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Difficulty in inferring microbial community
structure based on co-occurrence network
approaches
Hokuto Hirano and Kazuhiro Takemoto*

Abstract

Background: Co-occurrence networks—ecological associations between sampled populations of microbial
communities inferred from taxonomic composition data obtained from high-throughput sequencing techniques—
are widely used in microbial ecology. Several co-occurrence network methods have been proposed. Co-occurrence
network methods only infer ecological associations and are often used to discuss species interactions. However,
validity of this application of co-occurrence network methods is currently debated. In particular, they simply
evaluate using parametric statistical models, even though microbial compositions are determined through
population dynamics.

Results: We comprehensively evaluated the validity of common methods for inferring microbial ecological
networks through realistic simulations. We evaluated how correctly nine widely used methods describe interaction
patterns in ecological communities. Contrary to previous studies, the performance of the co-occurrence network
methods on compositional data was almost equal to or less than that of classical methods (e.g., Pearson’s
correlation). The methods described the interaction patterns in dense and/or heterogeneous networks rather
inadequately. Co-occurrence network performance also depended upon interaction types; specifically, the
interaction patterns in competitive communities were relatively accurately predicted while those in predator–prey
(parasitic) communities were relatively inadequately predicted.

Conclusions: Our findings indicated that co-occurrence network approaches may be insufficient in interpreting
species interactions in microbiome studies. However, the results do not diminish the importance of these
approaches. Rather, they highlight the need for further careful evaluation of the validity of these much-used
methods and the development of more suitable methods for inferring microbial ecological networks.
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Background
Many microbes engage with one another through inter-
specific interactions (e.g., mutualistic and competitive in-
teractions) to compose ecological communities and
interrelate with their surrounding environments (e.g., their
hosts) [1]. Investigating such communities is important
not only in the context of basic scientific research [2, 3],
but also in applied biological research fields, such as in
medical [4] and environmental sciences [5]. Remarkable
development of high-throughput sequencing techniques—

e.g., 16S ribosomal RNA gene sequencing and metage-
nomics as well as computational pipelines—have provided
snapshots of taxonomic compositions in microbial com-
munities across diverse ecosystems [6] and revealed that
microbial compositions are associated with human health
and ecological environments. For example, microbial
composition in the human gut is interrelated with by nu-
merous diseases—such as diabetes and cardiovascular dis-
ease—age, diet, and antibiotic use [7, 8]. The composition
of soil microbial communities is related to climate, aridity,
pH, and plant productivity [9]. However, previous studies
have been limited to the context of species composition,
and the effect of the structure of microbial communities
(microbial ecological networks) on such associations is
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unclear due to a lack of reliable methods through which
real interaction networks can be captured. Thus, co-
occurrence networks, which infer ecological associations
between sampled populations of microbial communities
obtained from high-throughput sequencing techniques,
have been attracting attention [10]. Co-occurrence net-
work approaches are also related to weighted correlation
network analyses [11–13] for inferring molecular net-
works from high-throughput experimental data, such as
gene expression data. A number of methods for inferring
microbial association have been proposed.
As a simple metric, Pearson’s correlation coefficient is

considered. Additionally, Spearman’s correlation coeffi-
cient and maximal information coefficient (MIC) [14]
are useful for accurately detecting non-linear associa-
tions. However, these metrics may not be applicable to
compositional data because the assumption of independ-
ent variables may not be satisfied due to the constant sum
constraint [15]. Particularly, spurious correlations may be
observed when directly applying these metrics to compos-
itional data. To avoid this limitation, Sparse Correlations
for Compositional data (SparCC) [16] has been developed.
SparCC is an iterative approximation approach and esti-
mates the correlations between the underlying absolute
abundances using the log-ratio transformation of compos-
itional data under the assumptions that real-world micro-
bial networks are large-scale and sparse. However, SparCC
is not efficient due to its high computational complexity.
Thus, regularized estimation of the basis covariance based
on compositional data (REBACCA) [17] and correlation in-
ference for compositional data through Lasso (CCLasso)
[18] have been proposed. These methods are considerably
faster than SparCC by using the l1-norm shrinkage method
(i.e., least absolute shrinkage and selection operator; Lasso).
SparCC has further limitations, as it does not consider errors
in compositional data and the inferred covariance matrix
may be not positive definite. To avoid these limitations,
CCLasso considers a loss function inspired by the lasso pe-
nalized D-trace loss.
However, correlation-based approaches such as those men-

tioned above may detect indirect associations. To differentiate
direct and indirect interactions in correlation inference, other
methods have been developed. In this context, inverse covari-
ance matrix-based approaches are often used because they es-
timate an underlying graphical model, employing the concept
of conditional independence. Typically, Pearson’s and Spear-
man’s partial correlation coefficients are used [19]; however,
they may be not applicable to compositional data because stat-
istical artifacts may occur due to the constant sum constraint.
Thus, SParse InversE Covariance Estimation for Ecological
ASsociation Inference (SPIEC-EASI) was proposed [20]. It in-
fers an ecological network (inverse covariance matrix) from
compositional data using the log-ratio transformation and
sparse neighborhood selection.

