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Abstract

In this thesis, we investigate the problem of automatic music genre classification in the field

of Music Information Retrieval (MIR). MIR seeks to apply convenient automated solutions

to many music-related tasks that are too tedious to perform by hand. These tasks often

deal with vast quantities of music data. An effective automatic music genre classification

approach may be useful for other tasks in MIR as well.

Association analysis is a technique used to explore the inherent relationships among

data objects in a problem domain. We present two novel approaches which capture genre

characteristics through the use of association analysis on large music datasets. The first

approach extracts the characteristic features of genres and uses these features to perform

classification. The second approach attempts to improve on the first one by utilizing a

pairwise dichotomy-like strategy. We then consider applying the second approach to the

problem of automatic subgenre classification.
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Chapter 1

Introduction

Music is a highly social construct that is tied to our evolution as a species and is as funda-

mental as language. Through it, musicians can express abstract ideas and orient these ideas

to specific audiences [80]. The abstraction of these ideas is presented in a temporal form

that can be recorded and further analyzed.

Recording technology began with Thomas Edison’s invention of the phonograph in

1877, a year after Alexander Graham Bell patented the telephone. Edison stated that the

phonograph would eventually be able to reproduce music, preserve languages, etc. [15].

Then, record players became available at the beginning of the 20th century. The new ability

to record and distribute audio had an immense impact on composers and the archival of mu-

sic. Eventually, magnetic cassette tapes and optical Compact Discs (CDs) became available

later in the 20th century. However, some of the most disruptive technologies for music were

the creation of the Internet and the digitization of music. At this point, storage shifted from

physical mediums (e.g., LPs, CDs, and cassettes), back to the seemingly "intangible". This

was also further accelerated by innovations in data compression (e.g., MP3, AAC, etc.) and

networking. For the sharing of music, the only bottlenecks became the amount of digital

storage available, and the transmission of music via the Internet. Peer-to-peer file sharing

upended years of record label monopolies, and finally, Apple began selling digital music on

their iTunes Music Store in 20031. Most recently, music streaming services (e.g., Spotify,

Deezer, and Google Play Music) have gained incredible popularity, for example, Spotify

1https://www.wired.com/2010/04/0428itunes-music-store-opens/.
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1.1. MUSIC INFORMATION RETRIEVAL

had 83 million paying subscribers in 2018, with over 180 million active monthly users2.

When using a streaming service, users no longer need to digitally download music and are

even more likely to listen to a greater quantity and variety of music [21].

Music listeners require plenty of conveniences from their access to the massive amounts

of music data available, such as: playlist and related artist recommendations, proper genre

and mood categorization, and easy user querying. Automated approaches must be devised,

since it is extremely time-consuming and expensive to have experts label genres or moods,

and find similar artists. These are problems that can be solved by Music Information Re-

trieval (MIR).

Before discussing MIR, it is important to mention that technologies outside of MIR

that are still related to the computational analysis of music data have also flourished along-

side MIR. Some of these developments include: algorithmic composition, automatic music

transcription, and automatic analysis of music scores.

1.1 Music Information Retrieval

MIR was first introduced in the mid-1960’s, by Michael Kassler [42], which was ahead

of its time. The substantial development of MIR began in the late 1990s, which was fol-

lowed by the first International Symposium on Music Information Retrieval (ISMIR) oc-

curring in 2000 [13].

MIR offers solutions to problems that, above all, will enhance the listening experiences

for music fans by improving their access to large music collections. It becomes an invalu-

able field when one takes into account the size of online digital music services, the number

of listeners, and the current ease of access to vast digital music libraries.

MIR is a field that requires cross-disciplinary perspectives to devise various solutions.

Some of these disciplines include: psychology, musicology, audio engineering, signal pro-

cessing, acoustics, and computer science. Many computational approaches found in MIR

2https://www.theverge.com/2018/7/26/17616404/spotify-paid-subscribers-83-million-
streaming-music-quarterly-results.
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1.1. MUSIC INFORMATION RETRIEVAL

use data mining to extract patterns in large repositories, databases, the Web, or through data

streams [37].

The problems that exist in MIR can be solved with several computational approaches in

music data mining, as stated by Li et al. [51]. Such tasks can be grouped into various cat-

egories: data management, music similarity search, association mining, sequence mining,

classification, clustering, and music summarization.

Data management must be done in order to facilitate the access to large music databases.

This entails music data indexing, which ultimately allows for efficient querying. This in-

dexing can be based on the extracted acoustic features of music pieces (see Section 2.1.2).

Music similarity search is the task of finding related music pieces to a specific input

music piece, or a number of inputted music pieces. This is done by using specific acoustic

features that are extracted before searching, or by using higher level descriptions, such as a

piece’s structure. Then, the distance between the features or descriptors extracted from the

input to other music pieces can be calculated. Approaches to this can also be extended to

include more than one input music piece. For instance, an artist’s album or discography can

be used as input to find similar albums or artists. Similarity can also be measured by using

different segments from the same piece (e.g., identifying chorus or verse segments).

Association mining, which will be further discussed in Section 2.3, is used extensively

in this thesis. Association mining is used to find correlations of various items in a dataset.

There are several cases of its use in the MIR literature, including: 1) among various acoustic

features, 2) between music and other document formats, and 3) among music features and

other aspects of music. We will especially focus on the first and the last use cases.

Sequence mining detects patterns that are represented in a structured temporal sequence.

Some examples are to examine the relationships and co-occurrences of chord progressions,

rhythmic phrases, melodic motifs, song structure, and especially to find errors in music

transcriptions.

Music summarization extracts concise representations of music pieces that can be used

3



1.2. GENRE CLASSIFICATION

for the organization of large databases. The extraction of a main melody can be done using

Musical Instrument Digital Interface (MIDI) data, or by extracting acoustic features that

may determine song structure through timbral analysis.

Clustering is a method of separating music data into different groups based on some

similarity metric, without using any category (i.e., class) labelling. The lack of class la-

belling makes clustering unsupervised [37]. Acoustic features, lyrics, etc. are typically

used for this purpose.

Classification is different from clustering, in that it uses class labels, and is therefore

supervised. It is the process of correctly identifying various classes, for each new individual

data instance. Classification in MIR takes on various tasks, including: genre classification,

mood and emotion classification, instrument recognition, artist classification, and singer

recognition. Each of these classification tasks poses different problems. However, if a

classification algorithm is effective enough, it may work well in all of these cases. For this

thesis, we focus on the problem of genre and subgenre classification.

Of course, any of the above tasks may combine several of the categories proposed by Li

et al. [51], for instance, the approach stated in Chapter 3 of this thesis combines association

mining with genre classification, and is also useful for the similarity search task.

1.2 Genre Classification

The automatic classification of music pieces into genres began with Tzanetakis and

Cook [95], who state that a genre is a label that is placed on a music piece to somehow both

summarize its similarity to other pieces sharing the same label, and differentiate this piece

from other pieces that do not share this label. Furthermore, they state that a genre label is

dependent on instrumentation, rhythmic, and harmonic properties.

Tzanetakis and Cook [95] also state that there is more to merely applying this label

based on instrumentation, rhythm, and harmony, stating that historical, marketing, and cul-

tural factors also determine a piece’s genre. Therefore, the boundaries between genres

4



1.2. GENRE CLASSIFICATION

cannot be simplified, so we present some of the difficulties and the benefits of performing

automatic music genre classification below.

1.2.1 Difficulties with Automatic Genre Classification

For the problem of automatic genre classification, there are some inherent difficulties

that must be addressed. Firstly, many cultural factors come into play, and a genre’s char-

acteristics can, to a large extent, be socially motivated, i.e., dependent on such things as:

age, race, sex, and further abstractions like political messages, and the sense of belonging

to a community [62]. Other issues of genre classification relate to having reliably annotated

benchmark data, i.e., whether human annotators completely agree on what they are anno-

tating (disagreements can occur during labelling), the arduousness of manually labelling

the genre of each piece in a benchmark dataset, the introduction of new genres and the

changing of older ones, etc. [62].

Human classification of genres can also be imperfect. For example, first year university

students’ (non-music majors) average classification accuracy reached only ~70% (genre

labels provided by record companies) for three (3) seconds of audio; a longer duration did

not improve the accuracy [62]. This shows both the definite ambiguity of genres and that

the ceiling for automatic classification accuracy can only be so high.

Further difficulties arise with the general evaluation of automatic genre classification

approaches, and whether or not genres are even accounted for during classification, that

is, a classifier may be finding similarities in music data without actually understanding a

"genre" (i.e., identifying similar aspects of a recording like loudness, spectral character-

istics, etc.) [87, 89]. Furthermore, Sturm [89] points out that various approaches’ perfor-

mance can be deflated (or inflated) quite easily. By using transformations such as very

subtle time stretching (i.e., increasing the length of a piece), equalization (i.e., filtering cer-

tain frequencies), etc., and performing the classification tasks again, he shows that a proper

classification may be dependent on musically irrelevant cues rather than what is consid-
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ered "ground truth". Cases may also arise where single-label misclassifications should not

necessarily be considered misclassifications, due to the subjective nature, and mixing of

different genres [74].

1.2.2 Benefits of Automatic Genre Classification

The task of music genre classification can still be very beneficial for a variety of pur-

poses. Genres are identified with at a cultural level and are crucial to an individual’s way of

explaining what music they are interested in [62]. Furthermore, listeners prefer to browse

music by genres, compared to other methods, such as by similar artists or popularity [48].

Listeners are already accustomed to browsing music by genre, with detailed classifications

(i.e., subgenre classifications), being particularly useful [62].

If an automatic genre classification approach is successful in actually determining music

genres, it may offer other solutions to MIR problems, such as automatic tag annotation,

mood classification, playlist recommendation, and instrument recognition. Finally, and as

stated previously, an approach could assist in the curation of large amounts of digitized

music data, since human labelling is ultimately expensive and time-consuming.

1.3 Contribution

This thesis first proposes two novel approaches for classifying music pieces into gen-

res. In addition to categorizing music pieces into genres, the approaches are also able to

statistically characterize the genres by storing the characteristic features associated with

the pieces belonging to each genre. These approaches also offer new methods of applying

association analysis to the genre classification problem in MIR. The first approach to be

proposed is similar to one proposed by Arjannikov and Zhang [6], however, our approach

uses a method of characterization that is genre-specific, without needing to derive specific

rules for each genre. We also provide a number of novel ranking criterion to match an in-

coming music piece to the specific characteristics of a genre. The second approach presents
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a new dichotomy-like pairwise comparison between genres that solves several issues re-

lated to the first approach and offers a mechanism of improving performance. For these

approaches, we design several classification experiments on various datasets that demon-

strate their accuracy. Various combinations of parameters are discussed, with regards to

performance, so that further research can be done.

Next, we notice that there is very little literature regarding a music genre classifier’s

ability to perform finely detailed subgenre classification tasks, which can be a much more

challenging and problematic task. Since there has not been much work done in this area, we

design several replicable experiments that other researchers in MIR can compare against.

We test our second approach with a series of subgenre experiments, using two (2) bench-

mark datasets, and notice that some fine-tuning of parameters may be needed when classi-

fying subgenres due to the similarity between them.

Generally, if a genre classification approach performs successfully, it may assist in fur-

ther music data management tasks (e.g., archive querying and playlist generation). The

work presented demonstrates the usefulness of the above-mentioned approaches for char-

acterizing and comparing genres, so that they can be further employed in industry on large

scale digital music repositories and databases.

1.4 Outline

The remainder of this thesis proceeds as follows. In Chapter 2, we formalize the prob-

lem of genre classification further, we discuss various content-based features (derived from

the audio signal) that are used in future chapters, we formalize association analysis, and

we explore various classification methods in the literature, including some ensemble clas-

sification methods. Next, we discuss the related works found in the MIR literature con-

cerned with genre classification, subgenre classification, ensemble techniques, and associ-

ation analysis.

Chapter 3 presents our first approach. We examine how it characterizes genres, and
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present various parameter combinations that ultimately affect the classification accuracy.

These parameters are found throughout the classification process, starting at the feature

discretization stage, where content-based features are encoded as feature-values, through to

the stages after genre characterization, where scoring thresholds dictate the final classifica-

tion accuracy according to the input music pieces used to evaluate our approach.

Chapter 4 discusses the improvement of our first approach, by way of further genre

characterization and a dichotomy-like pairwise comparison of genres. Similar to Chap-

ter 3, we examine parameter combinations. We analyze various methods of scoring that

are attempted after genre characterization. We also observe how the genre classification

accuracy changes when we uplift subgenres to their parent genre’s hierarchical level. For

example, promoting various subgenres to their parent genres makes certain genres less dis-

tinguishable.

In Chapter 5, we take the approach presented in Chapter 4 and attempt to classify var-

ious music subgenres using large benchmark datasets. We explore the effects of adding

various descriptive features for the classification tasks and provide an analysis on parameter

values, finding those parameter combinations that are successful for subgenre classification.

Finally, in Chapter 6 we conclude this thesis by providing an overview of the approaches

and results presented in Chapters 3, 4, and 5, while restating our contributions. We also

discuss the limitations of our approaches and describe potential future research directions.
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Chapter 2

Background

The purpose of this chapter is to familiarize the reader with the overall classification process

used in future chapters. This chapter is organized by presenting each section according

to the various steps taken in our approaches, as broadly presented below in Figure 2.1,

which also represents the standard process of training and evaluating a classifier for various

content-based classification approaches in MIR.

Feature extraction Discretization
Split discretized data
into tester and trainer

pieces 

Association analysis/ 
characterization of

genres 
Digital audio recordings  
(e.g., MP3, WAV, etc.)

Training
data 

 

Testing
data Genre classification  

(using a single classifier
or ensemble method)

Classification evaluation 

Figure 2.1: An overall depiction of our genre classification approaches.

We begin with a broad description of feature extraction and briefly summarize various

features that are extracted from digital audio recordings to summarize the musical content.

Next, we present various discretization steps taken in our approach. We then present asso-

ciation analysis in order to clarify how genres are characterized. Next, we discuss various

single-classifier classification methods as well as ensemble techniques for classifiers. We

then consider the multiple datasets used in our experiments and include the related works

in the last section of this chapter.
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2.1 Content-Based Analysis of Audio

In our experiments, we solely use content-based features. In this section, we will ex-

plore what these are, and how they are derived. Our focus will be on the content-based

features that we use in our proposed approaches.

Content-based audio features play a crucial role in summarizing the information of an

audio signal. When represented digitally, uncompressed audio requires large amounts of

data, with a sampling rate of at least 44.1kHz3, and often 16 bits per sample (for CD quality

audio) for both stereo channels. Content-based features are ultimately used to represent

the underlying audio content in a compact form [51]. These features are derived directly

from the audio and stored as feature vectors for further processing. Obtaining these feature

vectors is the first step taken by many classification systems in MIR and are often the only

representation of the audio that a classifier might use [59]. Classifiers in MIR often benefit

when there are high quality and numerous features [2, 59]. To represent various aspects

of the music, features related to the underlying content of the music are used, such as

rhythmic, harmonic, and timbral textural features, in order to recreate how humans perceive

music [51]. First, we will discuss various preprocessing steps.

2.1.1 Preprocessing

In the preprocessing stages, certain actions can be taken to improve the performance of

a classification system, decrease the complexity of the feature extraction step and the data

mining task, or to ensure that all data are represented the same way (sometimes improving

classification performance). Two methods of preprocessing will now be discussed: down-

sampling and normalization. Downsampling occurs when the sampling rate is decreased.

It is generally done to ensure that all audio files have the same sampling rate before feature

extraction since various sampling rates can be used to represent audio. However, it may

also be used to decrease the computational complexity of the feature extraction process that

344.1kHz is chosen because of the Nyquist theorem. To prevent aliasing and ensure reproduction of the

audio signal, the sampling rate must be twice as large as the highest frequency humans can hear ~20kHz.

10



2.1. CONTENT-BASED ANALYSIS OF AUDIO

follows. Downsampling does cause audio to lose its quality, however the most important

low-frequency information is preserved, which is quite valuable for MIR tasks. Normaliza-

tion occurs when the amplitude is adjusted to some specified value before feature extraction.

This removes amplitude variability from recordings [61]. Some other preprocessing steps

worth mentioning are: channel merging, converting multi-channel audio (i.e., stereo) to

mono, and rectification, the removal of the negative component of the audio signal [61].

Next, a short-time Fourier transform (STFT) can be done to extract various features.

Many important features modelled after human hearing are directly based on the STFT.

The STFT is a time-localized version of the discrete Fourier transform (DFT). An STFT

may be done on evenly distributed time frames of a signal, such that a DFT is performed on

each segment. To ensure that discontinuities or distortions, known as spectral leakage, at

the edges of the windows do not occur, typically a smoothing window, such as a Hamming,

Hann, or Blackman window is applied. The output is a spectrum for each window [51].

One purpose of the STFT for feature extraction is to convert from the time domain to the

frequency domain, so that spectral features can then be extracted. For a formal definition

of the DFT see Lyons [55].

2.1.2 Feature Extraction

After preprocessing is done, features will be extracted separately from analysis window

to analysis window (with an STFT performed on each one, if needed). The analysis win-

dow size is dependent on the purpose of the content-based analysis that needs to be done

and is used to separate the signal into small frames. Small analysis window sizes, ~20ms

to 40ms, are typically used to provide a greater description of timbre, while medium analy-

sis window sizes, ~1000ms to 2000ms, can provide a high-level description accounting for

characteristics like instrumentation, or the changing of notes, and long windowed features,

>2000ms, can provide beat content information [24, 66]. The decision of an analysis win-

dow size is a nontrivial consideration since it can directly affect the classification accuracies
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of a MIR system [95]. Hop size accounts for how much the analysis window shifts, thus

accounting for the amount of overlap between analysis windows. Smoothing is applied to

the beginning and end of the analysis window. Normally, after features have been extracted

across all of the individual analysis windows, some overall statistics (e.g., mean, standard

deviation, etc.), can be calculated and stored in a feature vector.

Since our experiments described in the next chapters are strictly content-based, it is

necessary that we define the extracted features used to summarize the music pieces from the

chosen datasets. We do not provide an exhaustive depiction of all the features used in MIR.

However, many common low-level and mid-level features used in MIR are discussed, since

we do use time domain and spectral features. High-level musically meaningful information,

such as the amount of chromatic motion [61], is outside the scope of this work.

2.1.3 Some Features Used in MIR

The features presented will be split into several categories: temporal, spectral, cepstral,

pitch-oriented, texture window, and beat-based features. Each is used to summarize various

aspects of a music piece, as will be described.

Temporal Features

Temporal features specifically use the time domain representation of the audio signal.

The analysis windows used are typically the same as those spectral features. This way, the

music piece can be summarized consistently. Let xt [m] be the time domain signal x’s value

at the sample m, with N total samples in the analysis window t.

Zero Crossings: A way to measure the noisiness of a signal via the amount the signal

crosses the midpoint. A crossing of the midpoint is defined as (xt [m− 1] < 0, xt [m] > 0),

(xt [m− 1] < 0, xt [m] > 0), or (xt [m− 1] �= 0, xt [m] = 0) [61]. The zero crossing rate is
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measured by the number of times a signal crosses the midpoint, and is defined as

Zt =
1

2

N

∑
m=1

|sign(xt [m])− sign(xt [m−1])|, (2.1)

where the sign is 1 for positive values, and 0 is for negative values [95].

Strongest Frequency via Zero Crossings: A simple way to estimate the dominant fre-

quency for an analysis window is to use the product of the zero crossing rate and the sam-

pling rate SR [59, 61]. This is given by

SFZCt =
(Zt)(SR)

2N
. (2.2)

Linear Predictive Coding (LPC): In music, LPC can be useful for estimating the in-

strumentation of a music piece [61]. Each sample of the signal is a linear combination of

previous samples, plus an excitation, with the coefficients minimizing the mean square er-

ror between the prediction of the signal, and the actual signal. In essence, the coefficients

are responsible for reproducing the resonances, so that the output is similar to the source.

The coefficients are normally returned as a feature vector [61, 72]. The general LPC model

is given by

Sm =
p

∑
k=1

aks[m− k]+Gu[m]. (2.3)

Where p is the order of the LPC filter, or the previous p speech samples, ak is the kth

predictor coefficient, s[m] is the mth sample, u[m] is the mth excitation signal, and G is used

for prediction error [72].

Spectral Features

Spectral features summarize the spectral domain of a given music piece and they are de-

rived after taking the DFT of an analysis window. Since the spectral domain is concerned

with frequency content, these features are useful for describing timbral characteristics. For
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example, they can describe the instrumentation’s timbre [51]. For the following descrip-

tions below let Mn[k] and Pn[k] refer to the magnitude spectrum and power spectrum, at

frequency bin number k, at the nth analysis window. Similarly, let Xn[k] represent the kth

frequency bin at analysis window n. Finally, let N be the highest index for frequency bins.

Magnitude and Power Spectrum: The relationship between the power spectrum and the

magnitude spectrum is defined by Lyons [55] as

Pn[k] = Mn[k]2 = Xnre [k]
2 +Xnim [k]

2, (2.4)

where re and im respectively refer to the real and imaginary component of the DFT for the

nth analysis window’s kth frequency bin. Normally, it is only by convention to use the mag-

nitude spectrum as a way to describe spectral features, as the spectrum itself, or the power

spectrum, can also be used for extracting features. The magnitude spectrum is especially

effective for describing lower energy spectral activity [61]. Furthermore, the energy of an

analysis window is the averaged summation of power across the frequency domain bins in

that analysis window, or the summation of power across the samples in the time domain for

that analysis window (according to Parseval’s theorem) [55, 84].

Spectral Centroid: Spectral centroid is used to estimate the perceptual "brightness" of

the audio signal. In order to estimate this, the balancing point of the STFT’s magnitude

spectrum is extracted. It is formally defined as

Cn =
∑N

k=1 Mn[k] · k
∑N

k=1 Mn[k]
. (2.5)

Spectral Contrast: Spectral contrast is used to identify the difference between peaks

and valleys for each individual frequency sub-band. This is done by dividing the spectrum

of an analysis window into frequency sub-bands, and finding the difference between the
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strength of spectral peaks and valleys [40]. Peaks in spectral contrast features correspond

to harmonic components, and valleys correspond to noisier sounds. Spectral contrast is

given formally as

SCs = Peaks −Valleys, (2.6)

where Peaks and Valleys are defined as

Peaks = log
(

1

αN

αN

∑
i=1

xs,i

)
, (2.7)

Valleys = log
(

1

αN

αN

∑
i=1

xs,N−1+i

)
. (2.8)

The DFT of the sth sub-band is of a vector form, sorted in decreasing order of magnitude

(i.e., {xs,1,xs,2, . . . ,xs,N}). N is the number of DFT bins for the sth sub-band and α is a

neighbourhood constant for the sub-band, normally between 0.02, and 0.2. s ∈ [1,6] [40].

Spectral Flux: Spectral flux is used to measure the amount of spectral change from

analysis window to analysis window [61]. It is defined as

SFn =
N

∑
k=1

(Mn[k]−Mn−1[k])2. (2.9)

Spectral Rolloff: Spectral rolloff (SR) is the frequency below some fraction C, where

the magnitude distribution is the most concentrated [95]. C is normally set to 0.85 or 0.95.

