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ARTICLE INFO ABSTRACT

Keywords: Short-term cerebral ischemia led to memory dysfunction. There is a pressing need to introduce effective agents to
Ischemia reduce complications of the ischemia. Involvement of PI3K/AKT/mTOR signaling pathway has been determined
Memory in the neuroprotective effect of various agents. Selegiline (deprenyl) possessed neuroprotective properties. In this
l;;lgiline study global ischemia/reperfusion was established in rats. Selegiline (5 mg/kg for 7 consecutive days) admini-

strated via intraperitoneal route. Possible involvement of PI3K/AKT/mTOR signaling pathway was evaluated
using qRT-PCR, immunohistochemistry and histophatologic evaluations in the hippocampus. Spatial memory
was evaluated by morris water maze (MWM). Results showed that ischemia impaired the memory and ischemic
rats spent more time to find hidden platform in the MWM. Ischemia significantly decreased levels of PI3K, AKT
and mTOR in the hippocampus. Histopathologic assessment revealed that the percent of dark neurons sig-
nificantly increased in the CAl area of the hippocampus of ischemic rats. Selegiline improved the memory as
ischemic rats spent fewer time to find hidden platform in the MWM. Findings showed that selegiline increased
the level and expression of PI3K, AKT and mTOR as well as decreased the proportion of dark neurons in the CA1
area of the pyramidal layer of the hippocampus. We concluded that selegiline, partially at least, through in-
creases the expression of PI3K, AKT and mTOR as well as decreases the percent of dark neurons in the hippo-
campus could improve the memory impairment following the ischemia in rats.

PI3K/AKT/mTOR signaling

1. Introduction blood flow to the ischemic area. In this regards, tissue plasminogen
activator (tPA) approved for acute treatment. Unfortunately, tPA has
some adverse effects including hemorrhage and also has short ther-

apeutic time-window (Siket, 2016; Karatas et al., 2018). Indeed, eva-

Stroke is one of the most common causes of disability with high
economic burden and increasing incidence in the world (Mozaffarian

et al., 2016; Hirt et al., 2017; Schuhmann et al., 2017). Cut of blood
flow to the brain in the ischemic stroke (IS) is associated with the brain
injury (Bi et al., 2017; Jia et al., 2008). Short-term cerebral ischemia led
to neuronal necrosis, apoptotic cell death, silent infarcts and cognitive
decline (Unal et al., 2001). Several clinical and preclinical studies have
demonstrated that ischemic stroke led to memory dysfunction, neuro-
degeneration and cognition impairment (Schaapsmeerders et al., 2015;
Eve et al., 2016; Silva et al., 2015; Sadelli et al., 2017). Although sev-
eral agents have been introduced for treatment of stroke, little have
effectiveness in this disorder (O'collins et al., 2006; Sacco et al., 2007).
Today, thrombolysis is only acute treatment available apply to restore

luation and development of novel agents with high therapeutic index
and protective effects on memory impairment consequence of ischemis
warranted further studies.

Selegiline (deprenyl) is a selective and irreversible inhibitor of the
monoamine oxidase (MAO)-B broadly administrated for Parkinsonism
patients (Mizuno et al., 2017; Cereda et al., 2017). It has been showed
that selegiline at higher doses acts as non-selective inhibitor of MAO-A
and MAO-B enzymes so is effective for treatment of major and atypical
depression (Finberg and Tenne, 1982; Youdim and Weinstock, 2004;
Youdim and Bakhle, 2006). In case of preclinical studies, literature
demonstrated that selegiline improves motivational dysfunctions and
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also exerts antidepressant effect (Yohn et al., 2017; Contreras-Mora
et al., 2018; Amiri et al., 2016). Selegiline enhances striatal dopamine
concentrations and has amphetamine-like action in the brain
(Lamensdorf et al., 1996; Reynolds et al., 1978; Kalasz et al., 2014). It
has been well-known that levels of dopamine significantly decreased in
Alzheimer's disease (AD). In this concept, studies have clarified that
augmentation of dopaminergic activity improve memory and learning
deficit in animal model of AD (Golani et al., 2014; Okada et al., 2015;
Kemppainen et al., 2015; Martorana and Koch, 2014). It has been de-
termined that acute and chronic administration of selegiline possessed
anti-apoptotic and neuroprotective effects and reduce the size of infarct
area in experimental ischemia (Semkova et al., 1996; Unal et al., 2001).
An explorative study showed that 1-deprenyl significantly improves
cognitive tests and functional recovery in stoke patients (Bartolo et al.,
2015). However, the exact mechanisms of protective effect of selegiline
in IS are still unknown.

