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Abstract Diffusion tensor imaging (DTI) has been used to study the
characteristics of Multiple sclerosis (MS) in the brain. The von mises
Fisher distribution (vmf) is a probability distribution for modeling di-
rectional data on the unit hypersphere. In this paper we modeled the
diffusion directions of the Corpus Callosum (CC) as a mixture of vmf
distributions for both MS subjects and healthy controls. Higher diffusion
concentration around the mean directions and smaller sum of angles be-
tween the mean directions are observed on the normal-appearing CC of
the MS subjects as compared to the healthy controls.
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1 Introduction

The von mises Fisher distribution (vmf) is one of the most basic probability
distributions for modeling directional data on the unit hypersphere [1]. The use
of a finite mixture of vmf distributions to cluster directional data on the unit
sphere has been proposed by [2]. They used an Expectation Maximization (EM)
algorithm to estimate the parameters of the mixture model. Much research has
been performed to model the diffusion imaging of the brain as a vmf distribu-
tion. For example, [3] model the orientation distribution function (ODF) of High
Angular Resolution Diffusion Imaging (HARDI) as a mixture of vmf distribu-
tions. They also use this model for segmentation using synthetic and real HARDI
data. In [4], they proposed a 5D hyper spherical model for HARDI data using
a mixture of vmf distributions. A method for reconstructing Diffusion Weighted
Magnetic Resonance (DW-MR) signal using a continuous mixture of vmf dis-
tributions has been introduced in [5]. They validate the method using synthetic
⋆ corresponding author
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and real brain data. A probabilistic fiber tracking algorithm using a particle fil-
tering technique and vmf sampling has been proposed in [6]. In [7], they build a
model of glioma growth using Diffusion tensor imaging (DTI) and a bimodal vmf
distribution. The vmf distribution, spherical harmonic (SH) expansion and Frac-
tional anisotropy (FA) have been used in [8] for the classification of Alzheimer’s
disease. Comparing the results, they found that vmf and SH outperform the FA
in the classification.

Multiple Sclerosis (MS) is an immune-mediated neurological disease, charac-
terized by recurring inflammatory events (relapsing-remitting MS), associated
with demeylinating lesions within the white matter of the brain and spinal cord.
The majority of patients after a variable period of relapsing-remitting course de-
velop the so-called secondary-progressive form of MS, characterised by a chronic
accumulation of disability, with less and less acute events. Microscopic damage
is known to occur also outside of macroscopic lesions, and DTI was found to be
sensitive to such abnormalities [9–18]. The Corpus Callosum (CC) is the largest
bundle of commissural fibers in the brain, and damage to it has been associated
with increased risk of developing disability in MS. The FA of the CC has been re-
ported to be decreased and the Mean Diffusivity to be increased for MS subjects.

In this paper, we modeled the diffusion directions in the CC as a mixture
of vmf distributions. This allows us to determine the distinct mean diffusion
directions in the CC. Also it helps to cluster the CC depending on the diffusion
directionality. We study the diffusion directions in the whole normal-appearing
CC and the lesions are not included. We refer to normal-appearing CC briefly as
CC. We briefly review single and finite mixtures of vmf distributions in Section
2. In Section 3, we directly apply the mixture of vmf to model the CC directions
for healthy controls and multiple sclerosis patients. We find that there are at
least three distinct mean directions in the three dimensional CC. The results are
presented in Section 4. The diffusion concentration is higher for MS patients.
We conclude with a brief summary and future work in Section 5.

2 Von-mises Fisher Distribution

The vmf is a probability distribution on the (d − 1) dimensional sphere in Rd.
The vmf density function of the unit vector x, given the mean direction µ and
the concentration around the mean K, is given by:

f(x|µ, K) = cd(K)eKµT x, (1)
where ‖µ‖ = 1 and K > 0. The normalizing constant cd(K) is given by:

cd(K) = Kd/2−1

(2π)d/2Id/2−1(K) , (2)

where Iv(.) is the modified Bessel function of the first kind at order v. If
d = 2 this distribution is von Mises distribution on the circle, which is the
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circular analogue of the normal distribution. If d = 3 the normalization constant
can be written as

c3(K) = K

4π sinh(K) . (3)

The density of finite mixtures H of vmf distributions is given by

p(x|Θ) =
H∑

h=1
whf(x|θh), (4)

where Θ = {w1, w2, . . . , wH , θ1, θ2, . . . , θH} are the parameters of the mixture
density and f(x|θh) is the density of the vmf distribution with parameter θh =
{µh, Kh}. The water diffusion in the white matter in the brain is parallel to
the principal eigenvector of the tensor. In the following Section, we modeled the
principal eigenvectors of the tensors in the CC as a mixture of vmf distributions
to study the means and the concentrations of water diffusion in the CC.

3 Modeling the Diffusion Direction of the Corpus
Callosum

The data consists of four healthy and nine secondary progressive multiple scle-
rosis subjects. Diffusion-weighted imaging was obtained using a head-only 3.0 T
scanner (Siemens Magnetom Allegra, Siemens Medical Solutions, Erlangen, Ger-
many), using a twice-refocused spin echo echo-planar imaging (SE EPI) sequence
(TR = 7000 ms, TE = 85 ms, maximum b factor = 1000 s/mm2, isotropic reso-
lution 2.3 mm3; matrix = 96×96; 60 slices), accomplished by collecting 7 images
with no diffusion weighting (b = 0) and 61 images with diffusion gradients, ap-
plied in 61 non-collinear directions (scan time: 11 min).

