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Summary

In the context of nonparametric regression and inverse problems, variational multiscale methods
combine multiscale dictionaries (such as wavelets or overcomplete curvelet frames) with regu-
larization functionals in a variational framework. In recent years, these methods have gained
popularity in nonparametric statistics due to their good reconstruction properties. Nevertheless,
their theoretical performance is, with few exceptions, poorly understood. Further, the compu-
tation of these estimators is challenging, as it involves non-smooth large scale optimization
problems.
In this thesis we apply variational multiscale methods to the estimation of functions of bounded
variation (BV). BV functions are relevant in many applications, since they involve minimal
smoothness assumptions and give simplified, interpretable cartoonized reconstructions. These
functions are however remarkably difficult to analyze, and there is to date no statistical theory
for the estimation of BV functions in dimension d ≥ 2.
The main theoretical contribution of this thesis is the proof that a class of multiscale estimators
with a BV penalty is minimax optimal up to logarithms for the estimation of BV functions in
regression and inverse problems in any dimension. Conceptually, our proof exploits a connection
between multiscale dictionaries and Besov spaces. We thus leverage tools from harmonic
analysis, such as interpolation inequalities, for our theoretical analysis.
Regarding the efficient computation of variational multiscale estimators, we present two ap-
proaches: a primal-dual method, and the semismooth Newton method applied to a regularized
problem and combined with the path-following technique. We discuss the implementation
of these methods and use them to illustrate the performance of multiscale BV estimators in
simulations.

The theoretical analysis presented in Chapters 2 and 3 has been partially submitted for publication,
and is available under del Álamo et al. (2018) and del Álamo and Munk (2019).
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CHAPTER 1

Introduction

We consider the problem of estimating a real-valued function f given observations of T f in the
commonly used white noise regression model (see e.g. Brown and Low (1996), Reiß (2008)
and Tsybakov (2009))

dY(x) = T f (x) dx +
σ
√

n
dW(x), x ∈ M. (1.1)

HereM denotes a Borel-measurable open subset of Rd, T : L2(Rd)→ L2(M) is a linear, bounded
operator, and dW denotes a Gaussian white noise process on L2(M) (defined in Section 2.1).

The domain M in which the data dY is defined is given by the inverse problem under consid-
eration. It is e.g. M = Rd if T is a convolution operator or the identity, or M = R × S d−1 if
T is the Radon transform (Natterer, 1986), where S d−1 denotes the d-dimensional unit sphere.
See Figure 1.1 for an illustration. The parameter σ n−1/2 > 0 serves as a noise level, and we
may assume it to be known, since otherwise it can be estimated efficiently (see e.g. Spokoiny
(2002) or Munk et al. (2005)). The parametrization σ n−1/2 is motivated by the fact that the
white noise model (1.1) is an idealization of a nonparametric regression model with n design
points and independent normal noise with variance σ2 (see Section 1.10 in Tsybakov (2009)).
Consequently, we see n informally as the sample size, and have the following intuition: the larger
n, the lower the noise level in (1.1) and the easier it is to reconstruct f .

In this setting, our goal is to reconstruct the function f from observations dY in (1.1), and to
quantify the reconstruction error as the sample size n grows.

Two clarifications are due: first, observing dY in the model (1.1) means that we have access to a
finite number of projections

〈φ, dY〉 := 〈φ,T f 〉L2 +
σ
√

n

∫
M
φ(x) dW(x) (1.2)
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for "test functions" φ ∈ L2(M). The integral against white noise dW is a random variable, as
defined in Section 2.1. We stress the word finite, since we want our reconstruction procedure
to be computable in finite time. And second, the meaning of "reconstruct f " or "estimate f "
here is to come up with a procedure that, based on observations (1.1), produces a function that
resembles f in some sense. We will measure "resemblance" in an Lq sense, and our benchmark
for good performance will be the minimax risk, defined in (1.12).

Without further assumptions, our task seems hopeless: if f can be just any function, then knowing
a finite amount of information is not enough for estimating it in a meaningful sense. A way of
solving this problem is to impose restrictions on f : these could either concern some qualitative
property (e.g. monotony or a general shape constraint (Dümbgen (2003), Guntuboyina and Sen
(2018))), or measure smoothness in a quantitative way (e.g. Hölder or Sobolev smoothness (Tsy-
bakov, 2009)). The challenge here is to find conditions that make estimation possible, while still
being realistic in applications.

In this thesis we work with the assumption that f is a function of bounded variation (BV),
written f ∈ BV , meaning it is in L1 and its weak partial derivatives of first order are finite
Radon measures on Rd. This restriction is not too burdensome: plenty of applications can be
modeled with functions of bounded variation. Crucially, the main finding of this thesis is that
this restriction is sufficient to enable the reconstruction of f in a statistical setting.

Truth ( f ) Transformed truth (T f ) Noisy data (dY)

Figure 1.1: Shepp-Logan phantom f , its Radon transform T f and data dY generated by adding
Gaussian white noise. T f is defined on L2(R × [0, 2π)).
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1.1 Methodology

Statistical models of inverse problems like (1.1) are relevant in plenty of applications, such
as medical imaging and tomography (Natterer and Wübbeling, 2001), astronomy and mi-
croscopy (Bertero et al., 2009), oceanography and weather modeling (Wunsch, 1996), and
geology and mining (Tahmasebi et al., 2016), to mention just a few. Most inverse problems
of interest are ill-posed, meaning that the operator T does not have a bounded inverse. Conse-
quently, a naive application of T−1 to the data dY will amplify the error. This motivates the use
of a form of regularization. To that end, several alternative approaches have been proposed, of
which we mention a few representative ones: the spectral method based on the singular value
decomposition (SVD, see e.g. Bissantz et al. (2007)); dictionary methods, where the observations
are projected onto a suitable frame in which denoising and inversion are performed (Cohen
et al. (2004), Hoffmann and Reiss (2008)); variational regularization methods, such as Tikhonov
(-Phillips) regularization (Phillips (1962), Morozov (1966), Scherzer et al. (2009)); iterative
methods with a form of regularization either in the iteration schema or as an early stopping rule
(see e.g. Bauer et al. (2009), Blanchard and Mathé (2012)); and Bayesian methods, in which
a prior distribution on the function space modeling f has a regularizing effect (see e.g. Stuart
(2010), Knapik et al. (2011)). Most related to this work are dictionary-based methods and
variational methods, which we briefly discuss from the perspective of this thesis.

a) Dictionary methods. The essential idea of dictionary methods is that, even though T does
not have a bounded inverse, it may have locally a bounded inverse. We distinguish two
variants of this approach, depending on the nature of the localization:

(i) Singular value decomposition (SVD). Let {φ j} denote an orthonormal basis of L2

that consists of singular vectors of the adjoint operator T ∗, i.e. they satisfy

T ∗φ j = κ jφ j

for singular values κ j → 0 as j → ∞. Such a basis exists if we assume T to be a
compact operator (see the spectral theorem for compact self-adjoint operators, e.g.
Theorem VII.3 in Reed and Simon (1972)). The SVD works as follows: if we project
the data dY onto the basis φ j, we get

〈φ j, dY〉 = 〈φ j,T f 〉 + σ n−1/2 〈φ j, dW〉

= κ j〈φ j, f 〉 + σ n−1/2 ε j.

Roughly, the projections 〈φ j, dY〉 rescaled by the singular value κ j equal the coef-
ficients of f with respect to the basis φ j plus noise. At this stage, truncation or
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thresholding of these noisy coefficients yields an estimator for f . Even though
SVD-based methods are widely used and enjoy theoretical guarantees for estimating
Sobolev and Hölder functions (Cavalier, 2011), they have a crucial weakness: the
user has no freedom in choosing the basis {φ j}, which is given solely by the operator
T . If it happens that the unknown function f is not sparse in this basis (or if its
coefficients do not decay fast enough), then SVD is bound to perform poorly for
reconstructing f . This brings us to the second kind of dictionary method.

(ii) Wavelet-vaguelette decomposition (WVD). Donoho (1995) introduced the WVD in
order to mitigate the deficiency of the SVD presented above. Given a linear operator
T and a wavelet basis {ψ j}, his idea was to construct vaguelette systems {u j} and {v j}

satisfying

Tψ j = κ jv j

T ∗u j = κ jψ j,

along with some additional regularity conditions. Once we have such systems, we
project the observations dY onto u j, which gives us the wavelet coefficients of f

rescaled by the singular value κ j. Performing thresholding in the wavelet domain and
transforming back to the image domain, which is known to perform optimally for
nonparametric regression (Donoho and Johnstone, 1998), yields a minimax optimal
reconstruction of f (Donoho, 1995). The success of this approach and its superiority
with respect to the SVD stems from the localizing nature of wavelet bases. A
disadvantage of this approach: not all operators have a WVD. However, extensions
of the WVD to deal with this problem have been proposed (see e.g. Picard and
Kerkyacharian (2006) and references therein).

However, it is known that for denoising multiscale dictionary methods combined with
thresholding or truncation may generate artifacts (Gibbs phenomenon). The reason for
that is of computational nature: dictionary methods (especially wavelets) are designed for
compression, in which a function is represented with as few dictionary elements as possible
within a given error, typically measured by an Lq-loss. But having few dictionary elements,
which are often oscillatory functions, induces oscillation artifacts in the reconstruction.
One way to circumvent this issue is to use overcomplete dictionaries or frames: in doing
so, we give up compression properties but gain reconstruction accuracy (Grasmair et al.,
2018). Another way to solve this issue is given by variational regularization methods.

b) Variational regularization. This technique uses the assumption (or prior knowledge) that
the function f we wish to reconstruct is not arbitrary, but satisfies some regularity property,
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such as being in a certain function space. Assuming that the regularity of f is measured
well by a functional R(·), we may pose the estimation problem as an optimization problem:
Find a function f̂ with a small R(·) value and such that T f̂ is close to the observed data
dY , i.e.,

f̂ ∈ argmin
g
R(g) + S(Tg, dY), (1.3)

where S(Tg, dY) measures the similarity between Tg and dY . A usual choice of S(·, ·) is a
Hilbert space distance, although alternatives exist (see e.g. Nemirovski (1985) and Candès
and Tao (2007)). On the other hand, a common choice of the regularization functional
R(·) are Sobolev norms, but more subtle alternatives such a Besov (Hohage and Miller,
2019) or BV seminorms (Rudin et al., 1992) have been considered. We remark that
the estimator (1.3) has the advantage of automatically producing a function of the right
regularity (as measured by R), which limits the effect of artifacts. On the other hand,
variational estimators typically lack the spatial adaptation properties characteristic of
wavelet methods. The reason is that, for analytical and numerical simplicity, researchers
have mostly concentrated on regularization functionals R that are too smoothing (e.g. a
Hilbert space norm). This has the effect of producing oversmoothed reconstructions.

This dichotomy is the starting point of this work: Multiscale dictionary methods are locally
adaptive but prone to artifacts, and variational methods avoid artifacts at the price of losing spatial
adaptation. In this thesis we propose an estimation framework that combines the local adaptation
of multiscale dictionaries with the smoothness guaranties of variational regularization with the
BV seminorm (see Section 2.1). Since the BV seminorm is mildly smoothing, it preserves the
local reconstruction properties of dictionary methods. We prove that the proposed estimators are
minimax optimal up to logarithmic factors for estimating BV functions in any dimension for a
variety of inverse problems, including denoising (T = id), Radon inversion and deconvolution.

Functions of bounded variation

Functions of bounded variation are L1 functions whose weak gradients are finite Radon measures.
They satisfy very weak regularity properties, and are suitable to model objects with disconti-
nuities. This is a desirable property for instance in medical imaging applications, where sharp
transitions between tissues occur, and smoother functions would represent them inadequately.
Consequently, BV functions have been studied extensively in the applied and computational anal-
ysis literature, see e.g. Chambolle and Lions (1997), Meyer (2001), Rudin et al. (1992), Scherzer
et al. (2009) and references therein.
Remarkably, the very reason for the success of functions of bounded variation in applications,
namely their low smoothness, has hindered the development of a rigorous theory for the corre-
sponding estimators in a statistical setting. In dimension d = 1, Mammen and van de Geer (1997)
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showed that the least squares estimator with a total variation (TV) penalty attains the minimax
optimal convergence rates when T is the identity operator. Further, Donoho and Johnstone (1998)
proved the optimality of wavelet thresholding over BV in d = 1 and T = id, while Donoho
(1995) extended these results to operators T admitting a WVD. In contrast, there are to the best
of our knowledge no statistical guarantees for estimating BV functions in dimension d ≥ 2.
Roughly speaking, the main challenges in higher dimensions are twofold: first, the embedding
BV ↪→ L∞ fails if d ≥ 2; and second, the space BV does not admit a characterization in terms of
the size of wavelet coefficients. This makes wavelet thresholding unsuitable for estimating BV

functions. More generally, the space BV does not admit an unconditional basis (see Sections 17
and 18 in Meyer (2001)). In statistical terms this means that purely dictionary-based methods
are doomed to perform poorly for estimating BV functions.

On the other hand, the failure of the embedding into L∞ for d ≥ 2 is related to the fact that BV

behaves roughly like Sobolev spaces W s,p with s < d/p. These spaces contain discontinuous
functions, and statistical estimation there is challenging and has received little attention. One
contribution of this thesis is to characterize the minimax estimation rates in these spaces.

An alternative route to estimating BV functions in higher dimension is to discretize the ob-
servational model. This approach has seen recent successes (see e.g. Hütter and Rigollet
(2016), Dalalyan et al. (2017)), which we discuss in more detail in Section 1.4 below.

1.2 Multiscale total variation estimation

As stressed above, we want to construct a variational estimator of the form (1.3) which enjoys
the benefits of multiscale dictionaries. A way to achieve that is to include a multiscale dictionary
in the data-fidelity S(·, ·). While there are several ways of doing so, we propose to use

S(Tg, dY) := max
ω∈Ωn

∣∣∣〈uω,Tg〉 − 〈uω, dY〉
∣∣∣, (1.4)

where {uω} is a vaguelette system associated with the operator T , and Ωn is a finite set of indices,
typically corresponding to different locations and scales. In this thesis we consider the variational
estimator (1.3) with data-fidelity (1.4) in constrained form, i.e.,

f̂n ∈ argmin
g∈Fn

|g|BV subject to max
ω∈Ωn

∣∣∣〈uω,Tg〉 − 〈uω, dY〉
∣∣∣ ≤ γn, (1.5)

where γn is a threshold to be chosen, and we minimize over a set of functions Fn to be specified
later. Notice that the operator T is inverted indirectly by the dictionary elements uω. Indeed, by
the definition of the vaguelettes, the data-fidelity (1.4) is actually a constraint on the wavelet
coefficients of g: they are forced to be close to the wavelet coefficients of the unknown function
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f , up to noise terms. Consequently, f̂n will enjoy the spatial adaptation properties of wavelet
methods, while the regularization term |g|BV in (1.5) ensures that f̂n is well-behaved in the BV

norm.

Example 1. In order to illustrate the estimator f̂n, consider the situation where d = 2, T = id,
and the multiscale dictionary consists of normalized indicator functions of dyadic squares (Ne-
mirovski, 2000),

Φ =

{ 1
√
|B|

1B(x)
∣∣∣∣∣ B dyadic square ⊆ [0, 1]2

}
,

where |B| denotes the Lebesgue measure of the set B. Consider a particular estimator f̂n of the
form (1.5) as

f̂n ∈ argmin
g∈Fn

|g|BV s.t. max
dyadic |B|≥ 1

n

1
√
|B|

∣∣∣∣∣ ∫
B

g(x) − f (x) dx −
σ
√

n

∫
B

dW(x)
∣∣∣∣∣ ≤ γn, (1.6)

that is, Ωn consists of all squares B ⊆ [0, 1]2 of size |B| ≥ 1/n with vertices at dyadic positions.
The main peculiarity of f̂n is the data-fidelity term, which encourages proximity of f̂n to the truth
f simultaneously at all large enough dyadic squares B. This results in an estimator that preserves
features of the truth in both the large and the small scales, thus giving a spatially adaptive

estimator. This is illustrated in Figure 1.2 (see Chapter 4 for an algorithmic implementation): the
multiscale TV-estimator f̂n is represented in the lower left corner, and it succeeds to reconstruct
the image well at both the large (sky and building) and small scales (stairway). We show for
comparison the classical L2-TV-regularization estimator, also known as Rudin-Osher-Fatemi
(ROF) estimator (Rudin et al., 1992)

f̂λ ∈ argmin
g
‖g − Y‖22 + λ|g|BV , (1.7)

which employs a global L2 data-fidelity term. The parameter λ is chosen here in an oracle way
so as to minimize the distance to the truth, where we measure the "distance" by the symmetrized
Bregman divergence of the BV seminorm (see Chapter 5). As seen in Figure 1.2, the L2-TV
estimator successfully denoises the image in the large scales at the cost of details in the small
scales. The reason is simple: the use of the L2 norm as a data-fidelity, which measures the
proximity to the data globally. This means that the optimal parameter λ is forced to achieve
the best trade-off between regularization and data fidelity in the whole image: in particular, in
rich enough images there will be regions where one either over-regularizes or under-regularizes,
e.g. in the stairway in Figure 1.2. Finally, we also show the curvelet thresholding estimator in
Figure 1.2. As expected, curvelet thresholding performs excellently on elongated structures
(stairway), but it introduces artifacts in locally constant regions (sky, building). In Chapter 5 we
present a broader quantitative comparison study of different methods.
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Original Observations

Original (detail) Curvelet thresholding

Multiscale TV L2-TV

Figure 1.2: Row-wise, from top to bottom: original image and noisy version with signal-to-noise
ratio σ−1 ‖ f ‖L∞ = 5; zoom in of the original image and of the curvelet thresholding estimator;
zoom in of the multiscale TV-estimator (1.5) and of the estimator f̂λ from (1.7) with oracle
λ∗ = argminE

[
DBV ( f̂λ, f )

]
, where DBV (·, ·) denotes the symmetrized Bregman divergence of

the BV seminorm. See Chapter 5 for the details of the simulation.
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Choice of the threshold γn

Both the constrained minimization (1.5) and the penalized minimization problem (1.3) involve
tuning parameters γn and λ that have to be chosen. Crucially, there is an optimal choice for γn

and λ, in the sense that choosing a smaller parameter leads to overfitting the data, and choosing a
larger parameter induces oversmoothing.
In penalized estimation, the optimal parameter λ typically depends on the unknown function f ,
and there are data-driven approaches to estimate it, such as e.g. cross validation (Wahba, 1977),
or a version of Lepskii’s balancing principle (Lepskii, 1991) for inverse problems (Mathé and
Pereverzev, 2003).
We prefer constrained over penalized minimization because the optimal γn depends on the noise
model but not on f , and it can be computed using known or simulated quantities only. To see
that the optimal γn is independent of f , consider the following trade-off: the smaller γn, the
fewer functions satisfy the constraint in (1.5). Since the best reconstruction we can hope for is
the true regression function f , the optimal γn is the one that is large enough to let f be a feasible
function, but no larger. In this sense, note that f satisfies the constraint in (1.5) precisely when

max
ω∈Ωn

∣∣∣〈uω,T f 〉 − 〈uω, dY〉
∣∣∣ = max

ω∈Ωn

σ
√

n

∣∣∣〈uω, dW〉
∣∣∣ ≤ γn. (1.8)

Assume for a moment that uω ∈ L2 with ‖uω‖L2 = 1 for all ω. Then the left-hand side is
the maximum of the absolute value of #Ωn standard normal random variables times σ n−1/2.
Consequently, a simple computation (see the claim in equation (2.12)) implies that (1.8) holds
asymptotically almost surely for the universal threshold

γn = κ σ n−1/2 √
2 log #Ωn, (1.9)

with κ depending on the dictionary Φ in an explicit way (see Theorem 4). This argument can be
adapted to the case that the uω do not have norm one, as long as they remain bounded above and
below by positive constants. We remark that this universal choice of the parameter γn appears to
us as a great conceptual and practical advantage of the estimator (1.5), in contrast to penalized
estimators such as (1.7) requiring more complex parameter-choice methods (e.g. Lepskii (1991)
or Wahba (1977)).

Multiscale data-fidelity

There are several reasons why the multiscale data-fidelity (1.4) is preferable over more classical
choices, such as the L2-norm. For the sake of simplicity, we illustrate them here in the case
where T is the identity and {uω} is an orthonormal wavelet basis. In that case, the multiscale
constraint in (1.5) requires the wavelet coefficients of f̂n to be close to the coefficients of f , up to
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noise terms: ∣∣∣〈uω, f̂n〉 − 〈uω, f 〉 − σ n−1/2〈uω, dW〉
∣∣∣ ≤ γn ∀ω ∈ Ωn.

In particular, similarity between f̂n and f is required at all positions in all scales. On the other
hand, using the L2 data-fidelity and writing it in terms of the wavelet basis (which is possible by
orthonormality) imposes a constraint of the form∑

ω∈Ωn

∣∣∣〈uω, f̂n〉 − 〈uω, f 〉 − σ n−1/2〈uω, dW〉
∣∣∣2 ≤ L2

n. (1.10)

This is a constraint on the average error, and it enforces similarity between f̂n and f on average,
and not pointwise. We have seen above that the optimal choice of γn is given by (1.9), which
implies that (1.8) holds asymptotically almost surely. For the L2 data-fidelity we choose the
threshold Ln analogously, i.e., such that the true function f̂n = f satisfies (1.10) with high
probability. In that case, the summands in (1.10) would be squares of independent normal
random variables (by orthogonality of uω), so L2

n should be a quantile of a χ2 random variable
with #Ωn degrees of freedom. This gives roughly Ln ∼ σ n−1/2 √#Ωn. The difference between
the multiscale and L2 constraints is now apparent:

multiscale constraint: `∞ ball of radius σ n−1/2 √
2 log #Ωn,

L2 constraint: `2 ball of radius σ n−1/2 √
#Ωn,

where both constraints are on the wavelet domain. Due to the norm equivalence ‖x‖`∞ ≤
‖x‖`2 ≤

√
#Ωn ‖x‖`∞ , ∀x ∈ `∞(Ωn), the difference between the constraints may not seem

excessive. However, the difference is considerable. Indeed, in this thesis we choose the number
of constraints #Ωn to behave polynomially in n (see Assumption 4). Consequently, the radius in
the multiscale constraint tends to zero as n→ ∞, while the radius in the L2 constraint tends to a
constant or diverges if n = O(#Ωn). Hence, the multiscale constraint set is much smaller for n

large, and we expect the multiscale data-fidelity to produce more faithful reconstructions.

The constraint in (1.5) can also be interpreted from a hypothesis testing perspective (Lehmann
and Romano, 2006). Given a candidate function g, we can ask how likely it is that the observed
data dY arose from g. The question can be made precise by testing, for each ω ∈ Ωn, the
hypothesis

Hω : 〈uω, g〉 = 〈uω, f 〉 against Kω : 〈uω, g〉 , 〈uω, f 〉.

The log-likelihood ratio test for testing this hypothesis under model (1.1) is given by |〈uω, g〉 −
〈uω, dY〉|, so the multiscale data-fidelity (1.4) is a test statistic for testing the hypotheses Hω

simultaneously for all ω ∈ Ωn. Choosing γn appropriately, the constraint in (1.5) includes exactly
the functions that pass all these tests.
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Finally, there is a seemingly unrelated yet crucial reason for using (1.4) as a data-fidelity term.
For T = id and {uω} a smooth enough wavelet basis, the multiscale data-fidelity (1.4) is a
truncation of the Besov B−d/2

∞,∞ norm of g − dY , seen as a random temperate distribution. More
precisely, we have

‖g‖B−d/2
∞,∞
≤ C max

ω∈Ωn

∣∣∣〈uω, g〉∣∣∣ + C
‖g‖L∞
√

n
(1.11)

for any function g ∈ L∞ and a suitable set Ωn. This is a Jackson-type inequality (Cohen,
2003), representing how well a function can be approximated in the Besov B−d/2

∞,∞ norm by its
coefficients with respect to {uω}. It is well-known that smooth enough wavelet bases satisfy this
condition (Cohen, 2003). In Section 2.4 we will show (1.11) for more general multiscale systems,
e.g. systems of indicator functions of dyadic cubes, and mixed frames of wavelets and curvelets
and of wavelets and shearlets. Remarkably, inequality (1.11) allows us to relate the statistical
multiscale constraint in (1.4) to an analytic object: the Besov norm. This connection allows us to
leverage tools from harmonic analysis to analyze the performance of the estimator (1.5).

Besides the mathematical reasons just given, there is also a practical motivation for using multi-
scale data-fidelites. In fact, multiscale dictionaries are widely used and known to perform well
since the introduction of wavelets (see e.g. Daubechies (1992) and Donoho (1993)). Moreover,
overcomplete frames such as curvelets (Candès and Donoho, 2000), shearlets (Labate et al.
(2005), Guo et al. (2006)) and other multiresolution systems (see Haltmeier and Munk (2014)
for a survey) have been shown to perform well in theory and numerical applications, specially in
imaging. Several works have proposed variants of the multiscale data-fidelity (1.4) in a variational
estimation setting (Meyer (2001), Starck et al. (2001) Durand and Froment (2001), Malgouyres
(2001), Candès and Guo (2002), Malgouyres (2002), Osher et al. (2003), Haddad and Meyer
(2007) Garnett et al. (2007)). Closer to our work, multiscale methods using overcomplete frames
in combination with a BV penalty have been empirically shown to yield promising results for
function estimation (Malgouyres (2002), Candès and Guo (2002), Dong et al. (2011), Frick et al.
(2012), Frick et al. (2013)). The theory in those cases is still lacking, which motivates the present
work.

Challenges

Until now we have motivated the estimator (1.5) as a synthesis of very successful techniques for
solving inverse problems, and we have illustrated and explained the multiscale constraint. Before
we turn to the discussion of the optimal convergence properties of f̂n, let us admit two limitations
of the multiscale TV-estimator. First, not every operator T has an associated vaguelette system
{uω}, as we use in (1.5). In fact, only reasonably homogeneous operators have such a system
(see Donoho (1995)). On the other hand, for our theory we do not need the whole generality
of the WVD (see Assumption 4 in Chapter 3), and many practically relevant operators such
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as the Radon transform, convolution or integration satisfy our assumptions (see Examples 2 in
Chapter 3).

