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Abstract 

Chaos appearing in a ship roll equation in beam seas, known as the escape equation, has been intensively 

investigated so far because it is closely related to capsizing accident. In particular, many applications of Melnikov 

integral formula have been reported in the existing literature. However, in all the analytical works concerning with 

the escape equation, Melnikov integral is formulated utilizing a separatrix for Hamiltonian part or a	 numerically 

obtained heteroclinic orbit for non-Hamiltonian part, of the original escape equation. To overcome such 

limitations, this paper attempts to utilise an analytical expression of the non-Hamiltonian part. As a result, an 

analytical procedure making use of a heteroclinic orbit of non-Hamiltonian part within the framework of 

Melnikov integral formula is provided. 
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1. Introduction 

In the research field of nonlinear dynamical system theory, it is well known that the Feigenbaum cascade of period 

doubling bifurcation could lead to chaos 1), and so far, considerable research with regard to this phenomenon has 

been reported. The chaotic behaviour of ship roll motion in beam seas was studied by Virgin 2), Thompson 3), 4), 

Kan et al 5), 6), and others. Thompson used the escape equation with a second-order polynomial fitting the restoring 

term and discussed about capsize (or escape) and chaos. Kan et al. observed in their model experiment the 

capsizing phenomenon caused by period-doubling bifurcation 5). Further they investigated the escape equation 

with nonlinear cubic restoring term using the numerical time simulation, and confirmed close the relationship 

between capsize and chaos 6). On the other hand, Murashige et al. calculated the Lyapunov exponents from the 

measured time history of flooded ship model 7), and they confirmed that the ship rolling motion could tend to a 

chaotic attractor. Moreover they did detailed numerical stidies with a theoretical model 8). 

Melnikov integral formula enables us to test for the existence of transverse homoclinic connection of invariant 

manifold of a saddle 9), 10). It implies the beginning of the fractal metamorphoses, and one of prerequisites for the 

chaotic behaviour. As an example of direct application of this method to the ship roll problem using the escape 

equation with cubic restoring term, Kan et al. 6) analytically estimated the condition of chaotic behaviour. 

Although it is required to analytically or numerically obtain the heteroclinic orbit in time domain to calculate the 

Melnikov integral of highly dissipative system, an analytical expression of non-Hamiltonian part is not easily 

obtained in general. Therefore Wu et al. calculate the Melnikov integral using a numerically obtained heteroclinic 

orbit 11). Though numerical integration requires verification for its accuracy of infinite integral, it seems to be an 

extremely powerful technique even for high-dimensional systems.  

A general solution for nonlinear differential equation is not always available. In case of the escape equation with 

cubic restoring term it is not. Thereby Kan et al 6) calculated the Melnikov integral based upon the separatrix of 

Hamiltonian part of escape equation as alternative to solving its non-Hamiltonian part. However, although we 

cannot find a general solution of the escape equation, heteroclinic orbits themselves can be obtained using a 

solution technique, which is used for analysing nonlinear waves. 

A heteroclinic orbit is an orbit connecting two saddles, and such an orbit can be realized for certain parameters i.e. 



4 
 

the set of heteroclinic bifurcation points 12). For instance, it is well known that surf-riding threshold in following 

and quartering seas can be represented as a heteroclinic bifurcation point 13). Considerable effort for the research 

on the surf-riding threshold has been carried out, and one of the authors also proposed an analytical technique for 

estimating the surf-riding threshold. In this technique, a sinusoidal periodic surge force induced by waves was 

approximated using a 3rd order polynomial, and then an analytical formula to estimate the surf-riding threshold is 

obtained 14). This approximated surge equation is identical to the non-Hamiltonian part of the escape equation. 

Therefore, in present paper, we attempt to apply the same procedure to the escape equation for providing an 

analytical formula for the threshold of chaos. 
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2. Escape Equation 

A uncoupled roll motion with wave excitation is modelled as 6); 

( )( ) ( )
2

2 1 / 1 / cosV V rs r
d dI N W GM M M t
dt dt

w dF F
+ + × ×F -F F +F F = + +  (1), 

where F  is roll angle. In forcing term i.e. right side of equation (1), rsM  denotes the 2nd order steady 

wave-induced roll moment whereas rM  does the amplitude of the 1st order wave-induced roll moment. It is 

assumed that rsM  and rM  have relatively small values against terms in the left side of equation (1). Obviously 

VF = ±F  are saddles. Here we divide rsM into two: 

1 2rsM M M= +  (2). 