The phosphatidylinositol 3-kinase/protein kinase-B/mammalian
target of rapamycin (PI3K/AKT/mTOR) signaling pathway is an im-
portant intracellular cascade controls cell proliferation, differentiation,
cellular metabolism, apoptosis, cell survival and cytoskeletal re-
structuring (Janku et al., 2012; Polivka and Janku, 2014; Porta et al.,
2014; Peltier et al., 2007). Previous studies showed that mTOR/cad-
herin signaling is involved in cell growth and adhesion (Wei and Wang,
2018; Jiang et al., 2018; Yin et al., 2018). It has been demonstrate that
PI3K/AKT has a pivotal role in the proliferation of hippocampal neural
progenitor cells (Peltier et al., 2007). Activation of PI3K/AKT cascade
triggers neural stem cells proliferation consequently induced neuro-
genesis (Le Belle et al., 2011). The PI3K/AKT/mTOR pathway exerted
neuroprotive activity in traumatic brain injury. In this regards, it has
been determined that this pathway via suppression of neuronic autop-
hagy in the hippocampus, possessed neuroprotective effects (Zhang
et al, 2017). Researchers showed that activation of AKT/mTOR
pathway possessed neuroprotective effects in ischemic brain injury
(Huang et al., 2014). Recently, it has been well-known that activation
of PI3BK/AKT/mTOR pathway exerted the neuroprotective effect via
decrease of oxidative stress, improvement of neurotransmission and
neurogenesis in the AD induced by Amyloid-f in rat (Singh et al.,
2017). However, there is currently almost no data about involvement of
this signaling pathway in the protective effect of selegiline.

Since ischemia accounts for majority of strokes, it is crucial to
evaluate the underlying mechanisms of cerebral ischemia. Therefore,
introducing effective therapeutic targets has high importance to pre-
vent neural damage in ischemic injuries of the brain. Considering
neuroprotective effect of PI3K/AKT/mTOR signaling pathway and also
above-mentioned beneficial effects of selegiline in ischemia, in the
current study we aimed to evaluate the possible involvement of PI3K/
AKT/mTOR pathway in advantageous effect of selegiline (L-deprenyl)
in rat model of stroke.

2. Materials and methods
2.1. Animals

Forty male, two months old Sprague Dawley rats (Pasteur institute,
Tehran, Iran) weighing 250-300 g were used. Animals were kept in
Plexiglas boxes under standard laboratory conditions (temperature:
22 #+ 2°C, humidity: 50 * 10%, 12-h light-dark cycle and free access
to food and water ad libitum). All procedures were performed ac-
cording to the National Institutes of Health (NIH) Guide for the Care
and Use of Laboratory Animals (NIH publication # 80-23) and in-
stitutional guidelines for animal care and use (Shahrekord University of
Medical Sciences. Shahrekord, Iran). Each experimental group con-
tained 10 animals.
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2.2. Study design

Selegiline HCl (Sigma, St Louis, MO, USA) was dissolved in saline
and injected subcutaneously (s.c.) at dose of 5 mg/kg for 7 consecutive
days. Dose and duration of selegiline's administration was selected ac-
cording to previous published studies (Amiri et al., 2016; Tsunekawa
et al., 2018; Shimazu et al., 2005) and our pilot studies.

Of the forty rats used in this study, twenty rats were subjected to
global ischemia model and twenty rats were remained intact. Rats were
divided into four groups as follows: 1) Control group without surgery
received saline 2) rats which were underwent ischemia reperfusion
model and received saline 3) ischemic reperfusion rats received sele-
giline and 4) rats which were underwent ischemia reperfusion model
and received selegiline.