Spectral rolloff shows the amount of energy at the lower frequencies, and will satisfy the

inequality [61]
SRn

∑
k=1

Mn[k] =C ·
N

∑
k=1

Mn[k]. (2.10)

Peak-Based Spectral Smoothness: This feature uses an average of the set of surrounding

spectral peaks (i.e., the neighbours on either side), and calculates the difference between the

log of the peak itself and the average of the logged peaks in the neighbourhood for a given
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analysis window. The peaks are chosen algorithmically [58, 61]. Spectral smoothness is

calculated as

SSn =
M−1

∑
m=2

(
log(Tn[m])− log(Tn[m−1])+ log(Tn[m])+ log(Tn[m+1])

3

)
, (2.11)

where Tn[m] is a given peak, with M ≥ 3 being the number of spectral peaks.

Strongest Frequency via FFT Maximum: This is a simple feature that finds the strongest

frequency of the audio signal in Hz. Since features are extracted via analysis windows, this

can be a simple method of tracking pitch changes [61].

Strongest Frequency via Spectral Centroid: Another way to find the strongest frequency

of a signal is to derive it from the spectral centroid using the ratio to calculate the spectral

centroid and mapping it to a frequency [59, 61].

Method of Moments: The area, mean, spectral density (or variance), skew, and kurtosis

(or "peakedness") of the magnitude spectrum can be calculated and stored in a feature vec-

tor [61]. The higher ordered the moment calculation is, the more descriptive it is, however,

lower ordered moments offer a concise description [32]. Note that skew and kurtosis can

also be used to describe the overall characteristics of the spectral features after all of the

features in each analysis window have been calculated (just like the mean and standard de-

viation), this is used for our experiments in Section 5. Let μn, σ2
n, SKn, and KUn represent

mean, variance (the twice power of the standard deviation), skew, and kurtosis of the nth

analysis window, respectively. The moments mentioned are given as

μn =
1

N

N

∑
k=1

Xn[k], (2.12)
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σ2
n =

1

(N −1)

N

∑
k=1

(Xn[k]−μ)2, (2.13)

SKn =
1

σ3(N −1)

N

∑
k=1

(Xn[k]−μ)3, (2.14)

KUn =
1

σ4(N −1)

N

∑
k=1

(Xn[k]−μ)4 −3. (2.15)

Cepstral Features

Cepstral features are used to summarize the spectral envelope even further than spectral

features. Also, there is some additional processing that typically needs to occur. In MIR,

Cepstral features are dominated by the usage of Mel-frequency cepstral coefficients.

Mel-Frequency Cepstral Coefficients (MFCCs): MFCCs are a prevalent mid-level fea-

ture in MIR research. They were first introduced by speech recognition researchers, and are

perceptually motivated, attempting to replicate how humans hear. This is due to the higher

concentration of triangular Mel-scale filters for low-frequency bins when deriving MFCC

features4, and the use of the Mel-frequency scale, which accounts for humans’ lack of abil-

ity to distinguish between lower frequencies, compared to higher frequencies. A typical

conversion, given in [73], maps from Hz to Mels, with a steeper logarithmic mapping for

lower frequencies. Let f represent some frequency, with m as the mapped Mel-scale value;

the Mel-scale conversion is then defined as

m = 2595log10

(
1+

f
700

)
. (2.16)

After the DFT for a particular analysis window has been taken, the typical steps for

extracting MFCC features, are: 1) The log amplitude of the magnitude spectrum is taken,

2) DFT bins are grouped and mapped to the Mel-frequency scale, and lastly, 3) a discrete

4According to Fletcher and Munson [28], human hearing is most sensitive around 2-4kHz, and less sensi-

tive for lower frequencies, due to the resonance properties of the auditory canal.
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cosine transform (DCT) is performed for each grouping and the DCT coefficients are stored

in a feature vector. The log amplitude is taken to reduce potentially detrimental dynamic

fluctuations. A DCT is similar to a DFT, except it uses only real numbers, and will describe

the spectrum as a sum of cosine functions. A DCT is chosen because the Mel-scale filter-

bank analysis windows overlap, and it is very good at decorrelating energies. Usually the

lowest 13 coefficients are kept, and the coefficients corresponding to higher frequencies are

discarded [51, 95].

Derivatives of MFCCs: The derivatives of MFCCs describe how much and how often

the MFCCs change temporally. In general, finding the derivative is done discretely, by

calculating the difference between the coefficients of analysis windows [59].

Pitch-Oriented Features

Pitch-oriented features can be derived from the spectral domain by mapping frequency

content into pitches. This is especially useful for extracting features that are more musically

intuitive in nature.

Chroma Features: Chroma features are widely used in the MIR community, and this

thesis would be incomplete without mentioning them. Chroma features map the frequency

domain bin to the nearest equally tempered frequency corresponding to a chromatic scale

note (usually folded down to an octave), by computing the energy at each chromatic scale

frequency. A pitch histogram can be constructed across the analysis window or the whole

signal [51]. Certain musical characteristics can then be explored, such as: key, harmony, in-

terval structures, and melodies. By mapping frequencies to pitch bins, as described above,

the calculation of temporal attributes related to the bins can also be made. One such exam-

ple is to find the maximum period of the pitch peaks [96].
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Texture Window Features

Another strategy for feature extraction is the use of a texture window, which is a method

of temporal feature integration. This is done by summarizing the information in the current

analysis window and all of the previous analysis windows into a single feature vector, using

a Gaussian model, for example. The number of past analysis windows chosen for the

integration is dependent on the description needed, as adding more past analysis windows

gets closer to a song-level analysis [51, 66].

In our experiments, we make use of one feature that is based on texture windows, i.e.,

low-energy. The following feature is common to include and has been used in the seminal

works of Tzanetakis and Cook [95] and Silla et al. [41].

Low Energy: This feature describes the percentage of windows with a lower root mean

square (RMS) energy than the texture window’s average RMS energy. RMS is defined as

the average energy of a window and is given by

RMS =

√
1

N

N

∑
m=1

x[m]2. (2.17)

Low energy is also referred to as the fraction of low energy frames and may use some

threshold different from the texture window’s average RMS energy. For our purposes, it is

the feature based on the texture window’s RMS value [95].

Beat-Based Features

Beat-based features are an attempt to portray some high-level rhythmic information.

They are still technically content-based, and can only give some estimation of note onsets

and durations. Beat-based features make use of a beat histogram, which is constructed

using autocorrelation. Brown [12] proposed the use of autocorrelation in music, and it was

further popularized in MIR by Tzanetakis and Cook [95]. The definition of autocorrelation

is
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A[d] =
1

N

N

∑
m=1

Y [m]Y [m+d], (2.18)

where m is the mth sample point, N is the total samples, Y is a function applied to deter-

mine the autocorrelation value (this is explained shortly), and lastly, d is all integer values

between 0 ≤ d < N. The value d exploits the time domain of the signal since it is used to

calculate A for an evenly spaced number of samples. The overall value for A at the bin d

will provide an indication of the strength in periodicity for that bin d.

The function Y is the representation of the signal after any number of preprocessing

steps. For example, McEnnis et al. [59] implement an RMS function on the original sig-

nal. However, Tzanetakis and Cook [95] apply a pyramidal algorithm using Daubechies

wavelets to perform the discrete wavelet transform (DWT), which takes the signal and de-

composes it in frequency using octave-spaced filters [95]. Next, they perform: full wave

rectification, low pass filtering, downsampling, and normalization on the signal. Finally,

they apply the autocorrelation function.

After the creation of the beat histograms using autocorrelation, several features can be

extracted [59, 61, 95], including the following:

• Beat Sum: the sum of all the histogram bin values.

• Strongest Beat: the bin with the highest value in the beat histogram.

• Strength of Strongest Beat: the strongest beat divided by the beat sum.

• Relative Amplitudes: a vector of each bin value, divided by the beat sum.

• Beats per Minute (BPM): using each bin label to determine the periodicity of a music

piece. This is done by detecting peaks returned by the autocorrelation function.

2.1.4 Existing Feature Extraction Toolboxes

Since feature extraction is such a fundamental step in MIR for various content-based

tasks, researchers have created many toolboxes, such as: stand alone applications, host ap-

plication plug-ins, or software function libraries [67]. There are possible benefits to using
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a set of particular feature extraction tools, such as: the option of using a graphical user

interface (GUI) or command line interface (CLI), reduced computational complexity, the

programming language it is implemented in (useful for the case of application program-

ming interfaces (APIs)), the ability to perform batch processing, or the file output format

(e.g., attribute-relation file format (ARFF)). In the experiment sections of this thesis, three

feature extraction toolboxes are used.

jAudio [59]: jAudio is a standalone Java application that provides a GUI, CLI, and the

ability to perform batch processing for a large number of audio files. It is able to extract

only low to mid-level features (not counting beat-based features) [59, 67]. We use jAudio

for its convenient batch processing, the selection of features it can extract, its CLI, and its

ability to output into the ARFF format.

MARSYAS [94]: MARSYAS is a standalone framework written in C++. It is computa-

tionally efficient and offers a CLI. There are fewer features that can be extracted compared

to jAudio, however, it can extract both high-level and low-level features [67]. It is chosen,

by default, due to its use in several MIR papers, where the benchmark datasets are publicly

available with features already extracted [41, 91].

LibROSA [60]: LibROSA is a feature extraction API for the Python programming lan-

guage. It provides both high and low-level features. It is less efficient than MARSYAS

and jAudio, and its interfacing is limited to API function calls [67]. LibROSA is used

extensively in the extraction of features from the Free Music Archive (FMA) [9].

2.2 Discretization

The next step after the extraction of features is the discretization (or binning) of these

features into feature-values. Frequent itemset mining via market basket analysis is used to
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derive interesting patterns with discrete values only. Therefore, some method of converting

real-valued features into discrete representations is necessary. In this section, we refer to

the features in a vector of extracted features for a music piece as attributes, a music piece

as a data instance, and the genre of a music piece as its class.

Discretization reduces the continuous values present in the data by dividing the range

of the data attributes into a certain number of intervals. The labels for each interval are

then used to replace all of the values that fell within that interval. Each interval is called

a particular bin. Supervised and unsupervised discretization are the two types of binning

most commonly used. Supervised discretization uses each data instance’s class label (in our

case the class label is the genre), whereas unsupervised discretization does not use a class

label when splitting attribute values into bins. It is often the case that supervised binning

increases classification accuracy, due to the binning of data based on class information [37].

Discretization can be a top-down or bottom-up approach. Top-down discretization finds

several initial cut points for each bin, and then recursively discretizes these bins with further

cut points. Bottom-up approaches will merge neighbourhood values with each other, and

apply this process recursively.

Equal frequency and equal width binning are both examples of unsupervised, top-down

binning methods, since they do not use a class label and find cut points based on a speci-

fied number of bins. Other various binning methods include: entropy-based discretization

(supervised, top-down), ChiMerge (supervised, bottom-up), etc. For the interested reader,

more binning methods and their details are found in [37].

Since we only use the equal frequency and equal width binning methods, we now direct

our attention to these. At this time, only these binning methods are used, we leave further

binning implementations to our future work. We use the API provided by the Waikato

Environment for Knowledge Analysis (Weka) [30] for the implementation of the following

binning methods.
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Equal Width Binning

Binning based on equal width is to divide the value range of a continuous acoustic

feature into a certain number of N bins. If we let wi be the width of the bin for attribute Ai,

with D total data instances, then the formal definition of equal width binning is given by

wi =
max(Ai)−min(Ai)

N
. (2.19)

Rice Rule Binning

There are other ways to determine the value of N instead of relying on a user to set it.

One variation of equal width binning assumes the normal distribution of data points in a

dataset and uses the so-called "Rice rule" [45] to determine N automatically, such that

N = �2 ·D1/3�. (2.20)

Equal Frequency Binning

Binning on equal frequency generates N number of bins such that each bin contains

the same number of attributes from different instances. If N is large, then the number of

attributes that will fall into a particular bin will be smaller. If N is small, there will be a

greater number of values per bin. Equal frequency binning addresses one of the issues of

equal width binning, where specific bins may be empty due to the attribute values falling

between only a subset of the total intervals specified.

2.3 Association Analysis

Association analysis is first proposed by Agrawal et al. [1]. It is used to discover inter-

esting relationships and correlations within large datasets. In a problem domain, a set of

data items that "frequently" occur together shows some statistical relationship among them.

The example of market basket analysis is often given in this context, where businesses are

interested in discovering what consumers are buying together frequently in supermarkets,
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e.g., a number of customers could buy {bread,milk,honey}. If {break,milk,honey} is pur-

chased over a certain percentage of the time, we can consider it as frequent. Furthermore,

association rules could provide evidence that if a customer buys bread and milk, then they

are likely to buy honey too. This would be given as {bread,milk}⇒ {honey}. The general

steps for association analysis include frequent itemset mining and association rule genera-

tion. For our purposes, we are strictly concerned with frequent itemset mining.

2.3.1 Frequent Itemset Mining

Frequent items are put into frequent itemsets (i.e., a 3-item itemset means the three

items in the set occur frequently together). The support of an itemset is the percentage of

the co-occurrence of its items in the dataset. Only those itemsets whose support exceeds

a threshold called minimum support (ms), are considered frequent. We will now formalize

the above concepts according to Han and Kamber’s notation [37], as well as Agrawal et

al.’s [1].

Let I = {I1, I2, . . . , Im} be the set of all items, let T be a transaction from the set of

transactions D, such that T ⊆ I. Let A be some set of items. A transaction T contains A if

and only if A ⊆ T . Then, support is defined as

support(A) =
|{T : A ⊆ T,T ∈ D}|

|D| . (2.21)

The support of an itemset A is the percentage of transactions where A occurs over all of the

transactions. The returned k-itemsets after applying the ms threshold are said to be frequent

itemsets. They are denoted as Lk, where

A ∈ Lk ⇐⇒ support(A)≥ ms : A ⊆ I, 1 ≤ |A| ≤ k. (2.22)
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2.3.2 Closed and Maximal Itemsets

When analyzing frequent itemsets in a large dataset, if ms is set very low, there could

be an explosion of frequent itemsets returned, as any subset of a frequent itemset is also

frequent. To lessen the number of itemsets closed frequent itemsets and maximal frequent

itemsets are used. An arbitrary closed frequent itemset X is an itemset with a support greater

than the minimum support and has no proper super-itemset J existing. That is, all supersets

must have a lower support if they are frequent, where X ∈ Lk. We formalize this relationship

as

∀J ⊇ X : support(X)> support(J). (2.23)

A maximal frequent itemset is similar to a closed frequent itemset, except that the super-

itemset J cannot be frequent. It is formalized as

∀ J ⊇ X : support(J)< ms. (2.24)

Thus, we see that maximal frequent itemsets have the most restrictive limitations placed on

them, and can decrease the number of frequent itemsets in consideration [11].

2.3.3 The Apriori Algorithm

In our approaches, we adapt Apriori, a classical association analysis algorithm [1].

In this algorithm, the Apriori property is used to exploit the fact that all nonempty sub-

sets of a frequent itemset also happen to be frequent. So to use our analogy again, if

{bread,milk,honey} is a frequent itemset, {bread,milk}, {bread,honey}, and {milk,honey}
will be frequent too. The classical implementation of the Apriori algorithm typically con-

sists of two main steps, the join step and the prune step.

The join step and prune step are described as follows. For every iteration that the Apriori

algorithm executes, Lk−1 (a set of frequent itemsets) is joined with itself, i.e., Lk−1 � Lk−1,
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giving a new set of candidates Ck. If we let two itemsets be named l1 and l2, and assume

they are sorted lexicographically, we say they are "joinable" if the first k− 2 items are the

same in each itemset. For example if l1 = {a,b,c} and l2 = {a,b,d}, these are said to be

joinable, and produce {a,b,c,d}. To achieve Ck all of the pairs of itemsets in Lk−1 are

tested to be joinable, and if they are, then they are included in Ck. Once Ck is achieved, a

scan is made of all of the counts for each itemset in Ck, if they have a lower support than ms

they are removed from Ck. Here the Apriori property is used by removing itemsets whose

subsets are not frequent. In summary, the general steps of the Apriori algorithm are to

generate the candidates for L1, and then prune those candidates with a lower support than

the minimum support. Then, to perform a join step and prune step iteratively until there

are no more frequent itemsets to be found. All of those frequent itemsets surpassing the

minimum support are returned. For a more detailed description of this algorithm, please

see Agrawal et al. [1].

Usage of the Apriori Algorithm

Throughout our experiments, we ensure that all itemsets are maximal and consisting of

at least two items, in order to increase the efficiency of our approaches. We use Christian

Borgelt’s [11] implementation of the Apriori algorithm. The interested reader can refer to

Goethals and Zaki’s [35] comparison of Borgelt’s implementation against others.

Other criteria can be used once association rules are mined, such as lift, or convic-

tion. Several methods of improving the efficiency of the Apriori algorithm are also well-

known [37].

2.4 Off-The-Shelf Classification Methods

The problem of determining a music piece’s singular genre from a set of genres is known

as the single-labelled genre classification problem. It is one of the simplest tasks in MIR.

This does not make the task any less challenging since a music piece could be a multitude
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of genres (e.g., Latin jazz, folk rock, etc.). As mentioned in Section 1.2.1, single-labelled

misclassifications should be treated with some importance as well. In contrast, the task of

multi-label genre classification is used to determine several matching genres from a set of

possible genres for a music piece.

Since our approaches deal with only single-labelled classifications, we will briefly dis-

cuss several typical classification approaches that are used for this same problem. Most of

these classification approaches have existed for some time and are prevalent in MIR.

2.4.1 Support Vector Machines

Support vector machines (SVMs) classify data with the use of hyperplanes. A hyper-

plane is a line (or plane, depending on the dimensionality) used to separate classes. They

can be generalized to any dimension, with data that is linearly separable. Linear separa-

bility refers to data that can easily be split into two classes given some hyperplane. The

best hyperplane to choose is the one that creates the most distance between both classes.

The distance from the closest item from the hyperplane should be maximized for both of

the classes, and the weight to the hyperplane should be minimized for both of the classes.

The support vectors are the feature vectors that are the closest to the hyperplane, they often

provide most of the information and are the crux of the classification mechanism [51].

The method of classifying non-linear data is given by a two-step approach. If the data

can not be classified in the current dimension, then a further dimension is introduced to help

separate the data. The mapping of a lower dimensional representation of the data to a higher

one is done by a kernel function. Some notable kernel functions are radial-basis functions,

polynomial, and sigmoid [69]. SVMs are generally more computationally complex but are

more accurate compared to other classification approaches [51].

2.4.2 Gaussian Mixture Models

A probability density function (PDF) of instances is derived for each class, specifically,

the PDF of each class is treated as a mixture of Gaussian distributions with parameters
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that are unknown. An iterative algorithm, such as an expectation-maximization algorithm

is used to estimate the parameters of each Gaussian component and mixture weights by

finding local extrema [95]. Essentially, a Gaussian mixture model (GMM) classifier will

model the PDF of a testing instance as the linear combination of multivariate Gaussian

PDFs. An instance will belong to a class if it maximizes the probability of that class’ GMM

model producing that instance [79, 95].

2.4.3 Decision Trees

Each node of a decision tree classifier is a test on an attribute, with each leaf node

representing a class. Essentially, a number of simple attribute-based decisions are used to

model the difference of classes. Decision trees generally work as follows. A root node is

created (if all training data has a different class the root becomes a leaf). Next, either an

attribute is selected to be split on, or in the continuous case, a cut point is determined, with

an attempt to make all of the instances of a partition belong to one class (i.e., as "pure" as

possible). Then the partitioning occurs for the node’s child nodes recursively. The recursive

stopping conditions are when all instances belong to the same class (i.e., purity is achieved),

no more attributes can be used for splitting, or there are no instances left for the next node.

The attribute to split on can be determined by various statistical methods. For example,

it is done using information gain in the ID3 model, by the Gini index in the CART model,

or with gain ratio in the C4.5 (or J48) model [37].

2.4.4 k-Nearest Neighbours

A k-nearest neighbours (kNN) classifier differs from the other classification methods

discussed so far, in that it does not create a specific model of the data for classification.

Therefore, it is considered to be a lazy classification method. Furthermore, no statistical

distributions are assumed (i.e., non-parametric). Training instances are stored, and a test-

ing instance’s distance from the training instances will be calculated. The nearest number

of instances to the testing data are referred to as its k-nearest neighbours. The distance
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can be measured using Euclidean, Manhattan, Tanimoto, or Mahalanobis distances. kNN

classifiers scale well, since they only need to store training information, and therefore can

be updated easier. With the standard kNN approach the complexity of actually classifying

instances can be quite intensive since the distance for each feature needs to be calculated,

however, there are methods of improving the computation time [61].

2.4.5 Linear Regression

Linear regression is a simple prediction method that uses weight coefficients for each

continuous feature in a feature vector. The idea is to solve for these weights by minimizing

the least square error, giving an estimate for the line of best fit for each instance. Linear

logistic regression is used as a classification method frequently. It uses a linear function of

prediction weights, and the method of maximum likelihood to achieve those weights [36,

37]. There are plenty of other types of regression, including: nonlinear, Poisson, and log-

linear [37].

2.4.6 Naive Bayes

A naive Bayes classifier is based on Bayes theorem. Bayes theorem is used to maximize

the posterior probability that a testing instance belongs to a class. It is assumed that values

of attributes are not dependent on one another (i.e., class conditional independence). Class

labels are predicted by finding the highest probability of an instance given a specific class

multiplied by the probability of that class occurring in the dataset. These classifiers are

known to achieve similar accuracies to the classifiers discussed above.

When class conditional independence is not assumed and dependencies between at-

tributes are found through probability distributions, this becomes a Bayesian belief net-

work, where the arcs of a directed acyclic graph correspond to the probability that the two

attributes are dependent on each other in some way, and are stored in a table [37].
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2.4.7 Neural Networks

In MIR and other audio processing, it is common that neural networks be trained with

the spectrograms of an audio signal. A spectrogram is created by performing many STFTs

on a number of windows, then each frequency spectrum is used as a function of time to

create an overall depiction of the signal. Neural networks are modelled after neural con-

nections found in the brain. They are comprised of individual perceptrons (or with sig-

moidal neurons which use an activation function) and weighted edge connections to the

next neuron. One or more intermediate layers typically reside between the input and output

neurons, and the output layer feeds back into the input layer a number of times. Neural

networks can learn the "optimal" set of weights per edge by employing a cost function, and

backpropagation, which will typically use a gradient descent algorithm which tunes the

weights of individual neurons. Various neural network architectures are: multilayer per-

ceptrons [71], recurrent neural networks [26, 27], conditional neural networks, convolu-

tional neural networks, masked conditional neural networks [64, 65], restricted Boltzmann

machines [46, 98], and deep belief networks [38, 98].

2.5 Ensemble Techniques for Classification

The technique of combining a multitude of classifiers for a single classification problem

is called ensemble-based classification. The individual classifiers in the ensemble are called

base learners, and the proper combination of them will typically allow for a better perfor-

mance, assuming they are diverse enough to handle various data anomalies. In the case

that some base learner performs poorly (i.e., has a high error rate), with a proper amount of

diversity, the overall classification performance could remain stable. This is the benefit of

using an ensemble method [61].
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2.5.1 Bagging

Bagging (or bootstrap aggregation) is a simple ensemble technique based on the con-

cept of a majority vote. Majority voting is such that each individually trained classifier only

gets one vote toward which class a training instance is predicted to be. That is, a certain fi-

nite number of classification models are found by training them each with different subsets

of the training data, this is called sampling with replacement. It is very often the case that

an increase in accuracy is found, as the ensemble method is less affected by noisy data [37].