This separation is to create the heteroclinic orbit. In practice value 1M  is determined by condition of heteroclinic 

bifurcation described in next section. The factorisation yields: 

( )( ) ( )( )( ) 2
1 1 2 31 / 1 / /V V VW GM M W GM× ×F -F F +F F - = × F-F F -F F-F F  (3), 

where the relation 1 2 3F <F <F  is held. Considering the following transformation: 

1

3 1
j F -F
=
F -F

 (4), 

then restoring terms becomes: 

( )( )( ) ( ) ( )
3

1 2 3 3 1 2 1
2 2

3 1
1

V V

W GM W GM
j j j

× F -F F -F F -F × F -F F -Fæ ö= - -ç ÷F F F -Fè ø
 (5). 

Therefore we have: 

( ) ( )
( ) ( )

( )
22

3 1 2 1 2
2 2

3 1 3 1 3 1
1 cosr

V

W GMd N d M M t
dt I dt I I I
j j j j j w d

× F -F F -Fæ ö+ + - - = + +ç ÷F F -F F -F F -Fè ø
 (6). 

The definitions of new variables as : 

( ) ( ) ( )
( ) ( )

2 2
3 1 2 1 3 1

0 2 3 1 3 1

/ , / , /
/ , /

V

r

N I W GM I a
b M I b M I
b µì º º × F -F F º F -F F -F
í

º F -F º F -Fî

! ! !
 (7), 

yield the following equation: 

( )( ) ( )
2

02 1 cosd d a b b t
dt dt
j jb µ j j j w d+ + × - - = + +! ! !  (8). 

Note that if 0.5a =! , then left side of this equation becomes symmetrical. This equation is utilised for all the 

considerations in this paper. 
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3. Solution of Non-Hamiltonian Heteroclinic Orbit 

Considering the case of 0 0b =  and 0b =  in equation (8): 

( )( )
2

2 1 0d d a
dt dt
j jb µ j j j+ + × - - =! ! !  (9). 

This equation is identical with FHN (FitzHugh-Nagumo) equation 15), 16) except for some coefficients (see 

appendix 1), so that the solution method for nonlinear waves 17) to find a travelling wave is applicable. Here 

assuming that equation (9) has a heteroclinic orbit. Then let us postulate a non-Hamiltonian heteroclinic orbit: 

( )1cj j j= -! "  (10). 

Differentiation of equation (10) with regard to time yields: 

( )
( ) ( ) ( )( )

2
22 1 2 1 1 2

d
c c c c

dt
j j

j j jj j j j j j
-

= = - = - = - -!! ! ! !" " " "  (11). 

If we substitute above equation into equation (9), then we can obtain: 

( )( ) ( ) ( )( )2 1 1 2 1 1 0c c aj j j b j j µ j j j- - + - + × - - =!! ! ! !  (12). 

Here taking a monomial order of ( ): 0,1j j" Î : 

( ) ( )2 22 0c c c aj µ b µ- + + - =!! ! ! ! ! !  (13). 

In order to satisfy the above equation for ( ): 0,1j j" Î , the following relations are required. 

2

2

2 0

0

c

c c a

µ

b µ

- =ì
í

+ - =î

! !

!! ! ! !
 (14a,b). 

From equation (14a) we have: 

/ 2c µ= ±! !  (15). 

The positive sign corresponds to a heteroclinic orbit on upper side of phase plane whereas the negative sign does 

to oneon lower side of phase plane. Substituting this condition into equation (14b), we have: 

10 0
2 2 2 2

a aµ µ µb µ µ bæ ö± - = Þ - ± =ç ÷
è ø

! ! !
! !! ! ! !  (16). 

Here the conditions of 0.5a >!  corresponds to the heteroclinic orbit on upper plane while 0.5a <!  does to that 

on lower plane since positive roll damping, i.e. 0b >!  and positive metacentric height, i.e. 0µ >!  should be 

satisfied for an normal intact ship in general. Equation (16) can be solved using a simple iteration procedure with 

respect to a single variable, such as 1M , when the bifurcation point is required as a function of 1M . Table 1 
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indicates the comparison of critical value Cs  providing the heteroclinic orbit. Here Cs  denotes the 

non-dimensionalized value 1M  as 1 / VM W GMs = × ×F . Further calculation condition is set to be the same as 

those of Table 3 provided by Wu and McCue 11) and the values Cs  obtained by Wu and McCue are noted. Since 

the results obtained by the present procedure well agree with the numerical ones by Wu and McCue 11), it is 

concluded that the analytical method proposed here is verified and numerical results of Wu and McCue 11) has 

sufficiently high accuracy.  If we solve Equation (10), we can easily obtain as a solution in time domain: 

( ) ( )
0 1 1 1 tanh

2 2 21 exp
ct dt

ct d
j

æ ö-
= = + ç ÷+ - + è ø

!!