Rats were treated with saline or selegiline for 7 days (days 0-7) and
then were subjected to water maze test for evaluation of memory. After
memory assessment, rats were euthanized under anesthesia using
pentobarbital (60 mg/kg,i.p.) and hippocampi were dissected out and
histopathological changes in the CA1 area as well as expression of PI3K,
AKT and mTOR genes were evaluated in the hippocampus using RT-
PCR method. In addition, the level of PI3K, AKT, mTOR and p-mTOR
(phosphorylated mTOR) was evaluated by immunohistochemistry
method.

2.3. Global ischemia/reperfusion model establishment

Transient global ischemia was induced according to the previously
described method (Li et al., 2006; Cao et al., 2011). For short, an-
esthesia was induced by intraperitoneal administration of ketamine
(60 mg/kg) and xylazine (6 mg/kg). The bilateral common carotid ar-
teries were exposed through a 2 cm ventral midline cervical opening
and carefully detached from the vagus nerves, then obstructed bilat-
erally for 5 min using clip. Five minutes later, the clips were removed to
restore cerebral blood flow and reperfusion. Animals were recovered on
a heating pad for 2h to protect from hypothermia. Also, full efforts
were made to minimize the use of animals and to optimize their com-
fort.

2.4. Morris water mage test (MWM)

MWM is a valid device to evaluate spatial memory in rodents. The
apparatus is a round black-painted tank (150 cm diameter and 60 cm
deep) which filled with water (20 + 2°C) to a depth of 30 cm. Several
distal visual objects were placed on the walls of the MWM room and
their location stayed unchanged during the tests. The maze was divided
into four s quadrants with four starting locations called north (N), east
(E), south (S), and west (W) at same distances to the border. A Plexiglas
escape circular platform (10 cm in diameter) was kept 1 cm beneath the
surface of the water in the center of the north-west quadrant (target
quadrant). Throughout the tests, the animal motion was recorded by a
camera located above the maze which was connected to a computer. A
videotracking system (Etho-Vision XT® v 8.5; Noldus Information
Technology, Wageningen, the Netherlands) was used to record the time
spent to find the hidden platform (escape latency) and also path length
to reach the hidden platform (traveled distance). To do this experiment,
rats were trained in the MWM. For this purpose, each rat was allowed to
swim during 60s to discover the hidden platform directed by distal
spatial indications.

Subsequently finding the platform, animals were permitted to stay
there for 20 s, and were then placed in a cage for 20 s till the start of the
next trial. If an animal did not find the platform within this period, it
was manually guided to the platform by the experimenter and allowed
to rest for 20 s. Escape latency was recorded in each trial for evaluation
of spatial memory. Probe trial (retrieval test session) was performed
24h afterward training. The probe trial was involved a 60-s free
swimming period without a platform and escape latency as well as



H. Amini-Khoei, et al.

Table 1
Primer sequences for qRT-PCR.

Primer name Forward sequence Reverse sequence

AKT TAGCCATTGTGAAGGAGGGC CCTGAGGCCGTTCCTTGTAG
mTOR GCTCCAGCACTATGTCACCA CGTCTGAGCTGGAAACCAGT
Pi3K GCAACTCCTGGACTGCAACT CAGCGCACTGTCATGGTATG
B2m CGTGATCTTTCTGGTGCTTGTC GGAAGTTGGGCTTCCCATTCT

traveled distance were recorded (Amiri et al., 2016; Vorhees and
Williams, 2006).

2.5. Quantitative reverse transcription-PCR (qRT-PCR)

Total RNA was extracted using Tripure isolation reagent (Roche)
according to the manufacturer's instructions and quantified by a ND-
100 spectrophotometer (Nanodrop Technologies). Variations in mRNA
expression of looked-for genes were assessed by qRT-PCR after reverse
transcription of 1 pug RNA from each sample with PrimeScript RT re-
agent kit (Takara) according to the manufacturer's order. The qRT-PCR
was done on a light cycler apparatus (Roche Diagnostics) using SYBR
Premix Ex Taq technology (Takara). Thermal cycling environment in-
volved an initial activation phase for 30 s at 95 °C followed by 45 cycles
including a denaturation step for 5s at 95°C and a combined an-
nealing/extension step for 20s at 60°C. Beta 2-Microglobulin was
considered as a normalizer and fold changes in expression of each target
mRNA relative to beta 2-Microglobulin (B2m) was calculated based on
274ACt relative expression formula as described earlier (Haj-Mirzaian
et al.,, 2017; Amini-Khoei et al., 2017; Lorigooini et al., 2019). The
primer sequences are listed in Table 1.

