
Dingledine and buddies 2004; how to read

computer science papers and stop worrying about

the future.

Camille Akmut

Abstract

One of many more ways in which computer science can be conducted.
We guide the reader through Dingledine et al.’s 2004 paper on Tor.

1

Make use of all resources

—–
Is there a computer scientist that you like, or think is cool? They

explain things well, or in interesting ways? Have they written something
about the topic of the paper you are trying to read? What of textbooks?

Gather those before starting. We used :
- the accessible Understanding Cryptography, Serious Cryptography,
- one paper co-written by Ian Goldberg,
- a Computerphile / Nottingham University video,
- two average Networking textbooks (the well-known ones).

—–

We begin with the title :

Tor: The Second-Generation Onion Router

So, there were other generations of this before Tor? Correct. The
perhaps best introduction to the topic has been given in Kate, Zaverucha
and Goldberg 2010, where they write :

Over the years, a large number of anonymity networks have
been proposed and some have been implemented. Common to
many of them is onion routing [Reed et al. 1998], a technique
whereby a message is wrapped in multiple layers of encryption,
forming an onion. As the message is delivered via a number of
intermediate onion routers (abbreviated ORs, also called hops
or nodes), each node decrypts one of the layers, and forwards
the message to the next node. This idea goes back to Chaum
[1981] and has been used to build both low- and high-latency
communication networks.

(...) the original Onion Routing project [Goldschlag et al. 1996;
Reed et al. 1998; Syverson et al. 2000] (...) was superseded by
Tor (...)

We can then proceed to the abstract.

We present Tor, a circuit-based low-latency anonymous com-
munication service.

“Circuit-based” sounds perhaps like it might mean more than it does
at first, but should not be attributed or given too much meaning only
because it is found here, in this context. A circuit, according to any
common dictionary, is a “path” or a “route”.

A topic-specific definition, description for this is found just later in the
text :

Clients choose a path through the network and build a circuit,
in which each node (or “onion router” or “OR”) in the path
knows its predecessor and successor, but no other nodes in the
circuit.

2

Pictures are much better than words at this; and here the best illus-
tration so far has been given by Computerphile :

Figure 1: A message contained in 3 layers of encryption. (Computerphile)

Figure 2: The message (i.e. response) travels back from the server to the user.

Hence the whole onion terminology : onion routing, onion router, etc.

3

“Neither a beginning nor an end”

To find more clues about “low-latency” we need to skip forward a bit.
This might seem counter-intuitive, but computer science literature isn’t
really a novel : perhaps better described, used and enjoyed as a ‘Choose
Your Own Adventure’-type of deal.

On the second page of this paper, Dingledine et al. explain :

Modern anonymity systems date to Chaum’s Mix-Net de-
sign [10]. Chaum proposed hiding the correspondence between
sender and recipient by wrapping messages in layers of public-
key cryptography, and relaying them through a path composed
of “mixes.” Each mix in turn decrypts, delays, and re-orders
messages before relaying them onward.

Subsequent relay-based anonymity designs have diverged in
two main directions. Systems like Babel [28], Mixmaster
[36], and Mixminion [15] have tried to maximize anonymity
at the cost of introducing comparatively large and variable la-
tencies. Because of this decision, these high-latency networks
resist strong global adversaries, but introduce too much lag
for interactive tasks like web browsing, Internet chat, or SSH
connections.

Tor belongs to the second category: low-latency designs (...)

High-latency : slow. Low-latency : fast.
Mix : (precursor terminology for) node.
Let’s move forward.

This second-generation Onion Routing system addresses limi-
tations in the original design by adding perfect forward secrecy,
congestion control, [long list] (...)

In this long list of advantages, (perfect) “forward secrecy” comes first
and it is indeed of importance.

But, one is hard pressed to find much help in many textbooks of this
literature : these gentlemen and gentlewomen prefer concentrating on the
maths.

Many textbooks, of which we will spare the authors of publicity, disre-
gard this notion even under its jargon synonym “backtracking resistance”.

Backtracking resistance (also called forward secrecy) means
that previously generated bits are impossible to recover, whereas
prediction resistance (backward secrecy) means that future bits
should be impossible to predict.1

In Understanding Cryptography a definition can be gotten too2, but
much better are those found on the ’net. We are not sure what this says
about the quality of computer science textbooks in general.

1Serious Cryptography, chapter 2.
213.2.3 Remaining Problems with Symmetric-Key Distribution.

4

On top of the usual confidentiality and integrity properties of
HTTPS, forward secrecy adds a new property. If an adversary
is currently recording all (...) users’ encrypted traffic, and they
later crack or steal [the server]’s private keys, they should not
be able to use those keys to decrypt the recorded traffic.3

Understanding the basics is more than
99%

Onion Routing is a distributed overlay network designed to
anonymize TCP-based applications like web browsing, secure
shell, and instant messaging.

The details of which, both protocols TCP (Transmission Control Pro-
tocol) and UDP (User Datagram Protocol), of the transport layer4, can
be found in any textbook containing “Networks” or “Networking” as part
of its title :

The UDP protocol provides a connectionless service to its ap-
plications. This is a no-frills service that provides no reliability,
no flow control, and no congestion control.5

It should hopefully make sense now why it is not employed by Tor.
If not, while continuing reading one will stumble on passages such as

this one, which reiterate previously encountered concepts :

6 Other design decisions

6.1 Denial of service

Providing Tor as a public service creates many opportunities for
denial-of-service attacks against the network. (...) flow control
and rate limiting (discussed in Section 4.6) prevent users from
consuming more bandwidth than routers are willing to provide

Actionable knowledge

We do not read computer science papers, and later write them ourselves,
as the past time or respite of the cultivated and gentle mind.

To change our minds, to change our lives.
—
BitTorrent also works over TCP (some things like trackers can use

UDP however6).
It is out of respect for other users that the Project asks to not pair

Tor and BitTorrent, as Roger Dingledine’s answer made clear in 2013 :

3https://blog.twitter.com/engineering/en us/a/2013/forward-secrecy-at-twitter.html
4Tanenbaum and Wetherall, Computer Networks, “Introduction”.
5Kurose and Ross, Computer Networking. 1.5 “Protocol layers and their service models”
6https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea

5

The blog post is still accurate. Please don’t do it.

Sending your BitTorrent traffic through the Tor network would
overload it even more. It isn’t designed to handle such things
– the Tor network has much less capacity than it has users
wanting to use it. And since it’s zero-sum, every person trying
to BitTorrent over Tor means many more people in Syria who
can’t get to their Facebook pages.7

This might change in the future, who knows.

Skip what you don’t understand

Computer science should be fun. If it isn’t you’re doing something wrong.
Skip what you don’t understand, and come back to it later.

Bibliography

Kate, Aniket, Zaverucha, Greg and Goldberg, Ian. 2010. “Pairing-
Based Onion Routing with Improved Forward Secrecy”

Computerphile. 2017. “Onion Routing”. QRYzre4bf7I

Cohen, Bram. 2017 [2008]. “The BitTorrent Protocol Specification”.
http://www.bittorrent.org/beps/bep 0003.html”

7https://tor.stackexchange.com/questions/64/how-can-bittorrent-traffic-be-anonymized-
with-tor/68#68

6