!!
 (17). 

Here ( ),dÎ -¥ ¥!  denoted the arbitrary integral constant determined by an initial condition. Taking 0.5j =  at 

0t =  yields 0d =! , then equation (17) becomes: 

( )0 1 1 tanh
2 2 2

cttj = +
!  (18). 

This equation is utilized for calculating the Melnikov integral in next section. Moreover for the rolling equation 

with 4th-order polynomial, we can similarly obtain an analytical solution of heteroclinic orbit for limited 

condition. It is planned to be presented in separate publication in the future. 

If we consider the case of 0.5a =! , the solution of equation (16) is 0b =!  or 0µ =! . 0µ =!  implies the 

non-existence of restoring term, so that this solution is not relevant to the current problem. Therefore 0b =!  

should be regarded as a solution. If 0b =!  i.e. the Hamiltonian system, the separatrix connecting 0j =  and 

1j =  is realised only when 0.5a =! . It can be easily proved as follows. If we consider the case of 0b =!  in 

equation (9), simple manipulation yields: 

( )
2

3 2
2 1d a a

dt
j µ j j j= - + +é ùë û! ! !  (19). 

Multiplying each side of equation (19) by /d dtj  and integrating with regard to time t, then we can obtain:  

21 12
4 3 2

d a a
dt
j j µ j j+æ ö= ± - +ç ÷

è ø
! !

!  (20). 

Here 0j =  at / 0d dtj =  is assumed. Then at 1j = , /d dtj  takes the value of: 

2 1
6

d a
dt
j µ -æ ö= ± ç ÷

è ø
!

!  (21). 

If we require / 0d dtj = , the condition of 0.5a =!  is necessary. Therefore symmetrical equation has a separatrix 
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connecting two saddles only for the case of 0b =! , otherwise a separatrix becomes a homoclinic orbit.  

Finally we briefly consider whether expression (10) with 0.5a ¹!  can represent all the heteroclinic orbits. 

Equation (16) denotes the set consisting of heteroclinic bifurcation points in a parameter plane spanned by b!  

and µ!  as two solution one-dimensional manifolds. The system has only one heteroclinic orbit for certain 

parameter combination of 0b!  and 0µ!  by the uniqueness of the solution. It cannot deny that there could exist 

other heteroclinic orbits for other parameter combinations. The heteroclinic orbit introduced here, however, 

becomes identical to equation (A.5) in Kan 6) when b!  has zero (see appendix 2), so that it is supposed that the 

heteroclinic orbit in which we have interest, is realised for the parameter combination of b!  and µ!  obtained 

from equation (16). Therefore it is concluded that the equation (16) is the required solution for our analysis within 

the framework of	 the present research. 
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4. Calculation of Melnikov Integral 

Using the heteroclinic orbit obtained the above and following the methodology introduced by Salam 10), the 

Melnikov integral can be calculated. State equation (8) can be rewritten as vectorial representation: 

( )( )
( ) ( )

0

0
sin1

d t
b b tdt a

jj
j wbj µj j j

æ öæ ö æ ö= + º +ç ÷ ç ÷ç ÷ +è ø è ø- - - -è ø
F x G

!

"! ! " "
 (22). 

As shown above, the solution on 0 0b =  and 0b =  can be obtained as equation (21). Here apply Melnikov 

integral method. 

( )
( )[ ]2

0 1
3 2 1

D
a aµ j j b

æ ö= ç ÷- + + -è ø
F x

!! ! !
 (23) 

yields 

( )trD b= -F x !  (24). 

Note that wedge product is defined as 1 2 2 1a b a bÙ = -a b . Then ( )( ) ( )0
0q t t tÙ +F G  can be calculated as: 

( )( ) ( ) ( )( )0
0 0 0sinq t t t b b t tj wÙ + = + +F G !  (25). 

