

Title: Basics of Modelling and Visualization

Author: Wiesław Kotarski, Krzysztof Gdawiec, Grzegorz T. Machnik

Citation style: Kotarski Wiesław, Gdawiec Krzysztof, Machnik Grzegorz T.
(2009). Basics of Modelling and Visualization. Katowice: Institute of Computer
Science University of Silesia

Basics of Modelling and Visualization

Wies law Kotarski, Krzysztof Gdawiec,
Grzegorz T. Machnik

Basics of Modelling and Visualization

Katowice, 2009

Cover designed by Grzegorz T. Machnik

This project was completed with the support granted by Iceland, Liechtenstein and

Norway by means of co-financing from the European Economic Area Financial Mecha-

nism and the Norwegian Financial Mechanism as part of the Scholarship and Training

Fund.

This publication reflects the views only of the author, and the Operator of the Schol-

arship and Training Fund cannot be held responsible for any use which may be made

of the information contained therein.

c© Copyright by Wies law Kotarski, Krzysztof Gdawiec, Grzegorz T. Machnik, 2009

University of Silesia, Institute of Computer Science

Katowice, Poland 2009

Typeset by authors using the LATEX 2ε
Printed in European Union

ISBN 978-83-929710-1-6

Contents

Preface 7

1 Geometry 9

1.1 Transformations in the plane 9

1.2 Transformations in the 3D space 11

1.3 Projections . 14

2 Curves 16

2.1 Curves as functions . 16

2.2 Interpolation and approximation curves 18

2.3 Bézier curves . 21

2.4 Subdivision curves . 23

3 Patches 30

3.1 Surfaces as functions . 30

3.2 Bézier patches . 31

3.3 Special surface constructions 34

3.4 Subdivision patches . 34

4 Fractals 40

4.1 Properties of fractals . 40

4.2 Fractal types . 41

4.3 Iterated Functions System . 42

4.4 Deterministic fractal algorithm 44

4.5 Random fractal algorithm . 44

4.6 Examples of IFS generated fractals 46

4.7 Subdivision and fractals . 47

6 Contents

5 Visual photorealism 49
5.1 Light . 50
5.2 Materials . 51
5.3 Textures . 53
5.4 Camera . 56
5.5 Rendering . 60
5.6 Colour models . 64

6 Software 67
6.1 POV Ray . 67

6.1.1 Objects creation . 68
6.1.2 Materials and textures 72
6.1.3 Lights and camera . 77
6.1.4 Rendering . 80

6.2 MayaVi . 81
6.2.1 Installation . 82
6.2.2 Pipeline model . 83
6.2.3 Filters . 83
6.2.4 Modules . 85
6.2.5 Interaction with the scene 87
6.2.6 Examples . 88
6.2.7 Scripting with mlab . 92
6.2.8 VTK file format . 94

6.3 Deep View / Swiss-PdbViewer 96
6.3.1 Basics of Deep View . 97
6.3.2 Examples . 98

Bibliography 101

List of Figures 104

About authors 107

Preface

This textbook presents basic concepts related to modelling and visualiza-
tion tasks. It consists of 6 chapters. Chapters 1-4 describe basic transforma-
tions in the plane and in the space and geometric forms of graphical objects
such as curves, patches and fractals.

Namely, in Chapter 1 transformations such as translation, rotation, scaling,
shears and projections are presented in a matrix form thanks to the usage of
homogenous coordinates. Transformations are needed to perform required
changes of graphical objects and their locations.

Chapter 2 discusses representations of curves used in computer graphics
and computer aided design (CAD). Especially important are Bézier and sub-
division curves. Bézier curves are free form curves whose shapes can be effec-
tively modelled by changing the position of their control points. Subdivision is
a very interesting and effective approach which makes it possible to generate
smooth curves via pure geometrical and simple cutting corner algorithm.

In Chapter 3 patches are discussed – Bézier patches and subdivision patches.
Bézier patches inherit nice properties from curves. Namely, their shapes can
be easily and in a predictable way modelled with the help of control points.
Moreover, Bézier patches are invariant under affine transformations and de
Casteljau subdivision algorithm is also applicable to them. Also subdivision
algorithms based on tensor product of subdivision matrices can be easily used
to produce smooth patches.

Chapter 4 gives an introduction to graphical objects – fractals that can-
not be presented with the help of functions. Fractals are very complicated
objects that can be generated by a small amount of information gathered as
coefficients of Iterated Function Systems, in short IFS. It is very interesting
that fractals and Bézier curves and patches can be obtained using the same
common approach. Namely, subdivision may produce both smooth curves and
fractals.

Information presented in Chapters 1-4 is enough for the representation

8 Contents

of geometry of graphical objects. But to obtain their visual photorealistic
presentation we need to add to their geometry further factors such as lights,
materials, textures and, of course, colours. Some information on that subject
is presented in Chapter 5. In this chapter also problems related to cameras
and rendering are described. Many photorealistic images are also presented.

In Chapter 6 a freeware software that can be used to visualize graphical
objects is presented. POV Ray, MayaVi and Deep View are described. Using
those software one can obtain photorealistic renderings. Among them there
are nice example renderings of biological particles as hemoglobin that can be
easily visualized with the help of Deep View and finally rendered in POV Ray.

This textbook was prepared for students of the specialization ”Modelling
and Visualization in Bioinformatics” but it should be helpful to anyone who is
interested in computer graphics, modelling techniques and animation. Authors
of this textbook believe that information presented in the book will be useful
for students and will inspire their imagination in creation of photorealistic
static 3D scenes and also will be helpful in creation of animations in an effective
and professional way.

Wies law Kotarski, Krzysztof Gdawiec, Grzegorz T. Machnik

Sosnowiec, June 2009

Chapter 1

Geometry

In this chapter we will present basic transformations in the plane and
in the 3D space. All these transformations thanks to homogenous coordi-
nates take the uniform matrix form. Homogenuos coordinates are used to
present translation, for which a natural form is a vector one, in the matrix
form. Presentation of translation in the matrix form is very useful because
all the geometrical transformations such as: rotation, scaling, shears can be
expressed in the matrix form. So, having matrix representation of geometrical
transformations it is very easy to perform complex transformations by simply
multiplying matrices. Here, it should be pointed out that the result of ma-
trix multiplication depends on the order of matrices that is equivalent to the
order of performed geometrical transformations. More information related to
geometry can be found, e.g. in [14].

1.1 Transformations in the plane

Points in the plane, presented as row vectors [x, y], will be considered in
homogenous coordinates as [x, y, 1].

Translation

Translation by a vector [tx, ty] transforms a point [x, y] into a new one
[x′, y′]. This can be written in the following form:

x′ = x + tx,

y′ = y + ty,

1 = 1.

(1.1)

10 Chapter 1. Geometry

Applying identity 1 = 1 enables matrix representation of translation:

[x′, y′, 1] = [x, y, 1] ·

1 0 0
0 1 0
tx ty 1

 = [x, y, 1] · T (tx, ty), (1.2)

where T (tx, ty) is the translation operator with parameters tx and ty.

Rotation about the origin

A rotation of the point [x, y] through an angle ϕ about the origin transforms
it to the new point [x′, y′]. A rotation angle is assumed to be positive, if the
rotation is carried out in the anticlockwise direction. Rotation can be written
in the following matrix form:

[x′, y′, 1] = [x, y, 1] ·

cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 = [x, y, 1] · R(ϕ), (1.3)

where R(ϕ) is the rotation operator through an angle ϕ about the origin.

Scaling

Scaling with factors sx and sy according to OX and OY axes, respectively,
transforms the point [x, y] into the new one [x′, y′]. It can be written in the
following form:

[

x′, y′, 1
]

= [x, y, 1] ·

sy 0 0
0 sy 0
0 0 1

 = [x, y, 1] · S(sx, sy), (1.4)

where S(sx, sy) is the scaling operator with factors sx and sy according to OX
and OY axes, respectively.

Sheares

• Shear in the direction of OX axis

A shear in the direction of OX axis with the factor r is described by the
following formula:

1.2. Transformations in the 3D space 11

x′ = x + ry,

y′ = y,

1 = 1,

(1.5)

that can be written in the equivalent matrix form:

[

x′, y′, 1
]

= [x, y, 1] ·

1 0 0
r 1 0
0 0 1

 = [x, y, 1] · Shx(r), (1.6)

where Shx(r) determines the shear operator with the factor r in the
direction of OX axis.

• Shear in the direction of OY axis

A shear in the direction of OY axis with the factor r is described by the
following formula:

x′ = x,

y′ = rx + y,

1 = 1,

(1.7)

that can be written in the equivalent matrix form:

[

x′, y′, 1
]

= [x, y, 1] ·

1 r 0
0 1 0
0 0 1

 = [x, y, 1] · Shy(r), (1.8)

where Shy(r) determines the shear operator with the factor r in the
direction of OY axis.

1.2 Transformations in the 3D space

Points in the 3D space are row vectors [x, y, z] and they are considered in
homogenous coordinates as [x, y, z, 1].

12 Chapter 1. Geometry

Translation 3D

Translation by a vector [tx, ty, tz] transforms a point [x, y, z] to a new one
[x′, y′, z′]. This can be written in the following form:

x′ = x + tx,

y′ = y + ty,

z′ = z + tz,

1 = 1.

(1.9)

Applying identity 1 = 1 enables matrix representation of translation 3D:

[

x′, y′, z′, 1
]

= [x, y, z, 1] ·

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

= [x, y, z, 1] · T (tx, ty, tz), (1.10)

where T (tx, ty, tz) is the translation operator with parameters tx, ty, tz.

Rotations about coordinate axes

In the 3D space rotations about three axes can be defined. In Fig. 1.1 right-
handed coordinate system is presented. The arrows show positive rotation
directions about axes. Below matrices that define rotations according to axes
OX, OY and OZ, respectively through angles ϕx, ϕy i ϕz are given.

0

X

Y

Z

Fig. 1.1. Right-handed coordinate axes system.

• Rotation about OX axis

1.2. Transformations in the 3D space 13

[

x′, y′, z′, 1
]

= [x, y, z, 1] ·

1 0 0 0
0 cos ϕx sin ϕx 0
0 − sin ϕx cos ϕx 0
0 0 0 1

= [x, y, z, 1] · Rx(ϕx),

(1.11)

where Rx(ϕx) is the rotation operator about OX axis through an angle
ϕx.

• Rotation about OY axis

[

x′, y′, z′, 1
]

= [x, y, z, 1] ·

cos ϕy 0 − sin ϕy 0
0 1 0 0

sin ϕy 0 cos ϕy 0
0 0 0 1

= [x, y, z, 1] · Ry(ϕy),

(1.12)

where Ry(ϕy) is the rotation operator about OY axis through an angle
ϕy.

• Rotation about OZ axis

[

x′, y′, z′, 1
]

= [x, y, z, 1] ·

cos ϕz sin ϕz 0 0
− sin ϕz cos ϕz 0 0

0 0 1 0
0 0 0 1

= [x, y, z, 1] · Rz(ϕz),

(1.13)

where Rz(ϕz) is the rotation operator about OZ axis through an angle
ϕz.

Scaling

Scaling in the 3D space is described by the following formula:

14 Chapter 1. Geometry

[

x′, y′, z′, 1
]

= [x, y, z, 1] ·

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

= [x, y, z, 1]·S(sx, sy, sz), (1.14)

where S(sx, sy, sz) is the scaling operator with scaling factors sx, sy, sz about
OX, OY, OZ axes, respectively.

1.3 Projections

3D graphical objects or the virtual world modelled using computer graphics
or computer aided design software have to be projected to the plane to display
them on the computer monitor. There are two main types of projections:

• parallel projection,

• perspective projection.

In both projections the depth of object is lost. Parallel projection pre-
serves parallelism of lines, whereas perspective projection does not, and in
that projection extensions of parallel lines may intersect. In Fig. 1.2 two kinds
of projections of a cube are presented. Thanks to homogeneous coordinates
both types of projections can be expressed with the help of one formula that
uses natural information needed in computations.

(a) (b)

Fig. 1.2. Projection of a cube: (a) parallel, (b) perspective.

The formula for the projection, denoted by M , is as follows:

M = nT · v − (n ◦ v) · I4, (1.15)

1.3. Projections 15

where n is the vector perpendicular to the viewplane, nT is its transposition,
v denotes the position of an observer or camera in homogeneous coordinates,
I4 is the identity matrix of dimensions 4 × 4.

Note that ”·” denotes multiplication of matrices, ”◦” is the scalar prod-
uct of vectors giving the matrix of dimensions 4 × 4 and the number as the
result, respectively. The vector v takes the following forms v = [x, y, z, 1] for
perspective projection (Fig. 1.3 a) and v = [x, y, z, 1] for parallel projection
(Fig. 1.3 b), respectively. Notation [x, y, z, 0] determines the point at infinity
in the direction [x, y, z].

n

vie
wpla

ne

v

P

Q

P ′

Q′

(a)
n

vie
wpla

ne

v

P

Q

P ′

Q′

(at infinity)

(b)

Fig. 1.3. 3D projections: (a) perspective, (b) parallel.

Chapter 2

Curves

Curves arise in many applications such as art, industrial design, mathemat-
ics, architecture and engineering. Many drawing applications and computer-
aided design packages have been developed to facilitate the creation of curves.
A good illustrative example is that of computer fonts which are defined by
curves. Different font sizes are obtained by applying scaling transformations
whereas special font effects can be obtained by using other transformations
such as shears and rotations. Similarly, in other applications there is a need
to perform various changes of curves such as modifying, analyzing and visual-
izing. To perform such operations, a mathematical representation for curves is
needed. In this chapter different kinds of representation of curves will be pre-
sented: parametric, non-parametric explicit, using interpolation and approxi-
mation, implicit, Bézier and subdivision which also lead to curves. The repre-
sentations of curves are naturally related to representations of surfaces. More
information on curves and their representations can be found in [8, 12, 14].

2.1 Curves as functions

Curves can be defined using the following representations:

Parametric curves

The coordinates of points of a parametric curve are expressed as func-
tions of a variable or a parameter denoted, e.g. by t. A curve in the plane
has the form C(t) = (x(t), y(t)), and a curve in the space has the form
C(t) = (x(t), y(t), z(t)). The functions x(t), y(t), z(t) are called the coordinate

2.1. Curves as functions 17

functions. A parametric curve defined by polynomial coordinate functions is
called a polynomial function.

Example 2.1. Parabola (t, t2), for t ∈ R is a polynomial curve of degree 2.

Example 2.2. Unit circle (cos(t), sin(t)), for t ∈ [0, 2π].

In Fig. 2.1 two examples of parametric curves are presented.

(a) (b)

Fig. 2.1. Parametric curves: (a) parabola, (b) unit circle.

Non-parametric explicit curves

The coordinates (x, y) of points of a nonparametric explicit planar curve
satisfy y = f(x) or x = g(y). Such curves have the parametric form C(t) =
(t, f(t)) or C(t) = (g(t), t).

Example 2.3. Parabola y = x2, for x ∈ R.

Example 2.4. Upper half of a unit circle y =
√

1 − x2, for x ∈ [−1, 1].

In Fig. 2.2 an example of an explicit curve is presented.

Implicit curves

The coordinates (x, y) of points of non-parametric implicit curve satisfy
F (x, y) = 0, where F is some function. When F is polynomial in variables x

and y then it is called an algebraic curve.

Example 2.5. Circle x2 + y2 − 1 = 0.

18 Chapter 2. Curves

Fig. 2.2. Explicit curve: half of a unit circle.

