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Abstract 

In the research filed of nonlinear dynamical system theory it is well known that a homoclinic/heteroclinic point 

leads to unpredictable motions, such as chaos. Melnikov’s method enables us to judge whether the system has a 

homoclinic/heteroclinic orbit. Therefore, in order to assess a vessels safety against capsizing, Melnikov’s method 

has been applied for the investigations of chaos that appears in beam sea rolling. This is because chaos is closely 

related to capsizing incidents. In a previous paper 1), the formula to predict the capsizing boundary by applying 

Melnikov’s method to analytically obtain the non-Hamiltonian heteroclinic orbit, was proposed. However, in that 

paper, limited numerical investigation had been carried out. Therefore further comparative research between the 

analytical and numerical results is conducted, with the result being that the formula is validated. 
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1. Introduction 

 

Currently, investigations into chaos of nonlinear vessel rolling in beam seas have been extensively investigated 

e.g. 2)-11), with Melnikov’s method being effectively applied 12). Melnikov’s method can establish the onset of the 

heteroclinic point which assures the existence of the horseshoe map via the Smale-Birkoff theorem 13). For 

instance, Kan & Taguchi 5) implied that the threshold of fractal metamorphoses in the control plane obtained from 

the Melnikov analysis of the non-biased roll equation could be applicable for a vessel’s stability criterion. On the 

other hand, Spyrou 11) investigated the biased roll equation with an appropriate variable transformation and 

performed the Melnikov analysis using an analytically obtained homoclinic orbit. A nonlinear system, however, is 

not necessarily solvable, so in general it is difficult to analytically obtain the separatrix closed loop. Consequently 

Wu and McCue 14) applied the extended Melnikov’s method 15) for a numerically obtained heteroclinic orbit based 

upon the Endo and Chua’s work 16). 

In order to apply Melnikov’s method, it is required to obtain the separatrix closed loop for the autonomous part 

of the full system. Thanks to recent advances in nonlinear science, several solitary solutions have already been 

found via methods using nonlinear equations 17). Maki et al. 1) pointed out that the escape equation used by Kan & 

Taguchi 6) is identical with FHN (FitzHugh-Nagumo) with the exception of some of the coefficients. They 

investigated analytically the heteroclinic orbit in the time domain by using the solution technique that is originally 

used for analysing nonlinear waves, and then extended Melnikov’s method proposed by Salam 15) was applied. 

The paper 1), however, mainly addresses the analytical formulation, and limited numerical results were presented. 

In this paper, it is the objective to numerically validate the proposed formula, and carry out additional analysis of 

the escape equation.This paper is structured as follows: firstly, following the brief explanation of the formulation 

for the biased roll equation, the analytical results of the heteroclinic orbit are validated by using numerical 

bifurcation analysis. Then the results of the Melnikov integral are shown, and the obtained threshold of fractal 

metamorphoses that appeares in the control plane is compared with numerical simulation result. 

 

2. Non-Hamiltonian heteroclinic obit 



 4 

 

In order to apply Melnikov’s method introduced by Salam 15), it is required to obtain the non-Hamiltonian 

heteroclinic orbit. Although it is difficult to estbalish the exact solution of a nonlinear equation, the solutions of 

the equation could be found by employing a solution technique used in nonlinear waves. Maki et al. 1) applied this 

technique for the escape equation, and then provided the heteroclinic orbit and its condition. In this paper, the 

same methodology is used but the treatment of the bias term that appears in the equation is slightly different from 

that presented in the previous paper1). Thus, it is shown that the following brief reformulation is suitable for the 

numerical validation. 

Consider the following biased roll equation with linear damping and nonlinear cubic term in the restoring force 

as follows: 

( )( ) ( )
2

2 1 / 1 / cosV V r
d dI N W GM a M t
dt dt

w dF F
+ + × ×F -F F + ×F F = +  (2.1), 

Where   a : the coefficient representing the bias of roll equation, GM :the metacentric height, I : the moment 

of inertia in roll, rM : the amplitude of the 1st order wave-induced roll moment, N : the damping coefficient in 

roll, t : time, W : the ship mass, F : the roll angle and VF : the angle of vanishing stability. The appropriate 

non-dimensionalization for (2.1) yields: 

( )( ) ( )1 1 cosa tf bf µ f f f g w d+ + × - + × = +!! !  (2.2), 

where: 

/
/ , / , /

V

r VN I W GM I M I
f
b µ g
º F Fì

í º º × º Fî
 (2.3). 