These inference methods have been implemented
as software packages and applied in several micro-
bial ecology studies, such as investigations of hu-
man [21–24] and soil microbiomes [25–27]. While
these methods only infer ecological associations,
they are often used for discussing biological insights
into interspecies interactions (i.e., microbial eco-
logical networks [28]).
Nevertheless, further careful examination may be re-

quired to determine the importance of co-occurrence
network approaches. The validity of these inference
methods is still debatable [29] because they simply
employ parametric statistical models, although micro-
bial abundances are determined through population
dynamics [2, 3]. Berry and Widder [30] used a math-
ematical model to determine population dynamics,
generating (relative) abundance data based on popula-
tion dynamics on an interaction pattern (network
structure), and evaluated how correctly correlation-
based methods reproduce the original interaction pat-
tern. In particular, detecting interactions was harder
for larger and/or more heterogeneous networks. How-
ever, they only compared earlier methods (e.g., Pear-
son’s correlation and SparCC) and not later methods
(e.g., CCLasso) and the graphical model-based
methods. In addition, whether further examination
and comparison of performance is required remains
debatable, since arbitrary thresholds were used to cal-
culate sensitivity and specificity. Moreover, the effects
of interaction type, such as mutualism or competition,
on co-occurrence network performance were poorly
considered, even though pairs of species exhibit well-
defined interactions in natural systems [31]. Weiss et
al. [10] considered interaction types and evaluated
correlation-based methods using a population dynam-
ics model; however, they only examined small-scale
(up to six species) networks due to system complexity,
although compositional-data methods (e.g., SparCC)
assume large-scale networks. Furthermore, graphical
model-based methods were not evaluated.
We comprehensively evaluated the validity of

both correlation-based and graphical model-based
methods for inferring microbial ecological networks.
In particular, we focused on nine widely used
methods. Following previous studies [10, 30], we
generated relative abundance (compositional) data
using a dynamical model with network structure
and evaluated how accurately these methods recap-
itulate the network structure. We show that the
performance of later methods was almost equal to
or less than that of classical methods, contrary to
previous studies. Moreover, we also demonstrate
that co-occurrence network performance depends
upon interaction types.
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Methods
Generation of relative abundance data using a dynamical
model
Following [30], we used the n-species generalized
Lotka–Volterra (GLV) equation to generate abundance
data:

d
dt

Ni tð Þ ¼ Ni tð Þ ri þ
Xn

j¼1

MijN j tð Þ
 !

;

where Ni(t) and ri correspond to the abundance of spe-
cies i at time t and the growth rate of species i, respect-
ively. Mij is an interaction matrix and indicates the
contribution of species j to the growth of species i. In
particular, Mij was determined by considering network
structure and interaction types; the diagonal elements Mii

in the interaction matrices, representing self-regulation,
were set to − 1. Unlike a similar model used in a previous
study [30], the carrying capacity of each species is set to
be equivalent to its growth rate for simplicity.
To generate Mij, we first produce undirected networks

with n nodes and average degree 〈k〉 = 2m/n, where n in-
dicate the number of species and m is the number of
edges. This is done by generating adjacency matrices Aij

using models for generating networks. Following Laye-
ghifard et al. [28], three types of network structure were
considered: random networks, small-world networks,
and scale-free networks. In all cases Aij = 1 if node (spe-
cies) i interacts with node (species) j and Aij = 0, other-
wise, and Aij =Aji to have undirected networks.
The Erdős–Rényi model [32] was used to generate ran-

dom networks in which the node degree follows a Poisson
distribution where the mean is 〈k〉. The model networks
are generated by drawing edges between m (=n〈k〉/2) node
pairs that were randomly selected from the set of all pos-
sible node pairs. Specifically, we used erdos.renyi.game in
the igraph package (version 1.2.2) of R (version 3.5.1;
www.r-project.org), with the argument type = “gnm”.
However, real-world networks, including microbial eco-

logical networks, are not random; instead, they are clustered
(compartmentalized) and heterogeneous [28, 32–34].
The Watts–Strogatz model [35] was used to generate

small-world networks whose clustering coefficients are
higher than expected and random. The model networks
are generated by randomly rewiring ⌊pWSm + 0.5⌋ edges
in a one-dimensional lattice where pWS corresponds to
the rewiring probability (ratio) ranging within [0,1]. Spe-
cifically, we used the sample_smallworld function in the
igraph package; pWS was set to 0.05.
The Chung–Lu model [36] was used to generate scale-

free networks in which the degree distributions are het-
erogeneous. In the model, m (=n〈k〉/2) edges are drawn
between randomly selected nodes according to node
weight (i + i0 − 1)ξ where ξ ∈ [0, 1] and i denotes the node

index (i.e., i = 1, …, n) and the constant i0 is considered
to eliminate the finite-size effects [37]. A generated net-
work shows that P(k) ∝ k−γ, where γ = 1 + 1/ξ [36, 37]
and P(k) is the degree distribution. Specifically, we used
the static.power.law.game function in the igraph package
with the argument finite.size.correction = TRUE. In this
study, we avoided the emergence of self-loops and mul-
tiple edges. γ was set to 2.2 because γ in many real-
world networks is between 2 and 2.5 [38].
Following the work of Allesina and Tang [31], we con-

sidered five types of interaction matrices: random, mu-
tualistic, competitive, predator–prey (parasitic), and a
mixture of competition and mutualism interaction
matrices. Following simulation-based studies using GLV
equations [39–41], the (absolute) weights of interactions
(i.e., the elements in interaction matrices Mij) were
drawn from uniform distributions.
In the random interaction matrices, Mij was drawn from

a uniform distribution of [−smax, smax] if Aij = 1, and Mij =
0 otherwise, where smax is the upper (lower) limit for inter-
action strength. Given the definitions of mutualistic, com-
petitive, and predator–prey (parasitic) interactions (see
below for details), the random interaction matrices gener-
ated contain a mixture of these interaction types. For large
n, in particular, mutualistic, competitive, and predator–
prey interactions occur in the ratio of 1:1:2.
A mutualistic interaction between species i and j indi-