The second limitation concerns the solution of the optimization problem in (1.5), which is a
non-smooth, high dimensional optimization problem (since n and #Ωn might be large). Due to
the non-smoothness, standard interior point methods (Nesterov and Nemirovsky, 1994) are not
applicable here, and the large number of variables makes it a challenging optimization problem.
However, the computation of (1.1) is now feasible due to recent progress in convex optimization,
e.g. in primal-dual methods (Chambolle and Pock, 2011) and acceleration thereof (Malitsky and
Pock, 2018), and in semismooth Newton methods with the path-following technique (Clason
et al., 2010). In Chapter 4 we present different approaches to compute the minimum in (1.5), and
discuss their advantages and disadvantages in terms of runtime and precision.

1.3 Main results

The main result of this thesis states that the estimator (1.5) is minimax optimal (up to logarithmic
factors) for estimating BV functions in any dimension for a family of inverse problems. The
concept of minimax optimality is based on the notion of minimax risk over a set of functions X,
which is a measure of the difficulty of a statistical problem and a benchmark for the performance
of estimators. It is defined as the error of the best estimator in the most difficult instance in the
set X, i.e.,

R(Lq, X) := inf
{

sup
f∈X
E f ‖ f̂ − f ‖Lq

∣∣∣∣∣ f̂ is an estimator using (1.1)
}
, (1.12)

where the infimum runs over all estimators, i.e., over all measurable functions f̂ : Yn → L2(Rd),
where Yn is the sample space where the process in (1.1) takes values (see Section 1.2.2 in Giné
and Nickl (2015) for more details). Here, the expectation is taken with respect to the measure
that generates the observations, which depends on f . The error is measured here in an Lq-sense.

The minimax rate over X with respect to the Lq-risk is defined as the rate at which R(Lq, X)
tends to zero as the noise level in (1.1) tends to zero, i.e., as n→ ∞.

In order to formulate our results, define for L > 0 the parameter set

BVL :=
{
g ∈ BV ∩D(T )

∣∣∣ |g|BV ≤ L, ‖g‖L∞ ≤ L, supp g ⊆ [0, 1]d}, (1.13)

whereD(T ) ⊂ L2(Rd) denotes the domain of the operator T . In Theorem 5 below we show that
the minimax rate over the set BVL satisfies

lim inf
n→∞

nmin{ 1
d+2β+2 ,

1
(d+2β)q } R(Lq, BVL) > 0,
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where β ≥ 0 is the degree of ill-posedness of the operator T . This means that no estimator can
have an Lq-error tending to zero strictly faster than n−min{ 1

d+2β+2 ,
1

(d+2β)q } uniformly over BVL. For
given d, β ≥ 0 and q ∈ [1,∞], define the number

ϑq,β :=


1

d+2β+2 for q ≤ 1 + 2/(d + 2β)
1

q (d+2β) for q > 1 + 2/(d + 2β).
(1.14)

Our main theorem can be stated informally as follows.

Theorem 4 (Informal). Let the dimension d ≥ 2, and for β ≥ 0 let T have a WVD with singular
values behaving as κ j = 2− jβ (see Assumption 4 in Chapter 3). Let the threshold γn be as in (1.9)
for κ > κ∗ depending on T and d only. Then the estimator f̂n attains the minimax optimal rate of
convergence over BVL up to a logarithmic factor,

sup
f∈BVL

E
[
‖ f̂n − f ‖Lq

]
≤ CL n−ϑq,β log n (1.15)

for n large enough, for any q ∈
[
1,∞

)
, any L > 0 and a constant CL > 0 independent of n, but

dependent on L, σ, d and T . For d = 1, (1.15) holds with an additional log n factor.

The estimator f̂n is nearly optimal in the sense that there exists no estimator such that the
left-hand side of (1.15) is o(n−ϑq,β).

The theorem refers to inverse problems for which T has a WVD. As we show in Chapter 3, this
includes the cases of regression T = id, Radon inversion, and deconvolution.

The theorem proves convergence when the function f is supported on the unit cube, as stated
in (1.13). The reason for this constraint is that, since we only have a finite amount of information,
we cannot hope to recover a function with infinite support. The restriction to the unit cube
is in a sense arbitrary: any regular enough compact set would do. While the restriction to
compactly supported functions is a common practice in nonparametric statistics, there is an
alternative: to assume that the regression function f is periodic, i.e. defined on the torus Td. See
for instance Grasmair et al. (2018) for an example of function estimation under a periodicity
assumption.

The proof of Theorem 4 relies on the compatibility between the multiscale constraint and the
B−d/2−β
∞,∞ norm, as expressed in (1.11) for β = 0. This allows us to use techniques from harmonic

analysis to analyze f̂n, such as the interpolation inequality between the spaces B−d/2−β
∞,∞ and BV ,

‖g‖Lq ≤ C‖g‖
2

d+2β+2

B−d/2−β
∞,∞

‖g‖
d+2β

d+2β+2

BV ∀g ∈ B−d/2−β
∞,∞ ∩ BV (1.16)

for any q ∈
[
1, d+2β+2

d+2β
]
, d ≥ 2. A variant of this inequality was proven in Cohen et al. (2003)
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by a delicate analysis of the wavelet coefficients of functions of bounded variation (see Ledoux
(2003) for an alternative approach). The inequality (1.16) is the first step towards bounding the
Lq-risk of f̂n: inserting g = f̂n− f we can bound it in terms of the B−d/2−β

∞,∞ and the BV-risks. The
BV-risk is bounded by a constant with high probability, while the B−d/2−β

∞,∞ -risk can be related to
the multiscale data-fidelity in (1.5). In fact, under suitable assumptions we have

‖ f̂n − f ‖B−d/2−β
∞,∞

≤ C max
ω∈Ωn

∣∣∣〈uω,T f̂n〉 − 〈uω,T f 〉
∣∣∣ + C ‖ f̂n − f ‖L∞ n−1/2

≤ C max
ω∈Ωn

∣∣∣〈uω,T f̂n〉 − 〈uω, dY〉
∣∣∣ + C

σ
√

n
max
ω∈Ωn

∣∣∣∣∣ ∫
M

uω(x) dW(x)
∣∣∣∣∣

+ C ‖ f̂n − f ‖L∞ n−1/2.

The first term is bounded by γn = O(n−1/2 √
log #Ωn) by construction, and it represents

the error that we allow the minimization procedure to make. The second term behaves as
O(n−1/2 √

log #Ωn) asymptotically almost surely, and it represents the stochastic error arising
from the randomness of the observations. The third term is a truncation error, stemming from
the use of only a finite amount of information. Inserting the result in (1.16) yields the conclusion
that ‖ f̂n − f ‖Lq ≤ C n−

1
d+2β+2 log n with high probability for q ≤ 1 + 2/(d + 2β). The bound for

q > 1 + 2/(d + 2β) follows from Hölder’s inequality applied between L1+2/(d+2β) and L∞. For
d = 1 we proceed analogously with some modifications. In Section 2.3 we give a more detailed
sketch of the proof.

Minimax risk over Besov spaces

As stated in Theorem 4, the minimax rate over BVL presents a sharp transition depending on
the Lq-risk: it is n−

1
d+2β+2 for q ≤ 1 + 2/(d + 2β), and it deteriorates to n−

1
q (d+2β) otherwise. A

remarkable consequence is that the L∞ minimax risk does not tend to zero, i.e., there is no
estimator that is L∞-consistent uniformly over BV functions.

More generally, this behavior is characteristic of Besov spaces Bs
p,t for s ≤ d/p. This was

observed for the first time by Goldenshluger and Lepskii (2014) and Lepskii (2015) in the
context of density and function estimation, respectively. They considered anisotropic Nikolskii
spaces, which in the isotropic case coincide with the Besov spaces Bs

p,∞, and in general allow
for different smoothness and integrability indices for different spatial directions. In Theorem 6
we generalize their results in the isotropic case and establish the minimax rates for regression
and mildly ill-posed inverse problems over all spaces

(Bs
p,t ∩ L∞)L :=

{
g ∈ Bs

p,t ∩ L∞ | ‖g‖Bs
p,t
≤ L, ‖g‖L∞ ≤ L, supp g ⊆ [0, 1]d} (1.17)

for s ≤ d/p, s > 0, p, t ∈ [1,∞] and L > 0.
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Dense regime

n−
s
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Sparse regime

(n−1 log n)
s+d(q−1−p−1)

2s+d−2d/p

Multiscale regime

n−
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dq

1 p
0

d/p

q

s

Figure 1.3: Regimes for the minimax rates for regression (β = 0) over Besov Bs
p,t spaces, together

with the associated rates. The sloped line is given by q = p(1 + 2s/d).

Our result completes the picture of minimax rates over Besov spaces. Beyond the well-known
dense and sparse regimes, which correspond to q/p < 1 + 2s/(d + 2β) and q/p ≥ 1 + 2s/(d + 2β),
s > d/p, respectively, our results concern the regime q/p ≥ 1 + 2s/(d + 2β) and s ≤ d/p. The
three regimes are depicted in Figure 1.3 for β = 0. The new regime, in which the minimax rate
behaves differently than in the others, is in a sense a middle ground between the dense and the
sparse regime. Indeed, the minimax risk in the dense regime is driven by functions with mass
everywhere, meaning that those functions are the most challenging to estimate. On the other
hand, the minimax risk in the sparse regime is driven by localized spikes. In the new regime,
the risk is driven by blocks of spikes at different locations and scales, and the precise amount of
spikes depends on the quantity d − sp ≥ 0. For that reason, we refer to it as multiscale regime.

1.4 Related work and contributions

In spite of the success of BV functions in imaging applications (see e.g. Scherzer et al. (2009) and
references therein), there are surprisingly few works that analyze the estimation of BV functions
in a statistical setting. Starting with the seminal paper of Rudin et al. (1992) that proposed the
TV-regularized least squares (ROF) estimator for image denoising, the subsequent development
of TV-based estimators depends greatly on the spatial dimension.

In dimension d = 1, Mammen and van de Geer (1997) showed that the ROF-estimator attains the
optimal rates of convergence in the discretized nonparametric regression model, and Donoho
and Johnstone (1998) proved the optimality of wavelet thresholding for estimation over BV . We
also refer to Davies and Kovac (2001) and Dümbgen and Kovac (2009) for a combination of TV-
regularization with related multiscale data-fidelity terms in d = 1, and to Li et al. (2017) for the
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combination of a multiscale constraint with a jump penalty for segmentation of one-dimensional
functions. In statistical inverse problems, the only work proving minimax optimal convergence
rates for the estimation of BV is, to the best of our knowledge, Donoho (1995). He shows that
thresholding of the WVD is minimax optimal over a range of Besov spaces Bs

p,t and for a class
of β-smoothing inverse problems, meaning that the singular values of the operator T behave
as κ j = 2− jβ. In the case relevant for BV (s = p = 1), minimax optimality holds for the range
β < 1 − d/2, i.e. for β-smoothing operators in dimension d = 1 and β ∈ [0, 1/2). The present
work is hence an improvement, since we do not impose any limitation on β nor on the dimension
d. On the other hand, our estimator is suboptimal by the log n factor in (1.15), while Donoho’s
estimator achieves the exact minimax rate.

In higher dimensions, the situation becomes more involved due to the low regularity of functions
of bounded variation. There are roughly two approaches to deal with this: either employ a
finer data-fidelity term, or discretize the problem. Concerning the first approach, we distinguish
three different variants of the ROF-model that are related to our setting. First, Meyer (2001)
proposed the replacement of the L2-norm in the ROF functional by a weaker norm designed to
match the smoothness of Gaussian noise. Several algorithms and theoretical frameworks using
the Besov norm B−1

∞,∞ (Garnett et al., 2007), the G-norm (Haddad and Meyer, 2007) and the
Sobolev norm H−1 in d = 2 (Osher et al., 2003) were proposed, but the statistical performance
of these estimators was not analyzed. A different approach started with Durand and Froment
(2001), Malgouyres (2001) and Malgouyres (2002), who proposed estimators of the form (1.5)
with a wavelet basis. Following this approach and the development of curvelets (see e.g. Candès
and Donoho (2000) for an early reference), Candès and Guo (2002) and Starck et al. (2001)
proposed the estimator (1.5) with a curvelet frame and a mixed curvelet and wavelet family,
respectively, which showed good numerical behavior. A third line of development that leads to
the estimator (1.5) began with Nemirovski (1985) (see also Nemirovski (2000)). He proposed a
variational estimator for nonparametric regression over Hölder and Sobolev spaces that used a
data-fidelity term based on the combination of local likelihood ratio tests: the multiresolution

norm. That type of data-fidelities were also proposed by Frick et al. (2012) and Frick et al. (2013)
in combination with a BV penalty. In statistical inverse problems, Dong et al. (2011) proposed an
estimator using TV-regularization constrained by the sum of local averages of residuals, instead
of the maximum we employ in (1.5). In a nutshell, the situation (both in regression and in inverse
problems) for the estimation of BV functions in dimension d ≥ 2 is the following: a plethora
of estimation procedures has been proposed, many of which employ data-fidelity terms weaker
than the L2-norm. Nevertheless, no convergence guaranty has been proven for any of these
methods. In that sense, this thesis presents the first statistical analysis of a method for estimating
BV functions in regression and inverse problems in higher dimensions. Moreover, we prove that
such method is optimal in a minimax sense up to logarithms.
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The other approach to TV-regularization in higher dimensions is to discretize the observational
model (1.1), thereby reducing the problem of estimating a function f ∈ BV to that of estimating
a vector of function values ( f (x1), . . . , f (xn)) ∈ Rn. In particular, the risk is measured by the
Euclidean norm of Rn, and not by the continuous L2-norm. TV-regularized least squares in this
discrete setting is nowadays fairly well understood. The recent works by Hütter and Rigollet
(2016) and Dalalyan et al. (2017) proved convergence of the TV least squares estimator in any
dimension in a variety of discretized models, including functions defined on certain graphs.
These rates were shown to be minimax optimal (Sadhanala et al., 2016). Also, the generalization
from BV to trend-filtering is a current research topic (Guntuboyina et al. (2017), Wang et al.
(2016)). However, this discretized model is radically different from the continuous model
we consider. To see that, notice that BV functions are indistinguishable from Sobolev W1,1

functions in the discretized model. Conversely, BV functions can have jump singularities,
which makes their estimation significantly more challenging than estimating a Sobolev function.
Therefore, the analysis of discrete TV-regularization is inspiring, but it regrettably does not
solve the problem in the continuous setting: different and genuinely continuous tools are needed,
such as the interpolation inequality (1.16). Another drawback of this approach is that the BV

seminorm is quite sensitive to discretization. In fact, it has been shown that the minimizers
of the discretized TV-regularized least squares estimator do not necessarily converge to their
continuous counterparts in a reasonable sense as the discretization tends to zero (see Lassas and
Siltanen (2004) and Section 4.2 below for more details). Besides, a limitation of discretized
models is that they typically discretize the functions and the BV seminorm with respect to the
same grid. The discretization of the signals is usually determined by the application, but different
discretizations of the BV seminorm can have different effects, so it might be desirable to choose
how to discretize it (see e.g. Condat (2017)). It is hence useful to study the estimation of BV

functions in the continuous setting, since it gives insight on how the estimation problem is,
independently of the discretization of signals or functionals.
An interesting connection of our result with discrete models is that the minimax rate of estimation
of BV functions with respect to the discrete L2-risk was shown by Sadhanala et al. (2016) to
be n−min{ 1

d+2 ,
1

2d } up to logarithms. This coincides with the rate in Theorem 4 for q = 2, so our
results explain the phase transition in this rate as arising from the use of the L2 risk. Furthermore,
the same rate was shown by Han et al. (2017) to be minimax for estimating bounded, component-
wise isotone function in the discrete model, again with respect to the discrete L2-risk. This means
that the statistical complexity of estimating BV functions equals the complexity of estimating
isotone functions: this result is well-known in dimension d = 1, but we are not aware of any such
result in d ≥ 2.
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At a technical level, our work is inspired by several sources. We have already mentioned Donoho
(1995), who introduced the WVD as a means for using wavelet methods in inverse problems
(see also Abramovich and Silverman (1998) for a variant of the WVD, and Candès and Donoho
(2002) for a refined approach for Radon inversion). Besides these works, there have been
several approaches that implicitly use the WVD idea. We refer to Schmidt-Hieber et al. (2013)
and Proksch et al. (2018) for hypothesis testing in inverse problems, where multiscale dictio-
naries adapted to the operator T are employed. Another source of inspiration for our work
are nonparametric methods that combine variational regularization techniques with multiscale
dictionaries. Here we refer to Candès and Guo (2002), Dong et al. (2011) and Frick et al. (2012)
for an empirical analysis of such methods in simulations, and to Nemirovski (1985) and Grasmair
et al. (2018) for a theoretical analysis. Moreover, the proof of our main result is based on the
above mentioned interpolation technique: an interpolation inequality of the form (1.16) is used
to relate the risk functional, the regularization functional and the data-fidelity. This technique
was used by Nemirovski (1985) and Grasmair et al. (2018) for estimating Sobolev functions,
using an extension of the Gagliardo-Nirenberg interpolation inequalities (Nirenberg, 1959), and
we use it here for the estimation of BV functions employing generalizations thereof (Meyer
(2001), Cohen et al. (2003)).

The second main contribution of this thesis is the study of the minimax rates over Besov spaces
Bs

p,t with s ≤ d/p, which determine the minimax rates over BV . This parameter regime has
remained mainly ignored in the statistics literature, presumably due to the technical difficulties it
presents. Only Goldenshluger and Lepskii (2014) and Lepskii (2015) have considered estimation
in an anisotropic generalization of these spaces. Our results complement theirs and show that
the minimax rates for regression and inverse problems behave differently than in the other
better-known regimes.

Finally, in this thesis we also consider the efficient numerical computation of the estimator (1.5).
The challenge of solving the minimization problem in (1.5) lies on the high dimensionality of
the constraint set (#Ωn is typically larger than n), and on the non-smoothness of the objective
function. An approach for solving this kind of optimization problems was proposed by Frick
et al. (2012) and Li (2016). It uses an Alternating Direction Method of Multipliers (ADMM)
approach that alternatively minimizes the objective and projects to the constraint set. The
drawback of this approach is the projection step, which is typically extremely time consuming.
Instead, in this thesis we propose two alternative approaches that circumvent the projection
step and can be efficiently implemented: a primal-dual method based on the Chambolle-Pock
algorithm (Chambolle and Pock, 2011), and a semismooth Newton method combined with the
path-following technique (see e.g. Hintermüller (2010)). We discuss the implementation of these
methods and illustrate their performance in simulations.
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Organization of the thesis

In Chapter 2 we consider the regression problem (T = id): we introduce the main assumptions
on the multiscale dictionaries, and state our main theorem. We also sketch the proof of the
theorem, give concrete examples of dictionaries {ψω}, and discuss how to adapt our results to the
nonparametric regression model. In Chapter 3 we consider linear inverse problems: we state
our assumptions and main theorem, and illustrate the examples of deconvolution and Radon
inversion explicitly. We also present a result concerning the minimax rates for regression and
inverse problems over Besov spaces. In Chapter 4 we present different methods for solving
the optimization problem (1.5) and discuss their implementation. In Chapter 5 we illustrate the
performance of the multiscale TV-estimator in simulations in d = 1 and d = 2 for regression and
deconvolution. We also compare the multiscale TV-estimator quantitatively with other estimation
methods. In Chapter 6 we discuss our results and present open questions and extensions. The
main proofs are given in Chapter 7, while some independent results from harmonic analysis are
reproduced in Appendix A.
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CHAPTER 2

Regression in the white noise model

In this chapter we consider nonparametric regression in a white noise model, i.e., the problem
of estimating a function f from observations (1.1) with T = id. We present the main concepts
needed to construct the multiscale TV-estimator (1.5), and the assumptions that guarantee that
it is nearly minimax optimal over the set BVL. We also give concrete examples of multiscale
TV-estimators using particular dictionaries.

2.1 Basic definitions and notation

In this section we set some notation and give the definitions of mathematical objects that will
appear throughout the thesis.

Basic notation

We denote the Euclidean norm of a vector v = (v1, . . . , vd) ∈ Rd by |v| :=
(
v2

1 + · · · + v2
d
)1/2.

The logarithm to the base b > 1 of a number x > 0 is written as logb x, while log x denotes
the natural logarithm of x. For a real number x, define bxc := max

{
m ∈ Z

∣∣∣ m ≤ x
}

and
dxe := min

{
m ∈ Z

∣∣∣ m > x
}
. The cardinality of a finite set X is denoted by #X.

We say that two norms ‖ · ‖α and ‖ · ‖β in a normed space V are equivalent, and write ‖v‖α � ‖v‖β,
if there are constants c1, c2 > 0 such that c1 ≤ ‖v‖β/‖v‖α ≤ c2 for all v ∈ V . The same notation
is used to denote that two sequences an and bn, n ∈ N, grow at the same rate: we write an � bn

if there are constants c1, c2 > 0 such that c1 ≤ lim inf an/bn ≤ lim sup an/bn ≤ c2. Moreover,
we denote by C a generic positive constant that may change from line to line.

For a Borel-measurable set M ⊆ Rd, the space L2(M) consists of all equivalence classes of
real-valued square integrable functions overM with respect to the Lebesgue measure on Rd. It is
a Hilbert space with the inner product

〈g, h〉 := 〈g, h〉L2 :=
∫
M

g(x)h(x) dx, g, h ∈ L2(M),
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and its Hilbert space norm arises from this inner product. Whenever it is clear from the context,
we will drop the symbols M or Rd from the notation of the function spaces, writing e.g. L2

instead of L2(Rd), etc.

Finally, N(µ, σ2) denotes a normal distribution with expectation µ ∈ R and variance σ2, for
σ > 0.

Gaussian white noise process

In (1.1) we consider the Gaussian white noise process dW as a stochastic process over the Hilbert
space L2(M). It is defined by its action on elements of L2, given by

〈g, dW〉 :=
∫
M

g(x) dW(x) ∼ N
(
0, ‖g‖2L2

)
,

E
[
〈g, dW〉〈h, dW〉

]
:= 〈g, h〉L2 ,

for any g, h ∈ L2(M). We refer to Section 2.1 of Giné and Nickl (2015) for more details.

Functions of bounded variation over Rd

For k ∈ N, let Ck(Rd) denote the space of k-times continuously differentiable functions on
Rd. The space of functions of bounded variation BV consists of functions g ∈ L1 whose weak
distributional gradient ∇g = (∂x1g, · · · , ∂xd g) is a Rd-valued finite Radon measure on Rd. The
finiteness implies that the bounded variation seminorm of g, defined as

|g|BV := sup
{ ∫
Rd

g(x)∇ · h(x) dx
∣∣∣∣∣ h ∈ C1(Rd;Rd), ‖h‖L∞ ≤ 1

}
,

is finite. Here, ∇ · h :=
∑d

i=1 ∂xihi denotes the divergence of the vector field h = (h1, . . . , hd). BV

is a Banach space with the norm ‖g‖BV = ‖g‖L1 + |g|BV (see Evans and Gariepy (2015)). Here
C1(Rd;Rd) denotes the set of continuously differentiable functions on Rd taking values on Rd.

By Lebesgue’s decomposition theorem (see Section 1.6.2 in Evans and Gariepy (2015)), the
weak gradient of a function of bounded variation can be decomposed as a Lebesgue-absolutely
continuous measure, plus a Lebesgue singular measure. The singular measure is concentrated on
sets of codimension one, and it represents jump discontinuities of the function.

Wavelet bases

For S ∈ N, let
{
ψ j,k,e

∣∣∣ ( j, k, e) ∈ Λ
}

be an S -regular (see below) wavelet basis for L2(Rd) whose
elements are S times continuously differentiable with absolutely integrable S -th derivative. The
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wavelets are indexed by the set

Λ :=
{
( j, k, e)

∣∣∣ j ≥ 0, k ∈ Zd, e ∈ E j
}
, (2.1)

E j :=

{0, 1}
d if j = 0,

{0, 1}d\(0, . . . , 0) else.

In particular, we consider wavelets of the form

ψ j,k,e(x) = 2 jd/2ψe
(
2 jx − k

)
,

where ψe(z1, · · · , zd) =
∏d

i=1 ψei(zi) is the tensor product of one-dimensional wavelets, and

ψei(·) =

ψ(·) if ei = 1,

ϕ(·) else,

denotes either the mother wavelet ψ or the father wavelet ϕ of a wavelet basis of L2(R). The index
(0, · · · , 0) ∈ E0 refers here to (shifts of) the father wavelet ψ0,k,0 = ϕ(· − k). See e.g. Section 4.2
in Giné and Nickl (2015) for the construction of such a basis.

S -regularity. The assumption of S -regularity ensures that the wavelets form a basis not only of
L2, but also of a range of Besov spaces. Even though we shall not need its precise form in this
thesis, the definition of S -regularity is given for completeness in Appendix A.1.

Daubechies wavelets. Quite often in this thesis we will need S -regular wavelet bases whose
elements have compact support. An example of such a basis are Daubechies wavelets, introduced
by Daubechies (1992). We recall that one-dimensional Daubechies wavelets with D vanishing
moments have support of size 2D−1 (with respect to the Lebesgue measure) and are b0.18·(D−1)c
times continuously differentiable (see Theorem 4.2.10 in Giné and Nickl (2015)). An S -regular
wavelet basis formed by tensorization of one-dimensional Daubechies wavelets needs to satisfy
D = 1 + 6S in order to have S continuous derivatives. Consequently, the mother and father
wavelets have support of size (12 S + 1)d.

A subset of wavelets. In this thesis we will mainly deal with functions g supported inside the
unit cube, supp g ⊆ [0, 1]d. We will use their wavelet expansion intensively, so for a basis of
compactly supported wavelets, let us introduce the set of wavelets with nonzero overlap with the
unit cube

Ω = {( j, k, e) ∈ Λ | supp ψ j,k,e ∩ (0, 1)d , ∅}. (2.2)

In the following we will mostly work with the wavelets indexed by the set Ω. For each n ∈ N,
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n ≥ 2d, define the subset

Ωn :=
{
( j, k, e) ∈ Ω

∣∣∣ j = 0, . . . , J − 1
}
, (2.3)

as the set of indices of wavelets at scales rougher than J =
⌊1

d log2 n
⌋
. If we work with compactly

supported Daubechies wavelets, which at scale j = 0 have support of size (12 S + 1)d, we
conclude that, for any n ≥ 2d,

2−d n ≤
#Ωn

(12 S + 1)d
= 2Jd ≤ n.

