
Hybrid Fuzzy - Stochastic 1D Site Response Analysis
accounting for Soil Uncertainties

Alessandro Tombaria,∗, Luciano Stefaninib,∗∗

aSchool of Environment and Technology, University of Brighton, Brighton, UK
bSchool of Economics, University of Urbino Carlo Bo, Urbino, IT

Abstract

The analysis of the seismic site response is conventionally carried out by the

study of the one-dimensional amplification of vertically propagating shear waves

through a horizontal soil profile with equivalent-linear elastic properties. Site

response analysis requires the specification of the input ground motion and the

dynamic characterization of the soil deposit. Whilst the stochastic approach is

commonly used to model seismic excitations, the use of probability density func-

tions for describing the soil properties is consistent only when precise informa-

tion based on a large amount of data from soil surveys are available. Conversely,

a non-probabilistic approach based on fuzzy set theory would be more appropri-

ate for dealing with uncertainties that are just expressed by vague, imprecise,

qualitative, or incomplete information supplied by engineering judgment. In

this paper, we address a hybrid fuzzy-stochastic 1D site response analysis ap-

proach: we consider probability models for the seismic input and fuzzy intervals

for dealing with soil uncertainties; the problem boundary values are defined

as convex normal fuzzy sets and described by means of membership functions.

Zadeh’s extension principle, in combination with an efficient implementation of

the Differential Evolution Algorithm for global minimization and maximization,

is used to perform fuzzy computations. Results are presented as fuzzy median
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value of the largest peaks of the peak ground acceleration at the surface by

considering four types of soil classified in accordance with the European seismic

building code. Finally, elastic response spectra defined in terms of gradual func-

tions are proposed in order to evaluate the influence of the soil uncertainties on

the seismic response of structures.

Keywords: Fuzzy logic, Site Response, Stochastic ground motion, Soil

uncertainty
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1. Introduction

Site response analysis aims to predict the influence of the local site effects

on the characteristics of the earthquake ground motion. This analysis evalu-

ates the propagation of the seismic waves through the soil deposit caused by

the vibrations of the bedrock immediately beneath it. Under specific conditions

such as the site is laterally infinite, horizontally layered, the ground surface is

free of stresses, and the soil is stiffer with the depth, seismic waves propagate

in the vertical, i.e. normal to the layers, direction. In this context, the most

widely technique for the study of the one-dimensional amplification of vertically

propagating waves involves the solution of the dynamic wave equation in the

frequency domain with equivalent linear elastic soil properties (see, e.g., [1]).

The most well-known implementations are represented by the code SHAKE [2]

or EERA [3] that compute the equivalent linear solution of the soil propagation

problem by the iterative scheme proposed by Seed and Idriss [4] where the soil

properties are adjusted until they are compatible with the computed level of

strain. This procedure is well established and site response analyses are ex-

haustively performed in the engineering practice in order to meet successfully

seismic building code compliance by considering the expected earthquake event

for selected values of return period for ground motion exceedance. Converse

to the traditional Monte Carlo Simulation that requires a selection of multiple

input rock motions for obtaining a statistically stable estimate of the median
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target response spectrum, random vibration theory (RVT) can be applied in

order to assess statistically estimates of the response overcoming the problem

of selection of a large number of earthquake input motions (e.g. see Rathje and

Ozbey [5], and Deng and Ostadan [6]). Therefore, the ground input motion can

be represented by a stationary Gaussian process, fully defined by the knowledge

of its power density spectral (PSD) function determined from a seismological

source model. Nevertheless, owing to the complexity of its intrinsic structure,

the soil characterization manifests various sources of uncertainties due to the

soil spatial variability and to the dispersion of the soil parameters. A current

perspective is treating the soil as a random material, i.e., certain properties

such as density, elastic modulus, shear modulus, etc., are described by statisti-

cal quantities. Manolis [7], in his review of the state-of-the-art in stochastic soil

dynamics, distinguished among random loadings, random material properties

and random boundaries. Moreover, in the context of site seismic response, a

few of authors (see, e.g., Andrade and Borja [8], Rathje et al. [9]) analyzed

the seismic response of soil deposits taking into account site property variabili-

ties assuming normal or lognormal distribution of the soil uncertainties. On the

other hand, due to the geologic process, the natural spatial variability of the soil

can be relevant with observed strong variation of the properties even over small

distances; soil properties maps generated from few soil surveys, do not provide

sufficient information about soil deposits and rock formation. The genuine lack

of knowledge or imprecision in the definition of a property, in addition to the dis-

persion of the data caused by systematic measurement errors, fluctuations and

sample disturbance, determine unavoidable uncertainty of an epistemic nature.

Due to the large amount of data required to estimate the parameters for the

dynamic geotechnical characterization of the soil deposit, the use of probability

density functions for all of them becomes inconsistent; a probabilistic model

dealing with these uncertainties requires supplying greater knowledge than that

gained from actual experience. Oberguggenberger [10] showed, for geotechnical

systems, the high sensitivity in calculating the failure probability when differ-

ent distributions obtained by fitting the same input data from laboratory tests
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are used. Therefore, in order to avoid misleading representations, several ap-

proaches alternative to the probabilistic method, referred to as non-probabilistic

methods, have been developed (see, e.g., Booker and Ross [11], Beck et al, [12],

Beer et al. [13]). In particular, fuzzy set theory (Zadeh [14]) can be applied for

dealing with non-random, incomplete, imprecise information as well as linguistic

vagueness, namely the use of natural linguistic information in engineering judg-

ment knowledge, for classifying generic class of soil (e.g. soft, medium, rigid)

or the soil deposit type (e.g. class A-B-C-D according to the EN 1998-1, [15]).

Fuzzy set theory (see, e.g., Hanss [16], Bede [17], Ross [18]) uses the concept

of possibility in which a fuzzy set Ã, is described as a class of objects with a

continuum of grades of membership µÃ, ranging from α = 0 (the object does

not belong to the set) to α = 1 (the object completely belongs to the set). In

literature, several authors have had recourse to the fuzzy logic for dealing with

uncertainties in soil properties; just to cite a few of them, Zhang and Tumay

[19] introduced a fuzzy set for the Cone Penetration Test (CPT) soil engineering

classification, Romo and Garcia [20] determined a Neuro-Fuzzy-Network map-

ping the experimental data of cone penetration tests into dynamic properties

such as the shear wave velocity, [21] used a Fuzzy-Neural Network Method to de-

scribe uncertain input parameters for soil-structure interaction problems, and

Valdebenito et al, [22] analyzed the vertical deflection of a cylindrical pile in

elastic bi-layered soil by considering approximate fuzzy parameters for soil and

pile properties. In seismic engineering, Marano et al. [23] applied the concept of

credibility for determining a fuzzy concept of stochastic seismic response spec-

trum by applying the Clough and Penziens double filter [24], where the filter

parameters were considered to be fuzzy. Clough and Penziens approach simpli-

fies the response of the soil as linear single degree of freedom (SDOF) in which

the natural frequency and the critical damping ratio are the only parameters

required to describe the soil response.