cates that Mij > 0 and Mji > 0 because the species posi-
tively affect each other’s growth. In mutualistic
interaction matrices, Mij was drawn from a uniform dis-
tribution of (0, smax] if Aij = 1, and Mij = 0 otherwise. It
should be noted that Mji is also positive if Aij = 1 because
Aij =Aji, but Aij is independent from Mij.
A competitive interaction between species i and j indi-

cates that Mij < 0 and Mji < 0 because the species nega-
tively affect each other’s growth. In competitive
interaction matrices, Mij was drawn from a uniform dis-
tribution of [−smax, 0) if Aij = 1, and Mij = 0 otherwise. It
should be noted that Mji is also negative if Aij = 1 be-
cause Aij =Aji, but Aij is independent from Mij.
Following a previous study [31], we generated inter-

action matrices consisting of a mixture of mutualistic and
competitive interactions. For each species pair (i, j)i < j, we
obtained a random value p1 from a uniform distribution
of [0, 1] if Aij = 1. After, Mij and Mji were independently
drawn from a uniform distribution of (0, smax] if p1 ≤ pC
from a uniform distribution of [−smax, 0) otherwise where
pC corresponds to the ratio of competitive interactions to
all interactions. It should be noted that Mij = 0 if Aij = 0.
A predator–prey (parasitic) interaction between spe-

cies i and j indicates that Mij and Mji have opposite signs
(e.g., whenever Mij > 0, then Mji < 0) because species i (j)
positively contributes to the growth of species j (i), but
the growth of species i (j) is negatively affected by
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species j (i). The predator–prey interaction matrices
were generated as follows: for each species pair (i, j)i < j,
we obtained a random value p2 from a uniform distribu-
tion of [0, 1] if Aij = 1. If p2 ≤ 0.5, Mij was drawn from a
uniform distribution of [−smax, 0) and Mji was drawn
from a uniform distribution of (0, smax], while if p2 > 0.5
we did the opposite: Mij and Mji were independently
drawn from uniform distributions (0, smax] and [−smax,
0), respectively. It should be noted that Mij = 0 if Aij = 0.
To investigate the effect of predator–prey interactions

on co-occurrence network performance, we also consid-
ered interaction matrices consisting of a mixture of com-
petitive and predator–prey interactions. For each species
pair (i, j)i < j, we obtained a random value p3 from a uni-
form distribution of [0, 1] if Aij = 1; then, Mij and Mji were
determined based on to the above definition of competi-
tive interactions if p3 ≤ pC, otherwise they were deter-
mined based on the above definition of predator–prey
interactions. It should be noted that Mij = 0 if Aij = 0.
To obtain species abundances using the n-species

GLV equations, we used the generateDataSet func-
tion in the R package seqtime (version 0.1.1) [40];
environmental perturbance was excluded for simpli-
city. Following Faust et al. [40], the GLV equations
were numerically solved with initial species abun-
dances that were independently drawn from a Pois-
son distribution with mean of 100 (i.e., the total
number of individuals is 100n). Following previous
studies [40, 41], the growth rates of species (ri) were
independently drawn from a uniform distribution of
(0,1]. Following the default options of the generate-
DataSet function, species abundances were obtained
at the 1000-time step. We empirically confirmed that
species abundances reached a steady state before the
1000-time step (Additional file 1: Figure S1). The ab-
solute abundances were converted into relative
values. The relative abundance Pi of species i was
calculated as Ni=

Pn
j¼1N j where Ni is the absolute

abundance of species i at the time step. The result-
ing absolute and relative abundances were recorded.
This process was repeated until the desired number
of samples was obtained. The source codes for data-
set generation are available in Additional file 2.

Co-occurrence network methods
We evaluated the extent to which the nine co-
occurrence network methods decipher original inter-
action patterns (i.e., adjacency matrix Aij) from the gen-
erated relative abundance (compositional) dataset based
on associations between species abundances (see Add-
itional file 1: Figure S2). In particular, six correlation-
based methods were investigated: Pearson’s correlation
(PEA), Spearman’s correlation (SPE), MIC [14], SparCC

[16], REBACCA [17], and CCLasso [18]. Moreover, three
graphical model-based methods were also investigated:
Pearson’s partial correlation (PPEA), Spearman’s partial
correlation (PSPE), and SPIEC-EASI [20].
The pair-wise Pearson’s and Spearman’s correlation

matrices were calculated using the cor function in R with
the arguments method = “pearson” and method = “spear-
man”, respectively. The pair-wise MICs were determined
using the mine function in the R package minerva (ver-
sion 1.5). We also estimated the ecological microbial
networks using the SparCC, REBACCA, and CCLasso
algorithms. The SparCC program was downloaded from
bitbucket.org/yonatanf/sparcc on November 11, 2018, and it
ran under the Python environment (version 2.7.15; www.py-
thon.org). The REBACCA program was obtained from fac-
ulty.wcas.northwestern.edu/~hji403/REBACCA.htm on
November 16, 2018. The CCLasso program was obtained
from github.com/huayingfang/CCLasso on November 13,
2018. REBACCA and CCLasso ran under the R environ-
ment. We used SparCC, REBACCA, and CCLasso with the
default options, but we provided the option pseudo = 1 when
using CCLasso for convergence.
The Pearson’s and Spearman’s partial correlation coef-

ficients were calculated using the pcor function in the R
package ppcor (version 1.1) with the arguments
method = “pearson” and method = “spearman”, respect-
ively. We also obtained the co-occurrence networks
using the SPIEC-EASI algorithm with neighborhood se-
lection. The SPIEC-EASI program was downloaded from
github.com/zdk123/SpiecEasi on November 13, 2018.
We used SPIEC-EASI in the R environment with the de-
fault options.