Besov spaces

Let
{
ψ j,k,e

∣∣∣ ( j, k, e) ∈ Λ
}

denote an S -regular wavelet basis as defined above. For p, q ∈ [1,∞]
and s ∈ R with S > |s|, the Besov norm of a (generalized) function is defined as

‖g‖Bs
p,q

:=
( ∑

j∈N0

2 jq
(
s+d( 1

2−
1
p )
)( ∑

k∈Zd

∑
e∈E j

|〈ψ j,k,e, g〉|
p
)q/p)1/q

, (2.4)

with the usual modifications if p = ∞ or q = ∞.

If s > 0 and p ∈ [1,∞), the Besov space Bs
p,q(Rd) consists of Lp functions with finite Besov

norm, while if s > 0 and p = ∞, then Bs
p,q(Rd) consists of continuous functions with finite Besov

norm. In these cases, 〈ψ j,k,e, g〉 denotes the coefficients of g with respect to the wavelet basis.

If s ≤ 0, Bs
p,q(Rd) consists of temperate distributions S∗(Rd) with finite Besov norm. Here,

S∗(Rd) denotes the space of temperate distributions, defined as the topological dual of the space
S(Rd) of Schwartz functions: infinitely differentiable functions C∞(Rd) whose derivatives decay
at infinity faster than any polynomial (see Section A.2 in the Appendix). In that case, 〈ψ j,k,e, g〉

is interpreted as the action of g ∈ S∗(Rd) on the regular function ψ j,k,e.

Fourier transform

The Fourier transform of a function g ∈ L1(Rd) is defined as

F [g](ξ) :=
∫
Rd

g(x) e−iξ·x dx, ξ ∈ Rd,

and the inverse Fourier transform of h ∈ L1(Rd) as

F −1[h](x) =

∫
Rd

h(ξ) eiξ·x dξ/(2π)d.
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The Fourier transform can be extended as a bounded operator to L2. Moreover, it maps Schwartz
functions to Schwartz functions, and it can be extended by duality to temperate distributions
S∗(Rd) (see e.g. Section 4.1.1 in Giné and Nickl (2015)).

Dictionaries

In this thesis we will extensively use dictionaries: sets of functions that act as probe functionals.
Unless otherwise stated, they will be denoted by

Φ = {φω |ω ∈ Ω},

where φω ∈ L2(Rd) are the elements of the dictionary, indexed by ω ∈ Ω, where Ω is a
potentially countably infinite set. Examples of dictionaries include wavelet bases, but also
frames (Christensen, 2003) and vaguelette systems (see Chapter 3). We will sometimes denote
the dictionary elements by ψω. In particular, the symbol ψ does not necessarily denote a wavelet.

2.2 Main results

The main ingredient of the multiscale TV-estimator (1.5) is the multiscale dictionary, on which
we impose the following assumptions.

Assumption 1. Consider a dictionary Φ = {φω
∣∣∣ω ∈ Ω} ⊂ L2 for a countable set Ω and functions

satisfying ‖φω‖L2 = 1 for all ω ∈ Ω. For each n ∈ N, consider a subset Ωn ⊂ Ω of polynomial
growth, meaning that

c nΓ ≤ #Ωn ≤ Q(n) for all n ∈ N

for a polynomial Q and constants c,Γ > 0. The sets Ωn are assumed to satisfy the inequality

‖g‖B−d/2
∞,∞
≤ C max

ω∈Ωn

∣∣∣〈φω, g〉∣∣∣ + C ‖g‖L∞ n−1/2

for any g ∈ L∞ and a constant C > 0 independent of n and g.

Examples 1.

a) The simplest example of a system Φ satisfying Assumption 1 is a sufficiently smooth
wavelet basis. Indeed, the assumption follows from the characterization of Besov spaces
in terms of S -regular wavelets with S > dd/2e (see Proposition 2 below).

b) Another example of a family Φ satisfying Assumption 1 is given by translations and
rescalings of (the smooth approximation to) the indicator function of a cube. In Section 2.4
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we verify the assumption for such a system, that has been used previously as a dictionary
for function estimation (Grasmair et al., 2018).

c) In Section 2.4 we show that frames containing a smooth wavelet basis and a curvelet or a
shearlet frame (which play a prominent role in imaging) satisfy Assumption 1.

Definition 1. Assume the model (1.1), and let Φ be a dictionary satisfying Assumption 1. We
denote

f̂Φ ∈ argmin
g∈Fn

|g|BV subject to max
ω∈Ωn

∣∣∣〈φω, g〉 − 〈φω, dY〉
∣∣∣ ≤ γn, (2.5)

as multiscale TV-estimator with respect to the dictionary Φ, where we minimize over the set

Fn :=
{
g ∈ BV ∩ L∞

∣∣∣ ‖g‖L∞ ≤ log n, supp g ⊆ [0, 1]d}. (2.6)

In (2.5) we use the convention that, whenever the "argmin" is taken over the empty set, f̂Φ is
defined to be the constant zero function. ♣

The reason for requiring the support to be inside the closed unit cube in (2.6) is to make the
set Fn closed. This is important for ensuring existence of a minimizer in (3.4) as the limit of a
minimizing sequence (see Proposition 1 below).

In the following we assume that n ≥ 2, so that we do not have to worry about the case log 1 = 0.
The reason for minimizing over the set Fn is that, in the analysis of the estimator f̂Φ, we will
need upper bounds on its supremum norm. As it turns out, the upper bound can be chosen to grow
logarithmically in n without affecting the polynomial rate of convergence of the estimator (but
yielding additional logarithmic factors in the risk). Alternatively, if we knew an upper bound L

for the supremum norm of f , we could choose Fn = {g ∈ BV∩L∞ | ‖g‖L∞ ≤ L, supp g ⊆ [0, 1]d}.
In that case, the risk bounds in Theorem 1 below would improve by some logarithmic factors
(see Remark 1).

Proposition 1. In the setting of Definition 1, for each n ∈ N there exists almost always a
minimizer f̂Φ ∈ BV ∩ L∞ of (2.5).

Proposition 1 guarantees that the multiscale TV-estimator as defined in (2.5) indeed exists. We
give its proof in Section 7.3.1. We are now ready to state the convergence properties that the
multiscale TV-estimator enjoys.
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Theorem 1. Let d ∈ N, and assume the model (1.1) with f ∈ BVL for some L > 0 and the set
BVL defined in (1.13). Let further q ∈

[
1,∞

)
.

a) Let γn be as in (1.9) with κ > 1, and let Φ be a family of functions satisfying Assumption 1.
Then for any n ∈ N with n ≥ eL, the estimator f̂Φ in (2.5) with parameter γn satisfies

sup
f∈BVL

‖ f̂Φ − f ‖Lq ≤ C n−min{ 1
d+2 ,

1
dq } (log n)3−min{d,2} (2.7)

with probability at least 1 −
(
#Ωn

)1−κ2
, for a constant C > 0 independent of n.

b) Under the assumptions of part a), if κ2 > 1 + 1
(d+2) Γ

, then

sup
f∈BVL

E
[
‖ f̂Φ − f ‖Lq

]
≤ C n−min{ 1

d+2 ,
1

dq } (log n)3−min{d,2} (2.8)

holds for n large enough and a constant C > 0 independent of n. The number Γ > 0 in the
condition on κ2 is the same as in Assumption 1.

Notice that part a) of the theorem implies that (2.7) holds asymptotically almost surely if κ2 > 2.

Remark 1. The logarithmic factors in (2.7) and (2.8) are equal to (log n)2 for d = 1 and
to log n for d ≥ 2. They arise in part from the bound ‖ f̂Φ‖L∞ ≤ log n (that we get from
minimizing over Fn in (2.6)), while some of them arise from the estimation procedure itself.
Indeed, if we additionally constrain the estimator to ‖ f̂Φ‖L∞ ≤ C, the factors can be improved to
(log n)1+min{ 1

d+2 ,
1

dq } and (log n)min{ 1
d+2 ,

1
dq } for d = 1 and d ≥ 2, respectively. See Remark 3 below

for an explanation of the different factors.

Remark 2. Recall that our parameter set BVL in (1.13) involves a bound on the supremum
norm. This bound can be relaxed to a bound on the Besov B0

∞,∞ norm without changing the

convergence rate n−min{ 1
d+2 ,

1
dq } for f̂Φ. Indeed, assume for simplicity that Φ is an orthonormal

wavelet basis of L2, and for n ∈ N let Ωn ⊂ Ω index the wavelet coefficients with nonzero overlap
with the unit cube up to level J =

⌊1
d log2 n

⌋
, as in (2.3). As we will see below, the proof of

Theorem 1 relies on an inequality of the form

max
( j,k,e)∈Ω

|〈ψ j,k,e, g〉| ≤ max
( j,k,e)∈Ωn

|〈ψ j,k,e, g〉| + C2−Jd/2 ∀J ∈ N (2.9)

for sufficiently smooth g with supp g ⊆ [0, 1]d. But this inequality for all J ∈ N is equivalent to
‖g‖B0

∞,∞
≤ C (see Jackson-type inequalities for Besov spaces, e.g. in Section 3.4 in Cohen (2003)).

Consequently, Theorem 1 can be extended to show that the estimator f̂Φ with an orthonormal
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wavelet basis Φ attains the optimal polynomial rates of convergence uniformly over the enlarged
parameter space

B̃VL :=
{
g ∈ BV

∣∣∣ |g|BV ≤ L, ‖g‖B0
∞,∞
≤ L, supp g ⊆ [0, 1]d}.

One could ask whether the requirement ‖g‖B0
∞,∞
≤ L can be relaxed further. This is not the

case if d ≥ 2. Indeed, since the embedding B1
1,∞ ⊂ B0

∞,∞ holds for d = 1 only (for functions
supported on the unit cube; see the definition (2.4)), and since we have BV ⊂ B1

1,∞, we see that a
typical function of bounded variation does not belong to B0

∞,∞ if d ≥ 2. Hence, the Jackson-type
inequality in (2.9) cannot hold for general functions of bounded variation in d ≥ 2. This explains
why our parameter space is the intersection of a BV-ball with an L∞-ball (or a B0

∞,∞-ball).

Finally, we remark that most works in function estimation deal with Hölder or Sobolev W s,p

functions with s > d/p, so the assumption f ∈ L∞ is implicit. Alternatively, we refer to Section
3 in Lepskii et al. (1997) and to Delyon and Juditsky (1996) for examples of estimation over
Besov bodies Bs

p,q where uniform boundedness has to be assumed explicitly if s < d/p.

We can now state one of the main results of this thesis, which is a direct consequence of
Theorem 1.

Theorem 2. Under the assumptions of Theorem 1, the estimator f̂Φ is asymptotically minimax
optimal up to logarithmic factors over the parameter set BVL defined in (1.13) with respect to
the Lq-risk for q ∈

[
1,∞

)
in any dimension d ∈ N.

Proof. The claim follows from the fact that the minimax rate for estimation over the smaller
class (B1

1,1 ∩ L∞)L ⊂ BVL, defined in (1.17), satisfies

R(Lq, (B1
1,1 ∩ L∞)L) ≥ CL,σ n−min{ 1

d+2 ,
1

dq }

for n ∈ N. This follows from Theorem 6 in Section 3.2 with β = 0, which states lower bounds
for the minimax risk over Besov spaces. This rate matches the one in Theorem 1 up to the
logarithmic factor, which implies that the multiscale TV-estimator is minimax optimal, up to the
logarithm. �

We remark that the rate in Theorem 2 matches the result in Han et al. (2017) for estimation of
bounded, component-wise isotone functions in the nonparametric regression model. Indeed,
they show that the minimax rate with respect to the empirical L2-risk scales as n−min{ 1

d+2 ,
1

2d },
which equals the risk bound in Theorem 2 for q = 2. This is not entirely surprising, since
bounded, component-wise isotone functions on a compact set have bounded variation. However,
this correspondence is surprising in that it suggests that the class of bounded BV functions is
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statistically as complex as the class of bounded isotone functions. While this result is well-
known in dimension d = 1, where any BV function there can be expressed as the difference of
two monotone functions, no such result in d ≥ 2 was known. Interestingly, Han et al. (2017)
prove optimality of the slower rate n−1/2d by constructing a lower bound based on antichains in
the set of isotone functions, while our proof of the lower bound is based on a construction of
approximately dense linear combinations of wavelets.

2.3 Sketch of the proof of Theorem 1

We prove Theorem 1 in Section 7.1 as a corollary of Theorem 4, which proves convergence rates
of a multiscale TV-estimator for inverse problems. In this section we give a sketch of the proof
of Theorem 1. It relies on the following interpolation inequality proved by Cohen et al. (2003).

Theorem 3 (Theorem 1.5 in Cohen et al. (2003)). Let s ∈ R and 1 < p ≤ ∞, and assume that
γ := 1 + (s − 1)p′/d satisfies either γ > 1 or γ < 1 − 1/d, where p′ denotes the Hölder conjugate
of p. Then for any 0 < θ < 1 such that

1
q

=
1 − θ

p
+ θ, t = (1 − θ)s + θ

we have the inequality
‖g‖Bt

q,q
≤ C ‖g‖1−θBs

p,p
‖g‖θBV (2.10)

for any function g ∈ BV ∩ Bs
p,p(Rd) and a universal constant C > 0.

The proof of part a) of Theorem 1 proceeds as follows.

1. For n ∈ N, define the event

An :=
{

max
ω∈Ωn

∣∣∣∣∣ ∫
Rd
φω(x) dW(x)

∣∣∣∣∣ ≤ √n
σ

γn

}
. (2.11)

This event represent the situation when the noise dW is "well-behaved". Indeed, An

requires that the largest noise fluctuation in the projected data is smaller than
√

nσ−1 γn.
Since

∫
Rd φω(x) dW(x) ∼ N(0, 1) for ‖φω‖L2 = 1, we have the bound

P
(

max
ω∈Ωn

∣∣∣∣∣ ∫
Rd
φω(x) dW(x)

∣∣∣∣∣ ≥ t
)
≤ #Ωn e−t2/2, (2.12)

for any n ∈ N and t ≥ 0. This bound follows from the union bound and elementary
computations (see Proposition 11 in Section 7.3.2). By the choice of γn in (1.9), we
conclude that

P
(
An

)
≥ 1 −

(
#Ωn

)1−κ2
,
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which tends to one as n→ ∞ for κ > 1. To prove Theorem 1 we will show that (2.7) holds
conditionally on the eventAn.

2. Using a particular case of (2.10) with s = −d/2, p = ∞ and t = 0, and embeddings
between Lq and Besov B0

q,q spaces (see Proposition 8 in Section 7.1), we bound the Lq-risk
of f̂Φ as

‖ f̂Φ − f ‖Lq ≤ C‖ f̂Φ − f ‖
2

d+2

B−d/2
∞,∞

‖ f̂Φ − f ‖
d

d+2
BV (2.13)

for d ≥ 2 and q ≤ 1 + 2/d. A different strategy is needed for d = 1, see Remark 3.
The rest of the proof consists in showing that the right-hand side behaves as n−

1
d+2 log n

conditionally onAn.

3. By Assumption 1, the Besov norm in (2.13) can be bounded as

‖ f̂Φ − f ‖B−d/2
∞,∞
≤ C max

ω∈Ωn

∣∣∣〈φω, f̂Φ − f 〉
∣∣∣ + C

‖ f̂Φ − f ‖L∞
√

n
. (2.14)

The first term satisfies

max
ω∈Ωn

∣∣∣〈φω, f̂Φ − f 〉
∣∣∣ ≤ max

ω∈Ωn

∣∣∣〈φω, f̂Φ〉 − 〈φω, dY〉
∣∣∣ + max

ω∈Ωn

∣∣∣〈φω, f 〉 − 〈φω, dY〉
∣∣∣

≤ γn +
σ
√

n
max
ω∈Ωn

∣∣∣∣∣ ∫
Rd
φω(x) dW(x)

∣∣∣∣∣ ≤ 2γn,

where the second inequality follows by construction of f̂Φ and the third one holds condi-
tionally onAn. The second term in (2.14) is bounded by C ‖ f̂Φ‖L∞+‖ f ‖L∞√

n
≤ C L+log n

√
n

, since

‖ f̂Φ‖L∞ ≤ log n by construction and ‖ f ‖L∞ ≤ L by f ∈ BVL. Using the expression (1.9)
for γn we have the bound

‖ f̂Φ − f ‖B−d/2
∞,∞
≤ C

√
log #Ωn

n
+ C

L + log n
√

n
(2.15)

conditionally onAn.

4. The bounded variation norm in (2.13) satisfies

‖ f̂Φ − f ‖BV = ‖ f̂Φ − f ‖L1 + | f̂Φ − f |BV

≤ ‖ f̂Φ − f ‖L∞ + | f̂Φ|BV + | f |BV ,

where we bound the L1-norm by the L∞-norm using the fact that supp ( f̂Φ − f ) ⊆ [0, 1]d.
The supremum norm of the difference can then be bounded as in step 3. In order to bound



2.3. Sketch of the proof of Theorem 1 31

| f̂Φ|BV , notice that conditionally onAn and for n ≥ eL we have

max
ω∈Ωn

∣∣∣〈φω, f 〉 − 〈φω, dY〉
∣∣∣ ≤ γn and ‖ f ‖L∞ ≤ L ≤ log n,

and hence the function f is feasible for the minimization problem (2.5) that defines f̂Φ.
Therefore we conclude that | f̂Φ|BV ≤ | f |BV conditionally onAn, and we have

‖ f̂Φ − f ‖BV ≤ log n + L + 2| f |BV ≤ 3L + log n,

where the second inequality follows from f ∈ BVL.

5. Combining steps 3 and 4 with equation (2.13) yields the bound

‖ f̂Φ − f ‖Lq ≤ C
(√ log #Ωn

n
+

L + log n
√

n

) 2
d+2 (

3L + log n
) d

d+2

conditionally onAn.

6. The previous argument gives the risk bound for q ≤ 1 + 2/d. For q ∈ [1 + 2/d,∞), Hölder’s
inequality implies that

‖ f̂Φ − f ‖Lq ≤ ‖ f̂Φ − f ‖
d+2
dq

L1+2/d‖ f̂Φ − f ‖
1− d+2

dq

L∞ ≤ C n−
1

dq log n,

conditionally onAn.

Remark 3. While in this sketch we only considered the case d ≥ 2, the proof for d = 1 is
analogous, but somewhat more involved. Essentially, we use Theorem 3 to bound the B0

3,3 risk
by O(n−1/(d+2)), and then show that for smooth enough functions g ∈ L∞ ∩ BV , the L3-risk can
be controlled by the B0

3,3-risk at the cost of the log n factor. The difficulty here lies in the fact
that the embedding B0

3,3 ⇀ L3 does not hold, so a refined analysis is needed. We then extend
this risk bound to q < 3 using the compact support of the functions, and to q > 3 using Hölder’s
inequality.
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2.4 Examples

We present now several dictionaries Φ that satisfy Assumption 1, and hence can be used to
construct the multiscale TV-estimator with the minimax optimality guaranty given by Theorem 2.

Wavelet bases

For S ∈ N, let Φ =
{
ψ j,k,e

∣∣∣ ( j, k, e) ∈ Ω
}

be a subset of an S -regular basis of Daubechies wavelets
for L2(Rd) as described in Section 2.1. Recall that the index set Ω denotes the indices such that
suppψ j,k,e ∩ (0, 1)d , ∅. For n ∈ N, n ≥ 2d, define the subset Ωn as in (2.3), which satisfies
#Ωn � n.

Proposition 2. An S -regular basis of Daubechies wavelets for L2 as in Section 2.1 with S >

max{1, d/2} satisfies Assumption 1 with the sets Ωn in (2.3), a linear polynomial Q(x) = c x and
parameter Γ = 1.

The proof of Proposition 2.4 is given in Section 7.3.3. Proposition 2 implies that Φ satisfies
Assumption 1, so by Theorem 2 the multiscale TV-estimator with dictionary Φ is minimax
optimal up to logarithms for estimating BV functions in any dimension.

Remark 4 (Comparison with wavelet thresholding). In dimension d = 1, Donoho and Johnstone
(1998) proved that thresholding of the empirical wavelet coefficients of the observations gives an
estimator that attains the minimax optimal convergence rate over BV . In contrast, our estimator
combines a constraint on the wavelet coefficients with control on the BV-seminorm: this second
aspect is crucial in higher dimensions. As equation (2.13) in the sketch of our proof illustrates,
we bound the risk by the B−d/2

∞,∞ -norm of the residuals, which is the maximum of their wavelet
coefficients, and the BV-norm of the residuals. The optimality of the estimator (2.5) depends
crucially on the bound ‖ f̂Φ − f ‖BV . log n, which essentially amounts to a bound on the high
frequencies of the residuals. But that is precisely the difficulty with wavelet thresholding of BV

functions in higher dimensions. To the best of our knowledge, wavelet thresholding has been
shown to converge over Besov spaces Bs

p,t for s > d(1/p − 1/q)+ only (see e.g. Delyon and
Juditsky (1996)). This condition guaranties that the wavelet coefficients of the truth f decay
fast enough, which itself allows one to control the high frequencies of the residuals. But that
assumption is not satisfied for BV in dimension d ≥ 2, since we have B1

1,1 ⊂ BV , which satisfies
1 > d/2 for d = 1 only.
This remark matches the empirical observation that wavelet thresholding may present Gibbs-like
artifacts, i.e., to present abnormally high frequencies. We verify this in simulations in Chapter 5.
On the other hand, variational estimators with a suitable regularization functional automatically
control the high frequencies.
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General multiscale systems

In this example we present a more general multiscale system, and show that the corresponding
multiscale TV-estimator is minimax optimal up to logarithms for estimating BV functions. Our
motivation is to prove optimality of the estimator proposed by Frick et al. (2012), which has
the form (1.5) for a multiscale dictionary consisting of indicator functions of cubes at different
locations in different scales. That estimator was shown to perform well in denoising and
deconvolution, which we verify in simulations in Chapter 5. Here, we prove optimality for a
general family of estimators constructed with multiscale systems satisfying Assumption 2.

Assumption 2. The system of functions Φ =
{
ψ j,k

∣∣∣ ( j, k) ∈ Ωn, n ∈ N
}

satisfies the following
conditions:

a) for each n ∈ N the set Ωn is defined as

Ωn =
{
( j, k)

∣∣∣ j = 0, . . . , J − 1, k ∈ D j
}
,

D j =
{
k =

(
k1, · · · , kd

) ∣∣∣ ki = −2− j + li 2−R(1 + 21− j), li = 0, . . . , 2R − 1, i = 1, . . . , d
}
,

where J = d1d log2 ne and R = bJ max{1, d/2}c;

b) there is a function ψ ∈ C∞(Rd) with suppψ ⊆ [0, 1]d, satisfying

|F [ψ](ξ)| > 0 for |ξ| ≤ 2, ‖ψ‖L2 = 1, ‖ψ‖L∞ ≤ 2,

such that all functions ψ j,k ∈ Φ are given by translation, dilation and rescaling of ψ, i.e.,

ψ j,k(z) := 2 jd/2 ψ
(
2 j(k − z)

)
for j ≥ 0 and k ∈ D j.

In words, the dictionary Φ contains functions at scales j = 0, . . . , J − 1 and, for each scale,
it contains shifted versions of the same function by a distance 2−R in each coordinate, where
R = bJ max{1, d/2}c. This choice of R gives an increased spatial resolution as compared with
wavelets, which would have R = J. The reason for choosing this R is that, unlike wavelets, the
functions ψ j,k from Assumption 2 do not enjoy any special approximation property. This forces
us to choose a very redundant system in order to achieve a good approximation.

Remark 5.

a) An example of a function ψ satisfying the above assumptions is the (L2-normalized)
convolution of the indicator function of the cube

[1
4 ,

3
4
]d with the standard mollifier. More
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generally, the Fourier transform of the indicator function of the cube [a, b] ⊂ [0, 1]d

satisfies |F [1[a,b]](ξ)| > 0 if |ξi (b − a)i| < 2π for all i = 1, . . . , d. In particular, taking ψ
to be a smooth approximation to the indicator function of a cube, the estimator (2.5) is
similar to that proposed by Frick et al. (2012).

b) For n ∈ N we have #Ωn = J 2dR = J 2d bJ max{1,d/2}c, whence

nmax{1,d/2} ≤ #Ωn ≤ nmax{1,d/2} log n.

Proposition 3. Let Φ =
{
ψ j,k

∣∣∣ ( j, k) ∈ Ωn, n ∈ N
}

satisfy Assumption 2. Then it satisfies
Assumption 1 with Q(x) = xmax{1,d/2}+1 and Γ = max{1, d/2}.

See Section 7.3.3 for the proof of Proposition 3. We remark that part of the proof is based on the
characterizations of Besov spaces via local means (see Section A.3 in the Appendix).

Shearlet and curvelet frames

Another relevant example of the multiscale TV-estimator in d ≥ 2 corresponds to the case when
Φ contains a directional multiscale dictionary, e.g. a frame of shearlets or curvelets. An estimator
of that form was proposed by Candès and Guo (2002), and it was shown to perform well in
simulations. We verify its good numerical performance in Chapter 5. In this example we show
how Theorem 2 implies minimax optimality up to logarithms for that estimator.

In order to state our results, we first review some facts about directional dictionaries. The first
directional multiscale systems to be introduced were curvelets (Candès and Donoho, 2000).
They were proposed as an improvements over wavelets in dimension d ≥ 2: while wavelets
are parametrized by a scale and a position parameter, curvelets have an additional "orientation"
parameter. This allows them to resolve directional information such as boundaries better than
wavelets do. Following curvelets, many directional multiscale systems have been proposed. We
refer to Grohs et al. (2013) and references therein for a unifying mathematical framework for
these dictionaries.