2.2 Interpolation and approximation curves

Experiments usually deliver discrete data obtained by sampling some in-
vestigated continuous process. In two dimensional case that data represent
a finite number of points in the plane. The task is to find in some sense an
optimal function basing on those points. There are two approaches to solve
the problem – interpolation and approximation.

Interpolation curves

Let f(x) be an unknown function defined on an interval [a, b] with values
in R. Assume that we know values of the function f(x) at given points, the
so-called interpolation knots a ≤ x0 < x1 < . . . < xn ≤ b. Namely, f(x0) = y0,
f(x1) = y1,. . ., f(xn) = yn. We are looking for a polynomial Wn(x) of the
n-th order having the general form:

Wn(x) = a0 + a1x + . . . + anxn (2.1)

with unknown coefficients a0, a1 . . . , an, such that

Wn(x0) = f(x0), Wn(x1) = f(x1), . . . ,Wn(xn) = f(xn). (2.2)

That problem known as Lagrange approximation has only one solution defined
as follows:

Wn(x) =

n
∑

k=0

ykw
k
n(x), (2.3)

2.2. Interpolation and approximation curves 19

where

wk
n(x) =

n
∏

j=0

j 6=k

x − xj

xk − xj

.

Observe that:

wk
n(xi) =

{

0, for i 6= k,

1, for i = k.

Example 2.6. Find the Lagrange interpolation polynomial that for points
1, 2, 3, 4 take values 3, 1,−1, 2, respectively. So then, we are looking for a
polynomial of the third order W3(x). It takes the following form:

W3(x) = 3
(x − 2)(x − 3)(x − 4)

(1 − 2)(1 − 3)(1 − 4)
+ 1

(x − 1)(x − 3)(x − 4)

(2 − 1)(2 − 3)(2 − 4)

− 1
(x − 1)(x − 2)(x − 4)

(3 − 1)(3 − 2)(3 − 4)
+ 2

(x − 1)(x − 2)(x − 3)

(4 − 1)(4 − 2)(4 − 3)
.

After easy simplifications W3(x) = 5
6x3−5x2 + 43

6 . In Fig. 2.3 that polynomial
is presented together with the interpolation knots.

Fig. 2.3. Interpolation curve.

Approximation curves

Assuming that we have a sequence x0 < x1 < . . . < xn for which an
unknown function f(x) take values f(x0), f(x1), . . . , f(xn), respectively. We
find an approximation polynomial Wm(x) of degree m ≤ n i.e.

20 Chapter 2. Curves

Wm(x) = a0 + a1x + . . . + amxm,

such that

n
∑

k=0

[f(xk) − Wm(xk)]2 → min . (2.4)

The above optimization problem, known as the least square fitting method,
has a unique solution being a set of coefficients {a0, . . . , am} that can be found
from the following equations:

a0S0 + a1S1 + · · · + amSm = T0

a0S1 + a1S2 + · · · + amSm+1 = T1

· ·
a0Sm + a1Sm+1 + · · · + amS2m = Tm

, (2.5)

where

Sk =

n
∑

i=0

xk
i , k = 0, 1, . . . , 2m,

Tk =

n
∑

i=0

xk
i f(xi), k = 0, 1, . . . ,m.

Example 2.7. Find the polynomial of the first order that approximates an
unknown function taking the values 1.6, 2.0, 2.5, 3.5 for the arguments 1, 2, 4, 7,
respectively.

We are looking for the polynomial of the form W1(x) = a0+a1x. Necessary
computations of coefficients S0, S1, S2, T0 and T1 are given in the table below.

i x0
i x1

i x2
i f(xi) xif(xi)

0 1 1 1 1.6 1.6

1 1 2 4 2.0 4.0

2 1 4 16 2.5 10.0

3 1 7 49 3.5 24.5

S0 = 4 S1 = 14 S2 = 70 T0 = 9.6 T1 = 40.1

Next, coefficients a0 and a1 can be found from the following equations:

2.3. Bézier curves 21

{

4a0 + 14a1 = 9.6,

14a0 + 70a1 = 40.1.
(2.6)

The solution of equation (2.6) is the following: a0 = 1.3 and a1 = 0.3. So, the
approximation polynomial, being a line, has the form: W1(x) = 1.3 + 0.3x. In
Fig 2.4 that line is presented together with the points it approximates.

Fig. 2.4. Approximation line.

2.3 Bézier curves

In computer graphics and computer-aided design Bézier curves are widely
used because of their flexibility and possibility to change predictably their
shapes in an intuitive way. Bézier curves popularity is due to the fact that
they possess a number of nice mathematical properties which enable their
easy manipulation and which is very important – no mathematical knowledge
is required to use those curves. They have been invented by two Frenchmen
working in the automobile industry, Pierre Bézier at Renault and Paul de
Casteljau at Citroën during the period between 1958-60. Bézier curves are
the polynomial ones. Their shapes are fully determined by a finite number of
control points. By changing the position of control points one can influence
the shape of the curve. In practice only quadratic and cubic Bézier curves
are applied. Quadratic Bézier curves are determined by three control points,
whereas cubic Bézier curves for their description need four control points.
Bézier curves with more than four control points can also be defined but they
are not good in practice.

22 Chapter 2. Curves

Quadratic Bézier curves

Let P0 = [x0, y0], P1 = [x1, y1], P2 = [x2, y2] be given three points, the
so-called control points. Then the quadratic Bézier curve Q(t) is defined by
the formula:

Q(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2, t ∈ [0, 1]. (2.7)

The starting point of the curve is Q(0) = P0 and the ending one is Q(1) = P2.
So then, the curve Q(t) interpolates the first and the last control point and
approximates the point P1. The curve Q(t) can be expressed in the parametric
form (x(t), y(t)), where

{

x(t) = (1 − t)2x0 + 2(1 − t)tx1 + t2x2,

y(t) = (1 − t)2y0 + 2(1 − t)ty1 + t2y2,

for t ∈ [0, 1].

In Fig. 2.5 an example of a quadratic Bézier curve is presented. By joining
the control points one obtains the so-called control polygon, here – a triangle.
It is easy to observe that any quadratic Bézier curve lies within the triangle
defined by its control points. The curve Q(t) is tangent to segments P0P1

and P1P2, respectively. Moreover, the curve Q(t) is invariant under affine
transformation of its control points. It means that the result of any affine
transformation applied to the curve Q(t) is equivalent to using the same affine
transformation restricted only to control points.

Fig. 2.5. Quadratic Bézier curve with different positions of the one control point.

2.4. Subdivision curves 23

Cubic Bézier curves

Let P0 = [x0, y0], P1 = [x1, y1], P2 = [x2, y2], P3 = [x3, y3] be given four
control points. Then the cubic Bézier curve Q(t) is defined by the formula:

Q(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3, t ∈ [0, 1]. (2.8)

The starting point of the curve is Q(0) = P0 and the ending one is Q(1) =
P3. So then, the curve Q(t) interpolates the first and the last control point
and approximates the points P1, P2. The curve Q(t) can be expressed in the
parametric form (x(t), y(t)), where

{

x(t) = (1 − t)3x0 + 3(1 − t)2tx1 + 3(1 − t)t2x2 + t3x3,

y(t) = (1 − t)3y0 + 3(1 − t)2ty1 + 3(1 − t)t2y2 + t3y3,

for t ∈ [0, 1].
In Fig. 2.6 an example of a cubic Bézier curve is presented. Similarly as for
quadratic Bézier curve also cubic Bézier curve lies within the control polygon
defined by its control points, here – a tetragon. The curve Q(t) is tangent to
segments P0P1 and P2P3, respectively.

Fig. 2.6. Cubic Bézier curve with different positions of two control points.

2.4 Subdivision curves

Subdivision is a simple purely geometric method that when applied to a
starting polygon often leads to a smooth curve. That method was discovered
by Chaikin [3], in 1974. Using different subdivision strategies one can obtain
smooth limit curves good for modelling or curves that are less regular, than
smooth ones, and therefore not practically useful.

24 Chapter 2. Curves

Chaikin’s algorithm

According to Chaikin’s paradigm, a smooth curve can be generated using
the corner cutting scheme. It works in the following way. For a given control
polygon {P0, ..., Pn}, we create a new one by generating a sequence of the
following control points {Q0, R0, Q1, R1, ..., Qn−1, Rn−1}, where Qi and Ri are
computed according to the formulae:

{

Qi = 3
4Pi + 1

4Pi+1,

Ri = 1
4Pi + 3

4Pi+1.
(2.9)

In Fig. 2.7 the result of Chaikin’s algorithm is presented. Observe that every
segment of the polygon is divided into three parts in the ratio 1

4 : 1
2 : 1

4 . Two
new points are placed on the segment and corner points are eliminated.

Fig. 2.7. Chaikin’s cutting corner algorithm. Iterations: 0, 1, 2, 3.

After a few iterations one obtains a visually smooth resulting curve. Chaikin’s
method provides a very simple and elegant drawing mechanism. It is interest-
ing that using a subdivision with different parameters from coefficients 3

4 and
1
4 leads to limit curves that are not necessarily smooth. If we take in Chaikin’s
algorithm subdivision parameters 4

7 and 3
7 then we obtain a continuous, but

not smooth, limit curve, as in Fig. 2.8.

Fig. 2.8. Cutting corner algorithm with parameters 4

7
and 3

7
. Iterations: 0, 1, 2, 3.

2.4. Subdivision curves 25

The de Casteljau algorithm

We demonstrate the performance of the de Casteljau algorithm in the case
of a quadratic Bézier curve. The algorithm enables us to obtain a quadratic
Bézier curve in a pure geometrical way. So start with three given control points
P0, P1, P2 and perform the following construction, illustrated in Fig. 2.9:

• fix a parameter t ∈ [0, 1],

• divide the segment P0P1 in the ratio (1 − t) : t and put on the segment
the point P 1

1 such that

P 1
1 = (1 − t)P0 + tP1,

• divide the segment P1P2 in the same ratio (1 − t) : t and put on the
segment the point P 1

2 such that

P 1
2 = (1 − t)P1 + tP2,

• divide the segment P 1
1 P 1

2 in the same ratio (1 − t) : t and put on the
segment the point P 2

2 such that

P 2
2 = (1 − t)P 1

1 + tP 1
2 ,

• define the point Q(t) = P 2
2 .

After easy computations we get:

Q(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2, t ∈ [0, 1], (2.10)

that means that we obtained a parabolic curve, a quadratic Bézier curve
parametrized by t ∈ [0, 1]. Observe, that using an analytical approach we
have obtained earlier the same expression for Q(t). Then, one can see that
the point P 2

2 divides the curve Q(t) into two parts: the left one with control
points P0, P

1
1 , P 2

2 and the right one with control points P 2
2 , P 1

2 , P2. Further,
every part is a Bézier curve with its control points. The possibility to divide

26 Chapter 2. Curves

Fig. 2.9. The de Casteljau algorithm.

any Bézier curve into parts being also Bézier curves is very important in appli-
cations. That feature enables us to model effectively any 2D contour locally
because changes can be done only on the parts of the contour where they are
needed. Similar construction as above can be repeated in the case of a cubic
Bézier curve. We shall leave that for the reader as an excercise.

Next, something should be said about joining Bézier curves presented in
Fig. 2.10. It is clear that if the last control point of the first curve covers
the first control point of the second curve, i.e. P2 = R0, then we obtain
only continuous joining of the both curves. In such a situation a cusp can
appear. To avoid a cusp and get smooth joining of the curves, some additional
geometrical assumptions should be satisfied. Namely, three following points
– preceeded the last, the last one of the first curve and the first, the second
one of the second curve should be collinear. That means that the points P1,
P2 = R0, R1 should form a linear segment.

All the nice properties mentioned above of Bézier curves are very useful in
modelling of 2D contours. In Fig. 2.11 a heart and a flower modelled respec-
tively with the help of 4 quadratic and 8 cubic Bézier curves are presented.

Now consider a special case of subdivision with t = 1
2 . That subdivision

is called the midpoint strategy. The dependency between control points of
every part of a quadratic Bézier curve and its control points P0, P1, P2 can be
expressed with the help of subdivision matrices L and R in the following way:

2.4. Subdivision curves 27

(a) (b)

Fig. 2.10. Joining of two Bézier curves: (a) continuous, (b) smooth.

P0

P 1
1

P 2
2

 = L ·

P0

P1

P2

 ,

P 2
2

P 1
2

P2

 = R ·

P0

P1

P2

 ,

where

L =

1 0 0
1/2 1/2 0
1/4 1/2 1/4

 , R =

1/4 1/2 1/4
0 1/2 1/2
0 0 1

 .

Treating points P0, P 1
1 , P 2

2 as the new input points P0, P1, P2 and multiplying
them by matrices L and R one can obtain new points of the new left and the
right parts. The same can be applied to points P 2

2 , P 1
2 , P2. Repeating the de-

scribed process, after several iterations, one can obtain a good approximation
of the quadratic Bézier curve, as presented in Fig. 2.12.

Similarly, as above, two subdivision matrices for a cubic Bézier curve can
be expressed as follows:

L =

1 0 0 0
1/2 1/2 0 0
1/4 1/2 1/4 0
1/8 3/8 3/8 1/8

, R =

1/8 3/8 3/8 1/8
0 1/4 1/2 1/4
0 0 1/2 1/2
0 0 0 1

.

28 Chapter 2. Curves

Fig. 2.11. A heart and a flower modelled with the help of Bézier curves.

Fig. 2.12. Approximation of a quadratic Bézier curve obtained via subdivision. It-
erations: 1, 3, 4.

Observe, that using two matrices L and R one can generate iteratively Bézier
curves via the subdivision method. But if we take into consideration the
following subdivision matrices:

L =

3/4 1/4 0
1/4 3/4 0
0 3/4 1/4

 , R =

1/4 3/4 0
0 3/4 1/4
0 1/4 3/4

 ,

then one can generate iteratively Chaikin’s curve that is equivalent to the so-
called B-spline quadratic curve presented in Fig. 2.13. None of the control
points lie on Chaikin’s curve in opposite to Bézier curve which passes through
P0, P2, i.e. the first and the last control points.

2.4. Subdivision curves 29

Fig. 2.13. Approximation of a B-spline curve obtained via subdivision. Iterations:
1, 3, 4.

Chapter 3

Patches

Patches are used in computer graphics and computer aided design to model
surfaces of 3D graphical objects. They are used to model cars, planes, build-
ings, virtual reality in computer games and many others. Patches are natural
generalization of curves. Some techniques known for curves can be easily ex-
tended to patches. Especially Bézier patches and some patches obtained via
subdivision techniques can be treated as a collection of curves lying on the
patches. Those patches are easily obtained using the so-called tensor product
of curves. Very useful surfaces such as extruded, ruled, swept and surfaces
of revolution can be constructed with the help of the so-called generating
functions. Further, more detailed, information about patches and their repre-
sentations can be found in [8, 12, 27, 29].

3.1 Surfaces as functions

Surfaces can be defined explicitly as z = f(x, y), where f : R
2 → R

and (x, y) ∈ D ⊂ R
2. If they are defined as a subset of R

3 of the form
{(x, y, z) : F (x, y, z) = 0}, where F : R

3 → R is some function, then they are
called implicit surfaces. Further, parametric surfaces can be expressed as func-
tions of two variables, for instance in the form Q(u, v) = (x(u, v), y(u, v), z(u, v)),
for (u, v) belonging to some subset of R

2. Below we will give some examples
of surfaces.

Example 3.1. The explicit surface z = sin(x) cos(y) for (x, y) ∈ D, where
D = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} is presented in Fig. 3.1(a).

Example 3.2. The implicit surfaces of the form ax+by+cz+d = 0 for constants
a, b, c, d ∈ R are planes.