Evaluating co-occurrence network performance
Following previous studies [20], to evaluate co-
occurrence network performance (i.e., how well the esti-
mated co-occurrence network describes the original
interaction pattern Aij), we obtained the precision–recall
(PR) curve based on confidence scores of interactions
for each inference result, comparing the lower triangular
parts of confidence score matrices and Aij because the
matrices were symmetric. It should be noted that the
lower triangular parts were vectorized after excluding
the diagonal terms. The precision and recall were calcu-
lated by binarizing the confidence scores at a threshold.
The PR curve was obtained as the relationship between
precision and recall for different threshold. We used the
absolute correlation coefficients for the Pearson’s correl-
ation, Spearman’s correlation, MIC, Pearson’s partial cor-
relation, Spearman’s partial correlation, SparCC, and
CCLasso for the confidence scores. Following previous
studies [17, 20], edge-wise stability scores were used for
REBACCA and SPIEC-EASI. Furthermore, we summa-
rized the PR curve with the area under the PR curve
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(AUPR). The AUPR values were averaged over 50 itera-
tions of dataset generation and performance evaluation
with randomly assigned parameters for each iteration.
The PR curves and AUPR values were obtained using
the pr.curve function in the R package PRROC (version
1.3.1). We also computed the baseline-corrected AUPR
values because positive and negative ratios affect PR
curves. The baseline-corrected AUPR value was defined
as (AUPRobs – AUPRrand) / (1 – AUPRrand), where
AUPRobs and AUPRrand correspond to the observed
AUPR value and the AUPR value obtained from random
prediction (i.e., 2m/[n(n − 1)] = 〈k〉/(n − 1)), respectively.
The source codes for evaluating co-occurrence network
performance are available in Additional file 2.
It is important to mention that the problem of false-

negative interactions may occur when we do perform-
ance analysis based on adjacency matrices Aij: negligible
interactions (i.e., when both |Mij| and |Mji| have very
small values) have negligible effects on population dy-
namics and act as no interaction. It may happen even if
the corresponding nodes are connected (i.e., Aij =Aji = 1)
. However, this problem hardly affects co-occurrence net-
work performance. Supposing such false-negative interac-
tions occur if |Mij| < sc and |Mji| < sc when Aij =Aji = 1
where sc is a small value, the expected ratio of false-
negative interactions to all interacting pairs (edges) is de-
scribed as (sc / smax)

2 because |Mij| and |Mji| are inde-
pendently drawn from the uniform distribution of (0,
smax]. Assuming that smax = 0.5 and sc = 0.01, for example,
0.04% of m edges indicate false-negative interactions.

Results
Compositional-data co-occurrence network methods
performance did not exceed that of classical methods
We generated relative abundance datasets through popu-
lation dynamics. In particular, we used the GLV equations
with an interaction matrix Mij constructed from an inter-
action pattern Aij (random, small-world, or scale-free net-
work structure) by considering types of interaction
matrices (random, mutualistic, competitive, predator–prey
(parasitic), or mixture of competition and mutualism
interaction matrices). We investigated how well co-
occurrence network methods decipher interaction pat-
terns from relative abundance data by evaluating the
consistency between the confidence score matrices ob-
tained from the methods and Aij based on the (baseline-
corrected) AUPR values.
We investigated the case of random interaction matri-

ces constructed based on random network structures
(Fig. 1). We found that co-occurrence network perform-
ance (AUPR value) was moderate. For example, the
AUPR value was at most ~ 0.65 when network size (the
number of species) n = 50 and average degree 〈k〉 = 2
(Fig. 1a), and it was at most ~ 0.45 when n = 50 and

〈k〉 = 8 (Fig. 1b). As expected from limitations due to the
constant sum constraint, the performance of the clas-
sical co-occurrence network methods (e.g., Pearson’s
correlation) generally decreased when using compos-
itional data (Additional file 1: Figure S3), and the per-
formance of the partial correlation-based methods
declined largely.
More importantly, we found that the performance of

the compositional-data co-occurrence network methods
were almost equal to or less than that of classical methods,
excluding Spearman’s partial correlation-based method; in
particular, the performance of some compositional-data
methods was lower than that of the classical methods.
Specifically, the AUPR values of SparCC, an earlier
compositional-data method, were lower than those of
Pearson’s correlation [p < 2.2e–16 using t-test when n = 50
and 〈k〉 = 2 (Fig. 1a) and p < 2.2e–16 using t-test when n =
50 and 〈k〉 = 8 (Fig. 1b)]. Moreover, The AUPR values of
REBACCA, a later compositional-data method, were also
lower than those of Pearson’s correlation [p < 2.2e–16
using t-test when n = 50 and 〈k〉 = 2 (Fig. 1a) and p < 2.2e–
16 using t-test when n = 50 and 〈k〉 = 8 (Fig. 1b)]. For 50-
node networks, the performance of CCLasso and SPIEC-
EASI was similar to that of classical methods when 〈k〉 = 2
(Fig. 1a) and 〈k〉 = 8 (Fig. 1b). However, the performance of
later compositional-data methods (e.g., CCLasso) was
higher than that of the earlier compositional-data method
(i.e., SparCC). Specifically, the AUPR values of CCLasso
were lower than those of SparCC [p < 2.2e–16 using t-test
when n = 50 and 〈k〉 = 2 (Fig. 1a) and p = 3.2e–7 using t-
test when n = 50 and 〈k〉 = 8 (Fig. 1b)].
The graphical model-based methods were not more effi-