2.5.2 Boosting

Boosting can be thought of as a way to weight individual classifiers for more accu-

racy, instead of allowing each of them to have the same vote. Furthermore, each classifier

is trained on a subset of the training data iteratively, that is, multiple passes of training

the classifiers are performed. Each time training is done the classifiers provide increased

weighting to the misclassifications that they performed in the last iteration, this provides

a way of measuring the error rate per classifier (which can further influence the instance

weights in future iterations). Finally, when the votes are counted from each classifier, it

gives a chance to weight the less accurate classifiers less. A well-known boosting algo-

rithm is the Adaboost (or, Adaptive Boosting) algorithm [37].

2.5.3 Stacking

Stacking differs from the above ensemble techniques as it takes the output of one or

more classifiers, or base learners, and outputs the final classification in a way that prevents

the base learners from actually voting directly. Intermediate steps weight the base learners

to determine how they make errors relative to one another. This method is used with various

neural net architectures, such as multilayer perceptrons [61].
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2.5.4 Other Related Ensemble Methods

Since our approach in Chapter 3 is modified by introducing the following pairwise

dichotomy-like strategy in Chapter 4, we must briefly explain how these concepts work in

their regular context. Both pairwise (or round robin), and dichotomy classifier ensembles

are normally used in the multilabel classification problem, where the objective is to find the

correct number of labels for a given instance, not just one class label (as we are dealing

with in this thesis).

The technique of training pairs of classifiers is useful when binary classifiers are used. A

pairwise strategy will convert the task of classification into a number of binary classification

steps, where a single classifier is trained to recognize the difference between one class and

all others (OvA), or between two classes (OvO) [33]. In our case, we only use the OvO

scheme, where the output is a vote towards one class or the other. A nested dichotomy can

then be used to create a classification structure, where each internal node is associated with

a particular class, and the other instances of that node that belong to other classes separate

into different child nodes, each with a different associated class from their parent [31].

2.6 Datasets

In order to verify that a music genre classification approach is successful, data is needed

for its training and testing, whether the approach is using association analysis or not. There

are now many benchmark music genre datasets available for validating and comparing clas-

sification approaches. The genre datasets discussed below do not provide an exhaustive list

of all of the possible genre datasets, as we see in Section 2.7. However, the following

benchmark datasets are widely known in the MIR community and lay the foundation for

genre classification tasks.
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2.6.1 GTZAN Dataset

The GTZAN dataset is one of the most influential and most used datasets in music

genre recognition tasks. So for completeness we must mention it in this section. The

GTZAN dataset is comprised of 100 pieces across ten (10) genres. The 10 genres are:

classical, country, disco, hip hop, jazz, rock, blues, reggae, pop, and metal. The GTZAN

dataset is one of the earliest genre datasets and is cited a very large number of times in MIR

papers [88]. However, it does have a number of well-known faults which must be taken

into account when classifying music pieces into genres.

Sturm [88] states that classification accuracy can only be so high, and approaches should

be tested on a wide variety of datasets, not just GTZAN alone. There are several reasons

for this, including the disparity of the number of artists in a genre, for example, half of the

reggae pieces are comprised of Bob Marley recordings, but disco has 55 different artists.

There are also numerous instance repetitions, mislabellings, and distortions.

2.6.2 Free Music Archive

The Free Music Archive is derived from music pieces found in the actual Free Music

Archive5, which is an open library curated by the radio broadcasting company WFMU6. In

total there are 106, 574 pieces in the dataset, with 16, 341 artists. It is the most recent dataset

used in our experiments (2017), and also presents the best picture of how a classifier might

perform given "real" data, since all pieces are dumped from the original dataset without

concern for audio quality, song length, number of labels, sampling rate, etc. There are 16

top genres (e.g., rock, jazz, country, etc.), and 145 subgenres (145 labels total), each label

is supplied by a piece’s respective artist. The dataset also comes with potential subgenre

labels per music piece, and an option is given to download the audio files in their entirety

(full song lengths), which may provide experimentation for various tasks in MIR, such as

song structure analysis [9].

5http://freemusicarchive.org/.
6https://wfmu.org/.
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2.6.3 Cal10k Dataset

The Cal10k dataset, previously known as the Swat10k dataset, is comprised of 10, 267

music pieces from 4, 597 artists, with all genres hand-labelled by musicologists. There is

a high level of agreement between musicologists, so this dataset is considered "objective".

The genre tags are extracted via Pandora’s Music Genome Project. There are 153 unbal-

anced, weakly-labelled genres tags per piece (meaning that when a tag is absent, a genre

still might apply to that piece). DCAL can allow for easy subgenre analysis since there are

so many tags. To be exact, there are 18 main genres (e.g., jazz, blues, classical, rock, hip

hop, etc.), and 135 subgenres [91].

2.6.4 Greek Audio Dataset

The Greek Audio Dataset is a rather small dataset, similar in size to the GTZAN dataset.

It consists of 1000 Greek music pieces. The following genres included in the dataset are

rembetiko, laiko, entexno, modern laiko, rock, hip hop and rhythm and blues (rnb), pop, and

enallaktiko. These genres present both a combination of traditional Greek music with some

European influence (e.g., laiko) and more modern genres, such as enallaktiko, which is a

combination of various Greek elements and alternative rock. There are 277 unique artists,

so there is some artist overlap for each of the 1000 pieces.

One significant problem with the dataset is that the class distribution is skewed, and as

already discussed, there is substantial artist repetition. The most music pieces are found in

the genres rock and entexno (195), and the least are found in the genre enallaktiko (60) [56].

There may be further errors in the dataset that have not been addressed yet, as it is both

recent, and not as heavily cited.

2.6.5 Latin Music Database

The Latin Music Database is quite a popular dataset in the MIR literature, and is used

as a benchmark for other classification approaches [90]. There are 3, 227 music pieces in

total, divided into ten (10) roughly balanced genres. Each genre is classified by experts as
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one of: axé, bachata, bolero, forró, gaúcha, merengue, pagode, salsa, sertaneja, or tango.

Most of these genres have deep societal and musical roots, with specific instrumentation

and origins (e.g., Mexican, Brazilian, Puerto Rican, Afro-Cuban, etc.) Silla et al. [34, 83]

plan on releasing subgenres of the Latin Music Database in the future.

Some important criticisms of the dataset are given by Sturm [90], which will now be

discussed. One problem is that 7% of all its data is repeated. Another issue is that there is a

skewed distribution of genre labels for the music pieces within particular folds, which acts

too heavily on certain misclassifications (one missed classification can drop an approach’s

accuracy by several percentage points). Furthermore, the recording medium is quite specific

for some genres, that is, genres like tango have a large number of older recordings, so a

classifier may base the performance on the noise level in the recordings, and not the musical

content itself.

2.7 Related Works in MIR

Now that we have briefly described the background information needed to further un-

derstand our approaches, as well as other single classifier, and ensemble classification meth-

ods, we will now describe various approaches in MIR which are related to our work. We

begin with the problem of genre classification, followed by the more detailed problem of

subgenre classification. Next, we acknowledge some ensemble techniques that have been

used for genre classification since one of our approaches is ensemble-like. Finally, we ob-

serve the few approaches utilizing association analysis in MIR. There are relatively few

subgenre classification attempts for typical genres (e.g., jazz, classical, rock, etc.), and also

few implementations of association analysis in the MIR literature. Therefore, this section is

used to further demonstrate the contribution of this thesis in the current landscape of MIR

publications.
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2.7.1 Genre Classification in MIR

Music genre classification is a core problem in MIR. Initial work is proposed by Tzane-

takis and Cook [95], who provided the GTZAN dataset, which is now a well-used dataset,

despite its deficiencies [88]. Tzanetakis and Cook also propose the usage of timbral, rhyth-

mic, and pitch-based features. Since then, there has been plenty of work done for this task.

Some notable works will now be mentioned.

An earlier paper from Ogihara et al. [50] proposes using Daubechies wavelet coeffi-

cient histograms (DWCHs) for features. Daubechies wavelet filters allow for the decom-

position of audio signals into sub-band signals at different frequencies, where the wavelet

coefficients are distributed across different frequency bands at different resolutions. Two

self-constructed datasets with ten genres in one dataset and five genres in the other are used.

Signals are sampled over 30 seconds. MARSYAS is used to retrieve standard content-based

features. Using 10-fold cross-validation, they find that the SVM performs the best, and that

DWCH features improve classification accuracy.

Ajoodha et al. [2] use magnitude, tempo, and pitch-based features, and several off-the-

shelf classifiers. They show a relationship between using a larger number of features and

an improvement in classification, especially for the first 100 features. They also find that

a linear logistic regression model provides the best average accuracy (81% on all of the

GTZAN genres).

Recent work is given by Rosner and Kostek [78], where genre classification is done

based on instrument track separation. In their experiments they adapt a non-negative matrix

factorization algorithm, as well as iterative modified Kullback-Leibler divergence, which

then constructs a mask that is used to obtain a spectrogram of the drum part. The Open-

BliSSART SVM classifier [81] is used to split up harmonic and drum instruments. They

find accuracies of around 72% after applying feature vector reduction using Weka [30] on

a subset of the Synat [39] database.

Other recent work is given by Medhat et al. [64] where the Ballroom music dataset [25]
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is used. Masked conditional neural networks (MCLNNs), conditional neural networks

(CNNs), SVMs with various feature combinations, and kNNs are examined. They show

that having the ballroom data processed via a Mel-scaled spectrogram and then fed into a

MCLNN gives the best accuracies of 92.12% on eight genres with 10-fold cross-validation.

Srinivas et al. [86] suggest using on-line dictionary learning (ODL) for genre classi-

fication. MARSYAS features for the three segments of the Latin Music Database (LMD)

are obtained. The features obtained are timbral, pitch, and beat-based. During the training

phase, dictionaries are developed for each class using ODL, during the testing phase, the

sparsity of the test clip is computed, and the sparsest class determines which genre is as-

signed. This is done using the l1-lasso distance. They find that with a larger dictionary, the

classification accuracy decreases.

Recently, there has been a trend towards the combination of acoustic features with other

features, such as visual and textual features. For example, Pérez-Sancho, et al. [75] present

a framework for genre classification based on pitch class profiles, which are constructed

from algorithmic transcriptions of chords from audio signals into chromagrams. Using

a language model (n-grams), they show that with a higher n-gram a higher accuracy is

achieved. A further example is given by the proposed use of Gabor filters and local phase

quantization on spectrograms of three 10-second segments by Costa et al. [20]. Genre clas-

sification is explored using acoustic and lyrical features by Mayer and Rauber [57], where

content-based features and rhythmic features are combined with statistical style features,

such as a bag of words approach using a tf-idf calculation, rhyme features using phonemes,

part-of-speech features, words per minute, etc. They find an increase in performance using

various feature modalities.

There are so many more approaches that contribute to the music genre classification

problem in MIR, with hundreds of other works written. We will now focus on more closely

related works, relevant to future chapters of this thesis.
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2.7.2 Subgenre Classification in MIR

In contrast to the large number of works on general music genre classification, we have

only found a small number of approaches dealing with subgenre classification. We will

now mention some approaches focusing on the subgenre classification task.

Quinto et al. [76], examine the effectiveness of deep learning classifiers against standard

classification methods using only MFCC features on a self-constructed dataset of three (3)

jazz subgenres (bebop, acid jazz, and swing/electroswing). They find that a single-layered

long short-term memory (LSTM) network with a multilayer perceptron added before it gives

the best accuracy of 89.824%, their best neural network classifier obtains 79.39%, an SVM

classifier obtains 81.67% and a kNN classifier obtains 77.43%.

Sousa et al. [23] create a dataset called the Brazilian Music Dataset (BMD), with seven

genres, and 30 pieces each. The BMD differs from the LMD by the introduction of other

Brazilian genres, and the removal of several LMD genres. With 5-fold cross-validation and

a 66% training set size, they achieve an accuracy of 79.7% using an SVM for 10 GTZAN

genres, and an accuracy of 86.11% on the BMD genres.

Further recent work is also given that tests existing modern genre classification algo-

rithms on newly constructed datasets with classes as subgenres from a particular region.

One example is given by Kizrak and Bolat [44], where a self-constructed dataset of 93

pieces is used as data for the classification of the seven most frequent Turkish Makams.

They test various classification schemes and find that the best accuracy is 96.57% via a

deep belief network of five hidden layers using MFCC features. Another example is given

by Soboh et al. [85], where they create a dataset based on the Arabic music styles of Moroc-

can, Egyptian, Shami, and Khaliji (100 pieces each). They derive dynamic, rhythmic, and

timbral features. An overall best accuracy of 80.25% is achieved using a Weka decision tree

and OneR attribute feature selection, using 10-fold cross-validation. The classification of

Fado music is investigated by Antunes et al. [3], in the context of deciphering between Fado

music and other genres. They extract rhythmic, timbral (MFCC), and dynamic features
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from 10-second audio clips, and use Matlab and LibSVM [16] to perform the classification

with SVMs using an RBF function. They find very high accuracies in distinguishing Fado

from non-Fado music (i.e., greater than 90%).

Further work is found in various theses, especially concerning electronic and metal

subgenre classification, otherwise there has still been, to our knowledge, a void in overall

subgenre classification research. Two theses regarding the classification of electronic music

are found, the first is given by Kirss [43]. 5 electronic music subgenres (50 pieces each) are

used, including house, techno, trance, drum and bass, and ambient. The highest accuracy

is 96.4% using an SVM classifier with spectral and rhythmic based features. Techno and

house are often misclassified. The next thesis, by Chen [18], also discusses the classification

of electronic music. Various spectral features are extracted, and Gaussian mixture models

are used for classification. Deep house, dubstep, and progressive house are chosen as the

subgenres. 20 training and 10 testing pieces are selected for each genre (30 seconds each).

3-fold cross-validation is done, and an 80.67% success rate is achieved.

The classification of metal takes place in two theses that will be discussed. The first

is by Tsatsishvili [92]. Three classifiers are tested, two are off-the-shelf Weka classifiers

(a C4.5 decision tree classifier, and a kNN classifier), and one algorithm is implemented.

The implemented algorithm was originally proposed by Barbedo and Lopes in 2007 [8],

where classification was carried out using a four layer genre hierarchy, and a voting process

is done on several reference vectors. In Tsatsishvili’s thesis, 30 tracks per subgenre are

used. Timbral, rhythmic, dynamic, and pitch information is extracted. The highest accu-

racy achieved is 45.7% using spectral features, with AdaBoost and a J48 classifier. Black

metal and death metal are the most correctly classified genres. The second thesis, by Mul-

der [68], also classifies metal music into subgenres. Chroma features as well as musical

horizontal and vertical intervallic relationship features are derived. An average classifica-

tion accuracy of 28% (using vertical intervals) over 17 subgenres is found. The collection

used for classification is manually gathered.
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2.7.3 Ensemble Techniques in Genre Classification

Since one of the approaches discussed in this thesis is a pairwise ensemble-like ap-

proach, it is necessary to review some works that deal with ensemble classification. Silla et

al. [41] provide an early work using an ensemble of classifiers. Each classifier is trained on

the beginning, middle, and ending 30 seconds of a piece. The best result combines SVM

classifiers for the beginning, middle, and ending segments, and sums the probabilities for

each class. Otherwise, they find that the middle 30 second section produces better results

than the beginning and ending 30 seconds (we also find this to be the case for the LMD).

Almeida et al. [22] use two sets of features extracted from the LMD (e.g., spectral,

timbral, chroma, etc.), and two pools of classifiers. They use a k-nearest oracles algorithm

(i.e., at least one of the nearest neighbours in feature space must be recognized) and find that

majority voting increases the accuracy. They also show an improvement in classification

accuracy with a diverse number of classifiers.

Arjannikov and Zhang [7] report an empirical study on different nested dichotomies.

They show that balanced nested dichotomies often perform better than unnested ones. How-

ever, many of the ensemble classifiers they test do not perform better than the individual

base classifiers.

Chathuranga and Jayaratne [17] use late fusion for classification. Late fusion trains an

individual classifier with a certain feature modality, in their case they use one classifier that

models short-term features, and another that models long-term features (early fusion will

combine modalities into a single feature vector first). They show that using a classifier en-

semble technique with weighted majority voting and late fusion can improve classification

accuracy (SVMs were the individual classifier). They apply wrapping to the short-term

features and filtering to the long-term features.

Ariyaratne et al. [4] use decomposition, with a one-versus-one, majority voting tech-

nique, where they train on pairs of genres. They extract MPEG7 features, MFCCs, etc.,

using a self-made extension of the GTZAN dataset. For each genre, they perform feature
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selection. Generally, they find that the one-versus-one scheme performs better, and that

feature selection improves the classification accuracy.

2.7.4 Association Analysis in MIR

Association analysis is first presented by Agrawal et al. in 1993 [1]. Liu et al. [54],

are some of the first to use association analysis in the context of classification (unrelated to

MIR), in 1998. However, association analysis in MIR, like "at large" subgenre classifica-

tion, has only been investigated by a handful of researchers, hence the need for this thesis

and for further investigation. Some of the work proposed by these researchers will now be

summarized.

Association analysis is proposed as an unsupervised way to retrieve genre-specific mu-

sic files by Rompré et al. [77]. They obtain a frequency spectrum and then group frequen-

cies in their method of discretization, and discard non-informative bins using the support

and confidence thresholds. They use the GTZAN dataset and obtain a precision of 63% and

a recall of 72%. With more association rules the recall drops and the precision increases.

Shan and Kuo [82] attempt to classify musical styles by using association analysis to

construct a classifier through melody mining. They extract Musical Instrument Digital In-

terface (MIDI) melodic and harmonic information and find the chord-sets that are frequent.

They compare the MIDI data (35 to 50 files each) of Enya, the Beatles, and Chinese folk

pieces. They find that the minimum support, the length of feature extraction, and how the

chords are being represented (e.g., as a set of bi-grams) affects their accuracies.

Data mining using maximally general distinctive patterns is carried out on various styles

of local Cretan folk songs (106 total) by Conklin and Anagnostopoulou [19], where they

propose a supervised descriptive rule discovery method. All songs are exported to MIDI

format, and the type, supertype (East and West), area, and superarea that a song belonged

to is determined. Specifically, interval relationships of melodies are mined and compared

to a corpus and anticorpus (all other classes).
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Similarly, non-content-based tasks are carried out by Neubarth et al. [70] to show the

association of toponyms with folk genres using textual features. Association rule mining is

utilized for the purpose of discovering genre and region relationships. Rule templates and

evaluation measures are used on a corpus of Basque folk tunes. They use a set of constraints

with annotations pertaining to geographical ontology and an ontology of hierarchically or-

ganized genres.

Arjannikov and Zhang [6] propose the use of association analysis with content-based

features to explore genre classification. This work differs from our approach, in that an-

tecedent and consequent rules are derived for itemsets and genres, as opposed to a genre

specific derivation of frequent itemsets. Furthermore, they do not consider other potential

parameters like the length of the itemsets during classification, as we explore using different

ranking criteria in Chapter 3. Itemset intersection removal is also only done if the itemset

occurs in two or more genres, however, we analyze different values of this parameter more.

They implement four (4) evaluation methods, based on the matching of the itemset to the

piece, these evaluation methods are: the normalized support sum, the normalized confi-

dence sum, and the length sum. They also observe that the classifier will most often choose

one genre for its classification, however, the minority of the time, it picks multiple genres

(i.e., they measure the multi-label rate). They note that a lower support improves classifi-

cation accuracy, classification accuracy is improved by selecting fewer genres, and that by

implementing the removal threshold empty descriptions for a genre can be made. They use

the LMD and subsets of the Million Song Dataset (MSD), accuracies are approximately 50

to 60%, for 10 LMD genres.

Arjannikov et al. [5] use association analysis to verify tag annotations by matching

music pieces against association rules, and utilizing a scoring method for evaluation. They

perform several experiments, including using one dataset to evaluate another, splitting a

dataset in half and checking that similar results are obtained, and amalgamating similar

tags. The Cal10k [91], Cal500 [93], Magnatagatune [47], and LastFM [10] datasets are
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used. They select pieces with at least two tags in their cleaning stage. The general trend

discovered is that with a higher confidence threshold, the normalized total of the number of

pieces matching rules drops.

2.8 Summary

We have now presented a detailed description of the music genre classification task in

MIR. The details for each of the typical steps of this problem are also provided, including:

feature extraction, discretization, and the modelling of genres for the purpose of classifica-

tion (whether using association analysis or not). Also included is a discussion on specific

datasets and some related works.

Genre classification is a critical task not just for MIR, but for machine learning in gen-

eral, since tackling a problem with such a high degree of subjectivity is useful for many

purposes. Some applications of a good genre classification approach benefit the browsing,

organization, and overall enjoyment of music.
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Chapter 3

Capturing Genre Characteristics of
Music Through Feature-Value Analysis

In Chapter 2 we saw how the problem of genre classification in MIR is approached. Recall

that after acoustic features are extracted from a music dataset, they are then normally stored

as feature vectors and sent to a classifier that will model the data. Then, testing data is

classified in some way based on this model, or approach, and finally, the overall approach

is evaluated.

In this chapter, we propose an adaptation of association analysis, in order to detect and

extract the acoustic features of music genres and use the resultant relationships among them

to classify new music pieces. In essence, for each genre, we obtain a set of characteristic

features and their values that represent it.

The structure of this chapter is organized as follows. In Section 3.1 we contextualize

the problem of content-based music genre classification for our approach and express the

goals that we wish to accomplish. Next, in Section 3.2, we discuss our proposed approach

in greater detail. In Section 3.3, we describe those music datasets, features, and songs

per genre that are used in evaluating our approach. Then, in Section 3.4 we discuss the

extensive experiment results on a set of music datasets, where we attempt to analyze our

approach with respect to the various parameters that are used. Finally, in Section 3.5 we

present a summary, that also provides some concerns for the next chapter and other potential

directions for future work.
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3.1 Introduction

From a computational viewpoint, each music genre has its own musical characteris-

tics which are encoded in the acoustic contents of the genre. That is, there are specific

patterns hidden and buried in the pieces of a genre, and it is our very task to detect and

extract them. These patterns can then be used to classify music into genres. In essence,

we utilize the acoustic features of music that are naturally found in music pieces, such as

the content-based features presented in Section 2.1 (e.g., MFCCs, spectral features, time

domain features, etc.). We extract these acoustic features from a music piece and use the

most frequently occurring characteristics per genre. Next, we represent each genre uniquely

by removing the similarities between genres. If we treat acoustic features and their values

as data objects (i.e., we discretize the features of music pieces), then intuitively, frequent

co-occurrences of particular features and their values from a genre will tell us something

about its musical nature and therefore, can be used to conduct music genre classification.

Lastly, we employ a genre’s unique features to determine which genre an incoming music

piece belongs to. As shall be seen, our proposed approach is flexible, in that it may be used

with any number of acoustic features.

By adapting association analysis, we seek to detect and extract, for a music genre, a

set of characteristic features and their values that statistically represent it. We further make

use of the characteristic sets of individual genres to conduct genre classification, which

results in practical classification accuracies. We also demonstrate that the final classification

accuracy is affected when using different parameter combinations. We seek to determine

what these parameters may be, and how they might improve classification accuracies. Our

approach is applied on differing datasets with various sizes. We further attempt to determine

if the approach performs in a stable manner. That is, we determine if the approach performs

more successfully with better quality training data. This chapter’s approach is provided with

further detail below.
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3.2 Characterizing Genres through Feature-Value Pairs

3.2.1 Approach

The acoustic content that is derived from a genre contains rich information that we

can utilize. In our work, we consider adapting association analysis to detect and extract

patterns from this content, capturing and storing the characteristics of individual genres and

facilitating their classification.

