), we eval-
uate the model performance using the soil parameter set pro-
vided by Sprenger et al. (2016). All scenarios are summarized 
in Table 6. 

 
METHODS 
Site description 

 
The study area is the Huewelerbach, a sub-catchment (2.7 

km² in area, ranging from 280 to 400 m in elevation) of the 
Attert River basin located in the west of Luxembourg (for de-
tailed information see Martinez-Carreras et al. (2010)). The 
whole area is part of the "Catchments As Organized Systems" 
(CAOS) observatory investigating landscape-scale structures, 
patterns and interactions in hydrological processes for model 
development (Zehe et al., 2014). The catchment is mainly  
forested, but the alluvial section of the area is dominated by 
grassland. The mean annual precipitation of the area is approx-
imately 850 mm (Pfister et al., 2000). In terms of lithology, the  
Huewelerbach catchment consists of jurassic Luxembourg 
sandstone which is underlain by marls (Martínez-Carreras et al., 
2012, 2010). According to previous studies, the sandstone 
bedrock and the underlying marls produce a very stable base 
flow regime (Juilleret et al., 2012). Rainfall–runoff reaction is 
delayed on the deep sandy soils on hillslopes (deep percolation 
and subsurface flow). Siltation and compaction in the valley 
bottom may cause sporadic surface runoff (Sprenger et al., 2016). 
Measurements at sites Sa_G and Sa_K include meteorological 
variables such as air temperature, humidity and solar radiation 
and soil moisture at three depths in three different profiles. At the 
forested site Sa_G there are also measurements of sap velocity at 
4 trees, two of them European Beech (Fagus sylvatica L.) and 
two hornbeams (Carpinus betulus L.). Figure 1 shows the study 
area and the location of the selected sites. Dominant vegetation at 
site Sa_G is a relatively young beech forest with a basal area of 
16 m²/ha. Within the measurement plot we find 34 stems with a 
mean diameter of 19 cm (median: 14 cm). 

 
Hydrological model 

 
To simulate the actual evapotranspiration (ETa), we applied 

a hydrological model – WaSiM-ETH (Schulla, 1997). This 
model is a distributed, deterministic, mainly physical and grid-
based hydrological model running with variable time steps  
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Fig. 1. Location of the study area Huewelerbach catchment with 
the test sites Sa_G (forest) and Sa_K (grassland). 
 
(Schulla, 2017). The WaSiM-ETH model has performed well in 
sub-alpine and alpine catchments (Cullmann et al., 2006; Gurtz 
et al., 2003; Jasper, 2001; Jasper et al., 2002; Klok et al., 2001; 
Verbunt et al., 2003), also in middle-mountain (Bie et al., 2015; 
Grigoryan et al., 2010; Middelkoop et al., 2001), and lowland 
catchments (Elfert and Bormann, 2010). The model is docu-
mented in both English and German and can be used free of 
cost (http://www.wasim.ch). The model comprises different 
components (e.g. evapotranspiration model, soil model, snow 
model, glacier model, silting up, surface routing, groundwater 
model, discharge routing model, lake model etc.). In our case 
only the modules related to the soil model and evapotranspira-
tion were used and all other components were disregarded. 

 
Calculation of evapotranspiration  

 
There are three main steps to estimate the ETa (plant transpi-

ration as well as evaporation from the soil separately) in 
WaSiM-ETH. First, estimation of potential evapotranspiration 
(ETp) on the basis of the ground-measured meteorological data; 
second, simulation of soil water content in vertical direction via 
Richards equation (Richards, 1931). In the third step, the 
amount of ETa is simulated at every time step by reducing ETp 
according to the actual soil water content. 

There are four different methods available in WaSiM-ETH 
model to calculate the ETp rates: Penman-Monteith approach 
(Monteith, 1981; Monteith et al., 1965); Wendling (Wendling, 
1975); Haude (Haude, 1955) and Hamon (Federer and Lash, 
1978). In this study, we choose Penman-Monteith equation 
(Monteith et al., 1965) (see equation 1). It is the most widely 
used and recommended method for ETp estimation, first devel-
oped for agricultural contexts and later also applied to other 
land covers such as forests (Allen et al., 1998; Droogers and 
Allen, 2002). This method is based on simulated potential tran-
spiration and the available water content. In our case, actual 
plant transpiration is simulated in hourly time steps. However, 
the Penman-Monteith approach has some limitations in practi-
cal terms, as a large number of environmental variables are 
required to determine ETa. This is particularly challenging 
especially when there is a lack of appropriate atmospheric data 
(Allen et. al., 1998). 

 

( ) ( )Δ3.6

Δ 1

p
s i

p p a

s

p a

ρc
Rn G e e t

γ γ  r
λE r

γ r

− + −
=

+ +
      (1) 

where λ is the latent vaporization heat, λ = (2500.8−2.372·T) kJ 
kg−1, with T is the temperature in °C; E is the latent heat flux in 
mm m−2 ≡ kg m−2; Δ is the tangent to the saturated vapor  
pressure curve in hPa K−1; Rn is the net radiation in Wh m−2 and 
G = 0.1·Rn is the soil heat flux in Wh m−2, the factor 3.6 is used 
to convert both fluxes from W h m−2 to kJ m−2; ρ is the density 
of dry air, ρ = p/(RL·T), at 0 °C and 1013.25 hPa, ρ = 1.29 
kg m−3; cp is the specific heat capacity of the dry air at constant 
pressure, cp = 1.005 kJ kg−1 K−1; es is the saturation vapor pres-
sure at temperature T, in hPa; e is the observed actual vapor 
pressure in hPa; ti is the number of seconds within a time step; 
γp is the psychrometric constant in hPa K−1; ra and rs are the 
bulk-aerodynamic resistance and the bulk-surface resistance in 
s m−1, respectively. 