In order to obtain the heteroclinic orbit of the homogenious part of (2.2), an addition of  the parameter for both 

sides of the equation are as follows. 

( )( ) ( )1 1 cosa tf bf µ f f f s s g w d+ + × - + × + = + +!! !  (2.4), 

Here s  can be calculated by using the procedure described in the previous paper 1), and the results are shown as 

follows: 

1 0
2 2
a µµ bæ ö- ± =ç ÷

è ø
!

!! !  (2.5), 

where 
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( ) ( )
( )

2 1 3 1

2
3 1

/

,

a

a

f f f f

b b µ µ f f

º - -ì
í

º º -î

!

! !
 (2.6), 

and 1f , 2f , 3f  are the solutions of the following equation. 

( )( )1 1 0aµ f f f s× - + × + =  (2.7) 

This is a third order polynomial with respect to f  and can be factorised using Cardano’s method. In (2.5), a 

positive or a negative sign corresponds to the trajectory on the upper and/or lower phase plane, respectively. When 

the condition (2.5) is satisfied, heteroclinic orbit is realized, and then it can be represented in the time domain as: 

( ) 3 1
0 1 0.51 t
t

e µ

f ff f
±

-
= +

+ !
 (2.8). 

Additionally, this is achieved by using the quadratic function in the phase plane, thus 

( ) ( )( ) ( )( )0 1 0 3
0

3 12
t t

t
f f f fµf

f f
- -

=
-

!
" #  (2.9). 

Note the double sign in the same order with eq.2.5, in eq’s.2.8 and 2.9.It is now possible to compare the results 

using the proposed method and numerical bifurcation analysis. In this paper, the numerical bifurcation analysis 

proposed by Kawakami et al. 18) is employed for finding the critical parameter s. Using this method, all the 

conditions necessary for realizing the heteroclinic bifurcation, i.e. the equilibrium of saddle points, their 

eigenvalues, their eigenvectors, and the connection of both trajectories at the intermediate point, are 

simultaneously solved with Newton’s method. Using Kawakami’s method an allowable numerical displacement 

vector norm of 61.0-  error is applied when using the  Newton method. To further retain the numerical accuracy, 

a 5th order Runge-Kutta integral scheme is also applied.  

In fig.1  the comparison of the critical value s for the non-biased escape equation, i.e. when 1a = , obtained 

by using these two methods. Whereas Fig.2 is when the bias. 0.9a = . Since only a small discrepancy can be 

observed in these figures, the proposed analytical method is considered to be satisfactory. Fig.3 and fig.4 illustrate 

the heteroclinic orbits of the in phase plane spanned by f  and f!  obtained using these two methods. Note that 

the analytically obtained heteroclinic orbit is a quadratic function (2.9). It can also be observed that the two orbits 

are completely identical. Although the uniqueness of a heteroclinic orbit for this system cannot be proved, mutual 

agreement indicates that (2.8) locally it is consistent and represents the heteroclinic orbit of Equation (2.2). Since 

this solution, for obtaining the heteroclinic bifurcation point is quite simple and robust, it can be used easily to 
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calculate the parameter set required, thus realizing the heteroclinic bifurcation as shown in fig.5. 

 

3. Critical forcing 

 

	 If an heteroclinic orbit is obtained, Melnikov’s method is analytically applicable. Next the biased case is 

examined. Wu and McCue 14) used 

( ) ( )( ) ( )3 2 31 cosa tf bf µ f f f f g w d+ + - = - - + +!! !  (3.1). 

based upon the assumption of small 1 a- , as an alternative to directly manipulating (2.4), and then Melnikov 

integral 

( ) ( ) ( ) ( ) ( ) ( )( )2 3
0 0 0 0 0cos 1 tM t t t t a t t e dtbf g w s f f

¥

-¥
= + + + - -é ùë ûò

!"  (3.2). 

is carried out for the heteroclinic orbit of the left hand side of (3.1). Note that the left hand side of (3.1) is the 

non-biased roll equation. By using the analytically obtained heteroclinic orbit (2.9), the critical forcing is obtained 

as follows: 

( )( )0 0 1 1 2 2 3 3 0

2 2

1

r i

a A I A I A I A I I

I I

s
g

- + + + +
=

+
 (3.3). 