2.6. Immunohistochemistry

Immunohistochemical staining was applied using the streptavidin
biotin peroxidase-complex method according to our previous protocol
(Sabzevary-Ghahfarokhi et al., 2018). AKT, PI3K, mTOR and p-mTOR
antibodies were purchased from the Cell signaling company (Cell sig-
naling technology, USA). In brief, hippocampi were cut into 4-um thick
sections and stuck on poly-i-lysine slides. The slides were depar-
affinized and rehydrated using xylene and a series of ethanols (100%,
100%, 80% and 70%). In order to do antigen retrieving stage, sections
were wrapped up in citrate buffer solution (10 mM Sodium Citrate,
0.05% Tween 20, pH 6.0) and were exposed to pressure for 20 min. To
avoid nonspecific staining, slides were incubated for 2h with protein
block (Abcam, England) containing albumin. Primary antibodies were
incubated overnight at 4 °C which was followed by adding 0.3% H202
solved in TBS to inhibit endogenous peroxidase activity. Following in-
cubating with biotinylated IgG antibody and Streptavidin-Peroxidase
Plus at room temperature, 3-diaminobenzidine tetrahydrochloride DAB
was used to visualize specific antigen. Finally, Sections were counter-
stained with hematoxylin and washed with cool water. Intensity of
immunoreactivities against primary antibodies were inspected on all
sections using a light microscope (Olympus BX41) by a pathologist
blind to the study using a 6-score system (0 = negative), 0.5 = 0-5%
positive, 1 = 5-15% positive, 2 = 16%—-40% positive, 3 = 41%-90%
positive, and 5 > 90% positive.

2.7. Microscopy

After euthanasia under anesthesia using pentobarbital (60 mg/kg,
i.p.), trans-cardiac perfusion was performed via 0.9% normal saline first
and then continued with ice-cold 4% paraformaldehyde in
0.1Mphosphate buffer (pH7.5). Then, the hippocampi were isolated
and after fixation samples were immersed in 10% formalin. Formalin-
fixed brains were paraffin-embedded and 5 pm sections were obtained.
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Five sections obtained from each brain and were deparaffinized using
xylene and stained with H&E. Histological analysis was performed
under light microscopy (400; Olympus microscope) after preparing
images under objective lens using a digital camera (Olympus, Japan)
and exhibited on a computer monitor. Three fields from each slide were
selected and the compactness of dark neurons and normal neurons
within the pyramidal cell layer of CA1 area was estimated in each field.
In histological studies dark neurons are recognized by hyperbasophilia
property as a type of cell degeneration. The percent of dark (dead)
neurons (the relation of dark neurons to normal neurons + dark neu-
rons (total number of neurons)) was evaluated in each group. The fields
were randomly selected. All measurements were performed using
Image J software by a blinded pathologist (Zsombok et al., 2005;
Amini-Khoei et al., 2017).

2.8. Statistical analysis

Comparison between the groups was analyzed using two-way
ANOVA followed by tukey's post test. Graph-pad prism software (ver-
sion 6) was used for data analysis. P < 0.05 was considered statisti-
cally significant.

3. Results

3.1. Selegiline improved the memory function in the Morris water maze
swimming test

Two- way ANOVA analysis showed that ischemic (IS) rats sig-
nificantly spent fewer time in the zonel of the apparatus in compared
with control (CO) rats in the probe trail (on fifth day of test)
(P < 0.001, Fig. 1A). Results demonstrated that following treatment
with selegiline, time spent in the correct quadrant (zonel) significantly
increased in the IS rats (P < 0.001). In case of spatial memory as-
sessments (Fig. 1B), ischemic rats spent more time to find the escape
platform in training days in comparison with control rats (training days
1 and 3 P < 0.01, training days 2 and 4 P < 0.05). Our findings
showed that treatment of ischemic rats with selegiline significantly
reduced the latency time to find the hidden platform in compared with
saline-treated IS rats (P < 0.05 in training day 1 and 4).