 
Resistances for evapotranspiration  

 
The two resistance parameters in the Penman-Monteith 

equation: the bulk aerodynamic resistance ra and the bulk sur-
face resistance rs play an important role. However, rs (with 
diurnal and seasonal variations) is more important than ra in a 
forested area for ETa estimation (Beven, 1979). The bulk sur-
face resistance rs can be divided into two terms, the soil surface 
resistance rse for evaporation from bare soil; and the canopy 
surface resistance rsc describing the plant resistances in the 
transpiration process. There are default values of bulk surface 
resistance parameters in WaSiM-ETH. The maximum amount 
of canopy surface resistance rsc is in November to February, 
whereas in May to September, it reduces to its annual lowest 
level (Bie et al., 2015; Schulla, 2017). The soil surface re-
sistance rse remains constant for the entire year. Table 1 shows 
the standard values applied for surface resistances parameters in 
the WaSiM-ETH model (Schulla, 2017). 
 
Table 1. Canopy surface resistance rsc (s m−1) and soil surface 
resistance rse (s m−1). 
 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

rsc 100 100 95 75 65 65 65 65 65 85 100 100 

rse 230 230 230 230 230 230 230 230 230 230 230 230 

 
Simulation of soil water content  

 
For estimation of actual transpiration, WaSiM-ETH simu-

lates soil moisture in the root zone. The soil module in WaSiM-
ETH uses the van Genuchten method (Van Genuchten, 1980) 
for parameterization of the water retention curve to solve the 
Richard Equation. Water fluxes are simulated vertically in one 
dimension. Soil moisture in the root soil layer can potentially 
limit transpiration (Paço et al., 2014). In WaSiM-ETH, soil 
moisture simulation and ETa are linked, reduction of ETa 
would result in more water availability in the soil whereas 
increase of ETa will decrease the soil moisture. The Penman-
Monteith equation implicitly includes the influence of soil 
moisture on plant transpiration through parameter rsc (canopy 
surface resistance). Water content in soil profiles changes with 
time and values of the rsc also show diurnal and seasonal varia-
tions. In dry periods, rsc is very sensitive to soil moisture. When 
soil moisture content falls below a given point, the plants start 
decreasing transpiration to prevent internal water losses. Below 
that point, soil water availability becomes a key factor in ob-
taining ETa. ETa is gradually reduced until soil moisture reach-
es the wilting point at which water is no longer available for 
transpiration (Allen et al., 1998; Anderson et al., 2007).  
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Soil parameterization  
 
Certain predefined parameters of the WaSiM-ETH model 

are specific for the area where the model was developed. Thus, 
these parameters should be modified for each new study area. 
In the investigated area, the predominant soil type was de-
scribed as “Podzolic Cambisol”. The soil texture is loamy sand. 
It developed on a sandstone bedrock. The maximum rooting 
depth for the soil was observed at approx. 100 cm. The stone 
content is relatively low and the unaltered parent sandstone is 
usually not reached within the first 200 cm below soil surface 
(Sprenger et al., 2016). These quite sandy soils show a high 
permeability resulting in deep percolation as the dominant 
hydrological process.  

In the model, the van Genuchten parameters alpha (m–1) and 
n (–) are empirical constants that determine the shape of the 
WRC, and therefore influence substantially the behavior of the 
simulation model. We chose three different methods to deter-
mine the parameters of the WRC. 

 
(i) Baseline parameterization after Teepe et al. 2003 

We derived the corresponding van Genuchten parameters in 
the different soil horizons based on soil texture and bulk density 
classification obtained by Teepe et al. (2003). This formed our 
baseline parameterization of the soil in our study area (Table 2). 
 
Table 2. Baseline soil parameterization of the WaSiM-ETH soil 
model (based on Teepe et al. (2003)). 
 
PMacroThresh  20 
MacroCapacity  4 
CapacityRedu  0.5 
MacroDepth 1  
Horizon 1 2 3 4 5 6 
Name Ahe Ae Bvs Bsv IIBvs IIBvs 
Ksat 1.01E-4 7.95E-05 1.65E-04 1.29E-04 4.84E-05 4.84E-05 
K_recession 1 1 1 1 1 1 
Theta_sat 0.41 0.41 0.41 0.41 0.41 0.41 
Theta_res 0.11 0.05 0.06 0.06 0.13 0.13 
Alpha 0.3 0.3 0.26 0.41 0.2 0.2 
Par_n 1.17 1.17 1.203 1.191 1.191 1.191 
Par_tau 0.5 0.5 0.5 0.5 0.5 0.5 
Thickness 0.1 0.1 0.1 0.1 0.1 1 
Layers 1 1 1 3 4 7 

 

PMacroThresh (mm/h) is given by the precipitation threshold value and if is 
reached or exceeded, water can infiltrate into the macropore; MacroDepth 
(m) is depth of the macropores; MacroCapacity (mm/h) is capacity of the 
macropores; CapacityRedu (m–1) defines the reduction of the macropore 
capacity per meter soil depth; Ksat (m s–1) is saturated hydraulic conductivity 
that can be given for each soil layer; K_recession (–) is specified for each 
soil type describing the recession of the saturated conductivity with depth; 
theta_sat (m3/m3) is saturated water content; theta_res (–) is the residual 
water content which cannot be extracted by transpiration; alpha (m–1) and 
Par_n (–) are empirical van-Genuchten parameters; Par_tau is Mualem 
parameter; thickness (m) is the thickness of every single numerical layer in 
the given horizon, and layers defines the number of layers in the given 
horizon. 

