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Abstract

Monitoring a population for a disease requires the hosts to be sampled and tested for the pathogen. This10

results in sampling series from which we may estimate the disease incidence, i.e. the proportion of hosts

infected. Existing estimation methods assume that disease incidence does not change between monitoring

rounds, resulting in an underestimation of the disease incidence. In this paper we develop an incidence estimation

model accounting for epidemic growth with monitoring rounds that sample varying incidence. We also show

how to accommodate the asymptomatic period that is characteristic of most diseases. For practical use, we15

produce an approximation of the model, which is subsequently shown to be accurate for relevant epidemic and

sampling parameters. Both the approximation and the full model are applied to stochastic spatial simulations

of epidemics. The results prove their consistency for a very wide range of situations. The estimation model is

made available as an online application.

Keywords: Disease Surveillance, Sampling Theory, Spatial Epidemiology20
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1 Introduction

Monitoring programs are used to keep track of the invasion and spread of human, animal and plant pathogens.

They are often structured in discrete rounds of inspection, during which subsamples of the host population are

assessed for disease status (Parnell et al., 2017). Given a sequence of monitoring rounds, a key question in

interpreting these data is the estimation of the incidence1 of the disease in the host population. There are two25

special cases of this general question that have received some attention.

Firstly, monitoring is often motivated by the need for early responses to enable eradication or containment.

For example, early detection of the disease permits reduced culling of animal and plant hosts (Carpenter et al.,

2011; Cunniffe et al., 2015, 2016), as well as limited deployments of emergency quarantines or travel restrictions

for human hosts (applied e.g. for SARS, Smith, 2006). Secondly, monitoring is frequently motivated by the30

desire to prove disease absence from a host population (Caporale et al., 2012), which is important for the

transport and trade of hosts. The main question then concerns the sufficient sample size (Cannon, 2002). An

example of this is the practical “rule of three” (Louis, 1981; Hanley and Lippman-Hand, 1983). It gives the

upper bound of the 95% confidence interval (CI) of the incidence when all of the N sampled hosts are assessed

as healthy: Q95 = 3/(N + 1). Estimating disease incidence (noted q hereafter), or proving its absence, is mostly35

interesting during the early stages of epidemics, i.e. when incidences are low and containment measures are

still promising.

Simple practices like the “rule of three” make the assumption that the samples are independent binomial

draws with probability q and size N . However, as a pathogen spreads across the surveyed population, our

samples will carry dependencies to the underlying epidemic process. For example, by pooling all the samples40

together, we neglect the fact that early monitoring rounds have most likely sampled a lower incidence q than

the current one, resulting in an underestimation of the incidence. An alternative and unbiased solution is to

estimate q only from the last round to date. But obviously, such a poor use of data would only be tolerable

in cases where the monitoring interval and epidemic growth rate are both very large, so that the previous

monitoring rounds can be deemed uninformative. The temporal dependence of samples has been addressed by45

Metz et al. (1983) in the design of appropriate monitoring programs, as well as by Parnell et al. (2015) and

Bourhis et al. (2018) for the estimation of the disease incidence after the disease’s first discovery or before its

discovery (disease absence), respectively.

We propose here a generalised solution to the incidence estimation problem. Making use of all monitoring

1We use here the plant pathology definition where incidence is the fraction of host units infected. In human and other animal

pathology this is termed prevalence.
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data, it applies to the previously addressed first dicovery and disease absence cases, but extends to any mon-50

itoring outcome. Building on the simple logistic equation, our estimation model accounts for the progression

of the disease during the monitoring period. Following the idea of the rule of three, and similar to Parnell

et al. (2012) and Alonso Chavez et al. (2016), we also produce an approximation of this model. Its derivation

only requires simple algebraic operations which makes it more suitable for practitioners than the full estimation

model. Both the estimation model and its approximation are then confronted with epidemic simulations: first55

with non-spatial and deterministic simulations, and secondly with spatially explicit and stochastic simulations

of epidemics running on contrasted distributions of hosts. The results support the accuracy and practical use-

fulness of the estimation model, which has subsequently been made available as an online software application.

