
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Eulerian methods for modelling gas-particle flows with low inertia
particles
To cite this article: A K Gilfanov et al 2019 J. Phys.: Conf. Ser. 1158 022047

 

View the article online for updates and enhancements.

This content was downloaded from IP address 194.83.115.14 on 25/06/2019 at 12:59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/222814491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1742-6596/1158/2/022047
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/598843820/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MMBVPA

IOP Conf. Series: Journal of Physics: Conf. Series 1158 (2019) 022047

IOP Publishing

doi:10.1088/1742-6596/1158/2/022047

1

 

 

Eulerian methods for modelling gas-particle flows with low 

inertia particles 

A K Gilfanov
1
, T S Zaripov

1,2
 and T V Nikonenkova

1
 

1
Department of Ecological System Modelling, Institute of Environmental Science 

Kazan Federal University, 18 Kremlyovskaya St., 420087 Kazan, Russia 
2
School of Computing, Engineering and Mathematics, University of Brighton, 

Cockcroft Building, Lewes Road, Brighton, BN2 4GJ 

 

E-mail: artur.gilfanov@kpfu.ru 

Abstract. The comparison of two Eulerian methods for simulating low inertia particle flows in 

a moving gas is performed for the case of hyperbolic flow. The traditional Lagrangian 

approach is used as a reference. It is shown that for low inertia particles, results obtained by the 

two-fluid Eulerian approach and the Lagrangian approach are in a good agreement. For the 

Eulerian equilibrium approach a reasonable agreement with the Lagrangian approach is 

achieved only for very small particle response time values. The discrepancy increases 

significantly with the growth of the particle response time. 

1.  Introduction 

Mathematical modelling of inertial particles transport in a moving gas is an important problem of fluid 

mechanics. Such models have applications in mechanical and chemical engineering [2]. One of the 

basic methods of modelling inertial particle flows is the Lagrangian approach, in the framework of 

which ordinary differential equations of particle motion are solved in the given fluid flow field [1]. A 

disadvantage of this approach is that the calculation of particle number density is numerically 

expensive. Knowledge of the number density of inertial particles in a moving gas is needed in many 

applications to account for the heat-mass transfer of a dispersed phase with a gas phase. Eulerian 

approaches are more convenient for coupling solutions for different phases. In this approaches the 

number density is inferred from the solution of transport equations for the carrier and dispersed phases 

on the same computational grid. For inertial particles their motion is under influence of the drag force. 

In the traditional Eulerian approach, that is known as the two-fluid approach [1, 4], a dispersed phase 

is represented as a continuum fluid with averaged characteristics of dispersed phase (number density, 

velocity) and the drag force is accounted using source terms in momentum conservation equations. 

Another way to model gas-particle flow with inertial particles is known as the equilibrium Eulerian 

approach. In the framework of this approach, the dispersed phase velocity is expressed through the 

velocity of the carrier phase [3, 5] under the assumption on the small particle response time. The 

comparison of two mentioned methods is the aim of this work. The results of calculating the number 

density of low inertia particles using two mentioned methods are compared. The traditional 

Lagrangian approach is used as a reference. 
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2.  Mathematical models 

The Lagrangian approach is based on solving motion equations for individual particles 



vuv
v

x 


dt

d

dt

d
, , 

where x is the position, v is the velocity of particle, u is the velocity of gas, and τ is the particle 

response time. The Stokes drag law for particles is assumed. To calculate the particle number density 

on an Eulerian grid, the box counting is used. In this method, a lot of particles are tracked in a 

computational domain, and number density in a cell is calculated as normalized number of particles in 

that cell.  

Eulerian methods for modelling particle flows are based on solving the continuity equation for 

disperse phase which is presented in the absence of sources and sinks of particles as 
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where n(t, x) is the number density of particles, v(t, x) is the particle velocity field. For both 

considered Eulerian approaches it is assumed that all particles have the same velocity in a point of 

space (monokinetic assumption). The difference between the approaches is in the treatment of v(t, x). 

2.1. Eulerian equilibrium approach. 

For low inertia particles with a response time τ << 1, the velocity field of the disperse phase can be 

expressed through the carrier phase velocity using an expansion over τ [5] 
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The advantage of this method is that it allows us to calculate the number density of particles without 

additional equations for disperse phase momentum. 

2.2. Eulerian two-fluid approach. 

The particle velocity field v(t, x) can be found by solving equations for disperse phase momentum 
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In contrast with the equilibrium method, this approach requires us to solve one additional equation for 

each of the space dimensions. This method can be used for particles with higher inertia. The volume 

fraction of dispersed phase is assumed to be sufficiently low so that the influence of the dispersed 

phase on the gas phase can be ignored. In this case transport equations for particles can be solved in 

the given gas flow field. 