 
(ii) Parameterization after Sauer (2007) 

Sauer (2007) proposes three different methods to derive the 
van-Genuchten parameters alpha and n: 

Variation 1: Fitting of WRC based on grain size fractions, 
bulk density and water content at pF 2.5 and 4.2 using the soft-
ware “Rosetta Lite” (Schaap et al., 2001). 

Variation 2: Fitting of WRC based on water content at pF 1.8, 
2.5, 4.2 and Theta_sat (= 41%) using the software “RETC” (Van 
Genuchten et al., 1991). 

Variation 3: Fitting of WRC based on water content at pF 1.8, 
2.5, 4.2 using the software “RETC” (Van Genuchten et al., 1991). 
See Table 3 for the three variations of parameters alpha and n.  

Table 3. Variations of van Genuchten parameters alpha (m–1) and n 
(dimensionless) in different soil horizons as re-parameterization of 
the baseline (Table 2). 
 
Horizon                 Ahe Ae Bvs Bsv IIBvs IIBvs 
Variation 1 alpha 0.83 0.83 0.58 0.58 0.88 1.83 

n 1.5653 1.5653 1.6416 1.6416 1.4974 1.4553 
Variation 2
 

alpha 2.86 2.86 3.97 3.97 4.96 1.83 
n 1.3656 1.3656 1.3965 1.3965 1.4598 1.4553 

Variation 3
 

alpha 25.73 25.73 35.87 35.87 29.34 1.83 
n 1.2138 1.2138 1.2506 1.2506 1.3009 1.4553 

 
(iii) Parameterization after Sprenger et al. (2016) 

Sprenger et al. (2016) list soil parameters for the same site 
(Sa_G). These parameters were obtained by fitting the simula-
tion results to observed soil moisture and pore water stable 
isotope data. In this case the soil profile was divided into three 
different horizons (Table 4).  
 
Table 4. Parameterization of WRC for the site Sa_G (Sprenger et 
al., 2016). 
 

Horizon Ah B II_B 
width 11 cm 110 cm > 80 cm 
theta_sat 0.546 0.319 0.470 
alpha 0.033 0.005 0.005 
n 1.228 1.194 1.194 
ksat 6.11E-04 1.53E-04 6.16E-04 

 
Data description  

 
To simulate transpiration and soil water content at the forest 

site Sa_G, climate data from the grassland site Sa_K were used 
as input for the model (Figure 1). These data better represent 
the atmospheric conditions above the trees which mainly drive 
the transpiration of the trees. In contrast, climate data from site 
Sa_G represents the conditions inside the forest and therefore 
this data cannot be used in our simulation study. To run the 
model, climate data between 2013 and 2016 is available. All 
subsequent model evaluation is done for the year 2015. The 
years 2013 and 2014 are used as spin-up period until stabiliza-
tion of the model. Climate data includes air temperature, rela-
tive humidity, wind speed, global radiation as five-minute 
measurements, and precipitation as hourly data. All data were 
checked for errors and the data gaps were filled. Soil moisture 
was measured in three profiles per site at 10 cm, 30 cm and 50 
cm depth. For our analyses we took the average across all 
depths and profiles estimating the average soil moisture in the 
top 60 cm for each site (Hassler et al., 2018). Precipitation data 
(station Useldange) are available as hourly values with annual 
mean value of 791 mm for the year 2015 (Agrarmeteorologie 
Luxemburg: /http://www.agrimeteo.lu). Therefore, all other 
climate variables and the soil moisture measurements are aver-
aged to hourly values.  

Based on the soil moisture and grain size distribution charac-
teristics of the study area, deep percolation is usually observed as 
dominant runoff generation process. Saturation excess flow or 
Hortonian overland flow can be excluded. 

For the year 2015, transpiration of the adult beech overstory 
was analyzed by determining sap velocities using the heat ratio 
method with a central heater needle and two thermistor needles 
located upstream and downstream of the heater (Köstner et al., 
1996). The sap velocity sensors, manufactured by East30Sensors 
in Washington, were installed at breast height on the north-facing 
side of the stem and protected with a reflective cover (Hassler et 
al., 2018). Sap velocities at each of those locations were calculat-
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ed from the temperatures measured at the corresponding thermis-
tor pairs according to Equation (2) (Campbell et al., 1991): 

 

( )
2  ln u

sap
w u d d

k TV
C r r T

 Δ=  + Δ 
 (2) 

 

where sapV  is the sap velocity (m s–1),  k is the thermal conduc-

tivity of the sapwood, set to 0.5 W m–1 K–1,  wC  is the specific 
heat of water (J m–3 K–1),  r  is the distance (m) from the heater 
needle to the sensor (in our case 6 mm) and TΔ  is the tempera-
ture difference (K) before heating and 60 seconds after the heat 
pulse. Subscripts u  and d  stand for location upstream and 
downstream of the heater. 

These values were corrected to account for wounding of the 
xylem tissue because of the drilling according to the numerical 
model solutions for the heat pulse velocity method as suggested 
by Burgess et al. (2001): 

 
2 3 c sap sap sapV bV cV dV= + +   (3) 

 
where Vc is the corrected sap velocity (m s–1) and b, c and d are 
correction coefficients; for the 2-mm-wounds we have set b = 
1.8558, c = –0.0018 s m–1, d = 0.0003 s2 m–2 (Burgess et al., 
2001). 