2 Material and Methods

Monitoring a population for a disease results in sampling series as shown in Table 1. We define K as the number60

of monitoring rounds iterated in time. Nk is the sampling size of monitoring round k, i.e. the number of hosts

whose pathological status is assessed at time tk. Mk is the number infected hosts detected during round k.

Finally, ∆k is the time interval between monitoring rounds k and k + 1.

Table 1: Variables and structure of a sampling series.

Monitoring round 1 2 ... k ... K − 1 K

Number of samples N1 N2 ... Nk ... NK−1 NK

Number of positives M1 M2 ... Mk ... MK−1 MK

Time interval ∆1 ∆2 ... ∆k ... ∆K−1 —

One monitoring round

Considering q the disease incidence in the population, the probability of M positive observations out of a sample65

of size N , is given by the binomial probability distribution

P (M |q;N) =

(
N

M

)
(1− q)N−MqM . (1)

A more general form, accounting for the occurrences of false positives and negatives in the detection process, is

P (M |q;N) =

(
N

M

)
[(1− q)(1− θfp) + qθfn)]

N−M
[(1− q)θfp + q(1− θfn)]M , (2)
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where θfn and θfp are respectively the rates of false negatives and false positives (Cameron and Baldock, 1998a).

For simplicity, the following developments do not explicitly incorporate those rates, which are nonetheless part

of the estimation model provided in the application.70

In a practical context, q is the variable that we want to estimate from samples characterised by their size N

and their outcome M . To this end we use Bayes’ rule:

P (q|M ;N) =
P (q)P (M |q;N)∫ 1

0
P (q)P (M |q;N)dq

, (3)

where P (q|M,N) is the probability distribution of q given M and N . Assuming no information on the incidence

before sampling, we set a uniform prior P (q), resulting in P (q|M ;N) ∝ P (M |q;N) (Gelman et al., 2003).

K monitoring rounds75

To account properly for the dynamic incidence between monitoring rounds, we inform the binomial probability

distribution with an epidemiological component Zk (as in Hamelin et al., 2016, whose maximum-likelihood

approach is equivalent to our Bayesian formulation with flat priors). Zk gives the relation between qK , the

incidence to estimate, and qk, the incidence at sampling time tk, as qk = ZkqK . Hence,

P (M |qK ;N) =

K∏
k=1

(
Nk
Mk

)
(1− ZkqK)Nk−Mk(ZkqK)Mk , (4)

where M and N on the left-hand side represents the whole sampling series, i.e M1, M2,...,MK and N1,80

N2,...,NK .

We assume that the disease incidence, q, evolves logistically (van der Plank, 1963; Murray, 2002) between

times tk and tK :

qK =
qke

r(tK−tk)

1 + qk(er(tK−tk) − 1)
, (5)

where r is the epidemic growth rate, while qk and qK respectively stand for q(tk) and q(tK). For simplicity, we

hereafter express time relative to tK = 0, the time of both the last sampling round and the estimation. Hence,85

we define Zk as:

Zk =
q(tk)

q(tK)
=

qKe
rtk

1 + qK(ertk − 1)

/
qK =

ertk

1 + qK(ertk − 1)
, (6)

where tk < 0 as tK = 0.

Similarly to the case of one monitoring round, we use Bayes’ rule to get the unnormalised posterior distri-

bution P (qK |M ;N). Practically, it is given by Eq. 4, which is computed for a discretised array of q ∈ [0, 1],

and from which quantiles QX can be derived (a method called grid approximation, see e.g. Kruschke, 2014).90
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A useful approximation

The upper bound of the CI is a useful measure of the highest, still likely, incidence we can expect in the

population given the outcome of a monitoring program. We propose in this section, an approximation of this

quantity not requiring the derivation of the full probability distribution of P (qK |M ;N). Various methods exist

for approximating the CI of a binomial parameter (Wallis, 2013). After preliminary testing of those methods95

against the binomial-shaped probability density given by Eq. 4, we choose the Agresti-Coull interval for its

accuracy for low incidences (Agresti and Coull, 1998). Therefore, the approximated upper limit of the X% CI

is defined as

Q̃X = min

(
1, p̃+ z

√
max

(
0,

p̃

N + z2
(1− p̃)

))
, (7)

where

p̃ =
1

N + z2

(
M +

z2

2

)
, (8)

and where z is the corresponding 1− α/2 quantile of the standard normal distribution (with α the probability100

of type I error). For the one-sided 95% CI, we derive Q̃95 by setting z = 1.645.