3.2. Selegiline decreased the dead neurons (%) of the CA1 region

The percentage of dead neurons (damaged cells with sparsely ar-
range and fuzzy shape) were calculated inthe CA1 region of the hip-
pocampus (Fig. 2A). The mean percentage of dead neurons in the is-
chemic (IS) rats was significantly higher than those in the control (CO)
rats (P < 0.001, Fig. 2B). A significant decrease was recorded in the
mean percentage of dead neurons in the selegiline-treated IS (IS + SE)
rats (P < 0.01) in compared with the IS group.

3.3. Selegiline increased the level of AKT, PI3K, mTOR and p-mTOR in the
hippocampus

As summarized in Table 2 and showed in Fig. 3 (AKT), Fig. 4 (PI3K),
Fig. 5 (mTOR) and Fig. 6 (p-mTOR) ischemia hypoperfusion sig-
nificantly decreased the expression of AKT, PI3K, mTOR and p-mTOR
(phosphorylated mTOR) in the hippocampus in compared to the control
group. Treatment with selegiline in the IS rats significantly increased
the expression of AKT, PI3K, mTOR and pmTOR when compared with
the saline-treated IS animals.

3.4. Selegiline increased the gene expression of AKT, PI3K and mTOR in the
hippocampus

As shown in Fig. 7, expression of AKT (A), PI3K (B) and mTOR (C)
was significantly decreased in the IS group in comparison with the
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Fig. 1. (A): Spent time in zonel through the probe trial in experimental groups.
Data are presented as mean *+ SD (n = 7). **p < 0.001 compared with con-
trol group, ###P < 0.001 compared with saline-treated ischemic rats. (B):
Spatial learning in hidden platform in the MWM through four training days.
Data are presentesd as mean * SD (n = 10). *p < 0.05 and **p < 0.01 com-
pared with control group, #P < 0.05 compared with saline-treated ischemic
rats. CO (saline-treated control rat), IS (saline-treated ischemic rat), CO + SE
(selegiline-treated control rat) and IS+ SE (selegiline-treated ischemic rat).

control group (P < 0.05, P < 0.05 and P < 0.001, respectively).
Furthermore, treatment with selegiline in IS rats significantly increased
expression of AKT (P < 0.01), PI3K (P < 0.05) and mTOR (P < 0.05)
in the hippocampus when compared with saline-treated IS rats.

4. Discussion

Results of the present study showed that global ischemia-reperfu-
sion led to memory impairment status in the morris water maze test. We
found that this status is accompanied with low expression of PI3K/
AKT/mTOR signaling pathway at gene and protein levels as well as
histopathological alterations in the hippocampus. Our findings de-
monstrated that treatment with selegiline reversed memory impairment
following global ischemia-reperfusion model. Interestingly, this con-
structive behavioral effect was relevant with over expression of PI3K,
AKT and mTOR as well as modification in histology of the hippo-
campus.

Stroke is a disabling disease with high incidence through the world
which accounts for > 150 million deaths annually (Tang et al., 2012; Li
et al., 2015). It has been demonstrated that cerebral ischemia is the
major cause of strokes (Urban et al., 2010). Ischemic stroke is devel-
oped when cerebral blood vessel (s) is (are) occluded. Following
ischemia neurons enter the apoptotic stage, initiate inflammatory re-
sponses, cell death and finally loss of brain's function is formed
(Urnukhsaikhan et al., 2017; Chen et al., 2008). Following obstruction
of vessels neurons encounter with an oxidative stress which result in
mitochondrial dysfunction, activation of caspase family and then DNA
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fragmentation lastly lead to ischemic infarction in the brain (Uzar et al.,
2012). Previous evaluations have been determined that subsequent of
ischemia, during a period of hours or days neurons have potential to
recover from injury(Moskowitz et al., 2010; Ginsberg, 2008). While
there are accessible drugs for treatment of ischemic stroke but the lack
of an effective treatment is felt. In addition there is no specific agent to
expand functional recovery of neurons in ischemic zone. Hence, in-
troducing a neuroprotective agent with ability for prevention of neu-
ronal death and accelerating of recovery is needed (Ginsberg Ginsberg,
2009).