3.2. Bézier patches 31

Example 3.3. The implicit surface x2 + y2 + z2 − 1 = 0 is the unit sphere with
the centre at the origin.

Example 3.4. The parametric surface Q(u, v) = (u − v, u + v, u2 − v2) for
(u, v) ∈ R

2, resembling a saddle, is illustrated in Fig. 3.1(b).

(a) (b)

Fig. 3.1. Surfaces: (a) explicit, (b) parametric.

Further examples of many different surfaces can be found in the Internet at
http://www.javaview.de/demo/index.html. There is a huge collection of sur-
faces that are presented as JavaView applets. Those surfaces can be rotated,
translated, scaled and precisely investigated. Among them, one can find clas-
sical 3D objects as ellipsoid, hyperboloid, paraboloid, cylinder. Also strange
graphical objects as one-sided surface – Moebius strip and zero volume Klein
bottle are presented. Here, it should be mentioned that JavaView is a nice
3D geometry viewer and a mathematical visualization software that allows
a display of 3D geometries and interactive geometry experiments embedded
in any HTML document in the Internet. That software initialized by Kon-
rad Polthier from TU-Berlin was selected for the presentation at the Third
European Congress of Mathematicians in Barcelona in 2000.

3.2 Bézier patches

Bézier patches are obtained as a family of Bézier curves parametrized in
two perpendicular directions denoted by u and v, respectively. The analytical
formula for Bézier patches can be easily presented using the so-called Bernstein
polynomials. So, let us define the following functions:

32 Chapter 3. Patches

Bn
i (t) =

{

n!
(n−i)!i!(1 − t)n−iti, for i = 0, 1, 2, . . . , n,

0, otherwise,

for t ∈ [0, 1].

Bn
i (t) for i = 0, 1, 2, . . . , n are called Bernstein polynomials or Bernstein basis

functions of degree n. The most important in practice are two Bernstein basis:
B2

i for i = 0, 1, 2 and B3
i for i = 0, 1, 2, 3. The basis B2

i for i = 0, 1, 2 consists
of three functions (1 − t)2, 2(1 − t)t, t2, whereas the basis B3

i for i = 0, 1, 2, 3
contains four functions (1 − t)3, 3(1 − t)2t, 3(1 − t)t2, t3. They are used to
define bi-quadratic and bi-cubic Bézier patches, respectively. Here, it should
be pointed out that many nice properties of Bézier curves have Bézier patches,
too. Namely, convex hull and affine invariance property. Bézier patches can
also be divided into subpatches using the de Casteljau algorithm. However,
joining Bézier patches smoothly is much more complicated in comparison to
curves.

Bi-quadratic Bézier patches

Bi-quadratic Bézier patches are characterized by 9 control points: Pij for
i = 0, 1, 2, j = 0, 1, 2 in R

3. They are enumerated as shown in Fig. 3.2. The
analytical formula for a bi-quadratic Bézier patch is as follows:

Q(u, v) =

2
∑

i=0

2
∑

j=0

PijB
2
i (u)B2

i (v), u, v ∈ [0, 1]. (3.1)

Fig. 3.2. Control points array of a quadratic patch.

In Fig. 3.3(a) an example of a bi-quadratic Bézier patch is presented.

3.2. Bézier patches 33

Bi-cubic Bézier patches

Bi-cubic Bézier patches are characterized by 16 control points: Pij , i =
0, . . . , 3, j = 0, . . . , 3 in R

3. The analytical formula for a cubic Bézier patch is
as follows:

Q(u, v) =

3
∑

i=0

3
∑

j=0

PijB
3
i (u)B3

i (v), u, v ∈ [0, 1]. (3.2)

In Fig. 3.3(b) an example of a bi-cubic Bézier patch is presented.

(a) (b)

Fig. 3.3. Bézier patches: (a) bi-quadratic, (b) bi-cubic.

In Fig. 3.4 shapes of the well-known teapot from Utah and a rabbit modelled
with the help of Bézier patches are presented.

(a) (b)

Fig. 3.4. Examples: (a) teapot, (b) rabbit.

34 Chapter 3. Patches

3.3 Special surface constructions

In CAD systems surfaces that are obtained via some transformations ap-
plied to the so-called generating functions are widely used. Most often are
used:

• extruded surfaces,

• ruled surfaces,

• swept surfaces,

• surfaces of revolution.

An extruded surface can be obtained when a spatial generating function
f(s) is translated in the given direction. A ruled surface is formed by using
two spatial curves f(s) and g(s) when points on each curve corresponding to
the parameter s are joint by a line. Swept surfaces are obtained by translating
a generating function f(s) along a trajectory curve g(s). Swept surfaces are
more general than the extruded ones. Surfaces of revolution are obtained by
rotating a generating curve f(s) about a fixed axis. It should be assumed
that both the curve and the axis lie in one plane and the curve has no self-
intersections. Those assumptions guarantee to obtain surfaces not having self-
intersections. Surfaces of revolution are used to model symmetrical objects,
e.g. vases, bottles. In Fig. 3.5 some examples of special surfaces are presented.

(a) (b) (c)

Fig. 3.5. Surfaces: (a) extruded, (b) ruled, (c) swept.

3.4 Subdivision patches

Subdivision is a very simple and efficient method of obtaining smooth
surface via cutting corner algorithm applied to some initial mesh. A great

3.4. Subdivision patches 35

number of subdivision algorithms generating patches is known, e.g. Doo-Sabin
(1978), Catmull-Clark (1978), Loop (1987), Kobbelt (2000). Some of them are
extended to meshes of arbitrary topology. Subdivision algorithms are widely
described in [8, 27, 29]. While using subdivision, it is possible to generate
complicated 3D graphical objects. That method was first used commercially
by Pixar Studio in his 3.5 min animation ”Geri’s Game” which was awarded
by an Oscar in the category of short computer animations in 1997. Next, that
effective method was used by Disney/Pixar in productions of ”Bug’s Life” and
”Toy Story 2” for the creation of almost all the elements of virtual film world.
Subdivision is implemented in many 3D modelers such as; Maya, POV Ray,
etc.

The de Casteljau algorithm for Bézier patches

The de Casteljau algorithm can be easily extended from curves to Bézier
patches. In the case of Bézier patch Q(u, v) the algorithm is applied first in
the u direction and then in v direction, or conversely. It should be noticed
that fixing the parameter u = u0 or v = v0 one obtains a Bézier curve Q(u0, v)
or Q(u, v0) lying on the patch, respectively. So the de Casteljau algorithm
can be applied to both curves separately. As a result one obtains the point
Q(u0, v0) that divides the patch into four Bézier subpatches.

Bézier patches as being tensor product Bézier curves, can be obtained using
4 subdivision matrices:

L ⊗ L,L ⊗ R,R ⊗ L,R ⊗ R, (3.3)

where ⊗ denotes the so-called tensor product of matrices, that can be com-
puted as in Example 3.5.

Example 3.5. Take the following matrices

A =

[

1 0
1 2

]

, B =

[

2 1
0 1

]

.

Then the tensor product A ⊗ B is equal to:

A ⊗ B =

1

(

2 1
0 1

)

0

(

2 1
0 1

)

1

(

2 1
0 1

)

2

(

2 1
0 1

)

=

2 1 0 0
0 1 0 0
2 1 4 2
0 1 0 2

.

36 Chapter 3. Patches

It is worth to mention that in general A ⊗ B 6= B ⊗ A.

Subdivision matrices for quadratic Bézier patches have dimensions 9 × 9,
whereas for cubic Bézier ones 16×16. We leave the reader computing them as
an easy exercise. Those matrices are also the Markov ones. So, their elements
are summed up in rows to 1. Multiplication of control points matrix by sub-
division matrices produces new control points characterizing four subpatches.
Then the new control points of every subpatch are transformed iteratively by
4 subdivision matrices. After several iterations one can obtain a good approx-
imation of a Bézier patch. In Fig. 3.6 an example of a bi-quadratic Bézier
patch obtained via subdivision matrices is presented.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

Fig. 3.6. Bi-quadratic Bézier patch obtained via subdivision. Iterations: 0, 2, 4.

If we compute 4 tensor products L⊗L,L⊗R,R⊗L,R⊗R, where L and
R are subdivision matrices for Chaikin’s curve, then we obtain subdivision
matrices for generation of a bi-quadratic Chaikin’s patch (equivalent to a bi-
quadratic B-spline patch) shown in Fig. 3.7. Observe, that none of control
points lie on the patch.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

Fig. 3.7. Bi-quadratic Chaikin patch obtained via subdivision. Iterations: 0, 2, 4.

Catmul-Clark subdivision

Catmull-Clark subdivision operates on meshes of arbitrary topology. The
refining algorithm works as follows.

3.4. Subdivision patches 37

• Take a mesh of control points with an arbitrary topology. Basing on
that mesh create three kinds of new points.

– Face points denoted by F that are computed as the average of all
the points defining a face.

– Edge points denoted by E that are computed as the average of the
original points defining the edge and the new face points for the
faces that are adjacent to the edge.

– Vertex points defined by V that are computed as the average of Q,
2R and n−3

3 S, where Q is the average of the new face points adjacent
to the original face point, R is the average of the midpoints of all
original edges incident on the original vertex point, S is the original
vertex point, and n is the number of points defining the face.

• Next, the mesh is reconnected as follows:

– Each new face point is connected to the new edge points of the
edges defining the original face.

– Each new vertex point is connected to the new edge points of all
the original edge midpoints incident on the original vertex point.

The above algorithm, for which a one round of performance illustrated
on an example of a diamond-like mesh is presented in Fig. 3.8, produces re-
fined mesh having four edges. It is known that the Catmull-Clark subdivision
generates surfaces that are smooth almost everywhere excluding the so-called
extraordinary points. In Fig. 3.9 the result of performing the Catmull-Clark
algorithm starting from a box is presented. That algorithm is very efficient and
quickly convergent producing a good approximation of the limit surface, usu-
ally after 4-5 iterations. Compare the result generated by the Catmull-Clark
subdivision with a simple midpoint subdivision presented in Fig. 3.10. Mid-
point subdivision does not produce smooth limit surface and its convergence
is lower in comparison to the Catmull-Clark subdivision.

To create a more complicated subdivision surface, we construct a coarse
polygon mesh that approximates the shape of the desired surface. Then the
subdivision algorithm recursively refines the mesh producing a sequence of
finer meshes which converges to a smooth limit surface. Subdivision tech-
niques are widely used by movie studios, as Pixar, to produce high quality 3D

elements of virtual worlds in their productions.

38 Chapter 3. Patches

(a)

V

E E

EE

F

F

F

F

(b)

Fig. 3.8. Mesh: (a) initial, (b) after performing one round of Catmull-Clark subdi-
vision.

Fig. 3.9. Catmull-Clark subdivision applied to box. Iterations: 0, 1, 2, 3.

3.4. Subdivision patches 39

Fig. 3.10. Midpoint subdivision applied to box. Iterations, 0, 1, 2, 3, 4, 5.

Chapter 4

Fractals

Fractals are geometrical objects that cannot be expressed with the help
of functions because of their complexity. Such objects as clounds, mountains,
seeshores cannot be desribed using the classical euklidean geometry. Fractals
have been discovered by Mandelbrot in 1970s [13].

4.1 Properties of fractals

Fractals are characterized by the following properties:

• Self-similarity,

• Non-integer dimension,

• Can be generated recursively.

Self-similarity means that the whole object is similar to its parts. Non-integer
dimension means that the dependency between the area of the planar object
and its periphery are not proportional to power of 2 as in the case of classical
objects, for example a square or a circle. Denote by P and l an area and a
periphery of a given object in the plane, respectively. Then, for a square with
a side lenght a we have:

{

P = a2,

l = 4a.
(4.1)

So, the dependency between P and l is the following:

4.2. Fractal types 41

P = (
1

16
)l2.

Similarly, for a circle with a radius r we have:

{

P = πr2,

l = 2πr,
(4.2)

and the dependency between P and l is expressed as:

P = (
1

4π
)l2.

From the above simple computations it is easily seen that graphical objects in
the plane are two dimensional objects. Fractals behave in a different way. So,
the notion of non-integer dimensionality has been needed to understand the
difference between fractals and classical objects in the plane. In spite of very
complicated fractal structures, they can be obtained with a help of a simple
set of rules that are used repeteadly to produce fractals. So, recurrencies are
typically used to generate fractals.

4.2 Fractal types

There are many different types of fractals considered in literature [1, 2, 7,
16], but one can distinguish seven main classes of fractals:

1. Classical fractals, which come from standard geometry. They can be
generated with the help of iteration procedure applied to some initial
set. They have been investigated at the end of XIX century and at
the begining of XX century. The best known examples are: Cantor
set (1883), Koch curve (1904), Sierpinski gasket (1915), Menger sponge
(1926).

2. Fractals generated via iterations of polynomials with complex variables.
The famous examples are: Julia set (1918) and Mandelbrot set (1980).

3. Fractals generated with the help of Iterated Function Systems IFS. They
are obtained as the limit of iteration process. They were discovered by
Barnsley (1988).

4. Fractals generated on the base of nonlinear IFS. Fractal flames are their
good examples. They were discovered by Draves in 1992.

42 Chapter 4. Fractals

5. Fractals as strange attractors, which form complicated trajectories of
dynamical systems. They are observed in many physical and numerical
experiments. Heron’s attractor (1969) is a good example of that class.

6. Fractals generated with the help of the so-called Brown’s motions. As
a result very interesting fractal structures are obtained that resemble
clounds, fire, non-standard textures.

7. Fractals obtained with the help of L-systems, also called as Lindenmayer
systems. They were discovered in 1968. L-system represents a formal
grammar, that applied to some initial set gives as a result nice looking
fractal plants.

In Fig. 4.1 many different types of fractals are presented. They can be ob-
tained with the help of freeware software such as FractInt, Fractal Explorer,
Apophysis, Chaosscope easily found in the Internet.

Futher, we limit our considerations only to fractals generated with the help
of the so-called Iterated Functions Systems.

4.3 Iterated Functions System

A transformation w : R
2 7→ R

2 in the following form:

{

x′ = ax + by + e,

y′ = cx + dy + f,
(4.3)

where a, b, c, d, e, f ∈ R, is called the affine transformation. Parameters a, d

are responsible for scalings according to axes OX, OY ; b, c for rotations and
shears; e, f for translations with respect to axes OX and OY , respectively.

The transformation w can be represented in the following equivalent matrix
form:

[

x′, y′
]

= [x, y] ·
[

a c

b d

]

+ [e, f] , (4.4)

or by using homogeneous coordinates w can be further expressed as:

[

x′, y′, 1
]

= [x, y, 1] · F, (4.5)

where

4.3. Iterated Functions System 43

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.1. Fractal examples: Koch snow-flake (a), Menger sponge (b), Julia set (c),
Mandelbrot set (d), Barnsley fern (e), fractal flame (f), strange attractor
(g), plasma fractal (h), plant created via L-system (i).

F =

a c 0
b d 0
e f 1

 .

Of course, any affine transformation in R
2 is chacterized uniquely by the vector

of six parameters v = [a, b, c, d, e, f]. In the similar way as in the plane, one
can define the affine trasformation in the space. Any affine transformation in
R

3 is defined by the matrix of dimensions 4 × 4 or the equivalent vector of
parameters containing 12 coefficients.