In this equation, the values rI , iI , 0I , 1I , 2I , 3I  can be calculated analytically as follows: 

( )
( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 2

2

csc /exp1Re Re sgn
4 cosh / 2

2 cosh / sin / cos / sinh /
sgn

cos 2 / cosh 2 /

r
i i ct i t

I dt c
ct c

c c c c
c

c c c

p b w p b wb w

p b wp bp w bp wp

bp wp

¥

-¥

é é ù ùé ù + ++ ë ûº = ê úê ú
ê ú ê úë û ë û
é ù+ë û= -

é ù-ë û

ò
! !! !

!
! !

! ! !! ! ! !
!

!! ! !

 (3.4) 

( )
( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 2

2

csc /exp1Im Im sgn
4 cosh / 2

2 cosh / sin / cos / sinh /
sgn

cos 2 / cosh 2 /

i
i i ct i t

I dt c
ct c

c c c c
c

c c c

p b w p b wb w

p w wp bp b bp wp

bp wp

¥

-¥

é é ù ùé ù + ++ ë ûº = ê úê ú
ê ú ê úë û ë û
é ù- +ë û=

é ù-ë û

ò
! !! !

!
! !

! ! !! ! ! !
!

!! ! !

 (3.5) 

( )
( )( ) ( )0 2 2

exp
sgn

sin /1 exp

t ct
I dt c

c cct

b bp
bp

¥

-¥

+
º =

+ò
! !!

!
!! !!

 (3.6) 
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( )
( )( )

( )
( )1 3 3

exp 2
sgn

2! sin /1 exp

t ct c
I dt c

c cct

b b b p

bp
¥

-¥

+ +
º =

+ò
! ! !! !

!
!! !!

 (3.7) 

( )
( )( )

( )( )
( )2 4 4

exp 3 2
sgn

3! sin /1 exp

t ct c c
I dt c

c cct

b b b b p

bp
¥

-¥

+ + +
º =

+ò
! ! ! !! ! !

!
!! !!

 (3.8) 

( )
( )( )

( )( )( )
( )3 5 5

exp 4 2 3
sgn

4! sin /1 exp

t ct c c c
I dt c

c cct

b b b b b p

bp
¥

-¥

+ + + +
º =

+ò
! ! ! ! !! ! ! !

!
!! !!

 (3.9) 

( )2
0 1 11A f f= -  (3.10) 

( )( )1 2 3 1 22 3A f f f f= - -  (3.11) 

( ) ( )2
2 3 1 11 3A f f f= - -  (3.12) 

( )33 3 1A f f= - -  (3.13) 

where 

/ 2c µº ±! !  (3.14), 

In following figures, the results based on (3.3) are plotted as ‘Formula of a non-biased heteroclinic orbit’ 

On the other hand, the Melnikov integral can be carried out without transposing the part of the restoring term 

into right side since the non-biased roll equation is solved analytically as shown in previous section. In this case, 

the critical forcing can be obtained as: 

0

2 2
r i

I
I I
sg =
+  (3.15) 

0I , rI  and iI , are the same as those shown in eqs.(3.4) to (3.6). Note, for the calculation of 0I , rI  and iI , an 

heteroclinic orbit with respect to the biased-roll equation should be employed. In the following figures, the results 

based on (3.15) are plotted as ‘Proposed formula’. 

Fig.6 shows the final results of the critical forcing g  for the non-biased case. In this figure, The results are 

obtained by using the formula 14) given by: 

( ) ( )sinh / 22 12
3 3

a pwbg
pw

é ù-
= -ê ú
ë û

 (3.16). 

And are plotted as ‘Formula from Hamiltonian heteroclinic orbit’ for comparative purposes. Note that (3.16) with 

a of 1.0 is identical with the formula obtained by Kan and Taguchi 6). From figure 6, it can be seen that there is 
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only a minor discrepancy between the two. Figure 7 indicates comparative results of the critical forcing obtained 

by using several methods and it shows that the results of critical forcing do not wholly depend upon an assumed 

heteroclinic orbit. The reason is considered as follows. In this study, the extended Melnikov method introduced by 

Salam 15)  is employed. The significant difference between the original method and the extended  method is 

whether or not the damping term of a heteroclinic orbit is taken into account. However, it is well known that roll 

dumping is generally small, and that the contribution of its difference also becomes small. The proposed 

calculation technique is relatively complicated compared to that proposed by Kan & Taguchi 6) and the method 

proposed and by Spyrou et al. 11), and these method are considerably validated by numerical simulation. Therefore, 

these two methods are more practical and thus recommended. 