It has been demonstrated that activation of the PI3K/AKT/mTOR is
important for cell proliferation and apoptosis (Annovazzi et al., 2009).
Ample evidences have showed that the PI3K/AKT signaling pathway
has critical role in intermediating survival signals in neurons. In this
regards, it has been well-known that AKT has an anti-apoptotic role
(Datta et al., 1999; Zhao et al., 2006). Beneficial effects of activation of
the PI3K/AKT in neuroprotection consequence of ischemic stroke have
been determined. In this concept literature said that this pathway
through suppression of inflammatory response, decrease of vascular
permeability and improve vascular function possessed protective ef-
fects. mTOR optimized cytotrophy, energy resource, stimulates protein
synthesis and angiogenesis (Xu et al., 2008; Schabbauer et al., 2004).
Considering the neuroprotective role of the PI3K/AKT/mTOR pathway
in ischemic stroke we showed that this survival pathway inactivated
subsequent of cerebral ischemia injury. In line with previous studies we
showed that expression of PI3K/AKT/mTOR signals decreased in the
hippocampus specimens of rats were subjected to ischemic stroke (Li
et al., 2015). Evidences showed that activation of AKT pathway lead to
activation of NF-xB transactivation resulting in initiation of transcrip-
tion of survival genes such as Bcl-xL and also stimulation of trophic
factors (Hussain et al., 2012; Wu et al., 2015).

Evidences demonstrated that activation of the PI3K/AKT pathway
via suppression of JNK prevent neuronal cell death in cerebellar granule
neurons (Choi et al., 2018; Shimoke et al., 1999). It has been de-
termined that MTOR stimulates angiogenesis, neuronal regeneration,
synaptic plasticity and removes neurotoxic substances which are linked
with the recovery and survival of injured neurons in ischemic zone
(Zhang et al., 2007; Chen et al., 2012a). In this concept it has been
shown that inhibition of mTOR using rapamycin increased neuronal
apoptosis following brain injury(Chen et al., 2012b). Our results
showed that the AKT, PI3K, mTOR and p-mTOR level were significantly
decreased in the hippocampus of ischemic rats. However, interestingly
treatment with selegiline significantly increased the expression of
aforementioned gene and proteins in the hippocampus of ischemic rats.

Selegiline [(—)-deprenyl] is an irreversible monoamine oxidase
(MAO) type B inhibitor which increase level of dopamine in the
striatum (Lamensdorf et al., 1996; Amiri et al., 2016). It has been re-
solute that selegiline metabolize to (—)-methamphetamine and
(—)-amphetamine and in this way affects the brain functions (Reynolds
et al., 1978). Furthermore, selegiline through upregulation of dopami-
nergic activity exerts beneficial effects in brain's functions such as
memory and learning (Kesby et al., 2016; Kumar et al., 2018). It is well-
known that agents which enhance dopaminergic neurotransmission
increase activity of the PI3K/AKT/mTOR pathway (Emamian, 2012).
Previous studies have demonstrated that neuroprotective properties of
rasagiline in experimental model of focal ischemia were mediated
through MAO independent inhibition (Speiser et al., 1999). In this re-
gards, evidences showed that selegiline possessed neuroprotective ef-
fects and increased brain's resistance in response to ischemia (Kwon
et al., 2004; Unal et al., 2001).

CA1 pyramidal neurons are sensitive to ischemia and relatively high
percentages of these neurons die following the hypoxia (Duszczyk et al.,
2009). In case of learning and memory deficits, literature revealed that
selegiline attenuated memory impairment following ischemic brain
damage (Puurunen et al., 2001; Kesby et al., 2016). Our results showed
that selegiline significantly improved memory impairment in ischemic
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Fig. 2. The effects of treatment with selegiline on hippocampal CA1 area in hypoperfused rat, (A): Representative hematoxylin and eosin (H&E) stained slides from
CA1l area (x400). (B): the percent of dead (dark) neurons in the CAl area of the hippocampus. ***P < 0.001 compared with saline-treated control rats,
###P < 0.001 compared with the saline- treated ischemic rats.CO (saline-treated control rat), IS (saline-treated ischemic rat), CO + SE (selegiline-treated control

rat) and IS + SE (selegiline-treated ischemic rat).