The approximated Q̃X also needs to account for the epidemic growth. As previously with Zk, we now

define Z̃k to quantify the disease evolution between rounds. In this case, we are unable to use the logistic

model because its non-linearity makes the derivation of Q̃X intractable. This, however, was no concern for the

full model and the grid approximation method used to derive P (qK |M ;N). Consequently, approximating the105

logistic growth model by its exponential variant, Z̃k is given by

Z̃k = ertk = exp

(
−r

K∑
i=k

∆i

)
. (9)

In practice, the exponential assumption is realistic as, during early infection, the epidemic growth is exponential,

even according to the logistic model (van der Plank, 1963). Finally, we aggregate the samples together with

respect to the epidemic growth via Z̃k:

M =

K∑
k=1

Mk, and N =

K∑
k=1

NkZ̃k. (10)

These aggregated values of M and N are then substituted in Eqs. 8 and 7 to derive Q̃X . Scaling only Nk with110

Zk has two effects: (1) the historic sampling rounds k contribute less than the recent ones to the reduction of

the uncertainty (reduced sample size N); and (2) the sampling rounds k that include detection events (Mk > 0)

see their contribution to Q̃X increased (larger M/N), hence accounting for the putative spread of the disease

from those Mk infected hosts between times tk and tK . The min and max operators in Eq. 7 are added to deal

with the possibility of having N < M for some values of Z̃k.115
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As mentioned in the introduction, this estimation model and its approximation cover the two specific contexts

of first discovery and disease absence addressed respectively by Parnell et al. (2012) and Bourhis et al. (2018)

(see Supplementary Materials for details). Their strength is however, that they extend to any sampling series,

no matter its outcome Mk and regularity in sampling size or frequency.

Asymptomatic period120

For most diseases, infected hosts develop symptoms after an asymptomatic (or incubation) period (Thompson

et al., 2016). Often, asymptomatic hosts contribute to the epidemic dynamics by spreading the disease while still

undetectable (cryptic) when sampled. The logistic equation handles this period, noted σ, as in Alonso Chavez

et al. (2016):

qT (tK) =
q(tk)er(tK−tk+σ)

1 + q(tk)(er(tK−tk+σ) − 1)
. (11)

This relates the total incidence qT at the last sampling round tK (i.e. the quantity to estimate) to the detectable125

incidences at the different sampling times q(tk) (i.e. the sampled quantities). Hence, Zk becomes:

Zk =
q(tk)

qT (tK)
=

er(tk−σ)

1 + qT (tK)(er(tk−σ) − 1)
. (12)

For the exponential approximation, Eq. 9 simply becomes

Z̃k = er(tk−σ). (13)

Testing the model

The consistency of the full model and the accuracy of its approximation are first tested against simulations of

stochastic sampling on non-spatial logistic epidemics. We consider a uniform distribution of incidences qT that130

we want to estimate individually. For each one of them, an epidemic is simulated until incidence qT is reached

and a monitoring program is designed with Nk and ∆k drawn from Poisson distributions of mean N and ∆

respectfully. From the logistic equation (Eq. 5), the detectable incidence q is derived for every sampling date

tk. Then binomial draws with probability p = q(tk) and size n = Nk simulate the sampling process of the hosts,

resulting in Mk. For every qT an exact upper bound of its CI, QX , is derived with the full model, while an135

approximated one, Q̃X , is derived with the approximation. To test our model we check that the upper limits

of the X% CI are above qT in X% of cases. This test is done for contrasted values of the sampling (N and ∆)

and epidemic parameters (r and σ).