Finally, we confirm whether the obtained critical forcing actually represents the bound of chaos or fractals. 

Since the obtained values using the proposed method are: g of 0.06344, a of 0.975, b of 0.1 and w of 0.8, a 

numerical calculation is carried out for g of 0.07. Here, slightly above the critical forcing is chosen for numerical 

calculation. This is because fractal metamorphoses of basin boundary cannot be clearly observed at g close to 

0.06344. Fig.8 shows the onset of a safe basin erosion near this value. The black shaded part of the plot represents 

the non-capsizing region while white non-shaded part is a capsize region. From this figure it can be concluded that 

the critical forcing obtained by using Melnikov’s integral formula can approximately demonstrate the onset of 

chaos and fractals. 

Although this analysis is carried out for the escape equation having only linear damping terms the same 

procedure is of course applicable for equations having higher order damping terms. As an example, in 

Appendix 1,the method employing the equation having linear and quadratic damping terms is described , and 

an extended analysis for a 1 DoF roll equation having 4th order polynomial restoring term and a quadratic 

polynomial damping term is described in Appendix 2. Furthermore, it is worth noting that saddle-node bifurcation 

appears in the escape equation and the relation to the Melnikov analysis is demonstrated based on Yagasaki’s work 

19), in a previous paper 20). 

 

4. Concluding remarks 



 9 

 

	 The main conclusions to be drawn from this work can be summarized as follows: 

1. The proposed equation representing the heteroclinic orbit from previous work is verified by numerical 

results.  

2. By using an analytically obtained heteroclinic orbit, the Melnikov integral can be analytically evaluated. As a 

result, it is concluded that for the equation having a small damping term, such as the escape equation, 

whether or not the damping term is taken into account the calculation of the separatrix does not strongly 

influence the final result.  
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Appendix 1 

 

In this paper, the damping term in the state equation is assumed as linear, but the critical forcing should be 

formulated for a general case. Therefore, the formulation is shown for the case of linear, quadratic and cubic 

dumpling: 

( )( )2 3
2 3sgn 1 sina F tj bj b j j b j j j j s w+ + + + - - = +!! ! ! ! ! "  (A1-1). 

Manipulation of this equation easily leads to following expression: 

( )( )
( ) ( )

2 3
2 3

0
1 sgn sin

d t
adt F t

j j
j bj j j j b j j b j s w

æ öæ ö æ ö= + º +ç ÷ ç ÷ ç ÷- - - -è ø è ø - - + +è ø
F x G

!

! ! " ! ! !
 (A1-2). 

Then the Melnikov integral becomes: 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
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0
0 0

0

3 33 0 0
2

0

4 44 0 0
3

0

0 0
0

0

0 0

0

2 2 1
0

exp tr

sgn 1 exp

1 exp

sin 1 exp
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sin tan /

t

t

t

t

t

r i i r

M t t t t D ds dt

c c t t ds dt

c t t ds dt

F t t c t t ds dt

c t t ds dt

Fc I I t I I

j

b j j b

b j j b

w j j b

s j j b

w s

¥

-¥

¥

-¥

¥

-¥

¥

-¥

¥

-¥

-

= Ù + × -

= - - ×

- - ×

+ + - ×

+ - ×

= + + +

ò ò

ò ò

ò ò

ò ò

ò ò

F G F x

! !

!

!

!

! ! ( ) 3 4
2 2 3 30 sgncI c K c c Kb b- -! ! !

 (A1-3). 

Here I , 2K  and 3K  are defined as follows: 

( ) ( ) ( )( )0 01 t i tI t t e e dtb ww j j
¥

-¥
º -ò

!  (A1-4), 
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( )( ) ( )( ) ( )3 30 0
2

0
1 exp

t
K t t ds dtj j b

¥

-¥
º - ×ò ò !  (A1-5), 

( )( ) ( )( ) ( )4 40 0
3

0
1 exp

t
K t t ds dtj j b

¥

-¥
º - ×ò ò !  (A1-6), 

where we put [ ]RerI I=  and [ ]ImiI I= . 2K  and 3K  can be calculated via Cauchy’s integral theorem as 

follows: 

( )( )
( )

2 2 2 2

2 6

4
sgn

5! sin /
c c

K c
c c

pb b b
pb

- -
º

! !
!