Recall from Section 2.3 that with association analysis, we are interested in a set of

data items, in a dataset, that frequently occur together. Intuitively, there is some statistical

relationship among them. Those frequent data items are put together into frequent itemsets,

i.e., a 3-item itemset means the three items in the set occur frequently together. Among

the many parameters, the support of an itemset is the percentage of the co-occurrence of

its items in the dataset. Only those itemsets whose support exceeds a threshold, called the

minimum support, are considered frequent. We adapt the Apriori algorithm in our approach.

In the context of genre classification, each piece in a music dataset is represented as a

feature-value vector P = {p1, p2, . . . , pn}, where pi is the value of the feature fi ∈ F and

F = { f1, f2, . . . , fn} is the acoustic feature set used to conduct genre classification. It is

often the case that a larger number of diverse and carefully chosen features yields higher

classification accuracies [2], as a diverse and effective set of features will ultimately repre-

sent the musical, and acoustic properties of music pieces more thoroughly. We show that

our approach provides a flexible method of determining the genre-dependent, frequently

co-occurring features. Our intuition is that those feature-value pairs are genre-specific and

can be detected and extracted from the acoustic features.

Our initial approach captures the intuition described above and provides a sound method

of conducting music genre classification, as demonstrated shortly. In summary, a represen-

tative subset of music pieces from a genre is selected, and features for those music pieces

are then extracted. The genre’s acoustic features and their values summarize its musical

nature. From a computational viewpoint, those feature-value pairs are treated as data items.
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After proper discretization and encoding, they are used during association analysis. Given

a minimum support, a set of frequent itemsets is obtained. For convenience, we name the

set of feature-value pairs an fv-set, and also name the set of frequent feature-value pairs as

the frequent fv-sets. We notice that there should be some musical elements that are com-

mon to all of the genres. The existence of these fv-sets will cause confusion in the genre

prediction of new music pieces. So the frequent fv-sets will go through a cleansing stage,

and we obtain, for each genre, a characteristic set of fv-sets representing it. This removal of

intersecting (or, overlapping) frequent fv-sets yields those frequent fv-sets that are (more)

unique to a genre. As we will see, we can control the amount of overlap detected and

removed (see Section 3.2.2).

After the intersection removal step described above, the classification process then be-

gins. A new music piece is represented as a set of feature-value pairs, and we use these

feature-value pairs to compare against each genre’s characteristic set (the genre’s frequent

fv-sets after the intersection removal) and find genre scores for this piece using various

Ranking Criteria. A ranking criterion represents our views on how to use the frequent fv-

sets we have obtained per genre. For instance, we may think that it is more important when

a new music piece matches a larger frequent fv-set than a smaller one, or that a music piece

should match the entirety of a frequent fv-set. This is an essential step in the classification

process, as it ultimately determines how closely a music piece matches the frequent fv-sets

of a genre. Our approach’s high-level description is depicted below in Figure 3.1.
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Figure 3.1: A high-level description of our first approach.

A detailed algorithmic description will now be presented. B goes through each binning

method we are using (see Section 2.2 for a more detailed discussion), while the superscripts

tr and te correspond to training and testing. Suppose that genre G has a dataset of music

pieces labelled G. A set GS is randomly chosen from it to generate and evaluate the frequent

fv-sets of genre G, this subset selection is done to ensure a similar treatment of genres dur-

ing the derivation of frequent fv-sets. A proportionate amount of music pieces, per genre,

provides a greater chance that each genre will be characterized fairly. Since Apriori han-
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dles discrete categorical values instead of real values, we normalize their values and then

discretize the real-valued acoustic features, according to different binning methods. During

this process, we encode each value, for each feature systematically. For instance, the sec-

ond feature’s fourth value (or the fourth bin that the feature’s value falls into) is encoded

as b4. Note that the Apriori algorithm uses a minimum support, denoted as ms, to find the

frequent fv-sets. For each frequent fv-set, we set its size, i.e., the number of feature-value

pairs in it, to be at least 2, and we ensure that Apriori returns only those maximal itemsets

(see Section 2.3 for a more detailed discussion). Utilizing only maximal itemsets reduces

redundancy and increases the efficiency of our approach. For the genre G, after this step,

we obtain its corresponding set of frequent fv-sets, denoted as GSF .

Characterizing and evaluating genres’ characteristics through feature-value pairs

1. For each binning method B

2. For each genre G’s GS

3. Apply B to GS

4. Split GS into its training set GStr and testing set GSte

5. End of For

6. For each genre’s GStr // Generate the characteristic set for each genre

7. GSF = Call Apriori to GStr with ms

8. End of For

9. Call procedure Inter-Genre Removal on all genres’ GSF

10. and for each GSF we obtain GSC

11. For each genre’s GSte // Test each genre’s music pieces; collect accuracies

12. For each piece P in GSte

13. For each variation CBC of procedure Count-Based Classifier

14. Call CBC on P with all genres’ GSC

15. End of For

16. Check whether P is correctly classified or not

17. End of For

18. Collect the classification accuracy of all of the pieces in GSte

19. End of For

20. End of For
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3.2.2 Inter-Genre Removal

Procedure Inter-Genre Removal, as called in the algorithm above, is the cleansing pro-

cess to remove the common frequent fv-sets, which results in the characteristic set of fv-

sets, denoted as GSC, for each genre G. The criterion used in our current implementation is

simple. If a frequent fv-set from a genre appears in more than a certain μ of other genres’

characteristic sets, we remove it from the genres’ characteristic sets, since it is common to

all of them and will not contribute to their classification. In this procedure, we introduce

the parameter φ, which determines the acceptable overlap between two fv-sets. For this

parameter, there are two further considerations: strictness and relaxation (denoted as φs and

φr, respectively). For instance, for three fv-sets {b4, c3}, {a2, b4, c3}, and {a2, b4, c2,

d5}, if we set both φs to 60% and φr to be 60%, then {b4, c3} matches {a2, b4, c3} but not

{a2, b4, c2, d5}. For φs, we delete both {b4, c3} and {a2, b4, c3}, whereas for φr, we only

delete {b4, c3}.

3.2.3 Count-Based Classifier and Ranking Criterion

After we obtain each genre’s GSC, we use the procedure Count-Based Classifier (CBC)

to count the number of times each frequent fv-set in GSC appears in an incoming testing

piece. It is an important step in our approach since it alters the final classification accuracy

by checking how many matches occur between a testing piece and a genre’s characteristic

set (the best match is chosen as the genre). Currently, we propose the following variations

of the CBC and call them Ranking Criteria, denoted as RC. Given a new music piece P,

whose fv-set is denoted as Pi, we score it against genre G. Let Ci be a frequent fv-set in

GSC under consideration and let the length of Ci be |Ci|. In the following, α, β, and γ are

user-supplied parameters to be tuned experimentally, where α+β = 1, for our experiments

we set α = 0.7. This allows us to set the importance that the length of the frequent fv-set

has when matching a music testing piece. We denote the score of a testing piece P under a

ranking criterion as RC∗. Our proposed ranking criteria are given below:

50



3.2. CHARACTERIZING GENRES THROUGH FEATURE-VALUE PAIRS

• Naive, denoted as RCn, increments the score of P by 1, if Ci ⊆ Pi.

• Partial Power Threshold, denoted as RCppt , increments the score of P by 2l , where

l = |Ci ∩Pi|, if
|Ci∩Pi|
|Ci| ≥ γ.

• Complete Power Threshold, denoted as RCcpt , increments the score of P by 2|ci|, if

|Ci∩Pi|
|Ci| ≥ γ

• αβ, denoted as RCαβ, increments the score of P by α ·RCn + β · |Ci|, where Ci ⊆ Pi.

Among those ranking criteria, the naive one simply increments the score of P by 1

whenever Ci ⊆ Pi, showing our "raw" view on the equal treatment of frequent fv-sets from

a genre’s characteristic set. The threshold criteria involves a parameter γ, which sets the

relaxation of the comparison between Pi, and Ci from a genre’s characteristic set. The

power criteria represents the intuition that the larger the match between the two fv-sets

from P and Ci, the better. We award an increment as a power factor of 2. The αβ criteria

combines the naive increment and the size of Ci. For instance, we may consider that the

number of matching items between Pi and Ci is more important. We can then set β higher

than α. For a testing music piece P, after going through a genre’s characteristic set, it is

awarded a score. After the total score is accumulated, it is normalized by the size of a

genre’s characteristic set. We select the genre which results in the highest score and assigns

it to P. If there is a tie between multiple genres and the target genre is in the tied genres, we

still consider it as a correct classification. In the rare situation where no scores are awarded

to any genre for the new piece, we deem it to be a misclassification.

3.2.4 Discretization Methods Used

Several binning methods are used in our framework to preprocess music data. We briefly

describe them here for convenience (more information can be found in Chapter 2). Binning

based on equal width, denoted as Bew, is to divide the value range of a continuous acoustic

feature into a certain number of N bins. One variation of equal width binning assumes the
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normal distribution of data points in a dataset and uses the so-called "Rice rule" [45], which

sets N to be twice the cubed root of the number of data points in a dataset. We denote it

as Brr. Binning on equal frequency, denoted as Be f , is to generate a number of bins such

that each bin contains approximately the same number of data points from a dataset. The N

number of bins manipulates how frequent fv-set mining reacts to the training data; a greater

number of bins could create more fv-sets and affect how the ms parameter behaves. For

the binning methods, we use the implementations from the Weka environment [30]. We set

N = 10 for equal frequency binning and N = 15 for equal width binning.

3.3 Experiment Preparations

It is desirable and beneficial to verify our approach through experiments on high-quality

music datasets. For instance, we may gather a group of music experts and let them decide

representative music pieces for each genre. This way, our approach will detect and extract

the accurate characteristic sets for each genre. However, such an ideal situation involves

considerable obligations. Therefore in our experiments, we select some de facto benchmark

datasets that are publicly available and frequently used in the MIR community. It is neces-

sary to test the effectiveness of our approach on several datasets so that a more transparent

depiction of the approach’s performance is provided.

3.3.1 Datasets

In order to verify our proposed approach, we apply it to a set of music datasets in

the MIR literature, namely, the Cal10k Dataset (denoted as DCAL) [91], the Greek Audio

Dataset (denoted as DGAD) [56], and the Latin Music Database (denoted as DLMD) [41, 83].

For the datasets DCAL and DLMD we create three subsets by splitting the extracted fea-

tures into the beginning, middle, and ending segments. We call those three subsets Db
CAL,

Dm
CAL, and De

CAL, for DCAL. Similarly, we call those three segments Db
LMD, Dm

LMD, and

De
LMD, for DLMD. For DGAD, we use the beginning 30 seconds of each music piece. To

52



3.3. EXPERIMENT PREPARATIONS

create each beginning, middle, and ending segment for DCAL, we create three even subsets

for every piece, by splitting the feature calculations over each segment. As for the splitting

of DLMD into segments, for each music piece, the beginning segment is from sample 0 to

sample 1153 (30 seconds of audio in MP3 format), the middle segment is from sample

Q
3 + 500 to sample Q

3 + 1653, and the final ending segment is from the sample Q− 1453

to Q− 300, where Q is the total number of samples in that piece, as provided by Silla et

al. [41]. In order to achieve DLMD we collapse the folds provided by Silla7, and remove any

duplication of feature vectors regardless of class label.

We will now describe the size of the dataset subsets (i.e., the number of music pieces

per genre) used for the experiments. We design two series of experiments on DCAL to de-

termine whether different numbers of pieces from the same dataset influence the prediction

accuracy. In the first series, each genre has 400 music pieces, and in the second one, each

genre has 140 music pieces (for each of the 3 segments). For the experiments with DLMD,

we fix experiments to only have 300 songs for each of the 3 segments. For DGAD we use 50

songs per genre in order to determine how our approach performs given a smaller dataset.

3.3.2 Genres

For the dataset DCAL, we use a technique of hierarchically uplifting subgenres to their

parent genres, with at least 2 subgenres per genre. The genres used include: (H)ip (H)op,

(M)etal, (C)lassical, (CO)untry, (J)azz, (E)lectronic, and (R)eggae. For DGAD, we include

the genres: (L)aiko, (H)ip (H)op/RnB, (R)ock, and (RE)mbetiko. Lastly, for DLMD, we

use the genres: (AX)é, (B)olero, (F)orró, (ME)rengue, (SE)rtaneja, and (PA)gode. The

organization of the genre classification experiments is provided below in Table 3.1. For the

sake of convenience, we also include the ms values in Table 3.2. These ms values are used on

each training subset for every genre. We also provide the testing and training percentages,

since this determines how many music pieces from the training set are used to characterize

7https://sites.google.com/site/carlossillajr/resources/the-latin-music-database-l
md.
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Table 3.1: A comprehensive description of the datasets used in the genre classification

experiments of Chapter 3.

Dataset Sections Used (Duration)

Genres Used in the

6 Genre Experiments

(Songs per Genre)

Genres Used in the

4 Genre Experiments

(Songs per Genre)

Minimum Support

(ms) Values Used%

Training%,

Testing%

DLMD

beginning,

middle,

end

(30s each)

axé, bolero,

forró, merengue,

sertaneja, pagode (300)

tango, salsa,

forró, axé (300)
5%, 8%, 10% 60%, 40%

DCAL

140 song experiments

beginning,

middle,

end

(1/3 the length of song)

classical, country,

jazz, electronic,

rock, hip hop (140)

hip hop, metal,

classical, country (140)
3%, 4%, 5%, 6% 60%, 40%

DCAL

400 song experiments

beginning,

middle,

end

(1/3 the length of song)

classical, country,

jazz, electronic,

rock, hip hop (400)

classical, jazz,

electronic, rock (400)
3%, 4%, 5%, 6% 60%, 40%

DGAD beginning (30s) N/A
laiko, hip hop,

rock, rembetiko (50)
8%, 10%, 13%, 15% 60%, 40%

the genres.

The genres and songs per genre for each dataset directly affect the classification accu-

racy. Generally, a greater number of genres reduces the performance of many classification

approaches by causing confusion between genres, and that the amount of data used to model

a genre could include (or remove) noisy data. These decisions will now be discussed in de-

tail.

Specifically, the genre choices for DLMD in the experiments with six (6) genres presents

a challenge, as bolero and forró are both rhythmically slower, axé and merengue are both

rhythmically faster, and merengue and forró both utilize similar instrumentation (i.e., the

accordion is prominent in both) [83]. For the four (4) genre DLMD experiments we choose

slightly more distinguishable genres, especially with respect to tango. Recall from Sec-

tion 2.6 that tango should be more distinct because of the genre’s older recordings included

in the dataset [90].

The genres chosen for DCAL are quite diverse, with some obvious overlap of rhythmic

and timbral characteristics between electronic and hip hop. This is why, for the four (4)

genre experiments we replace electronic with metal when including 140 songs per genre.

Since these genres are somewhat distinguishable, we experiment with the number of songs

54



3.4. EXPERIMENT RESULTS AND DISCUSSIONS

included as well (i.e., 400 songs in one set of experiments, and 140 in the other).

Since DGAD has many overlapping genres (e.g., alternative (enallaktiko) and rock, rock

and pop) we limit the number of genres used in the experiments to four (4). However,

the genres included may still contain overlapping characteristics. In addition, the subset of

music pieces chosen is quite small. This provides a challenging classification task, so we

use this task to evaluate our approach in a less than ideal scenario. This task is designed to

demonstrate our approach’s ability to scale down to smaller datasets, while still applying

the Inter-Genre Removal method to remove commonalities between genres.

3.3.3 Features

There is a variety of features used in our experiment design. For DLMD and DCAL the

features used are also included in previous studies [41, 91], so that potential comparisons

can be made directly to other approaches. The dataset DCAL has 13 MFCC features ex-

tracted over the entirety of each song only. The feature set used for DLMD has a moderate

amount of features, and DGAD uses a greater number of features. The varying feature set

sizes allow us to determine the affect that the number of features has on classification per-

formance, even if the number of training pieces is not large. MARSYAS and jAudio are

used to extract the features from DLMD, and DCAL’s music pieces, respectively.

3.4 Experiment Results and Discussions

Our approach involves several different parameter combinations. So, we report and ex-

amine the results of our experiments from certain angles. We use 10-fold cross-validation,

for each experiment in this section, with the testing and training splits given in Table 3.1.

We first comment on some general observations. In Table 3.3 we see that the difference

between φr and φs used in the procedure Inter-Genre Removal is not substantial, which is

contrary to our original intuition that either the strict approach would yield more represen-

tative frequent fv-sets, or that it might be too strict during Inter-Genre Removal. Albeit,
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Table 3.2: A comprehensive description of the features used in the genre classification

experiments of Chapter 3.

Dataset Features (Feature Extraction Software)
Feature

Parameters

Feature

Calculations

DLMD

5 MFCCs,

Spectral centroid, rolloff, and flux,

zero crossings, low energy,

relative amplitudes, beats per minute,

max. periods of pitch peak (MARSYAS)

Unspecified in [41] mean, variance

DCAL 13 MFCCs (MARSYAS)

window size: 2048 ms

hop size: 1024ms

sampling rate: 22050Hz

mean, std. dev.

DGAD

13 MFCCs,

5 method of moments,

strongest beat, beat sum,

strength of strongest beat,

strongest frequency via zero crossings,

spectral centroid, and FFT maximum,

peak based spectral smoothness,

9 LPC (jAudio)

Unspecified in [56] mean, std. dev.

Table 3.3: Dm
LMD, γ = 50%, Be f , ms = 5%, RCppt , 300 songs per genre.

φs = 60% φr = 60%
AX B F ME SE PA AX B F ME SE PA

μ = 16% 0.51 0.74 0.46 0.87 0.58 0.55 0.48 0.66 0.47 0.87 0.56 0.58

μ = 50% 0.46 0.64 0.58 0.81 0.54 0.62 0.44 0.71 0.45 0.79 0.48 0.66

μ = 83% 0.46 0.64 0.58 0.81 0.54 0.62 0.43 0.66 0.53 0.82 0.48 0.49

φs does provide slightly higher accuracies. Across all experiments this is found to be the

case for φr and φs, with there only being a few percentage difference per genre. We also

observe that a more strict μ (i.e., a lower percentage value) often provides higher classifi-

cation accuracies across all of the experiments. We believe that μ eliminates the frequent

fv-sets that overlap, leaving the most unique ones. We further see that certain genres affect

the overall prediction accuracy more than others, and sometimes can be considered distin-

guishable. For example, in Table 3.3 we notice that merengue and bolero typically achieve

higher accuracies, which is also reflected in Table 3.4, which we will now use to examine

various genre-specific confusions further.

For example, we note that: some sertaneja pieces are confused with fórro and axé, axé

and fórro are not as distinguishable as other genres, some bolero pieces are confused with

sertaneja, and lastly merengue is found to be the most distinguishable genre. We believe

merengue is distinguishable due to its rich orchestration, with the common inclusion of
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Table 3.4: Confusion matrix (10-fold cross validation) - DM
LMD, μ = 16%, φr = 60%,

γ = 50%, Be f , ms = 5%, RCppt , 300 songs per genre.

AX B F ME SE PA

AX 0.48 0.04 0.11 0.12 0.16 0.09

B 0.03 0.66 0.04 0.00 0.23 0.04

F 0.06 0.07 0.47 0.11 0.16 0.13

ME 0.06 0.00 0.03 0.87 0.01 0.027

SE 0.14 0.07 0.17 0.01 0.56 0.05

PA 0.09 0.05 0.11 0.04 0.13 0.58

brass instruments, and its direct-sounding rhythmic approach. Bolero and sertaneja both

have slower rhythms where the guitar is prominent, which may cause some confusions.

For the case of confusions with sertaneja pieces, it is reasonable to have some confusion

with fórro, since both of these genres have a more relaxed rhythmic approach and sparser

instrumentation. However, it is less reasonable that sertaneja be confused with axé, since

axé is faster rhythmically, although, some misclassifications are due to pieces having similar

timbral characteristics [34, 83].
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Figure 3.2: Dm
CAL, μ = 50%, φs = 0.6,

γ = 50%, Be f , RCcpt , 140 songs per genre.
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Figure 3.3: Dm
CAL, μ = 50%, φs = 0.6,

γ = 50%, Be f , RCcpt , 140 songs per genre.

Comparing Table 3.3 to Figures 3.2 and 3.3, we see that both the distinguishable genres

and the number of genres alters the overall prediction accuracy. In Figure 3.2 we see an

impressive classification accuracy. Note that this experiment has four distinguishable gen-

res, so it is expected that the accuracies are higher. One stipulation is that all experiments

using DCAL are done only on MFCC features. This clearly shows the effectiveness of our

approach on a small set of features.

Also, in Figures 3.2 and 3.3 we notice the trend that a lower support value generates

more frequent fv-sets, which leads to a higher chance that a testing piece will be classified
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correctly, thus yielding a higher average classification accuracy across several genres. We

find this to be the general trend across all of the experiments, with relatively few exceptions.

Furthermore, if too high of a ms is used, it is possible that very little frequent fv-sets for a

genre will be found, so some tuning of ms is necessary to have comparable characteristic set

sizes between the genres (this allows for CBC to perform fairly across the selected genres).

With a high enough ms it is also possible that a certain combination of features becomes

absent in the characteristic fv-sets of a genre. In essence, these absences represent the

notion that these feature combinations are not statistically significant, and will not assist in

the classification. From this, we see that our approach offers further utility in empirically

determining the features that cause a particular genre to become distinguishable. This will

be explored in our future work.

Table 3.5: DGAD, μ = 50%, γ = 50%, Be f , ms = 8%, α = 0.7, 50 songs per genre.

φs = 60% φr = 60%

L HH R RE L HH R RE

RCn 0.43 0.67 0.52 0.41 0.43 0.62 0.43 0.54

RCαβ 0.44 0.70 0.51 0.42 0.43 0.54 0.41 0.54

RCcpt 0.35 0.82 0.50 0.52 0.27 0.74 0.42 0.62

RCppt 0.38 0.79 0.50 0.52 0.38 0.73 0.43 0.61
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Figure 3.4: DGAD, μ = 16%, φr = 0.6,

ms = 8, Be f , RCcpt , 50 songs per genre.
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Figure 3.5: DGAD, μ = 16%, φr = 0.6,

ms = 8, Be f , RCppt , 50 songs per genre.

In Table 3.5 we observe the effects of various ranking criteria on DGAD. We notice that

the ranking criteria does not have a stable impact on the prediction accuracies. Sometimes,

however, the ranking criteria provides slightly higher accuracies, depending on the criteria

chosen. We do notice a tendency for RCn to be outperformed by more "sophisticated"

scoring methods. This shows the importance of considering the size of the frequent fv-
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sets (in a genre’s characteristic set) when matching it to a testing piece. However, we still

determine the impact of the ranking criteria to be unstable, since all criteria other than RCn

have similar chances of performing the best. In the aforementioned table, there are only

50 songs per genre, which means there is only a small amount of training music pieces

that are utilized. While the genre prediction accuracies are mediocre, the training time is

minuscule, and if anything, this shows that it is possible to scale our approach, such that it

remains applicable on a smaller dataset. We have not done any further processing to DGAD,

like applying feature reduction, or some ensemble technique, which may further improve

the classification accuracies.