However, for vulnerable site or critical structures, a site-specific seismic anal-

ysis, referred to as site response analysis, that reflects to the local site conditions

is required.
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In this paper, the main parameters involved in the site response analysis,

i.e. the shear wave modulus G0, the soil unit density ρ, the maximum damping

ratio ξf , and the depth of the soil deposit h are considered by using the fuzzy

logic approach for dealing with the unavoidable uncertainties which occur dur-

ing soil characterization. On the other hand, seismic excitation defined at the

outcrop bedrock is described through a stochastic approach (see e.g.,[25]). The

membership function of the fuzzy output ãPGA(h̃, G̃0, ρ̃, ξ̃f ) representing the

fuzzy median value of the largest peaks of the free field acceleration at the top

surface, as a function of the fuzzy parameters G̃0, ρ̃, h̃ and ξ̃, is obtained by the

Zadeh’s extension principle, in combination with an efficient implementation of

the Differential Evolution Algorithm for global minimization and maximization

(Stefanini [26]).

Results are presented as fuzzy median value of the largest peaks of the

peak ground acceleration at the ground surface by considering four types of soil

classified in accordance with the European seismic building code (i.e. soil type

A-B-C-D).

Moreover, by accounting for deterministic structural parameters, elastic re-

sponse spectra described in terms of gradual functions, are evaluated in order to

analyse the influence of the soil uncertainties on the seismic response of struc-

tures.

2. Stochastic 1D Site Response Analysis Problem

This section derives the stochastic equation of the one-dimensional (1D) site

response analysis problem through the application of the random vibration the-

ory when only the seismic event is considered uncertain, in particular random.

The site response analysis aims to evaluate the effects of the local soil conditions

on the amplitude and frequency content of the seismic motion that propagates

through the soil deposit during an earthquake event. Figure 1 describes the

problem investigated in this paper: the ground motion Uout(ω), where ω ≥ 0

is the circular frequency, is known at the bedrock outcrop where accelerometer
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stations are usually installed for recording real earthquake events; this ran-

dom ground motion (Step 1) is modelled as a zero-mean stationary Gaussian

stochastic process fully described by the knowledge of its power spectral density

function, denoted by SÜ0Ü0
(ω). After that, the input ground motion process

Uout(ω) is derived by transferring the ground motion from the bedrock outcrop

to the bedrock underling the soil deposit, obtaining SUgUg (ω) (Step 2). The site

response analysis consists in predicting the stochastic ground motion process

U(ω, z), where z is the depth from the ground surface, propagating vertically

through the soil deposit (Step 3), caused by the stochastic seismic motion pro-

cess Ug(ω) = U(ω, zbed) at the bedrock level (z = zbed). Finally, the ground

motion process at the soil deposit surface U(ω) = U(ω, 0) is described by deter-

mining its power spectral density (Step 4) as well as the acceleration response

spectrum (Step 5).

Under the assumption of horizontal soil layers of infinite extent, the study of

shear waves propagating vertically is accomplished by solving the one-dimensional

soil amplification problem described in the frequency domain by the following

dynamic equation [1]:

G∗
d2U(ω, z)

dz2
= ρω2U(ω, z). (1)

Here, ρ is the soil density and G∗ is the complex linear equivalent shear modulus

of the soil defined as:

G∗ = G(1 + 2iξ) (2)

in which G and ξ are the real-valued secant shear modulus and critical damping

ratio and i is the imaginary unit.

By considering a layered continuous soil deposit composed of n layers of

which each i − th layer is characterized by constant properties Gi, ρi and ξi,

and its own local coordinate system ζi as illustrated in Figure 1, the wave

equation of the i − th layer assumes the form given in Eq. (1) that admits the

following steady state general solution:

U(ω, ζi) = Ui(ω) = Ci(ω)eik
∗
i ζi +Di(ω)e−ik

∗
i ζi (3)
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Figure 1: Stochastic 1D site response analysis procedure adopted in this paper

where k∗i =
√

ρiω2

G∗
i

is the complex wave number as a function of the complex

shear modulus G∗i given by Eq. (2) for the i − th layer, and Ci(ω) and Di(ω)

are the amplitudes of waves travelling downwardly and upwardly, respectively.

Equation (1) is addressed for each layer by computing the transfer function

between the i− th displacement Ui(ω), calculated at the top of the layer ζi = 0,

and the excitation Ug(ω) applied at the bedrock, as follows:

Hi(ω) =
Ui(ω)

Ug(ω)
=

Ci(ω) +Di(ω)

Cg(ω) +Dg(ω)
(4)

where Ci(ω) and Di(ω), for i = 1, . . . , n are the coefficients of Eq. (3) for the

i − th layer characterized by constant equivalent linear properties and layer

thickness hi whereas Cg(ω) and Dg(ω), are related to the bedrock properties.

The coefficients are obtained by the recursion formula as coded in the computer

program SHAKE [2] as follows (the dependence on ω has been omitted for

notational simplicity):

Ci+1 = 0.5Ci (1 + βi) e
ikihi + 0.5Di (1− βi) e−ikihi (5)

Di+1 = 0.5Ci (1− βi) eikihi + 0.5Di (1 + βi) e
−ikihi (6)

where βi =
kiG

∗
i

ki+1G∗
i+1

. In Eq. (4), the stochastic ground motion process Ug(ω)

is known through its power spectral density function SUgUg (ω); therefore, by

applying the basics of the random vibration theory, the power spectral density

7



function SUU,i(ω) of the displacement response at the i− th layer, subjected to

the Gaussian stationary process Ug(ω), is computed as follows:

SUU,i(ω) = |Hi(ω)|2SUgUg (ω) (7)

Moreover, from the definition of the shear strain γ(ω, ζi) = dU(ω,ζi)
dζi

, the shear

strain of the i− th layer is:

γi(ω) = ik∗i

(
Ci(ω)eik

∗
i ζi +Di(ω)e−ik

∗
i ζi
)
. (8)

Therefore, the power spectral density of the shear strain Sγγ,i(ω) is calculated

as:

Sγγ,i(ω) = |γi(ω)|2SUU,i(ω)

2
. (9)

Statistical quantities of the response are thus derived from the stochastic Eqs. (7)

and (9); in particular, the characteristic shear strain Xγ and the characteristic

acceleration XU at each iteration are computed as the fractile of order p (usually

the median, i.e. p = 0.5) of the distribution of maxima through the first crossing

problem [27] defined as follows:

Xγ,i = ηγ,i(Ts, p)
√
λ0,γ,i (10)

and

XÜ,i = ηÜ,i(Ts, p)
√
λ0,Ü ,i . (11)

Here, ηγ,i and ηÜ,i are peak factors determined through the relation obtained

by [28] and adapted for the shear strain and acceleration respectively:

ηγ,i =

√
2 ln

(
2Nγ

(
1− e−δ1.2γ,i

√
π ln(2Nγ,i)

))
(12)

and

ηÜ,i =

√
2 ln

(
2NÜ

(
1− e−δ

1.2
Ü,i

√
π ln(2NÜ,i)

))
(13)

with

Nγ,i =
Ts

−2π ln(p)

λ2,γ,i
λ0,γ,i

(14)

and

NÜ,i =
Ts

−2π ln(p)

λ2,Ü ,i
λ0,Ü ,i

(15)
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as well as

δγ,i =

√
1−

λ21,γ,i
λ0,γ,iλ2,γ,i

(16)

and

δÜ,i =

√√√√1−
λ2
1,Ü ,i

λ0,Ü ,iλ2,Ü ,i
; (17)

in the previous relations, Ts is the time length of the stationary part of the signal

and the zeroth-order, first-order, second-order response spectral moments of the

acceleration, λr,Ü,i, for r = 0, 1, and 2, respectively, are expressed as

λr,Ü,i =

∫ ∞
0

ω4+r SUU,i(ω) dω, (18)

whereas the he zeroth-order, first-order, second-order response spectral moments

of the shear strain λr,γ,i for r = 0, 1, and 2, respectively, are given by:

λr,γ,i =

∫ ∞
0

ωrSγγ,i(ω) dω. (19)

The characteristic shear strain Xγ is used for evaluating the secant soil prop-

erties through the iterative scheme proposed by [4] as equivalent linear proper-

ties; the secant modulus Gi and the critical damping ratio ξi are determined as

follows:

Gi = G0,i f(γri )

ξi = ξf,i g(γri )
(20)

where G0,i and ξf,i are the initial shear modulus and the maximum damping

ratio, respectively whereas f(γri ) and g(γri ) are the modulus reduction and the

damping ratio curves, respectively, calculated at the reference or characteristic

shear strain γri of the i− th layer, defined as the median (p = 0.5) characteristic

strain of the stochastic process as follows:

γri = Rγγ
median
i = RγXγ . (21)

The term Rγ of Eq. (21) is a coefficient accounting for the effect of the transient

response on the material properties, usually assumed constant equal to 0.65 [1].