Especially important, in context of fractals, are affine transformations that

44 Chapter 4. Fractals

diminish distance, i.e. the so-called contractions. A set of n affine contractive
transformations {w1, w2, ..., wn} is called Iterated Functions System, in short
IFS. IFSs are used in deterministic or random algorithms to generate fractals.
It should be said that to measure distances between sets in the plane, classical
Euclidean metric cannot be used. Instead of it, the so-called Hutchinson metric
is applied. Having defined Hutchinson metric it is possible to use the well-
known Fixed Point Banach theorem that ensures the existence of the limit
when passing to infinity in an iteration process. That limit, called attractor
or a fractal, is the unique one and is not dependent on a starting set. More
detailed discussion about that subject can be found in [1, 2, 13].

4.4 Deterministic fractal algorithm

In Fig. 4.2 the performance of the deterministic fractal algorithm is pre-
sented. An arbitrary closed and constrained set X ⊂ R

2 or in R
3 is trans-

formed via IFS, which creates reduced copies of the set X and places them
according to the performance of every transformation from IFS. Note, that at
every step of iteration in deterministic fractal algorithm all transformations
are used. The obtained result is repeated over and over again in a loop trans-
formed via IFS. Theoretically, that process is repeated an infinite number of
times. As a result, an attractor of IFS is generated. In practice, the perfor-
mance of several up to a dozen or so iterations is enough to obtain a good
quality of the attractor approximation for the given IFS.

X

X

X

IFS

X

Fig. 4.2. Deterministic fractal generation algorithm.

4.5 Random fractal algorithm

Consider IFS consisting of n affine contractive transformations w1,w2,. . .,wn.
In the case of deterministic algorithm at every iteration all transformations

4.5. Random fractal algorithm 45

are used. It is possible to introduce a probabilistic model, in which at every
iteration only one transformation is used. That transformation is drawn, as
the one from IFS, with a fixed probability 0 < pj < 1, j = 1, . . . , n, such
that

∑n
j=1 pj = 1. Additionally, transformations in the probabilistic model

transform points into points, not sets into sets as in the deterministic model.
Usually, an equal probability is taken for all transformations from the IFS set,
although a better solution is to choose probability according to the following
formula:

pi =
|det Ai|

∑n
i=1 |det Ai|

, (4.6)

where

Ai =

[

ai ci

bi di

]

, i = 1, ..., n.

In the matrix Ai, elements ai, di are scaling parameters and bi, ci are param-
eters responsible for rotation and shears. Such a choice of probabilities assure
uniform fractal coverage by points generated during the random process. The
starting point can be an arbitrary one from the set X. If the starting point
belongs to the fractal, then all further points generated during the random
process belong to the fractal. In the opposite case, in which the starting point
does not belong to the fractal, some finite number of points do not belong to
the fractal, either. So then, usually several intial points from many thousands
generated by random algorithm are thrown out to get better quality of gener-
ated fractals. In Fig. 4.3 the performance of the random fractal algorithm is
presented.

For both algorithms, deterministic and random ones, from iteration to itera-
tion one obtains better and better approximation of a generated fractal. That
iteration process is stopped after a finite number of iterations. Usually, in
the case of random algorithm several thousands of iterations are needed. The
random algorithm is stopped when changes in the shape of the fractal are not
notizable with respect to the finite resolution of computer devices used to its
visualization and because of the limited recognition possibilities of details by
human sight.

46 Chapter 4. Fractals

Random
choice

...

w1

w2

wn

IFS

(x, y) (x′, y′)

Fig. 4.3. Random fractal algorithm.

4.6 Examples of IFS generated fractals

Begin with the standard Sierpinski triangle. Observe, that initial triangle
T shown in Fig. 4.4a can be covered by three smaller triangles 1, 2, 3 that are
similar to T . So, similarity of T to its parts can be described using three
following transformations:

w1(x, y) := (1
2x, 1

2y), w2(x, y) := (1
2x + 1

2 , 1
2y), w3(x, y) := (1

2x + 1
4 , 1

2y + 1
2).

(4.7)

These transformations scale an input by the factor 1
2 . Additionally, w2 trans-

lates by the vector
[

1
2 , 0

]

, whereas w3 by the vector
[

1
4 , 1

2

]

. It is easily seen
that those trasformations are contractive, so then they determine IFS that
can be used to generate the fractal – Sierpinski triangle (Fig. 4.4b) – using
deterministic or random fractal algorithm.

(a) (b)

Fig. 4.4. Self-similarity of traingle T (a) and Sierpinski triangle (b).

4.7. Subdivision and fractals 47

The next fractal example – Koch curve is presented in Fig. 4.5. Koch curve
arrises as the result of the performance of 4 affine contractive transformations.
Each of them diminishes the initial segment by scale factor 1

3 producing 4
smaller copies of that segment. Next, the first transformation places the first
copy on the left-hand side of the initial segment, the second transformation
translates the second copy by vector [13 , 0] to the right and rotates it by an-
gle 60◦ in the anticlockwise direction, the third transformation translates the
third copy by vector [23 , 0] to the right and rotates it by angle 120◦ in the an-
ticlockwise direction, whereas the forth transformation places the fourth copy
on the right-hand side of the initial segment. Formally, four transformations
defining IFS have the following form:

w1 = [1/3, 0, 0, 1/3, 0, 0] , w2 =
[

1
/

6,−
√

3
/

6,
√

3
/

6,1/6, 1/3, 0
]

,

w3 =
[

−1/6,
√

3
/

6,
√

3
/

6,1/6, 2/3, 0
]

, w4 = [1/3, 0, 0, 1/3, 2/3, 0]

Fig. 4.5. Koch curve. Iterations: 1,2,5.

4.7 Subdivision and fractals

In this section we will show a suprising connection between subdivision
and fractals. Namely, any curve or patch obtained via subdivision can be
generated in a fractal way. For curves IFS consist of two transformations,
whereas for patches consist of four transformations.

For example, IFS generating a quadratic Bézier curve has the following
form:

IFS =
{

P−1 · L · P,P−1 · R · P
}

,

where

L =

1 0 0
1/2 1/2 0
1/4 1/2 1/4

 , R =

1/4 1/2 1/4
0 1/2 1/2
0 0 1

 , P =

x0 y0 1
x1 y1 1
x2 y2 1

 ,

48 Chapter 4. Fractals

L, R are subdivision matrices, P is the matrix of control points and P−1 is
the inverse matrix to P .

In Fig. 4.6 a process of fractal generation of a quadratic Bézier curve is
presented. The deterministic fractal algorithm starting from a triangle was
used.

Fig. 4.6. Quadratic Bézier curve generated fractally. Iterations: 1,2,8.

For a bi-quadratic Bézier patch IFS has the form, as follows:

IFS =
{

P−1 · L ⊗ L · P,P−1L ⊗ ·R · P,P−1 · R ⊗ L · P,P−1R ⊗ ·R · P
}

,

where L, R are subdivision matrices as above, ⊗ denotes tensor product, P is
the matrix of control points completed by arbitrary elements to create some
non-singular quadratic matrix of dimensions 9 × 9 and P−1 is the inverse
matrix to P .

The fact that subdivision may produce smooth curves, patches and frac-
tals is very important. That is why the limit graphical objects obtained via
subdivision inherit advantages of both functional and fractal approaches. Frac-
tals, in spite of their complexity, provide simple algorithms to generate them,
whereas functions with control points provide a very easy way to maniputate
their shapes. Those two features are required from methods used in computer
graphics and computer aided design. So, without any doubt, popularity of
subdivision methods will be steadily growing up in the future.

Chapter 5

Visual photorealism

In earlier chapters only aspects related to the geometry have been consid-
ered. But they are not sufficient to obtain realistic appearance of 3D objects
and 3D scenes. Their severe geometry should be enriched by colours, lights
and textures. Well rendered photorealistic 3D scene, as in Fig. 5.1, should be
compared to a good photo. So, it is easier for us to obtain good photorealistic
results if we know the basic rules of photography.

Fig. 5.1. Photorealistic rendering.

50 Chapter 5. Visual photorealism

5.1 Light

Light in computer graphics is not only a light source, but also a shading
model and a few other parameters which will be described in this section. The
easy way to shade an object is by using a flat shading or Gouraund shading
model which is replaced by a better and more realistic Phong lighting model.
The Gouraund model assumes that 3D object is represented by polygons and
the value of lighting is linked to verticles of all the object’s polygons. In
this model the object which should be smooth will be sharp, because the
most lighting point can be only on one of the polygon’s verticles. If the
object is a sphere, the edges of polygons will be well marked. This model
computes normals only for polygon’s verticles and edges are shaded using
a linear interpolation. Every edge creates a gradient if values of connected
vertices will be different. This kind of problem solves the Phong lighting model,
which is slower but creates much better effects for concave and convex objects.
In this case, the difference between Gouraund and Phong models is that Phong
computes all the needed normals for each polygon, not only polygon’s vertices.
By using this method the brightest point can also be placed in the middle or
any other place of the polygon, not only on one of the vertices. The Phong
lighting model creates a smooth transition between polygons so every sphere
is smooth, too. The lighting model includes also reflection and refraction of
light, but this kind of effects will be described in section 5.2 because they have
a connection with materials. Nowadays, the best computer graphics programs
use Phong or more complicated Blinn shader.

Next, if the lighting model is chosen it has to create a light source and
specify shadows that it makes. Basic light types are Point Lights, which emit
light in every direction like in Fig. 5.2. Often Spot Lights type are used to
minimize the area of lighting. The Spot Light looks like a cone in Fig. 5.3,
that is getting larger with the distance gained between the light source and
the object (target). Cylindrical Light from Fig. 5.4 is one of the alternatives
for the Spot Light, because the field of lighting is stationary, no matter how
far the light source (from the object) is. Knowledge on the mentioned types
of lights is sufficient to create a photorealistic scene. It should be remembered
to set more than one, but not too many light sources, because rendering will
take longer and the obtained effects will probably be worse. For the best
results in the basic scene it two or three Point or Spot Lights should be used.
The majority of light sources have such properties that enable their gradual
disappearance with distance and smooth transition between the point with
good lighting and the one badly lit. Shadows are created with lights, so the

5.2. Materials 51

properties are set in lights. Shadows can have sharp or smooth contours like
it is shown in Fig. 5.5, and they are dependend on the object’s material which
works as a filter. In this case a good example to describe is material like glass
for which we should take reflection into account. That will be described in
the next section. The whole scene will look differently depending on the light
declaration, choices of the best shading, the light intensity and colour. More
red and yellow lights in the scene create warm lighting, which is natural for a
bulb and sun-light. More blue colour in light imitates a fluorescent lamp and
photo-flash lamp as it is shown in Fig. 5.6.

Fig. 5.2. Point Light.

The colour of light depends on the colour and material of the object in
the scene. The effect of the so-called bouncing light will be described in the
section about rendering. That effect depends on the kind of the renderer used
(Mental Ray, V-Ray, etc.) and its properties.

5.2 Materials

Complex programs for computer graphics possess a wide range of possibil-
ities to create any material for every object in the scene. At first, the type
of lighting should be chosen, next one of few kinds of interactions with the
object must be set. The most basic, but the least photorealistic is the Am-
bient Light (environment light). Ambient values should be small comparing

52 Chapter 5. Visual photorealism

Fig. 5.3. Spot Light.

to other settings. The second parameter is Diffuse which creates the object
lighting and the colour of material from which it is made of. The value should
be always higher than Ambient colour, but if the object absorbs light, Dif-
fuse value should be small and vice versa. Next, the parameter related to the
distracted reflection is Specular. It fixes how large the reflection area on ma-
terial should be. The area of reflection and its focus are getting smaller with
the Specular value. For example, an orange fruit has a small Specular value
because it has soft, porous and irregular skin. If the object should look like
an apple then the Specular and Diffuse values are higher because this fruit is
smooth and hard. Soft and hard materials are presented in Fig. 5.7. For glass
and polished metals Diffuse and Specular values should be as large as possible.
Other used option is Self Illumination which decides about self-contained light
of the object. In this case the object becomes a source of light, but computer
graphics programs decide if other objects treat that object as the light source.

If the object is a polished metal, then the material should have mirror
specular (Reflection). This kind of object in reflection parameters should have
two values. One of them represents perpendicular reflection and the second
one border reflection. The second value should be smaller than the first one. If
the object is characterized by a perfect reflection material, then the colour of
material is invisible and the object imitates a mirror. Naturally, larger angle
between the object and the observer gives less reflection. Glass and water
are one of the most difficult materials to create. Glass is not a material with

5.3. Textures 53

Fig. 5.4. Cylindrical Light.

only low opacity, it has the parameter called the Index of Refraction (IOR).
It means how the object lying behind glass is deformed, physically it means
how glass refracts a ray of light. Deformation depends on IOR, shapes and
bumps of the material (there will be more informations about it in section
5.3). The IOR is the characteristic physical parameter e.g. for glass it is equal
to 1.52, for crown (silicon-potassium glass) – 1.66, for flint (silicon-lead glass),
for water – 1.33. The second parameter of real glass material is a reflection
which is, presented according to the angle of look, exactly the same as the
refraction is. Fig. 5.8 presents glass and chrome balls. The most showy effects
in glass creation produce focus and diffuse rays of light which pass through
the glass object. That effect is called Caustics and it depends on material,
light and mostly on the renderer parameters. More details on that effect will
be presented in section 5.5.

5.3 Textures

Section describing textures could be a part of the section 5.2, because
textures also give a realistic appearance of material. Yet we decided to describe
them in a separate section to show how complicated the problem is.

Textures can simulate surface quality of a material. The process called
texturing places any 2D image on 3D object using shape information or user

54 Chapter 5. Visual photorealism

Fig. 5.5. Sharp and smooth shadows.

directives. By this technique a bicubic surface can simulate a part of the fabric
and a sphere can imitate, for example a stone. Moreover, the textured object
can be seen to be more complicated that it really is. Sometimes, for example
some real parts of a church building textured by painting artificial shadows
leads to exaggerated, fake effects. Using special textures, without any changes
in geometry of the object, its surface can look as the one with depressions and
grooves called Bumps, Wrinkles, etc. Texturing is much faster than geometry
modification, but objects like a sphere with Bumps will still have rounder
edges without any structure modification, as shown in Fig. 5.9. Technically,
textures create Bumps by changing discreetly direction of normal vectors of
surfaces. The process changes shading and lighting of the object, so human
perception takes Bumps like real irregular shape geometry. In rendering some
points of a shape are translated a little higher or lower in relation to their
original position. That makes this process fast.

Textures can be created in many ways. One of them uses mathematical de-
scription. Fractal structures perfectly imitate clouds, Perlin noise can greatly
simulate smoke. Other methods for realistic textures creation are based on
bitmaps prepared in any 2D computer graphics program. Coloured bitmaps

5.3. Textures 55

Fig. 5.6. Cold and warm light colours.

are used to cover objects. Similar bitmaps, but in grayscale with large contrast
can be applied to create Bumps like grooves, scratches and grain coarse. A
map of this kind is shown in Fig. 5.10. Parameters of Bumps tell us about the
difference in depth between white and black colours. If the Bump bitmap has
many white and black areas without smooth transition between them, then
the obtained texture will by very irregular with distortions. Gentle transition
between white and black regions makes textures smoother.

Usually, the best textures are photos where all their regions are correctly
and uniformly lighted. When using an image in the loop, its right edge should
be fitted to the left one, and the top edge should be matched to the bottom
one. The image can be multiplied, but if the number of multiplications is too
large, then a characteristic undesirable pattern appears. To avoid this effect,
the texture could be composed of two various size images, from which the
second should have low opacity and alpha channel to differentiate the first
image multiplications.

Making good-looking textures take a lot of time. For example, to create a
trousers texture it is needed to have two trousers photos, one taken from the
front and the second one from the back side without background. Next, using

56 Chapter 5. Visual photorealism

Fig. 5.7. Soft and hard material.

any 2D computer graphics program both photos should be joined creating one.
At the end opposite edges of the image must be matched like in Fig. 5.11.
Many textures can be created by this method. Computer graphics programs
often offer a tool which can be used to match automatically textures to objects.