In Figures 3.4 and 3.5, we observe the effect that γ has on prediction accuracy for the

ranking criteria RCppt and RCcpt . We notice that, for three of the four genres for RCppt , a

lower γ threshold (i.e., a more lenient threshold) performs better. Whereas for RCcpt , only

two of the genres achieve an improved prediction with a lenient γ threshold. It may be the

case that γ affects only some of the ranking approaches. With the case of RCppt , a more

lenient ranking threshold does not necessarily mean the whole cardinality of the frequent

fv-set will be rewarded, but with a low γ percentage, the number of matching feature-value

pairs will still be considered (even for a small number of matched feature-value pairs in a

frequent fv-set), so we believe that γ may alter the performance more for RCppt . There must

be further work done to draw additional conclusions regarding the impact γ has on various

ranking criteria.

Interestingly, an explanation for the lower genre prediction accuracies achieved using

DGAD for the experiment results on four genres, could be the fact that DLMD and DCAL have

the genre labelling done by musicological experts, whereas DGAD is a dataset with labelling

done by the authors [56]. The correlations between the DCAL and DGAD experiments are

that the prediction accuracy for hip hop is quite high in both and the prediction accuracy

for rock is moderate; this demonstrates that our approach does not have any bias towards

a particular dataset’s set of genres. The prediction accuracies for hip hop and rock are
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also intuitive as hip hop is somewhat distinguishable, and there are characteristics of rock

present in other genres.
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Figure 3.6: Dm
LMD, μ = 50%, φs = 0.6,

γ = 50%, Be f , RCn, 300 songs per genre.
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Figure 3.7: Dm
LMD, μ = 50%, φs = 0.6,

γ = 50%, Be f , RCn, 300 songs per genre.

In Figure 3.7 we see the relationship between the support and the distinguishability of

a genre. No matter the ms, the distinguishable genres should always be more accurately

predicted, however, with a smaller ms, a complex variety of characteristics will be found,

and less distinguishable genres will also have a chance of being classified more accurately.

This can be seen with the genres fórro, axé, and merengue, but this is also found to be true

across all of our experiments. Recall that DLMD only has a moderate number of features

extracted per piece, with no feature selection mechanism in place.

In Figure 3.6, we see the classification of four genres on DLMD. As discussed previously,

we expected tango to have higher accuracies, and this is found to be true, even for higher

support values. However, we once again see the trend that a lower ms percentage yields a

higher classification accuracy. We notice that, even though RCn is used, a smaller amount

of genres leads to better performance, especially when a low ms percentage is used.

Table 3.6: DLMD, μ = 50%, γ = 50%, Be f , ms = 5%, RCαβ, 300 songs per genre.

φs = 60% φr = 60%
AX B F ME SE PA AX B F ME SE PA

Beginning 0.51 0.50 0.63 0.61 0.53 0.56 0.51 0.41 0.63 0.52 0.51 0.57

Middle 0.57 0.52 0.65 0.68 0.57 0.64 0.62 0.49 0.62 0.87 0.54 0.60

End 0.58 0.45 0.62 0.65 0.53 0.56 0.59 0.43 0.61 0.83 0.49 0.61

In Tables 3.6 and 3.7, we see that the middle segments of both DCAL and DLMD per-

forming reasonably well, outscoring the results from the beginning and end segments in
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Table 3.7: DCAL, μ = 16%, γ = 50%, Be f , ms = 3%, RCn, 140 songs per genre.

φs = 60% φr = 60%
C CO J E R HH C CO J E R HH

Beginning 0.63 0.47 0.35 0.39 0.50 0.53 0.58 0.46 0.46 0.37 0.44 0.43

Middle 0.61 0.44 0.48 0.39 0.61 0.58 0.57 0.51 0.42 0.44 0.54 0.56

End 0.50 0.48 0.45 0.36 0.45 0.46 0.49 0.49 0.39 0.43 0.53 0.45

Table 3.8: DCAL, μ = 16%, γ = 50%, Be f , ms = 3%, RCn, 400 songs per genre.

φs = 60% φr = 60%
C CO J E R HH C CO J E R HH

Beginning 0.72 0.48 0.41 0.42 0.55 0.54 0.70 0.53 0.43 0.44 0.48 0.56

Middle 0.74 0.50 0.39 0.37 0.62 0.63 0.70 0.51 0.43 0.40 0.56 0.62

End 0.72 0.47 0.41 0.45 0.57 0.61 0.67 0.48 0.40 0.48 0.56 0.57

both experiments, for half or more of the genres. Dm
LMD is expected to have higher accura-

cies, according to Silla et al.’s [41] findings. This entertains the idea that the final prediction

accuracy can be related to song sections, with a greater prediction accuracy being related

to those sections of pieces that contribute more substantial acoustic content to the classifier,

such as the middle sections of songs, when a piece is less likely to offer sparse musical

instrumentation.

With these results, we also see how our approach performs on two datasets with six

genres, over three different sections. It is interesting to note that even though there is a

smaller number of songs and fewer features, the MFCC features of DCAL are just as useful

for our classification approach. This may have to do with the features being extracted from

a third of the whole piece, as compared to the DLMD, where features are found from 30-

second segments. It is possible that features representing longer segments have a more

beneficial impact on the prediction accuracies, as they summarize acoustic content over

longer periods. We will provide further experiments related to this notion in the future.

We further see that an increase in the number of songs does improve the classification

accuracy. This is demonstrated in Table 3.7 and Table 3.8, but we found this to be true across

all of our experiments. For nearly every genre, and for both φr and φs, the classification

accuracy is higher for all segments when there are more songs present. This may be due

to the greater variety of frequent fv-sets that are found when characterizing a genre. This
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shows that our approach is scalable.

Table 3.9: Confusion matrix (10-fold cross validation) - DM
CAL, μ = 16%, φs = 60%,

γ = 50%, Be f , ms = 3%, RCppt , 400 songs per genre.

C CO J E R HH

C 0.80 0.06 0.08 0.00 0.04 0.02

CO 0.07 0.48 0.10 0.08 0.14 0.13

J 0.13 0.15 0.37 0.10 0.13 0.12

E 0.00 0.15 0.05 0.34 0.22 0.24

R 0.00 0.14 0.07 0.11 0.64 0.04

HH 0.01 0.06 0.04 0.18 0.06 0.65

Finally, we analyze the confusion matrix of DCAL genres to determine if the misclassi-

fications match our intuition. We note that classical and hip hop are quite distinguishable,

with only some misclassifications of hip hop being caused by electronic music, which is an

appropriate misclassification. Rock and country appropriately caused the most confusion

for one another. Jazz is less discernible, with frequent misclassifications corresponding to

classical and country, possibly due to a similarity in timbral characteristics. Finally, elec-

tronic music, like jazz, is also more vaguely classified. However, most of the misclassifica-

tions are due to confusions with hip hop, which is also reasonable. With Tables 3.4 and 3.9

we see appropriate and intuitive misclassifications. For instance, if the genre electronic is

being misidentified as classical, then this would be quite problematic and unintuitive. This,

however, is not the observed behaviour of our approach.

3.5 Summary

A novel approach to the problem of music genre classification has been given. The

performance of this approach has been empirically evaluated, and various parameter com-

binations have been investigated. However, some aspects of this approach are not without

some concerns.

One concern regarding this chapter’s proposed approach is the usage of the parameter

μ, as used in the Inter-Genre Removal procedure. Currently, this approach applies the inter-

genre removal across all genres if the μ threshold is met. However, this removal is not
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optimal. For instance, the genre jazz can contain both the musical elements of jazz and

blues. Removing blues elements from jazz could inadvertently decrease the classification

accuracy for some jazz pieces when comparing jazz to classical, especially if the more

"bluesy" jazz pieces are distinguishable from the classical pieces. So, even though stricter

μ thresholds yield higher accuracies, the removal of common frequent fv-sets in this way

is not ideal, as we will demonstrate shortly. In the next chapter, we present the extension

of this approach via a pairwise classification arrangement akin to a dichotomy structure,

which addresses this concern.

In summary, we have presented an approach that handles the music genre classifica-

tion problem by capturing genre-specific characteristics. Our approach characterizes music

genres, in terms of distinguishable acoustic features and their values. Through this char-

acterization of genres we are able to tell how, and why, genres are distinguishable from

each other. The effectiveness of our approach is demonstrated through our experiments on

DLMD, DGAD, and DCAL. As shown, it classifies music genres with a practical accuracy.

The raw features are binned into discrete values, and the feature-value pairs are used to

represent various musical aspects of a genre (e.g., rhythmic, timbral, etc.) through frequent

itemset mining.
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Chapter 4

Genre-Specific Characterization and
Pairwise Evaluation

In this chapter, we continue to explore the genre classification problem in MIR. We further

make use of each genre’s unique characteristics, which are represented via a set of features

and their corresponding values. To further extend our findings, we present this chapter in

light of the various concerns presented at the end of Chapter 3. That is, we now describe

a way of improving genre predictions and characterizations via association analysis by

introducing a pairwise dichotomy-like strategy.

This chapter is organized in a similar way as the previous chapter. After providing

a brief introduction below, we provide a description of our approach in Section 4.2. In

Section 4.3, we describe the music datasets, features, and songs per genre used in the em-

pirically conducted experiments. We then discuss, with greater detail, those experiments in

Section 4.4 in relation to the effectiveness of the proposed approach. Lastly, in Section 4.5,

various related issues, such as potential future work along the same direction, are examined.

4.1 Introduction

As presented in Chapter 3, we begin by treating acoustic features and their values as data

objects, by discretizing the features per piece. Again, we find the frequent co-occurrences

of feature-value pairs. A critical addition to this chapter, however, is that we present a

way to single out each candidate genre. To do so, we conduct genre classification based

on a pairwise dichotomy-like strategy. We compare the differences of the characteristics
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of two genres in a symmetric manner and use them to classify testing pieces into music

genres. The reasoning for doing this is as follows. If we are considering a genre such

as jazz, there are specific jazz pieces that have influences of rock (this is true for certain

jazz subgenres like jazz fusion). So when we are comparing jazz to another genre like

classical music, it makes sense to keep these jazz fusion qualities, however, when we are

comparing jazz to rock, it makes sense to remove these qualities. By applying a removal

method that removes characteristics from all potential genres (after some thresholds are

met), as done in Chapter 3, we are removing potentially useful characteristics for genre

comparisons. One of our main motivations is to show that excessive use of Inter-Genre

Removal to remove common frequent fv-sets (i.e., using the μ parameter) may provide

suboptimal genre characterizations, whereas improvements can be made by allowing for

the characterization of genres (without Inter-Genre Removal), and by applying a pairwise

dichotomy-like strategy.

Our goals for this chapter can be further summarized. We aim to show how the evalu-

ation of a new music piece through dichotomy-like pairwise comparisons is done, and that

comparing genres in this manner yields higher genre classification accuracies than what is

presented in the previous chapter’s approach. This second goal can be partitioned into a

further set of goals. That is, through our experiments, we aim to achieve competitive classi-

fication results, even with a small number of features, while showing that a higher strictness

during the pairwise comparison yields higher classification accuracies.

4.2 Genre-Specific Characterization and Pairwise Evaluation

The approach presented in this chapter can be broken down into two algorithms. The

first algorithm generates the characteristics of the genres and the second performs the pair-

wise calculations on the characteristics of those genres. The first algorithm is similar to the

approach in Chapter 3. The number of music pieces is balanced between the genres and

the features of the music pieces are first discretized using a binning method. The resulting
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discrete data objects are split into testing and training portions where the training data is

sent to Apriori so that frequent fv-sets can be generated. The main difference between this

Chapter’s first algorithm and the approach found in Chapter 3, is that we take a subset of

the training data each time and append the newly found frequent fv-sets to a characteristic

set. We allow for the optional use of Inter-Genre Removal at every iteration.

In the second algorithm, we start with each genre’s characteristic set and remove all of

the characteristics from one genre that are found in another genre’s characteristic set. We

do this for each pair of genres which generates a number of differences for a new testing

piece to match. When calculating the score of each genre for that testing piece, we match

each pair against its opposite pair (i.e., jazz with classical characteristics removed versus

classical with jazz characteristics removed) to see which genre better matches the testing

piece. We provide the high-level depiction of both algorithms in Figure 4.1, to demonstrate

how the frequent fv-sets are used to characterize genres, and how pairwise comparison is

performed.
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Figure 4.1: A high-level description of our second approach.
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4.2.1 Generating Genres’ Characteristic Sets

Association analysis, as presented in Section 2.3, and also utilized in Chapter 3, is used

again to determine the data items that frequently occur together. With some minimum

support value, we determine those frequent fv-sets used to characterize genres. Once again,

we adapt the Apriori [1] association algorithm for our purposes.

A piece in a music dataset is represented in a similar way as the previous chapter. It is

represented as a vector P = {p1, p2, . . . , pn}, where pi is the value of the feature fi ∈ F and

F = { f1, f2, . . . , fn} is the acoustic feature set selected for classification.

A1: Characterizing music genres by feature-value pairs

1. For each binning method B

2. For each genre G’s GS

3. Apply B to GS

4. Split GS into its training set GStr and testing set GSte

5. For each G’s GStr

6. Randomly generate M subsets of it (denoted as GSi)

7. For each genre G and for each of its GSi

8. GSF
i = Call Apriori to GSi with ms

9. For i = 1 to M

10. Call procedure Inter-Genre Removal on all genres’ GSF
i

11. For each genre G

12. We append fv-sets from GSF
i to GSC and remove any duplications

This chapter’s first step is detailed in the algorithm A1, and is similar to the previous

chapter’s approach. As before, the superscripts tr and te correspond to training and testing,

a genre G has a dataset of pieces labelled G, a set GS is a randomly chosen subset taken

from G (to balance the number of music pieces in each genre). We normalize the acoustic

features’ real values and then use a binning method to discretize these real values. The

binning methods used are the same as in Chapter 3 (i.e., equal frequency, equal width, or

Rice rule, denoted as Be f , Bew, Brr, respectively). Again, we systematically encode each

value for each feature, and represent a music piece as a set of feature-value pairs, called an

fv-set. After this encoding, the frequent fv-sets for each genre’s training pieces are found.
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For this, we set the cardinality of each fv-set returned by Apriori to be at least 2, and utilize

only maximal itemsets.

We still allow for all genres’ corresponding GSF
i s to go through Inter-Genre Removal

to remove the common fv-sets before performing the pairwise comparison. Inter-Genre

Removal, in this case, is exactly the same procedure as used in the previous chapter’s ap-

proach. That is, if a frequent fv-set from GSF
i has matches from more than a certain μ of

other genres, we delete it from every genre’s GSF
i . We use the parameter φ again, to check

whether two fv-sets match each other. Except this time, we only use the relaxed version of

φ (i.e., φr, as explained in Chapter 3). At this point, instead of scoring testing pieces using

some ranking criterion, as in Chapter 3, we modify the algorithm, so that each genre’s GSF
i

is appended to a characteristic set. That is, for the genre G we obtain its M sets of frequent

fv-sets, where i = 1, . . ., i = M (M = 10 in our experiments). The purpose of doing this will

now be described in further detail.

For each genre, we consolidate its M sets of frequent fv-sets (each GSF
i ), and generate

its characteristic set, called GSC. The major advantage of using the parameter M, is that a

variety of possible frequent fv-sets are mined from the training data, thus producing a more

complete and representative characteristic set. Furthermore, we can observe various metrics

of frequent fv-sets across these M iterations. For instance, if a frequent fv-set occurs across

all M iterations, we may view this fv-set as having greater importance than one that occurs

in only one iteration. Furthermore, we can find the average ms value that a frequent fv-set

has or the number of times a frequent fv-set was found to be a subset of other frequent

fv-sets, across all M iterations. After the characterization of genres is done, we continue to

the pairwise comparison.

4.2.2 Evaluating Pairwise Music Genres

With the characteristic sets of individual genres ready, we classify an unseen music

piece from a testing music dataset, which is represented as a vector of feature-value pairs
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and scored against a pair of genres by comparing the differences between their respective

characteristic sets to find the preferred genre. The steps, which should be done per binning

method and ms, are presented in the Algorithm A2. For a new music piece P from a subset

of GSte (we create 10 subsets of GSte for each genre to average its experiment accuracies),

we maintain a score vector (SG1
,SG2

, . . . ,SGn), where n is the number of genres under con-

sideration and SGi is the "score" of Gi for P.

A2: Evaluating pairwise music genres by feature-value pairs

1. For a new music piece P (represented by feature-value pairs)

2. For the characteristic sets of two genres Gi and G j , GSC
i and GSC

j

3. Calculate the except difference of GSC
i and GSC

j ,

4. i.e., DCi j = GSC
i −GSC

j and DC ji = GSC
j −GSC

i .

5. Score on P using DCi j and DC ji

6. si = Counting(P, DCi j)

7. s j = Counting(P, DC ji)

8. if si > s j then

9. SGSi += electoral?1 : si

10. else

11. SGS j += electoral?1 : s j

12. Set the genre of the highest score to be the one for P.

The except difference between the two characteristic sets, GSC
i −GSC

j , consists of those

fv-sets that are present in GSC
i but not in GSC

j . We again utilize the same idea for the

strictness factor φ in our evaluation when we conduct a "fuzzy" check for whether an fv-set

from GSC
i appears in GSC

j , and vice versa. We label the φ value used during Inter-Genre

Removal as φig (recall that φig is the same as φr as used in the previous chapter). We label

the φ value used in the pairwise genre comparisons as φpw. We precalculate the except

differences among all pairs of genres.

The procedure Counting counts how many fv-sets in the except difference are a subset

of P’s feature-value vector. Two mechanisms of Counting are implemented. The first is

called electoral voting (i.e., winner takes all) and the second is called popular voting.
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Electoral Voting

Electoral voting works as follows. It finds the number of times that the fv-sets in the

except difference appear in P (normalized based on the size of the difference). This is

then compared to the number of matches made with the other except difference (i.e., DCi j

versus DCji), and the except difference that provides the higher score determines what genre

gets a point. The genre with the highest number of points is chosen. Therefore, if G∗ is

the set containing all of the genres, the number of except differences to be calculated are:

(|G∗|−1) · (|G∗|), and the maximum number of votes that can be awarded towards a genre

for any testing piece is (|G∗|−1). The process of electoral voting may be understood as a

type of decision tree, as shown in Figure 4.2. Let C,R,J represent the characteristic sets for

classical, rock, and jazz, respectively. Let J −C be the except difference representing all

the characteristic frequent fv-sets in jazz that are not in classical (that is, i is jazz, and j is

classical, and Di j is J−C).

Figure 4.2: Electoral voting process as a decision tree.

J or C?

J or R? C or R?

Choose
J

C or R?
Choose

C
J or R?
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R

Tie
Choose

R
Tie

J - C C - J

J - R R - J

R - C C - R

C - R R - C

R - J J - R

J, C, R

C:  C - R, C - J 
R:  R - C, R - J 
J:  J - C, J - R 

 

Popular Voting

Popular voting sums up the number of matches to frequent fv-sets that the fv-set of a

piece P has, across all of the except differences for a particular genre Gi. The number of

matches found by Counting is normalized based on the number of frequent fv-sets in the
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except difference (i.e., |Di j|). Therefore, the genre that is chosen for a testing piece is given

by the expression

max
Gi∈G∗

|G∗|
∑

j

Counting(P, DCi j)

|DCi j| , (4.1)

where i �= j. We will see in Section 4.3 that the popular voting mechanism obscures the

except differences and thus yields a lower classification accuracy.

4.3 Experiment Preparations

Now that the music genre characterization and pairwise comparison algorithms have

been described in detail, the datasets, genres, and features used to determine the experiment

results will now be discussed.

4.3.1 Datasets and Features

To verify our proposed approach, we apply it to DLMD and DCAL. We use the same sets

of features found in Section 3.3.3 (Table 3.2) for both datasets. Recall that DCAL only has

13 Mel-frequency cepstral coefficients (MFCCs) extracted over the entirety of each music

piece, however in this chapter we create a subset of features taken from the middle segment

only (each section is split evenly based on the music piece’s length). For the extraction of

MFCCs, the sampling rate is 22050 Hz, with a window size of 2048ms, and hop size of

1024ms. The standard deviation and mean across the analysis windows are calculated for

each MFCC. Recall that DLMD has 5 MFCCs extracted, as well as spectral-based, temporal-

based, and pitch-based features. Each feature has its mean and variance calculated across

the analysis windows.
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4.3.2 Genres, Subset Selection, and Discretization Methods

Processing Details of DCAL

In the DCAL experiments we use six (6) genres to conduct two (2) sets of experiments,

these genres include: (C)lassical, (M)etal, (H)ip (H)op, (F)olk, (P)op, and (RE)ggae. The

ms values that are used in the Apriori algorithm are 4%, 6%, and 8%. Three binning meth-

ods are used to preprocess music data, including: Bew, Be f , and Brr. 10 bins are used for

Be f and 15 are used for Bew.

The first set of experiments utilizes all six genres, and the second set excludes the genre

pop, which is frequently misclassified. These experiments further break into two types: 1)

using a hierarchical promotion of subgenres (at least two subgenres per their parent genre

label, including the parent genre label as well), called subgenre uplifting, with 104 training

pieces and 44 testing pieces; and 2) using pieces labelled only as a parent class in DCAL,

with 115 training pieces and 48 testing pieces, and with the genre (R)ock used in place of

metal. The purpose of this is to investigate how the classification accuracy is affected by the

uplifting of subgenres. Since there is more variation in the data when uplifting subgenres,

we believe that these experiments should yield lower classification accuracies.

Processing Details of DLMD

For DLMD we use the entirety of the dataset, experimenting on each 30-second segment

of the songs separately. The experiments are conducted using all of the songs possible per

10 genres after the subset equalization of songs. We utilize the same preprocessing strategy

for DLMD, as mentioned in Chapter 3 (i.e., we first collapse the folds, then remove duplicate

feature vectors). Therefore, we use 2, 973 music pieces per genre for the beginning segment

and 2, 988 music pieces per genre for the middle and end segments. The purpose for these

experiments is to determine how well the classifier performs against other state-of-the-art

classification approaches. We use all three binning methods (i.e., Bew, Be f , and Brr with the

same number of bins given above), and an 80%, 20% training testing split. ms values of

73



4.4. EXPERIMENT RESULTS AND DISCUSSIONS

3%, 4%, 5%, and 6% are used.

4.4 Experiment Results and Discussions

Not only are we concerned with demonstrating the classification accuracy of our genre

characterization and pairwise evaluation algorithms, we also determine if sufficient accu-

racies can be achieved with a small number of content-based audio features. We further

determine if a stricter φpw threshold will accomplish this. However, when applying φig we

execute classification experiments that demonstrate whether or not this produces less than

ideal characteristic sets per genre, therefore producing a lower classification accuracy. For

our purposes, we make the procedure Inter-Genre Removal an option in our algorithm. If

we do not use it, we use n/a in the reports of our experiments.

For DCAL, we notice that Be f performs better, on average, for the six genre experiments

without subgenre uplifting, meaning that this binning method is more useful when a greater

variety of genre information is present. So in the next discussion, we fix the binning method

to be Be f . However, we do find that the trends present in the Be f binning method also apply

to other binning methods.

C M HH F RE
0

10

20

30

40

50

60

70

80

90

100

Genres

A
cc
u
ra

cy
(%

)

ms = 4%

ms = 6%

ms = 8%

Figure 4.3: With subgenre uplift, Be f ,

φpw = 0.3, μ n/a, φig n/a,

Electoral, pop absent.
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Figure 4.4: With subgenre uplift, Be f ,

φpw = 0.3, μ n/a, φig n/a,

Electoral, pop present.