The full model and its approximation are also tested against spatially explicit and stochastic epidemic

simulations (as in Hyatt-Twynam et al., 2017). In this case, the epidemics are no longer modelled with the140
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logistic equation but through a transmission rate and a dispersal kernel of the pathogens. To this end, the

hosts are distributed in a 2D-space and aggregated randomly in field-like structures mimicking the distribution

of the trees in an orchard. Details of this landscape model are given as Supplementary Material. Transmission

is governed by an exponential power kernel (Rieux et al., 2014). The probability of a susceptible individual

becoming infected in a unit of time is then given by145

p(s ∈ S) = β
bA

2πθ2Γ(2/b)

∑
i∈I

exp(−|xi − xs|b/θb), (14)

where s is a susceptible host among the set of all susceptible hosts S. Similarly, i and I represent the infected

hosts. A is the area occupied by one host and Γ is the Gamma function. β is the probability of infection, θ is

the dispersal scale and b is a shape parameter (producing fat-tailed kernels for b < 1). The coordinates x mark

the locations of the hosts. Following Klein et al. (2006), the mean dispersal distance for this 2D kernel is given

by:150

δ = θ Γ(3/b) / Γ(2/b). (15)

These epidemics are simulated with the τ -leap version of the Gillespie stochastic simulation algorithm (see e.g.

Keeling and Rohani, 2008). The estimation model and its approximation are evaluated in the same way as the

non-spatial case.

3 Results

Model behaviours155

Figure 1 illustrates the effects of the epidemic and sampling parameters on the resulting probability distributions

of the incidence and upper quantiles Q95. Increasing Mk, the number of detected infected hosts in the sample,

unsurprisingly increases the estimated incidence. Increasing the sample size Nk reduces the uncertainty in the

estimates. Increasing the sampling interval ∆ decreases the impact of the historic samples on the estimation.

This reflects the fact that samples taken further back in time are less informative of current disease incidence.160

As for the epidemic parameters, the growth rate r and the asymptomatic period σ (not shown on Figure 1

for dimensional reasons) have very similar effects to ∆. Increasing them increases the estimated incidence by

decreasing the impact of the historic samples (which are the ones sampling lower incidences q). Increasing

any of the parameters ∆, r or σ also reduces the effective sample size (i.e.
∑K
k=1NkZk), which increases the

uncertainty on the estimates (i.e. producing probability distributions with larger variance).165
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Figure 1: Probability distributions of the incidence q given by Eqs. 4 and 3. The vertical lines mark Q95, the upper limit of the 95%

CI. The distributions result from a sampling series composed of K = 3 monitoring rounds, of which the first two are fully negative (i.e.

M1 = M2 = 0) and the last varies from M3 = 0 (i.e. all sampled hosts are negative) to M3 = N (i.e. all sampled hosts are positive).

These probability distributions are represented for varying values of epidemic growth rate r, sampling size N and sampling interval ∆.

Test against logistic epidemics

Figure 2 shows the distribution of the exact and approximated upper bounds of the 95% CI, Q95 and Q̃95,

for uniform distributions of qT and different values of the epidemic and sampling parameters. The full model,

which similarly to the simulations builds on the logistic equation, behaves exactly as expected: it ensures that

95% of the Q95 are above their respective qT , for every set of parameters tested. On the other hand, the170

approximation displays another behaviour which is explained by its underlying exponential growth model. For

the low incidences which are relevant to practice (i.e. say qT < 0.25), the approximation is accurate (the

distributions of Q95 and Q̃95 do overlap). For higher incidences, i.e. when the logistic growth decelerates unlike

the exponential growth, the approximation overestimates the incidence (increasingly with r, σ and ∆).

Another model behaviour of particular interest occurs when r and σ are large (see the rightmost column of175

Figure 2). We observe that the estimated Q95 and Q̃95 do not align well with the diagonal for small incidences

qT . For those cases of very hazardous pathogens with high epidemic growth rates and long asymptomatic

periods, the sampling size N is too small to allow discrimination between the non-detection cases (i.e. the one

for which all the Mk = 0), and a larger sampling effort is needed for the estimation to be informative.