Textures can be composed from several images having different properties.
This technique is used, e.g. in car texturing. In this case the texture consist
of varnish, mud and scratch images, where the last one can be also a Bump
map.

5.4 Camera

A camera in 3D graphics is not a visible object in the space. It declares
only the observer’s position. The camera is needed because it creates 2D

images of objects from the abstract 3D scene. An image can be the 3D one
only if it is projected from two projectors equiped with polarization filters
similar to the one presented in Fig. 5.12. The 3D image is visible using special
glasses with the same filters. This kind of image can be created using the same
two cameras located at a small distance between them (like human eyes). One
of the images is shown in Fig. 5.13. The observer to see the 3D image has
to look at it with crossed eyes. However, every process of creating an image
depends on hitting points on virtual screen located between objects and the
observer. This process will be described in details in section 5.5.

Virtual camera has many parameters, some of them have origin in pho-
tography. We start with orthogonal projection and perspective view. In mod-

5.4. Camera 57

Fig. 5.8. Glass and metal balls.

Fig. 5.9. Sphere with Moon texture.

elling, the most popular and comfortable is orthogonal projection shown in
Fig. 5.14(a), because the same object situated at different distances from the
observer has still the same size. This kind of view is used in draught and in
geometry. It is useful in engineering projects but is completely not photore-
alistic. Human eyes see objects in perspective (presented in Fig. 5.14(b)), so
then receive objects placed far as smaller than those which are closer to the
camera. Similarly, a perspective view is used in rendering. So the distance
between the observer and the objects situated in the scene is a very important
parameter.

The first of the parameters that comes from photography is the angle of
view. It is known that human angle of view is about 45◦ (which corresponds to
the focal length 50mm) but photography often uses lenses with different angles.
In photographic art standard lenses with human focal length are rarely used
because it is not the aim to show the world exactly as a man can see it. Wide-

58 Chapter 5. Visual photorealism

Fig. 5.10. Bump bitmap.

angled lenses are standard for compact cameras (28mm or less) which enable
to catch a wide area in short distances. In computer graphics the problem
with the distance between the camera and the object does not exists at all.
By changing the focal length of the virtual camera one can increase rendering
similarity to real photos. The use of various levels of focal length in static
images or animations can create different visual effects. Wide-angled lenses
break the geometry of huge objects. For example, the image of a building,
presented in Fig. 5.15, has rounded walls, and this effect is getting larger with
the increase of the lens angle. Extremal example delivers the fish-eye lens
which has even 220◦ (6mm) angle of view. It can be simulated by computer
graphics programs. Other example is a telephoto lens which has the small
angle varying from 28◦ down to even 2◦ which corresponds to 80-1200mm focal
length. Differences between two or more objects situated at large distances
will be more evident. For standard lenses and telephoto ones the foreground
is looking similar but the second plan looks differently – for standard lenses it
is wider than for the telephoto. Moreover, using telephoto lenses one can take
good quality photos from large distance.

In computer animation camera parameters can be changed, so physical
camera is getting closer to the first plan objects and the angle lens is getting
larger but animated objects look as still. In this action the background is
changing because it is getting wider without changing the foreground. This
kind of a trick can be used in computer graphics. The next effect creating

5.4. Camera 59

Fig. 5.11. Jeans texture.

Fig. 5.12. Polarization circular filter.

more realistic renderings is the depth of the field. In real world a lens without
this effect does not exist. Even human eye cannot focus on two distant objects
simultaneously. This effect occurs when almost the same picture is rendered
a few times, more than 10 passes. The image quality is getting better while
the number of passes grows (12-36 is enough). Other optional effect creates
coloured orbs on the rendered image. It is lens effect and it appears in a real
picture when any strong source of light, like the sun or even large power head-
light, is placed on the boundary of the visible area, exactly like in Fig. 5.16.
Not always this effect makes the image more realistic. Usually, it is better to
ignore the lens effect by keeping the observer focused on the scene elements.
In computer graphics programs the parameter orbs can be enabled or reduced.

60 Chapter 5. Visual photorealism

Fig. 5.13. Cross-eye rendering.

In computer graphics placing a camera in the scene is realized with the
help of the special kind of objects. In some programs there are two different
cameras. The first one is the free camera which can be easily rotated and
translated but its dynamic focal and target points are difficult to set. The
second one is the target camera with look-at point as the part of the object.
The target point can be translated independently on the camera and this point
can be used as the focal point. To translate this object, the camera and the
camera target should be selected. That is the only weakness of this kind of
the camera object.

5.5 Rendering

Rendering is a complex process which creates 2D image of the 3D abstract
space of the scene. To start this process, except for objects creation, the scene
must contain at least one light source and a camera. The location of the camera
decides what objects will appear on the rendered image. The location of the
light and the type of object materials decide whether the object will be visible
or not on the rendered image. There are two methods of rendering. The first
and longer one with special effects, like reflection and refraction, is Raytracing.
The second one, for a long time used in computer games, because of its speed,
is Radiosity. Further we will describe those two methods of rendering.

Algorithm of Raytracing is simple but it requires much time-consuming
computations. Nowadays, games are using this method because GPU on
graphic cards are much more powerful than a few years ago. Even 3D Stu-
dio MAX 2010 allows rendering in real time on viewports using this method.
Every pixel on a computer screen is tested by at least one ray, so time of
rendering grows with resolution of the image. The camera is located at the
point where the observer is placed and every ray starts its course from this

5.5. Rendering 61

(a)

(b)

Fig. 5.14. Camera in: (a) orthogonal projection, (b) perspective projection.

62 Chapter 5. Visual photorealism

Fig. 5.15. Photos shot using 55 and 18mm focal length lens.

point. Next, every ray must pass through his own pixel on virtual plane on
which the rendered image will be created.

Every pixel is passed by at least one ray. Next it is tested whether the
ray intersects the surface of any object in the scene. If yes, then the renderer
checks if the point of intersection is in light or in dark and computes the
colour of the pixel on the virtual plane basing on object material and light
colour. If the render is more complicated, then the ray can bounce from
the surface, if it reflects (metal) or passes through it, if the surface refracts
(glass). Raytracing can split computation between few CPUs or GPUs because
every pixel is computed separately which is the disadvantage of this rendering
method. Raytracing cannot render dispersion of light because it operates on
single rays which are not connected. Also, rendering is performed only for one
point of view, so if the observer changes his position, then all computations
must be performed from the very beginning.

Radiosity is a technique which works in a different way in comparison to
Raytracing. The disadvantage of Raytracing is the advantage of Radiosity.
Renderer computes dispersion of light so it cannot use rays. Computations
are performed for the whole scene, so it does not matter where the observer
is. Every object is split into patches and every patch has energy which de-
scribes how much light it absorbs and how much light it diffuses. Images
using this renderer are very fotorealistic because one light source can lighten
objects which are even beyond the lighting area. The light is bouncing from

5.5. Rendering 63

Fig. 5.16. Photo with natural lens effect.

the objects and is exchanging among them. If the object is red it absorbs
green and blue lights and bounce red, so other white object will look like red
too, if the object will be in the range of the reflex light. Not only material
of the object determines colour of this object in the rendered image. Radios-
ity cannot render refraction and reflection because this kind of effects needs
Raytracing. This is the difference between those two techniques, but most of
computer graphics programs can use both these methods at the same time.
So, Radiosity will compute realistic dispersion of light whereas Raytracing will
create refraction and reflection surfaces of objects.

There are a few other effects which help to create very photorealistic images
and animations. One of them is Caustics known also as Photon mapping,
shown in Fig. 5.17. This technique creates photorealistic glass and similar
material interactions with light. More complicated renders like Mental Ray or
V-Ray can create this effect by passing through an object thousands or even
millions photons to simulate refraction and dispersion of light. After long
computations a glass object creates focus and diffuses visible light rays that
are falling on other objects. This effect can perfectly imitate the focus light
after passing the lens.

64 Chapter 5. Visual photorealism

Fig. 5.17. Rendering with caustics.

5.6 Colour models

Computer graphics uses many colour models, but the most popular ones
are RGB, CMY and HSV. The first two models are used as the techniques of
colours representation, whereas the last one enables a user to choose precisely
the required colour. RGB model consists of three colours Red, Green and
Blue. This is the so-called an additive colour model which means that a
sum of all three colours gives white as in Fig. 5.18(a). Also a sum of two
of those colours gives cyan, magenta or yellow, respectively. RGB model was
created for displaying colours by electronic devices. For example LCD monitor
has those three colours which are masks made by liquid crystals to display a
suitable mix of colours. If all colours are masked with the maximum value the
LCD monitor is black, while all colours shine with the maximum value the
monitor displays white colour. Most of digital cameras and image scanners
use this colour model because CMOS images sensor has those three filters to
separate intensity of every colour and add them together on a display device.
Analogously, colourful digital photos are also based on the same colour model
or similar (sRGB or Adobe RGB).

To represent an image on white paper there must be used a negative of
RGB model which is subtractive one. It means that colours of this model
added together give black. This is a CMY model whose name comes from the
initials of Cyan, Magenta and Yellow. This model is shown in Fig. 5.18(b).

5.6. Colour models 65

(a) (b)

Fig. 5.18. RGB model (a) and CMY model (b).

Similarly as in the RGB model, two colours from the CMY model give one from
the RGB model. This model is known also as CMYK where K is black because
the letter B is reserved by Blue. Cyan, magenta and yellow, added together,
theoretically should give black colour, but technically those three colours are
not perfect so black created using CMY is not so deep as separated black.
This model is used by printer devices and for example in CMOS of Canon
family digital cameras. This technology allows to make photos with less light,
so Canon cameras have less noise on dark photos.

Fig. 5.19. HSV model.

66 Chapter 5. Visual photorealism

The mentioned above two models were created for projecting and printing
devices, but for the user it is easier to use the HSV model. HSV comes from the
first letters of Hue, Saturation and Value, respectively. Hue is the clean colour
without features like light or dark in Fig. 5.19 represented by the upper border
of the square. Saturation describes the region between clean hue colour and
gray colour. In Fig. 5.19 it is the region between the upper and lower border
of the square. The value is the region between black and white shown on the
bar on the right of the square in Fig. 5.19. Using those three variables the
user can easily choose the colour which he exactly needs. It is not so simple
in RGB or CMY model, but many classic painters use CMY model to mix
colours together to get the required one. In computer graphics HSV model
can simply make that green grass on a photo is greener by adding saturation
and teeth of a photographed person are whiter when saturation of yellow and
red are set smaller than normally.

Chapter 6

Software

In the previous chapters we have talked about the basic geometrical ob-
jects i.e. curves, patches, fractals, their mathematical background and about
visual photorealism. In this chapter we will present software in which all the
mentioned notions are used. First we will present a POV-Ray scripting lan-
guage. With the help of this language we can render photorealistic images
using ray tracing technique. Next, we will present a MayaVi package which
is used for visualization of scientific data. Finally, we will present a program
for visualization and analysis of molecules, proteins, etc. called Deep View or
Swiss-PdbViewer. All the programs presented in this chapter are multiplat-
form applications and they are available for free.

6.1 POV Ray

POV-Ray is a free source graphic program without interaction modelling
interface. It is not as popular and as simple as Maya or 3DS Max but it is free
and good for start. POV-Ray delivers some kind of a script language called
”Scene Description Language” which helps to form a user spatial imagination.
Creation of a scene in POV-Ray is better to do in two steps. First it is good
to create all objects and then, after placing them in the scene, describe the
objects materials, lighting and camera effects, because only graphic preview
is available after rendering. POV-Ray language is very simple but allows to
use average effects and to obtain nice renderings like in Fig. 6.1. We will try
to describe basics of this program.

68 Chapter 6. Software

Fig. 6.1. An image created with the help of POV-Ray.

6.1.1 Objects creation

Every object in POV-Ray is created in the virtual world described by three
axes. Horizontal X-axis leads to the right, vertical Y -axis leads up and Z-axis
leads into the screen. So then, the coordinate system used by POV-Ray is the
left-handed one.

Every object creation starts up from a point in 3D space. If it is a sphere,
this point will be the centre of the sphere, if it is a box the point will be one
of the box corners. Codes for a sphere and a box covered by colours is given
in listing 6.1.

Listing 6.1.

1 sphere { <−1.5, 0 , 0>, 1
pigment { color <0, 1 , 1> }}

3

box {<.5 , −1, −0.5> , <2.5 , 1 , .5>

5 pigment { color <1, 0 , 1> }}

Colour consists of three components <Red, Green, Blue> from which each
takes values from the interval [0, 1]. When we have a colour with the values
of components from a set {0, . . . , 255} then every component value should be
divided by 255 to obtain a value from [0, 1].

POV-Ray needs a light and a camera to render the scene. A simple light
source consist of 3D point and colour. The camera has two parameters: the

6.1. POV Ray 69

first one is camera location and the second is the target point. These two
elements are presented in the listing 6.2. Using the light and the camera we
obtain the rendering shown in Fig. 6.2.

Fig. 6.2. Basic scene.

Listing 6.2.

1 camera { location <0, 0 , −4.5>

look at <0, 0 , 0> }
3

l ight source { <−3, 2 , −3>
5 color <1,1,1> }

Objects like a cylinder or a cone are created by setting two points as centres
of two bases and the same two radiuses, in the case of a cylinder, or different
in the case of a truncated cone. Other predefined objects are: a bicubic
patch, objects obtained by rotating the points around an axis called Surface
of Revolution or by rotating a spline called Lathe. In listing 6.3 an example of
Surface of Revolution based on eight points is given and the obtained rendering
is presented in Fig. 6.3.

Listing 6.3.

1 sor {8 ,
<0, 0>

3 <1.7 , 0>
<0.75 , 0.75>

70 Chapter 6. Software

Fig. 6.3. Surface of Revolution.

5 <1, 1>
<1, 1.25>

7 <0.75 , 1.5>

<1, 2>
9 <0.8 , 1.9>

pigment { color <1, 0 .25 , 0.25> }
11

translate <0, −1, 0>
13 rotate <0, 0 , 180> }

To all the listings the camera and light sources should be added. The object
after creation can be modified by transformations like translate to move the
object, rotate to rotate it about one or more axes and scale to make the object
smaller or bigger.

More complex objects are created using boolean algebra. This technique
is called Constructive Solid Geometry known as CSG in short. It allows to
obtain more complex objects from two or more using the following keywords:
union, difference, intersection, inverse and merge. Listing 6.4 explains how to
cut a sphere from a box and the obtained shape is presented in Fig. 6.4.

Listing 6.4.

difference{
2

box { <−1, −1, −1>, <1, 1 , 1>
4 pigment { color <1,0,1> }}

6.1. POV Ray 71

Fig. 6.4. Difference of a box and sphere.

6 sphere { <0, 0 , 0>, 1 . 2
pigment { color <0,1,1> }}

8 }

All CSG operations are shown in Fig. 6.5.

Fig. 6.5. union, difference, intersection, inverse, merge.

To automatize some objects creation one can use decision instruction such
as if or loop like while or for. Listing 6.5 demonstrates how to use the while

loop and the result of its rendering is shown in Fig. 6.6.

Listing 6.5.

#declare counter = 0 ;
2

#while (counter < 20)
4

sphere { <counter , 0 , 0>, 0 . 3
6 pigment { color <0.25 , 1 , 0.25> }}

72 Chapter 6. Software

Fig. 6.6. 20 balls created with the help of while loop.