In Figure 4.3 we first see the trend that we found in Chapter 3, that a lower ms threshold

yields higher classification accuracies. As before, it is believed that this is due to the greater

volume of complex characteristic relationships that are found, since a lower ms threshold is

used to return a greater variety of frequent fv-sets. Comparable accuracies are also achieved
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for subgenre uplift with smaller ms values, but the stability between genres decreases as ms

increases. This is due to the introduction of testing pieces that do not explicitly represent

that genre. However, we use a stricter φpw value, with a smaller ms, which yields a higher

accuracy even when other subgenres are introduced. In Figure 4.4, we notice that music

pieces from the genre pop are misclassified, furthermore, pop is the only genre whose

classification accuracy drops dramatically for a lower ms value. This demonstrates that the

impact of including a confusing genre can be softened using pairwise comparisons.
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Figure 4.5: Without subgenre uplift, Be f ,

φpw = 0.3, μ n/a, φig n/a,

Electoral, pop absent.
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Figure 4.6: Without subgenre uplift, Be f ,

φpw = 0.3, μ n/a, φig n/a,

Electoral, pop present.

In Figures 4.4 and 4.6, the presence of pop does lower the classification accuracies of

other genres. However, this effect is not as significant as we expected. Characteristics of

pop can be found in various genres, so it is no surprise that the predictions suffer to some

extent. Based on our experience with DCAL, easily confused genres (i.e., reggae, hip hop,

folk, etc.) are now often classified correctly. In Figures 4.4 and 4.6, we continue to see

the trend that a lower ms causes a higher prediction accuracy, and that a more strict dataset

increases prediction accuracy.

When comparing those experiment results on the genre uplift and flat genre hierarchies,

we make a handful of observations. First, we note that metal was more distinguishable,

compared to rock. We also observe that when uplifting subgenres, there are significant

"valleys" in both the five and six genre experiments, especially as the ms thresholds are

increased. Lastly, the accuracy of the music genre pop was affected more when subgenre

uplift was performed. These observations match our intuitions. Fewer characteristics of
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metal can be found in other genres when compared to rock, a higher ms value reduces

the frequent fv-sets that a testing piece can match against, and when subgenre uplift is

performed there is a larger variety of data present for pop to be confused with.

The confusions for each genre in the above figures also match our intuitions. For in-

stance, hip hop was confused with pop and reggae, rock was confused with pop, classical

was confused with folk, and folk was sometimes confused with pop, hip hop, and reggae,

and lastly, reggae was confused with pop and hip hop. Therefore, the confusions for DCAL

remain intuitive. Interestingly, pop and metal are both a source of confusion for one another,

this may be due to the sometimes compressed production, and the rhythmical strictness in-

herent in both genres. However, MFCCs are the only features used, so it is possible that

more features would differentiate these genres better.

In Tables 4.1 and 4.2, we see that a stricter φpw value yields higher prediction accuracies.

The rows with a ∗ in Table 4.2 represents a μ value of 33% and a φig value of 60%, which

is used during Inter-Genre Removal. The average accuracies for φpw suffer when Inter-

Genre Removal is called. This confirms our hypothesis that applying a strict μ value during

Inter-Genre Removal creates a "non-optimal" characteristic set for some genres. We believe

this is due to the removal of characteristics in a genre that could improve the classification

when comparing against only one other genre (as done with a pairwise comparison). Recall

from Chapter 3 that a stricter μ value normally yields higher accuracies, however, with this

extra call to remove frequent overlapping fv-sets during Inter-Genre Removal, we notice

that lower prediction accuracies do occur. The best result is obtained with a strict pairwise

comparison threshold only, where we leave the accumulation of the characteristic sets (of

each genre) intact until the pairwise comparison is done. In the future, we must experiment

with even more μ and φig values during the Inter-Genre Removal procedure, for now though,

we do notice the aforementioned trend.
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Table 4.1: With subgenre uplift, ms = 4%,

Be f , μ n/a, φig n/a, Electoral, pop absent.

C M HH F RE

φpw = 0.3 0.91 0.98 0.82 0.89 0.84

φpw = 0.5 0.77 0.93 0.41 0.75 0.59

φpw = 0.6 0.50 0.93 0.34 0.78 0.59

Table 4.2: With subgenre uplift, ms = 4%, Be f ,

μ = 0.33* and φig = 0.6*, otherwise μ and φig n/a,

Electoral, pop present.

C M HH F P RE

φpw = 0.3 0.86 0.80 0.84 0.80 0.48 0.86

φpw = 0.5 0.82 0.80 0.59 0.52 0.50 0.64

φpw = 0.6 0.64 0.68 0.41 0.55 0.68 0.59

φpw = 0.3* 0.75 0.89 0.68 0.68 0.61 0.77

φpw = 0.5* 0.68 0.81 0.45 0.59 0.61 0.70

φpw = 0.6* 0.75 0.68 0.39 0.68 0.52 0.59

In Tables 4.3 and 4.4, we notice that Be f is the most stable binning method, with only

a drop in accuracy for the genre pop, as in Table 4.4. When pop is reintroduced, as shown

in Table 4.4, hip hop and folk’s prediction accuracies are lower, but with Be f the impact of

introducing a confusing genre is softened.

Table 4.3: With subgenre uplift, ms = 4%,

various binning methods, φpw = 0.3, μ n/a,

φig n/a, Electoral, pop absent.

C M HH F RE

Be f 0.91 0.98 0.82 0.89 0.84

Bew 0.93 0.91 0.86 0.89 0.91

Brr 0.86 0.91 0.64 0.77 0.91

Table 4.4: With subgenre uplift, ms = 4%,

various binning methods, φpw = 0.3, μ n/a

φig n/a, Electoral, pop present.

C M HH F P RE

Be f 0.86 0.80 0.84 0.80 0.48 0.86

Bew 0.93 0.82 0.55 0.52 0.61 0.82

Brr 0.91 0.75 0.64 0.41 0.43 0.73

Next, we investigate how the popular voting method performed. This is presented below

in Tables 4.5 and 4.6.

Table 4.5: With subgenre uplift, ms = 4%,

Be f , μ n/a, φig n/a, Popular, pop absent.

C M HH F RE

φpw = 0.3 0.55 0.41 0.70 0.90 0.68

φpw = 0.5 0.57 0.86 0.39 0.80 0.50

φpw = 0.6 0.48 0.93 0.45 0.80 0.55

Table 4.6: With subgenre uplift, ms = 4%, Be f ,

μ n/a, φig n/a, Popular, pop present.

C M HH F P RE

φpw = 0.3 0.39 0.27 0.34 0.61 0.70 0.43

φpw = 0.5 0.61 0.59 0.43 0.52 0.70 0.41

φpw = 0.6 0.59 0.64 0.48 0.64 0.77 0.52

The most notable observation to be made is that the popular voting method underper-
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forms for stricter φpw thresholds, and works opposite to the Electoral voting method (at

least for the experiments with subgenre uplift). In the case of metal, which should be dis-

tinguishable, it becomes less recognizable for stricter φpw values. In the experiments with

subgenre uplift more frequent fv-sets are generally removed for each genre when using a

stricter φpw threshold, it is possible that these frequent fv-sets no longer have the capacity to

optimally characterize the genre when popular voting is applied. That is, when comparing

the sum of matches across all except differences for one genre, the score for that genre is

solely dependent on the number of matches that occur, so with a strict removal threshold,

genres that were once distinguishable may be less distinguishable, due to the decreased size

of the except differences characterizing that genre (and therefore, the fewer chances a test-

ing piece has of matching all of a genre’s frequent fv-sets). Therefore, we determine that

the popular voting method is less effective when using a pairwise comparison.

Next, we present our experiment results using DLMD. In Figure 4.7, we find further

confirmation that a lower support yields a higher classification accuracy. In Figure 4.8,

the trend that stricter removal thresholds yield greater classification accuracies is also con-

firmed. We do see that those distinct genres (i.e., tango and bachata) benefit more from ap-

plying a stricter φpw value, and less distinguishable genres achieve lower accuracies. Some

fine-tuning of this threshold may be needed, although the strictest φpw value generally pro-

duces a better average overall accuracy. In Figure 4.9, we see again that Be f performs in

a stable manner, and is less prone to accuracy drops for certain subgenres, which might

occur with Bew, or Brr. Note that the binning method can exacerbate the difference between

distinguishable and less distinguishable genres and make the classification less stable. At

this point we have observed in several experiments that the most effective combination of

parameters are a low minimum support (ms) and a strict pairwise removal threshold (φpw),

generally with equal frequency binning (Be f ) generating the most stable and greater classi-

fication accuracies. Finally, the segment of music pieces that achieves the highest accuracy

for all of DLMD’s ten (10) genres is the middle section, as we have seen in Chapter 3. This
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matches other approaches [41], and is shown in Figure 4.10.
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Figure 4.7: Analysis of ms with

parameters: DLMD, φpw = 0.4,

μ n/a, φig n/a, Be f .
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Figure 4.8: Analysis of φpw with

parameters: DLMD, ms = 3%,

μ n/a, φig n/a, Be f .
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Figure 4.9: Analysis of binning with

parameters: DLMD, ms = 3%,

μ n/a, φig n/a, φpw = 0.6.
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Figure 4.10: Analysis of segments with

parameters: DLMD, ms = 3%, φpw = 0.4,

μ n/a, φig n/a, Be f .

In Table 4.7, we see the confusion matrix for DM
LMD. There is a noticeable improvement

compared to the approach in Chapter 3 (Table 3.4, Figure 3.6, and Figure 3.7), especially

since the experiment uses 10 genres. Several familiarities are noticed when comparing

those experiment results in Chapter 3 to the confusion matrix for DM
LMD. For example, we

find that both merengue and tango are quite distinguishable, that sertaneja is a source of

confusion for pagode, bolero is sometimes confused with sertaneja, and finally, axé and

fórro are both less distinguishable than other genres. So it is still the case that many of the

same confusions happen to occur, however, some confusions are softened with a strict φpw

threshold, and no usage (i.e., n/a) of the φig or μ thresholds. One further observation is that

genres are often rarely misclassified as tango, which is to be expected since in DLMD, there

is the proclivity for tango to contain older and noisier recordings [90].

This chapter’s approach can obtain classification accuracies for DLMD that outperform

many existing approaches. For instance, when compared to Silla et al.’s work [41] we
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Table 4.7: Confusion matrix (M = 10) - Dm
LMD, ms = 3%, Be f , μ n/a, φig n/a, φpw = 0.4

Tango Salsa Forró Axé Bachata Bolero Merengue Gaúcha Sertaneja Pagode

Tango 0.85 0.00 0.00 0.00 0.00 0.14 0.0 0.01 0.00 0.00

Salsa 0.00 0.73 0.02 0.02 0.02 0.06 0.04 0.03 0.04 0.04

Forró 0.00 0.07 0.45 0.03 0.02 0.11 0.06 0.07 0.07 0.12

Axé 0.00 0.08 0.04 0.53 0.02 0.03 0.13 0.04 0.07 0.06

Bachata 0.00 0.02 0.01 0.00 0.93 0.02 0.02 0.00 0.00 0.01

Bolero 0.01 0.03 0.01 0.01 0.00 0.80 0.00 0.03 0.09 0.02

Merengue 0.00 0.03 0.01 0.01 0.05 0.00 0.88 0.01 0.01 0.00

Gaúcha 0.00 0.06 0.02 0.07 0.02 0.10 0.07 0.55 0.05 0.06

Sertaneja 0.00 0.06 0.03 0.08 0.00 0.14 0.03 0.01 0.59 0.06

Pagode 0.00 0.02 0.03 0.03 0.00 0.07 0.03 0.02 0.11 0.69

find that we are able to achieve higher classification accuracies than all of the methods

proposed using the same set of features. In Table 4.8, we further compare this chapter’s

approach to other approaches using DLMD by observing the best and worst raw classification

accuracies (from 2015 to 2017) for the Music Information Retrieval Evaluation eXchange

(MIREX) genre classification task using DLMD. Recall that we do not use any feature

selection approaches, and only use those features introduced by Silla et al. in [41].

Table 4.8: A comparison of approaches using the MIREX Audio Train/Test:

Genre Classification (Latin) Task.

MIREX Year
Best Classification Accuracy %

(Author)

Worst Classification Accuracy %

(Author)

2015
66.9%

(Cai et al. [14])

54.69%

(Lidy [52])

2016
69.88%

(Lidy and Schindler [53])

62.78%

(Foleiss and Tavares [29])

2017
75.86%

(Lee et al. [49])

61.48%

(Xu et al. [97])

2018

70.0%

(Proposed Approach)
Parameters: φpw = 0.4, φig n/a, μ n/a, ms = 3%, Be f , Dm

LMD

For this chapter, we only conducted our experiments with M = 10. With a higher M

value it is possible that even more characteristic frequent fv-sets can be found per genre,

therefore, each genre’s characteristic set will become even more representative of that

genre. When M is smaller, less frequent fv-sets for each genre can be found; however,

the amount of processing during the pairwise removal will be less. In these cases, leaving

this parameter to the user provides a trade-off between running time and accuracy, which

may assist with scalability issues in the future.

We can also fine-tune the parameters per pair, allowing for plenty of flexibility. That
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is, each pair of genres could have a specific pairwise removal threshold, minimum support,

binning method, etc. This would be especially useful for genres that do not follow the

trends previously outlined, as we observe that a strict pairwise removal threshold does not

always yield the highest accuracies for a genre such as pop (as in Table 4.2), and that some

genres can benefit from higher ms values (as in Figures 4.5 and 4.6), for instance.

As mentioned, it is easy to collect the frequency information, average support, or the

number of times a frequent fv-set is a subset in a genre’s M frequent sets. This criteria

may be further used as a linear combination, such that each statistic for a frequent fv-set

is given some weight and awarded to a testing piece during the Counting procedure. The

use of these statistics may be explored further in future work, although, it was found that

a naive method of counting the matching fv-sets performed successfully. The statistics for

each frequent fv-set in a genre’s characteristic set may be convenient for various feature

selection techniques. One can determine the importance of a frequent fv-set based on the

statistics described above, which may assist in the pruning of unnecessary features.

4.5 Summary

In this chapter, we have presented our second novel approach to the music genre clas-

sification problem. Like in Chapter 3, it captures our intuitions that each music genre has

its own characteristics which can be extracted and represented. Moreover, we find that

genres compete for their influence when classifying music data, and therefore a pairwise,

dichotomy-like approach is appropriate for distinguishing genres. To our knowledge, this

is the first of its kind in the literature, and the initial experiments show that our approach is

promising.

Since the pairwise dichotomy-like strategy presented in this chapter is effective in dif-

ferentiating the characteristics of genres, we will now conduct classifications on various

sets of similar subgenres. This task is more difficult since the characteristics between any

two subgenres of a parent genre can be harder to decouple than normal parent genres.
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Chapter 5

Characterization and Classification of
Music Subgenres

In this chapter, we discuss the difficult and often overlooked problem of subgenre clas-

sification. So far, we have only reported our experiments with genres. The experiments

closest to using subgenres are those on DLMD. However, Silla et al. [41, 83] state that this

dataset is comprised of genres, and not subgenres. In some datasets, Latin music may be

collapsed into one genre comprised of several subgenres (as in DCAL [91]). So, from the

data processing point of view, DLMD may be viewed as either a group of genres or a group

of subgenres. This sheds some light on why automatic subgenre classification is important;

classifier confusions may easily arise from such broad groupings (e.g., representing all non-

western music as "world" music). On the other hand, it is possible that the effectiveness of a

classifier is not truly being tested since this broad grouping overlooks many important mu-

sical details (e.g., differences in instrumentation, rhythmic and harmonic structures). Thus,

there are many essential motivations for this chapter that will be discussed shortly.

This chapter is organized as follows. In Section 5.1, we briefly detail what a music

subgenre is, and relate it to the task of genre classification. We further state our goals

for this chapter. In Section 5.2, we outline the motivations and difficulties of performing

subgenre classification. We provide a discussion on why this task should not be overlooked

and why we are motivated to perform our experiments. In Section 5.3, we describe which

of the algorithms we use from the last two chapters, and why it is used. In Section 5.4,

we discuss the datasets and features utilized, as well as the choices of subgenres for each
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parent genre and why these subgenres are chosen. Lastly, in Section 5.5, we compare our

experiment results to the goals outlined in the following section.

5.1 Introduction

The purpose of labelling pieces as music subgenres is not just to divide music that

sounds different. There are also deep social, financial, and artistic implications for the

emerging labels that describe these subgenres. For example, an artist may wish to describe

their music as a new subgenre, a record company may present an artist under a new sub-

genre label to increase record sales, or a subgenre may be created as a reaction to political

agendas, other music styles, or as a gatekeeping device to exclude (or include) other lis-

teners. Any two subgenres may be quite different from one another (despite having the

same parent genre label). In summary, a subgenre’s label is assigned for a variety of deeply

complex reasons [63]. This makes the hierarchical organization of music subgenres less

straightforward than with genres.

Since we have found that there are not many works concerned with subgenre classifi-

cation at large (i.e., for the most common parent genres), it is a primary goal to provide a

transparent, and reproducible experiment design for the subgenre classification tasks. We

also aim to demonstrate that the approach presented in Chapter 4 can report the distinguish-

able subgenres with high accuracies and can achieve comparable accuracies across different

datasets. Finally, we use the following subgenre classification experiments to observe how

parameters may need to be tuned differently when applying the selected approach.

5.2 Motivations and Difficulties

Some ambiguities may occur with defining subgenres, since some qualities of one sub-

subgenre, such as the production, musical performance, harmonic content, and timbre, may

be quite similar to its parent subgenre in their parent genre. For instance some pieces of

shoegaze can be very similar to psychedelic rock (both technically subgenres of rock) in
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every musical way. Moreover, the labels are coined for various purposes that may be diffi-

cult for a simple content-based classifier to delineate, such as slight differences in musical

performance style. For a successful classification approach, this should not be an issue.

However, some subgenres are too generic to include in classification tasks and will cause

excess confusion.

A major difficulty associated with the subgenre classification task is the limited access to

data supporting this task. Mainly, there is a limited number of datasets supporting subgenre

classifications. This shortage of appropriate data may be the cause of the lack of subgenre

classification research in MIR.

Recall from Section 2.7.2, that there is somewhat of a void with respect to the current

subgenre classification research in MIR. We have found that the classification of music into

subgenres is often neglected. Many recent works do not address the problem of subgenre

classification at large, though there are several works attempting to classify region-specific

music [3, 44], ballroom music [64], and Latin music [23, 41, 76]. One of our primary

motivations is to fill this void.

It should be the aim of any classification approach to classify music into the finest

category possible. Intuitively, this is the next step for successful genre classifications, as it

would benefit those that listen to particular subgenres. In a practical sense, many people

may spend more time listening to one specific subgenre than any other subgenre, or even

other genres as a whole. This is our second motivation; to show that our approach can

provide a more detailed classification that is useful for listeners.

5.3 Approach

In this chapter, we make use of the approach presented in Chapter 4 exclusively. That

is, we extract the distinguishable characteristics that makes each genre unique. We continue

characterizing each music subgenre by a set of acoustic features through association anal-

ysis and then conduct the dichotomy-like pairwise comparisons. That is, we now consider
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applying the approach presented in Chapter 4 to the problem of music subgenre classifica-

tion. We review the proposed approach and discuss the reasons for selecting it.

The approach presented in Chapter 4 is chosen for several reasons. For instance, it

performed well in the experiments with subgenre uplifting using six genres. This means

that there is some chance that it is able to identify and group those subgenres that belong to

their parent genres. There may be plenty of overlapping subgenre information, so by using

the pairwise removal method on each subgenre’s characteristic sets, the useful subgenre

information will be kept, while removing only the necessary overlapping characteristics

from the "rival" subgenre’s characteristic set. A brief summary of this approach will now

be given.

We select a random subset of pieces from a music genre dataset and represent each mu-

sic piece in it as a discretized vector of features called an fv-set. To do so, we use a binning

method, such as: Be f , Bew, or Brr. Next, we split these pieces into testing and training com-

ponents. We again use association analysis, and in particular, the Apriori algorithm, to mine

frequent (maximal) fv-sets with some ms threshold, disregarding those frequent fv-sets less

than a size of 2. We then obtain M sets of frequent fv-sets per subgenre, again, M = 10

in our experiments. We perform the same "fuzzy" check for whether an fv-set appears in

the characteristic sets of a pair of subgenres. We make use of φpw for this, as discussed in

Section 4.2.2, however, we do not make use of the variable φig, since we saw in Chapter 4

that it may create a less than optimal characteristic set for a genre. We then classify the

pieces of music (now represented as a vector of feature-value pairs) from the testing music

dataset and score it against each pair of subgenres. The except differences are calculated for

each pair of subgenres, and a score vector per testing piece, with scores for each subgenre,

is maintained. However, we no longer experiment using the popular voting mechanism,

and only utilize electoral voting, since we found in Section 4.4 that it obscures the except

differences. For a more detailed description of the selected approach, please see Section

4.2.
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5.4 Experiment Preparations

For our purposes, we explicitly use the subgenres defined in the datasets that are used,

even if the assigned labels are awkward from a musicological point of view. That is, we

are reliant on those labelling the pieces in each dataset. The problems with relying on

correct labelling are exacerbated when performing subgenre classification since subgenres

can be even more difficult to distinguish than genres. For instance, if those labelling the

data are unfamiliar with the subgenres’ parent genre then the data may be labelled incor-

rectly. Therefore, we decide to use two frequently used datasets from the MIR literature, as

described with greater detail in Section 5.4.1.

For simplicity, if a subgenre is a child of a parent genre in the dataset, then we claim

that it is, in fact, a subgenre. We then continue to use this label for music subgenre classifi-

cation tasks. Sometimes a subgenre may belong to multiple parent genres (e.g., folk rock),

or numerous subgenres. We accept that a genre may belong to two or three similar parent

genres, by including these pieces in the classification process. However, we reject pieces

belonging to more than one subgenre, on the premise that we are performing subgenre

classification. If a piece belongs to two subgenres, then this is a task for multi-label classi-

fication. Furthermore, we are able to keep the representative and "pure" subgenre pieces by

avoiding subgenre overlappings. In order to have enough complexity in the data, and allow

for practical classification scenarios, we select at least three (3) subgenres per parent genre,

but less than or equal to six (6). We also select subgenres where the number of music pieces

is 50 songs or greater. It may also be the case that a subgenre may have a parent that is also

a subgenre (i.e., the subgenre is actually a sub-subgenre), even though pieces are labelled

separately in the dataset with no reference to this. We attempt to avoid this scenario, as it

may cause unnecessary confusions during music subgenre classification.
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5.4.1 Datasets

We include two large benchmark music datasets from the MIR community in our exper-

iments. They are the Cal10k (DCAL) dataset, and the Free Music Archive dataset (DFMA).

We have discussed DCAL previously, as it is used for the experiment sections in Chapters 3

and 4, and is introduced in Section 2.6. However, the new dataset that we include in the

experiment portion of this chapter is DFMA [9] (see Section 2.6.2 for more details). There

are a number of reasons why we use these datasets. For one, they are large enough to

support subgenre classification tasks, with an appropriate amount of songs per subgenre.