Although increasing r and σ accelerates the divergence between the logistic and the exponential curves, the180

approximation appears accurate for early infections even considering very high values of epidemic parameters

such as r = 0.1 day−1 or σ = 100 days.
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Figure 2: Estimation of Q95 and Q̃95 from sampling series of non-spatial epidemics, i.e. simulated with the logistic equation (Eq. 5).

These estimations are made for contrasted values of sampling and epidemic parameters (and for K = 5 monitoring rounds). Using here

the 95% CI, we expect 95% of the estimated Q95 and Q̃95 to be above the actual incidence in the field at the end of monitoring qT , i.e.

above the oblique black line. The inserted texts summarise these scores for the full model (in red) and its approximation (in blue).

Test against spatial epidemics

When locating the hosts in space, the epidemic becomes driven by two new elements: the dispersal range of

the pathogen and the intensity of host clustering (Brown and Bolker, 2004). Both determine how easily the185

pathogen spreads across the landscape or remains restricted to a local group of hosts. Random distributions of

hosts and long dispersal ranges result in smooth progressions of the pathogen across the landscape, following

a logistic-like curve. However, as the dispersal range decreases and host aggregation increases, the simulated

epidemics will tend to include interruptions between periods of seemingly logistic growth within host clusters.

Questions then arise regarding the performance of our estimation model on such epidemics.190

The estimation model and its approximation are tested for varying host aggregations and dispersal ranges.

Host aggregation is summarised by µ, the number of hosts in a field (sensu host cluster). For a given landscape-

scale population of hosts, more hosts per field means fewer but more populated fields (see the Supplementary

Material for an illustration). The dispersal scale θ is translated in terms of mean dispersal distance δ (see Eq.

15), while µ is translated in terms of d, a landscape metric measuring the mean minimal distance between the195

fields within a landscape (see Euclidean Nearest Distance in Leitao et al., 2006).

Similar to Figure 2, Figure 3 shows the performance of the model and its approximation for gradients of

9



Figure 3: Estimation of Q95 and Q̃95 from sampling series realised on spatially explicit epidemics, i.e. simulated with the dispersal

kernel (Eq. 14). These estimations are made for varying dispersal ranges θ and hosts aggregations µ, while maintaining constant values

of the non-spatial parameters (N = 100, ∆ = 30, σ = 30, K = 5, as well as β = 75 and b = 0.45 for the remaining kernel parameters).

For better understanding, θ and µ are shown with their distance translation in meters, δ and d. The identified logistic growth rate r

is given for each experiment. The resulting distributions of Q95 and Q̃95 are qualitatively similar for other realistic values of the fixed

parameters.

dispersal scales θ (columns) and host aggregations µ (rows). For each parameter set θ and µ (i.e. each panel

in Figure 3), 50 epidemics are first simulated for 50 different landscapes in order to identify the value of r that

produces the best fitting logistic curve (with least squares). This r then informs the incidence estimation model200

and its approximation for the subsequent testing set of 2000 epidemics and landscapes. Most of Figure 3 agrees

with expectations: the estimated Q95 align neatly above the diagonal, showing in practice the accuracy of the

estimation model. The approximation appears to be a good simplification of the full model for early detection.

However, the estimation model also produces overestimations of the incidence, specifically in the bottom row

and left column (i.e. where the dots do not align above the diagonal). These are cases of epidemics for which205

the distance between host clusters (quantified by d) is too large for the pathogen dispersal range (quantified

by δ), hence producing unsteady progressions of the pathogens across the landscapes. This illustrates that our

model is of limited interest in such cases where d/δ ≤ 0.5.