8 #declare counter = counter + 1 ;

10 #end

6.1.2 Materials and textures

Materials in POV-Ray require a few parameters to set. But, if some of
them are missing, then POV-Ray automatically sets them to the default values.
For example, listing 6.6 with the added camera and light source produces a
black box. In this case the material colour pigment is set as the black one. If
we do not define the background or global ambient lighting then the rendered
image will be completely black.

Listing 6.6.

box { <−1, −1, −1>, <1, 1 , 1> }

So setting e.g. red colour of the box or any other object can be done with
the help of listing 6.7 or 6.8.

Listing 6.7.

1 box { <−1, −1, −1>, <1, 1 , 1>
pigment { color <1,0,1> }}

6.1. POV Ray 73

Listing 6.8.

box { <−1, −1, −1>, <1, 1 , 1>
2 pigment { color red 1 blue 1 }}

Pigment colour in the above code is described by three parameters Red,
Green and Blue. If not all of the colour values are defined, then the missing
ones (as in the listing 6.8 Green parameter) are set by POV-Ray as default 0.
Pigment colour has two additional parameters filter and transmit. So it has
up to five parameters, as shown in listing 6.9.

Listing 6.9.

pigment { color rgbft <red , green , blue , f i l t e r , transmit> }

transmit is responsible for opacity and filter except opacity, deforms a little
rays which pass through the surface of an object. Those parameters are not
both necessary simultaneously so color can have the following syntax rgb, rgbf,
rgbt or rgbft. The parameters described up to now are the basic ones and they
do not assure photorealistic apperance of the object. To obtain photorealism
we need an advanced material definition consisting of a few parts. The first
one is the pigment which describes colour or opacity of material. The next
is two-parameter finish (with ambient and diffuse parameters) which creates
material as described in section 5.2. The ambient parameter sets interaction
between material and ambient light. It should be very small or 0 because
ambient light has no source, so it is everywhere with the same value. If the
scene is lighted by ambient light, then every object looks flat and it is hard to
see its real shape. The diffuse parameter sets the material reaction with light.
It should be larger than ambient and high if the material is bright. Using
ambient and diffuse parameters one can create bright materials but without
shine. Shiness of the material can be obtained with the help of phong and
phong size parameters. The phong sets shining power, whereas phong size

decides how large area on the shape has glitter. Hard objects often have
narrow area and bright shining, soft ones inversely. If the object should be
metallic than it is characterized by the keyword metallic without any value.
An example of metallic object is presented in Fig. 6.7. More realistic metallic
appearance of the object can be achieved using reflection. If the reflection is
constant on the surface of the object than one parameter is used, in the other
case two values are needed.

Further posibilities of influence on apperance of the material can be ob-
tained with the help of the keyword normal. It creates bumps on the surface
without geometric modification. There are available a few kinds of normal

74 Chapter 6. Software

Fig. 6.7. Metallic (golden) ball with bumps.

modification with the help of bumps, dents, ripples, waves, etc. All of them
can be scaled. Additionaly, for glass and water Index of Refraction that char-
acterizes interior of the object can be defined. Using listing 6.10 the iced cube,
as in Fig. 6.8, can be obtained.

Fig. 6.8. Ice cube.

Listing 6.10.

box { <0, 0 , 0>, <1, 1 , 1>
2

material { texture { pigment { rgbf <.98 , . 9 8 , . 9 8 , .99> }

6.1. POV Ray 75

4 f in i sh { ambient 0 .5 dif fuse 0 .1
ref lection {0 .1 , 0 .5}

6 specular . 9 roughness 0.0003 phong 1 phong size 400 }

8 normal { bumps 0 .9 scale 0 .05 }}

10 interior{ ior 1 .33 }}}

Default textures in POV-Ray have mathematical description. Most of
them use pigment map to create multicolour material. For example, the code
from listing 6.11 creates the sky pigment shown in Fig. 6.9, whereas the code
from listing 6.12 creates wooden texture without bumps.

Fig. 6.9. Sky sphere.

Listing 6.11.

pigment {
2 wrinkles

turbulence 0 .65
4 octaves 6

omega 0 .7
6 lambda 2

color map {
8 [0 . 0 , 0 .1 color red 0 .85 green 0 .85 blue 0 .85

color red 0 .75 green 0 .75 blue 0 . 7 5]
10 [0 . 1 , 0 .5 color red 0 .75 green 0 .75 blue 0 .75

color rgb <0.258 , 0 .258 , 0.435>]
12 [0 . 5 , 1 .001 color rgb <0.258 , 0 .258 , 0.435>

76 Chapter 6. Software

color rgb <0.258 , 0 .258 , 0.435>]
14 }

scale <6, 1 , 6>
16 }

Listing 6.12.

color map {
2 [0 . 0 , 0 .3 color rgbt <0.25 , 0 .10 , 0 .10 , 0.00>

color rgbt <0.25 , 0 .10 , 0 .10 , 0.40 >]
4 [0 . 3 , 0 .5 color rgbt <0.25 , 0 .10 , 0 .10 , 0.40>

color rgbt <0.60 , 0 .15 , 0 .10 , 1.00 >]
6 [0 . 5 , 0 .7 color rgbt <0.60 , 0 .15 , 0 .10 , 1.00>

color rgbt <0.25 , 0 .10 , 0 .10 , 0.40 >]
8 [0 . 7 , 1 .0 color rgbt <0.60 , 0 .15 , 0 .10 , 0.40>

color rgbt <0.25 , 0 .10 , 0 .10 , 0.00 >]
10 }

In POV-Ray effects like fire, smoke, etc. are created as special materials.
Listing 6.13 defines for example a fire sphere, where density map describes
every layer of the fire object.

Listing 6.13.

sphere{ 0 , 1 pigment { rgbt 1 } hollow

2 interior{ media{ emission 15
density{ spherical density map {

4 [0 rgb <0, 0 , 0>]
[0 . 2 rgb <0.2 , 0 , 0>]

6 [0 . 5 rgb <0.75 , 0 . 1 , 0>]
[0 . 7 5 rgb <1, 1 , 0>]

8 [1 rgb <1, 1 , 0.1 >]}}}}}

The object defined in listing 6.13 can be translated, rotated, scaled and
also modified by using CSG technique. Fig. 6.10 presents an example of a
candle flame created by this method.

Textures or bumps can be generated using any jpeg or png image with the
help of code from listing 6.14.

Listing 6.14.

box { <−10, −10, 6>, <22, 16 , 5>
2 texture{pigment {image map { jpeg ” f i l e . jpg ” } scale 6}

normal {bump map { jpeg ” f i l e b . jpg ” bump size 0 .5} scale 6}
4 f in i sh { ref lection {0.5} phong 0 .75 phong size 400}}

rotate <0, 90 , 0> translate <0.97 ,0 ,0.46 >

6 }

6.1. POV Ray 77

Fig. 6.10. Candle flame.

That code creates the textured box with the texture coming from two jpeg
files – file.jpg and file b.jpg. The first one is a colour image of the material
and the second one presents the greyscale image of irregular surfaces with
scratches. Images applied as textures can be scaled, translated and rotated
in order to be precisely placed on any textured object. Here, it should be
stressed that in some cases mathematical description creates better textures
than the images.

6.1.3 Lights and camera

POV-Ray delivers different light sources. Every light source is defined by
its location and some of them additionally by a target point. Basic lights create
strong and dark shadow that can be smoothed using special parameters. A
simple point light can be created by listing 6.15.

Listing 6.15.

l ight source {
2 <1, 2 , −3>

color <1, 1 , 1> }

This type of light is analogical to point light from section 5.1. Often it
is enough to create photorealistic scene but more spectacular effects can be

78 Chapter 6. Software

obtained with a spot light from listing 6.16.

Listing 6.16.

1 l ight source {
<1, 2 , −3>

3 color rgb <1,1,1>

spotl ight

5 point at <0, 0 , 0>
radius 5

7 tightness 50
f a l l o f f 8 }

By some modification of the point light it becomes a spot light which can
light up only a chosen area. Not having defined localization point, the spot
light has a destination point which is called point at. The destination point
is the centre of the circular lighted area. Objects situated outside that area
are not lighted. The lighted area is characterized by the following parameters:
tightness and falloff . tightness describes how softly or hardly light becomes
dark on the boundary of the circle. For low tightness value the boundary of
the lighted area will be soft and looking more naturally. falloff is the intensity
of falloff radius.

Every kind of light can have more than necessary settings. More advanced
parameters are fade distance, fade power or jitter. First two describe fade, in
other way it is the lighted area. Those parameters can make the rendering
more photorealistic. The sun creates light with low fade and illuminates a large
area, whereas bulb or candle light has medium and large fade, respectively.
First setting is fade distance which sets the area of lighting. Outside that area
everything will be dark. The fade power sets how much light wanes.

The above parameters set only lights but do not describe shadows. A
light can be shadowless and it is useful while the scene contains many lights
and some of the shadows can break the composition of the scene. To a many
shadows divert the observer’s sight from the objects. Other lights still have
strong and dark shadows which are not photorealistic. To create a good looking
light, naturally fading and creating smooth shadows, a few parameters as in
listing 6.17 should be used.

Listing 6.17.

l ight source {
2 <0, 0 .65 , 0>

color rgb <0.95 , 0 . 7 , 0.2>

4 fade distance 2
fade power 1

6.1. POV Ray 79

6 area light <3, 0 , 0>, <0, 0 , 3>, 9 , 9
adaptive 0 .5

8 j i t te r }

The area light creates something like a few lights illuminating simultane-
ously the scene which gives smooth shadows and makes them less dark. jitter

is the parameter which set rendering more realistic – fade of light is smoother.
The jitter parameter causes that rendering will take much longer but the ob-
tained effect will be much better.

POV-Ray has few types of cameras. Creation of any kind of camera looks
similar, only parameters used are different. In section 5.4 we described in
details camera settings which can also be used in POV-Ray. Usually, in pho-
tography a focal length is used, whereas in computer graphics programs angle

is more comfortable to apply. Basic camera settings are location point and
look at point which is the target one. The code defining a simple camera is
presented in listing 6.18.

Listing 6.18.

camera {
2 location <−2.2, 0 . 8 , −3.75>

look at <−0.4, −0.3 , 0.0> }

The camera from the listing 6.18 has set the default angle that can be
easily changed by appending its value. To create more realistic renderings
camera parameters must include depth of the field which is described by three
values, as presented in listing 6.19. The obtained rendering of this scene shows
Fig. 6.11.

Listing 6.19.

1 camera {
location <−2.2, 0 . 8 , −3.75>

3 look at <−0.4, −0.3 , 0.0>

angle 46
5 focal point <0.5 , 0 , 0>

aperture 0 .2
7 blur samples 50
}

The keyword focal point sets point with perfect focus and it can be different
of look at point. The focal point can be imagined not only as one point but
as the plane created by points lying at the same distance from the camera,
those with the perfect focus. Objects lying before and after the plane will be

80 Chapter 6. Software

Fig. 6.11. Camera blur.

rendered with blur. The value of blur is set by aperture which is a characteristic
feature of the lens.

Blur is larger if the value of lens aperture is smaller but in POV-Ray blur
is stronger when the value of aperture is higher. The keyword blur samples

sets the quality of the render. A poor blur effect appears for blur values 3
or 4 but better results can be obtained for 25 or higher ones. If the value of
blur samples is getting higher then the time of rendering is getting longer.

POV-Ray has many types of cameras from a fish-eye to spherical camera.
But good renderings can be obtained using simple camera with 45 angle and
blur.

6.1.4 Rendering

Rendering in POV-Ray is controlled by *.ini file presented in listing 6.20.

Listing 6.20.

Input File Name=” f i l e . pov”
2 Width=800

Height=600
4 Ant i a l i a s=On

Ant ia l i a s Depth=9
6 Qual i ty=11

6.2. MayaVi 81

The first line sets a project file name which will be rendered, so it is not
necessary to open this file in POV-Ray. Next parameters fix the image size,
width (x) and height (y). The third line sets antialiasing on/off and the value
from the next line determines the quality of the antialiasing. Rendering with
antialiasing on is slow but the obtained quality of the rendered image is very
good. The last line sets the quality to maximum. For example, quality fixed
as 0 or 1 determine rendering with only ambient light and the object with only
colours, 6 and 7 even compute photons and 9 to 11 produce renders with all
defined effects like radiosity, etc. The above listed code is executed only once
producing the rendered image.

for and while loops automatize project rendering but in every execution of
the code project parameters are set to the default. To obtain renderings for
animation the parameter called clock should be used in *.ini files.

Lines in the listing 6.21 from *.ini file allows creating 25 frames that can
be used in animation.

Listing 6.21.

(. . .)
2 Qual i ty=11

In i t i a l F r ame=1
4 Final Frame=25

I n i t i a l C l o c k=1
6 Fina l Clock=5

The sphere from listing 6.22 will be translated in every frame. When the
rendering is over, bitmap files numbered from file001.bmp to file025.bmp can
be found in the project directory. Those files can be further joined with the
help of e.g. BMP to AVI movie creator or other programs to obtain *.avi
animation files.

Listing 6.22.

sphere { <0, −0.5 , 0>, 0 . 5
2 (. . .)

translate < 2 + clock , 0 , 0> }

6.2 MayaVi

MayaVi is a general-purpose 3D scientific visualization package created
by Prabhu Ramachandran from the Department of Aerospace Engineering
at Indian Institute of Technology Bombay. It uses the Visualization Toolkit

82 Chapter 6. Software

(VTK) [26] and it is entirely written in Python. The main features of MayaVi
are:

• visualization of scalar, vector and tensor data in 3D,

• easy scriptability using Python,

• easy extendability via custom modules, data filters, etc.,

• graphical interfaces and dialogs with a focus on usability,

• supporting of several file formats, e.g. VTK, plot3d, VRML2,

• saving of visualization,

• saving of scene in a variety of image formats, e.g. png, jpeg, VRML,
eps,

• functionality for rapid scientific plotting via mlab.

Fig. 6.12 presents the user interface of MayaVi.

6.2.1 Installation

The easiest way to install the MayaVi package is to install a full Python
distribution. Under Windows we can choose an Enthought Python Distribu-
tion (EPD) [6] or a Python(x,y) [17]. The EPD distribution is free only for
educational purposes, for other purposes we need to purchase the subscription.
The full Python distribution of EPD is also available for MacOSX and Red
Hat Enterprise Linux 3 and 4. In Debian and Ubuntu MayaVi is packaged.
The Python(x,y) distribution is also available for Ubuntu.

The second possibility to install the MayaVi is to install it from the Python
Eggs. The instructions for this kind of installation can be found in the users
manual of MayaVi [21].

6.2.2 Pipeline model

Fig. 6.13 presents the pipeline model of the MayaVi package.
The process of a visualization begins with raw data entering the filtering

stage. Usually, filtering means selective removal, but here the term is used in
more general meaning, namely to transform data from one form into another
one, e.g. from 2D image data representing a heightmap into a triangle mesh
representing a terrain.

6.2. MayaVi 83

Fig. 6.12. MayaVi user interface.

Raw data Filtering Mapping Rendering Image

Fig. 6.13. Pipeline model.

After filtering the mapping stage comes which produces an abstract visu-
alization object. An abstract visualization object is an imaginary object with
attributes such as size, colour, transparency and so on. Thus, for example the
height might control the colour of an object, ranging from blue for very low
points to red for very high points.

The final stage is to render the abstract visualization object into an image.
Here the object might need to be rotated or scaled and it could be viewed
with perspective or projection.