Recall that, for DCAL, genre labels are assigned for each music piece by the consensus of

experts [91], and for DFMA, each (sub)genre label is assigned by the artist that created each

music piece, therefore with DFMA some labelling noise is possible, as artists may have many

motivations for labelling their music [9]. There is some trust given to the genre hierarchies

and labels defined in these datasets. However, it is important to note that subgenres, by

their nature, are also harder to define for many pieces, as the distinction between them can

be even more blurry than with genres.

5.4.2 Selected Genres and Subgenres

For both DCAL and DFMA many standard parent genres are successfully incorporated

into our experiments. In Table 5.1 and Table 5.2, we provide all of the genres and subgenres

found in Section 5.5, and in Appendix A. We will now detail some important subgenres that

are excluded from our experiments. We begin with DCAL.
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Table 5.1: DCAL genre/subgenre hierarchy

as used in Section 5.5.

Genres Subgenres

blues delta blues, chicago blues, texas blues

classical
piano concerti, symphonic,

violin features, piano solo, choral

country

country rock, old time country,

traditional country,

country pop, western swing

electronic
drum and bass, trance, trip hop,

techno, industrial, ambient

folk
traditional folk, contemporary folk,

british folk, bluegrass

hip hop
underground hiphop, southern rap,

classic hiphop, electro

jazz
smooth jazz, jazz fusion,

avante garde jazz, bebop, swing

metal
heavy metal, doom metal,

stoner rock/metal, deathcore metal

pop
new age pop, pop rock,

dance pop, classic pop, teen pop

reggae dub, reggaeton, dancehall, ska

rhythm and

blues (rnb)

soul, funk, traditional gospel,

contemporary gospel

Table 5.2: DFMA genre/subgenre hierarchy

as used in Section 5.5.

Genres Subgenres

country bluegrass, rockabilly, country and western

electronic
house, glitch, drum and bass,

downtempo, dubstep

folk british folk, free folk, freak folk

metal
thrash, black metal, death metal,

sludge, grindcore

punk
hardcore, postpunk, electropunk,

no wave

rock
krautrock, new wave, post rock,

shoegaze, industrial, progressive

Genre and Subgenre Selection for DCAL

For the genre blues, the subgenre early blues is unfortunately excluded, due to the small

number of music pieces. However, we believe this subgenre would be quite distinguishable,

as we found the genre tango (from DLMD) to be distinguishable because of the number of

older recordings present in the data. Several other subgenres are excluded for the genre

classical. These classical subgenres are more "historical" in nature, with music from the

Baroque, Classical, and Romantic eras, however only the romantic subgenre has more than

50 music pieces, so we focus primarily on subgenres relating to classical music’s instru-

mentation, with our intuition being that piano solo can be frequently classified correctly.

Some specific parent genres are excluded, including: new age, and Latin, for instance.

There are only two subgenres for new age, and we have conducted experiments on DLMD

already. Some choices are made regarding which of the parent genres a possible piece can

belong to. For instance, if a music piece is labelled as both country and folk we include

this piece, as long as it is labelled as only one of the subgenres in Table 5.1. Subgenres

that would have created excess confusions are also removed, that is, they are too similar,
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or vague, when compared to the other subgenres (e.g., electric blues, adult contemporary,

contemporary country, etc.). Other than the exclusions defined above, most of the sub-

genre information is present in the experiments for DCAL, and allows for plenty of potential

classification scenarios.

Genre and Subgenre Selection for DFMA

Although DFMA is a larger dataset than DCAL, it is still quite unbalanced (i.e., a sig-

nificant contrast in the number of music pieces from genre to genre) [9]. We only used a

subset of the possible genres and subgenres, mostly due to the stipulations for data selection

described above. For DFMA, the stipulations that eliminated many pieces from the classi-

fication process are: a music piece can only belong to one subgenre, and there has to be

more than 50 songs per subgenre. This removes parent genres such as jazz, and classical,

from consideration. Non-musical genres are also excluded, which may still technically be

labelled as genres (e.g., spoken). Genres such as experimental, or instrumental are also

excluded, since they can cause unnecessary confusions; even though they are technically

genres, they describe vast amounts of music outside of those genres.

5.4.3 Features

We use the standard approach for those features extracted from DCAL, that is, 13 MFCC

features are extracted from the middle segment via MARSYAS [94]. Recall that with DCAL,

the song segments are divided evenly. We will refer to this MFCC feature set as FM
CAL. For

DFMA, we are using the "large" version of the dataset (106, 574 songs total) with two

acoustic feature sets extracted using LibROSA [60] from the middle 30 seconds per song,

as presented by Defferrard et al. [9]. We denote these feature sets as FL1
FMA and FL2

FMA, re-

spectively. To be even more complete, we also create a less sizeable but more diverse set

of features extracted using jAudio [59], with similar parameters to FM
CAL, and similar fea-

tures used in the experiments on DLMD, as found in previous chapters. We will refer to this

feature set as FJ
FMA. We use various feature sets for DFMA because it is comprised of "raw"
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data, in that its songs are directly dumped from the original repository (see Section 2.6), so

extracting a variety of feature sets is beneficial for our experiments, since the performance

of our approach with respect to feature sets of various sizes is of interest to us. Furthermore,

a classifier should perform better, on average, for datasets with a greater variety and number

of features [2]. The summary of these features is presented below in Table 5.3.

Table 5.3: A summary of the features used in the subgenre experiments.

Dataset Feature Sets Features Parameters Calculations

DCAL FM
CAL 13 MFCCs (MARSYAS)

window size: 2048ms

hop size: 1024ms

sampling rate: 22050Hz

mean, std. dev.

DFMA

FL1
FMA 20 MFCCs (LibROSA)

window size: 2048ms

hop size: 512ms

sampling rates: unchanged

mean, std. dev., skew,

kurtosis, median, min, max

FL2
FMA 20 MFCCs, spectral contrast and centroid (LibROSA)

window size: 2048ms

hop size: 512ms

sampling rates: unchanged

mean, std. dev., skew,

kurtosis, median, min, max

FJ
FMA

13 MFCCs, spectral centroid,

zero crossings, strongest beat overall,

beat sum overall,

strength of strongest beat overall,

strongest frequency via zero crossings (jAudio)

window size: 2048ms

hopsize: 1024ms

sampling rate: 22050Hz

mean, std. dev.

5.4.4 Further Experiment Details

For all experiments, we equalize the number of songs per subgenre. The three binning

methods used in Chapters 3 and 4 are used to preprocess music data, including: Bew, Be f ,

and Brr. We set the number of bins to be 10 and 15, for Bew and Be f , respectively. We

then use a 80% 20% split for training and testing, with M = 10. 80% of the testing songs

are then used to generate 10 random subsets for each average accuracy calculation. We

fix φig and μ to be n/a. Each ms percentage is chosen so as not to allow the explosion of

frequent fv-sets returned by Apriori. We follow the stipulations for selecting pieces per

subgenre, as outlined above, and we provide the number of music pieces per subgenre in

each experiment.
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5.5 Experiment Results and Discussions

We only present a handful of the subgenre experiments conducted. Those included are

chosen with respect to achieving the goals outlined in Section 5.1, and offer some additional

observations worth mentioning, such as success in other facets of MIR (e.g., instrument

recognition). We include additional experiments on DCAL in Appendix A, as well as those

confusion matrices for each experiment shown here. The subgenre experiments on DCAL in

Table 5.4 will now be examined first, followed by an analysis of those subgenre experiments

on DFMA in Table 5.5.

5.5.1 On DCAL

We can easily see the effectiveness of our approach in Table 5.4(a), and the same trend

that is found in the experiments from Chapter 4 (i.e., a more strict φpw threshold produces

better classification accuracies). We see that reggaeton and dancehall are both more dis-

tinguishable than dub and ska, with dub being confused with ska, ska being confused with

dancehall, and reggaeton and dancehall being confused with each other; the latter confusion

is intuitive since reggaeton can be considered as a predecessor of dancehall. It is intuitive

that dub be confused with ska, since the instrumentation and rhythmic syncopations may

be similar. However, the rhythmic speed and production styles could be a source of differ-

entiation between them.

In Table 5.4(b) we can see that our approach is effective in differentiating between two

types of gospel music (i.e., far above a chance percentage of 25%). With this differentiation,

we see the φpw threshold eliminating overlapping frequent fv-sets for gospel music, as

traditional gospel performed with greater accuracy for a stricter threshold. The subgenres

most confused are soul and funk. Soul was especially confused with traditional gospel

and funk was especially confused with soul. Since many of these subgenres may have

similar musical characteristics (e.g., rhythm, instrumentation, etc.) the results are still quite

practical.
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Next, in Table 5.4(c), for φpw = 30% we note that piano solo pieces are classified cor-

rectly 100% of the time, and those pieces with heavy violin instrumentation are often clas-

sified correctly. This tells us that our selected approach is well-suited for instrument recog-

nition tasks. The confusions for piano concerti are also very intuitive since some confusion

is due to other subgenres having orchestral qualities, (e.g., symphony), with most of the

confusion being caused by the piano solo subgenre, as one would expect.

We see that jazz has effective classification accuracies as well, as the subgenre smooth

jazz achieves classification accuracies in the 80% range, and the classification on bebop ap-

proaches 70% accuracy for φpw = 40%. Jazz fusion is expected to have higher classification

accuracies, as elements of rock should make this subgenre distinguishable. However, jazz

fusion is confused with swing. Bebop is not confused with smooth jazz, which we believe

to be a musically successful classification, since the performances, and musical complexity

of these subgenres varies a substantial amount. Other subgenres had an even distribution

of confusion, which is to be expected. With jazz, it is noticed that the strictest pairwise

removal threshold does not necessarily yield the highest classification accuracies; some

relaxation of this strictness may be necessary for certain subgenres.

We predicted the confusion of the hip hop subgenres classic hip hop with electro, as

the production and recording of the music can be somewhat similar with respect to timbre.

At the same time, we did expect electro to be quite distinguishable compared to the other

subgenres of hip hop, due to its distinct rhythmic qualities. It was also found, however, that

underground hip hop was a source of confusion for all of the other subgenres. One source of

distinguishability in the subgenres of hip hop is the lyrical content. Lyricism is not directly

accounted for by our approach, so the fact that we provide useful hip hop classifications

using MFCCs is noteworthy. Overall, we continue to see the performance improvement

caused by stricter values of φpw.

The most notable results in Table 5.4, after the impressive classification of reggae, is

the classification of pop, as shown in Table 5.4(f). Pop is one of the least suspected genres
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to have its subgenres be classified with a high accuracy, given the similarity of its subgen-

res, and the genre’s tendency to cause confusions in regular genre classifications (e.g., see

Section 4.4). However, the majority of the subgenres (especially for φpw = 40%) are clas-

sified successfully. In the case of this pairwise removal threshold value, our intuitions are

matched, since classic pop pieces labelled in DCAL seems to include a wide variety of artists

(ranging from rnb to rock, and spanning decades), therefore classic pop is not expected to

have been classified successfully, however, it is still classified higher than by chance. The

presence of pop rock provided confusions for classic pop, and the opposite is also true.

However, dance pop is also a source of confusion for pop rock, which is not an ideal mis-

classification. This misclassification may be due to a similarity in production styles as well

as timbral similarities, and may be rectified with the inclusion of further features. Teen

pop includes a slightly more coherent selection of pieces for DCAL, with more emphasis on

polished "modern" production styles, so this was expected to provide a higher classification

as well.

Table 5.4: Selected results for Dm
CAL.

φpw dub reggaeton dancehall ska avg

0.3 0.77 0.88 0.86 0.78 0.823

0.4 0.66 0.80 0.72 0.66 0.710

0.5 0.66 0.78 0.75 0.65 0.710

0.6 0.43 0.84 0.63 0.76 0.665

0.7 0.41 0.79 0.65 0.79 0.660

(a) Reggae, FM
CAL, Be f , ms = 5%,

71 songs per subgenre.

φpw soul funk
gospel

traditional

gospel

contemporary
avg

0.3 0.49 0.49 0.74 0.60 0.580

0.4 0.30 0.53 0.69 0.35 0.468

0.5 0.43 0.43 0.70 0.41 0.493

0.6 0.40 0.39 0.51 0.54 0.460

0.7 0.41 0.43 0.48 0.59 0.478

(b) Rhythm and Blues (RnB),

FM
CAL, Be f , ms = 7%, 54 songs per

subgenre.

φpw concerti

piano
symphonic

features

violin

solo

piano
choral avg

0.3 0.49 0.53 0.63 1.00 0.31 0.592

0.4 0.61 0.55 0.20 0.95 0.20 0.502

0.5 0.61 0.58 0.31 0.90 0.20 0.520

0.6 0.59 0.30 0.48 0.50 0.49 0.472

0.7 0.59 0.30 0.41 0.89 0.51 0.540

(c) Classical, DCAL, FM
CAL, Brr,

ms = 6%, 53 songs per subgenre.

φpw jazz

smooth

fusion

jazz

garde jazz

avant
bebop swing avg

0.3 0.66 0.36 0.41 0.57 0.58 0.516

0.4 0.85 0.39 0.41 0.67 0.49 0.562

0.5 0.86 0.33 0.45 0.68 0.49 0.562

0.6 0.56 0.24 0.34 0.52 0.58 0.448

0.7 0.48 0.24 0.37 0.43 0.60 0.424

(d) Jazz, FM
CAL, Be f , ms = 6%, 60

songs per subgenre.

φpw hiphop

underground

rap

southern

hiphop

classic
electro avg

0.3 0.57 0.38 0.47 0.83 0.563

0.4 0.38 0.43 0.47 0.82 0.525

0.5 0.38 0.46 0.43 0.83 0.525

0.6 0.40 0.66 0.24 0.81 0.528

0.7 0.33 0.60 0.27 0.89 0.523

(e) Hip Hop, FM
CAL, Be f , ms = 6%,

57 songs per subgenre.

φpw pop

new age

rock

pop

pop

dance

pop

classic

pop

teen
avg

0.3 0.80 0.29 0.70 0.55 0.53 0.574

0.4 0.78 0.31 0.71 0.53 0.67 0.600

0.5 0.76 0.32 0.66 0.55 0.63 0.584

0.6 0.78 0.37 0.46 0.25 0.73 0.518

0.7 0.78 0.41 0.47 0.23 0.75 0.528

(f) Pop, FM
CAL, Be f , ms = 5%, 67

songs per subgenre.

Note that the trend, of the strictest φpw value yielding the best average classification

accuracy, is still present, except for jazz and pop, where the highest accuracies are achieved

with a moderate strictness. However, in Tables 5.4(d) and 5.4(f) we observe a subtle ten-

dency. We believe that with too strict of a removal threshold many intersecting frequent
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fv-sets may be removed, leaving a genre’s characteristic set sparse, so that the fv-set of a

testing music piece has less of a chance matching the correct genre’s characteristic set. This

may be exacerbated by the small amount of training data too. Truncating the characteristic

set of every genre (to be the same size as the smallest characteristic set) was attempted;

however, this did not yield better results. This demonstrates that with some "hard" classifi-

cations, where the subgenres are similar, the φpw threshold may need fine-tuning.

Since we experiment on ms values from 3% to 7%, we find that ms values of 3% and

4% achieve lower classification accuracies the majority of the time. Since subgenres can be

very similar, lower support frequent fv-sets will occur across multiple subgenres, and more

combinations of them may need to be removed by using a higher ms value, thereby leaving

only the subgenre-specific frequent fv-sets. We can see here that for close subgenres, and

with a small amount of data, having the lowest possible ms value does not always provide

the best result. Using parameter combinations that are successful for genre classifications,

based on the assumption that they will also be successful for subgenre classification tasks,

can sometimes cause unsatisfactory classifications. Fine-tuning is needed for the parameter

ms, and it may also be needed for the parameter φpw.

5.5.2 On DFMA

Next, the experiment results shown in Table 5.5 are examined. Recall that the confusion

matrices corresponding to Table 5.5 can be found in Appendix A. To begin, we notice

that successful classification accuracies on subgenres are found with MFCCs for just one

genre (i.e., metal), and that all other genres’ subgenres have improved accuracies after

including further features. The experiments on country demonstrate how stricter φpw values

are achievable with a greater number of features. That is, with a small number of features

and a strict enough φpw value, some characteristic sets returned no frequent fv-sets when

calculating certain except differences. This is why, in Table 5.5 there are some experiments

conducted with a very strict φpw value of 20%, and others are only as low as 30%.
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By continuing the experiment analysis of country, we see an average accuracy of 85.67%

for three subgenres. This is what is expected, since these subgenres are quite dissimilar, and

the number of subgenres for the classification experiment is small. It may be argued that

bluegrass and rockabilly are related to country, and not subgenres of country. However, as

stated in Section 5.4, we are reliant on the labelling of a given dataset, and the parent genres

that are defined in it. One peculiarity is that Bew provides very successful predictions for

country, unlike the other genres, this does not follow the normal trend where Be f outper-

forms other binning methods. It is possible that the number of bins for Bew (15), is more

suitable for discretizing the data. More experiments must be conducted to determine that

this is indeed the case for Bew’s success. We do notice that rockabilly is the most indistinct

genre, even with a very strict φpw threshold, this is due to the subgenre’s similarity with

country and western which may share similar instrumentation (i.e., more "twangy" electric

guitar than acoustic guitar, and the use of a drumkit). Bluegrass has distinct acoustic instru-

mentation from the other subgenres. For example, a drumkit will sometimes be excluded

and the use of banjos will provide distinct timbral characteristics. Therefore, it is intuitive

that it be classified successfully.

Given that there are six (6) overlapping subgenres for rock, as shown in Table 5.5(b), we

do not deem this as an unsuccessful classification since three (3) subgenres are classified

at around 50%. Furthermore, progressive rock and new wave are classified more distinctly,

however, post rock and shoegaze are confused. New wave is a source of many of the

confusions, as it is quite diverse with certain pieces having elements belonging to various

other subgenres (e.g., elements of electronic music may be found in both industrial and

new wave).

Next, metal’s subgenres are classified quite successfully. We expect that black metal

would provide higher accuracies compared to other metal subgenres, due to its often "lo-fi"

production characteristics and distinct vocal stylizations. Death metal is similar to both

thrash and grindcore; however, it is mostly confused with sludge. Grindcore is confused
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more evenly between the other subgenres, with a tendency to be confused with black metal.

Sludge is responsible for many of the misclassifications for the subgenres thrash, black

metal, and death metal. This is not unreasonable, since characteristics (e.g., timbral, rhyth-

mic, etc.) of sludge, at least for a number of the sludge pieces in DFMA, can be found in

other subgenres. Another interesting explanation as to why sludge may be a source of con-

fusions is as follows. DFMA uses subgenre labels provided by the artists of music pieces,

and sludge is a subgenre that is not as strongly defined as, say, traditional black metal.

Therefore, sludge may be more liberally used as a label for a music piece’s subgenre. This

is reflected in DFMA at large, as more music pieces do have the sludge label.

Most of the classifications for punk are acceptable, with electropunk and hardcore being

more successfully classified. Electropunk is a source of confusion for both no wave and post

punk. We believe this is, again, due to electropunk’s characteristics being found in these

other subgenres. Since such a strict φpw value is used, we believe these characteristics are

found in the fv-sets of the testing pieces, for example, both post punk and electropunk may

contain electronic elements. We do note that the high classification accuracy of hardcore is

intuitive, as pieces in this subgenre often have a more compressed and "aggressive" music

production style.

Electronic is a broad genre with a notorious amount of subgenres. So the subgenres that

were selected in the DCAL and DFMA experiments may not overlap. Electronic is classified

as well as the other genres. However, we see in Table 5.6, that a higher classification

accuracy is found for more subgenres of electronic music in the DCAL dataset. This may

be due to the similarity of subgenres chosen in the DFMA dataset, as well as the subset

of songs chosen for experiments. For Table 5.4(e), the majority of confusions are caused

by either downtempo, or drum and bass, with glitch being confused with house and drum

and bass. It is quite reasonable that drum and bass and dubstep to be confused with each

other because of their instrumentation and production styles. Furthermore, it is intuitive

that every subgenre is responsible for some misclassifications due to the feature sets not
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having a large number of rhythmic-based features. Even a feature like the estimated beats

per minute (see Section 2.1.2) could potentially improve the distinguishability between

electronic subgenres.

Finally, we see practical classification accuracies for folk, as shown in Table 5.5(f),

despite the overlap between its subgenres. Freak folk is a source of confusion for both

British folk and free folk, and free folk is a source of confusion for freak folk. This is

intuitive, as freak folk seeks to expand the boundaries of the folk genre (in a similar way

that psychedelic rock does to rock), and as such, may still have similar characteristics found

in both British, or free folk.

Table 5.5: Selected results for Dm
FMA.

φpw bluegrass rockabilly
western

country and
avg

0.2 0.91 0.75 0.91 0.857

0.3 0.86 0.60 1.00 0.820

0.4 0.83 0.63 0.92 0.793

0.5 0.93 0.69 0.82 0.813

0.6 0.93 0.60 0.59 0.707

0.7 0.91 0.63 0.58 0.707

(a) Country, FL2
FMA, Bew, ms =

15%, 64 songs per subgenre.

φpw krautrock
wave

new

rock

post

gaze

shoe-
industrial

ressive

prog-
avg

0.2 0.49 0.64 0.31 0.35 0.28 0.57 0.440

0.3 0.45 0.64 0.31 0.34 0.31 0.53 0.430

0.4 0.48 0.64 0.35 0.30 0.34 0.47 0.430

0.5 0.49 0.65 0.35 0.31 0.35 0.48 0.438

0.6 0.39 0.74 0.28 0.28 0.33 0.39 0.402

0.7 0.39 0.68 0.30 0.29 0.35 0.30 0.385

(b) Rock, FL2
FMA, Be f , ms = 7%, 232

songs per subgenre.

φpw thrash
metal

black

metal

death
sludge grindcore avg

0.2 0.41 0.80 0.35 0.93 0.46 0.590

0.3 0.49 0.82 0.41 0.95 0.56 0.646

0.4 0.49 0.82 0.41 0.95 0.56 0.646

0.5 0.35 0.93 0.39 0.95 0.58 0.640

0.6 0.34 0.82 0.32 0.82 0.46 0.552

0.7 0.35 0.82 0.30 0.82 0.45 0.548

(c) Metal, FL1
FMA, Be f , ms =

12%, 82 songs per subgenre.

φpw hardcore
punk

post

punk

electro

wave

no
avg

0.2 0.81 0.50 0.85 0.63 0.698

0.3 0.79 0.43 0.88 0.54 0.660

0.4 0.75 0.43 0.88 0.53 0.648

0.5 0.80 0.43 0.89 0.55 0.668

0.6 0.61 0.41 0.91 0.51 0.610

0.7 0.58 0.39 0.89 0.49 0.588

(d) Punk, FL2
FMA, Be f , ms = 8%,

211 songs per subgenre.

φpw house glitch
bass

drum and
downtempo dubstep avg

0.3 0.47 0.41 0.47 0.60 0.61 0.512

0.4 0.43 0.37 0.45 0.57 0.54 0.472

0.5 0.44 0.41 0.46 0.58 0.53 0.484

0.6 0.32 0.34 0.44 0.34 0.44 0.376

0.7 0.33 0.30 0.33 0.38 0.42 0.352

(e) Electronic, FJ
FMA, Be f , ms = 7%,

189 songs per subgenre.