cient than the correlation-based methods. Spearman’s partial
correlation-based method was inferior to Pearson’s correl-
ation-based method (p < 2.2e–16 using t-test) and Spear-
man’s correlation-based method (p < 2.2e–16 using t-test)
when n= 50 and 〈k〉= 2 (Fig. 1a); however, the AUPR value
of Spearman’s partial correlation-based method was similar
to that of Pearson’s and Spearman’s correlation-based
methods when n= 50 and 〈k〉 = 8 (Fig. 1b). Both Pearson’s
partial correlation-based method and Pearson’s correlation-
based method exhibited similar performance. The perform-
ance of the graphical model-based method for compositional
data (SPIEC-EASI) was similar to that of other correlation-
based methods (e.g., Pearson’s correlation), although it was
higher than that of the correlation-based methods for com-
positional data. Specifically, the AUPR values of SPIEC-EASI
were higher than those of SparCC [p < 2.2e–16 using t-test
when n= 50 and 〈k〉= 2 (Fig. 1a) and p < 2.2e–16 using t-test
when n= 50 and 〈k〉= 8 (Fig. 1b)].
Co-occurrence network performance was evaluated

when the average degree (Fig. 1a and b) and number of
nodes (network size; Fig. 1c and d) varied; moreover, it
was also examined for other types of network structure:
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small-world networks (Additional file 1: Figure S4) and
scale-free networks (Additional file 1: Figure S5).

Interaction patterns in more complex networks are
harder to predict
It is noteworthy that network size, average degree, and
network type affected co-occurrence network perform-
ance. The co-occurrence network performance (baseline-
corrected AUPR values) varied with network size in some
methods (Fig. 1c and d). In particular, the performance of
Spearman’s partial correlation-based method increased
with network size in dense networks, while the perform-
ance of REBACCA decreased with network size in sparse
networks. However, co-occurrence network performance
was nearly independent of network size when n > 20 in
most methods. The interaction patterns in small networks
were poorly predicted; the co-occurrence network
methods are not suitable for capturing interaction pat-
terns in small networks. The differences in the perform-
ance between the co-occurrence network methods and
random predictions were not remarkable because the de-
gree of freedom was low in small networks.
More importantly, the interaction patterns in denser

networks generally were more difficult to predict; in par-
ticular, we observed general negative correlations be-
tween the performance (baseline-corrected AUPR value)

and average degree when n = 50 (Fig. 2a) and n = 100
(Fig. 2b). However, the performance of Spearman’s par-
tial correlation-based method (PSPE) increased for 〈k〉 <
~8 and decreased for 〈k〉 ≥ ~8 when n = 50 and 100. This
method exhibited the highest performance for dense
networks while it exhibited relatively low performance
for sparse networks; nonetheless, it should be noted that
this method poorly predicted interactions patterns (the
baseline-corrected AUPR value was at most ~ 0.4 when
〈k〉 ≥ ~8). The co-occurrence network performance
slightly increased when using more samples (Additional
file 1: Figure S6); in particular, we investigated cases in
which network size (n = 50 and 100) and average degree
(〈k〉 = 2 and 8) differed and found that co-occurrence
network performance was almost independent of sample
number when it exceeds 200 in most methods.
The correlations between the baseline-corrected AUPR

values and average degree were also investigated in
small-world networks (Additional file 1: Figure S4 and
S7) and scale-free networks (Additional file 1: Figures S5
and S8), and the negative correlations between the
baseline-corrected AUPR values and average degree were
specifically observed. However, co-occurrence network
performance moderately varied according to network
type in large and dense networks when focusing on each
inference method (Fig. 3). In particular, we investigated
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Pearson’s correlation-based method (a classical correl-
ation-based method; Fig. 3a and b), Pearson’s partial cor-
relation-based method (a classical graphical model-based
method; Fig. 3c and d), CCLasso (a correlation-based
method for compositional data; Fig. 3e and f), and
SPEIC-EASI (a graphical model-based method for com-
positional data; Fig. 3g and h). In general, the lowest per-
formance was observed for scale-free networks, while
the highest performance was observed for small-world
networks (Fig. 3). Specifically, the baseline-corrected AUPR
values for scale-free networks were lower than those for
small world networks when n= 100 and 〈k〉= 8 (p < 2.2e–16
using t-test for Pearson’s correlation-based method; p=
7.7e–5 using t-test for Pearson’s partial correlation-based

method; p= 0.027 using t-test for CCLasso; p= 1.9e–13
using t-test for SPEIC-EASI). Moreover, the baseline-
corrected AUPR values for scale-free networks were lower
than those for random networks when n= 100 and 〈k〉= 8
for Pearson’s correlation-based method (p= 2.9e–3 using t-
test) and SPEIC-EASI (p= 7.4e–3 using t-test).
The results indicating that compositional-data co-

occurrence network methods were not more efficient
than classical methods and that interaction patterns in
more complex networks are more difficult to predict
(Figs. 1, 2 and 3) were also generally confirmed in the
other types of interactions matrices: competitive (Add-
itional file 1: Figures S9–S11), mutualistic (Additional
file 1: Figures S12 and S13), predator–prey (Additional
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Fig. 3 Relationships between co-occurrence network performance (AUPR value) and network size n according to the network types: random
networks (random), scale-free networks (sf), and small-world networks (sw). Random interaction matrices were considered. The cases of sparse
networks (〈k〉 = 2; top panels) and dense networks (〈k〉 = 8; bottom panels) are shown. As representative examples, Pearson’s correlation-based
method (a classical correlation-based method; a and b), Pearson’s partial correlation-based method (a classical graphical model-based method; c
and d), CCLasso (a correlation-based method for compositional data; e and f), and SPEIC-EASI (a graphical model-based method for
compositional data; g and h) are shown. smax was set to 0.5. The number of samples was set to 300
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file 1: Figures S14–S16), and mutualism-competition
mixture interaction matrices (Additional file 1: Figures
S17–S19).