84 Chapter 6. Software

6.2.3 Filters

In MayaVi the filtering stage is available through the Filters (menu Visu-
alize → Filters). The list of these filters and a brief description of them is
following:

• CellDerivatives – computes derivatives of input point/vector data and
outputs these as cell data,

• CellToPointData – converts cell data to point data for the active data,

• Contour – computes contour of the input dataset,

• CutPlane – slices the input dataset with a cut plane,

• DecimatePro – reduces the number of triangles in a triangular mesh by
approximating the original mesh,

• Delaunay2D – executes a 2D Delaunay triangulation,

• Delaunay3D – executes a 3D Delaunay triangulation,

• Elevation Filter – creates scalar data corresponding to the elevation of
the data points along a line,

• Extract Edges – the filter for extracting edges from any data,

• Extract Grid – allows to select a part of a structured grid,

• Extract Tensor Components – the filter for extracting components from
a tensor field,

• Extract Unstructured Grid – allows to select a part of an unstructured
grid,

• Extract Vector Norm – computes the Euclidean norm of the input vector
data,

• Extract Vector Components – extracts vector components from vector
data,

• Gaussian Splatter – the filter for splatting point into a volume with
Gaussian distribution,

6.2. MayaVi 85

• Greedy Terrain Decimation – the filter for approximating a heightmap
(2D image data) with a triangle mesh with the minimum number of
triangles,

• Change ImageData information – changes the origin, spacing and extents
of an image dataset,

• Probe data onto image data – samples arbitrary datasets onto an image
dataset,

• Mask Points – selectively passes the input points downstream. It is used
to subsample the input points,

• PointToCellData – converts data located on the points to data located
on the cells,

• Compute Normals – the filter for computing the normal vectors to the
surface,

• Quadric Decimation – reduces the number of triangles in a mesh,

• Select Output – chooses the output of the source that should be used,

• SetActiveAttribute – sets the active attribute (scalar, vector, tensor) to
use,

• Transform Data – performs translation, rotation and scaling to the input
data,

• Threshold – the filter that thresholds the input data,

• TriangleFilter – converts input polygons and triangle strips to triangles,

• Tube – turns lines into tubes,

• UserDefined – creates a user defined filter,

• Vorticity – computes the vorticity (curl) of input vector field,

• Warp Scalar – the filter for warping the input data along particular
direction with a scale specified by the local scalar value,

• Warp Vector – the filter for warping the input data along the point
vector attribute scaled as per a scale factor.

86 Chapter 6. Software

6.2.4 Modules

The mapping stage of the MayaVi pipeline is done through the Modules
(menu Visualize → Modules). The list of available modules and a brief de-
scription of them is following:

• Axes – draws axes,

• ContourGridPlane – this module allows to take a slice of the input grid
data and view contours of the data,

• CustomGridPlane – similar to the ContourGridPlane but with more
flexibility,

• Glyph – displays different types of glyphs at the input points,

• GridPlane – displays a simple grid plane,

• HyperStreamline – the module that integrates through a tensor field to
generate a hyperstreamline,

• ImageActor – the module for viewing image data,

• ImagePlaneWidget – the module for viewing image data along a cut,

• IsoSurface – the module that allows a user to make contours (isosurfaces)
of input volumetric data,

• Labels – displays labels for active dataset or active module,

• Orientation Axes – displays small axes which indicate the position of
the co-ordinate axes,

• Outline – draws an outline (bounding box) for the given data,

• Scalar Cut Plane – creates a cut plane of any input data along an implicit
plane and plots the data,

• Slice Unstructured Grid – the module creates a slice of the unstructured
grid data and shows the cells that intersect or touch the slice,

• StructuredGridOutline – draws a grid outline for structured grids,

• Streamline – draws streamlines for given vector data,

6.2. MayaVi 87

• Surface – draws a surface for input data,

• TensorGlyph – displays tensor glyphs at the input points,

• Text – displays a given text on the scene,

• VectorCutPlane – creates a cut plane of the input data along an implicit
cut plane and places glyphs according to the vector field data,

• Vectors – displays different types of glyphs oriented and coloured as per
vector data at the input data,

• Volume – visualizes scalar fields using volumetric visualization tech-
niques,

• WarpVectorCutPlane – creates a cut plane of the input data along an
implicit cut plane and wraps it according to the vector field data.

6.2.5 Interaction with the scene

In MayaVi there are three different ways to interact with the scene:

• scene toolbar,

• mouse,

• keyboard.

Fig. 6.14 presents the scene toolbar. The first seven buttons on the toolbar
are responsible for the view of the camera. The buttons with the letters X,
Y or Z set the view along the −/+ X, Y or Z axes, respectively. The seventh
button sets the isometric view of the scene. Beside the view buttons there are:
button for toggling on/off the parallel projection, button for toggling on/off
the axes indicator (this is the same as the Orientation Axes module), button
for displaying the scene on the full screen, button for saving a snapshot of the
scene. The last button is responsible for a configuration of the scene. Here
we can change the foreground/background colour, change the magnification
scale, set the quality of the jpeg image, change settings of the lighting of the
scene (change the number of lights, add/remove a light from the scene, change
the settings of each light, etc.).

There are two modes of a mouse interaction. The first one is a camera
mode (the default mode). In this mode the mouse operates on the camera. In

88 Chapter 6. Software

Fig. 6.14. Scene toolbar.

the second mode, the actor mode, mouse operates on the actor (object) the
mouse is currently above. In each of the modes we can do several things with
holding down a mouse button and dragging:

• dragging the mouse with the left mouse button will rotate the camera/ac-
tor; when we additionally hold down the Shift ⇑ key on the keyboard
we will pan the scene, holding down the Ctrl key will rotate around the
camera’s focal point,

• dragging up/down the mouse with the right mouse button will zoom
in/out,

• rotating the mouse wheel will zoom in/out.

To interact with the scene using a keyboard we can use following keys:

• a – switch to the actor mode,

• c – switch to the camera mode,

• e , q , Esc – exit the full screen mode and return to the window
view,

• f – move camera’s focal point to the current mouse position,

• l – lights configuration,

• p – pick the data at the current mouse point,

• r – reset the camera settings,

• s – save the scene to an image,

• = / + – zoom in,

• − – zoom out,

• ← , → , ↑ , ↓ – rotate the camera; when Shift ⇑ key is pressed
the camera is panned.

6.2. MayaVi 89

6.2.6 Examples

Till this moment we have only talked about the features and possibilities
of the MayaVi package. In this section we will show some examples of using
MayaVi. Let us start with the examples provided with the package.

Example 6.1. When we want only to play with the program a good choice is to
visualize one of the parametric surfaces given in the program. After the start
of MayaVi we choose menu File → Load Data → Create Parametric surface
source. After that we will see that a new node in the tree on the left appears
– ParametricSurface. We click on the new node and in MayaVi object editor
we can choose which surface we want to visualize. Let us choose the torus
surface for which the parametric equations are following:

x(u, v) = (c + a cos v) cos u,

y(u, v) = (c + a cos v) sin u,

z(u, v) = a sin v,

(6.1)

where u, v ∈ [0, 2π], c > 0 is the radius from the center to the middle of the
ring (Ring radius) and a > 0 is the radius of the cross-section of the ring of
the torus (Cross section radius). We can change the values of the ring radius,
cross section radius and the minimal, maximal values for u, v parameters in
the MayaVi object editor. These values will define the look of the torus.
To see the torus we click on the node with ParametricSurface and then we
choose menu Visualize → Modules → Surface or we can double click on the
Add module or filter node below the ParametricSurface node and then double
click on the Surface at the Visualization modules tab. Now we can interact
with the scene as we described it in section 6.2.5. To change the colours
of the torus we click on the Colors and legends node and in MayaVi object
editor we click on the Lut mode button, then we choose one of the predefined
modes also we can change the Number of colors used. When we look at the
properties of the Surface module in the MayaVi object editor we have a tab
called Actor. In this tab we can turn on/off the surface (Visibility checkbox),
turn on/off the Scalar visibility, change the Representation of the surface to:
points, wireframe, surface, change the Line width, etc.

In the same scene there can be many visualizations of different data sources.
Now we show how to add a second parametric surface to the same scene. To
add the next data source we simply click on the root node (TVTK Scene
node), then we go to the menu File → Load Data → Create Parametric surface
source. After that in the tree appears a new ParametricSurface node. This

90 Chapter 6. Software

time we change the surface to the cap. This is a cross-cap surface for which
the parametric equations are following:

x(u, v) = cos u sin 2v,

y(u, v) = sin u sin 2v,

z(u, v) = cos2 v − cos2 u sin2 v,

(6.2)

where u, v ∈ [0, π]. Then we add Surface module to the parametric surface
in the same way as in the case of torus. We see that the torus and the cap
overlap. To change the position of the torus or the cap we can use one of two
methods: the Transform Data filter or the interaction with the scene. Let us
see how the second method works. First we go to the actor mode by pressing
the a , then we press and hold the Shift ⇑ . Next we click and hold the left
mouse button on the cap surface and then we drag the surface where we want.
When this has been done we release the mouse button, Shift ⇑ and go to the
camera mode by pressing the c . Figure 6.15 presents the visualization of
the torus and the cross-cap surface.

Example 6.2. In this example we will see how to create visualization from
Fig. 6.12. The data for this visualization is provided with the MayaVi package.
To load the data we choose menu File → Load data → Open file. . ., then we
search for the heart.vtk file. The vtk file format is the standard format used
by MayaVi and we will talk about it in section 6.2.8. A new node VTK
file (heart.vtk) should appear in the scene tree. Now we need to add some
modules so we double click in the tree on Add module or filter node. Then
we double click on the Outline, IsoSurface and Scalar Cut Plane modules.
When we click on the IsoSurface module in the MayaVi object editor we see
that we can change the value for contours. In the Actor tab, similar to the
Surface module, we can turn on/off the Visibility of the IsoSurface, change
the Representation of the IsoSurface, etc. When we click and hold the left
mouse button on the cut plane in the scene and then move, we see that the
cut plane moves and shows the actual cut of the IsoSurface. We can change
the direction of the cut. To do this we click on the ScalarCutPlane node and
in the MayaVi object editor we can choose Normal to x/y/z axis which makes
the cut plane perpendicular to the x, y or z axis. Of course we can give the
cut plane any angle by simply clicking and holding the left mouse button on
the arrow in the scene and then moving.

Example 6.3. The last example will show how to visualize a terrain when we
have a heightmap of it. So, let us assume that we have a heightmap of a

6.2. MayaVi 91

Fig. 6.15. Visualization of the torus and the cross-cap surface.

terrain as in Fig. 6.16. First we must load the data into MayaVi so we choose
menu File → Load data → Open file. . . and find the image with heightmap.
A new node with the name of the file should appear. Before the visualization
of the terrain we must use some filters to prepare the data. First we need to
change the flat image into a mesh. For this purpose we will use the Greedy
Terrain Decimation filter so we double click on the Add module or filter node
then change tab to the Processing filters and then double click on the Greedy
Terrain Decimation. After that we need to change one option in the properties
of this filter. We click on the node with Greedy Terrain Decimation and in
MayaVi object editor we turn off the Boundary vertex deletion. Next we reduce
the number of triangles in the mesh so double click on the Add module or filter
node, change the tab to the Processing filters and then double click on the
Quadric Decimation filter. At this stage we can visualize the terrain with the
Surface module but the terrain will be rendered only with white colour. To
add more colours we need to use the Elevation Filter so we double click on
the Add module or filter node, change the tab to the Processing filters and

92 Chapter 6. Software

double click on the Elevation Filter. Then we need to change parameters of
this filter. We click on the node representing the Elevation Filter and in the
MayaVi object editor we change the value of the F2 parameter in the High
point to 255. To make the terrain look smoother we will compute normals. To
do this we double click on the Add module or filter node, change tab to the
Processing filters and double click on the Compute Normals filter. Finally, we
can visualize our terrain with the Surface module. The visualization of the
heightmap from Fig. 6.16 is shown in Fig. 6.17.

Fig. 6.16. Example heightmap.

6.2.7 Scripting with mlab

In some cases we have data which we want to visualize in a format that is
not supported by MayaVi, e.g. other file format, data stored in a database, so
we cannot use the MayaVi package to the visualization. The creator of MayaVi
predicted such cases and he has written a Python package called mlab. With
help of mlab and Python scripting language we can load the data we want and
then visualize it using the functionality of MayaVi.

In this section we will show only some basic ideas of the scripting with
mlab. Let us look at the listing 6.23 which presents an example of the script
that has been written in Python and using the mlab package to visualize the

6.2. MayaVi 93

Fig. 6.17. Visualization of the heightmap from Fig. 6.16.

generated data. In the first line of the script we load a numpy package from
which we will use the data structures to store the generated data. Next, in the
second line we load the mlab package. The code in lines 4-16 is responsible
for data generation. In this case it is data for visualization of a cone given by
the parametric equations:

x(θ, v) = r(1 − v) cos(θ),

y(θ, v) = r(1 − v) sin(θ),

z(θ, v) = v · h,

(6.3)

where θ ∈ [0, 2π], v ∈ [0, 1], r, h > 0, r is the radius of the cone and h is
the hight of it. In general case this part of code is responsible for loading or
generating the data and storing this data in a numpy data structures.

Lines 17-21 are responsible for the visualization. This is very similar to the
use of MayaVi. Simply, we execute appropriate functions which correspond to
the filters and modules of MayaVi. In our example we use the mesh function
(line 18) to visualize the cone, then we add to the scene the axes (axes function
– line 19) and a title (title function – line 20) and finally we change the point
of view (view function – line 21). The description of the used functions and
the full mlab function reference can be found in the MayaVi2 User Guide [21].
To execute the script in MayaVi we write the script to disc, open MayaVi and
then go to menu File → Open Text File. . . and search for the script. After

94 Chapter 6. Software

this the content of the script should appear in the MayaVi window. Now we
simply press Ctrl + r and after a few moments the visualization should
appear in the scene. Fig. 6.18 presents the result of executing script from the
listing 6.23.

Listing 6.23.

from numpy import ∗
2 from enthought . mayavi import mlab

4 # genera t ing a data f o r v i s u a l i z a t i o n

6 # parameters o f a cone

thetamax = 2∗ pi #

8 rad iu s = 5 # rad ius o f a cone

he igh t = 5 # he i gh t o f a cone

10

genera t ing a cone

12 [theta , v] = mgrid [0 : thetamax+pi /50 : p i /50 , 0 : 1 : 0 . 0 5]
x = rad iu s ∗ (1−v) ∗ cos (theta)

14 y = rad iu s ∗ (1−v) ∗ s i n (theta)
z = v ∗ he igh t

16

v i s u a l i z a t i o n o f the generated data

18 mlab . mesh(x , y , z , colormap=’ black−white ’)
mlab . axes ()

20 mlab . t i t l e (’ Example ’ , s i z e =0.5)
mlab . view (45 , 55 , 30)

More examples and details about writing scripts in mlab can be found in
the MayaVi2 User Guide [21].

6.2.8 VTK file format

As we mentioned earlier the VTK file format is a standard format used in
MayaVi. In this section we will present some basic information about this file
format.

There are two different styles of file formats in VTK:

1. legacy,

2. XML.

We will describe only the structure of the legacy style. The legacy style of
the VTK file format consists of five parts:

6.2. MayaVi 95

Fig. 6.18. Result of executing script from the listing 6.23.

1. File version and identifier. This part contains one single line
#vtk DataFile Version x.x,
where x.x is the number of version which varies with different releases
of VTK.

2. Header. The header is used to describe the data and it is a character
string (maximum 256 characters) terminated by the end-of-line charac-
ter.

3. File format. This line describes the type of file. It can be either ASCII

or BINARY.