There are several constructions of directional multiscale dictionaries, mostly based on partitions
of frequency space (Candès and Donoho, 2000). We just mention here the original curvelet
system by Candès and Donoho (2000), shearlets (Labate et al., 2013), and compactly supported
shearlets (Kutyniok et al., 2012). An important remark is that these directional dictionaries can
be constructed to be tight frames of L2(Rd), meaning that we have

‖g‖2L2 =
∑
ω∈Ω

|〈ϕω, g〉|2 ∀g ∈ L2(Rd).
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Furthermore, the directional elements ϕω can be taken to have unit norm in L2. Moreover,
the constructions of tight curvelet frames in Borup and Nielsen (2007) and of shearlet frames
in Labate et al. (2013) yield smooth frame elements that are exponentially decaying in space.
In this example, our dictionary Φ consists of a basis of S -regular Daubechies wavelets together
with a directional multiscale system. Let us fix the notation

Φ = ΦW ∪ ΦD

wavelets: ΦW = {ψ j,k,e | ( j, k, e) ∈ ΘW }

directional: ΦD = {ϕ jθ̃ | ( j, θ̃) ∈ ΘD}.

As in Section 2.1, the index set ΘW indexes the wavelets with nonzero overlap with the unit cube.
Similarly, the index set ΘD indexes the directional elements ϕ j,θ̃ whose overlap with the unit
cube is larger than a small predefined threshold. We neglect elements with a small overlap with
the unit cube, since they do not carry much information about functions supported there, and
they are hence not crucial for reconstruction purposes. We index the directional dictionary ΦD

with a scale index j ∈ N0 and a position and orientation index θ̃ ∈ Θ̃n, j.
For n ≥ 2, we define a finite subset of Φ as

Φn = ΦW
n ∪ ΦD

n

ΦW
n = {ψ j,k,e | ( j, k, e) ∈ ΘW

n }, ΘW
n = Ωn in the notation of Section 2.1

ΦD
n = {ϕ jθ̃ | ( j, θ̃) ∈ ΘD

n }, ΘD
n = {( j, θ̃) | j = 0, . . . , J̃, θ̃ ∈ Θ̃n, j},

where ΘD
n ⊂ ΘD is such that #ΘD

n � n.

Assumption 3. Let Φ be a mixed system of S -regular Daubechies wavelets and a directional
dictionary as constructed above. Assume that S > max{1, d/2}, and choose the sets ΘW

n and ΘD
n

as indicated above, such that
#ΘW

n + #ΘD
n � n

for any n ∈ N.

Proposition 4. Let Φ satisfy Assumption 3. Then it satisfies Assumption 1 with Γ = 1 and
Q(x) = C x, for a constant C > 0.

The proof of Proposition 4 is given in Section 7.3.3. A direct consequence of the proposition is
that the multiscale TV-estimator with a mixed dictionary of wavelets and curvelets is minimax
optimal up to logarithms for the reconstruction of BV functions.

Remark 6. The assumption that Φ contains a wavelet basis in addition to a directional frame
is crucial. Indeed, the wavelet basis allows us to upper-bound the Besov norm B−d/2

∞,∞ by the
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maximum over the frame coefficients with respect to Φ, which we need in order to establish
Assumption 1. Alternatively, if Φ consisted of a curvelet frame only, the embeddings in Lemma
9 in Borup and Nielsen (2007) together with classical embeddings of Besov spaces (see Remark
4 of Section 3.5.4 in Schmeisser and Triebel (1987)) would give the bound

‖g‖B−d/2
∞,∞
≤ C max

( j,θ̃)∈ΘD
2 jδ|〈ϕ j,θ̃, g〉|

for smooth enough and compactly supported functions g, and a δ > 0 that depends on the
dimension. Accordingly, step 3 in the sketch of the proof of Theorem 1 would deteriorate to

‖ f̂Φ − f ‖B−d/2
∞,∞
≤ C

nδ
′

√
n

Polylogd,δ′(n)

for some δ′ > 0, and a polylogarithmic factor that diverges as δ′ → 0. This results in a
polynomially suboptimal rate of convergence. We remark that this limitation arises from the
suboptimal embeddings between Besov spaces and decomposition spaces associated with the
curvelet frame (see Lemma 9 in Borup and Nielsen (2007)). The situation for the shearlet
frame is analogous, as its associated decomposition space equals that of the curvelet frame (see
Proposition 4.4 in Labate et al. (2013)).

Exceptions

We close this section presenting some dictionaries Φ that do not satisfy Assumption 1, so that
Theorem 1 does not apply to them.

a) Wavelet systems of low smoothness do not satisfy Assumption 1. Our result relies crucially
on the fact that the Besov spaces B−d/2

∞,∞ and B1
1,1 can be characterized by the size of wavelet

coefficients. For that, wavelet bases with S − 1 vanishing moments and smoothness S are
needed, where S > max{1, d/2} (see Section 4.3 in Giné and Nickl (2015)).

b) Recall the multiscale TV-estimator with a general multiscale system: there we considered a
dictionary Φ consisting of smooth functions supported on cubes in [0, 1]d. The smoothness
part is essential, since we need enough regularity in order to bound the Besov B−d/2

∞,∞ -norm
in terms of this dictionary, which is done by the characterization of Besov spaces by local
means (see Section A.3 of the Appendix). In fact, if the kernel ψ in Assumption 2 was
e.g. a discontinuous function, then the dictionary Φ would not satisfy Assumption 1.

c) As argued in Remark 6, a dictionary consisting solely of a curvelet frame or a shearlet
frame does not suffice, since the decomposition spaces they generate (in the sense of Borup
and Nielsen (2007)) do not match Besov spaces exactly, so Assumption 1 does not hold.
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2.5 Regression in a discretized model

Until now we have considered the regression problem in a white noise model (1.1). In that model,
we observe the full path of function values plus white noise. There are alternative models where
one can pose the regression problem. One such model is the nonparametric regression model

with deterministic design. There, we observe the values of a function contaminated with noise at
a deterministic grid of points, i.e.,

Yi = f (xi) + σ εi, xi ∈ Γn, i = 1, . . . , n, (2.16)

where we assume that n = md for some m ∈ N, and

Γn :=
{(k1

m
, · · · ,

kd
m

) ∣∣∣∣∣ ki ∈ {1, . . . ,m}, i = 1, . . . , d
}

(2.17)

is the observation grid. Of course, different grids may be used. In (2.16), εi are independent
standard normal random variables, and σ > 0 plays the role of the standard deviation of the
noise. Of course, for (2.16) to make sense we have to assume that f is defined on the grid Γn,
i.e. that f (xi) ∈ R is well-defined for all xi ∈ Γn.

We remark that, while the white noise model (1.1) is convenient from a theoretical perspective
(as it avoids discretization issues), the nonparametric regression model (2.16) is sometimes
more realistic to model applications, where one observes discretely sampled data. A prominent
example is image processing, where the grid Γn represents pixels. We employ this discretization
in our simulations in Chapter 5.

Given observations (2.16), our goal is to estimate the function f . In this section we explain
how to adapt the multiscale TV-estimator to this setting, and analyze its convergence properties.
For that, we have to discretize the construction from Section 2.2. Let Φn = {φn

ω |ω ∈ Ωn} be a
dictionary of discretized elements, i.e., each φn

ω is a vector of n values

(
φn
ω
)
i = n−1/2 φω(xi) for i = 1, . . . , n,

which are the evaluations of φω at the grid points. The scaling factor n−1/2 is chosen so that∑
xi∈Γn

∣∣∣(φn
ω
)
i
∣∣∣2 → ‖φω‖2L2 = 1 as n→ ∞,

for any ω ∈ Ωn, i.e., so that the vectors φn
ω have roughly unit norm in an `2 sense.
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In this setting, the multiscale TV-estimator takes the form

f̂D ∈ argmin
g∈Fn

|g|BV subject to max
ω∈Ωn

∣∣∣ ∑
xi∈Γn

(
φn
ω
)
i
(
g(xi) − Yi

)∣∣∣ ≤ κ σ √
2 log #Ωn.

Here we show that the estimator f̂D is subject to a discretization error that, for d ≥ 3, dominates
the minimax rate n−min{ 1

d+2 ,
1

dq } of the multiscale TV-estimator in the white noise model.

Indeed, we would like to apply the strategy of Section 2.3 to bound the risk of the estimator f̂D.
For that, we have to relate the multiscale constraint to the Besov norm B−d/2

∞,∞ , as explained in
step 3 of the sketch of the proof of Theorem 1. And for that, we need to show that the coefficients
of the residuals f̂D − f with respect to the discretized dictionary Φn are similar to the coefficients
with respect to the "continuous" dictionary Φ. In that sense, the discretization error

δn := max
ω∈Ωn

∣∣∣∣∣ 1
√

n

∑
xi∈Γn

(
φn
ω
)
i g(xi) −

∫
[0,1]d

φω(y)g(y) dy
∣∣∣∣∣

for g = f̂D− f will give an additional error term for the estimator f̂D: in particular, equation (2.15)
would now be

‖ f̂D − f ‖B−d/2
∞,∞
≤ C

√
log #Ωn

n
+ C

L + log n
√

n
+ δn. (2.18)

Hence, the discretization error is not relevant as long as δn = O(n−1/2), but it dominates the error
otherwise. As it turns out, the discretization error behaves as δn = O(n−1/d), which means that it
dominates for d ≥ 3.

Proposition 5. Assume that there is an ω ∈ Ωn such that φω(x) = 1[0,1]d(x) is the indicator
function of the unit cube. Then there exist functions h ∈ BV ∩ L∞ satisfying

max
ω∈Ωn

∣∣∣∣∣ 1
√

n

∑
xi∈Γn

(
φn
ω
)
i h(xi) −

∫
[0,1]d

φω(y)h(y) dy
∣∣∣∣∣ ≥ 1

2
n−1/d

for infinitely many n ∈ N of the form n = md, m ∈ N.

The proof of Proposition 5 is given in Section 7.3.4. It is a constructive proof: a function h with
a discontinuity at a position x(1) = α is constructed, where x(1) denotes the first coordinate of a
vector x ∈ [0, 1]d. We lower bound the difference by using the difficulty of approximating an
irrational number α by rationals.

Proposition 5 gives just one example in which the discretization error δn is of order n−1/d.
This is enough to conclude that, in general, f̂D cannot be expected to satisfy a bound better
than (2.18). In other words, ‖ f̂D− f ‖B−d/2

∞,∞
= O(max{n−1/d, n−1/2}) (with high probability) cannot
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be improved in general. Following the proof of Theorem 1, this implies that

‖ f̂D − f ‖Lq ≤ C n−min{ 1
d+2 ,

1
dq }min{1,2/d}( log n

)3−min{d,2} (2.19)

with high probability. Observe that, for d ≥ 3, the multiscale TV-estimator attains a strictly
slower rate in this discretized model than in the white noise model.

Remark 7 (Improved rate for smoother functions). As argued above, the slower convergence rate
in the nonparametric regression model is a consequence of the low smoothness of functions of
bounded variation. Alternatively, if g were a CS (Rd) function and {φω}were an S -regular wavelet
basis, then we would have δn = O(n−S/d). This can be easily verified by Taylor expansion and
using the vanishing moments of the wavelet basis. Consequently, if S > d/2, the discretization
error δn would be of the order n−1/2, and its convergence rate would be n−min{ 1

d+2 ,
1

dq }: the same
as in the white noise model. This is consistent with known equivalence results between the white
noise and the regression models (Reiß, 2008), that state that both problems are equivalent in Le
Cam’s sense, provided that the regression function belongs to Cd/2(Rd).

At this point, we could ask the question: can the slower rate in (2.19) be improved in the
discrete model, or is it the minimax rate for estimating a function f ∈ BVL from discrete
observations (2.16)? We do not know the answer to this question, but some evidence indicates
that the rate might be improvable. Indeed, in the discrete regression model with the empirical

`2 risk, Sadhanala et al. (2016) showed that the minimax rate for estimating BV functions is
n−min{ 1

d+2 ,
1

2d } up to logarithmic factors, which matches the minimax rate in the white noise model
for q = 2. By empirical `2 error we mean the quantity

‖ f̂ − f ‖`2 :=
(1
n

n∑
i=1

∣∣∣ f̂ (xi) − f (xi)
∣∣∣2)1/2

. (2.20)

We remark, however, that it makes a big difference to consider the risk with respect to the
empirical `2 error and not to the continuous L2 error. Indeed, in the discretized model we only
observe point evaluations of the function of interest, and it is comparably easier to bound the `2

error at those observations than to interpolate and bound the L2 error. This is specially relevant
for BV functions, which due to their roughness are not well approximated by interpolation. We
do not pursue this topic any further in this thesis.
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CHAPTER 3

Inverse problems in the white noise model

In this chapter we extend the analysis from Chapter 2 to statistical inverse problems, i.e., to the
case where the operator T in (1.1) is not the identity. The main difference to the case T = id

concerns the dictionary used to construct the multiscale TV-estimator. In particular, using a
dictionary Φ that merely satisfies Assumption 1 will not perform well: if we did so, we would
constrain our estimator to satisfy

max
ω∈Ωn

∣∣∣〈φω,T f̂Φ〉 − 〈φω, dY〉
∣∣∣ ≤ γn,

i.e., we would require the coefficients of T f̂Φ to be close to the coefficients of T f , up to noise.
But due to the ill-posedness of the inverse problems, we have no guaranty that this implies that
the coefficients of f̂Φ are close to the coefficients of f , i.e.,∣∣∣〈φω,T f̂Φ − T f 〉

∣∣∣ "small" 6=⇒
∣∣∣〈φ̃ω, f̂Φ − f 〉

∣∣∣ "small". (3.1)

We are interested in estimating f , so we actually want an implication of the form (3.1), since
that would allow us to estimate e.g. the wavelet coefficients of f reliably, which would then
let us estimate f . A way to do so is to use the wavelet-vaguelette decomposition (WVD) of T ,
provided that it admits one. In this section we show how to use the WVD of T to construct
a multiscale TV-estimator for inverse problems, and prove that the corresponding estimator is
minimax optimal up to logarithmic terms for estimating BV functions in any dimension. We also
present examples of operators T that have a WVD, such as the Radon transform or a convolution
operator.
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3.1 Main results

We make the following assumptions on the operator T .

Assumption 4. Let T : D(T ) ⊆ L2(Rd)→ L2(M) denote a bounded, linear operator. For β ≥ 0,
assume that the following hold:

• there is a dictionary Φ = {ψ j,θ | ( j, θ) ∈ Ω} ⊂ L2(Rd) satisfying Assumption 1 in Section 2.2
with Γ > 0, where the inequality there is replaced by

‖g‖B−d/2−β
∞,∞

≤ C max
( j,θ)∈Ωn

2−β j∣∣∣〈ψ j,θ, g〉
∣∣∣ + C ‖g‖L∞ n−1/2

for any g ∈ L∞ with supp g ⊆ [0, 1]d;

• there is a set of functions {u j,θ
∣∣∣ ( j, θ) ∈ Ω} ⊂ L2(M), which we call vaguelette system, such

that

T ∗u j,θ = κ j ψ j,θ ∀( j, θ) ∈ Ω, (3.2)

with generalized singular values κ j = 2− jβ. Furthermore, the vaguelettes satisfy

c1 ≤ ‖u j,θ‖L2 ≤ c2 ∀( j, θ) ∈ Ω

for some real constants c2 ≥ c1 > 0.

Remark 8.

a) Assumption 4 is slightly weaker than assuming that the operator T has a wavelet-vaguelette
decomposition (WVD) (Donoho, 1995). In particular, in a "proper" WVD the dictionary
ψω would be a wavelet basis. We nevertheless call {u j,θ} a vaguelette system for simplicity.

b) As remarked in Section 2.1, we will only need the dictionary elements ψω with nonzero
overlap with the unit cube, which we index by the set Ω. We index the vaguelettes
accordingly.

c) We recover the WVD of an operator if we choose the dictionary Φ to be a basis of
Daubechies wavelets (Daubechies, 1992) in L2(Rd) with D continuous partial derivatives
and whose mother wavelet has R vanishing moments, such that min{R,D} > max{1, d/2 +

β}. The condition min{R,D} > max{1, d/2 + β} is necessary for ensuring that the norms of
the Besov spaces B−d/2−β

∞,∞ and B1
p,q, p, q ∈ [1,∞], can be expressed in terms of wavelet

coefficients with respect to the wavelet basis {ψ j,θ} (see Section 4.3 in Giné and Nickl
(2015)).
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d) Let {ψ j,θ} be a smooth enough wavelet basis. Then condition (3.2) implies that the inverse
problem (1.1) is mildly ill-posed with degree of ill-posedness β. In particular, in this thesis
we only consider finitely smoothing operators. See the Conclusion in Chapter 6 for a
discussion of how to extend our construction to exponentially ill-posed problems.

Examples 2. We list here some examples of operators satisfying Assumption 4. For simplicity,
we assume that {ψ j,θ} is a smooth enough wavelet basis.

a) The integration operator

Tg(x) :=
∫ x

−∞

g(y) dy, x ∈ R.

Its domain consists of functions g such that |ξ|−1F [g](ξ) ∈ L2(R), where F denotes the
Fourier transform. The vaguelettes are given by derivatives and integrals of the wavelets
ψ j,k,e, and the singular values are κ j = 2− j. Fractional integration, iterated integration
and higher dimensional integrals also define operators satisfying Assumption 4. We refer
to Donoho (1995) for more details.

b) The Radon transform, which maps a function g to

Tg(r, θ) :=
∫
{x · θ=r}

g(x) dx, r ∈ R, θ ∈ S d−1, (3.3)

where the integral is taken over the hyperplane defined by vectors x satisfying x · θ = r.
See Section 3.3 for more details on how to apply the multiscale TV-estimator to Radon
data.

c) The convolution operator

Tg(x) :=
∫
Rd

K(x − y)g(y) dy

for a smooth enough kernel K ∈ L1(Rd) satisfies Assumption 4. See Section 3.3 for more
details.

d) The identity operator, in which case we are in the white noise regression model. In that
case we have u j,θ = ψ j,θ, and the estimator (3.4) reduces to the multiscale TV-estimator
analyzed in Chapter 2.

More generally, operators satisfying a certain homogeneity condition with respect to dilations
have a WVD (see Donoho (1995) for a general result). Finally, we remark in line with Donoho
(1995) that Assumption 4 is in general not satisfied for operators T with a strong preference for a
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particular scale. An extreme example is convolution with a kernel whose Fourier transform has
compact support. In that case, the equation T ∗u j,k,e = κ jψ j,k,e does not admit solutions u j,k,e for
compactly supported wavelets ψ j,k,e.

In this setting, we define our estimator as follows.

Definition 2. Let the observations dY follow the model (1.1), and let the operator T satisfy
Assumption 4 with a vaguelette system {u j,θ}. We denote

f̂Φ,T ∈ argmin
g∈Fn∩D(T )

|g|BV subject to max
ω∈Ωn

∣∣∣〈uω,Tg〉 − 〈uω, dY〉
∣∣∣ ≤ γn, (3.4)

as the multiscale total variation estimator for the operator T . In (3.4) we minimize over the set
Fn defined in (2.6), intersected with the domain of T . We use the convention that, whenever the
feasible set of the problem (3.4) is empty (which happens with vanishingly small probability as
n grows, see Remark 9), the estimator f̂Φ,T is set to zero. ♣

Concerning the choice of the threshold γn, let σ > 0 be as in (1.1), and let c2 be the constant in
Assumption 4. For a constant κ > 0 to be specified later, we choose

γn = κ c2 σ

√
2 log #Ωn

n
. (3.5)

As for the estimator in Chapter 2, this threshold is chosen so that the true regression function f

satisfies the constraint in (3.4) with high probability (see Remark 9 below).

Example 2. In this example we illustrate the role played by the dictionaries {ψ j,θ} and {u j,θ}

in the estimator (3.4). Following the logic of the multiscale TV-estimator from Chapter 2, we
require the coefficients of f̂Φ,T with respect to a dictionary {uω} to be close to the observed
coefficients. Ignoring for simplicity the noise terms, the constraint in (3.4) is

max
ω∈Ωn

∣∣∣〈uω,T f̂Φ,T − T f 〉
∣∣∣ ≤ γn,

where f denotes the true regression function. Consider the following possibilities:

a) If {uω} were a wavelet basis, then its good approximation properties would imply that
T f̂Φ,T is close to T f . This is however no guaranty that f̂Φ,T is close to f . Let for instance
T denote convolution by a rapidly decaying kernel: it acts by locally blurring the details of
f , so T f does not preserve the small details (high frequencies) of f . Consequently, if {uω}
is a wavelet basis, the constraint does not force f̂Φ,T to match f in the high frequencies,
but it may still give a good reconstruction for the low frequencies. This phenomenon
affects the MIND estimator (Grasmair et al., 2018), which is also a variational multiscale
estimator. We recall it and illustrate it in simulations in Chapter 5.
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b) If {uω} is a vaguelette system associated with a wavelet basis {ψω}, the situation is more
favorable. Again ignoring noise terms, the constraint on the estimator f̂Φ,T is

max
ω∈Ωn

∣∣∣〈uω,T f̂Φ,T − T f 〉
∣∣∣ = max

( j,θ)∈Ωn

2−β j ∣∣∣〈ψ j,θ, f̂Φ,T − f 〉
∣∣∣ ≤ γn

for singular values κ j = 2−β j. This constraint hence imposes similarity between f̂Φ,T
and f directly in terms of their wavelet coefficients: this is good, since wavelets have
strong approximation properties. Indeed, as in Chapter 2, we enforce similarity between
f̂Φ,T and f at all scales simultaneously. There is however a crucial difference: the weight
2−β j implies that our constraint becomes less strict for smaller scales (large j). We have
illustrated the reason for this in the previous paragraph for a convolution operator: the
high frequencies (small scales) of T f are highly attenuated, so the high frequencies of our
observations carry relatively little information about the high frequencies of f . Exactly
how much information they carry is characterized by the degree of ill-posedness β and the
factor 2−β j. Hence, using a vaguelette system {uω} allows the estimator (3.4) to extract as
much information as possible about the high frequencies of f .

The performance of the estimators presented in points a) and b) is illustrated in simulations in
Chapter 5, where we see the different levels of detail achieved by each of them.

Remark 9. Let us discuss the feasible set of the problem (3.4), which consists of the constraints

max
ω∈Ωn

∣∣∣〈uω,Tg〉 − 〈uω, dY〉
∣∣∣ ≤ γn, ‖g‖L∞ ≤ log n, supp g ⊆ [0, 1]d. (3.6)

By Proposition 11 in Section 7.3.2 and the choice (3.5) for γn, the probability that the true
regression function f satisfies the first constraint in (3.6) is not smaller than 1 − O((#Ωn)1−κ2

).
As long as n ≥ eL and f satisfies the first constraint in (3.6), it also satisfies the others, since we
assume that f ∈ BVL. As a consequence, the feasible set of (3.4) is nonempty with probability of
the order 1 − O((#Ωn)1−κ2

). Hence, we will see that the caveat in Definition 2 about the feasible
set does not play a decisive role for the convergence properties of f̂Φ,T .

Proposition 6. In the setting of Definition 2, for each n ∈ N there exists almost surely a
minimizer f̂Φ,T ∈ BV ∩ L∞ of (3.4).

The proof of Proposition 6 is given in Section 7.3.1. For given β, d and q, recall the definition of
the exponent

ϑq,β :=


1

d+2β+2 for q < 1 + 2/(d + 2β)
1

q (d+2β) for q ≥ 1 + 2/(d + 2β).
(3.7)
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Theorem 4. For d ∈ N, let T satisfy Assumption 4 with β ≥ 0. Assume the model (1.1) with
f ∈ BVL for some L > 0. For q ∈

[
1,∞

)
, let ϑq,β be as in (3.7).

a) Let γn be as in (3.5) with κ > 1. Then for any n ∈ N with n ≥ eL, the estimator f̂Φ,T
in (3.4) with parameter γn satisfies

sup
f∈BVL

‖ f̂Φ,T − f ‖Lq ≤ C n−ϑq,β (log n)3−min{d,2} (3.8)

with probability at least 1 −
(
#Ωn

)1−κ2
, for a constant C > 0 independent of n.

b) Under the assumptions of part a), if κ2 > 1 + 1
(d+2β+2) Γ

, then

sup
f∈BVL

E
[
‖ f̂Φ,T − f ‖Lq

]
≤ C n−ϑq,β (log n)3−min{d,2} (3.9)

holds for n large enough and a constant C > 0 independent of n. The constant Γ > 0 in the
condition on κ2 is the one from Assumption 4.

The proof of Theorem 4 is given in Section 7.1. We have the following consequence of Theorem 4.

Theorem 5. Consider the setting of Theorem 4, and assume further that the operator T satisfies
condition (3.11) below. Then the estimator (3.4) is asymptotically minimax optimal up to
logarithmic factors for estimating functions f ∈ BVL, L > 0, with respect to the Lq-risk, for any
q ∈

[
1,∞

)
.

Proof. As in the regression setting, we show that the minimax risk over the smaller class
(B1

1,1 ∩ L∞)L ⊂ BVL is lower bounded by n−ϑq,β . This matches the rate of convergence of the
multiscale TV-estimator up to logarithmic factors, which gives the claim. And indeed, according
to Theorem 6, the minimax rate of estimation in the inverse problem setting (1.1) over the class
(B1

1,1 ∩ L∞)L satisfies

R(Lq, (B1
1,1 ∩ L∞)L) ≥ CL,σ n−ϑq,β

which completes the proof. �

Remark 10. In the same way as the multiscale TV-estimator for regression can be seen as a
hybrid between wavelet thresholding and variational regularization, the multiscale TV-estimator
for inverse problems is a mixture of wavelet-vaguelette thresholding and variational regularization.
This analogy raises the question of how well thresholding of the WVD performs for estimating
BV functions. This was answered by Donoho (1995), who proved that thresholding of the WVD
is minimax optimal over a range of Besov spaces. His results cover the case of BV functions for
d = 1 and β-smoothing operators with β ∈ [0, 1/2). This is, to the best of our knowledge, the
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only available result for minimax optimal reconstructions of BV functions in inverse problems.
In this sense, our result is an improvement in that the estimator (3.4) is nearly minimax optimal
in any dimension d ≥ 1 and for all β ≥ 0.

Sketch of the proof of Theorem 4

The proof of Theorem 4 follows roughly the same ideas as that of Theorem 1, sketched in
Section 2.3. The main differences concern the wavelet and vaguelette dictionaries. In this section
we discuss how to deal with them.