The three dimensional CC is segmented using the Euclidean method dis-
cussed in [19]. The principal eigenvectors of the diffusion tensors in the CC are
parallel to the diffusion directions in the CC. Hence, the unit vector x represents
the principal eigenvector, µ is the mean diffusion direction and K is the concen-
tration of the diffusion directions around µ. Intuitively, the concentration is the
opposite of the variation and spread. As the diffusion tensor is a 3 × 3 matrix,
the principal eigenvector x of the tensor is a 3 × 1 vector so d = 3. Substituting
Equation 1 and 3 into Equation 4 gives:

p(x|Θ) = 1
4π

H∑

h=1

[
whKh

sinh(Kh)eKhµT
h x

]
, (5)

Fitting the mixture of vmf distributions has been performed using the Expec-
tation Maximization (EM) [2]. For implementation of the EM algorithm using
R language see [20]. The Bayesian information criterion (BIC) can be used for
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model selection to choose the most suitable model. The model with the smallest
BIC is the preferred model. The BIC is defined as:

BIC = h log(n) − 2 log(L), (6)

where h is the number of parameters to be estimated, n is the sample size
and L is the maximized likelihood function of the model. The BIC values showed
that a mixture of vmf distributions for the CC direction is preferred over a single
vmf distribution for both healthy and MS patients (see Fig. 1 and 2). From the
figures, it is clear that the BIC values for three mixture distributions are lower in
all cases for both the MS and healthy controls. Thus, at least three mixtures of
vmf distributions are preferred, to model the diffusion in the whole CC, rather
than one single distribution. Hence, to be able to compare the models for all
the subjects with the same number of mixture components, we choose to model
the data using three mixtures of vmf distributions (H = 3 in Equation 5). The
mixture distributions of the CC for one healthy control and one MS subject are
shown in Fig. 3.

Fig. 1: Bayesian information criterion (BIC) for the four healthy controls.

Fig. 2: Bayesian information criterion (BIC) for the nine MS subjects.
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(a) The mixture directions
for a MS subject.

(b) The mixture directions for
a healthy control.

(c) The mean directions for
the three mixture distribu-
tions in (a). The sum of
angles between each two
of the mean directions is
77.99.

(d) The mean vectors for
the three mixture distribu-
tions in (b). The sum of
angles between each two
of the mean directions is
83.97.

(e) The 3D view of the mixture direc-
tions in (a). The concentration values
for the regions (blue, green, red) are
(23.36, 13.48, 20).

(f) The 3D view of the mixture di-
rections in (b). The concentration
values for the regions (blue, green,
red) are (18.21, 12.02, 14.29).

Fig. 3: The CC is clustered into three regions (blue, green and red) using the
mixture of vmf distributions for a MS subject and a healthy control. The sum of
angles between each of the three mean directions are smaller for the MS subject.
For both the MS subject and healthy control, the diffusion directions on the blue
and red regions are more concentrated than on the green region. The diffusion
concentrations around the mean directions for MS subject are higher than for
the healthy control.
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4 Results

Although the average of the FA over the whole CC is higher for the healthy
controls than for the MS subjects (Fig. 4(a)), the difference is not significant
(p-value= 0.604). However, there is a significant difference in the FA variation
(p-value= 0.000) in the CC between the MS and healthy control (Fig. 4(b)). To
compare the diffusion direction concentration between MS subjects and healthy
controls, we need to model the data (the principal eigenvectors of the tensors in
the CC) as vmf distributions. The BIC values show that there are at least three
different diffusion directions, so we modeled the data as a mixture of three vmf
distributions. We calculate the angles between each two of the three mean di-
rections. As the diffusion is a symmetric process (we cannot distinguish between
left to right diffusion and right to left, this means the angle 0 is equivalent to
the angle π), the angle is calculated as the minimum of θ and (π − θ) where θ
is the angle between two mean vectors and thus we get angles between 0 and
π/2. We find that the sum of the angles between each two of the three mean
directions are significantly higher for healthy controls than MS subjects (p-value
= 0.007). This result shown in Fig. 5(a). Then we compare the concentration
values between MS subjects and the healthy controls (Fig. 5(b)). The diffusion
concentrations of MS subjects are significantly higher than the diffusion concen-
trations of the healthy controls (p-value = 0.001). These might be a result of
the atrophy in the CC of MS subjects which leads to decrease the spread of the
diffusion directions over the CC.

(a) Boxplots of means of FA of the CC. (b) Boxplots of variances of FA of the CC.

Fig. 4: Boxplots of means and variances of FA for MS subjects and healthy
controls.
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(a) Sum of angles between the three mean directions for MS sub-
jects and healthy controls.

(b) Diffusion concentrations for MS subjects and healthy controls.

Fig. 5: Boxplots of concentrations and sums of angles between the three mean
directions.
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5 Conclusion

We have used a mixture of vmf distributions to model the diffusion in the three
dimensional CC. There are at least three different mean diffusion directions in
the CC. On the normal-appearing CC of MS subjects the sum of angles between
the mean diffusion directions are smaller with higher concentration around the
mean directions compared with the healthy controls. This due to the atrophy
in the CC of the MS subjects. The result in this paper used the Euclidean
method for segmenting the CC as it is faster than the segmentation methods
using non-Euclidean measures but it is less accurate than other non-Euclidean
methods [19]. Future work will include using the segmentation results obtained
by non-Euclidean methods and by other segmentation methods to investigate
more about the consistency of the results in this paper when using different
segmentation methods. Using the vmf to obtain similar results as Witelson sub-
divisions of the CC [21] is also of interest. Furthermore, a larger data set will be
considered.
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