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Abstract: The problem of fractal modeling is very simple when we know
the mathematical description of a fractal. We just apply one of the well-known
algorithms. The inverse problem of finding the mathematical description for
given fractal is not so trivial and we do not know any general method to solve
this problem. So there are several approaches to this problem e.g. via Bézier
curves, fractal compression. In this paper we present automatic method for
finding fractal description of 2D contours. Our algorithm uses fractal interpo-
lation for this purpose. We also present some of practical examples.

AMS Subject Classification: 68U05, 68P30, 28A80, 41A05
Key Words: fractal modeling, fractal interpolation, iterated function system,
2D contours

1. Introduction

The notion of fractal was introduced by Benoit Mandelbrot in the 1970’s. But
fractals existed considerably earlier. They were perceived as exceptional object,
mathematical monsters. With time they became a very important tool in many
disciplines and found very wide practical applications e.g. image compression,
generating shore lines, mountains, clouds, pattern recognition, image processing
or in medicine and economy.

One of a such applications is shape modeling. The fractal methods of shape
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modeling have gained much popularity in recent years. The problems of fractal
modeling is very simple when we have fractal description because we use one
of the well-known algorithms for generating fractals. The inverse problem,
i.e. finding fractal description for a given fractal, is very difficult and we do
not know any general method to solve this problem [1]. There are several
approaches to this problem. In [5], [6] we find methods for fractal generation
of contours. These methods used the fact that every contour can be divided
into sum of linear segments and Bézier curves [5] or sum of linear segments and
Chaikins curves [6] and the fact that for these curves and linear segments we
know fractal description. Using results from [9] we can expand these methods
to any parametric curve for which we know the subdivision scheme. In this
paper we present a different approach to fractal modeling of contours. In our
method we use fractal interpolation.

In Section 2 we introduce the notion of fractal which we will use in this
paper. Moreover, we present two algorithms for generating fractals from their
description. In Section 3, we introduce the idea of fractal interpolation which
we will use in Section 4 in automatic method for finding fractal description of
a contour. Furthermore, in Section 4 we present some examples presenting our
algorithm. Finally, in Section 5 we present our conclusion and future work.

2. Fractal as Attractor

There are many definitions of a fractal [1], [7], so in this section we introduce
the definition that we will use in this paper. But first we must bring in some
notations.

Let us take any complete metric space (X, ρ) and denote as H(X) the
space of compact subsets of the X. In this space we introduce function h :
H(X) × H(X) → R+ which is defined as follows

h(R,S) = max{D(R,S),D(S,R)}, (1)

where R,S ∈ H(X) and the mapping D : H(X) × H(X) → R+ is defined as
follows

D(R,S) = max
x∈R

min
y∈S

ρ(x, y). (2)

It turns out that the function h is a metric (Haussdorf metric) and the space
(H(X), h) is a complete metric space [1]. Another important notion in our
considerations is the notion of iterated function system (IFS).

We say that a set W = {w1, . . . , wn}, where wi is contraction mapping
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for i = 1, . . . , n is an iterated function system. So defined IFS determines the
Hutchinson operator which is defined as follows

∀A∈H(X) W (A) =

n
⋃

i=1

wi(A) =

n
⋃

i=1

{wi(a) : a ∈ A}. (3)

This operator is a contraction with contractivity factor s = max{s1, . . . , sn},
where si is contractivity factor for wi for i = 1, . . . , n [1]. Let us consider the
following recurrent sequence

{

W 0(A) = A

W k(A) = W (W k−1(A)), k ≥ 1 ,
(4)

where A ∈ H(X).

The following theorem is consequence of the Banach Fixed Point Theorem.

Theorem 1. Let (X, ρ) be a complete metric space and W = {w1, . . . , wn}
be an IFS. Then exists only one set B ∈ H(X) such that W (B) = B. Further-
more the sequence defined by equation (4) is convergent and

∀A∈H(X) lim
k→∞

W k(A) = B. (5)

Now we are ready to give the definition of fractal.

Definition 2. The limit from Theorem 1 is called an attractor of the IFS
or fractal.

In our further considerations we will need an algorithm for generating the
attractor of an IFS. The first algorithm called deterministic method appears in
theorem 1 and is the following: we take any A ∈ H(X) and calculate W k(A)
for k = 1, 2, . . .. After several iterations we achieve a good approximation of
the attractor [1], [8]. This approximation is sufficient for our purposes but the
iteration process is very time consuming. Therefore we will use another algo-
rithm called the chaos game which is one of the fastest algorithms for generating
attractor for given IFS [1], [8].