Generally, the seismic input at the bedrock level, Ug(ω), is derived from a

given seismic load process Uout(ω) that is known at the rock outcrop where
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accelerometer stations are installed; the power spectral density at the bedrock,

SUgUg (ω), is evaluated from the following expression:

SUgUg (ω) = | 2Cg(ω)

Cg(ω) +Dg(ω)
|2SU0U0

(ω). (22)

Finally, in order to obtain the stochastic elastic response spectrum of Step

5 as depicted in Figure 1, the RVT is exploited to calculate the median value

of largest peak of the response of each single linear oscillator (SDOF) system

subjected to the ground motion process SÜÜ (ω). It is worth mentioning that in

case of nonstationary processes, an equivalent stochastic linearisation approach

can be used (see e.g, [29]). For each structural period T , the pseudo-acceleration

elastic response spectrum may be directly obtained as follows:

Sa(T ) = ηÜ

√
λ0,Ü . (23)

In Eq. (23), ηÜ and λ0,Ü , i.e. the peak factor in Eq. (11) and the zeroth-order

spectral moment of Eq. (18) respectively, are computed by using the transfer

function of the single degree of freedom HSDOF at the period T , i.e. at ω0 = 2π
T :

HSDOF (ω) = −
(
ω2
0

ω2
+ i2ξ

ω0

ω
− 1

)−1
(24)

in place of the the soil deposit transfer function in Eq. (7), whereas the input is

power spectral density in term of acceleration SÜÜ (ω), derived from the relation

SÜÜ (ω) = ω4SU0U0
(ω), obtained by the soil propagation problem in Eq. (7).

Therefore, the stochastic 1D site response analysis problem for an equivalent

linear soil deposit is fully determined.

3. Fuzzy Approach to Soil Parameter Uncertainty

The stochastic 1D site response analysis when soil parameters are uncertain,

is hereafter established by exploiting the fuzzy logic approach. In the proposed

soil amplification problem, in combination with the random nature of the input

motion, sources of uncertainty include variability in material properties, such

as the shear elastic modulus, the density, and the damping ratio as well as
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geometric boundaries as the thickness of the soil deposit. These uncertainties are

mainly caused by measurement errors, sampling disturbance and/or incomplete

knowledge about soil description; moreover, the use of natural language for

classifying the ground type (e.g. soft, soft-to-firm, stiff, very stiff) or the soil

type (e.g. Unified Soil Classification System) is common among practitioners.

In this context, Fuzzy sets theory (Zadeh [14]) has been shown to be effective

for dealing with the epistemic nature of these uncertainties (e.g see Hanss and

Turrin [30] and Fetz et al. [31]). Especially, when evidences do not allow a

probability interpretation of the data sets, fuzzy logic is a reasonable approach

for capturing the vagueness meaning of their properties; moreover, contrary to

the use of interval analysis, where only upper and lower bounds are assigned to

each parameter, the fuzzy sets provide further information about the grade of

possibility (or possibility distribution) on the interval. This section gives a brief

introduction on fuzzy logic interpretation of the investigated system parameters

as well as on fuzzy algebra and strategies to solve the optimal fuzzy problem.

3.1. Basic Fuzzy Theory

Given a system parameter A, its representation as a fuzzy set Ã over the set

of real numbers R (the universe) is usually defined by its membership function

µÃ : R −→ [0, 1] (25)

and a fuzzy (sub)set Ã of R is uniquely characterized by the pairs (x, µÃ(x)) for

each x ∈ R; the value µÃ(x) ∈ [0, 1] is the membership grade of x to the fuzzy

set Ã. If µÃ assumes only the two values 0 or 1, we obtain a subset of R in the

classical set-theoretic sense (what is called a crisp set in the fuzzy context) and

µÃ is simply the characteristic function of Ã. Fundamental concepts in fuzzy

theory (see, e.g., [17]) are the support, the level-sets (or level-cuts) and the core

of a fuzzy set (or of its membership function). The support of Ã is the (crisp)

subset of points of x ∈ R at which the membership grade µÃ(x) is positive:

supp(Ã) = {x|x ∈ R, µÃ(x) > 0}; (26)
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we always assume that supp(Ã) 6= ∅. For α ∈]0, 1], the α−level cut of Ã (or

simply the α− cut) is defined by

[Ã]α = {x|x ∈ R, µÃ(x) ≥ α} (27)

and for α = 0 by the closure of the support

[Ã]0 = cl{x|x ∈ R, µÃ(x) > 0}. (28)

The core of Ã is the set of elements of R having membership grade 1

core(Ã) = {x|x ∈ R, µÃ(x) = 1} (29)

and we say that Ã is normal if core(Ã) 6= ∅.

A particular class of fuzzy sets is when the level-cuts [Ã]α are compact

intervals or equivalently, the membership function is upper semi-continuous and

quasi-concave. In this case, a fuzzy set Ã is called a fuzzy number if ∃Â ∈ R such

that core(Ã) = {Â}, and is called a fuzzy interval if ∃Â−, Â+ ∈ R, Â− < Â+

such that core(Ã) = [Â−, Â+].

We will denote by F1 the space of real (unidimensional) fuzzy intervals with

the above properties; the α − cuts of a fuzzy number or interval are compact

intervals of the form

[Ã]α = [A−α , A
+
α ] ⊂ R. (30)

If A−α = Â− and A+
α = Â+, ∀α ∈ [0, 1] we have a crisp interval or a crisp number

(if, in addition, Â− = Â+). If A−α + A+
α = Â+ + Â−, ∀α ∈ [0, 1] then the fuzzy

interval is called symmetric. We say that Ã is positive if A−α > 0 , ∀α ∈ [0, 1]

and that Ã is negative if A+
α < 0 , ∀α ∈ [0, 1]. Any fuzzy number or interval

Ã ∈ F1 has the well known LR-representation (L for left, R for right), i.e. its

membership function is of the form

µÃ(x) =



AL(x) if a ≤ x < c

1 if c ≤ x ≤ d

AR(x) if d < x ≤ b

0 otherwise

(31)
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where a < c ≤ d < b, the function AL : [a, c] → [0, 1] is non-decreasing with

AL(a) = 0, AL(c) = 1 and the function AR : [d, b] → [0, 1] is non-increasing

with AR(d) = 1, AR(b) = 0. The interval [a, b] is the support and [c, d] is the

core. If c = d, we obtain a fuzzy number. We refer to the functions AL(.) and

AR(.) as the left and right sides of Ã, respectively and we refer to the functions

A−(.) and A+
(.) as the lower and upper branches of Ã, respectively.