We selected a dataset of continuous sap velocity measure-
ments from four trees. Daily mean values of the sap velocities 
were used for the photosynthetically active period from May to 
October 2015 in which there was a complete time series of sap 
flow measurements available. Simulated daily sums of actual 
transpiration from the model were then compared with the 
average sap velocity of the four trees at the site for the same 
period (growing season). 

For better comparison sap velocities and simulated transpira-
tion were normalized. 

 
Evaluation of model behavior 

 
In our definition, a model is “behavioral”, when it is able to 

simulate runoff generation, water balance and the temporal 
pattern of soil moisture and evapotranspiration consistently 
with the reality. Therefore, we propose a scheme including four 
qualitative performance evaluation criteria to check the simu-
lated output. This scheme allows excluding simulations that are 
not realistic in terms of the four sources of information men-
tioned above (see Table 5). Sap velocity (SV) and soil moisture 
(SM) criteria define the necessity of temporal consistency be-
tween observed and simulated time series of transpiration and 
soil water content (by comparing stand transpiration simula-
tions with sap velocity measurements, and by comparing simu-
lated and observed temporal pattern of soil moisture, re- 
 

spectively). Therefore, all simulated time series that would be 
less consistent with the temporal variability of observations will 
be rejected. Since actual evapotranspiration is usually less than 
precipitation in the water budget (Hasenmueller and Criss, 2013), 
the RETa (“Realistic amount of actual evapotranspiration”) crite-
rion eliminates simulations in which the total amount of evapo-
transpiration exceeds 750 mm/year. According to our knowledge 
of local terrain properties and field surveys, RRGP (“Realistic 
Runoff Generation Process”) criterion was set to deep percolation 
as the most plausible hydrological process at our site.  

In addition to the criteria mentioned above, three widely 
used statistical goodness-of-fit measures complement the quali-
tative evaluation of model performance: Mean absolute error 
(MAE), correlation (R²) and Nash-Sutcliffe efficiency index 
(NSE) provide additional information on the goodness-of-fit 
between normalized simulated transpiration and normalized sap 
velocity (SV) and simulated and observed soil moisture (SM). 
MAE (Eq. 4) is a basic index (McKeen et al., 2005; Savage et 
al., 2013) derived from the mean error (difference) between 
simulated variable and observed variable with the same length 
and dimensions. This measure is recommended for model per-
formance evaluation (Fox, 1981). It is calculated as follows: 
 

1

1

N

i i
i

MAE N P O−

=
= −     (4) 

 
where N is the number of the cases, ; P is the 
simulation time series, and O is the observation time series. 

While MAE estimates the size of difference, the correlation 
index R² quantitatively estimates the agreement between obser-
vations and simulations. R2 can be expressed as the squared 
ratio between the covariance and the multiplied standard devia-
tions of the predicted and observed values. Higher R2 value 
indicates higher correlation (Legates and McCabe, 1999; Will-
mott, 1982). 

The Nash-Sutcliffe efficiency index (NSE), is dimensionless 
describing the relative error between simulations and measured 
data (Nash and Sutcliffe, 1970). It is calculated as: 
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 (5) 

 
where the NSE index demonstrates the normalized ratio of re-
sidual variance (noise) to the observation variance ranging 
between –∞ and 1. An NSE value is considered to be acceptable 
when it ranges between 0 and 1. Fewer errors between simula-
tions and observations always lead to a bigger NSE value and a 
better model performance. It is important to mention that a nega-
tive NSE value (NSE < 0) indicates a bad model performance that 
is even worse than the mean of the observed variable.  

 

Table 5. Model performance evaluation criteria. 
 

Evaluation element Description Evaluation criterion 

Sap velocity measurements 
(SV) 

Temporal pattern of sap velocities in terms of 
normalized values 

SV criterion : There should be similar variability and no high devia-
tions between the sap velocities and simulated transpiration amounts 

Soil moisture measurements 
(SM) 

Temporal pattern of soil moisture measure-
ments in terms of mean values (%) for upper-
most 50 cm of soil layer  

SM criterion: There should be similar variability and no high devia-
tions between the soil moisture measurements and simulated soil 
moisture amounts  

Realistic amount of actual 
evapotranspiration (RETa) 

Total amount of evapotranspiration as a com-
ponent of the water budget in terms of mm/year  

RETa criterion: Total evapotranspiration simulated should be be-
tween 450 to 750 mm/year 

Realistic runoff generation 
process (RRGP) 

Derived from runoff component of the water 
balance  

RRGP criterion: The simulated runoff generation process should be 
deep percolation and no direct runoff as saturation or Hortonian 
overland flow  

1, 2,3,i N= …
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Based on the four evaluation criteria from Table 5 and three 
performance measures, unrealistic simulations will be eliminat-
ed from consideration to attain the best parameterization which 
provides an overall agreement among the combined perfor-
mance criteria. Therefore, only under this condition, the simula-
tion will be categorized as “behavioral”. 

Applying three groups of scenarios (Table 6), we investigat-
ed the soil parameterization that reaches to the behavioral mod-
el. The simulation results of each scenario were evaluated by 
the model performance criteria and statistical goodness-of-fit 
measures. The soil parameterization in scenario A was taken 
from Tepee et al. (2003). In the two scenarios B1 and B2, the 
water retention curve was parameterized with three different 
variations of the van-Genuchten parameters according to (Sau-
er, 2007). In scenario C, the model performance was evaluated 
using the soil parameter set provided by Sprenger et al. (2016).  
 