Therefore, Melnikov function ( )0M t  is determined as: 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )

( )( ) ( )

0
0 0

0

0 0 0 0
0 0

0 0

0 0 0

2 2 1
0 0

exp tr

sin 1 exp 1 exp

cos sin 0

sin tan / 0

t

t t

i r

r i i r

M t t t t D ds dt

b t t c t t ds dt b c t t ds dt

bc I t I t b cI

bc I I t I I b cI

j

w j j b j j b

w w

w

¥

-¥

¥ ¥

-¥ -¥

-

= Ù + × -

= + - × + - ×

= + +

= + + +

ò ò

ò ò ò ò

F G F x

! !! !

! !

! !

 (26). 

Here I  is defined as the following Fourier transformation: 

( ) ( ) ( )( )0 01 t i tI t t e e dtb ww j j
¥

-¥
º -ò

!  (27), 

where we put [ ]RerI I=  and [ ]ImiI I= . The condition having simple zero of equation (26) can be represented 

as: 

( )
0

2 2

0 /
r i

I b b
I I

=
+

 (28). 

Each component can be calculated by using Cauchy’s integral theorem (see appendix 3). Equation (18) with (A6) 

provides the condition of onset of chaos in the escape equation discussed here. 
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5. Concluding Remarks 

A fully analytical solution of heteroclinic orbit is used for calculating the Melnikov integral to estimate the onset 

of chaotic behaviour of escape equation, as an alternative to the technique using a separatrix of the Hamiltonian 

part of the escape equation or a numerically obtained heteroclinic orbit of its non-Hamiltonian part. Verification of 

the proposed technique is shown by comparison with existing numerical work. Uniqueness of the heteroclinic 

orbit having the form of equation (10) should be mathematically examined in future. 
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Appendix 1 

Hodgkin and Huxley have shown that the shape and speed of pulses in the nerve of a squid are well-approximated 

by numerical solution of Hodgkin and Huxley equation 18). Other closely related models were discussed by 

Fitzhugh or Nagumo 16). Nagumo 15) simplified the Hodgkin and Huxley equation as follows: 

( )( )
2

2 1e e e e e a b edt
t x
¶ ¶

= + - - -
¶ ¶ ò  (A1). 

Where e is a function of x and t, and 0 1a< < . Assuming 0b =  and ( ) ( ),e x t e x ct= +  yields: 

( )( )
2

2 1 0d e dec e e e a
dt dt

- + - - =  (A2). 

This equation is identical to Equation (9) except for some coefficients. 
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Appendix 2 

We explain that 0b =!  at equation (21) leads to equation (A.5) in Kan 6). As mentioned above, d!  is arbitrary 

constant. Putting 0d =!  and taking / 2c µ=! !  in (15), then the following equation can be obtained: 

1 1 tanh
2 2 2 2

t µj
æ ö

= + ç ÷
è ø

!  (A3). 

This orbit is defined within the open set ( )0,1j Î , so that utilizing the change of variable ( )1 / 2j y= +  yields: 

tanh
2
tµy

æ ö
= ç ÷

è ø
 (A4). 

This result is identical with equation (A.5) in Kan 6). 
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Appendix 3 

Here we briefly state about the integral having the form of equation (27). This equation can be rewritten as 

follows: 

( )
( )
( )2

exp1
4 cosh / 2

t i t
I dt

ct
b w

w
¥

-¥

+
= ò

!

!
 (A5). 

Taking the integral rout as shown in Figure 1, Cauchy’s integral theorem easily leads to the following result: 

( )
( ) ( )[ ]

2

csc /
sgn

i i c
I

c c
p b w p b w

w
+ +

=
! ! !

! !
 (A6). 

Note that a singular point of equation (A5), i.e. ( )2 1 /t i n cp= + ! , is a pole of order 2. Here n  denotes the 

arbitrary integer. 

+¥-¥

2 i
c
p
!

i
c
p
!

[ ]Re w

[ ]Im w

 

Figure 1  An integral route for positive c! . 
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Table 1 Comparison between numerical and present analytical results 

b!  ( )Nemericalre resultsCs 11 ( )Analytical resultsCs  

0.05 0.023577 0.023557 

0.1 0.047036 0.047036 
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Nomenclature 

GM  Metacentric height 

H  Wave height 

I  Moment of inertia in roll 

N  Damping coefficient in roll 

W  Ship mass 

F  Roll angle 

VF  Vanishing angle of roll restoring moment 

 