We notice also that p(qT < Q95) can be below the 95% expectation. This results from the fact that the

10



stochasticity of the simulations scatters the realised epidemic curves symmetrically around the fitted logistic210

one (whose identified parameter r is subsequently used by the estimation model). This is no concern in practice

where the epidemic parameters are taken conservatively from previous observations of similar outbreaks (e.g

highest observed values of r or σ). Here we choose central estimates (through least squares) for illustrative

purposes. Nonetheless, parameter uncertainty can be accounted for in the online application assuming that r

and σ can be described with normal distributions. On how to deal with epidemic parameter uncertainty, see215

Neri et al. (2014); Hyatt-Twynam et al. (2017).

4 Discussion

The model developed in this paper is suitable for many monitoring designs, including those with irregular

sampling sizes and time intervals between rounds. The model weights each monitoring outcome according

to an estimate of the population incidence at their respective sampling time, before aggregating them into a220

single binomial-shaped probability distribution of the incidence. The quantiles of this distribution have practical

interests for policy-makers. The model is directly applicable for situations in which surveillance does not depend

on the self-reporting of symptomatic hosts, which makes it appropriate for most animal and plant species. Our

model is also appropriate for certain monitoring schemes aimed at pathogens of humans, for example visitations

of rural villages to find Ebola infections where access to healthcare is limited (Namukose et al., 2018; Thompson225

et al., 2019).

Calculating the probability density of the incidence from the sampling series is computationally inexpensive,

but still requires technical proficiency. Therefore, we have produced an online application interfacing the full

model as exhaustively as possible, as well as an approximation of the model which can be derived with simple

algebraic operations. Our intention is to equip the widest audience of practitioners with this incidence estimation230

capability. The approximation is as flexible as the original model, and we have shown that its inaccuracies are

restricted to high level of incidences that are less relevant when dealing with emerging epidemics. However, in

case such high incidence estimation is needed, we have seen that the approximation is conservative, i.e. biased

towards an overestimation of disease progress (which is not always acceptable, since it might lead to overzealous

control, see e.g. Thompson et al., 2018).235

The model relies on the simple and deterministic logistic equation. That it is consistent with more complex

systems is not obvious. The tests presented here against spatial and stochastic simulations of epidemics show

that our non-spatial model is robust to the significant deviations from the logistic equation, products of both

11



spatiality and stochasticity. The model gives accurate estimates of the disease incidence for most simulated

epidemics considered here. However, for highly aggregated host distributions and short distance dispersing240

pathogens, the deviation from the logistic equation can be too great. In those contexts, the disease progression

across the landscape is not steady but punctuated by rare events: the pathogen jumps between distant host

clusters. Then, the very distinctive trajectories this epidemic can take do not simplify well into a single logistic

curve. In such cases, reduced pathogen dispersal and increased host aggregation result in habitat fragmentation

for the pathogen. The estimation should then be attempted on individual clusters or a multiscale approach245

considered (as in Cameron and Baldock, 1998b; Coulston et al., 2008).

From plants to animals, the major shift regarding epidemics lies in individual movement. In many cases,

this can be overlooked as it does not necessarily imply movement of the sampling units (e.g. herds/farms in

Bates et al., 2003). When sampling individuals however, our model is applicable to well-mixed populations, i.e.

where the pathogen spread is steady and not too impacted by spatio-temporal structure in the host population.250

We saw the limits of this assumption in Figure 3 where highly clustered distributions of hosts cause significant

deviations from model predictions. Such deviations may, for example, be increased if clustering correlates

with heterogeneous susceptibility of hosts (e.g. age-related aggregation like schools), or attenuated by mutable

clusters (e.g. commuting).

Recent technological innovations are changing epidemiological surveillance for more timely and exhaustive255

censuses. For example, the monitoring of human epidemics is already augmented by the supervision of social

networks (Chen et al., 2014) and internet search queries (Yuan et al., 2013; Yang et al., 2015). Tree monitor-

ing could also be assisted by satellite high-resolution imagery (Li et al., 2014; Salgadoe et al., 2018). Those

innovations will still need robust and epidemiologically informed estimation methods and, even if monitoring is

conducted continuously, there is no reason to see them incompatible with an adaptation of our model. However,260

in any foreseeable future, most contagions will still be monitored through discrete and censored inspections and

hence, remain within the immediate scope of the estimation model presented here.
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