! !
 (A1-7) 

( )( )( )
( )

2 2 2 2 2 2

3 8

9 4
sgn

7! sin /
c c c

K c
c c

pb b b b
pb

- - - -
º

! ! !
!

! !
 (A1-8) 

Note that a singular point of the equation (A1-5), i.e. ( )2 1 /t i n cp= + ! , is a pole of order 6. Here n  denotes the 

arbitrary integer. Therefore following condition must be held. 

( ) 2 3
2 2 3 3

2 2

0 sgn

r i

I c K c c K F
I I

s b b- -
<

+

! ! !
 (A1-9). 

 

Appendix 2 

 

In the main section, the 1 DoF roll equation with cubic, quadratic and linear restoring term is carried out. In this 

appendix, the study for the 1 DoF roll equation is shown, having 4th order polynomial restoring term and 

quadratic polynomial damping term. 

( )( )( )2
1 2 11 0x x x x x x k x sb b g+ + + - - - =! ! !"" " "  (A2-1). 

The reason why these terms are represented by higher order polynomial is to fit their original curves. Here making 

the following ansatz as a solution in time domain: 

( )0
0 0/ c tx a e b-= +  (A2-2), 

and substituting equation (A2-2) into (A2-1) yields: 

( )

( )0

0

3 2 2 2 2 2 2 3
0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0

2 2 2 2 2 2 2
0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0

2
0 0 1 0 1 0

2 2 2 3 3c t

c t

a a a b ka b s a b ka b s a b ks a b ks b

a e a ka s a ka b s a b ks a b ks a b ks b b c b c

a e ka s a ks a

g g g g g g g g

g g g g g g g g b

g g g

-

-

- + + + - - - +

+ + + - - - + + + -

+ - - - +

! ! ! ! ! ! ! !

!! ! ! ! ! ! ! !

! ! !( )
( )0

2
1 0 0 1 0 0 2 0 0

3 2
0 1 1 0 0

3 2

0c t

ks a b b c a c

a e ks c c

g b b

g b-

+ +

+ + + =

! !!

!!

 (A2-3) 

Comparing both sides of the equation when considering: 

0 0 1a b= =  (A2-4), 
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 we can obtain the following equations: 

2
1 1 1 0 0

2
1 1 1 0 2 0

2
1 1 0 0

0

2 2 0

0

k s ks c c

k s ks c c

ks c c

g g g g b

g g g b b

g b

- - + + - =ì
ï- - + + + =í
ï + + =î

!! ! ! !

! !! ! !

!!

 (A2-5a,b,c) 

Solving (A2-5c) with respect to 1b!  yields: 

2
1 0

1
0

ks c
c

gb - -
=
!

!  (A2-6). 

Substituting the above equation to (A2-5a) and (A2-5b), we can obtain: 

2
1 0

2 2
1 2 0 0

2 0

2 0

k s c

k s c c

g g g

g g b

- - - =ì
í
- - + - =î

! ! !

!! !
 (A2-7a,b) 

(A2-7b) can be rewritten as: 

12
0

22
k sc g g

b
+

=
- +
! !

!
 (A2-8), 

so that substituting the above expression into (A2-7a), following relationship is obtained. 

( )[ ]2 1

2

2 1
0

2
k sg b

b
+ - + +

- =
- +

!!

!
 (A2-9) 

Solving the above equation with respect to 2b!  and assuming 2 2b ¹ -! , we can obtain 

2
1

2
1 k s

b = -
- + +

!  (A2-10). 

If this relationship is satisfied, the solution with regard to polynomial approximated equation is determined as 

follows: 

( )111 / 1 exp
2
k sx tg- - + +ì é ùü= + -í ýê úî ë ûþ

!
 (A2-11). 

Here 0c  is assumed as positive value as: 

( )1
0

1
2
k sc g- - + +

=
!

 (A2-12), 

so that, substitution of above equation into (A6) yields: 

( )

( )

1 1
1

1

1 2
2 1
k s ks

k s
gb

g
- + + -

=
- - + +

!
!

!
 (A2-13). 