RESULTS  
SCENARIO A: Model parameterization according to Teepe 
et al. (2003) 
 

Since logged air or stone fraction may reduce maximum soil 
moisture at saturation by up to 30% (Mualem, 1974), theta_sat 
(saturated water content) is reduced in scenario A1 in three 
steps from 41% (baseline parameterization according to Teepe 
et al. (2003), see Table 2) to 35% and finally to 30%. Soil mois-
ture simulated with the baseline parameterization of the soil 
Table (theta_sat = 41%) shows much higher values than the 
measurements (Figure 2). As the parameter theta_sat decreases, 
the simulated soil moisture values also decrease. Simulated soil 
water content with theta_sat = 30% shows the highest similarity 
with the measurements. However, the simulated dynamics of the 
soil moisture simulations do not match the measured dynamics.  

Sap velocity rose in the transition from spring to summer 
and it started to decrease again with the end of the summer 
(Figure 3). A rapid drop in the sap velocity was observed in 
June and August 2015 while there was a steep rise in July 2015 
for all measuring points. The simulated transpiration with dif-
ferent theta_sat values and the sap velocity measurements have 
a similar temporal pattern. Changing the theta_sat value has 
only a negligible effect on transpiration (Figure 3). 

Evaluation of the water balance (see Table A in the 
appendix) unveiled that total simulated evapotranspiration (775, 
773 and 762 mm/year for theta_sat = 41, 35 and 30 
respectively) is too high. It is close to the annual precipitation 
amount (791 mm) which is not realistic. The dominant runoff  
 

generation process was saturation excess flow or Hortonian 
overland flow which is not realistic according to landscape 
characteristics. Table 7 illustrates the model performance in 
scenario A1 evaluated by the three statistical efficiency 
measures as well as by four criteria. Meeting or not meeting a 
criterion is expressed in terms of “Yes” or “No” respectively. 
All simulations are highly correlated with the corresponding 
measurements (R² ≥ 0.73 for all simulations). Model 
performances for transpiration show the same values for all 
theta_sat. While for the soil moisture, the simulation with 
theta_sat = 30 Vol% shows the lowest bias (MAE = 0.02) and a 
positive NSE (0.55). This confirms the results obtained from 
visual inspection. 

To investigate the effect of scaling the bulk surface 
resistance parameters (rsc and rse), in scenario A2, the 
parameters rsc and rse are adjusted in the evapotranspiration 
module of the WaSiM-ETH model. The applied percentage 
changes were 25, 50, 75, 150, 200 and 400% according to the 
standard values in the model for deciduous forest (Table 1). 
Parameter theta_sat was set to 30 Vol% due to the relatively 
satisfactory simulation results obtained from scenario A1.  

Changing the bulk surface resistance parameters affects the 
simulated soil water content. The dynamics of the soil moisture 
simulations are now more consistent with measured values 
(Figure 2). The best fit could be obtained by decreasing the rsc 
and rse values to 75% and 50% of their standard values, 
respectively. By lowering the bulk surface resistance 
parameters, the (potential) evapotranspiration increases. This 
extracts more water through plant transpiration and soil 
evaporation. Hence, under these conditions, simulated soil 
moisture was reduced and became closer to the measured 
values. The dynamics of the simulated transpiration also 
corresponds well to the sap velocity measurements (Figure 3).  

However, the amount of evapotranspiration losses (850 mm 
and 867 mm with rsc = 75% and rse = 50%, respectively) 
exceeded precipitation input. The simulated runoff generation 
process was saturation excess flow or Hortonian overland flow 
which was unrealistic with regard to real soil characteristics at 
site Sa_G (Table A in appendix). Evaluation of the results 
obtained from the scenario A2 is shown in Table 8. Here, all 
measures indicate an almost perfect fit after scaling the bulk 
surface resistance (NSE = 0.74 for transpiration, and NSE = 
0.85 or 0.91 for soil moisture). This confirms a substantial 
improvement of simulation accuracy. Nevertheless, runoff 
generation process and water balance are not correctly 
reproduced. 

 
Table 6. Overview of different scenario combinations. 
 

SCENARIO A 
(using soil parameterization after 
Teepe el al. (2003)) 
 

A1 
(Scaling theta_sat) 

 

–41% 
–35% 
–30% 

A2 
Scaling bulk surface resistances 

theta_sat = 30% 
 

A2-1 
(Scaling soil surface 

resistance r
se

)  

25%-50%-75%-100%-
150%-200%-400% 

 
A2-2 

(Scaling canopy surface 
resistance r

sc
) 

25%-50%-75%-100%-
150%-200%-400% 

SCENARIO B 
(using soil parameterization after 
Sauer (2007)) 
 

B1 
Re-parameterization of Water Retention Curve 

with theta_sat = 30% 

-Variation 1 
-Variation 2 
-Variation 3 

B2 
Re-parameterization of Water Retention Curve 

with theta_sat = 41% 

-Variation 1 
-Variation 2 
-Variation 3 

 
SCENARIO C 
 

Soil parameterization after Sprenger et al. 
(2016) 

Comparison to best performing parameter set  
(theta_sat = 41%, Var1) 
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Table 7. Criteria evaluation and efficiency measures in scenario A1. 
 

Scenario A1: scaling theta_sat 
Criterion 30 Vol% 35 Vol% 41 Vol% 
SV Yes Yes Yes 
SM No No No 
RETa No No No 
RRGP No No No 

Efficiency  
measure 

   
Transpiration Soil moisture Transpiration Soil moisture Transpiration Soil moisture 

R² 0.73 0.95 0.73 0.95 0.73 0.93 
MAE 0.42 0.02 0.42 0.08 0.42 0.13 
NSE 0.71 0.55 0.71 –2.66 0.71 –8.92 

 
Table 8. Criteria evaluation and efficiency measures in scenario A2. 
 