Predator-prey (parasitic) interactions decrease co-
occurrence network performance
The types of interaction matrices notably affected co-
occurrence network performance (Fig. 4). Specifically, in
most methods, the interaction patterns in predator–prey
(parasitic) communities (interaction matrices) were the
most difficult to predict, while those in competitive
communities were the easiest to predict. Specifically, the
AUPR values for predator–prey communities were sig-
nificantly lower than those for competitive communities
for Pearson’s correlation-based method (p < 2.2e–16
using t-test; Fig. 4a), Spearman’s correlation-based
method (p < 2.2e–16 using t-test; Fig. 4b), MIC-based
method (p < 2.2e–16 using t-test; Fig. 4c), SparCC (p <
2.2e–16 using t-test; Fig. 4d), REBACCA (p < 2.2e–16
using t-test; Fig. 4e), CCLasso (p < 2.2e–16 using t-test;
Fig. 4f ), Pearson’s partial correlation-based method (p <
2.2e–16 using t-test; Fig. 4g), Spearman’s partial
correlation-based method (p < 2.2e–16 using t-test; Fig.
4h), and SPEIC-EASI (p < 2.2e–16 using t-test; Fig. 4i).
Additionally, co-occurrence network methods relatively
accurately predicted interactions patterns in mutual
communities and competition–mutualism mixture com-
munities; however, they described the interaction pat-
terns in random communities poorly. Specifically, the
AUPR values for random communities also were signifi-
cantly lower than those for competitive communities for
Pearson’s correlation-based method (p < 2.2e–16 using t-
test; Fig. 4a), Spearman’s correlation-based method (p <
2.2e–16 using t-test; Fig. 4b), MIC-based method (p <
2.2e–16 using t-test; Fig. 4c), REBACCA (p < 2.2e–16
using t-test; Fig. 4e), CCLasso (p < 2.2e–16 using t-test;
Fig. 4f ), Pearson’s partial correlation-based method (p <
2.2e–16 using t-test; Fig. 4g), Spearman’s partial
correlation-based method (p < 2.2e–16 using t-test; Fig.
4h), and SPEIC-EASI (p < 2.2e–16 using t-test; Fig. 4i).
Similar tendencies of the effect of interaction types on
co-occurrence network performance were observed in
varying network sizes (i.e., n = 20 and 100; Additional file
1: Figure S20), average degrees (i.e., 〈k〉 = 4 and 8; Add-
itional file 1: Figure S21), and network structures (i.e.,
small-world and scale-free network structures; Add-
itional file 1: Figure S22).
We hypothesized that co-occurrence network per-

formance decreases as the ratio of predator–prey (para-
sitic) interactions increases because the worst
performance and second worst performance were ob-
served for predator–prey and random communities, re-
spectively. Note that almost half of the interactions are
spontaneously set to predator–prey interactions in

random communities (see “Generation of relative abun-
dance data using a dynamical model” section). To test
this hypothesis, we considered interaction matrices con-
sisting of a mixture of competitive and predator–prey
interactions because co-occurrence network perform-
ance was best and worst in competitive and predator–
prey (parasitic) communities, respectively. In particular,
we considered competition–parasitism mixture commu-
nities with the ratio pC of competitive interactions to all
interactions and investigated the relationship between
the ratio of predator–prey interactions (i.e., 1 − pC) and
AUPR values. As representative examples, we investigated
Pearson’s correlation-based method (a classical correlation-
based method; Fig. 5a), Pearson’s partial correlation method
(a classical graphical model-based method; Fig. 5b), CCLasso
(a correlation-based method for compositional data; Fig. 5c),
and SPIEC-EASI (a graphical model-based for compositional
data; Fig. 5d). As expected, we found negative correlations
between co-occurrence network performance (AUPR value)
and the ratio of predator–prey interactions (Fig. 5). Such
negative correlations were also observed in cases with differ-
ent network sizes (n= 50 and 100) and average degrees
(〈k〉= 2 and 8).

Discussion
Inspired by previous studies [30], we evaluated how well
co-occurrence network methods recapitulate microbial
ecological networks using a population dynamics model;
co-occurrence network methods are often used for dis-
cussing species interactions although they only infer eco-
logical associations. We compared wide-ranging
methods using realistic simulations. Our results provide
additional and complementary insights into co-
occurrence network approaches in microbiome studies.
The results indicate that compositional-data methods,

such as SparCC and SPIEC-EASI, are less useful in infer-
ring microbial ecological networks than previously
thought. As shown in Fig. 1, the performance (AUPR
values) of the compositional-data methods was moder-
ate; furthermore, these compositional-data methods
were not more efficient than the classical methods, such
as Pearson’s correlation-based method. This result is in-
consistent with previous studies [17, 18, 20]. This dis-
crepancy was mainly due to differences in co-occurrence
network method validation between this and previous
studies. Specifically, previous studies generated abun-
dance data from a multivariable distribution with a given
mean and covariance matrix and examined how accur-
ately co-occurrence network methods describe the ori-
ginal covariance matrix structure. However, this study
considered species abundances determined through
population dynamics (GLV equations) and examined
how accurately the methods reproduced interaction pat-
terns in ecological communities [30].