The simplest fuzzy intervals have linear branches (in the LR or LU repre-

sentations). A trapezoidal fuzzy interval, denoted by Ã = 〈a, c, d, b〉 , where

a ≤ c ≤ d ≤ b, has α− cuts

[Ã]α = [a+ α(c− a), b− α(b− d)] , α ∈ [0, 1] . (32)

If c = d we obtain a triangular fuzzy number, denoted by Ã = 〈a, c, b〉, where

a < c < b and the core is a singleton c. Given two fuzzy numbers Ã, B̃ ∈ F1, the

four arithmetic operations are defined by the use of Zadeh’s extension principle

(◦ ∈ {+,−,×, /}):

µÃ◦B̃(z) = sup
z=x◦y

min{µÃ(x), µB̃(y)}. (33)

More generally, we will denote by Fn the space of vectors Ã = (Ã1, Ã2, ..., Ãn)

with n components Ãj ∈ F1 for j = 1, ..., n. Consider the extension of a function

f : Rn → R to a vector Ã = (Ã1, Ã2, ..., Ãn) ∈ Fn of n fuzzy numbers, with

k-th component Ãk ∈ F1 given, in terms of α-cuts, by [Ãk]α = [A−k,α, A
+
k,α]

for k = 1, 2, ..., n. Denote by B̃ = f̃(Ã1, Ã2, ..., Ãn) the corresponding fuzzy

interval. For a continuous function f : Rn → R, the α − cuts [B−α , B
+
α ] of the

fuzzy extension B̃ are obtained by solving the following box-constrained global

optimization problems (α ∈ [0, 1]):

B−α = min
{
f(x1, x2, ..., xn)|xk ∈ [Ãk]α, k = 1, 2, ..., n

}
(34)

B+
α = max

{
f(x1, x2, ..., xn)|xk ∈ [Ãk]α, k = 1, 2, ..., n

}
. (35)

For general functions, we need to solve numerically the global minimization and

maximization problems above; it is clear that, except for simple cases, we have
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only the possibility of fixing a finite set of values α ∈ {α0, ..., αN} and obtain

the corresponding B−α and B+
α point-wise. To reduce these difficulties, various

specific methods have been proposed (see, e.g., [16]), based on the fact that (1):

all the minimization and the maximization problems have the same objective

function, and (2): for different values of α the box-constraints are ”nested”, i.e.,[
Ãk

]
α

contains
[
Ãk

]
β

for β > α. To perform our computations, we have used

the two procedures SPDE and MPDE, implemented using MATLAB, based on

two special adaptations of the well-known Differential Evolution algorithm (DE

for short) to the multiple-nested optimization problems (34) and (35); a detailed

description with extended computational results can be found in Stefanini [26]

and Stefanini et al. [32].

The idea of DE to find min or max of {f(x1, ..., xn)|(x1, ..., xn)∈A ⊂ Rn} is

relatively simple: start with an initial ”population” x(1) = (x1, ..., xn)(1), ...,

x(p) = (x1, ..., xn)(p)∈A of p feasible points and evolve the population of the

current generation to obtain a new generation of points having better perfor-

mances with respect to the objective function. To obtain a new generation, the

actual points (individuals) are recombined randomly and new best points are

selected to continue in the next generation. Denote by x(k,g) the k−th vector

of the population at iteration (generation) g and by x
(k,g)
j its j−th component

(j = 1, ..., n). At each iteration, the method generates a set of candidate points

y(k,g) to substitute the elements x(k,g) of the current population, if y(k,g) is bet-

ter. To generate y(k,g) two operations are applied: recombination and crossover.

A typical recombination operates on a single component j ∈ {1, ..., n} and gen-

erates a new perturbed vector of the form v
(k,g)
j = x

(r,g)
j + γ[x

(s,g)
j − x(t,g)j ],

where r, s, t ∈ {1, 2, ..., p} are chosen randomly and γ ∈]0, 2] is a constant (even-

tually chosen randomly for the current iteration) that controls the amplification

of the variation. The potential diversity of the population is controlled by a

crossover operator, that constructs the candidate y(k,g) by crossing randomly
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the components of the perturbed vector v
(k,g)
j and the old vector x

(k,g)
j :

y
(k,g)
j =

v
(k,g)
j , with probability p

x
(k,g)
j , with probability 1− p

(36)

The candidate y(k,g) is then compared to the existing x(k,g) by evaluating the

objective function at y(k,g) : if f(y(k,g)) is better than f(x(k,g)) then y(k,g) sub-

stitutes x(k,g) in the new generation g + 1, otherwise x(k,g) is retained.

To take into account the particular nature of our problem, the basic DE pro-

cedure is modified by two different strategies.

SPDE (Single Population DE procedure): start with the (α = 1)− cut back to

the (α = 0)− cut so that the optimal solutions at a given level can be inserted

into the ”starting” populations of lower levels; use two distinct populations and

perform the recombinations such that, during generations, one of the popula-

tions specializes to find the minimum and the other to find the maximum.

MPDE (Multi Populations DE procedure): use 2(N + 1) populations to solve

simultaneously all the box-constrained problems; N + 1 populations specialize

for the min and the others for the max and the current best solution for level

αi is valid also for levels α0, ..., αi−1.

A sufficiently precise calculation requires a number N of α-cuts in the range

from 5 to 20, depending on the application and required precision (see Stefanini

[26] for detailed computational results).

3.2. Proposed Fuzzy Soil Model and Methodology

The fuzzy soil model to use in the stochastic site response analysis is here-

inafter determined. Moreover, the section proposes the methodology to con-

struct the membership functions of the soil parameters in order to treat the

uncertainty according to the fuzzy interpretation. Finally, the definition of

gradual elastic response spectrum is established.

3.2.1. Fuzzification of the stochastic site response analysis

The fuzzy logic approach to the analysis entails a transformation process

of the crisp (or deterministic) system parameters into fuzzy sets with grades
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of membership, referred to as fuzzification; different levels of fuzziness can be

defined according to which parameters are considered as fuzzy sets and which are

not, hence, being described by crisp or deterministic values. Each soil parameter

that can be interpreted as a fuzzy value is indicated by a component, Ãk, of the

n−dimensional input vector Ã. Therefore, the fuzzification process of Eq. (7),

for a general layer, leads to the following hybrid fuzzy-stochastic equation:

S̃UU (ω, Ã) = |H̃(ω, Ã)|2SUgUg (ω) (37)

in which SUgUg (ω) is the input power spectral density, as a function of the

circular frequency ω, used in the stochastic formulation of Eq. (7); H̃(ω, Ã) is

the fuzzy-valued transfer function where the system fuzzy parameters collected

in Ã are made explicit. Therefore, the outcome of Eq. (37) is the hybrid fuzzy-

stochastic power spectral density S̃UU defined as follows:

S̃UU : ω ∈ R+, Ã ∈ Fn −→ S̃UU (ω, Ã) ∈ F1 (38)

It is important to consider that, as a function of ω ∈ R+ and for fixed fuzzy

parameters Ã, the function

ω −→ S̃UU (ω, Ã) ∈ F1 (39)

is fuzzy-valued and it is obtained by the application of the extension principle as

in Eq. (38). On the other hand, our fuzzy output ãPGA, as described in Eq. (40)

below, is itself obtained by the extension principle, as detailed in subsection

3.2.3: it is the fuzzy interval representing the median value ãPGA of the largest

peak of the acceleration at the top surface determined as

ãPGA

(
Ã
)