Criterion 30 Vol% (baseline) A2-1 (rse = 50%) A2-2 (rsc = 75%) 
SV Yes Yes Yes 
SM No Yes Yes 
RETa No No No 
RRGP No No No 

Efficiency  
measure 

   
Transpiration Soil moisture Transpiration Soil moisture Transpiration Soil moisture 

R² 0.73 0.95 0.73 0.94 0.76 0.94 
MAE 0.42 0.02 0.39 0.01 0.39 0.01 
NSE 0.71 0.55 0.74 0.91 0.74 0.85 

 
Table 9. Criteria evaluation and efficiency measures for model performances in scenarios B1 and B2. 
 

Criterion 
Re-parameterization of the water retention curve – scenario B 

scenario B1 (theta_sat = 30 %) scenario B2 (theta_sat = 41%) 

Baseline Var1 Var2 Var3 Baseline Var1 Var2 Var3 
SV Yes  No No No Yes  Yes No No 
SM No No No No No Yes No No 
RETa No Yes Yes Yes No Yes Yes Yes 
RRGP No Yes Yes Yes No Yes Yes Yes 

Efficiency measure 
        

SM Tr SM Tr SM Tr SM Tr SM Tr SM Tr SM Tr SM Tr 
R² 0.95 0.73 0.75 0.64 0.60 0.37 0.62 0.11 0.93 0.61 0.74 0.73 0.67 0.5 0.62 0.11 
MAE 0.02 0.42 0.05 0.53 0.07 0.75 0.06 0.97 0.13 0.42 0.02 0.43 0.04 0.66 0.06 0.97 
NSE 0.55 0.71 –0.44 0.6 –1.98 0.21 –1.64 –0.34 –8.92 0.71 0.65 0.71 –0.01 0.41 –1.64 –0.34 

 

 
SCENARIO B: Re-parameterization of Water Retention 
Curve 

 
In scenario B1, van Genuchten parameters of the baseline 

parametrization of the soil were re-parameterized according to 
Sauer (2007), where three variations of the parameters “alpha” 
and “n” were proposed for the same soil type “loamy sand”. 
Figure 2 depicts soil moisture of the three variations of van 
Genuchten parameters for a soil with theta_sat = 30%. All 
variants underestimate the measured values. Variation of van 
Genuchten parameters also affects simulated actual transpiration 
rates: In Figure 3, we clearly see that simulated transpiration does 
not match the temporal pattern of sap velocity measurements. 

In all three variations, the soil was significantly dryer than 
the measured value. In variation 2 and 3 the soil water content 
came close to the residual water content. For the simulated 
transpiration, its temporal consistency with sap velocity de-
creased from variation 1 to 3. As all three variations performed 
worse than the best A1 scenario all three variants are rejected. 

In scenario B2 we changed theta_sat from 30 to 41 Vol% 
and then repeated the three variations of alpha and n after Sauer 
(2007) and then checked both soil moisture (Figure 2) and 

transpiration dynamics (Figure 3). Simulation results with 
theta_sat = 41% for the transpiration dynamics are relatively 
consistent with the observed sap velocities over the entire 
vegetation period for variation 1. In scenario B2, variation 1 
provided sufficient soil water during the vegetation period for 
plant transpiration. This corresponds well to temporal patterns 
of sap velocities. Nevertheless, in variation 2 and 3, simulated 
transpiration did not reproduce the temporal patterns of the sap 
velocity data. There is a strong deviation in July and August 
2015 and at some points the simulated transpiration drops to 
zero. This is the result of the low soil water content in summer 
(close to residual water content) for these two variations.  

Table 9 provides all evaluation results related to the scenario 
B. Runoff generation process for all three variations with 
theta_sat = 30% and 41% is now deep percolation (Table A in 
appendix). Furthermore, the total amount of evapotranspiration 
was less than 750 mm for all variations. Variation 1 with 
theta_sat = 41% fulfills all four evaluation criteria. This is 
confirmed by the three statistical efficiency measures. Here, 
variation 1 with theta_sat = 41% clearly performs the best. In 
accordance with our definition we can label this model 
parameterization as “behavioral”.  
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Fig. 2. Simulated and measured 
soil moisture in the root zone 
(Vol%) in 2015 for Scenarios 
A1, A2, B1 and B2. Red verti-
cal lines indicate the growing 
season. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Simulated transpiration 
(normalized) and normalized 
mean values of sap velocity 
(measured) for growing season 
2015 (Scenarios A1, A2, B1, 
B2). In Scenario A1 all simula-
tions show the same transpira-
tion (identical lines). 
 

 
 

 
SCENARIO C: Soil parameterization after Sprenger et al. 
(2016) 

 
Sprenger et al. (2016) provided a soil parameter set for the 

Site Sa_G. In the scenario C, this parameter set was determined 
by automatic fitting to soil moisture measurements and stable 
isotope data. We compared this parameterization with our best 
performing model from the previous section (variation 1 from 
scenario B2 with theta_sat = 41%). 