Hirano and Takemoto BMC Bioinformatics          (2019) 20:329 Page 8 of 14



Population dynamics may lead to more complex asso-
ciations between species abundances than parametric
statistical models due to the nonlinearity of GLV equa-
tions. In compositional data co-occurrence network
methods, such complex associations were likely difficult
to detect because they assumed linear relationships be-
tween species abundances. The performance of Spear-
man’s correlation-based and MIC-based methods was
almost equal to or higher than those of compositional-
data methods because they can consider nonlinear asso-
ciations, although such classical methods did not con-
sider the effects of the constant sum constraint in

compositional data. However, Pearson’s correlation-
based method also exhibited a similar or higher per-
formance than that of the compositional-data methods
(Fig. 1), although it assumes linear relationships between
species abundances in addition to the constant sum con-
straint. This may be due to approximation in the
compositional-data methods, which estimate covariance
matrices of the underlying absolute abundances from
relative abundances using iterative approximation ap-
proaches. Thus, compositional-data methods may fail to
correctly estimate the covariance structure of absolute
abundance. According to a previous study [18], such a

a b c

d e f

g h i

Fig. 4 Effects of the community type on co-occurrence network performance (AUPR value) in the cases of Pearson’s correlation-based method
(a), Spearman’s correlation-based method (b), MIC-based method (c), SparCC (d), REBACCA(e), CCLasso (f), Pearson’s partial correlation-based
method (g), Spearman’s partial correlation-based method (h), and SPEIC-EASI (i). Vertical-axis labels correspond to the community types: random
community (random; blue), mutualistic community (mutual; orange), competition–mutualism mixture community (mix; green), competitive
community (compt; red), and predator–prey (parasitic) community (pp; purple). Network size n = 50 and average degree 〈k〉 = 2. Random network
structure was considered. smax was set to 0.5. The number of samples was set to 300. Error bars indicate standard deviations
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limitation is present in SparCC. REBACCA is similarly
limited because its formalism is comparable to SparCC, al-
though sparse methods are different between SparCC and
REBACCA; thus, the performance of SparCC and
REBACCA may have been low for similar reasons. On the
other hand, CCLasso avoids these limitations [18], perform-
ing better than SparCC and REBACCA. However, more im-
provements may be required for CCLasso. It performed
similarly to Pearson’s correlation-based method, which ex-
hibited a higher performance using absolute abundances
(particularly in sparse networks; Additional file 1: Figure S3).
This indicates that CCLasso did not sufficiently infer the co-
variance structure of absolute abundances.
The graphical model-based methods were not more effi-

cient than the correlation-based methods, although they do
not consistently detect indirect associations (Fig. 1). In par-
ticular, Pearson’s and Spearman’s partial correlation-based
(classical graphical model-based) methods were not more
useful for inferring interaction patterns in ecological com-
munities than Pearson’s and Spearman’s correlation-based
(classical correlation-based) methods, and Spearman’s par-
tial correlation-based method predicted interaction patterns
in ecological communities poorly. This may have occurred
due to the effects of the constant sum constraint in com-
positional data; specifically, these classical graphical model-

based methods exhibited high performance with absolute
abundances (Additional file 1: Figure S3). The effects of the
constant sum constraint in partial correlation-based may be
more significant than those in correlation-based methods,
and errors due to the constant sum constraint in pairwise
correlations (zero th-order partial correlations) may be
amplified when calculating higher-order partial correlations.
Thus, classical graphical-based models may be less useful
than classical correlation-based models. The graphical
model-based method for compositional data SPIEC-EASI
has a similar problem. Similar to other correlation-based
methods for compositional data (e.g., SparCC), SPIEC-
EASI estimates absolute abundances from relative abun-
dances. The estimated absolute abundances are not entirely
accurate, which may be amplified in partial correlation (or
regression) coefficients because SPIEC-EASI calculates co-
efficients based on the estimated values with the errors as
classical partial correlation-based methods. CCLasso con-
siders such errors through a loss function. Thus, CCLasso
exhibited performance similar to SPIEC-EASI, although it
did not directly consider avoiding indirect associations.
Interaction patterns in dense networks were difficult to

predict (Fig. 2). This is generally because more indirect as-
sociations are observed; however, this may be because the
assumption of sparsity in addition to errors due to

a b

c d

Fig. 5 Relationship between co-occurrence network performance (baseline-corrected AUPR value) and the ratio of predator–prey (parasitic)
interactions (1 – pC). As representative examples, Pearson’s correlation-based method (a), Pearson’s partial correlation method (b), CCLasso (c), and
SPIEC-EASI (d) are shown. For each method, the following cases are shown: network size n = 50 and average degree 〈k〉 = 2; n = 100 and 〈k〉 = 2;
n = 50 and 〈k〉 = 8; and n = 100 and 〈k〉 = 8. Random interaction matrices and random network structure were considered. smax was set to 0.5. The
number of samples was set to 300. rs and p indicate the Spearman’s rank correlation coefficient and the associated p-value. The raw values (i.e.,
the values before averaging) were used for calculating rs
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absolute abundance approximation from relative abun-
dances for compositional-data methods. This assumption
is based on observations that real-world networks are very
large and sparse [42], and sparsity is achieved through
Lasso in the compositional-data methods. However, these
Lasso-based methods might have overlooked important
associations due to shrinkage and selection; Lasso may
pick only one or a few strongly correlated variable pairs
and shrink the rest to 0, i.e., no association [43]. To avoid
this limitation, for example, we may need to consider the
elastic-net and relaxed Lasso to estimate ecological associ-
ations under the sparsity assumption.
Additionally, interaction patterns in heterogeneous

networks were the most difficult to detect while those in
small-world networks, which are homogenous, were the
easiest (Fig. 3). This result indicates that heterogeneity
in degree distribution diminishes the performance of co-
occurrence networks. This is consistent with the results
of a previous study [30] in which it was observed that
networks suffer from local hot spots of spurious correl-
ation (indirect association) in the neighborhood of hub
species that engage in many interactions. We expected
that the graphical-based co-occurrence network method
SPIEC-EASI avoided this limitation; however, the per-
formance of SPIEC-EASI was similar to that of the other
methods, as mentioned above. This may be due to the
nonlinearity of species abundances and errors resulting
from absolute abundance approximation from relative
abundances. SPIEC-EASI may need to be improved.
Co-occurrence network performance increased with more