4. Dataset structure. This is the geometry part describing the geometry
and topology of the dataset and it begins with the line with keyword
DATASET. There are five different dataset formats: structured points,
structured grid, rectilinear grid, unstructured grid, polygonal data.

5. Dataset attributes. This part is used to give the data attribute values,
i.e. scalars, vectors, tensors, normals, texture coordinates, field data.
It begins with the keyword POINT DATA or CELL DATA followed by an
integer number specifying the number of points or cells.

The first three parts are mandatory and the other two are optional. More
details about the dataset structure and dataset attributes parts can be found

96 Chapter 6. Software

in The VTK User’s Guide [23] or on the VTK website [26].

Listing 6.24 presents an example of VTK file and Fig. 6.19 presents a
visualization of the data included in this file.

Listing 6.24.

vtk DataFi l e Version 2.0

2 Cube example
ASCII

4 DATASET POLYDATA
POINTS 8 f l o a t

6 0 .0 0 .0 0 .0
1 .0 0 .0 0 .0

8 1 .0 1 .0 0 .0
0 .0 1 .0 0 .0

10 0 .0 0 .0 1 .0
1 .0 0 .0 1 .0

12 1 .0 1 .0 1 .0
0 .0 1 .0 1 .0

14 POLYGONS 6 30
4 0 1 2 3

16 4 4 5 6 7
4 0 1 5 4

18 4 2 3 7 6
4 0 4 7 3

20 4 1 2 6 5
CELL DATA 6

22 SCALARS c e l l s c a l a r s i n t 1
LOOKUP TABLE de fau l t

24 0
1

26 2
3

28 4
5

The XML style of the VTK file format is much more complicated than the
legacy style but it supports many more features. Some features of the format
include support for compression, portable binary encoding, random access, big
endian and little endian byte order, multiple file representation of piece data
and new file extensions for different VTK dataset types. The details about
the XML style can be found in The VTK User’s Guide [23] or on the VTK
website [26].

6.3. Deep View / Swiss-PdbViewer 97

Fig. 6.19. Visualization of the data from a VTK file presented in listing 6.24.

6.3 Deep View / Swiss-PdbViewer

Deep View or Swiss-PdbViewer [22] is a multiplatform (Windows, Mac,
Linux, Irix) application for interactive viewing and analyzing several protein
and nucleic acid structures at the same time. It was created in 1994 by Nicolas
Guex. The main features of Deep View are:

• superimposition – structural alignments and comparisons of their active
sites or any other relevant,

• makes amino acid mutations,

• generates Hydrogen bonds,

• calculates angles and distances between atoms,

• tightly linked to Swiss-Model, an automated homology modelling server,

• threads a protein primary sequence onto a 3D template,

• builds missing loops and refines sidechain packing,

• reads electron density maps and builds into the density,

• performs energy minimization,

• POV-Ray scenes can be generated for stunning ray-traced quality im-
ages.

98 Chapter 6. Software

6.3.1 Basics of Deep View

When we start the Deep View application we will see a window which looks
as in Fig. 6.20. Dependent on which operation will be executed there can
appear other windows: Graphic window, Control Panel, Layers infos window,
Alignment window, Ramachandran plot window, Surface and cavities window,
Electron density map infos window, Text windows.

Fig. 6.20. Main window of the Swiss-PdbViewer.

In Deep View we can open several types of files with molecule data – the
default is PDB (Protein Data Bank) file. The specification of the PDB format
can be found in [18]. We can open a PDB file or import it from a server. To
import a file from the server we go to the menu File → Import. . . and then
we see a window where we type a name of the molecule and in the Grab from
server section we push the PDB file button. Let us try to import a protein
called 1gdi. After importing a PDB file there should appear a Graphic window
with a visualization of the molecule in wireframe representation. The default
atoms colours are following:

• C → white,

• O → red,

• N → blue,

• S → yellow,

• P → orange,

• H → cyan,

• other → gray.

We can change the default colours of atoms in menu Prefs → Colors. . .. Be-
sides, we can individually change the colour of any group using the Control
Panel. To activate the Control Panel we go to Wind → Control Panel. In this
panel we see all the groups from which the molecule consists (group column),

6.3. Deep View / Swiss-PdbViewer 99

also we can turn each of the groups on/off (show column), turn on/off the
labels (labl column), surfaces (::v column), ribbons (ribn column) or change
the colour of groups (col column). To change some settings for several groups
at the same time we click on the first group and drag the mouse to the last
group we want to change. The selected groups are indicated by the red colour
and now we can change the settings using the +/- sign situated above the
columns in Control Panel. Let us select all the groups and then turn off all
the groups, turn on the ribbons. As we can see the default rendering of rib-
bons is a wireframe. To change the way in which they are rendered we go to
the menu Display → Render in 3D.

Now, with the help of the mouse we can rotate, translate or scale the
molecule. The rotation is done by dragging the mouse with the left mouse
button, the translation is done in a similar way only we hold down the right
mouse button and the scaling is done by dragging the mouse with the left and
right mouse buttons.

If we are ready with modelling of the molecule, we can save the result as
an image or as a POV-Ray file. To do this we go to menu File → Save →
Image. . . for the image and to menu File → Save → Pov-Ray Scene. . . for the
POV-Ray file. When we choose the POV-Ray file later we can change the look
of the molecule using the POV-Ray language and then render it.

Because the aim of this book is only to show the basics of modelling and
visualization, so we do not go deeper in the theme of modelling molecules.
More details about this theme can be found in Deep View user guide [5] or on
the Deep View website [22].

6.3.2 Examples

In this section we will present examples of images obtained with the help
of Deep View and POV-Ray.

Example 6.4. Fig. 6.21 presents an example of 1gdi molecule and Fig. 6.22
presents the same molecule but all the groups are turned off and the ribbons
are turned on.

Example 6.5. Figs. 6.23, 6.24 present an example of Hemoglobin modelled in
Deep View and rendered by POV-Ray.

100 Chapter 6. Software

Fig. 6.21. Visualization of the 1gdi molecule.

Fig. 6.22. Visualization of the 1gdi molecule ribbons.

6.3. Deep View / Swiss-PdbViewer 101

Fig. 6.23. Visualization of Hemoglobin rendered by POV-Ray.

Fig. 6.24. Visualization of Hemoglobin rendered by POV-Ray.

Bibliography

[1] Barnsley M., Fractals Everywhere, Academic Press, New York, 1988.

[2] Barnsley M., Superfractals, Cambridge University Press, New York, Mel-
bourne, 2006.

[3] Chaikin G., An Algorithm for High Speed Curve Generation, Computer
Graphics and Image Processing, Vol. 3, 346-349, 1974.

[4] Cohen M.F., Wallace J.R., Radiosity and Realistic Image Synthesis, Aca-
demic Press, 1995.

[5] Deep View – The Swiss-Pdb Viewer User Guide, http://spdbv.vital-
it.ch/Swiss-PdbViewerManualv3.7.pdf, Accessed September 2009.

[6] Enthought Python Distribution, http://www.enthought.com/
products/epd.php, Accessed September 2009.

[7] Falconer K., Fractal Geometry. Mathematical Foundations and Applica-
tions, Second Edition, Wiley, 2003.

[8] Farin G., Curves and Surfaces for CAD, A Practical Guide, Academic
Press 2002.

[9] Glassner A.S., An Introduction to Ray Tracing, Academic Press, 1991.

[10] Goldman R., The Fractal Nature of Bézier Curves, Proceedings of the
Geometric Modeling and Processing, April 13-15, 2004, Beijing, China,
3-11.

[11] Jensen H.W., Realistic Image Synthesis using Photon Mapping, AK Pe-
ters, 2001.

Bibliography 103

[12] Joy K. I., On-line Geometric Modeling Notes, Dept. of
Computer Science, University of California, Davis, 2000,
http://graphics.cs.ucdavis.edu/education/CAGDNotes/homepage.html,
Accessed September 2009.

[13] Mandelbrot B., The Fractal Geometry of Nature, Freeman and Company,
San Francisco, 1983.

[14] Marsh D., Applied Geometry for Computer Graphics and CAD, Springer,
2000.

[15] POV-Ray, http://www.povray.org/, Accessed September 2009.

[16] Prusinkiewicz P., Lindenmayer A., The Algorithmic Beauty of Plants,
Springer, New York, 1990.

[17] Python(x,y), http://www.pythonxy.com/, Accessed September 2009.

[18] Protein Data Bank Contents Guide: Atomic Coordinate Entry Format
Description,
http://www.wwpdb.org/documentation/format32/v3.2.html, Accessed
September 2009.

[19] Ramachandran P., MayaVi-2: The next generation, EuroPython Confer-
ence Proceedings, Goteborg, Sweden June 2005.

[20] Ramachandran P., Varoquaux G., Mayavi: Making 3D Data Visualiza-
tion Reusable, SciPy08: Proceedings of the 7th Python in Science Con-
ference, Caltech, Pasadena, CA, 19-24 August, 2008.

[21] Ramachandran P., Varoquaux G., Mayavi2 Users Guide,
http://code.enthought.com/projects/mayavi/docs/development/
html/mayavi/, Accessed September 2009.

[22] Swiss-PdbViewer (DeepView), http://spdbv.vital-it.ch/, Accessed
September 2009.

[23] Schroeder W.J., The VTK User’s Guide, Kitware Inc., 2001.

[24] Schroeder W.J., Martin K., Lorensen B., The Visualization Toolkit. An
Object-Oriented Approach to 3D Graphics, 3rd Edition, Kitware Inc.,
2002.

104 Bibliography

[25] Shirley P., Morley R.K., Realistic Ray Tracing, 2nd Edition, AK Peters,
2003.

[26] Visualization Toolkit, http://www.vtk.org/, Accessed September 2009.

[27] Warren J., Weimer H., Subdivision Methods for Geometric Design: A
Constructive Approach, Morgan Kaufmann, San Francisco, 2001.

[28] Wright H., Intorduction to Scientific Visualization, Springer, 2007.

[29] Zorin D., Schröder P., Levin A., Kobbelt L., Sweldens W., DeRose T.,
Subdivision for Modeling and Animation, Course Notes, SIGGRAPH
2000.

List of Figures

1.1 Right-handed coordinate axes system. 12

1.2 Projection of a cube: (a) parallel, (b) perspective. 14

1.3 3D projections: (a) perspective, (b) parallel. 15

2.1 Parametric curves: (a) parabola, (b) unit circle. 17

2.2 Explicit curve: half of a unit circle. 18

2.3 Interpolation curve. 19

2.4 Approximation line. 21

2.5 Quadratic Bézier curve with different positions of the one con-
trol point. 22

2.6 Cubic Bézier curve with different positions of two control points. 23

2.7 Chaikin’s cutting corner algorithm. Iterations: 0, 1, 2, 3. 24

2.8 Cutting corner algorithm with parameters 4
7 and 3

7 . Iterations:
0, 1, 2, 3. 24

2.9 The de Casteljau algorithm. 26

2.10 Joining of two Bézier curves: (a) continuous, (b) smooth. . . . 27

2.11 A heart and a flower modelled with the help of Bézier curves. . 28

2.12 Approximation of a quadratic Bézier curve obtained via subdi-
vision. Iterations: 1, 3, 4. 28

2.13 Approximation of a B-spline curve obtained via subdivision.
Iterations: 1, 3, 4. 29

3.1 Surfaces: (a) explicit, (b) parametric. 31

3.2 Control points array of a quadratic patch. 32

3.3 Bézier patches: (a) bi-quadratic, (b) bi-cubic. 33

3.4 Examples: (a) teapot, (b) rabbit. 33

3.5 Surfaces: (a) extruded, (b) ruled, (c) swept. 34

106 List of Figures

3.6 Bi-quadratic Bézier patch obtained via subdivision. Iterations:
0, 2, 4. 36

3.7 Bi-quadratic Chaikin patch obtained via subdivision. Itera-
tions: 0, 2, 4. 36

3.8 Mesh: (a) initial, (b) after performing one round of Catmull-
Clark subdivision. 38

3.9 Catmull-Clark subdivision applied to box. Iterations: 0, 1, 2, 3. 38

3.10 Midpoint subdivision applied to box. Iterations, 0, 1, 2, 3, 4, 5. . 39

4.1 Fractal examples: Koch snow-flake (a), Menger sponge (b), Ju-
lia set (c), Mandelbrot set (d), Barnsley fern (e), fractal flame
(f), strange attractor (g), plasma fractal (h), plant created via
L-system (i). 43

4.2 Deterministic fractal generation algorithm. 44

4.3 Random fractal algorithm. 46

4.4 Self-similarity of traingle T (a) and Sierpinski triangle (b). . . . 46

4.5 Koch curve. Iterations: 1,2,5. 47

4.6 Quadratic Bézier curve generated fractally. Iterations: 1,2,8. . . 48

5.1 Photorealistic rendering. 49

5.2 Point Light. 51

5.3 Spot Light. 52

5.4 Cylindrical Light. 53

5.5 Sharp and smooth shadows. 54

5.6 Cold and warm light colours. 55

5.7 Soft and hard material. 56

5.8 Glass and metal balls. 57

5.9 Sphere with Moon texture. 57

5.10 Bump bitmap. 58

5.11 Jeans texture. 59

5.12 Polarization circular filter. 59

5.13 Cross-eye rendering. 60

5.14 Camera in: (a) orthogonal projection, (b) perspective projection. 61

5.15 Photos shot using 55 and 18mm focal length lens. 62

5.16 Photo with natural lens effect. 63

5.17 Rendering with caustics. 64

5.18 RGB model (a) and CMY model (b). 65

5.19 HSV model. 65

List of Figures 107

6.1 An image created with the help of POV-Ray. 68
6.2 Basic scene. 69
6.3 Surface of Revolution. 70
6.4 Difference of a box and sphere. 71
6.5 union, difference , intersection , inverse, merge. 71
6.6 20 balls created with the help of while loop. 72
6.7 Metallic (golden) ball with bumps. 74
6.8 Ice cube. 74
6.9 Sky sphere. 75
6.10 Candle flame. 77
6.11 Camera blur. 80
6.12 MayaVi user interface. 82
6.13 Pipeline model. 83
6.14 Scene toolbar. 87
6.15 Visualization of the torus and the cross-cap surface. 90
6.16 Example heightmap. 91
6.17 Visualization of the heightmap from Fig. 6.16. 92
6.18 Result of executing script from the listing 6.23. 94
6.19 Visualization of the data from a VTK file presented in listing

6.24. 96
6.20 Main window of the Swiss-PdbViewer. 97
6.21 Visualization of the 1gdi molecule. 99
6.22 Visualization of the 1gdi molecule ribbons. 99
6.23 Visualization of Hemoglobin rendered by POV-Ray. 100
6.24 Visualization of Hemoglobin rendered by POV-Ray. 100

About authors

Wies law Kotarski is a professor at the Institute of Computer Science,
University of Silesia in Sosnowiec. His main scientific interests are related to
computer graphics (subdivision methods, fractals) and applied mathematics
(optimal control theory). He is the author of several papers and the monograph
entitled ,,Fractal modelling of shapes”, published in 2008. He is a member
of international societies: IEEE Computer Society, American and European
Mathematical Societies (AMS, EMS).

Krzysztof Gdawiec is an assistant at the Institute of Computer Science,
University of Silesia in Sosnowiec. Recently, he prepared his PhD thesis on
local fractal methods of 2D shapes recognition. He is interested in computer
graphics, fractal modelling and automatic 2D shape recognition.

Grzegorz T. Machnik is a PhD student at the Institute of Computer Sci-
ence, University of Silesia in Sosnowiec. He is interested in computer graphics
and application of genetic algorithms to natural evolution processes.