1. Recall that in the regression setting in Section 2.3 we work conditionally on the eventAn

in (2.11), which guaranties that the observational noise is not too large. In our present
setting, the estimator f̂Φ,T is based on the projection of dY onto the vaguelette system u j,θ.
We hence need to guarantee that the noise corrupting these observations is suitably small.
The exact condition that we need is encoded in the event

Ãn :=
{

max
( j,θ)∈Ωn

∣∣∣∣∣ ∫
M

u j,θ(x) dW(x)
∣∣∣∣∣ ≤ √n

σ
γn

}
. (3.10)

As in the sketch of Theorem 1, our strategy is to show that f̂Φ,T converges at the optimal rate
conditionally on the event Ãn. Further, we show that this event happens with probability
approaching 1 as n→ ∞

2. In order to bound the Lq-risk, we also use here an interpolation inequality derived from
Theorem 3. However, for reasons to become clear soon, we need to relate it to the BV and
Besov B−d/2−β

∞,∞ norms, i.e.,

‖ f̂Φ,T − f ‖Lq ≤ C ‖ f̂Φ,T − f ‖
2

d+2β+2

B−d/2−β
∞,∞

‖ f̂Φ,T − f ‖
d+2β

d+2β+2

BV for d ≥ 2 and q ∈
[
1, 1+2/(d +2β)

]
.

While the term ‖ f̂Φ,T − f ‖BV can be bounded as in Section 2.3, the term ‖ f̂Φ,T − f ‖B−d/2−β
∞,∞

requires a special analysis, which we sketch now. First, since the dictionary Φ satisfies
Assumption 4, we can bound the Besov norm as

‖ f̂Φ,T − f ‖B−d/2−β
∞,∞

≤ max
( j,θ)∈Ωn

2−β j|〈ψ j,θ, f̂Φ,T − f 〉| + C ‖ f̂Φ,T − f ‖L∞ n−1/2.

The second term can be handled as in Section 2.3. For the first term, we have

max
( j,θ)∈Ωn

2−β j|〈ψ j,θ, f̂Φ,T − f 〉| = max
( j,θ)∈Ωn

2−β j|κ−1
j 〈T

∗u j,θ, f̂Φ,T − f 〉|

≤ max
( j,θ)∈Ωn

|〈u j,θ,T f̂Φ,T 〉 − 〈u j,θ, dY〉| +
σ
√

n
max

( j,θ)∈Ωn

|〈u j,θ, dW〉|,
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using the definition of vaguelettes and κ j = 2−β j. The first term in the right-hand side
is bounded by γn by construction of the estimator f̂Φ,T in (3.4), while the second term
is bounded by γn conditionally on the event Ãn. Plugging the value (3.5) of γn, we get
altogether the bound

‖ f̂Φ,T − f ‖B−d/2−β
∞,∞

≤ C n−1/2 log n

conditionally on Ãn. Inserting this in the interpolation inequality gives part a) of Theorem 4
for q ≤ 1 + 2/(d + 2β).

3. For q > 1 + 2/(d + 2β), we use Hölder’s inequality as in the sketch of the proof of
Theorem 1. Finally, the claim in part b) of convergence in expectation follows easily from
that.

Remark 11. We have sketched the proof for d ≥ 2. As in the proof of Theorem 1, the case d = 1
requires a slightly different treatment. We refer to the proof in Section 7 for the details.

3.2 Minimax lower bounds

Here we prove a lower bound for the minimax risk over Besov spaces Bs
p,t, s > 0, p, t ∈ [1,∞],

for observations (1.1) from a β-smoothing operator, with respect to the Lq-risk. By the embedding
B1

1,1 ⊂ BV this provides a lower bound on the minimax risk over BV .

In order to state the result, we make the following assumption. For β ≥ 0, the linear operator
T : L2(Rd)→ L2(M) satisfies

‖Tψ j,k,e‖L2 ≤ c 2− jβ ∀( j, k, e) ∈ Ω (3.11)

for a constant c > 0, where {ψ j,k,e} is a wavelet basis of compactly supported wavelets. We
remark that any operator T that admits a WVD satisfies this condition (Donoho, 1995). Notice
that the case where T = id with β = 0 is allowed, and gives a lower bound for the minimax rates
in a regression setting. For inverse problems, the Radon transform and a convolution operator
with suitable kernel satisfy (3.11).
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Theorem 6. Let 1 ≤ p, t ≤ ∞, 1 ≤ q < ∞, s > 0 and L > 0. Let T satisfy (3.11) for β ≥ 0. Then
there is a constant CL,σ > 0 such that the minimax risk over the set (Bs

p,t ∩ L∞)L in (1.17) for
observations from the inverse problem (1.1) satisfies

R(Lq, (Bs
p,t ∩ L∞)L) ≥ CL,σ rn(s, p, t, q)

for all n ∈ N, where

rn(s, p, t, q) =



n−
s

2s+2β+d if q < pd+2s+2β
d+2β(

log n
n

) s+d( 1
q−

1
p )

2s+2β+2d( 1
2−

1
p ) if q ≥ pd+2s+2β

d+2β and s > d/p

n−
sp

(d+2β)q if q ≥ pd+2s+2β
d+2β and s ≤ d/p.

(3.12)

As stated in Theorem 5 above, the first consequence of Theorem 6 is that the multiscale TV-
estimator is minimax optimal over BVL up to logarithmic factors for any q ∈ [1,∞) and any
β ≥ 0.

More generally, Theorem 6 gives insight about the difficulty of estimating quite general functions.
The parameter regimes q < pd+2s+2β

d+2β (dense case) and q ≥ pd+2s+2β
d+2β and s > d/p (sparse

case) are well understood, and the associated minimax rates have been known for a while for
Besov spaces if T = id (see Chapter 10 in Härdle et al. (2012)), and for Sobolev spaces with
p = 2 for some inverse problems (see Cavalier and Tsybakov (2002)). Their proofs follow the
classical strategy of constructing a set of alternatives in (Bs

p,t ∩ L∞)L that are well separated in
the Lq-norm, and applying an information inequality (e.g. Fano’s inequality).

On the other hand, the regime q ≥ pd+2s+2β
d+2β and s ≤ d/p is far less popular. For regression

(β = 0), this regime was observed by Goldenshluger and Lepskii (2014) and Lepskii (2015) for
anisotropic Nikolslkii classes, which in the isotropic case correspond to Bs

p,∞, and in general
allows for different smoothness and integrability indices in different spatial directions.

Regarding the boundaries between regimes, Donoho et al. (1997) showed that at the boundary
q = pd+2s

d , s > d/p, the lower bound can be tightened by an additional logarithmic factor. At
that boundary for s < d/p and at the boundary s = d/p we do not know whether the bounds can
be tightened, since the only estimators known to converge there (the one in Lepskii (2015) and
in the present thesis) attain the lower bound up to logarithmic factors.

Notice that for s < d/p, functions in Bs
p,t are not continuous. The presence of discontinuities

then precludes consistency in the L∞-risk, a phenomenon that was stressed by Lepskii (2015)
and that is well-known in dimension d = 1 for change-point estimation (Li et al., 2017). We
remark that the L∞ inconsistency is responsible for the slower rate in Theorem 6. To see that,
consider the opposite case, i.e., s > d/p. It is well-known since Nemirovski’s work (Nemirovski,
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1985) that the minimax risk over Sobolev W s,p spaces w.r.t. the Lq-risk is determined by its
values at q = p(1 + 2s/d) and at q = ∞. For a suitable estimator (e.g. the window estimator
in Nemirovski (1985)) one has the bounds

‖ f̂ − f ‖Lp(1+2s/d) ≤ C (n−1 log n)
s

2s+d

‖ f̂ − f ‖L∞ ≤ C (n−1 log n)
s−d/p

2s+d−2d/p

with high probability. The Lq-risk for all other q ∈ [1,∞] follows by domination and interpolation,
i.e.,

‖ f̂ − f ‖Lq ≤


‖ f̂ − f ‖Lp(1+2s/d) ≤ C (n−1 log n)

s
2s+d if q ≤ p(1 + 2s/d)

‖ f̂ − f ‖
p(2s+d)

qd

Lp(1+2s/d)‖ f̂ − f ‖
1− p(2s+d)

qd

L∞ ≤ C (n−1 log n)
s+d/q−d/p
2s+d−2d/p else.

This argument holds for s > d/p, since then we can guarantee that the L∞ risk tends to zero.
However, for s ≤ d/p the L∞ risk does not tend to zero, whence the risk bound for q ≥ p(1+2s/d)
deteriorates to

‖ f̂ − f ‖Lq ≤ ‖ f̂ − f ‖
p(2s+d)

qd

Lp(1+2s/d)‖ f̂ − f ‖
1− p(2s+d)

qd

L∞ ≤ C (n−1 log n)
sp
dq ,

which matches the lower bound in Theorem 6.

Remark 12 ("Ideal" risk). A practical implication of this result is that, if s ≤ d/p, using the
Lq-risk for large q comes at the cost of a slower convergence. On the other hand, in many
applications one wants to take q as large as possible. Our result suggests that the ideal q is given
by q = p(1 + 2/(d + 2β)), as it is the largest index that still achieves the "fast" rate n−1/(d+2β+2).
In particular, for BV functions and β = 0, this implies that the q = 1 + 2/d risk is better suited
than, say, the L2-risk for d ≥ 3.

Remark 13 (Multiscale alternatives). The proof of the lower bound on the minimax rate in the
regime s ≤ d/p, which we give in Section 7.2 is based on the classical reduction to testing:
we construct a set of alternatives separated by a distance δ and show that no statistical testing
procedure can distinguish them perfectly. This construction is then "inverted", and implies that
any estimation procedure makes an expected error of at least δ. The largest possible lower bound
is then achieved by looking for the largest distance δ as a function of n such that no testing
procedure can distinguish the alternatives perfectly (see e.g. Tsybakov (2009) for more details).

As in the dense regime, our construction of the alternatives is based on Assouad’s cube applied to
a wavelet basis {ψ j,k,e} (Assouad, 1983). For simplicity of the notation, we sketch the construction
here for β = 0.
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Recall that in the dense regime (q < p(1 + 2/d)), the set of alternatives that determines the lower
bound is

{
gε = g0 + γ

∑
(k,e)∈Pd

j×E j

εk,eψ j,k,e
∣∣∣ εk,e ∈ {−1,+1}, (k, e) ∈ {0, . . . , 2 j − 1}d × E j

}
,

where γ > 0 parametrizes the "signal strength" of the alternatives. This regime is called dense

because the difficulty of estimating is driven by functions supported everywhere. On the other
hand, the minimax lower bound in the sparse regime (q ≥ p(1 + 2/d), s > d/p) is determined by
the set of alternatives

{
gk,e = g0 + γ ψ j,k,e

∣∣∣ (k, e) ∈ {0, . . . , 2 j − 1}d × E j
}
.

In other words, the functions that are most difficult to estimate in this regime are localized spikes.
Finally, in the multiscale regime (q ≥ p(1 + 2/d), s ≤ d/p) the minimax lower bound is driven
by alternatives of the form

{
gε = g0 + γ

∑
(k,e)∈R j

εk,eψ j,k,e
∣∣∣ εk,e ∈ {−1,+1}, (k, e) ∈ R j

}
,

for a set RJ ⊂ {0, . . . , 2 j − 1}d × E j of cardinality #R j = b2 j(d−sp)c. These functions distribute
their mass among #R j spikes whose locations can vary. Interestingly, this suggests that multiscale
estimators like (2.5), which enforce a local fitting at different locations and scales, may be optimal
in this regime. In the present work we have verified this for BV functions, and in Lepskii (2015)
a kernel estimator with spatially varying bandwidth was shown to be optimal over Nikolskii
classes in this regime.

3.3 Examples

For the following examples we choose the dictionary Φ = {ψ j,k,e} to consist of sufficiently regular
Daubechies wavelets. The precise regularity depends on the ill-posedness of the operator T : for
a β-smoothing operator (i.e. with singular values κ j = 2− jβ), we choose Φ to be an S -regular
basis with S times continuously differentiable elements, where S > max{1, d/2 + β}.

Radon transform

Due to its application in nondestructive imaging, in particular in medial applications, tomography
is a very relevant inverse problem. While there are plenty of mathematical models for tomography,
which mainly depend on the type of tomography and the geometry of the detector (see e.g. Chapter
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1 in Scherzer et al. (2009)), in this section we will exemplarily consider tomography modeled by
the Radon transform. For simplicity we consider here the two dimensional case, in which the
Radon transform of a function g is given by its line integrals along different directions, see (3.3).

Functions in the range of T are supported on cylindrical sets of the form M = R × [0, 2π).
Moreover, the domain of T consists of functions g ∈ L2(R2) whose Fourier transform satisfies
|ξ|−1/2F [g](ξ) ∈ L2. This is a condition on the low frequencies which essentially ensures that
local averages remain reasonably small.

In this section we will show how to apply the estimation framework developed above to this type
of inverse problems. For that, let {ψ j,k,e} denote a basis of Daubechies wavelets as described in
Section 2.1. For ( j, k, e) ∈ Ω, the vaguelettes are functions on the radial and angular coordinates
(r, θ) defined by

u j,k,e(r, θ) =
2− j/2

(2π)2

∫
R
|ρ| F [ψ j,k,e](ρ cos θ, ρ sin θ) eirρ dρ. (3.13)

It is easy to verify directly (see e.g. Chapter 2 in Natterer (1986)) that the vaguelettes satisfy the
equation

T ∗u j,k,e = κ j ψ j,k,e

for singular values κ j = 2− j/2. Moreover,

c1 ≤ ‖u j,k,e‖L2 ≤ c2 ∀( j, k, e) ∈ Λ,

for explicit constants c1, c2 depending on ψ0,0,e, see Section 3.3 in Donoho (1995) for a proof of
this claim. Let us remark that the system {u j,k,e} is part of a WVD for T (see Donoho (1995) for
the details). In particular, it satisfies condition (3.11).

Altogether, the observations above imply that the Radon transform satisfies Assumption 4 with
β = 1/2 in dimension d = 2. By Theorem 4, the multiscale total variation estimator (3.4) is
nearly minimax optimal for recovering a function f ∈ BVL from noisy Radon observations. We
remark that the same analysis can be performed for the Radon transform in higher dimensions,
in which case β = (d − 1)/2, for the X-ray transform, with β = 1/2 for any dimension (Natterer,
1986), as well as for other tomography operators, such as photoacoustic and thermoacoustic
tomography (see e.g. Haltmeier (2013)).
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Convolution

Let T denote the convolution operator with a kernel K ∈ L1(Rd), i.e.,

Tg(x) :=
∫
Rd

K(x − y)g(y) dy.

We letM = Rd, and by Young’s inequality T is a bounded operator fromD(T ) = L2(Rd) to itself
whose operator norm equals ‖K‖L1 . The inverse problem (1.1) with a convolution operator T is a
model for a myriad of applications in image and signal processing, including microscopy and
astronomy models (see e.g. Bertero et al. (2009)). The problem of recovering a signal f from
noisy measurement of its convolution T f is hence of extreme practical relevance. In this section
we show that the multiscale TV-estimator (3.4) solves this problem in a minimax optimal sense.
For that, we need to impose regularity conditions on T , which naturally have the form of a decay
condition on the Fourier transform of K. In particular, we assume that the kernel K satisfies

a1 (1 + |ξ|2)−β/2 ≤ |F [K](ξ)| ≤ a2 (1 + |ξ|2)−β/2 ∀ξ ∈ Rd (3.14)

for constants a1, a2 ≥ 0 and some β ≥ 0. Given a basis of Daubechies wavelets {ψ j,k,e} like that
in Section 2.1 with S > max{1, d/2 + β}, define the system of functions

u j,k,e(x) := 2 j(d/2−β)F −1
[F [ψ0,0,e](·)

F [K](−2 j·)

](
2 jx − k

)
(3.15)

indexed by the set Ω in (2.2). These functions satisfy the following relations

T ∗u j,k,e = κ j ψ j,k,e where κ j = 2− jβ,

c1 ≤ ‖u j,k,e‖L2 ≤ c2 ∀( j, k, e) ∈ Ω,

where we can choose c1 = mine∈{0,1}d ‖(−∆)β/2ψ0,0,e‖L2 and c2 = maxe∈{0,1}d ‖ψ0,0,e‖Hβ (see
Proposition 13 in Section 7.3.5 for the proof). Further, it is easily verified that such a convolution
operator satisfies (3.11).
These results show that the convolution operator T under the assumptions above satisfies As-
sumption 4. By Theorem 4 we conclude that the multiscale TV-estimator is minimax optimal for
estimating functions f ∈ BVL, up to logarithmic factors. Finally, in Section 5.2 of Chapter 5 we
analyze the numerical performance of the multiscale TV-estimator for deconvolution problems.

Here we have considered convolution kernels that decay polynomially in Fourier domain, which
correspond to mildly ill-posed inverse problems. We discuss the extension to exponentially
ill-posed inverse problems in the Conclusion in Chapter 6.
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CHAPTER 4

Computation

In this chapter we discuss how to implement and efficiently compute the multiscale estimator

f̂Φ ∈ argmin
g∈Fn

|g|BV s.t. max
ω∈Ωn

∣∣∣〈φω, g〉 − Yω
∣∣∣ ≤ γn. (4.1)

Notice that this estimator covers the settings of regression and of inverse problems, in which
case the dictionary φω would be chosen as indicated in Chapter 3. The optimization problem
in (4.1) presents two challenges:

a) The objective function | · |BV is a non-smooth functional. This is a difficulty, since it
yields standard optimization methods such as gradient descent inapplicable. We are left
with two alternatives: either use techniques from non-smooth optimization, or find a
smooth surrogate for our problem and apply standard techniques to it. We pursue both
approaches: on one hand, we use the primal-dual Chambolle-Pock algorithm (Chambolle
and Pock, 2011) for non-smooth optimization (see Section 4.1), and on the other hand,
we use the Moreau-Yosida regularization and a Newton-type algorithm in combination
with the path-following technique (see Section 4.3). Each method has advantages and
disadvantages, which we discuss below.

b) The constraint in (4.1) involves the maximum over the set Ωn. This is the index set of
the dictionary Φ. As argued in the Introduction, the estimator (4.1) performs best for
very redundant dictionaries Φ. This implies in particular that the set Ωn will be quite
numerous (typical numbers are #Ωn ∼ 104 for d = 1 and n = 256, and #Ωn ∼ 107

for d = 2 and images of size 256 × 256), thus making the evaluation of the constraint
in (4.1) a computationally demanding task. An efficient way of dealing with this problem
is to solve (4.1) by a primal-dual approach, as presented in Section 4.1. In that situation,
the constraint appears only via the proximal mapping of its Fenchel conjugate, which in
our case turns out to be simply the soft-thresholding operator. Soft-thresholding can be
implemented efficiently, which makes the primal-dual approach very successful.



56 Computation

In Section 4.1 below we briefly describe the Chambolle-Pock primal-dual algorithm, and in
Section 4.2 we explain how to apply it to our problem. In Section 4.3 we present an alternative
algorithm that uses the Moreau-Yosida regularization and a Newton-type method to solve (4.1).
Finally, we briefly comment on further alternative algorithms in Section 4.4, and discuss the
advantages and disadvantages of the different approaches.

Remark 14. In this section we will work with the Fenchel transform of a functional F, denoted
by F?. We warn the reader of the similarity between this and the notation for the adjoint of an
operator K, denoted by K∗.

4.1 The Chambolle-Pock algorithm

The Chambolle-Pock algorithm, introduced by Chambolle and Pock (2011), is an algorithm
for non-smooth convex optimization. Roughly speaking, it operates by solving the optimality
conditions for the primal and the dual problems alternatively. In order to explain it, we need
some notation. Most of the general notation and standard claims in this section can be found
in Rockafellar (2015). As customary in the optimization literature, we consider all real-valued
functionals in this section to map to the extended real line R ∪ {±∞}. This has the consequence
that infima and suprema are always attained, so we write min and max instead of inf and sup.
Let us introduce the following notation:

a) V and W are finite dimensional vector spaces with norms ‖ · ‖V and ‖ · ‖W arising from inner
products 〈·, ·〉V and 〈·, ·〉W . When it is clear from the context, we drop the dependence on
V and W from the notation and write simply ‖ · ‖ and 〈·, ·〉. The topological dual W∗ of W

is identified with W as a vector space, and the same is done for V .

b) Let K : V → W∗ be a continuous linear mapping with operator norm ‖K‖op := max‖v‖≤1 ‖Kv‖.
Recall that we denote by K∗ the dual of K with respect to the inner products of V and W,
i.e.

〈w,Kv〉W = 〈K∗w, v〉V ∀v ∈ V, ∀w ∈ W.

c) Define the Fenchel transform (also called convex conjugate) of a convex, lower-semicontinuous
functional H : W → [0,+∞) as the mapping

H?(z) := max
w∈W
〈z,w〉 − H(w), z ∈ W∗.

The functional H? is then convex and lower-semicontinuous (see Section 12 in Rockafellar
(2015)).
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d) Let F? : W → [0,+∞) and G : V → [0,+∞) be convex, lower-semicontinuous
functionals. Assume that F? is the Fenchel conjugate of a convex, lower-semicontinuous
functional F. Then F?? = F (see Rockafellar (2015)).

e) We say that a functional F is simple if the resolvent mapping

v =
(
I + τ ∂F

)−1(w) := argmin
z∈W∗

‖z − w‖2

2τ
+ F(z)

can be computed efficiently for any τ > 0. Here ∂F denotes the subdifferential of F.
We remark that if F is simple, then F? is simple as well by Moreau’s identity (see the
remark after Theorem 31.5 in Section 31 in Rockafellar (2015)). That something can
be "computed efficiently" is an admittedly vague statement, but we shall give it a more
concrete meaning in Section 4.2 when we consider particular functionals.

In this setting, the Chambolle-Pock algorithm solves problems of the form

min
v∈V

F(Kv) + G(v). (4.2)

Expressing F as the convex conjugate of F?, this can be written as

min
v∈V

max
w∈W
〈Kv,w〉 − F?(w) + G(v). (4.3)

Assume that a solution (v,w) ∈ V ×W to (4.3) exists. It follows (see Theorem 31.3 in Section 31
in Rockafellar (2015)) that it satisfies the conditions Kv ∈ ∂F?(w)

−K∗w ∈ ∂G(v),

where we write inclusions because the subgradient of a non-smooth functional is in general
set-valued. Adding the identity mappings IV and IW of the spaces V and W, these equations can
be written as  w + σKv ∈

(
IW + σ∂F?

)
(w)

v − τK∗w ∈
(
IV + τ ∂G

)
(v),

(4.4)

for any σ, τ > 0. In this setting, the Chambolle-Pock algorithm finds a solution (v,w) to (4.3) by
iteratively solving the two equations in (4.4), as show in Algorithm 1. Note that this can be done
efficiently under the assumption that F and G are simple, which is the case for the problem we
are interested in (see Section 4.2 below).
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Algorithm 1 Chambolle-Pock algorithm
Require: σ, τ > 0, θ ∈ (0, 1], N = 0, (v0,w0) ∈ X × Y , stopping criterion

1: while stopping criterion not satisfied do

wN+1 ←
(
IW + σ∂F?

)−1(wN + σK ṽN)

vN+1 ←
(
IV + τ ∂G

)−1(vN − τK∗ wN+1)
ṽN+1 ← vN + θ

(
vN+1 − vN

)
N ← N + 1

2: end while
3: Return (vN ,wN)

The stopping criterion in Algorithm 1 typically involves a maximum number of iterations Nmax

and a convergence criterion of the form max
{
‖vN − vN+1‖, ‖wN − wN+1‖

}
< ε.

Theorem 1 in Chambolle and Pock (2011) guarantees that, if the step sizes τ and σ in Algorithm 1
satisfy τσ < ‖K‖−2

op , then there is a saddle-point (v,w) of (4.3) towards which the sequence
(vN ,wN) converges as N → ∞. Recall that v is the solution to our original problem (4.2).
Moreover, there is a variant of Algorithm 1 that uses so-called acceleration and guarantees that

‖vN − v‖ ≤ C N−1 (4.5)

holds for N large enough, where C > 0 is a constant depending on the initialization and
the parameters of the algorithm. In a nutshell, the idea behind acceleration is to choose the
parameters θ, σ and τ in the algorithm to depend on the iteration number N. We refer to Theorem
2 of Chambolle and Pock (2011) for a proof of this result.

4.2 Implementation of the estimator

In order to compute the estimator in (4.1), we first need to discretize it. We do so by representing
a function g by its values at a regular grid of n points in [0, 1]d, where n = md for m ∈ N. More
precisely, if Γn denotes the equidistant grid in (2.17), we denote the discretization of a function g

in [0, 1]d by gn := {g(xi)}xi∈Γn . We see gn as a d-dimensional array of size md: e.g. gn ∈ R
m×m

is a matrix if d = 2, and a vector g ∈ Rn if d = 1. We denote the set of all such arrays by RΓn .
Denote by ‖D gn‖1 the bounded variation seminorm of the array gn, defined as

‖D gn‖1 :=
∑
x∈Γn

|Dgn(x)|,
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where

|Dgn(x)| :=
√∑

y�x

∣∣∣gn(x) − gn(y)
∣∣∣2

and the sum is over all neighbors y of x in the grid with coordinates not smaller than those of x,
written x � y. This restriction is immaterial, but it simplifies the work with the finite difference
operator, defined below. We use the convention that two points x, y ∈ Γn are neighbors if, when
seen as vectors x = (x1, . . . , xd), y = (y1, . . . , yd), they differ by m−1 in exactly one coordinate,
and are equal in the others. Finally, we define the finite difference operator D by

Dgn(x, y) =


(
gn(x) − gn(y)

)
if x � y ∈ Γn,

0 else.

Given the dictionary Φ = {φω |ω ∈ Ω} of functions, we denote by φn
ω the discretization of the

function φω in the grid Γn. This is again a d-dimensional array of size md.

With this notation, the discretization of the minimization problem in (4.1) can be written as

min
gn∈RΓn

‖D gn‖1 s.t. max
ω∈Ωn

∣∣∣〈φn
ω, gn〉Γn − Yω

∣∣∣ ≤ γn, (4.6)

where
〈φn
ω, gn〉Γn :=

1
n

∑
x∈Γn

φn
ω(x)gn(x)

is a discretization of the L2-inner product between the functions φω and g. We solve the
discretized problem (4.6) by formulating it in the form (4.2) and using the Chambolle-Pock
algorithm. For that, we turn the constraint minimization in (4.6) into a penalized minimization
problem by means of the indicator function

1≤0(z) :=

0 if maxω∈Ωn zω ≤ 0

+∞ else
for z ∈ R#Ωn .