samples (Additional file 1: Figure S6). More than 200 sam-
ples were required until plateaued performance was ob-
tained. However, experimental studies may be able to
consider fewer samples, down to 30 samples or less. Co-
occurrence network methods that exhibit high performance
with small samples must be developed.
More importantly, we found that interaction types affect

co-occurrence network performance (Fig. 4). A previous
study [10] also investigated the effects of interaction types.
However, it used time-series data generated from GLV
equations and is limited to small-scale networks to avoid
system complexity. The behavior of the Lotka–Volterra
systems is less understood for systems larger than two
species, and small variations in the interaction matrix lead
to significantly different abundance patterns. To investi-
gate large-scale networks, we used steady-state species
abundances generated from GLV equations, inspired by a
previous study [30]. The data generation method per-
formed by Berry and Widder [30] and in this study differs
from the other previous study [10] although both studies
considered GLV equations. Generated datasets are consid-
ered as a collection of steady-state snapshots (i.e., cross-
sectional data) rather than time-series (longitudinal) data.
Moreover, it is reasonable that observed species

abundances are considered as cross-sectional data rather
than longitudinal data in many microbiome studies. Des-
pite the importance of time-series microbiome analysis
[40, 44], time resolutions are still low due to technical lim-
itations. As a result, we found that predator–prey (para-
sitic) interactions decrease co-occurrence network
performance (AUPR values; Fig. 5). This result indicates
detecting predator–prey interactions is more difficult than
detecting other types of interactions, such as competitive
and mutualistic interactions. This may be due to the be-
havioral complexity of predator–prey systems. The dy-
namics of predator–prey systems are known to be more
complex than those of the other types of systems, even if
the systems consist of only two species; in particular,
predator–prey systems tend to oscillate [31]. Complex
nonlinear associations are observed between the resulting
species abundances obtained from predator–prey communi-
ties; thus, co-occurrence network methods failed to predict
interaction patterns in these communities. This limitation
may be important because predator–prey (parasitic) interac-
tions play important roles in microbe–microbe interactions
and human–microbiome interactions [45]. To avoid this
issue, a compositional-data version of co-occurrence network
methods based on maximal information-based nonparamet-
ric exploration, such as MIC, must be developed as MIC can
detect such complex nonlinear associations [14].
However, further careful examination may be required.

For example, more realistic dynamical models must be
considered. For simplicity, we used classical GLV equa-
tions, and the conclusions we reached are limited to the
species abundances generated from this classical model.
The GLV equations may not reflect real-world microbial
ecosystems. Ideally, we should have compared the gener-
ated data with real-world data; however, such compari-
sons were impossible because of a lack of compiled real-
world data. The data on species (relative) abundances
are available in several databases (e.g., Human Micro-
biome Project [4] and Earth Microbiome Project [5]);
however, the model parameters (growth rate ri and inter-
action matrix Mij) can be adjusted to nearly fit real-
world abundance data using optimization methods.
Thus, ri and Mij in real-world microbial ecosystems are
needed to evaluate the validity of the generated abundance
data; these real-world data are poorly investigated. How-
ever, this limitation does pose a significant problem be-
cause the main result is the difficulty in inferring
microbial ecological networks using co-occurrence net-
work methods. Real-world ecosystems are likely more
complex. For example, species abundances, growth rates,
and interaction matrices are temporally changed due to
environmental perturbations. In this case, inferring eco-
logical associations and interactions may be more difficult.
Thus, it is believed that the main result also holds in more
realistic ecosystems.

Hirano and Takemoto BMC Bioinformatics          (2019) 20:329 Page 11 of 14



To more accurately detect ecological associations
and directly detect species–species interactions, how-
ever, alternative methods are also needed. For ex-
ample, a method grounded in maximum entropy
models of statistical physics has been proposed to dif-
ferentiate direct and indirect associations [46]. The
difficulty of interpreting species–species interactions
from co-occurrence data has been pointed out in
community ecology [47]. To overcome this difficulty,
Markov networks (Markov random fields) have been used
for inferring species–species interactions from co-occurrence
data in community ecology [48]. Dynamics (time series)-
based methods are also useful. For example, convergent
cross mapping [49] may be useful. This method is based on
nonlinear state-space reconstruction and can distinguish
causality in complex systems from correlation. The sparse S-
map method [50] is a data-oriented equation-free modeling
approach for multispecies ecological dynamics whose inter-
action topology is unknown, and it generates a sparse inter-
action network from a multivariate ecological time series
without presuming any mathematical formulation for the
underlying microbial processes. Another method, proposed
by Xiao et al. [51], is based on Jacobian (community) matri-
ces and can infer network topology and inter-taxa interaction
types without assuming any particular population dynamics
model from steady-state abundance data. Randomly distrib-
uted embedding [52] is a model-free framework that
achieves accurate future-state prediction based on short-
term high-dimensional data. However, these methods are
not applicable to compositional data and must be improved.
Thus, we did not consider these methods in this study.

Conclusions
Our findings indicate that co-occurrence network
methods are not efficient in interpreting interspe-
cies interactions in microbiome studies because
these methods only infer ecological associations.
However, these results do not diminish the import-
ance of co-occurrence network approaches. Co-
occurrence network approaches remain a challen-
ging research topic in the post-genomic era due to
the importance of human [4] and ecological micro-
biomes [5]. Our findings highlight the need for fur-
ther careful investigation of the validity of these
widely used methods and development of more
suitable approaches for inferring microbial eco-
logical networks.
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