= η̃Ü (Ã)
√
λ̃0,Ü (Ã) (40)

in which λ̃0,Ü (Ã) is the fuzzy zeroth-order response spectral moment derived

from Eq. (11) and η̃Ü (Ã) is the fuzzy peak factor at the ground level given

by Eq. (13) after considering the soil-site properties of site response problem

as fuzzy sets. In Eq. (40), the zeroth-order response spectral moment, λ̃0,Ü as
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well as the r − th response spectral moments used to derive the peak factor of

Eq. (13), are defined in fuzzy terms as

λ̃r,Ü (Ã) =

∫ ∞
0

ω4+r S̃UU (ω, Ã) dω (41)

for r = 0, 1, 2 and its membership function is determined as follows:

µλ̃r (x) = sup{α|x ∈ [λ−r,α, λ
+
r,α]}. (42)

It is worth mentioning that the integral of the set-valued function in Eq. (41) is

intended in Aumann’s sense [33] where, for α ∈]0, 1], the α− cut of λ̃r is defined

by

[λ̃r]α =

[∫ ∞
0

ω4+r S̃−UU,α dω,

∫ ∞
0

ω4+r S̃+
UU,α dω

]
. (43)

Therefore, the formulation proposed in this paper of the site response analysis

combines independently the uncertainty of the seismological event interpreted

as a stochastic process with the uncertainty of the soil parameters intended as

fuzzy intervals because of the lack of knowledge supplied by actual experience.

Furthermore, the analysis provides information about the propagation of the

epistemic and aleatory uncertainty on the ground surface motion.

3.2.2. Construction of the soil parameter membership function

In the present study, the method of constructing membership functions of

the soil parameters collected in the vector Ã is based on knowledge acquisition

procedure where the objective available information but imprecise due to limited

number of laboratory and/or in-situ tests usually conducted to characterize the

soil, is supplied by subjective information estimates on single expert or multiple

experts opinions on the basis of engineering judgement (see, e.g., Pham and

Valliappan [34]).

The proposed input reference membership function (see Figure 2) for the k−

th soil parameter, Ãk, has an initial symmetric trapezoidal shape characterized

by three features: i) the core mid-point Ak of the parameter representing the

”best-estimate” or crisp value, ii) the confidence, in non-probabilistic sense, or

spread factor σcore of the core interval with respect to the core mid-point Ak, and
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iii) the left and right spread factors, σLsupp and σRsupp, respectively. Accordingly,

core and support intervals, representing the intervals for which the degree of

belief is maximum and minimum, respectively, are defined as follows:

core(Ã) = [Ak(1 + σcore), Ak(1 + σcore)] (44)

supp(Ã) = [Ak(1− σLsupp), Ak(1− σRsupp)] (45)

Furthermore, by using the notion of Eq. (31), a = Ak(1 − σLsupp), b = Ak(1 −

σcore), c = Ak(1 + σcore), and d = Ak(1 − σRsupp). If a symmetric fuzzy input

interval is assumed, σLsupp = σRsupp; nevertheless, the fuzzy output may result

with a asymmetric membership function characterized by σLsupp 6= σRsupp.

Therefore, in order to fully define the membership function, Ak, σsupp, and,

σcore should be determined. In this paper, the support, characterized by σLsupp

and σRsupp, is estimated by experts opinions from engineering practical intervals

given in literature or determined from previous experiences; since the support

bounds those values that belongs to the set from those that does not belong

to it, thus, it can be straightforwardly estimated from existing data on similar

soils. The fuzzy core, characterized by Ak and σcore, is considered an interval

purely depending on the aleatory nature of the data which statistical proposi-

tions such as point best estimate and confidence interval; they are inferred by

statistical analysis of the laboratory and in-situ geotechnical tests carried out

for the investigated site-specific soil. It is worth emphasising that the linear

trapezoidal shape represents the propagation of the epistemic uncertainty, de-

creasing with the increase of the α-cut from α = 0 up to α = 1. Nevertheless,

the hybrid fuzzy - stochastic 1D site response analysis proposed in this paper is

not restricted to the above linear membership function but other techniques for

generating nonlinear membership functions can be used (see, e.g., Pham and

Valliappan, [34], Stefanini et al. [35]).
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Figure 2: Generic trapezoidal membership function with linear LR sides

3.2.3. Computational Approach

Computational results are obtaining by applying the Zadeh’s extension prin-

ciple [14]. The hybrid fuzzy-stochastic outcome, defined as function ãPGA

(
Ã
)

=

f̃(Ã1, Ã2, ..., Ãn) of Eq. (40), represents the fuzzy extension of the crisp func-

tion of Eq. (11), for n fuzzy parameters, defined by the following membership

function:

µãPGA(x) = sup{α|x ∈ [a−PGA,α, a
+
PGA,α]} . (46)

Therefore, in order to generate the fuzzy output, the minimum ã−PGA,α and

the maximum ã+PGA,α should be obtained for each α ∈ [0, 1]. In this paper, the

SPDE algorithm is applied to the box-constrained global optimization problem:

a−PGA,α = min
{
f(x1, ..., xn)|xk ∈ [Ãk]α, k = 1, ..., n

}
(47)

a+PGA,α = max
{
f(x1, ..., xn)|xk ∈ [Ãk]α, k = 1, .., n

}
(48)

where n is the total number of fuzzy parameters Ãk for k = 1, . . . , n and (here

xj denotes for simplicity the j-th patameter)

f(x1, ..., xn) = ηU (x1, ..., xn)
√
λ0,U (x1, ..., xn). (49)
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The optimization problem is solved numerically as described in section 3.1

by using a population p of 200 members for each of the N = 11 α-cuts calculated

in the analysis and a tolerance set to 1.0E − 5. The N − α-cuts are selected

uniformly between 0 and 1, αi = i−1
N−1 , i = 1, ..., N .

3.2.4. Gradual Elastic Response Spectrum

From the application of the extension principle to Eq. (40), for each value

of the gradual scale α ∈ [0, 1], we obtain the α-cut [a−PGA,α, a
+
PGA,α] of the

fuzzy-valued output ãPGA

(
Ã
)

; from the solutions of the two min and max

optimization problems (47) and (48) let us denote byA−k,α (for the min problems)

and A+
k,α (for the max problems) the values of the optimal parameters Ak,

k = 1, ..., n. Corresponding to the vectors A−α = (A−1,α, ..., A
−
n,α) and A+

α =

(A+
1,α, ..., A

+
n,α) of parameters, the power spectral densities SUU (ω,A−α ) and

SUU (ω,A+
α ) are typical gradual functions (Dubois and Prade [36]), for each

value of α ∈ [0, 1]:

ω −→ ŜUU (ω,A−α ) ∈ R (50)

ω −→ ŜUU (ω,A+
α ) ∈ R (51)

and in general they are not fuzzy-valued intervals because they do not define

a membership function; for each fixed α ∈ [0, 1], the two functions above are

standard power spectral density functions which define the lower and upper

values of the fuzzy peak ground acceleration ãPGA.

Similarly, the optimal parameters, A−α and A+
α can be applied to compute

the gradual elastic response spectra, α ∈ [0, 1]:

T −→ Ŝa(T,A−α ) ∈ R (52)

T −→ Ŝa(T,A+
α ) ∈ R (53)

providing the peak intervals of the response of the single oscillator (SDOF)

system (see Eq. 23) used for the structural design.
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More precisely, the proposed gradual elastic response spectrum is obtained,

for Â = A−α or Â = A+
α , as

Ŝa(T, Â) = ηÜ (Â)

√
λ̂0,T (Â) (54)

where:

λ̂0,T (Â) =

∫ ∞
0

ω4 |HSDOF (ω, T )|2ŜUU (ω, Â) dω . (55)

For a given value of the structural period T and for a given vector of param-

eters Â, the gradual elastic response spectrum Ŝa(T, Â) represents the pseudo-

acceleration of the SDOF system (see Eq. 24). According to Fortin et al.