Table 2

Immunohistochemistry expression of AKT, PI3K, mTOR and p-mTOR in the
hippocampus. The expression of AKT, PI3K, mTOR and p-mTOR were scored.
Data are expressed as percent of positive cells (n = 8). *P < 0.05 compared
with saline-treated control rats, #P < 0.005 compared with the saline- treated
ischemic rats. CO (saline-treated control rat), IS (saline-treated ischemic rat),
CO + SE (selegiline-treated control rat) and IS+ SE (selegiline-treated ischemic
rat).

P-mTOR mTOR PIK3 AKT Groups
14% 24% 15% 42% CcO
10%* 7%* 11%* 5% > * I

16% 16% 19% 38% CO + SE
14.3%# 18.75%%# 18%# 23%# IS + SE

rats. Furthermore, following treatment with selegiline the percent of
dark neurons in the CAl area of the hippocampus significantly de-
creased in ischemic rats. Clinical investigations have been clarified that
selegiline has therapeutic effects in Neurological diseases including
Alzheimer's disease and improves cognitive impairment (Sano et al.,
1997; Ebadi et al., 2006). According to experimental studies adminis-
tration of selegiline enhanced the survival and density of pyramidal
neurons of the hippocampus including CA1 and CA3 cells as well as
decreased the proportion of dark neurons in pyramidal area (Paterson
et al., 1997; Lahtinen et al., 1997).

There are evidences revealed that hippocampus is a critical area for
processing of memory (Danielson et al., 2016; Garthe et al., 2016). In
this regards it has been determined that expansion of connectivity and
plasticity of pyramidal cell especially CA1 cells improved memory and
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Fig. 3. The immunohistochemical features of AKT expression in the hippocampus ( x 400). CO (saline-treated control rat), IS (saline-treated ischemic rat), CO + SE
(selegiline-treated control rat) and IS +SE (selegiline-treated ischemic rat).

Fig. 4. The immunohistochemical features of PI3K expression in the hippocampus ( x 400). CO (saline-treated control rat), IS (saline-treated ischemic rat), CO + SE
(selegiline-treated control rat) and IS+ SE (selegiline-treated ischemic rat).
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Fig. 5. The immunohistochemical features of mTOR expression in the hippocampus ( x 400). CO (saline-treated control rat), IS (saline-treated ischemic rat), CO + SE
(selegiline-treated control rat) and IS+ SE (selegiline-treated ischemic rat).

Fig. 6. The immunohistochemical features of p-mTOR expression in the hippocampus (x400). CO (saline-treated control rat), IS (saline-treated ischemic rat),
CO + SE (selegiline-treated control rat) and IS+ SE (selegiline-treated ischemic rat).
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Fig. 7. The expression of AKT (A), PI3K (B) and mTOR (C) in the hippocampus was determined by qRT-PCR. Data are shown as mean *+
and were analyzed using two- way ANOVA followed by Tukey's post-hoc test. *P <
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SEM from triplicate tests
0.05 and ***P < 0.001 compared with saline-treated control rats, #P < 0.05

and ##P < 0.01 compared with the saline- treated ischemic rats. CO (saline-treated control rat), IS (saline-treated ischemic rat), CO + SE (selegiline-treated control

rat) and IS+ SE (selegiline-treated ischemic rat).

learning deficits following hippocampal injury (Danielson et al., 2016;
Stackman Jr et al., 2016; Havekes et al., 2016; Hansen et al., 2015).

Morris water maze as a valid behavioral test performed for eva-
luation of memory and learning in rodents (Wang et al., 2017). In line
with previous studies we found that rats were subjected to ischemic
stroke model showed memory impairment in this hippocampal-related
behavioral test (Wang et al., 2017; Fan et al., 2015). Our results showed
that treatment with selegiline significantly improved memory deficit in
ischemic rats.

5. Conclusion

Findings of this in vivo ischemia study showed that activation of the
PI3BK/AKT/mTOR pathway partially, at least, has critical role in re-
versing the adverse impacts of ischemic model of stroke in rat.
Interestingly our results showed that selegiline probably, at part,
through upregulation of PI3K/AKT/mTOR in the hippocampus im-
proves memory following ischemia in rat.
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