φpw British folk free folk freak folk avg

0.3 0.71 0.29 0.50 0.500

0.4 0.67 0.53 0.55 0.583

0.5 0.69 0.59 0.54 0.607

0.6 0.63 0.36 0.59 0.527

0.7 0.60 0.51 0.47 0.527

(f) Folk, FJ
FMA, Be f , ms = 8%,

89 songs per subgenre.

Table 5.6: Electronic, DCAL, FM
CAL, Bew, ms = 6%, 56 songs per subgenre.

φpw bass

drum and
trance triphop techno industrial ambient avg

0.3 0.17 0.39 0.43 0.66 0.72 0.80 0.528

In the experiment results given above, we continue to observe that a lower φpw value

yields higher classification accuracies. This is a trend we found in Chapter 4, and we further

see it in Table 5.5. However, φpw must still be tuned to achieve optimal classifications as

the strictest threshold value does not always yield the best classification accuracies. One

property of the φpw threshold is that with a greater number of features a very strict threshold

can be applied. This is indicated by φpw = 20% in Table 5.5. The ability to use this amount
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of strictness may also be due to the longer frequent fv-sets returned by Apriori. For the ex-

periments on DFMA, we see that a low ms value is somewhat less responsible for inaccurate

classifications when there are more music pieces per subgenre, especially when compared

to DCAL.

With the similarity of some subgenres we found that most confusions are intuitive, and

with closer inspection, those confusions that seem unintuitive have reasonable explanations

for their occurrence. In general, there are enough pieces in DFMA to offer experiments

on subgenre classification with more music pieces per subgenre than with DCAL. Further-

more, DFMA provides an "in-the-wild" scenario, where features are derived from raw audio

files without audio quality taken into account, and with music piece labelling done by each

pieces’ respective artist. One cannot expect all pieces in a large music database to be of

equal length, sampling rate, audio quality, etc. For these reasons, we believe the classifica-

tions for DFMA may be useful for music listeners.

General remarks

With the experiment results given above, many observations can be made regarding

various parameter combinations, subgenres, and the average effectiveness of the selected

approach across the two selected subgenre datasets (given the experiment design proposed).

We may begin with a discussion on the observed properties of each binning method. The

binning method Be f is able to withstand very strict φpw percentages, whereas Bew and Brr

sometimes return empty sets after the pairwise comparison for the same strictness threshold.

This is due to the same number of values being present in every bin with Be f . Having the

same number of values in each bin avoids the possibility that a certain set of bins will

contain most of the values, and will prevent bins from having little to no values. However,

this possibility still remains for Bew and Brr. So after training, plenty of pairwise removal

can be done for both of them. The number of bins is not further explored, this is left to

future work. The number of bins and the binning types become sensitive for subgenre
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classification. With a smaller number of bins it is possible that less diverse frequent fv-sets

will be returned by Apriori, and may need a less strict pairwise comparison threshold to

produce successful results. Further investigation of this is needed. In general, it is found that

Be f still produced practical prediction accuracies for most of the experiments in Tables 5.4

and 5.5. However, the specific binning method for a subgenre classification task may need

more consideration than regular genre classification tasks, and some experimentation may

be required to achieve optimal performance.

As found in Section 5.5.1, choosing the lowest possible ms value for subgenre clas-

sification tasks is found to be undesirable in some situations. One situation is when the

reduced size of each subgenre’s characteristic set becomes important for the computational

complexity. Another situation is when frequently occuring characteristics for a subgenre

are found, given a low ms threshold, that are not removed after the calculation of except

differences. In the latter situation, a higher ms value is beneficial.

The quality of the data, although not a parameter that is controllable, may have made

an impact on the classification accuracies, and even though we experimented on various

feature sets for DFMA, we found that the MFCCs for DCAL, by comparison, are still quite

effective at producing practical subgenre classification accuracies. This may be due to the

subgenre labelling method (artist versus expert consensus), or the fact that audio quality is

less accounted for with DFMA (for more detail, see Section 2.6).

The limitations of the selected pairwise dichotomy-like approach are the same as those

found in Chapter 4, as the problem of subgenre classification readily demonstrates. For

example, the complexity of the pairwise removal tasks becomes burdened, given a small

enough ms and a larger M. The trade-off, as discussed in Chapter 4, can be made between

complexity and classification accuracy. Another limitation, described above, is that after a

strict pairwise removal is used to create the except differences a genre’s characteristic set

may become empty, although this depends on the ms parameter and the binning method

used as well.
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5.6 Summary

Our clear experiment design provides a reasonable set of experiments to analyze our

approach. The selected pairwise dichotomy-like approach determines the distinguishable

subgenres with high accuracies. Furthermore, most confusions occurred with subgenres

that had many musical characteristics in common with other subgenres. Lastly, we have

determined that various parameter combinations that are assumed to be successful in Chap-

ter 4 for the genre classification problem, may need more attention and fine-tuning for the

subgenre classification problem. One example of this is that one cannot assume that the

lowest possible ms value will automatically yield the highest classification accuracies.

In this chapter, we selected the approach found in Chapter 4 and have shown that our

approach can classify subgenres effectively (greater than by random choice). Our experi-

ment results are easily reproducible, and can be used to compare our approach with others.

In Section 2.7, we saw that there is a void of approaches attempting to classify subgenres

at such a detailed level. We believe this is the first work of its kind in MIR.

We have now seen that, not only is the pairwise dichotomy-like approach able to effec-

tively store and compare the characteristics of genres, it is also able to do so for subgenres.

We have also observed that our approach can recognize various instruments, and may even

be able to determine various styles of music production, but we need further experiments

to support this. This will be left to our future work.
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Conclusion

There are several core tasks in MIR and one of the most fundamental tasks is music genre

classification. Music genre classification is the process of automatically categorizing music

pieces, first, by training a classification approach with music pieces given their genre label,

and second, by classifying new incoming music pieces (referred to as testing music pieces),

so that they are correctly labelled by the approach. Creating a genre classification approach

that is both effective and useful is quite difficult, as music genres are notoriously ambiguous.

Nevertheless, the genre classification problem is exceedingly important, especially with

the current amounts of digitized music that can be found through music streaming services,

and through other music libraries that may be accessed online. Ultimately, it is beneficial

to have an autonomous approach to curate these large volumes of music so that a costly

human classification effort is avoided. As well, a successful genre classification approach

may be useful for a variety of further applications. One such example is recommending

new music to a listener that they might enjoy (i.e., playlist recommendation). Other closely

related tasks are: archive querying, similar artist search, instrument recognition, mood or

emotion classification, etc.

In Chapter 1, we describe what music genre classification is, and detail the difficulties

and benefits of performing this task. In Chapter 2, we provide a firm background, so that

the reader contextualizes our approaches within the field of MIR. We describe the concepts

in sections, based on the order by which they appear in our approaches, that is: extracting

content-based features from audio, binning these features into discrete data objects, and
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performing association analysis to characterize genres and classify new music pieces. Pop-

ular off-the-shelf single-classifier approaches, and other fundamental ensemble techniques

are also described. The datasets used in other chapters and their high level-descriptions are

detailed, and lastly, we provide an in-depth review of the works related to our approach,

especially those works concerned with association analysis, subgenre classification, and

ensemble-based music genre classification.

After this, we propose two novel, content-based music genre classification approaches

which both utilize association analysis. The first approach, presented in Chapter 3, provides

a fundamental structure for characterizing genres using association analysis. To our knowl-

edge, there has not been an approach that uses association analysis to handle the problem

of genre classification as it is proposed in Chapter 3. The use of association analysis in

this way is not entirely new [6], however, we are able to both characterize each genre in

a novel way, and provide a novel method of classifying incoming music pieces. Further-

more, each genre’s parameters can be fine-tuned, so we also contribute a genre-dependent

classification approach. We validate this approach using empirical experiments on several

benchmark datasets, and notice that practical accuracies are achieved.

The approach in Chapter 4 seeks to further improve the original classification perfor-

mances by utilizing a dichotomy-like pairwise ensemble technique. The intuition for pro-

viding this approach is to better characterize, and allow for optimal comparisons of genres.

To our knowledge, an ensemble technique has not yet been applied to association analysis

as it is proposed in Chapter 4, especially when utilized for the task of music genre classi-

fication. We are also able to better characterize genres, and classify them with successful

accuracies.

In addition to our attempts at handling the genre classification task, we curiously exam-

ine the performance of the pairwise dichotomy-like approach, presented in Chapter 4, on

a set of subgenre problems in Chapter 5. Since there is limited amounts of MIR research

focusing on the subgenre task at large, we propose a clear experiment design, so that other
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genre classification tasks can be easily tested and compared to our selected approach. Al-

though the subgenre classification task is markedly more difficult than the problem of genre

classification, we are still able to provide practical classification accuracies. Furthermore,

we observe that the fine-tuning of various parameters needs to occur in order to maintain

high classification accuracies on various subgenre experiments. This fine-tuning contrasts

the trends we saw in Chapter 3 and Chapter 4. If there are definitive rules made for cer-

tain parameters during genre classification, they may be bent (or broken) during subgenre

classification.

6.1 Limitations of Our Approaches

The contributions made by this thesis have been enumerated, however, there are still

certain limitations that need to be addressed, as all classification methods have pros and

cons. These limitations fall into two categories: 1) those imposed by the proposed ap-

proaches, and 2) those imposed by the experiment designs which are used to validate these

approaches.

The first limitation of both of the approaches is that genres’ characteristic sets are some-

times left empty after Inter-Genre Removal or Pairwise Removal is applied. This occurs for

less distinguishable genres, and for specific binning methods (i.e., equal width binning)

when the minimum support is set high and the removal threshold is set to be more strict.

All of this relates to characteristic sets with a smaller number of frequent fv-sets. The less

the amount of frequent fv-sets means that a fewer number of matches can be made to an

incoming testing piece, and therefore, the potential for missclassifications becomes greater.

Furthermore, classifications cannot be made with empty characteristic sets. This is why we

saw, at least in the case of genre (non-subgenre) classification, that a low minimum support

performed best – there were simply more complete characteristic sets per genre. Related

to this is our approaches’ step to create equal subsets of data for each genre. Without this

step, the size of the genres’ characteristic sets can be greatly skewed, and further empty
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characteristic sets can be found for those genres with less music pieces.

Another limitation of the approaches defined in Chapters 3 and 4 is the space and time

complexity that necessarily occurs when utilizing association analysis. Even though maxi-

mal frequent fv-sets are returned, there is still the pervasive "explosion" of frequent fv-sets.

This limits how low the minimum support can be set, and how long the inter-genre and

pairwise removal steps take. With a basic genre classification task, lower minimum support

values are found to increase the classification accuracy, but there is a tendency to have an

exceedingly large search space because of this.

The experiment design for the (sub)genre classification tasks impose certain limitations

that will now be discussed. Firstly, we analyze our experiments on only one dataset that

approaches a moderate size (it certainly is not large when compared to the Million Song

Dataset [10], for instance). It is necessary to evaluate our results on more massive datasets,

so that we can further determine if the approach is both scalable and effective. Another

experiment limitation is that we are reliant on the labelling of the pieces in each dataset

to give a proper indication of the genre. This limitation is especially found in Chapters 3

and 5, with the Greek Audio Dataset, and the Free Music Archive dataset, where labelling

is done by non-musicologists, and the artist of every music piece, respectively. We are

further limited by the quality of the audio and genre-representative music pieces found in

these datasets, and this is primarily the case with the Free Music Archive.

There is one important shortcoming of the subgenre experiment design that will now

be addressed. The stipulations for defining each music subgenre with respect to the chosen

datasets in Chapter 5 does not always allow for necessary musical ambiguities. In any

music library there are certain (sub)genre ambiguities, that is, a piece may belong to many

(sub)genres. This resulted in a limited usage of the Free Music Archive when many songs

could have been incorporated into the experiments. If these musically ambiguous pieces

were included, then a multi-label classification approach could be used. We believe our

proposed approaches can also be restructured to handle this task, as we do store a ranking
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vector, comprised of scores for each (sub)genre.

6.2 Future Work

As mentioned above, one can immediately notice a possible extension of our proposed

approaches. The ranking vector that we store per testing music piece is comprised of scores

for each (sub)genre, therefore assigning the next best (sub)genre would be a trivial task. For

instance, we can determine the mixture of genres that a music piece belongs to given the

highest scores in the ranking vector. This demonstrates that our approaches can be readily

applied to the multi-label music genre classification problem.

A merit that has been discussed in the previous chapters is the ability to store the charac-

teristics of the (sub)genres that are distinguishable. This would provide a way of handling

other tasks, such as feature reduction or selection. Verifying the consistency of tag annota-

tions is another task we wish to explore since the characteristics of each genre can easily be

used to provide some confidence for a music piece’s designated tags. We have also observed

in Chapter 5 that the pairwise dichotomy-like approach can recognize various instruments

with a high prediction accuracy, we will provide experiments on this in the future. The

extraction and modelling of a group of music piece’s characteristics further lends itself well

to mood classification tasks.

Various parameters must be investigated further. Since the number of bins is fixed for

two of the three binning methods used, we plan on conducting experiments that demonstrate

the correlation between classification accuracy, and the number of bins. Some parameters

that are less frequently studied can be found in Chapter 3. Examples are: the strictness of

Inter-Genre Removal (i.e., φig), and the ranking criterion RCαβ. We have in no way provided

exhaustive experiments for these parameters, as α, β, and φig are fixed. It is possible that the

approach proposed in Chapter 3 could surpass the approach proposed in Chapter 4, given

the fine-tuning of these parameters. In Chapter 4, we mention the statistics that are gathered

across a genre’s M training iterations (i.e., the average support or number of occurrences of
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an fv-set). Further work is needed to verify that the linear combination of frequent fv-set

statistics (via the M training iterations) used during the scoring of a new music pieces does

not improve the classification performance of the pairwise dichotomy-like approach, when

compared to a naive scoring method.

Various subgenre experiments in Chapter 5 had subgenres that contributed to the overall

confusions of an experiment. For example, new wave was a source of confusion for most

subgenres in the rock experiment and sludge was a source of confusion for most subgenres

in the metal experiment, as in Tables 5.5 and A.2. It would be interesting to remove these

subgenres and determine if the classification accuracies improve.

In the experiments discussed, we do not use any datasets with a vast number of music

pieces. It would be desirable to analyze the scalability and the general effects that the

number of pieces plays in genre classification. The largest number of music pieces (per

genre) presented in the experiments were those on DLMD in Chapter 4, where successful

classification accuracies were achieved. The number of pieces per genre has some effect

in Chapters 3 and 4. However, more experiments need to be done to validate the fact

that a greater number of songs will improve the classification accuracies. Determining

if our approaches are scalable to extremely large repositories is of interest, as we have

found practical classification accuracies on a small to moderate number of music pieces in

Chapters 3 and 4.

In the future, we may characterize genres using multimodal feature sets, as we only use

content-based audio features. We believe that with additional, diverse features extracted

from each music piece (e.g., content-based, visual, lyrical, etc.), the classification accura-

cies could be even more useful for music data curation tasks. These will be our very next

tasks in the future.
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Appendix A

Confusion Matrices and Additional
Subgenre Experiments from Chapter 5

Table A.1: Corresponding confusion matrices for Table 5.4, M = 10.

dub reggaeton dancehall ska

dub 0.77 0.06 0.00 0.17

reggaeton 0.00 0.88 0.12 0.00

dancehall 0.02 0.12 0.86 0.00

ska 0.04 0.05 0.13 0.78

(a) Reggae, FM
CAL, Be f , ms = 5%,

71 songs per subgenre, φpw = 0.3.

soul funk
gospel

traditional

gospel

contemporary

soul 0.49 0.10 0.32 0.09

funk 0.27 0.49 0.18 0.06

t. gospel 0.09 0.13 0.74 0.04

c. gospel 0.03 0.28 0.09 0.60

(b) RnB, FM
CAL, Be f , ms = 7%, 54

songs per subgenre, φpw = 0.3.

concerti

piano
symphonic

features

violin

solo

piano
choral

p. concerti 0.49 0.15 0.00 0.29 0.07

symphonic 0.11 0.53 0.16 0.15 0.05

v. features 0.19 0.08 0.63 0.10 0.00

p. solo 0.00 0.00 0.00 1.00 0.00

choral 0.21 0.09 0.21 0.18 0.31

(c) Classical, DCAL, FM
CAL, Brr,

ms = 6%, 53 songs per subgenre,

φpw = 0.3.

jazz

smooth

fusion

jazz

jazz

avant-garde
bebop swing

s. jazz 0.85 0.15 0.00 0.00 0.00

j. fusion 0.14 0.39 0.17 0.05 0.25

a.g. jazz 0.29 0.18 0.41 0.04 0.08

bebop 0.00 0.15 0.13 0.67 0.05

swing 0.17 0.13 0.16 0.05 0.49

(d) Jazz, FM
CAL, Be f , ms = 6%,

60 songs per subgenre, φpw = 0.4.

hiphop

underground

rap

southern

hiphop

classic
electro

u. hip hop 0.57 0.10 0.16 0.17

c. hip hop 0.36 0.38 0.09 0.17

s. rap 0.37 0.00 0.47 0.16

electro 0.15 0.02 0.00 0.83

(e) Hip Hop, FM
CAL, Be f , ms = 6%,

57 songs per subgenre, φpw = 0.3.

pop

new age

rock

pop

pop

dance

pop

classic

pop

teen

n.a. pop 0.78 0.00 0.07 0.08 0.07

p. rock 0.00 0.31 0.48 0.16 0.05

d. pop 0.00 0.10 0.71 0.09 0.10

c. pop 0.08 0.25 0.06 0.53 0.08

t. pop 0.00 0.00 0.23 0.10 0.67

(f) Pop, FM
CAL, Be f , ms = 5%, 67

songs per subgenre, φpw = 0.4.

Table A.2: Corresponding confusion matrices for Table 5.5, M = 10.

bluegrass rockabilly
western

country and

bluegrass 0.91 0.00 0.09

rockabilly 0.08 0.75 0.17

c.a. western 0.09 0.00 0.91

(a) Country, FL2
FMA, Bew, ms =

15%, 64 songs per subgenre,

φpw = 0.2.

krautrock
wave

new

rock

post
shoegaze industrial progressive

krautrock 0.49 0.21 0.18 0.02 0.01 0.09

n. wave 0.05 0.65 0.11 0.09 0.00 0.10

p. rock 0.08 0.41 0.35 0.06 0.00 0.10

shoegaze 0.11 0.40 0.09 0.31 0.04 0.05

industrial 0.15 0.26 0.05 0.06 0.35 0.13

progressive 0.11 0.22 0.04 0.06 0.09 0.48

(b) Rock, FL2
FMA, Be f , ms = 7%, 232

songs per subgenre, φpw = 0.5.

thrash
metal

black

metal

death
sludge grindcore

thrash 0.49 0.11 0.05 0.28 0.07

b. metal 0.00 0.82 0.00 0.18 0.00

d. metal 0.00 0.04 0.41 0.49 0.06

sludge 0.00 0.05 0.00 0.95 0.00

grindcore 0.08 0.25 0.02 0.09 0.56

(c) Metal, FL1
FMA, Be f , ms =

12%, 82 songs per subgenre,

φpw = 0.3.

hardcore
punk

post

punk

electro

wave

no

hardcore 0.81 0.04 0.14 0.0

p. punk 0.04 0.50 0.35 0.11

e. punk 0.02 0.05 0.85 0.08

n. wave 0.06 0.10 0.21 0.63

(d) Punk, FL2
FMA, Be f , ms = 8%,

211 songs per subgenre, φpw =
0.2.

house glitch
bass

drum and
downtempo dubstep

house 0.47 0.06 0.08 0.20 0.19

glitch 0.21 0.41 0.16 0.07 0.15

d.a. bass 0.11 0.04 0.47 0.22 0.16

downtempo 0.09 0.10 0.15 0.60 0.06

dubstep 0.06 0.03 0.20 0.10 0.61

(e) Electronic, FJ
FMA, Be f , ms = 7%,

189 songs per subgenre, φpw = 0.3.

British folk free folk freak folk

B. folk 0.69 0.07 0.24

free folk 0.13 0.59 0.28

freak folk 0.12 0.34 0.54

(f) Folk, FJ
FMA, Be f , ms = 8%,

89 songs per subgenre, φpw =
0.5.
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A. CONFUSION MATRICES AND ADDITIONAL SUBGENRE EXPERIMENTS

FROM CHAPTER 5

Table A.3: Additional subgenre experiments on DCAL.

φpw delta blues chicago blues texas blues

0.3 0.92 0.56 0.59

0.4 0.90 0.42 0.43

0.5 0.90 0.47 0.46

0.6 1.00 0.60 0.43

0.7 1.00 0.54 0.47

(a) Blues, FM
CAL, Be f , ms = 7%, 58 songs per

subgenre

φpw country rock old time country traditional country country pop western swing

0.3 0.35 0.41 0.57 0.80 0.41

0.4 0.40 0.50 0.26 0.71 0.35

0.5 0.43 0.50 0.28 0.66 0.35

0.6 0.32 0.54 0.36 0.38 0.25

0.7 0.49 0.58 0.35 0.52 0.25

(b) Country, FM
CAL, Bew, ms = 7%, 63 songs per sub-

genre

φpw traditional folk contemporary folk british folk bluegrass

0.3 0.44 0.68 0.76 0.71

0.4 0.33 0.84 0.65 0.64

0.5 0.34 0.83 0.63 0.66

0.6 0.30 0.59 0.67 0.35

0.7 0.33 0.65 0.69 0.36

(c) Folk, FM
CAL, Brr, ms = 7%, 60 songs per

subgenre

φpw heavy metal doom metal stoner rock/metal deathcore metal

0.3 0.60 0.56 0.25 0.86

0.4 0.72 0.54 0.50 0.87

0.5 0.72 0.53 0.48 0.85

0.6 0.70 0.46 0.25 0.68

0.7 0.70 0.45 0.24 0.74

(d) Metal, FM
CAL, Be f , ms = 6%, 68 songs per subgenre

Table A.4: Corresponding confusion matrices for Table A.3, M = 10.

delta blues chicago blues texas blues

d. blues 0.92 0.06 0.02

c. blues 0.18 0.56 0.26

t. blues 0.11 0.30 0.59

(a) Blues, FM
CAL, Be f , ms = 7%, 58 songs per

subgenre, φpw = 0.3

country rock old time country traditional country country pop western swing

c. rock 0.35 0.15 0.05 0.30 0.15

o.t. country 0.12 0.41 0.17 0.03 0.27

t. country 0.14 0.06 0.57 0.13 0.10

c. pop 0.10 0.00 0.10 0.80 0.00

w. swing 0.16 0.00 0.19 0.24 0.41

(b) Country, FM
CAL, Bew, ms = 7%, 63 songs per sub-

genre, φpw = 0.3

traditional folk contemporary folk British folk bluegrass

t. folk 0.44 0.26 0.18 0.12

c. folk 0.24 0.68 0.08 0.00

B. folk 0.19 0.01 0.76 0.04

bluegrass 0.09 0.18 0.02 0.71

(c) Folk, FM
CAL, Brr, ms = 7%, 60 songs per

subgenre, φpw = 0.3

heavy metal doom metal stoner rock/metal deathcore metal

h. metal 0.60 0.13 0.23 0.04

d. metal 0.15 0.56 0.21 0.08

s.r. metal 0.55 0.08 0.25 0.12

d. metal 0.07 0.00 0.07 0.86

(d) Metal, FM
CAL, Be f , ms = 6%, 68 songs per subgenre,

φpw = 0.3
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