In chaos game we have IFS W = {w1, . . . , wn} and with each mapping wi we
associate a probability pi > 0 such that

∑n
i=1 pi = 1. In our case it is sufficient

that with each mapping we associate the same probability. In this algorithm
first we choose an initial point x0 and the number of iterations k. Next we pick
randomly a mapping from IFS according to the given probability distribution
and transform x0 using this mapping receiving a new point x1 which we draw.
Now x1 is starting point for next iteration. We repeat this process k times. If
the initial point x0 belongs to the attractor then each of the points generated
in the iteration process will also belong to the attractor. In the case when
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the initial point does not belong to the attractor then a finite number of points
generated at the beginning of the iteration process will lay outside the attractor.

3. Fractal Interpolation

In this section we introduce the fundamentals of fractal interpolation which we
can find in [1], [4].

Let a set of data {(xi, yi) ∈ R
2 : i = 0, 1, . . . , N} be given where x0 < x1 <

. . . < xN . The points of this set are called interpolation points (knots). We
search for IFS in R

2 such that its attractor is the graph of a continuous function
f : [x0, xN ] → R such that f(xi) = yi for i = 0, 1, . . . , N .

We consider an IFS which consists of N affine mappings of the special
structure

wn

[

x

y

]

=

[

an 0
cn dn

] [

x

y

]

+

[

en

fn

]

(6)

for n = 1, . . . , N . These mappings must satisfy the following constraints

wn

[

x0

y0

]

=

[

xn−1

yn−1

]

and wn

[

xN

yN

]

=

[

xn

yn

]

(7)

for n = 1, . . . , N .

Because the mappings are specified by five numbers an, cn, dn, en, fn and
the constraints give us four linear equations we must choose one of the five
numbers to be a free parameter. We choose dn. In this case after solving the
equations we achieve the following formulas

an =
xn − xn−1

xN − x0
(8)

en =
xNxn−1 − x0xn

xN − x0
(9)

cn =
yn − yn−1

xN − x0
− dn

yN − y0

xN − x0
(10)

fn =
xNyn−1 − x0yn

xN − x0
− dn

xny0 − x0yN

xN − x0
(11)

for n = 1, . . . , N .

Figure 1 presents an example of fractal interpolation for following points
(0, 0), (30, 50), (60, 40), (100,−10) and the free parameters 0.5, −0.5, 0.23.
The interpolation points are marked as circles and the chaos game with 20000
iterations was used to generate this graph.
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Figure 1: Example of fractal interpolation

This fundamental method of fractal interpolation is not sufficient to be
used in generating contours because usually we cannot satisfy the condition
x0 < x1 < . . . < xn. In [4] we find a method to interpolate any curve not only
that satisfies the mentioned condition. This method is similar to Barnsley’s
one.

In this method we also have {(xi, yi) ∈ R
2 : i = 0, 1, . . . , N} as input

data. Firstly we extend our points by one co-ordinate {(xi, yi, ti) ∈ R
3 : i =

0, 1, . . . , N} where 0 = t0 < t1 < . . . < tN = 1 is any parametrization of [0, 1].
Now we search for two IFS’s X = {X1, . . . ,XN} and Y = {Y1, . . . , YN} which
satisfy the conditions

Xi

[

0
x0

]

=

[

ti−1

xi−1

]

and Xi

[

1
xN

]

=

[

ti
xi

]

, (12)

Yi

[

0
y0

]

=

[

ti−1

yi−1

]

and Yi

[

1
yN

]

=

[

ti
yi

]

, (13)

for i = 1, . . . , N . Next we combine these two IFSs by using set of maps of the
form

wi





t

x

y



 =





ai 0 0
cxi

dxi
0

cyi
0 dyi









t

x

y



 +





ei

fxi

fyi



 (14)

for i = 1, . . . , N and where indices cxi
, dxi

, fxi
mark the coefficients of the i-th

mapping of the X IFS (similarly for cyi
, dyi

, fyi
), ai, ei mark the coefficients of

the i-th mapping of the X or Y IFS (these two coefficients are equal in both
IFSs).