[37], the quantities in Eq. 52 and Eq. 53 are families of gradual numbers, for a

fixed value of the structural period T , that correspond to the values A−α and

A+
α of the parameters which produce the extreme values a−PGA,α and a+PGA,α of

the α-cuts of our fuzzy output ãPGA(Ã). In the following Section 4, graphical

representations of the gradual power spectral density functions of Eq. 52 and

Eq. 53 and of the gradual elastic response spectra of Eq. 50 and Eq. 51 as well

as their interpretation will be discussed.

4. Case Studies

Hybrid fuzzy-stochastic 1D site response analyses are carried out by con-

sidering the approach proposed in the previous Section 3. Four different soil

deposits classified into ground types A-B-C-D complying with the seismic code

EN 1998-1 [15] are investigated. The soil profiles consist of saturated clays

with different consistency, ranging from rigid to soft, each one characterized by

mass density ρ of 2100 kg m−3 and Poissons ratio ν of 0.45 and resting upon a

uniform linear visco-elastic bedrock. The mechanical parameters of the soil de-

posits and the underlying bedrock, intended as crisp or ”best-estimate” values,

are reported in Table 1 where the crisp shear wave velocity of the soil, calculated

according to the relation Vs =
√

G0

ρ , is used to classify the soil in accordance

to [15].

The input seismic process applied at the outcrop bedrock is fully described by
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Figure 3: Power spectral density function defined at the outcrop bedrock

the stationary power spectral density in acceleration, SÜ0Ü0
(ω) = ω4SU0U0

(ω),

determined from the response-spectrum-compatible model of Cacciola et al. [38]

depicted in Figure 3, consistent with the soil type A and peak ground accelera-

tion a0 = 0.96 m s−2.

The initial homogeneous profile is discretized in 0.5 m thick-layers assuming

constant equivalent linear properties, compatible with the current shear strain

computed at each iteration, according to the modulus reduction curve and the

damping ratio curve proposed by Seed and Sun [39] and Idriss [40], respectively,

as depicted in Figure 4 in black colour.

Table 1: Crisp soil parameters

Ground type Vs[m/s] G0[MPa] ρ[kg/m3] ν ξf

A/bedrock 1000 2.1× 106 2100 0.45 0.1

B 400 3.36× 105 2100 0.45 0.15

C 250 1.3× 105 2100 0.45 0.28

D 150 4.7× 104 2100 0.45 0.30

The investigated uncertainties are the position of the bedrock that deter-

mines the soil deposit thickness h, the initial shear modulus G0, the unit den-
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Table 2: Fuzzy sets parameters

Fuzzy set Core mid-point σcore σL,Rsupp

h̃ 40 m 0.00 0.2

G̃0 (210, 33.6, 13.0, 4.7)× 104MPa 0.05 0.3

ρ̃ 2100 kg m−3 0.02 0.2

ξ̃f 0.1, 0.15, 0.28, 0.3 0.02 0.1
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Figure 4: a) Shear modulus degradation curve and b) critical damping ratio curve proposed

by Seed and Sun [39] and Idriss [40] in black colour and their fuzzy interpretation

sity, ρ, as well as the maximum critical damping ratio ξf expressed as fuzzy

sets, i.e. h̃, G̃0, ρ̃ and ξ̃f , respectively. Based on subjective information, sym-

metric trapezoidal-shaped membership functions are constructed for describing

the uncertain parameters for the four soil deposits considered in the analysis;

Table 2 reports the parameters that determine each membership function. The

fuzzy set h̃ has σcore = 0, thus it is a symmetric triangular fuzzy number whose

core is crisp because of a sharp interface boundary is assumed. Remarkably, the

investigated soil deposits, classified by considering the crisp value of each soil

properties, have different level of membership for each of the four types of soil

defined in the seismic code [15]; therefore, they might be assigned to different

rank as a function of the level of α-cut that has been considered.

The simulation is carried out by developing a numerical algorithm in MAT-
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LAB environment used to solve the α-cut problem at 11 α-cuts; five of them,

namely α = 0, 0.25, 0.5, 0.75 and 1 are highlighted in order to associate them

to a linguistic ranking of knowledge (scarce, medium, sound, good, exhaustive).

Differential evolution method is applied in order to obtain the fuzzy extension

of the function as defined in Eq. (40). Noteworthy, the result of the partial

differential equation is the power spectral density, hence a functional depending

on frequency and fuzzy variables; therefore in order to deal with the optimiza-

tion procedure of Eq. (47) and Eq. (48), a parameter of synthesis is defined.

In particular, in this paper, results of problem solving are presented in terms

of fuzzy set of the median value ãPGA defined in Eq. (40) for each of the four

soil deposits. Finally, the analysis aims to evaluate the response of the single

oscillator (SDOF) constructed by extracting points from the previous elastic

response spectrum at the fundamental period of T = 0.5s.

4.1. Soil Type A

The fuzzy input membership functions of the soil type A used in the analy-

sis are depicted in Figure 5a while Figure 5b shows the result of the analysis in

terms of membership function of the median peak ground surface acceleration,

ãPGA. It is worth mentioning that each black dot on the left and right side of

the membership function is given by a crisp quadruple of values, (h,G0, ξf , ρ),

belonging to the pertinent α-cut interval of each fuzzy input, through the op-

timization problems (min and max) of Eq. (40); i.e., for each α ∈ [0, 1], two

quadruples of values h ∈ [h̃]α, G0 ∈ [G̃0]α, ρ ∈ [ρ̃0]α, and ξf ∈ [ξ̃f ]α, corre-

sponding to the minimization and the maximization problems, are obtained.

The result in Figure 5b shows that the core mid-point value is exactly corre-

sponding to the peak input ground acceleration a0 = 0.96 m s−2, since the soil

deposit is characterized by the same properties as the outcropping bedrock. The

fuzzy output has a nonlinear LR-shaped membership function, fairly asymmet-

ric with respect to the core towards the right branch; this is indicated by the

dotted black curve collecting the mid-points of each α-cut interval. Therefore,

a higher uncertainty on the input parameters, namely a small value of α-cut,
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leads to an overestimate of the expected, possible, peak ground acceleration on

the ground surface with respect to the mid-core value. In Table 3 are reported

the parameters of the membership functions resulting from the analysis in terms

of core mid-point aPGA as well as core and support confidences σcore and σL,Rsupp,

respectively. In soil type A, the measured global confidences of both the core

and support of the result are lower than maximum values of confidences assumed

for describing the fuzzy uncertainties of the input soil parameters. Therefore,

the reduced degree of the uncertainty indicates a small sensitivity of the seismic

response for this type of ground.
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Figure 5: Membership function of the surface peak ground acceleration for ground soil A; (a)

input fuzzy parameters and (b) fuzzy output.

Moreover, Figure 6(a) shows the power spectral density functions SÜÜ as-

sociated to the fuzzy output through Eq. (37) where the relation, SÜÜ (ω) =

ω4SUU (ω) is used. Level curves are related to the edges of the interval for each

α-cut of the output; red and blue colours are used to distinguish the left- and

right- side of the fuzzy output ãPGA whereas a grey area collects all the points
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lying in the core interval. Finally, the power spectral density function related to

the core mid-points of the soil properties, or crisp values Ak previously defined

in Table 1, is indicated by black colour; due to the stiff soil properties of the

soil type A, this corresponds to the input power spectral density of Figure 3.