Since both Eulerian methods are based on the monokinetic assumption, they should not be used for 

flows with particles trajectory crossings, that are characterized by multiple particle velocities at one 

point. Such flows appear, for example, when particle inertia is sufficiently high and carrier phase flow 

changes direction rapidly. We will consider only low particle response time cases for which the 

monokinetic assumption can be justified. 

3.  Results and discussion 

A finite volume method was used to solve equations (1) and (3). The first order explicit scheme in 

time and second-order scheme in space with a minmod slope limiter were used. For the two-fluid 

approach, an operator splitting technique with separate treating advective flux and the drag force term 

was used to stabilize the solution [6].  

The described methods were tested using the case of hyperbolic fluid flow as a simplest model of 

colliding jets. The velocity field of this flow is defined as u = (ux, uy) = (x, ‒y). The number density of 

particles in hyperbolic flow was calculated using Lagrangian box counting and both Eulerian methods 

in the square region [‒1; 0]×[ ‒1; 0]. For Eulerian methods the uniform grid of 512×512 finite volumes 

was used. Particles were initially placed on the bottom boundary region [‒0.1; ‒0.01] with unit number 
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density, zero x-velocity and unit y-velocity. On the right and top boundaries the number density and 

velocity was set to zero. On the left boundary zero flux conditions was used.  

Contours of the particle number density calculated for τ = 0.1 are shown in Fig. 1. The y-component of 

gas velocity decreases from 1 to 0 in vertical direction and the x-component of gas velocity increases 

in absolute value from 0 to 1 in horizontal direction. The particles move from bottom boundary with 

velocity v = (0, 1) towards the line y = 0, while slowing down in vertical direction and accelerating in 

horizontal direction under influence of the drag force. This leads to the compression of particle cloud 

on y-direction and its expansion in x-direction. As a result of the compression, the number density of 

particles increases at the front of the cloud. It can be seen in Fig. 1, that all three methods produce 

qualitatively similar results. Contours obtained using Lagrangian approach and two-fluid approach are 

in a good agreement. The main difference is that boundaries are blurred for the Eulerian approach as a 

result of numerical diffusion that is specific for solution of a pure advection equation. The two-fluid 

approach underestimates the highest value of number density, and the equilibrium method 

overestimates it in the front of particles flow. 

 

 

Figure 1. Contours of particle number density obtained by Lagrangian approach (a), Eulerian 

equilibrium approach (b), Eulerian two-fluid approach (c) for particles with τ = 0.1. 

 

The number density profiles along line x = ‒0.1 obtained using different methods for three values of τ 

(0.05, 0.1 and 0.2) are shown in Fig. 2. For all three values of τ, results obtained using Lagrangian box 

counting and the Eulerian two-fluid method are in a good agreement everywhere, except for the front 

of the cloud, where two-fluid method underestimates highest value of the number density and the 

sharpness of its decline at the front of the cloud. The Eulerian equilibrium method gives similar results 

for particles with the lowest response time (τ = 0.05). In this case, the relative difference with the 

Lagrangian approach is about 2%. For particles with higher inertia (higher response time), the method 

leads to overestimated values of number density, compared to the other two methods. The relative 

error for τ = 0.1 is 5%, for τ = 0.2 it is 15%. Note that for the Lagrangian approach small oscillations 
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of solution are observed. This is inferred from calculation of number density on Eulerian grid. For 

higher values of τ oscillations are less visible. 

 

Figure 2. Particle number density along line x = ‒0.1 for different τ = 0.05 (a), 0.1 (b), 0.2 (c) obtained 

using Lagrangian approach (1), Eulerian equilibrium approach (2), Eulerian two-fluid approach (3). 

 

Contours of the absolute difference between number densities calculated by Lagrangian and the 

Eulerian methods are shown in Fig. 3. Results obtained from the Lagrangian approach are used as a 

reference solution. It can be seen, that the regions of highest errors are on boundaries and in the front 

of particle cloud. For the equilibrium method the error is more noticeable, which is associated with a 

vertical bias of particle cloud. This bias can be seen from Fig. 2. For low inertia particle flows, the 

Eulerian two-fluid method gives better prediction of the number density, compared to the equilibrium 

method. 

 

Figure 3. Contours of absolute error in particle number density calculated using Eulerian two-fluid 

approach (a) and Eulerian equilibrium approach (b). 

4.  Conclusions 

The comparison of two Eulerian approaches for modeling gas-particle flow with low inertia particles 

is performed. The Lagrangian box counting method is used as a reference. It was shown, that in the 

case of low inertia particles the Eulerian two-fluid approach is in better agreement with the Lagrangian 

approach. A reasonable agreement for the equilibrium method is achieved only for very small particles 

response time (τ = 0.05). For this method, the error in the calculation of the number density increases 

with growth of particles response time. 
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