Hence, we can write (4.6) as

min
gn∈RΓn

‖D gn‖1 + 1≤0(Kgn − Y − γn) + 1≤0(−Kgn + Y − γn), (4.7)

where K : RΓn → R#Ωn is the linear operator that maps an array gn to the vector of its #Ωn

coefficients with respect to the discretized dictionary {φn
ω |ω ∈ Ωn}, i.e.,

[Kgn]ω := 〈φn
ω, gn〉Γn for ω ∈ Ωn.
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Notice that (4.7) indeed has the form of (4.2) with V = RΓn equipped with the inner product
〈·, ·〉Γn , W = R#Ωn equipped with the standard inner product, the operator K as above, and
functionals

F(v) := 1≤0(v − Y − γn) + 1≤0(−v + Y − γn) for v ∈ R#Ωn ,

G(w) := ‖Dw‖1 for w ∈ RΓn .

Notice that G is proper, convex and lower-semicontinuous, while F is lower-semicontinuous and
convex due to the fact that the constraint set in the definition of the indicator function 1≤0 is
convex. Furthermore, the convex conjugate of F is given by

F∗(z) := sup
max
ω∈Ωn
|xω−Yω|≤γn

〈x, z〉 = 〈z,Y〉 + γn‖z‖1 =
∑
ω∈Ωn

zωYω + γn|zω|.

Moreover, the mappings G and F∗ are simple in the sense of Section 4.1, since their proximal
mappings can be computed as the minimization problems

min
x∈RΓn

‖x − v‖2

2τ
+ ‖Dx‖1

for v ∈ RΓn and

min
z∈R#Ωn

‖z − w‖2

2τ
+ γn

∑
ω∈Ωn

∣∣∣zω − τYω
∣∣∣ (4.8)

for w ∈ R#Ωn , which can be solved efficiently for any τ > 0: the former by Chambolle’s
algorithm (Chambolle, 2004) or by quadratic programming (Nesterov and Nemirovsky, 1994),
and the latter has an exact solution in terms of soft-thresholding. We conclude that the Chambolle-
Pock algorithm can be used to solve the minimization problem (4.7).

Discretization of the BV seminorm

Remark 15 (Discretization of the BV seminorm). Since we have discretized the BV seminorm
in order to apply the Chambolle-Pock algorithm, one could ask how much we lose by dis-
cretizing the original problem. This was answered by Chambolle (2004), who showed that the
properly rescaled discretized functional ‖D gn‖1 converges to the BV seminorm in the sense of
Γ-convergence. He also showed that Chambolle’s algorithm in the discretized model produces
reconstructions that converge to the minimizer of the continuous model in the limit n→ ∞.

While these results imply that one can rely on Chambolle’s algorithm, some authors have shown
that the discretization of the BV seminorm can be unstable in general. In the setting of Bayesian
inverse problems, Lassas and Siltanen (2004) and Lassas et al. (2009) proved that imposing a
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discretized BV prior (analogous to regularizing with the BV seminorm) shows the following
phenomenon: as the level of discretization grows, the posterior mean estimator converges to
the posterior mean corresponding to a Sobolev H1 prior (Theorem 5.1 in Lassas and Siltanen
(2004)). Further, Lassas et al. (2009) show that Besov B1

1,1 priors do not show this effect. This
is one of the main computational differences between the BV and the Besov B1

1,1 or Sobolev
seminorms: the former is not discretization invariant, while the latter are. We refer to Section 1.4
in the Introduction for other results concerning the discretization of the BV seminorm.

4.3 Semismooth Newton approach

Here we present an alternative approach for solving (4.1) that is based on smoothing the original
problem and applying a Newton-type method to solve it. Of course, this yields the solution
to a smoothed problem, and not to the original one. This issue is mitigated by the technique
of path-following (see e.g. Hintermüller (2010) and Hintermüller and Rasch (2015)), which
essentially amounts to iteratively solving the smoothed problem with a decreasing amount of
regularization. Schematically, let F denote the original functional we want to minimize, and
let Fε denote the functional "regularized at level ε", whatever this means (we will see below an
explicit example of regularization). The path-following schema is sketched in Algorithm 2, and
is based on the following assumptions:

a) it is more difficult to minimize the unregularized functional F than its regularized version
Fε ;

b) the smaller ε, the more "similar" Fε and F are, and the more computationally demanding
it is to minimize Fε ;

c) the computational cost for minimizing Fε depends crucially on the initialization.

With these ideas in mind, the path-following schema would ideally start with a large parameter
ε0, for which the minimizer x0 of Fε0 is easily computed. In each iteration ε will get smaller,
which means that Fε will be more difficult to minimize, but we will also have better initialization
points, which makes minimization easier.

So far we have only talked about "regularizing" the original problem in a broad sense. In
the following we will consider the Moreau-Yosida regularization of the subdifferential of the
functional. The reason for using it is that the semismooth Newton method applied to the Moreau-
Yosida regularization of a functional is known to achieve superlinear convergence (see Section 5
of Hintermüller (2010)). One of the inspirations to use this approach is the work of Clason et al.
(2018), who used these techniques to solve an optimization problem involving a BV-penalty.
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Algorithm 2 Path-following schema
Require: ε0 > 0, r ∈ (0, 1), N = 0, v−1 ∈ V , mapping ε 7→ Fε(·), stopping criterion

1: while stopping criterion not satisfied do

vN ← argmin
u

FεN (u) using vN−1 as initialization

εN+1 ← r · εN
N ← N + 1

2: end while
3: Return vN

Let us explain this approach in more detail. We consider for simplicity the case d = 1, since the
mappings D and D∗ are then easier to handle. The optimality condition for the minimization
problem (4.7) is given by the set inclusion

0 ∈ D∗
(
∂‖ · ‖L1

)
(Du) + K∗

(
∂1≤0

)
(Ku − Y − γn) − K∗

(
∂1≤0

)
(−Ku + Y − γn), (4.9)

where ∂‖ · ‖L1 denotes the subdifferential of the L1-norm, and ∂1≤0 denotes the subdifferential of
the indicator function 1≤0. In d ≥ 2, the subdifferential of the BV seminorm is slightly different,
since then we have the L1 norm of the Euclidean norm of the gradient (see Section 5.2 in Clason
et al. (2018) for the details).

Our goal is to find a function u such that (4.9) holds, but the fact that the subdifferentials are
set-valued complicates matters. Our approach here is to replace them by their Moreau-Yosida
regularization, which is a single-valued Lipschitz-continuous functional. The Moreau-Yosida
regularization of the subdifferential ∂F of a convex, lower-semicontinuous functional F is defined
as (

∂F
)
δ(v) :=

1
δ

(
v −

(
I + δ∂F

)−1(v)
)

for δ > 0.

We refer to Section 3 of Parikh and Boyd (2014) for further details on this regularization
technique. The Moreau-Yosida regularizations of the two subdifferentials appearing in (4.9) are
given in d = 1 by

(
∂‖ · ‖L1

)
δ(v) =


1 if v ≥ δ
v
δ if v ∈ (−δ, δ)

−1 else,

(
∂1≤0

)
δ(v) =

1
δ

max{0, v},
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where the maximum is applied component-wise to the vector v ∈ R#Ωn . Substituting the
subdifferentials in (4.9) by their regularized counterparts yields the equation

0 = D∗
(
∂‖ · ‖L1

)
δ1

(Du) +
1
δ2

K∗
(

max{Ku − Y − γn, 0} −max{−Ku + Y − γn, 0}
)

(4.10)

for regularization parameters δ1, δ2 > 0. This is now an equation of the form Fδ1,δ2(u) = 0 for a
Lipschitz-continuous functional Fδ1,δ2(·). Actually, this functional is semismooth (see Definition
2.5 in Hintermüller (2010)), which means that the semismooth Newton method can be used, and
it converges superlinearly to a solution u of Fδ1,δ2(u) = 0 (see Theorem 2.14 in Hintermüller
(2010)). The semismooth Newton method for this problem can be readily implemented. Denote
by DN[Fδ1,δ2] the Newton derivative of the functional at the position uN . We initialize the
iteration at u0 and solve the linear equations

DN[Fδ1,δ2]uN+1 = DN[Fδ1,δ2]uN − Fδ1,δ2(uN) for N ≥ 0

iteratively until a stopping criterion is satisfied.
We have just described how to use the path-following technique for approximating a "difficult"
optimization problem by a sequence of "easier" problems. Then we have discussed how to
construct the easier problems with the Moreau-Yosida regularization, and how to solve them
with the semismooth Newton method. The question now is: do we have convergence guarantees
for this approach? The answer is yes, the combination of path-following and the semismooth
Newton method achieves local superlinear convergence (see Section 5 of Hintermüller (2010)),
i.e.,

|uN+1 − u| ≤ C |uN − u|q for N ∈ N

for some q > 1, a constant C > 0 depending on the derivatives of Fδ1,δ2 , and u being a solution
of Fδ1,δ2(u) = 0. Given a good initialization u0, the error tends to zero considerably faster than
the error of the Chambolle-Pock algorithm (4.5) does. In this sense, the semismooth Newton
approach is preferable over the Chambolle-Pock algorithm.
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4.4 Alternative methods and comparison

Linear programming

We remark that the problem (4.7) can be solved with other methods too. It is for instance
straightforward to cast (4.7) as a linear program (LP):

min
(gn,hn)∈RΓn×RΓn×Γn

∑
(x,y)∈Γ2

n

hn(x, y) s.t.



Dgn(x, y) ≤ hn(x, y) ∀x, y ∈ Γn

−Dgn(x, y) ≤ hn(x, y) ∀x, y ∈ Γn

[Kgn]ω ≤ Yω + γn ∀ω ∈ Ωn

−[Kgn]ω ≤ −Yω + γn ∀ω ∈ Ωn.

We can use this observation to solve the problem (4.7) by some standard method, e.g., the simplex
algorithm or an interior point method (Nesterov and Nemirovsky, 1994). In spite of its conceptual
and technical simplicity compared to the Chambolle-Pock algorithm or the semismooth Newton
method presented above, the approach to (4.7) via linear programming is feasible in dimension
d = 1 only. Its complexity scales polynomially in n2 = #Γ2

n and in #Ωn, and since the set Ωn is
bigger in higher dimensions, the linear programming approach becomes impractical already in
d = 2.

Algorithm Advantages Disadvantages
Chambolle-Pock computationally efficient poor convergence guaranty
Semismooth Newton local superlinear convergence computationally demanding
LP method local quadratic convergence feasible in d = 1 only

Table 4.1: Comparison of advantages and disadvantages of computation methods available for the
problem (4.1). The Chambolle-Pock algorithm and the semismooth Newton approaches produce
good results and are feasible in dimensions d = 1, 2. The iterations in the Chambolle-Pock
algorithm can be computed faster, but this method enjoys a slower theoretical convergence
guaranty than the semismooth Newton and the LP methods (see the table in Figure 4.1 for an
illustration).

ADMM algorithm with orthogonal projections

An alternative approach for computing the estimator in (4.7) uses a variant of the alternating

direction method of multipliers (ADMM) algorithm (Boyd et al., 2011), which was employed
by Frick et al. (2012), Frick et al. (2013) and Grasmair et al. (2018) to solve minimization
problems with a multiscale constraint of the form (4.7). It proceeds by splitting the problem into
two subproblems: a smoothing step (using the BV-seminorm in our case), and a projection to the
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constraint set. Since the constraint set is the intersection of half-spaces, the projection can be
computed e.g. with Dykstra’s algorithm (Dykstra, 1983) or some alternative method (Bauschke
et al., 2006).
We remark that the approach using the ADMM algorithm with a projection step typically has a
longer runtime than the other algorithms presented here. The reason for that is that the splitting
into a smoothing and a projection steps is highly asymmetric: the smoothing step can be solved
very efficiently, while the projection onto the intersection of many half-spaces may be quite time
consuming. The projection step is bypassed in the Chambolle-Pock algorithm by solving the
dual problem instead, which has the form of soft-thresholding (4.8).
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Method Runtime (s) Residuals
Chambolle-Pock 0.25 3.17
SS Newton 51.18 4.18
LP method 2.84 1.83

Figure 4.1: Comparison of the Chambolle-Pock algorithm, the semismooth (SS) Newton method
and a LP method for solving the problem (4.1) in d = 1 for sample size n = 256, corrupted
with Gaussian noise with standard deviation σ = 0.1 ‖ f ‖L∞ . The runtimes in seconds and the
L2-norm of the residuals are given in the table.
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Comparison

In Table 4.1 we give a summary of the main advantages and disadvantages of the methods we
used. We illustrate their performance in Figures 4.1 and 4.2 for examples in d = 1 and d = 2,
respectively. Notice that the semismooth Newton method produces smooth results in d = 1:
this is natural, since it smoothes the original problem in order to apply gradient methods. On
the other hand, the Chambolle-Pock algorithm and the linear programming approach produce
solutions with sharp jumps, since they do not smooth the BV-functional. Moreover, as shown in
the table in Figure 4.1, the Chambolle-Pock algorithm is two orders of magnitude faster than the
semismooth Newton method, and they achieve comparable errors.
The situation in dimension d = 2 is slightly different: here we only compute the Chambolle-Pock
and the semismooth Newton reconstructions, since the linear programming approach would
be very time-consuming. In the table in Figure 4.2 we see that the two methods have similar
runtime, but the relative error of the semismooth Newton method is one order of magnitude
smaller than that of the Chambolle-Pock algorithm. This is also visually seen in the plots in
Figure 4.2, where the semismooth Newton method provides a more satisfactory reconstruction.

Software

We implemented the estimators presented in this and the next section in MATLAB. The implemen-
tation of the Chambolle-Pock algorithm is based on the Multiscale OPtimization package (MOP),
developed by Dr. Housen Li and available at http://stochastik.math.uni-goettingen.
de/mop.
The implementation of the semismooth Newton method is based on unpublished code by
Dr. Frank Werner. In his code, the objective function to be minimized is the L2-norm instead
of the BV-seminorm. This difference added an additional difficulty, since this functional is not
smooth and required additional regularization, as sketched above.
In Figure 4.1 we solved the linear program with the dual-simplex algorithm from the Matlab
function linprog, see https://de.mathworks.com/help/optim/ug/linprog.html.

http://stochastik.math.uni-goettingen.de/mop
http://stochastik.math.uni-goettingen.de/mop
linprog
https://de.mathworks.com/help/optim/ug/linprog.html
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Figure 4.2: Comparison of the Chambolle-Pock algorithm and the semismooth Newton method
for solving the problem (4.1) in d = 2 for an image of size n = 256 × 256 corrupted with normal
noise with standard deviation σ = 0.2 ‖ f ‖L∞ . The cross-sections correspond to the positions
marked by the red arrows. The runtimes in seconds and the relative L2-error ‖ f − f̂ ‖L2/‖ f ‖L2 are
given in the table. Notice the different color scales, which are chosen to show the local variations
in each image.
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CHAPTER 5

Simulations

In this chapter we analyze the numerical performance of the multiscale TV-estimator on one-
dimensional signals and two-dimensional images. We consider both the regression setting
(T = id) and deconvolution inverse problems.

5.1 Simulations for regression

5.1.1 Practical considerations

In this section we show the performance of the following multiscale TV-estimators:

1) the multiscale TV-estimator with a system of dyadic intervals (in d = 1) or squares (in
d = 2). We take the dictionary Φ to consist of indicator functions of a dyadic partition
down to the lowest resolution scale of the image. We implemented it with the methods
described in Chapter 4.

2) the multiscale TV-estimator with a curvelet frame, used on images (d = 2). The curvelets
are computed with the package fdct_wrapping_matlab from CurveLab-2.1.3 (http://www.
curvelet.org/download.html). The resulting estimator is a variant of the estimator
proposed by Candès and Guo (2002).

In our simulation study we also considered the multiscale TV-estimator with a wavelet dictio-
nary of symmlets with 6 vanishing moments (see e.g. Section 7.2.3 in Mallat (2008)). The
basis is implemented using the package Wavelab850/Orthogonal, available in http://statweb.
stanford.edu/~wavelab/Wavelab_850/download.html. This estimator performed simi-
larly to the multiscale and the curvelet constrained estimators presented below, so we do not
include it for the sake of conciseness.

http://www.curvelet.org/download.html
http://www.curvelet.org/download.html
http://statweb.stanford.edu/~wavelab/Wavelab_850/download.html
http://statweb.stanford.edu/~wavelab/Wavelab_850/download.html
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Discretization

We evaluate the multiscale TV-estimator on observations from the nonparametric regression
model, presented in Section 2.5, i.e.,

Yi = f (xi) + σ εi, xi ∈ Γn, i = 1, . . . , n, (5.1)

where εi are independent standard normal random variables, and Γn is an equidistant grid of n

points in [0, 1]d (see (2.17)). The reason for using this model and not the white noise model is
that the nonparametric regression model is arguably a more realistic model for the signal and
image denoising problems that we consider in this section. For instance, in image processing
one typically observes pixel values, which are properly modeled by the discrete regression
model (5.1).

Besides, as shown in Section 2.5, the multiscale TV-estimator can be applied to discrete observa-
tions (5.1), yielding a discretization error of order O(n−1/d). We showed in Section 2.5 that this
error does not affect the overall convergence rate for d = 1 and d = 2, which justifies the use of
the discretized model (5.1) in those cases.

Choice of γn

We test the estimators on several one-dimensional (d = 1) signals of lengths n = 256 and n = 512,
and on images (d = 2) with n = 256 × 256 pixels. The theory developed in Chapters 2 and 3
states that, asymptotically as n → ∞, γn should be chosen as κσ

√
2 log #Ωn/n, κ > 1, in the

regression setting, and correspondingly for inverse problems. For finite n, however, another
choice of γn is possible, which gives the multiscale TV-estimator statistical interpretability. We
choose a threshold of the form γn = σ q1−α/

√
n, where q1−α is the 1− α-quantile of the statistic

maxω∈Ωn |〈ψω, dW〉|, that is

P
(

max
ω∈Ωn

|〈ψω, dW〉| ≤ q1−α
)

= 1 − α (5.2)

for some fixed α ∈ (0, 1). This implies that the true regression function f satisfies the constraint
in (1) with probability 1 − α. In practice, we compute q1−α through Monte Carlo simula-
tions, that is, as the empirical 1 − α-quantile of a sample of 5000 realizations of the statistic
maxω∈Ωn |〈ψω, dW〉|. The quantile q1−α can be computed independently of the observations Yi,
and is in particular independent of the true regression function f .

Finally, we remark that for some dictionaries ψω, such as orthonormal wavelet bases, the
distribution of maxω∈Ωn |〈ψω, dW〉| equals that of the maximum of #Ωn independent normal
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random variables. Its 1 − α quantile is then given by

q1−α =
√

2 log #Ωn +
2 log log #Ωn − log log(1 − α)−1 + O(1)√

2 log #Ωn
,

which for #Ωn → ∞ and α→ 0 slowly enough is of the same order as σ−1√n γn in (1.9). An
analogous result holds for more general dictionaries (see Kabluchko (2011)).

Figure 5.1: Test images used for the simulations in this section. The results are presented in
Table 5.1. From top left, clockwise: ’Building’, ’Board’, ’Lens’, and ’Barbara’.

Methods for comparison

We compare the multiscale TV-estimator with the following methods.

L2-TV regularization. For comparison, we compute the classical TV-regularized least squares
estimator

f̂λ = argmin
g
‖g − Y‖2

`2 + λ|g|BV . (5.3)

Here, the data fidelity term is the empirical `2 norm, defined as

‖g − Y‖2
`2 :=

1
n

n∑
i=1

(
g(xi) − Yi

)2.
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The minimizer in (5.3) is computed using the well-known Chambolle algorithm (Chambolle,
2004). The regularization parameter λ in (5.3) is chosen in an oracle way so as to minimize the
distance to the true regression function. In particular, we consider the two parameter choices

λMS E = argmin
λ>0

‖ f − f̂λ‖`2 ,

λBreg = argmin
λ>0

DBV ( f , f̂λ),

where DBV denotes the symmetrized Bregman divergence of the BV seminorm:

DBV ( f , g) :=
∫ (
|∇ f (x)| − |∇g(x)|

)( ∇ f
|∇ f |

(x) −
∇g
|∇g|

(x)
)

dx

=

∫ (
|∇ f (x)| + |∇g(x)|

)(
1 −
∇ f · ∇g
|∇ f ||∇g|

(x)
)

dx,

where for functions of bounded variation, the ratio ∇ f
|∇ f | has to be interpreted as the sign of the

measure ∇ f . The Bregman divergence associated with a convex functional is attractive because
it provides a measure of similarity that matches the regularity enforced by the functional. Indeed,
notice that DBV ( f , g) is small if either f and g are constant, or if their gradients are parallel; this
encourages the estimator (5.3) with λBreg to be locally constant with discontinuities close to
those of the true function f .
We remark that these choices of λ are oracles in the sense that they need knowledge of the truth
f for their computation. The estimators computed with these oracles are hence idealizations
not accessible in practice, where λ has to be chosen in a data driven way, e.g. by Lepskii’s
balancing principle (Lepskii, 1991) or by cross-validation (Wahba, 1977). In particular, the
comparison of these oracle estimators is not fair for the multiscale TV-estimator, which does not
have knowledge of the truth f .

Wavelet or curvelet thresholding. We also compute the hard-thresholding estimator (Starck et al.,
2002). In d = 1, we use the wavelet thresholding estimator with a basis of symmlets with 6
vanishing moments, and in d = 2 we employ a curvelet frame. Thresholding estimators proceed
as follows: if {ψω |ω ∈ Ωn} denotes the dictionary in which we want to threshold, we project the
observations onto ψω and apply hard-thresholding to them, i.e.,

Yω :=
1
n

∑
xi∈Γn

Yi ψω(xi), and Thr(Yω, τ) :=

Yω if
∣∣∣Yω∣∣∣ ≥ τ

0 if
∣∣∣Yω∣∣∣ < τ

for a threshold τ. We observe that the choice τ = 3σ yields good results in practice. Notice that
Yω are roughly equal to the coefficients 〈ψω, f 〉 of the true function, plus normal noise. Hence,
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thresholding has the effect of suppressing the noise, and leaving an approximation to the true
coefficients. The thresholded coefficients are then put back together with the dictionary ψω (or a
suitable dual frame, see e.g. Christensen (2003)), giving the estimator

f̂Thr(x) :=
∑
ω∈Ωn

ψω(x) Thr(Yω, τ).

Thresholding in a multiscale frame is known to give very good empirical results in image
denoising, and it also enjoys optimality guaranties (Donoho and Johnstone (1998), Candès
and Donoho (2000)). This method is nevertheless known to present oscillatory artifacts
in its reconstructions, which arise when frequencies are wrongly suppressed by threshold-
ing. The curvelet and wavelet transforms are implemented using the software in CurveLab-
2.1.3 (http://www.curvelet.org/download.html) and Wavelab850/Orthogonal (http:
//statweb.stanford.edu/~wavelab/Wavelab_850/download.html), respectively.

MIND estimator. Finally, we also compare our estimator with the Multiscale Nemorovski-
Dantzig estimator (MIND) proposed by Grasmair et al. (2018) (see also Li (2016)). The MIND
uses a multiscale penalty akin to the one we use here, but where the test functions ψω are
indicator functions of dyadic intervals or squares. Moreover, the MIND minimizes a Sobolev
penalty instead of the BV seminorm. In formulas, the MIND is defined as

f̂MIND ∈ argmin
g
‖Dkg‖2L2 such that max

ω∈Ωn

∣∣∣〈ψω, g − Y〉
∣∣∣ ≤ γn.

The threshold γn is chosen by a quantile construction as explained above, and k ∈ N is a tuning
parameter. In simulations for d = 1 we observe that k = 1 yields very irregular reconstructions,
while k ≥ 3 gives heavily oversmoothed results (see e.g. Figure 5.2). We therefore use k = 2 in
the following. However, for d = 2 we found that k = 1 gives the best performance. The MIND is
computed using the MATLAB package MOP from Grasmair et al. (2018), which is available at
http://stochastik.math.uni-goettingen.de/mop.

Quality measures

Besides the qualitative comparison of the reconstructions, we also evaluate the performance
of the estimators quantitatively. For that, we consider the risk with respect to the Lq norm,
q ∈ {1, 2,∞}, and with respect to the BV seminorm. Clearly, the L∞ norm measures the largest
deviation, while the L1 and L2 risks measure the averaged deviation in different ways. The BV

seminorm is also of interest as a risk functional, since it measures how much noise or artifacts
are still present in the reconstruction.

http://www.curvelet.org/download.html
http://statweb.stanford.edu/~wavelab/Wavelab_850/download.html
http://statweb.stanford.edu/~wavelab/Wavelab_850/download.html
http://stochastik.math.uni-goettingen.de/mop
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Figure 5.2: Multiscale TV-estimator and MIND estimator on Bumps signal, with n = 512 and
σ = 0.05 ‖ f ‖L∞ .

For d = 2 we also consider the structural similarity index (SSIM). The SSIM was introduced
by Wang et al. (2004), and it measures the (dis)similarity between two images taking into
account the luminance (i.e. magnitude), contrast (i.e. variance) and structure (i.e. covariance) of
the images (i.e. of their pixel values). Given two images F and G, the SSIM between them is
defined as

SSIM(F,G) :=
(2µF µG + c1)(2σFG + c2)

(µ2
F + µ2

G + c1)(σ2
F + σ2

G + c2)
,

where µF is the average of the pixel values of image F, σ2
F is their variance, and σFG =

(N − 1)−1 ∑N
i=1(Fi − µF)(Gi − µG) is a sort of "covariance" between pixel values of F and G.