The mappings w1, . . . , wn create IFS for the curve given by the points
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Figure 2: Example of interpolation of arbitrary points

Figure 3: From left to right: original contour, chaos game with 20, 100,
300 iterations per IFS respectively

{(xi, yi, ti) ∈ R
3 : i = 0, 1, . . . , N}. To obtain the graph of the function in-

terpolating points {(xi, yi) ∈ R
2 : i = 0, 1, . . . , N} we simply generate points

with this IFS and draw on the plane points given by the second and third
co-ordinate.

Figure 2 presents an example of interpolation of the following points (0, 0),
(30, 40), (50, 35), (40, 25), (25, 20), the free parameters were all equal 0.2 for the
X IFS and 0.25 for the Y IFS. The interpolation points are marked as circles
and the chaos game with 20000 iterations was used to generate this graph.

4. Fractal Contours

In this section we introduce an algorithm that for a given image finds several
IFSs called Partitioned Iterated Function System (PIFS) which approximate
contour of an object from this image. To find this fractal description we use
fractal interpolation.
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Figure 4: Top (from left): original contour, chaos game with 20 itera-
tions per IFS. Bottom (from left): chaos game with 100, 300 iterations
per IFS respectively

Figure 5: From left to right: original contour, deterministic method
with 1, 2, 6 iterations per IFS respectively

For a given image we must do some preprocessing steps which help us in
finding fractal description of a contour. Our algorithm consists of three basic
steps:

1. Extracting the contour from a given image.

2. Finding points with the highest curvature.

3. Determination of the set of IFSs.

In the first step we simply binarize the image and then find the contour of
an object [2]. The second step uses the very efficient IPAN99 [3] algorithm for
finding points with the highest curvature. When we have contour and points
with the highest curvature we can find the fractal description in the following
way. Let us assume that hc is the list of points with high curvature and P is
set of the IFSs approximating the contour then:

1. choose error e for approximation of contour
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2. i = 1, P = {}

3. while i < length(hc)

(a) p1 = hc(i), p3 = hc(i + 1),
p2 = point laying on contour in half way between p1 and p3

(b) er = +∞, W = {}

(c) for dx = 0 to 0.3 with step 0.05
for dy = 0 to 0.3 with step 0.05

i. find IFS W1 interpolating points p1, p2, p3 with free parameters
dx, dy

ii. generate approximation of the attractor of the IFS W1

iii. calculate error e1 between approximation of the attractor and a
part of contour laying between p1 and p3

iv. if e1 < er then er = e1, W = W1

(d) if er ≤ e then P = P ∪ W , i = i + 1
else hc = {hc(1), . . . , hc(i), p2, hc(i+1), hc(i+2), . . . , hc(length(hc))}

In our algorithm we use only three points in fractal interpolation so the
IFS consist of two mappings. Moreover for each variable the free parameters
for these two mappings are equal dx1

= dx2
= dx and dy1

= dy2
= dy. Of

course, in interpolation we can use more points and different values for the free
parameters.

In Figure 3 we see first example presenting our algorithm. On left we see
original contour of an airplane. Next three images presents approximations
of attractor achieved by our algorithm. The PIFS consists from 37 IFSs. To
render these images we used chaos game with 20, 100 and 300 iterations per
IFS, respectively. Figure 4 presents another example of fractal contour. Like
in the first example on left we have original contour of a guitar and next three
images are approximations of attractor rendered with the help of chaos game
with 20, 100, 300 iterations per IFS. This time PIFS consists from 35 IFSs. The
last example (Figure 5) presents contour of a leaf, image on the left. The PIFS
achived by our algorithm consist from 41 IFSs. This time to render images we
used deterministic method. Starting shape was triangle and we used 1, 2 and
6 iterations per IFS, respectively.
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5. Conclusions

In this paper we demonstrated a new algorithm for obtaining fractal description
of contours. In our algorithm we used fractal interpolation. Presented examples
show that the contours are generated fractally in a progressive way. Moreover,
because the contours are generated fractally they posses the property of resolu-
tion independence, i.e. they look the same independently of the scale in which
they are drawn.

As we mentioned before we can use in fractal interpolation more points and
different values for each of the free parameters. This will lengthen the time
needed for finding the best IFS but the fitting to the original contour could be
more accurate. Also it seems to be possible to extend papers result to 3D shapes
using the results from [10] where fractal interpolation of 3D data is presented.
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