It is worth noting that the predominant frequency does not greatly change by

varying the α-cut; the initial shape obtained by the crisp values, is scaled up in

case of the upper branch or scaled down, in case of the lower branch, with the

decrease of the α-cut. By using the power spectral density functions previously

determined, gradual elastic response spectra, depicted in Figure 7(a), are thus

derived by applying Eq. (54). In order to study the effect of the uncertainty

on the response in acceleration of a single oscillator, a section-cut of the elastic

response spectra at the constant period T = 0.5s is taken; Figure 7(b) shows

the gradual maximum response acceleration as a function of the unit interval

[0, 1] as described in Section 3.2.4. The two branches are almost symmetric with

respect to the constant value determined from the crisp values and the propa-

gation of uncertainty is slightly nonlinear; the main parameters describing the

gradual intervals are reported in Table 4.

4.2. Soil Type B

Fuzzy input membership functions for the investigated soil type B are de-

picted in Figure 8a obtained by using the values reported in Table 2. The result

of the analysis in terms of membership function of the median peak ground sur-

face acceleration is illustrated in Figure 8b. The fuzzy output has a nonlinear

LR-shaped membership function, asymmetric with respect to the core towards

the right branch as indicated by the dotted black curve resulting in overrating

the expected peak ground acceleration on the ground surface with respect to

the mid-core value. Moreover, as the previous case, the uncertainty evaluated

through the spread factors reported in Table 3, is reduced with respect to the

uncertainty assumed for the input parameters of Table 2.

Figure 6(b) shows the power spectral density functions SÜÜ associated to

the fuzzy output through Eq. (37). The input PSD is altered by the soil working
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Figure 6: Fuzzy power spectral density for ground type (a) A, (b) B, (c) C, and (d) D.
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Figure 7: Gradual Elastic Response Spectum (a) for soil type A and (b) pseudo-acceleration

response in gradual interval representation.
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Non lin case B
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Figure 8: Membership function of the surface peak ground acceleration for ground soil B; (a)

input fuzzy parameters and (b) fuzzy output
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Figure 9: Gradual Elastic Response Spectum (a) for soil type B and (b) pseudo-acceleration

response in gradual interval representation.
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as a filter and the peaks of the response occur at the predominant frequencies

of the soil deposit; especially, the uncertainty greatly affects the peak related to

the second natural frequency where a large plateau given by the locus of local

maximum value for every α-cut, is observed.

By using the power spectral density functions previously achieved, the grad-

ual elastic response spectra are determined in Figure 9(a). It is worth mention-

ing the response of the investigated SDOF illustrated in Figure 9(b) that shows

that the support does not include all the core interval but even the mid-core

value lies outside the support; this behaviour is clearly incompatible with the

fuzzy algebra and this points out the diversity of the gradual intervals with re-

spect to the fuzzy sets. Furthermore, the propagation of uncertainty is highly

nonlinear and there is a decrease of the acceleration with the increase of lack

of knowledge about the input parameters. This can lead to an underestimation

of the actual response and hence, to a non-safe design. It is worth mentioning

that the uncertainty in the values of the parameters h, G0, ρ and ξf does not

affect directly the value of Sa at the specific period T = 0.5s, but the entire

elastic response spectrum as a function of T (i.e., changing α will change the

function at all values of T ). For the chosen T = 0.5s, all the gradual spectral

functions of Eq. (54), remarkably the upper branches, have less uncertainty than

the same spectra evaluated at different values of T < 0.5s (e.g., T = 0.3s) on

the left of the vertical dashed line in Figure 9(a). As it can be seen in Table 4

the maximum uncertainty with respect the crisp value is around 9%.

4.3. Soil Type C

The investigated soil type C is characterized by the fuzzy soil properties de-

picted in Figure 10a. The result of the analysis in terms of membership function

of the median peak ground surface acceleration is illustrated in Figure 10b. The

membership function of the fuzzy output is strongly nonlinear, asymmetric with

respect to the core towards the right branch resulting in overrating the expected

peak ground acceleration on the ground surface with respect to the mid-core

value. It can be observed from the dotted black curve that the propagation of

29



[𝑚]
1.8

x105[𝑁/𝑚2] [𝑘𝑔/𝑚3]

𝑎)

0.830 40 50
0

0.25

0.5

0.75

1

1.31

 ℎ  𝐺0

1.6 2.1 2.6

 𝜌  𝜉𝑓

0.22 0.28 0.35

𝑏)

0.25

0.5

0.75

1

0

 𝑎𝑃𝐺𝐴

𝜇  𝑎𝑃𝐺𝐴

[m/s2]
1.2 1.3 1.4 1.5 1.6 1.7 1.8

Left branch

Right branch

Mid-points

1.9

Non lin case C

Figure 10: Membership function of the surface peak ground acceleration for ground soil C;

(a) input fuzzy parameters and (b) fuzzy output.

30



the uncertainty is associated with a change of the slope at around α-cut = 0.5.

Moreover, as shown Table 3, the maximum value of the confidence of the support

is as high as the mean confidence assumed for the input parameters.

Figure 6(c) shows the power spectral density functions SÜÜ associated to

the fuzzy output through Eq. (37). It is worth empathizing that the peaks of

the response associated to the natural frequencies of the soil deposit cannot be

observed since the initial peaks related to the crisp values are shifted in both

directions by generating an envelope of the power spectral density without clear

maxima; therefore, the uncertainty of the input parameters greatly affects the

overall response.

As done for the previous cases, the elastic response spectra, shown in Fig-

ure 11(a), are obtained. By investigating the response of the single oscillator

with fundamental period of T = 0.5s, the maximum pseudo-acceleration is com-

puted as gradual interval in Figure 11(b). This shape is highly nonlinear and it

can be observed an increase of the acceleration with the increase of the uncer-

tainty of the input parameters. As reported in Table 4, the uncertainty on the

seismic response for the SDOF is relevant, reaching the maximum confidence of

around 57% with respect the mid-core value.
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Figure 11: Gradual Elastic Response Spectum (a) for soil type C and (b) pseudo-acceleration

response in gradual interval representation.
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Non lin case D
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(a) input fuzzy parameters and (b) fuzzy output.
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4.4. Soil Type D

The result of the fuzzy optimisation carried out by considering the fuzzy

input membership functions reported in Figure 12a for the last investigated

soil type D is depicted in Figure 12b; the membership function of the median

peak ground surface acceleration is characterized by fairly symmetric trape-

zoidal shape but converse to the previous case, the values of the mid-points

are smaller than the mid-core value inducing an underestimate of the expected,

possible, peak ground acceleration on the ground surface with respect to the

crisp, deterministic value.

Furthermore, in soil type D, the measured global confidences of the support

of the result are higher than the average confidence values assumed for describing

the fuzzy uncertainties of the input soil parameters, reaching a value around 30%

as shown in Table 3. Therefore, an important sensitivity of the seismic response

is expected for this type of ground.
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Figure 13: Gradual Elastic Response Spectum (a) for soil type D and (b) pseudo-acceleration

response in gradual interval representation.

Figure 6(d) shows the power spectral density functions SÜÜ associated to the

fuzzy output through Eq. (37). As in the previous case, the uncertainty of the

input parameters greatly affects the overall response, resulting in an envelope

of the power spectral density function without exhibiting any punctual peaks.