The constants c1, c2 > 0 are independent of the images, and are chosen to avoid division by a
small number. The SSIM is thought to be a more sensitive quality measure than the mean square
error, the peak signal-to-noise ratio, or Lq-risks in general. It takes values in the interval [−1, 1],
and larger values indicate more similar images.
Finally, we remark how difficult a problem it is to conceive a quality measure that matches
human perception: neither the Lq norms nor the BV seminorm do so. While the SSIM seems to
be a good candidate, we are not aware of any theoretical result proving that a certain method
performs well with respect to the SSIM. A promising alternative that has been proposed recently
involves the Wasserstein metric (Weed and Berthet, 2019). We discuss this and other possibilities
in the Conclusion in Chapter 6.
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Method
Error

Time (s) L2 error L1 error L∞ error BV error

Multiscale TV (CP) 0.33 4.72 69.46 1.06 25.48
MIND (k = 2) 0.72 6.01 91.72 1.84 63.55
Wavelet thresholding 0.03 6.78 88.43 1.73 36.72
L2-TV with λMS E 0.09 3.22 53.48 0.74 25.73
L2-TV with λBreg 0.48 4.09 51.10 1.16 25.86

Figure 5.3: Bumps function, with n = 512 observations, σ = 0.05 ‖ f ‖L∞ . In the table: runtimes
and risks of these estimators plus that of the MIND estimator with k = 2.

5.1.2 Simulation results

Simulations in one dimension

We simulate in one dimension the performance of the following estimators:

1) The multiscale TV-estimator, constructed with a set of dyadic intervals. We show the
estimator computed with the Chambolle-Pock algorithm presented in Chapter 4 (the LP
and the semismooth Newton approaches lead to roughly the same reconstructions and
risks). The threshold γn is chosen as in Section 5.1.1 with the empirical α = 0.05 quantile.
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Methods
Error

Time (s) L2 error L1 error L∞ error BV error

Multiscale TV (CP) 0.31 6.29 74.58 1.51 25.91
MIND (k = 2) 0.17 14.05 190.85 2.56 78.78
Wavelet thresholding 0.01 8.84 64.87 3.32 34.56
L2-TV with λMS E 0.05 5.17 59.43 1.45 31.59
L2-TV with λBreg 0.45 5.36 57.05 1.65 29.25

Figure 5.4: Blocks function, with n = 256 observations, σ = 0.1 ‖ f ‖L∞ . In the table: runtimes
and risks of these estimators plus that of the MIND estimator with k = 2.

2) The L2-TV estimator with L2 oracle λMS E and with Bregman oracle λBreg.

3) The wavelet hard-thresholding estimator with threshold τ = 3σ. The wavelets are symmlets
with 6 vanishing moments, as described in Section 5.1.1.

4) The MIND estimator with k = 2, and threshold γn chosen as in Section 5.1.1 with the
empirical α = 0.05 quantile.

We present the performance of these estimators in two standard signals with different sample
size n and variance σ2. The signals are "Blocks" and "Bumps" (Donoho and Johnstone, 1994).
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The performance in these two signals is representative of what we have observed in others. For
each method, we compute its error with respect to the L1, L2, L∞ norms, as well as the BV

seminorm. We also record the runtime of each method. The results for the two signals are shown
in Figures 5.3 and 5.4. In each caption, one reconstruction method together with the observations
and the ground truth is shown. A table presents the runtimes and risks of the different methods.
In Figure 5.2 we compare the multiscale TV and the MIND estimators. The results can be
summarized as follows:

a) Concerning runtime, wavelet thresholding is clearly superior to the other methods. How-
ever, even though it captures the main features of the signals, such as modes, it presents too
many oscillatory artifacts. Consequently, the BV error of wavelet thresholding is specially
high.

b) Concerning the Lq-risks, the L2-TV estimator with L2 oracle performs better than the
multiscale TV-estimator. The reason for that is clear: the L2-TV estimator is tuned in order
to minimize the L2-risk, which helps in minimizing the other risks. On the other hand, the
multiscale TV-estimator has the smallest BV risk. This indicates that it does not include
many noisy artifacts.

c) Concerning the presence of artifacts, both the multiscale TV-estimator and the Bregman
oracle perform well, while the MIND, the L2 oracle and the wavelet thresholding develop
oscillatory artifacts.

d) Concerning the level of detail of the reconstruction, the multiscale TV-estimator, the MIND
and the L2 oracle capture the main features of the signals, such as modes and valleys.
On the other hand, the Bregman oracle seems to miss some features, possibly due to
oversmoothing.

Simulations in two dimensions

In two dimensional images we simulate the performance of the following estimators:

1) The multiscale TV-estimator, constructed either with a set of indicator functions of dyadic
squares (Figure 5.6) or with a curvelet frame (Figure 5.7). In both cases, we choose
γn with the quantile construction from Section 5.1.1 with α = 0.05. The estimators are
computed with the Chambolle-Pock algorithm presented in Chapter 4. We remark that the
linear programming approach is not competitive in two dimensions for #Ωn large (here
we have #Ωn ∼ 107), and the semismooth Newton approach performs essentially like the
Chambolle-Pock method here.
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2) The L2-TV estimator with L2 oracle λMS E and with Bregman oracle λBreg.

3) The curvelet hard-thresholding estimator with threshold τ = 3σ.

4) The MIND estimator with k = 1, and threshold γn chosen as in Section 5.1.1 with the
empirical α = 0.05 quantile.

We compare these estimators on images of size 256 × 256 corrupted with normal noise with
standard deviation σ = 0.2 ‖ f ‖L∞ , where ‖ f ‖L∞ denotes the maximal pixel value of the uncor-
rupted image. For each method, we record its runtime and its relative risk with respect to the
Lq-loss, q ∈ {1, 2,∞}, and with respect to the BV seminorm. Further, we also show their SSIM
(see Section 5.1.1). The use of the relative risk, i.e., ‖ f̂ − f ‖Lp/‖ f ‖Lp , has the effect of making
the risk for different images comparable.

We evaluate the estimators on test images from the Digital Image Processing, 3er edition

(DIP3/e) database, available under http://imageprocessingplace.com/DIP-3E/dip3e_
book_images_downloads.htm. In Table 5.1 we present the SSIM values achieved by the
methods in four representative images.
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Figure 5.5: Multiscale TV-estimator and MIND estimator with k = 1 on "Board" image of size
n = 256× 256 with σ = 0.2 ‖ f ‖L∞ . The positions of the cross-sections are marked with an arrow.

http://imageprocessingplace.com/DIP-3E/dip3e_book_images_downloads.htm
http://imageprocessingplace.com/DIP-3E/dip3e_book_images_downloads.htm
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Methods
Images

Building Board Barbara Lens

Multiscale TV 0.81 0.96 0.80 0.85
MIND (k = 1) 0.67 0.64 0.70 0.88
Curvelet thresholding 0.79 0.69 0.82 0.92
L2-TV with λMS E 0.59 0.53 0.75 0.70
L2-TV with λBreg 0.74 0.94 0.77 0.76

Table 5.1: Comparison of the different methods in terms of the structural similarity index (SSIM,
see Section 5.1.1) in four representative images (see Figure 5.1). The "Building" image is shown
in Figure 1.2 in the Introduction.

Method
Error

Time (s) L2 error L1 error L∞ error BV error

B
oa

rd

Multiscale TV 470.95 2.06 · 10−2 2.90 · 10−2 0.38 0.48
MIND (k = 1) 175.44 7.72 · 10−2 9.72 · 10−2 0.64 1.47

Curvelet thresholding 2.03 3.13 · 10−2 6.66 · 10−2 0.57 1.98
L2-TV with λMS E 39.48 1.49 · 10−2 6.90 · 10−2 0.41 2.41
L2-TV with λBreg 54.29 3.56 · 10−2 4.77 · 10−2 0.45 0.56

L
en

s

Multiscale TV 504.23 3.92 · 10−2 7.40 · 10−2 0.34 0.44
MIND (k = 1) 163.78 6.19 · 10−2 8.85 · 10−2 0.49 0.43

Curvelet thresholding 1.25 2.38 · 10−2 5.03 · 10−2 0.45 0.32
L2-TV with λMS E 16.20 1.92 · 10−2 1.08 · 10−2 0.45 0.70
L2-TV with λBreg 19.60 6.68 · 10−2 9.54 · 10−2 0.30 0.58

Table 5.2: Runtime and risks of the different methods on the "Board" and "Lens" images. The
reconstructions are shown in Figures 5.6 and 5.7, respectively.

In Figures 5.6 and 5.7 we show the reconstructions of the different methods in the "Board" and
"Lens" images, while the reconstruction for the "Building" image is shown in Figure 1.2 in the
Introduction, and the "Barbara" image is omitted for conciseness. In Table 5.2, the runtime and
BV and Lq-risks, q ∈ {1, 2,∞}, of the different methods on the "Board" and "Lens" images are
presented.

The results of the simulations can be summarized as follows:

a) Concerning the SSIM, the results in Table 5.1 show that curvelet thresholding and the
multiscale TV-estimator outperform TV-regularization in all the examples. This is in
agreement with the visual impression of the reconstructions in Figures 1.2, 5.6 and 5.7.

b) Concerning runtime, curvelet thresholding is unsurprisingly superior, while the multiscale
TV-estimator is slower than L2-TV by an order of magnitude. The risks in Table 5.2
present a more complex scenario. On one hand, the multiscale TV-estimator with a set of
dyadic cubes is clearly superior to the others in the "Board" image (Figure 5.6). This is not
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surprising, since that is a locally constant image, where both total variation and a dictionary
of indicator functions are bound to perform well. On the other hand, TV-regularization
and curvelet thresholding have the best risks in the "Lens" image (Figure 5.7).

c) Concerning the presence of artifacts or noise in the reconstruction, we see in Figures 5.6
and 5.7 that the L2-TV estimator with L2 oracle still presents noise, while the curvelet
thresholding estimator shows artifacts, which are specially prominent in the "Board" image.
On the other hand, the Bregman oracle and the multiscale-TV estimator rightly denoise
the image without developing artifacts or leaving noise.

d) Concerning the level of details of the reconstruction, curvelet thresholding and the multi-
scale TV-estimator perform best, as they identify essentially all features of the image. The
L2 oracle also does so, but some details are lost due to the noise, while the Bregman oracle
smoothes out some details.

e) Concerning the comparison between the MIND and the multiscale TV-estimator, we see in
Figure 5.5 that the MIND with k = 1 tends to oversmoothing. This is not surprising, as it
penalizes the Sobolev H1 seminorm, which is smoother than the BV seminorm. In terms
of the risk, we see that the MIND is not competitive with the multiscale TV-estimator.

Summarizing, these results support the intuition that the multiscale TV-estimators combine desir-
able properties of TV-regularization and of multiscale dictionaries. Indeed, TV-regularization
enforces locally constant reconstructions and suppresses Gibbs oscillations, and the multiscale
dictionaries impose proximity to the data at all scales simultaneously. This is best seen in
Figure 5.7: the TV-regularizer with λBreg removes the noise and gives a good locally constant
reconstruction at the big scales only, and over-regularizes the small details; on the other hand,
curvelet thresholding reconstructs the image very well down to the smallest scales, at the prize
of including artifacts. The multiscale TV-estimator has the ability to perform well in the small
scales, and it avoids artifacts due to the smoothing effect of the bounded variation penalty.
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Figure 5.6: Reconstruction and cross-section (marked with the arrow) of the noisy 256 × 256
"Board" image with σ = 0.2 ‖ f ‖L∞ .
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Figure 5.7: Reconstruction and cross-section (marked by the arrow) of the noisy 256 × 256
"Lens" image with σ = 0.2 ‖ f ‖L∞ .
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5.2 Simulations for deconvolution

5.2.1 Practical considerations

In this section we analyze the performance of the multiscale TV-estimator for deconvolution. In
this case, we observe noisy samples of the convolved regression function

Yi = T f (xi) + σεi, xi ∈ Γn, i = 1, . . . , n, (5.4)

where
T f (x) :=

∫
Rd

K(x − y) f (y) dy for x ∈ [0, 1]d.

Here, εi ∼ N(0, 1) are independent random variables, xi ∈ Γn are points in an equidistant grid of
n points (see (2.17)), and K ∈ L1(Rd) is a known kernel. As in the example for deconvolution
in Section 3.3, we assume that the Fourier transform of the kernel K decays polynomially at
infinity. In particular, we assume in the following that

F [K](ξ) = (1 + b2 |ξ|2)−β/2 ∀ξ ∈ Rd (5.5)

for constants b, β > 0. We remark that a convolution operator with kernel K as above has singular
values decaying as κ j = 2− jβ. The left caption of Figure 5.8 shows such a kernel K in d = 1 with
β = 2 and b = 6.4, centered at x = 1/2.

Multiscale TV-estimator

In order to compute the multiscale TV-estimator as presented in Section 3.3, we need a dictionary
{ψω} and the corresponding vaguelette system {uω} (recall Assumption 4). In this section we
choose the dictionary elements ψω to be dilations and translations of a symmetric beta density,
e.g. in d = 2 we have

ψ0,0(x, y) := xρ(1 − x)ρyρ(1 − y)ρ 1[0,1]2(x, y) (5.6)

for some ρ > 0. In the following we choose ρ = 4. This choice of the dictionary ψω is motivated
by previous work on the problem of testing qualitative features of a function f from convolved
and noisy observations. For that, statistical tests are performed on the empirical coefficients
〈uω,Y〉. The work by Proksch et al. (2018) (see also Schmidt-Hieber et al. (2013)) showed that
choosing the dictionary ψω as in (5.6) minimizes the variance of the test statistics among all
tensor-type probe functionals, provided that ρ in (5.6) matches the order of decay β of the Fourier
transform of the convolution kernel.
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Figure 5.8: Left: convolution kernel K defined by (5.5) with β = 2 and b = 6.4. Right: Meyer
father wavelet (blue) and corresponding vaguelette (orange).

Given the test function (5.6), our dictionary consists of dilations and translation of it. We consider
a fixed set of dilations satisfying

supp ψ j,k = k + [0, L1] × [0, L2], for L1, L2 ∈ {`1, . . . , `q}

for all dilations and translations ( j, k) considered. Written in units of pixels, the set of allowed
sizes {`1, . . . , `q} that we employ in the following is either {5, 10, . . . , 40} (see Figures 5.12
and 5.13) or {2, 4, . . . , 20} (Figures 5.10, 5.11 and 5.14). This means that the smallest support of
our dictionary elements is 5 × 5 or 2 × 2, respectively. We employ all possible translations of the
dictionary elements at each scale. The minimal possible translation length is of course one pixel.
With this choice of the multiscale dictionary {ψω}, we choose the associated vaguelette system
{uω} as in Assumption 4 in Chapter 3.

The threshold γn = σ q1−α/
√

n is chosen as in Section 5.1.1, that is: q1−α is the empirical 1 − α
quantile of 5000 realizations of the random variable maxω∈Ωn |〈uω, dW〉|. In practice we choose
α = 0.05.

Methods for comparison

We compare the multiscale TV-estimator with the following methods:

L2-TV regularization. As in Section 5.1.1, we compute the L2-TV estimator for inverse problems

f̂λ = argmin
g
‖Tg − Y‖2

`2 + λ|g|BV , (5.7)

where Tg denotes the convolution of K with g. As in Section 5.1.1, we choose the Lagrange
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multiplier λ in an oracle way so as to minimize the risk of the estimator f̂λ: λMS E gives the
estimator with smallest L2 error, while λBreg gives the estimator with smallest BV-Bregman
divergence to the truth f .

Wavelet-vaguelette thresholding
We also compute the wavelet-vaguelette thresholding estimator proposed by Donoho (1995),
which is defined as follows. Let {ψ j,k,e} be a basis of Meyer wavelets (Meyer, 1990), and {u j,k,e}

be the associated vaguelette system (see Figure 5.8 for an illustration of the Meyer wavelet and
the associated vaguelette). The observations Yi are first projected onto the vaguelette system,

Y j,k,e :=
1
n

∑
xi∈Γn

Yi u j,k,e(xi).

By construction, these discretized vaguelette coefficients are discrete approximations to rescaled
and noisy wavelet coefficients of the true regression function κ j〈 f , ψ j,k,e〉+σ〈ε, un

j,k,e〉. We hence

divide Y j,k,e by the singular value κ j = 2− jβ, and do scale dependent thresholding in order to
remove the noise. We use the scale dependent threshold

τ j =
3σ
κ j

1
#{(k, e) | ( j, k, e) ∈ Ωn}

∑
(k,e) | ( j,k,e)∈Ωn

‖u j,k,e‖L2 ,

where we average the L2 norm of all vaguelettes at scale j. The rescaled and thresholded
observations are given by

Thr(Y j,k,e/κ j, τ j) :=


Y j,k,e
κ j

if
∣∣∣Y j,k,e
κ j

∣∣∣ ≥ τ j

0 if
∣∣∣Y j,k,e
κ j

∣∣∣ < τ j.

The final estimator is constructed by putting these coefficients back together with the wavelet
basis ψ j,k,e,

f̂WV (x) =
∑

( j,k,e)∈Ωn

ψ j,k,e(x) Thr(Y j,k,e/κ j, τ j).

The rationale behind this approach is that Y j,k,e/κ j is roughly 〈 f , ψ j,k,e〉 plus noise, so performing
thresholding should help to remove the noise. We illustrate this procedure in Figure 5.9. In the
main plot we see the empirical rescaled vaguelette coefficients Y j,k,e/κ j in blue, the thresholded
rescaled coefficients Thr(Y j,k,e/κ j, τ j) in red, and the true wavelet coefficients of 〈 f , ψ j,k,e〉 in
yellow. The x axis shows the index ( j, k, e): to the left are the indices corresponding to small
scales, i.e., to large j.
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Figure 5.9: Vaguelette coefficients of the data (blue), thresholded and rescaled coefficients (red),
and wavelet coefficients of the true signal (yellow). The x axis represents the indices j, k, e,
where the left means large j, i.e., small scales.

Notice that the magnitude of the coefficients and the variance of the noise increases with j:
this is the obvious consequence of dividing by the singular value κ j. The explanation of this
phenomenon is that the convolution operator distorts the information in the small scales strongly:
this results in a larger variance for j large, which makes the coefficients Y j,k,e/κ j for large j

(small scales) close to useless for the reconstruction. That is the reason for choosing a scale
dependent threshold τ j. We refer to Example 2 in Chapter 3 for a discussion of this effect.

In the zoom in of Figure 5.9 we see that, while the empirical coefficients are quite noisy, the
thresholded coefficients do resemble the true ones. Notice, however, that the coefficients in the
small scales are poorly estimated. At this point we want to recall a phenomenon that concerns
dictionary thresholding methods: if one chooses too large a threshold, one losses part of the
signal and the final reconstruction will have less mass than the true function, i.e. it will have
smaller magnitude. This can be seen for instance in Figure 5.10, where the WV thresholding
estimator reconstructs all modes of the signal correctly, but its magnitude is smaller by a factor
of 3 with respect to the true signal.
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MIND estimator. We also compute the MIND estimator, which for the deconvolution inverse
problem (5.4) is defined as

f̂MIND ∈ argmin
g
‖Dkg‖2L2 such that max

ω∈Ωn

∣∣∣〈ψ̃ω,Tg − Y〉
∣∣∣ ≤ γn,

where the functions ψ̃ω are indicator functions of intervals (d = 1) or rectangles (d = 2). For
the dictionary of indicator functions we use the same set of scales as indicated above for the
multiscale TV-estimator. In the following we show the MIND with k = 1, since this gave the best
results in simulations. One difference with the multiscale TV-estimator is that here we compute
γn using the quantiles of the statistic maxω∈Ωn |〈ψ̃ω, dW〉|.

Risk measures

As in Section 5.1.1, we measure the risk of the estimators with respect to the Lp norm, p ∈

{1, 2,∞}, as well as with respect to the BV seminorm. For images, we also compute their SSIM
index (see Section 5.1.1).

5.2.2 Simulation results

In the following we present severals plots and tables with the reconstructions and risks of different
estimators. In one dimensional signals, we compute the multiscale TV-estimator, the MIND
estimator with k = 1, the wavelet-vaguelette thresholding estimator, and the L2-TV estimator with
oracles λMS E and λBreg. See Figures 5.10 and 5.11 for the plots and tables. In two-dimensional
images we compute the multiscale TV-estimator, the MIND estimator with k = 1, and the L2-TV
estimator with L2 and Bregman oracles. For the MIND and the multiscale TV-estimator we use
an overcomplete system as described above, with the scales j corresponding to blocks of pixels
of lengths {5, 10, . . . , 40} (Figures 5.12 and 5.13 ) or of lengths {2, 4, . . . , 20} (Figures 5.10,5.11
and 5.14). Notice the corresponding increase in computation time in Figure 5.14.

The results of our simulations, shown in Figures 5.10 to 5.14, can be summarized as follows:

a) Concerning runtime, WV thresholding is the fastest method in d = 1, and the L2-TV and
multiscale methods are about one order of magnitude slower. In d = 2, however, multiscale
methods are between one and two orders of magnitude slower, see Figures 5.13 and 5.14.

b) Concerning the risk measures, the multiscale TV-estimator has the smallest risk in an L1

and L2 sense, as well as in term of the SSIM (see Section 5.1.1). The situation is less
clear for the L∞ and BV risks, since here the multiscale TV-estimator, the MIND and the
Bregman oracle attain comparable results.
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c) In terms of noise, we see that the wavelet-vaguelette thresholding estimator and the L2

oracle give quite noisy reconstructions with artifacts, while the MIND, the multiscale
TV-estimator and the Bregman oracle suppress the noise properly. On the other hand, the
L2 oracle resolves most details in Figure 5.13, while the other methods miss them.

d) Concerning the level of detail in the reconstruction, it is apparent that the MIND does not
deconvolve the images properly, thus missing the information in the small scales. On the
other extreme, the L2 oracle gives a quite noisy reconstruction (see e.g. Figure 5.14), while
the multiscale-TV and the Bregman oracle present a compromise between regularization,
denoising and reconstruction, see e.g. the multiscale TV-reconstructions in Figures 5.12
and 5.14.
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Methods
Error

Time (s) L2 error L1 error L∞ error BV error

Multiscale TV (SSN) 25.84 3.00 18.11 1.53 15.59
MIND (k = 1) 34.65 6.71 55.96 3.17 31.43
VWD threshold. 3.59 10.24 81.66 4.22 35.22
L2-TV with λMS E 23.86 7.43 56.22 3.62 30.43
L2-TV with λBreg 25.07 7.96 62.36 3.75 31.30

Figure 5.10: Bumps function convolved with kernel with b = 6.4 and β = 2, with n = 256
observations and σ = 0.05 ‖ f ‖L∞ .
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Multiscale TV (SSN) 26.30 8.21 68.43 2.18 41.84
MIND (k = 1) 30.07 8.53 69.97 2.15 42.14
VWD threshold. 4.88 9.53 99.85 2.19 64.35
L2-TV with λMS E 9.45 12.33 119.43 2.69 39.51
L2-TV with λBreg 22.62 10.86 100.09 2.61 37.95

Figure 5.11: Blocks function convolve with kernel with b = 6.4 and β = 2, with n = 256
observations and σ = 0.05 ‖ f ‖L∞ .
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Observations Multiscale TV-estimator

MIND estimator L
2
-TV estimator

Methods
Error

Time (s) L2 error L1 error L∞ error BV error SSIM

Multiscale TV 571.45 4.0 · 10−2 9.8 · 10−2 0.13 0.21 0.99
MIND estimator 589.45 0.50 1.03 0.79 1.30 0.86
L2-TV with λMS E 42.90 0.62 0.85 0.87 1.03 0.88

Figure 5.12: Test image of size n = 256×256 convolved with kernel of width b = 2.56 and β = 2
with noise of standard deviation σ = 2−8 ‖ f ‖L∞ . We show relative errors, i.e., ‖ f̂ − f ‖Lp/‖ f ‖Lp .
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Truth Observations

MIND estimator Multiscale TV-estimator

L2 -TV estimator (LS) L2 -TV estimator (Breg)

Methods
Error

Time (s) L2 error L1 error L∞ error BV error SSIM

Multiscale TV 406.27 2.8 · 10−2 3.5 · 10−2 0.36 0.73 0.92
MIND estimator 172.83 4.4 · 10−2 5.2 · 10−2 0.47 0.81 0.86
L2-TV with λMS E 41.23 3.8 · 10−2 4.6 · 10−2 0.49 0.73 0.90
L2-TV with λBreg 44.61 3.9 · 10−2 4.7 · 10−2 0.50 0.73 0.89

Figure 5.13: Test image of size n = 256×256 convolved with kernel of width b = 12.8 and β = 2
with noise of standard deviation σ = 2−8 ‖ f ‖L∞ . We show relative errors, i.e., ‖ f̂ − f ‖Lp/‖ f ‖Lp .
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Truth Observations

MIND estimator Multiscale TV-estimator

L2 -TV estimator (LS) L2 -TV estimator (Breg)

Methods
Error

Time (s) L2 error L1 error L∞ error BV error SSIM

Multiscale TV 2672 5.4 · 10−2 9.0 · 10−2 0.67 1.02 0.72
MIND estimator 1416 6.4 · 10−2 10.3 · 10−2 0.46 0.99 0.65
L2-TV with λMS E 50.14 7.6 · 10−2 9.4 · 10−2 0.52 0.99 0.71
L2-TV with λBreg 35.99 7.9 · 10−2 9.8 · 10−2 0.48 0.95 0.68

Figure 5.14: Test image of size n = 256 × 256 convolved with kernel of width b = 12.8 and
β = 2 with noise of standard deviation σ = 2−7 ‖ f ‖L∞ , where ‖ f ‖L∞ = 245. We show relative
errors, i.e., ‖ f̂ − f ‖Lp/‖ f ‖Lp .
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CHAPTER 6

Conclusion and outlook

In this thesis we have considered the estimation of functions of bounded variation in white
noise regression and inverse problems. For that, we have constructed estimators that combine
variational regularization with multiscale dictionaries. This type of estimators have been highly
successful in practice, but they lack theoretical guarantees. Under suitable assumptions on the
dictionaries, which essentially amount to certain approximation properties and a compatibility
with the forward operator, we have shown that these estimators attain the optimal rates of
convergence in a minimax sense up to logarithmic factors for estimating BV functions. We have
also presented two numerical methods for computing the proposed estimators, which we have
illustrated in simulations.

The main theoretical contribution of this work is the proof that the proposed estimators are nearly
minimax optimal for estimating BV functions in any dimension. Indeed, until now only results
in dimension d = 1 were known. Our contribution is hence of practical relevance, since BV

functions are routinely used in applications from medical imaging to geology and astronomy,
and we now give the first theoretical guaranties for using BV functions in such applications.
Furthermore, our analysis covers variational estimators based on multiscale dictionaries, which
have been proposed before and shown to perform excellently in applications, but for which no
theoretical guaranty was available for estimation over BV . We have now closed this gap, proving
that these estimators are nearly minimax optimal.