The simulated runoff generation process was deep 
percolation which is plausible (Table A in appendix). Total 

evapotranspiration (602 mm) was estimated to be lower than 
precipitation (791 mm) which is also correct. But it can be seen 
in Figure 4 that soil moisture simulation does not show the 
correct dynamics compared to the measured time series. Here 
again, the parameterization of WRC is the reason that the soil is 
drying out in summer. This causes a significant reduction in 
transpiration during August which does not correspond to our 
sap velocity measurements. Additionally, the statistical 
efficiency measures (Table 10) reveal that the model performs 
very weak in simulating soil moisture (negative value for NSE). 
Simulated transpiration is therefore not consistent with the 
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corresponding sap velocity time series (Figure 5). It shows an 
overestimation in spring and a slight underestimation in 
summer, which is also indicated by lower model performance 
measures compared to the simulation with the optimal 
parameter set (B2, variation 1 with theta_sat = 41%) from the 
previous section. 

 

 
 

Fig. 4. Simulated soil water content for soil parameters according 
to Sprenger et al. 2016 compared to corresponding measured val-
ues and simulated soil moisture from variation 1 (theta_sat = 41%) 
in 2015. Red vertical lines indicate the growing season. 

 

 
 

Fig. 5. Normalized simulated transpiration for soil parameters 
according to Sprenger et al. 2016 compared to normalized mean 
sap velocity (measured) and normalized simulated transpiration for 
variation 1 (theta_sat = 41%) in growing season 2015. 

 
Table 10. Criteria evaluation and efficiency measures for soil 
parameterization according to Sprenger et al. (2016). 
 

Criterion 
Optimal parameter set 

(theta_sat = 41%,  
Variation 1) 

Sprenger et al. 2016 

SV Yes No 
SM Yes No 
REtr Yes Yes 
RRGP Yes Yes 

Efficiency  
measure 

 

Transpiration Soil 
moisture Transpiration Soil 

moisture 
R² 0.73 0.74 0.61 0.89 
MAE 0.43 0.02 0.55 0.04 
NSE 0.71 0.65 0.57 –0.11 

 
 

DISCUSSION  
 
The main objective of this study was to build up a behavioral 

forest stand water balance model to characterize the temporal 
changes in hydrological components of water balance by mak-
ing use of both observed soil moisture and sap velocities as 
well as expert knowledge of local runoff generation processes. A 
behavioral model was defined as a model in which simulation 
results have to be consistent with measurements of soil moisture 
and sap velocity and with our hydrologic understanding of run-
off generation processes in the area of investigation. To accom-
plish the objectives, a multi-criteria evaluation scheme was 
developed. While 24 model realizations were tested, only one 
model realization could be categorized as “behavioral”. 

Results of this study demonstrated that without the use of 
additional information (e.g. using sap velocity measurements 
for transpiration dynamics; different soil parameterizations, and 
expert knowledge), it is not possible to identify a model which 
captures these processes and dynamics adequately. This sheds 
light on the value of the contribution of different forms of data 
in representing the catchment behavior. In a case study in a 
Swiss Pre-Alpine catchment, it was also found that the applica-
tion of expert knowledge and the concept of dominant process-
es can increase the realism of the hydrological models (An-
tonetti and Zappa, 2018). Taking into consideration that model 
evaluation would always be partly subjective, we looked at the 
model behavior from different perspectives through application 
of multi criteria evaluation that integrated this additional infor-
mation. Therefore, we were able to select a behavioral parame-
ter set from a number of equally likely soil parameterizations. 
The development of a multi-criteria approach for model evalua-
tion is based on the consideration that a single measure of per-
formance does not properly extract the information contained in 
the data (Gupta et al., 1998). This approach includes multiple 
performance measures and allows to evaluate if the hydrologi-
cal model is able to represent the behavior of internal catchment 
processes (Fenicia et al., 2008b). Moreover, our results are also 
in line with Livneh (2012). He improved model performance 
significantly by the application of a multi-criteria scheme to 
evaluate multiple model outputs and by adding supplementary 
information in the parameterization process (Livneh, 2012). 
Another study showed that the introduction of constraints was 
efficient in reducing simulation uncertainty, in conditioning 
parameters, and in identifying critical parameters (Senapati et 
al., 2016). 

All functions describing soil water retention imply a specific 
soil hydraulic behavior. Soil parameterization schemes accord-
ing to Teepe et al. (2003) and Sauer (2007) use different 
amounts of soil information to derive pedo-transfer functions to 
translate soil information into van Genuchten parameters. Our 
results revealed that different parameterizations of the corre-
sponding soil led to diverse simulation results. This issue is of 
great significance in all models applying the Richard’s equation 
(e.g. WaSiM-ETH). Therefore, finding a behavioral model for 
evapotranspiration is highly dependent on the identification of 
an appropriate WRC. This is consistent with the results of Gar-
rigues et al. (2018). They compared the performance of two 
water transfer models in simulating evapotranspiration using 
different soil parameterizations. They found an unexpectedly 
high model sensitivity to soil moisture at field capacity, root 
extinction coefficient, and the proportion of homogeneous root 
distribution (Garrigues et al., 2018). In our proof-of-concept 
study based on a 1-D model, we took the measurements of 
sapflow and soil moisture as representative for the “sandstone 
area” where the dominant hydrologic process is deep percola-



Markus C. Casper, Hadis Mohajerani, Sibylle Hassler, Tobias Herdel, Theresa Blume 

222 

tion. This made it possible to identify a behavioral model. It is 
known that models might work for the wrong reasons (i.e. 
reproducing discharge with incorrect process representations) 
(Beven, 2006; Walker and Zhang, 2002). This makes it advisa-
ble to implement expert knowledge to develop a proper pa-
rameterization to reflect our perceptions of the processes ob-
served. 
 