Finally, in order to illustrate better the effects of the soil uncertainty on the
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(a) (b)

Figure 14: Membership function of the Elastic Response Spectum (a) for soil type D and (b)

fuzzy pseudo-acceleration response.

structural seismic response, the stochastic elastic response spectrum expressed

as gradual function Sa is hence determined. Regarding the structural period

selected as T = 0.5 s, the gradual interval of the maximum pseudo-acceleration

is extracted out from Figure 13(a) and depicted in Figure 13(b). Remarkably,

the shape is highly nonlinear and non-monotonic; the functions obtained by the

left and right branches of the fuzzy output, i.e. minimum and maximum ãPGA,

respectively, are crossed each other with the increase of the membership value

α in the input parameters; therefore, input soil parameters that provide the

minimum peak acceleration at the ground level can produce the highest struc-

tural acceleration , and vice-versa. Moreover, the highest pseudo-accelerations

does not occur only at the support but for different α-cuts, e.g. with α = 0.5.

Furthermore, from Figure 13(a), it can be seen that for this type of the soil,

the gradual elastic response spectra remains strongly affected by uncertainty

also for large values of the structural period T (up to T = 2.5s) with a high

variability of the structural acceleration and this strongly affects the engineering

design. It is worth mentioning that the peak ground acceleration, used in this

paper as parameter of synthesis of the box-constrained optimization approach

proposed in Section 3.2.3 is one of the main ground motion parameters con-
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sidered by the current seismic codes (see, e.g., EN 1998-1, [15]). Nevertheless,

as it can be observed from the gradual interval in Figure 13(b), the maximum

or minimum peak ground acceleration does not always lead to a corresponding

maximum or minimum structural response. Therefore, in order to obtain the

extreme structural responses, the structural pseudo-acceleration (e.g. at T =

0.5 s) may be defined as parameter of synthesis in the optimization procedure

of the hybrid stochastic-fuzzy analysis proposed in Eq. (47) and Eq. (48); in

this case, the outcome of the structural response for the soil type D, is hence

expressed in terms of fuzzy functions and fuzzy intervals and depicted in Fig-

ure 14(a) and Figure 14(b), respectively. In Figure 14(b), the achieved fuzzy

interval is compared to the previous gradual interval obtained in Figure 13(b)

for the same soil type showing that the gradual interval contains only a sub-

set of the possible extreme structural accelerations that can be achieved by the

combination of the soil parameters; therefore, the characterization of the ground

motion only through the peak ground acceleration parameter can lead to under-

designed structures, while other ground motion parameters such as frequency

content (see e.g. Greco et al. [41]) and duration (see e.g. Tombari et al. [42],

Greco et al. [43] ) or a different parameter of synthesis based on structural

characteristics have to be considered in order to perform a reliable structural

analysis.

Table 3: Parameters of the output membership functions for the investigated soils.

Ground type aPGA σcore σLsupp σRsupp

A 0.960 m/s2 0.017 0.115 0.171

B 1.549 m/s2 0.017 0.126 0.178

C 1.483 m/s2 0.015 0.169 0.222

D 1.218 m/s2 0.035 0.341 0.329

4.5. Sensitivity Analysis

Finally a sensitivity study is carried out in order to evaluate the contribution

of each fuzzy soil parameter on the response of the site response analysis in
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Table 4: Parameters of the output gradual intervals of the SDOF response for the investigated

soils.

Ground type aPGA σcrisp σLsupp σRsupp

A 1.876 m/s2 0.009 0.077 0.097

B 3.738 m/s2 0.036 0.089 -0.025

C 3.352 m/s2 0.068 0.350 0.614

D 2.409 m/s2 0.039 0.221 0.349

terms of fuzzy median acceleration at the top surface. The sensitivity analysis

consists in the same type of analysis previously carried out where only one out

of the four parameters at the time, (h̃, G̃0, ρ̃, ξ̃f ), is considered uncertain, in

particular fuzzy, whereas the remaining others are kept as crisp values. The

analysis is performed for the two types of soil that shown a higher impact of the

soil uncertainty during the previous parametric analysis, namely soil type C and

D. The same degree of uncertainty previously described in Table 2 is considered.

Results are reported in terms of ãPGA in Figure 15 and Figure 16 for soil type

C and D, respectively. It is worth noting that the uncertainty on the damping

property, ξ̃f is less important than the other parameters (h̃, G̃0, and ρ̃) that

affect almost equally the seismic response. These three parameters affect the

natural frequencies of the soil deposit and thus, the frequency content of its

transfer function. In particular, the uncertainty on G̃0 has the highest impact

on the response as seen from the larger support of the fuzzy output. Moreover,

the sensitivity study has shown a non-symmetric and non-linear propagation of

the uncertainty with most of the cases presenting a tendency in underestimating

of the crisp result with the decrease of the α-cut level except for the case related

to the uncertainty on G̃0.

5. Concluding Remarks

A fuzzy logic approach for dealing with soil uncertainties has been applied

to the stochastic 1D site response analysis. The proposed hybrid probabilistic
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Figure 15: Fuzzy Sensitivity analysis for soil type C by varying (a) h̃, (b) G̃0, (c) ρ̃ , and (d)

ξ̃f . )
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Figure 16: Fuzzy Sensitivity analysis for soil type D by varying (a) h̃, (b) G̃0, (c) ρ̃ , and (d)

ξ̃f .
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and fuzzy approach is used when soil uncertainties derived from a genuine lack

of knowledge due to the few amount of data obtained from geotechnical sur-

veys. Therefore, the soil parameters have been expressed in terms of fuzzy sets

defined by symmetric trapezoidal shaped membership functions, assuming the

independence between the inputs (see e.g. [44]). In this paper the investigated

epistemic uncertainties are both the geometric uncertainty of the soil deposit,

namely the deposit thickness (h̃), and the material uncertainties such as the

shear modulus (G̃0), the soil unit density ρ, and the damping ratio (ξ̃f ). The

input motion has been modelled as a stochastic stationary Gaussian process.

The main goal of this contribution is the formulation of hybrid fuzzy stochastic

site response analysis approach; while the seismic input is traditionally consid-

ered as random, few contributions investigated the impact of the soil uncertainty

on the surface ground motion and, eventually, on the engineering structure. In

order to avoid any overestimation effect (see e.g., Guerra et al., [45]), the precise

extension principle is applied and a Differential Evolution algorithm (Stefanini

[26]) has been used to reduce the computational effort of the box-constrained

optimization problem. In this paper, the fuzzy output is defined as the median

value of the largest peak of the accelerations at the ground surface determined

for various α-cuts representing the grade of membership to the interval. Results

showed a strong influence of the soil parameter uncertainty to the seismic re-

sponse of the soil deposits, especially for softer types of soil. In ground type D,

the dispersion of the median value of the largest peak of the acceleration at the

ground surface is higher than the maximum dispersion assumed for the input

parameters. Moreover, the results showed that the soil uncertainty can lead

to an overestimation or underestimation of the seismic response. A sensitivity

analysis showed the importance of the characterization of the shear modulus

on the evaluation of the peak ground acceleration. Finally, a gradual elastic

response spectrum has been proposed in order to evaluate the impact of the soil

uncertainties on the structural design. Especially for softer soils, a structure

with a period, T = 0.5s, resulted strongly affected by the uncertainty of the

soil parameters. In particular, it has been shown that a reliable assessment of
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the maximum peak ground acceleration is not a sufficient condition to ensure a

safe structural design, while the optimization procedure should be extended to

consider the combined effect of soil and structure.
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