This is the condition of heteroclinic bifurcation. Obviously, the condition 10 and 0sg < >! , or , 10 and 0sg > <!  

is required. Here we briefly consider the heteroclinic orbit. Eliminating the time t from equation (A2-11) yields 

the trajectory in the phase plane consists of  x  and ! &x  as quadratic equations. However, if we substitute the 
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trajectory having a quadratic form into equation (A2-1), this equation is not satisfied. This is because the equation 

(A2-13) is only defined between the two saddle points. Note that equation (A2-10) and equation (A2-13) should 

be simultaneously satisfied, and it implies that the solution surface is formed in 4 dimensional parameter plane 

consisting of 1 2 1, , ,k s kb b! ! . Note, therefore, that the obtained heteroclinic trajectory cannot represent the all the 

trajectories of equation (A2-1). 

Using the quadratic form of the trajectory in the time domain, chaos that appears in equation (A2-1) can be 

studied. Considering the following relationships: 

( )( ) ( ) ( )0
0 0 sinj wÙ + = +!q t t t b b tF G  (A2-14) 

( )
( ) ( )[ ]3 2

1 1 1 1 1 2

0 1
4 3 1 2 2

D
x k s x ks k s x ks xg b b

æ ö= ç ÷- + + + + + - - -è ø
F x

! !! "
 (A2-15) 

( ) 1 2tr 2D xb b= - -F x ! ! "  (A2-16) 

then the Melnikov integral becomes: 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )

( )( ) ( )

0
0 0

0

0 0
0 1 2

0

0 0
0 1 2

0

0 0 0

2 2 1
0 0

exp tr

sin 1 exp 2

1 exp 2

cos sin 0

sin tan / 0

t

t

t

i r

r i i r

M t t t t D ds dt

b t t c t t x ds dt

b c t t x ds dt

bc I t I t b cI

bc I I t I I b cI

j

w j j b b

j j b b

w w

w

¥

-¥

¥

-¥

¥

-¥

-

= Ù + × -

= + - × -

+ - × -

¢ ¢ ¢= + +

¢ ¢ ¢ ¢ ¢= + + +

ò ò

ò ò

ò ò

F G F x

! !! "

! !! "

! !

! !

 (A2-17) 

where ( )I w  is defined with the following Fourier transformation: 

( ) ( ) ( )( ) ( )0
1 20 0 21 t t i tI t t e e dtb b j ww j j

¥ -

-¥
º -ò

! !  (A2-18). 

This equation has a form shown as follows: 

( )
( )

( )

( )( )
( )

2
1

1 2 2

2 2

2exp
exp tanh / 21 11 exp

4 cosh / 2 4 cosh / 2

t i t t ct i tctI dt dt
ct ct

bb w
b b b w

w
¥ ¥

-¥ -¥

æ ö- +ç ÷ - - ++ -è ø= =ò ò

!
!

! ! ! !!

! !
 (A2-19). 

However, it is considered to be that the further analytical manipulation is difficult. 
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Figures legends 

 

Figure 1  Comparison of parameter s  obtained by using analytical method and numerical method with a of 1.0. 

Figure 2  Comparison of parameter s  obtained by using analytical method and numerical method with a of 0.9 

Figure 3  Comparison of phase trajectories obtained by using analytical method and numerical method with a of 

1.0 and b  of 0.1 

Figure 4  Comparison of phase trajectories obtained by using analytical method and numerical method with a of 

0.9 and b  of 0.1. 

Figure 5  Parameter set of the heteroclinic bifurcation points. 

Figure 6  Comparison of critical forcing for non-biased roll, i.e. a of 1.0. 

Figure 7  Comparison of critical forcing with a of 0.975 

Figure 8  An Example of fractal metamorphoses of basin boundary with a of 0.975, b of 0.1,,  w of 0.8 and F 

of 0.07, which is slightly above the critical forcing. 
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Figure 1  Comparison of parameter s  obtained by using analytical method and numerical method with a of 1.0. 
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Figure 2  Comparison of parameter s  obtained by using analytical method and numerical method with a of 0.9. 
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Figure 3  Comparison of phase trajectories obtained by using analytical method and numerical method with a of 

1.0 and b  of 0.1. 
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Figure 4  Comparison of phase trajectories obtained by using analytical method and numerical method with a of 

0.9 and b  of 0.1. 
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Figure 5  Parameter set of the heteroclinic bifurcation points. 
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Figure 6  Comparison of critical forcing for non-biased roll, i.e. a of 1.0 and b  of 0.1. 
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Figure 7  Comparison of critical forcing with a of 0.975	 and b  of 0.1. 
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Figure 8  An Example of fractal metamorphoses of basin boundary with a of 0.975, b of 0.1,,  w of 0.8 and g  

of 0.07, which is slightly above the critical forcing. 
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