CONCLUSION 

 
A considerable amount of effort is still being devoted to the 

development of hydrological models, and there is a continuing 
need to advance the techniques for their parameter estimation. 
It is also important to develop a good working knowledge of 
their sensitivity, and strengths and weaknesses. 

This study underlines the importance of correctly setting up 
the 1-D water balance simulation model WaSiM-ETH in order 
to reproduce the dynamics of soil water fluxes and the physio-
logical control of water loss through transpiration at a specific 
site (beech forest in Western Luxembourg). Adjustment of the 
parametrization of the WRC showed a high impact on simula-
tion results. Our main finding was that: even though all parame-
ter sets refer to the same soil (“loamy sand”), a slightly differ-
ent parameterization of soil moisture at saturation (theta_sat), 
bulk surface resistance parameters and WRC may result in 
implausible model behavior. Even if transpiration and soil 
moisture are simulated consistently with our observations, 
runoff generation or total water balance may be wrongly esti-
mated. Therefore, only the introduction of a multi-criteria eval-
uation scheme for exclusion of unrealistic outputs allowed 
finding a well performing parameter set for our test site. These 
findings suggest that using different sources of information such 
as expert knowledge on the dominant hydrological processes 
and the understanding of local controls facilitate parameteriza-
tion and evaluation of a hydrological model. We should question 
the generally accepted procedure to parametrize soils using 
“default” parameter sets based on soil texture description or 
similar. Only if porosity and WRC for all soil horizons are cor-
rectly adjusted, a “physically based” model may simulate runoff 
processes and transpiration consistently with observations. Only 
in this case, we may refer to a model as “behavioral” (Gupta et 
al., 2005). We recommend finding “prototype soils” which are 
in accordance with soil description (e.g. texture) and expert 
knowledge on runoff processes in the area under investigation. 
This in turn implies that model parameterization, evaluation or 
calibration has to incorporate this “soft” knowledge. 

Setups identified as optimal for 1-D simulations will go a 
long way of improving the application of WaSiM-ETH water 
balance model on catchment scale to answer questions about 
watershed characteristics and water resources management. 
Since point measurements are not valid on catchment scale, we 
may try to address the spatiotemporal distribution of evapotran-
spiration, soil moisture and runoff generation processes at 
catchment scale as well as the estimation of overall water bal-
ance at the corresponding gaging station(s) (Koch et al., 2016, 
2015). The current study showed that soil parameterization 
affects not only the temporal distribution of soil moisture and 
transpiration, but also the runoff generation process. This also 
highlights the need to consider the incorporation of several data 
products to increase knowledge about the hydrological process-
es on catchment scale (Casper et al., 2015). Remotely sensed 
data will open up the possibility to analyze spatial patterns of 
actual evapotranspiration (ETa) or soil moisture (Koch et al., 
2017). Together with additional knowledge of the spatial distri-
bution of dominant runoff processes on catchment scale this 

will facilitate the parameterization of the hydrological model 
WaSiM-ETH and its subsequent optimization by extending the 
traditional model evaluation procedure at gaging stations with 
the search for a best fit of spatial patterns of ETa and runoff 
processes on catchment scale. A number of automatic mapping 
approaches for delineation of dominant runoff process exist, 
which can be used to constrain the uncertainty of hydrological 
simulations (Antonetti et al., 2016; Behrens et al., 2010). The 
model RoGeR (Runoff Generation Research) demonstrated its 
ability to quantify runoff process in high spatial and temporal 
resolution without the need of parameter calibration (Steinbrich 
et al., 2016). This approach combines knowledge of runoff 
process gained through long term research with spatially dis-
tributed data sets and can thus be used to extend the here pre-
sented approach to the catchment scale. 
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APPENDIX 
 
Table A. Water balance for all simulation runs, DP = Deep Percolation. SOF = Saturation Overland Flow, HOF = Hortonian Overland Flow. 
 

Scenario A1 A2 B1: B2 C 

 
base-

line 41 
baseline 

35% 
baseline 

30% 
rsc 

75% 
rse 

50% 
Var. 1 
30% 

Var. 2 
30% 

Var. 3 
30% 

Var. 1 
41% 

Var. 2 
41% 

Var. 3 
41% 

Sprenger et 
al. 2016 

Pot. Evaporation 270 270 270 281 471 270 270 270 270 270 270 270 
Real Evaporation 261 259 250 254 372 174 167 179 183 168 179 160 
Interception  
Evaporation 146 146 146 157 146 146 146 146 146 146 146 146 

ETp 851 851 851 978 1051 851 851 851 851 851 851 851 
ETr 776 774 762 850 867 613 536 497 676 569 497 602 
ETr_Layer1 = 
Transpiration 368 368 365 438 348 293 222 172 347 255 172 296 

Baseflow 145 166 107 117 73 212 278 316 251 267 316 196 
Direct Runoff 161 11 82 63 73 0 0 0 0 0 0 0 
Interflow 0 0 0 0 0 0 0 0 0 0 0 0 
Total Runoff 306 177 190 180 146 212 278 316 251 267 316 196 
GW recharge 68 114 94 103 64 190 268 307 130 248 307 156 
Delta Storage –290 –160 –161 –239 –222 –33 –22 –22 –136 –45 –22 –7 
Precipitation 791 791 791 791 791 791 791 791 791 791 791 791 
Total Balance Error 0 0 0 0 0 0 0 0 0 0 0 0 

Runoff Process SOF/H
OF 

SOF/ 
HOF/DP SOF/HOF SOF/ 

HOF 
SOF/
HOF DP DP DP DP DP DP DP 

 