At a technical level, our main contribution is to relate the multiscale data fidelity associated
to a multiscale dictionary to a Besov norm of negative smoothness. Even though multiscale
constraints have been used in the past, this connection is novel and opens the door to a number
of tools from harmonic analysis that enable an analysis of our estimators. Moreover, this link
allows us to precisely characterize the conditions on the multiscale dictionaries that guarantee
minimax optimality.

In the context of inverse problems, the multiscale dictionary has to be adapted to the forward
operator, and the right concept to consider is the wavelet-vaguelette decomposition of the
operator, introduced by Donoho (1995). Combining these dictionaries with bounded variation
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regularization yields nearly minimax optimal estimators for a range of mildly ill-posed inverse
problems of any finite degree of ill-posedness in any dimension.
A second theoretical contribution of this work is the analysis of the minimax risk over BV

and, more generally, over Besov spaces Bs
p,t with s ≤ d/p. For BV we have shown that the

Lq minimax risk in the regression setting undergoes a sharp transition: for q ≤ 1 + 2/d, the
polynomial risk is n−1/(d+2), while for q ≥ 1 + 2/d it behaves as n−1/(dq). In particular, the rate
deteriorates for larger q, and there is no L∞-consistent estimator of BV functions. Analogous
results have been proven before for estimation over anisotropic Nikolskii classes, that in the
isotropic case correspond to Bs

p,∞ (Lepskii, 2015). Our results now describe the minimax rates
over the whole scale of Besov spaces. Interestingly, the proof of the minimax lower bound
in the regime s ≤ d/p shows that, in that setting, the most challenging functions to estimate
are of "multiscale" type, consisting of blocks of signals at different locations and scales. This
suggests that, in that regime, only estimators that incorporate multiscale information can be
optimal. Indeed, the only estimators known to be optimal there are a kernel estimator with
spatially varying bandwidth proposed by Lepskii (2015), and the multiscale TV-estimator studied
in this thesis.
Finally, a practical contribution of this thesis concerns the efficient numerical computation of
the multiscale TV-estimator. We propose two methods: one is based on the Chambolle-Pock
primal-dual algorithm, which takes advantage of the fact that, in the dual formulation, the
multiscale constraint has the form of soft-thresholding, which can be applied efficiently even
in high dimensions. The other method is based on a semismooth Newton iteration applied
to a sequence of regularized problems with decreasing amount of regularization, using the
path-following technique. Both methods perform well in practice, giving locally constant and
spatially adaptive reconstructions. With these computation methods, we compared the multiscale
TV-estimator with other estimation methods in simulations in regression and deconvolution.
The overall conclusion is that the multiscale TV-estimator gives good results both in terms of
quantitative risk measures and of visual quality.
We conclude with the discussion of several directions in which the work of this thesis can be
extended.

(a) Dependent data: We have developed a theory for estimation in a Gaussian white noise
model. However, correlated noise is present in many applications. From a modeling
perspective, one could consider the observational model (1.1) with fractional Gaussian
noise instead of white noise. In that case, the construction of the multiscale TV-estimator
could be modified in two ways: either by changing the multiscale constraint to take
the correlations into account (here the multiple testing interpretation discussed in the
Introduction could be useful), or by adapting the threshold γn. For the threshold, the
interpretation of γn as a quantile, as discussed in the Introduction, could be needed.
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(b) Other noise models: More generally, one might be willing to drop the assumption that
the noise is Gaussian. A quite general class of noise models that could be considered is
Lévy processes, which contain Gaussian and Poisson processes as special cases. In this
case we would also have to adapt the multiscale constraint in the way indicated above. We
expect the estimation rate in these models to be in general different from the rate under
Gaussian noise, as it is known that the rate of convergence depends on the tail decay of
the noise distribution (see e.g. Han and Wellner (2019) and Section 3.4 in van der Vaart
and Wellner (1996)). Finally, staying in the Gaussian setting, the extension to SDE-based
models (see e.g. Gobet et al. (2004)) is also of interest.

(c) Variants of the multiscale constraint: From the perspective of multiple hypothesis
testing, our multiscale data-fidelity term corresponds to a test statistic. However, in order
to perform optimally in testing nonparametric hypotheses, it is typically necessary to
introduce additional weights, which would modify our constraint to

max
ω∈Ωn

(
aω

∣∣∣〈φω, g〉 − 〈φω, dY〉
∣∣∣ − bω

)
for certain weights {aω, bω} (see Dümbgen and Spokoiny (2001)). The purpose of these
weights is to prevent the maximum to be overly driven by particular terms. We expect
that, in our setting, this finer weighting would help us get rid of some of the additional
logarithmic factors in the risk bound. On the other hand, the modified data-fidelity term
would no longer match a Besov B−d/2

∞,∞ norm exactly, and a different analysis would be
needed. We remark that there are modifications of Besov spaces that could be suitable for
this setting (see Section 5.2.2 in Giné and Nickl (2015)).

(d) Exponentially ill-posed inverse problems: In our analysis of ill-posed inverse problems
we have seen that the multiscale constraint on the observations essentially corresponds to a
constraint on the Besov B−d/2−β

∞,∞ distance between the estimator and the truth, where β ≥ 0
is the degree of ill-posedness of the operator. Exponentially ill-posed inverse problems
correspond formally to β = ∞, and it is not clear how to extend the present approach
to that case. A common strategy to deal with exponentially ill-posed inverse problems
is to introduce source conditions of logarithmic type (Hohage, 2000). Alternatively, an
approach closer to ours was developed by Petsa and Sapatinas (2009), who consider
wavelet thresholding estimators for deconvolution with exponentially decaying kernels.

(e) Alternative risk functionals: We have proven convergence rates with respect to the
Lq-risk, which measures the global error made by the estimator. Admittedly, the use of
these risk functionals is driven by technical convenience, as they are relatively easy to
handle. On the other hand, these risks only take pointwise differences into account and
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are arguably not well suited to measure similarity between, say, images. In this sense, an
interesting research direction would be to construct risk functionals that measure similarity
in a more faithful way. In that sense, multiscale risk functionals have been proposed as
an alternative quality measure which takes spatial adaptation into account (see e.g. Cai
and Low (2005) and Li (2016)). Alternatively, the use of a Wasserstein distance as a risk
functional has been proposed recently in the context of density estimation (Weed and
Berthet, 2019).

(f) Computational speed-up: We have proposed two methods for computing the multiscale
TV-estimator: a semismooth Newton method combined with the path-following technique,
and the Chambolle-Pock primal-dual method. The semismooth Newton method seems
to perform better than the Chambolle-Pock algorithm in images (d = 2) in terms of
reconstruction error, but it results in a slight oversmoothing. For that reason, it might be
preferable to use a primal-dual method (that does not smooth the problem) modified to
yield better error control in a shorter runtime. Many such accelerating variants have been
proposed, see e.g. Malitsky and Pock (2018) and Luke and Malitsky (2018), and it would
be of interest to apply them to our problem.



CHAPTER 7

Proofs

7.1 Proof of the main theorems

We begin with an auxiliary result for the proof of Theorem 4.

Proposition 7. Let {ψ j,θ} and {u j,θ} denote the dictionary and vaguelette system from Assump-
tion 4. For L > 0, n ∈ N, n ≥ eL, let f̂Φ,T denote the estimator (3.4) with parameter γn given
by (1.9). Then conditionally on the event Ãn in (3.10) we have

(i) ‖ f̂Φ,T − f ‖B−d/2−β
∞,∞

≤ C γn + C
‖ f ‖L∞ + log n

√
n

,

(ii) ‖ f̂Φ,T − f ‖BV ≤ ‖ f ‖L∞ + 2| f |BV + log n,

for any f ∈ BVL, and a constant C > 0 independent of n, f and f̂Φ,T .

Proof. For part (i), recall that the dictionary {ψ j,θ} satisfies Assumption 4, so we can bound the
Besov B−d/2−β

∞,∞ norm as

‖ f̂Φ,T − f ‖B−d/2−β
∞,∞

≤ max
( j,θ)∈Ωn

2−β j|〈ψ j,θ, f̂Φ,T − f 〉| + C ‖ f̂Φ,T − f ‖L∞ n−1/2

= max
( j,θ)∈Ωn

2−β j|κ−1
j 〈T

∗u j,θ, f̂Φ,T − f 〉| + C ‖ f̂Φ,T − f ‖L∞ n−1/2

= max
( j,θ)∈Ωn

|〈u j,θ,T f̂Φ,T − T f 〉| + C ‖ f̂Φ,T − f ‖L∞ n−1/2,

using κ j = 2− jβ. The first term can be bounded as

max
( j,θ)∈Ωn

∣∣∣〈u j,θ,T f̂Φ,T − T f 〉
∣∣∣ ≤ max

( j,θ)∈Ωn

∣∣∣〈u j,θ,T f̂Φ,T 〉 − 〈u j,θ, dY〉
∣∣∣︸                                      ︷︷                                      ︸

≤γn

+ max
( j,θ)∈Ωn

∣∣∣〈u j,θ,T f 〉 − 〈u j,θ, dY〉
∣∣∣

≤ γn + max
( j,θ)∈Ωn

σ
√

n

∣∣∣∣∣ ∫
M

u j,θ(x) dW(x)
∣∣∣∣∣ ≤ 2γn
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conditionally on Ãn, where in the second inequality we used the definition of f̂Φ,T . And the
supremum norm ‖ f̂Φ,T − f ‖L∞ can be bounded by ‖ f ‖L∞ + log n by construction of f̂Φ,T . This
completes the proof of (i). For (ii), we have

‖ f̂Φ,T − f ‖BV ≤ ‖ f̂Φ,T − f ‖L1 + | f̂Φ,T − f |BV ≤ ‖ f̂Φ,T − f ‖L∞ + | f̂Φ,T − f |BV ,

where we used that f̂Φ,T and f are supported inside the unit hypercube, whence their L1

norm is dominated by their L∞ norm. The first term in the right-hand side is bounded by
‖ f ‖L∞ + log n, while the second is bounded by | f̂Φ,T |BV + | f |BV . Finally, conditionally on Ãn we
have | f̂Φ,T |BV ≤ | f |BV . This is so because f̂Φ,T is defined as the minimizer of the BV seminorm
among the functions satisfying max

( j,θ)∈Ωn

|〈u j,θ,Tg〉 − 〈u j,θ, dY〉| ≤ γn and ‖ f̂Φ,T ‖L∞ ≤ log n. Note

that, conditionally on Ãn and for n ≥ eL, the function f satisfies this constraint, and hence f is
an admissible function for the minimization problem defining f̂Φ,T , whence | f̂Φ,T |BV ≤ | f |BV .
This completes the proof. �

We will also need a variant of the interpolation inequality in Theorem 3.

Proposition 8. For d ∈ N and β ≥ 0, let q∗ := 1 + 2/(d + 2β).

a) If q∗ ≤ 2, there is a constant C > 0 such that

‖g‖Lq ≤ C ‖g‖
2

d+2β+2

B−d/2−β
∞,∞

‖g‖
d+2β

d+2β+2

BV

holds for any q ∈ [1, q∗] and any g ∈ B−d/2−β
∞,∞ ∩ BV with supp g ⊆ [0, 1]d.

b) If q∗ > 2, then there is a constant C > 0 such that for any n ∈ N we have

‖g‖Lq ≤ C(log n) ‖g‖
2

d+2β+2

B−d/2−β
∞,∞

‖g‖
d+2β

d+2β+2

BV + C n−1 ‖g‖
2

d+2β+2

L∞ ‖g‖
d+2β

d+2β+2

BV

for any q ∈ [1, q∗] and any g ∈ L∞ ∩ BV with supp g ⊆ [0, 1]d.

The reason for the two regimes in the proposition is that Theorem 3 gives a bound on the Besov
B0

q∗,q∗ norm. If q∗ ≤ 2, then B0
q∗,q∗ ↪→ Lq∗ and the bound can be readily translated to the Lq-risk.

If q∗ > 2, however, the embedding does not hold, and we have to use additional regularity of
the functions (being in L∞) in order to upper bound the Lq∗-risk by the B0

q∗,q∗-risk. The proof of
Proposition 8 is given in Section 7.1.1 below. We are now ready to prove Theorem 4.

Proof of part a) of Theorem 4. We prove the claim of part a) of Theorem 4 conditionally on
the event Ãn in (3.10), which by Proposition 11 in Section 7.3.2 happens with probability
P(Ãn) ≥ 1 − (#Ωn)1−κ2

.
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Consider first the regime q ≤ q∗ := 1 + 2/(d + 2β). For d ≥ 2, part a) of Proposition 8 gives the
inequality

‖ f̂Φ,T − f ‖Lq ≤ C ‖ f̂Φ,T − f ‖
2

d+2β+2

B−d/2
∞,∞

‖ f̂Φ,T − f ‖
d+2β

d+2β+2

BV (7.1)

for any q ∈ [1, q∗], as long as q∗ ≤ 2 which is guaranteed by the assumption that d ≥ 2 and β ≥ 0.
Conditionally on Ãn, Proposition 7 gives bounds for the terms in the right-hand side of (7.1),
which altogether yield

‖ f̂Φ,T − f ‖Lq ≤ C
(
γn + C

‖ f ‖L∞ + log n
√

n

) 2
d+2β+2 (

‖ f ‖L∞ + 2| f |BV + log n
) d+2β

d+2β+2

≤ Cn−
1

d+2β+2
( √

log #Ωn + L + log n
) 2

d+2β+2
(
L + log n

) d+2β
d+2β+2

≤ C n−
1

d+2β+2 log n

using that f ∈ BVL. Since #Ωn grows polynomially in n (recall Assumption 1 in Chapter 2), the
last inequality follows.
For the case when d = 1 and β ≥ 1/2, we have q∗ ≤ 2 and the argument goes through as above.
Finally, the case d = 1 and β < 1/2 requires a special treatment, since we have q∗ > 2 and the
embedding B0

q∗,q∗ ↪→ Lq∗ does not hold. However, part b) of Proposition 8 yields the somewhat
weaker statement

‖g‖Lq ≤ C (log n) ‖g‖
2

d+2β+2

B−1/2−β
∞,∞

‖g‖
d+2β

d+2β+2

BV + C n−1 ‖g‖
2

d+2β+2

L∞ ‖g‖
d+2β

d+2β+2

BV

for g = f̂Φ− f and q ∈ [1, q∗]. Proceeding as above, Proposition 7 now implies that, conditionally
on Ãn, we have

‖ f̂Φ,T − f ‖Lq ≤ C n−
1

d+2β+2 (log n)2 + C n−1 log n,

which yields the claim.
We have proved the claim for the Lq-risk with q ≤ 1 + 2/(d + 2β). For larger q, we use Hölder’s
inequality between the L1+2/(d+2β) and the L∞-risk, which gives the bound

‖ f̂Φ,T − f ‖Lq ≤ ‖ f̂Φ,T − f ‖
d+2β+2
q(d+2β)

L1+2/(d+2β)‖ f̂Φ,T − f ‖
1− d+2β+2

q(d+2β)

L∞ ≤ C n−
1

q(d+2β) (log n)3−min{d,2}

for q ≥ 1 + 2/(d + 2β). This completes the proof. �



102 Proofs

Proof of part b) of Theorem 4. Using the convergence conditionally on Ãn proved in part a) of
the theorem, we can bound the expected risk for q ∈ [1,∞) as

E[‖ f̂Φ,T − f ‖Lq] = E[‖ f̂Φ,T − f ‖Lq 1
Ãn

] + E[‖ f̂Φ,T − f ‖Lq 1
Ãc

n
]

≤ C rn P
(
Ãn

)
+ E[‖ f̂Φ,T − f ‖Lq 1

Ãc
n
], (7.2)

where rn = n−min{ 1
d+2β+2 ,

1
(d+2β)q } (log n)3−min{d,2}. We show now that the second term behaves as

o(n−1/(d+2β+2)) for κ2 > 1 + 1
(d+2β+2) Γ

. Indeed, since the functions f and f̂Φ,T are supported
inside the unit hypercube, we can bound their Lq-norm by their supremum norm. Then we use
that ‖ f ‖L∞ ≤ L and that ‖ f̂Φ,T ‖L∞ ≤ log n for n ≥ eL by construction, so we have

E[‖ f̂Φ,T − f ‖Lq 1
Ãc

n
] ≤ E[(L + log n) 1

Ãc
n
] ≤ (L + log n)P

(
Ãc

n
)
.

By Proposition 11 in Section 7.3.2 we have P(Ãc
n) ≤ (#Ωn)1−κ2

. Inserting this back in (7.2) and
using that #Ωn ≥ c nΓ yields

E[‖ f̂Φ,T − f ‖Lq] ≤ C n−min{ 1
d+2β+2 ,

1
(d+2β)q } (log n)3−min{d,2} + C n(1−κ2)Γ log n.

Choosing κ2 > 1 + 1
(d+2β+2)Γ yields the claim. �

7.1.1 Proof of Proposition 8

For simplicity, we prove the two parts of Proposition 8 separately.

Proof of part a) of Proposition 8. First, Theorem 3 with s = −d/2 − β and p = ∞ gives

‖g‖B0
q∗,q∗
≤ C ‖g‖

2
d+2β+2

B−d/2−β
∞,∞

‖g‖
d+2β

d+2β+2

BV

for any smooth enough g. It remains to show that the Lq-norm, q ∈ [1, q∗], can be upper bounded
by the B0

q∗,q∗-norm. But that is indeed the case, due to the continuous embedding

B0
r,r(Rd) ↪→ Lr(Rd) (7.3)

for r ∈ (1, 2]. Indeed, continuity of the embedding follows from Proposition 2 in Section 2.3.2
in Triebel (1983). It states that, for 0 < q ≤ ∞, 0 < p < ∞ and s ∈ R, the embedding

Bs
p,min{p,q}(R

d) ↪→ F s
p,q(Rd)
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is continuous. Moreover, equation (2) in Section 2.3.5 in Triebel (1983) states that

F0
p,2(Rd) = Lp(Rd)

for p ∈ (1,∞). These two facts imply that

B0
r,r(Rd) = B0

r,min{r,2}(R
d) ↪→ F0

r,2(Rd) = Lr(Rd) ∀r ∈ (1, 2],

which completes the proof of (7.3). The extension to the L1-risk follows by compact support. �

The proof of part b) of Proposition 8 relies on the following result.

Proposition 9. Let g ∈ L∞ ∩ BV satisfy supp g ⊆ [0, 1]d, and let q ∈ [2, 3]. Then for any J ∈ N

we have
‖g‖Lq ≤ C J ‖g‖B0

q,q
+ C 2−J/q‖g‖1−1/q

L∞ ‖g‖1/qBV

for a constant C > 0 independent of g.

The proof of Proposition 9 uses the following lemma.

Lemma 1. Let {ψ j,k,e | ( j, k, e) ∈ Ω} denote a basis of compactly supported wavelets in L2(Rd).
For any q ∈ [2, 3] there is a constant Cψ,q such that∫

Rd

∣∣∣∣∣ ∑
(k,e)∈Pd

j×E j

c j,k,eψ j,k,e(x)
∣∣∣∣∣q dx ≤ Cψ,q 2 jqd(1/2−1/q)

∑
(k,e)∈Pd

j×E j

|c j,k,e|
q

for any j ∈ N and any coefficients {c j,k,e}, where

Pd
j := {k ∈ Zd | ( j, k, e) ∈ Ω, supp ψ j,k,e ∩ (0, 1)d , ∅}.

Proof of Lemma 1. We prove the lemma by showing the extreme cases q = 2 and q = 3, and
then applying the Riesz-Thorin interpolation theorem (see e.g. Stein and Weiss (1971)) to the
bounded operator

A j : `q(Pd
j × E j)→ Lq(Rd)

{c j,k,e}(k,e)∈Pd
j×E j

7→
∑

(k,e)∈Pd
j×E j

c j,k,eψ j,k,e.

This gives the claim for all q ∈ [2, 3].
Notice that the claim for q = 2 follows by the orthonormality of the wavelet basis.
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For q = 3, we begin with an observation. Due to the compact support of the wavelets, there is a
constant cψ such that, for each j ≥ 0 and (k, e) ∈ Pd

j × E j, at most cψ wavelets at scale j have
support intersecting the support of ψ j,k,e, i.e.,

max
( j,k,e)∈N×Pd

j×E j

#
{
(k′, e′) ∈ Pd

j × E j
∣∣∣ supp ψ j,k,e ∩ supp ψ j,k′,e′ , ∅

}
≤ cψ. (7.4)

For instance, for Daubechies wavelets with S continuous partial derivatives we can take cψ =

2d (12 S + 1)d (see Section 2.1). As a consequence, we have the following inequalities∫
Rd

∣∣∣∣∣ ∑
(k,e)∈Pd

j×E j

c j,k,eψ j,k,e(x)
∣∣∣∣∣3 dx =

∑
(k,e)∈Pd

j×E j

∫
Rd

∣∣∣c j,k,eψ j,k,e(x)
∣∣∣3 dx

+ 3
∑

(k,e),(k′,e′)

∫
Rd

∣∣∣c j,k,eψ j,k,e(x)
∣∣∣2∣∣∣c j,k′,e′ψ j,k′,e′(x)

∣∣∣ dx

+ 6
∑

(k,e),(k′,e′),(k′′,e′′)

∫
Rd

∣∣∣c j,k,eψ j,k,e(x)
∣∣∣∣∣∣c j,k′,e′ψ j,k′,e′(x)

∣∣∣∣∣∣c j,k′′,e′′ψ j,k′′,e′′(x)
∣∣∣ dx (7.5)

≤ (1 + 3cψ + 6c2
ψ)

∑
(k,e)∈Pd

j×E j

|c j,k,e|
3‖ψ j,k,e‖

3
L3

= (1 + 3cψ + 6c2
ψ) ‖ψ‖3L3 2 j3d(1/2−1/3)

∑
(k,e)∈Pd

j×E j

|c j,k,e|
3

where we used (7.4) to bound the number of summands, and in the last equality we used that
‖ψ j,k,e‖L3 = 2 jd(1/2−1/3) ‖ψ‖L3 . The inequality is justified as follows. By Young’s inequality and
the support properties of ψ j,k,e we have

∑
(k,e),(k′,e′)

∫
Rd

∣∣∣c j,k,eψ j,k,e(x)
∣∣∣2∣∣∣c j,k′,e′ψ j,k′,e′(x)

∣∣∣ dx

≤
∑

(k,e),(k′,e′)

∫
Rd

2
3

∣∣∣c j,k,eψ j,k,e(x)
∣∣∣3 +

1
3

∣∣∣c j,k′,e′ψ j,k′,e′(x)
∣∣∣3 dx

≤
2
3

cψ
∑
(k,e)

∫
Rd

∣∣∣c j,k,eψ j,k,e(x)
∣∣∣3 dx +

1
3

cψ
∑

(k′,e′)

∫
Rd

∣∣∣c j,k′,e′ψ j,k′,e′(x)
∣∣∣3 dx

= cψ
∑
(k,e)

∣∣∣c j,k,e
∣∣∣3‖ψ j,k,e‖

3
L3 .

The same argument with Young’s inequality gives the desired bound for the product of 3 terms
in (7.5). This completes the proof. �
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Proof of Proposition 9. Let {ψ j,k,e} be a basis of compactly supported wavelets. Writing g

formally as its wavelet series we have for any q ∈ [2, 3]

‖g‖Lq =

∥∥∥∥∥ ∑
j∈N

∑
k,e

c j,k,eψ j,k,e

∥∥∥∥∥Lq
≤

∥∥∥∥∥∑
j≤J

∑
k,e

c j,k,eψ j,k,e

∥∥∥∥∥Lq
+

∥∥∥∥∥∑
j>J

∑
k,e

c j,k,eψ j,k,e

∥∥∥∥∥Lq
(7.6)

for any J ∈ N. Since supp g ⊆ [0, 1]d, the sums are over (k, e) ∈ Pd
j × E j. Using Lemma 1, the

first term can be bounded as∥∥∥∥∥∑
j≤J

∑
k,e

c j,k,eψ j,k,e

∥∥∥∥∥Lq
≤

∑
j≤J

(
Cψ,q2 jqd(1/2−1/q)

∑
(k,e)
|c j,k,e|

q
)1/q

≤ C1/q
ψ,q J

(
max
j≤J

2 jqd(1/2−1/q)
∑
(k,e)
|c j,k,e|

q
)1/q

≤ C1/q
ψ,q J ‖g‖B0

q,q
,

which gives the first term of the claim. For the second term, we use that g ∈ L∞ and g ∈ BV ,
which means that the wavelet coefficients of g satisfy the bounds

max
(k,e)∈Pd

j×E j

|c j,k,e| ≤ 2− jd/2 ‖g‖L∞ and
∑

(k,e)∈Pd
j×E j

|c j,k,e| ≤ 2 j(d/2−1) ‖g‖BV ,

for any j ∈ N, where the first inequality follows from the compact support of the wavelets and
Hölder’s inequality, and the second follows from the embedding BV ⊂ B1

1,∞. Using Lemma 1
and these bounds, the second term in (7.6) can be bounded as∥∥∥∥∥∑

j>J

∑
k,e

c j,k,eψ j,k,e

∥∥∥∥∥Lq
≤

∑
j>J

(
Cψ,q2 jqd(1/2−1/q)

∑
(k,e)∈Pd

j×E j

|c j,k,e|
q
)1/q

≤ C1/q
ψ,q

∑
j>J

(
2 jqd(1/2−1/q) 2− jd(q−1)/2 ‖g‖q−1

L∞ 2 j(d/2−1)‖g‖BV

)1/q

≤ C1/q
ψ,q ‖g‖

1−1/q
L∞ ‖g‖1/qBV

∑
j>J

2− j/q,

which gives the claim. �

Proof of part b) of Proposition 8. Let q∗ := 1 + 2/(d + 2β) and assume that q∗ > 2. Notice that
q∗ ≤ 3 for d ∈ N and β ≥ 0. The claim follows from Theorem 3 with s = −d/2 − β and p = ∞,
which gives a bound on the B0

q∗,q∗ norm. The Lq-norm, q ∈ [1, q∗], can be upper bounded by
the Lq∗-norm, which itself can be upper bounded by the B0

q∗,q∗ norm using Proposition 9 below.
Choosing J = dq∗ log ne yields the claim. �
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7.2 Proof of the minimax lower bounds

Here we prove Theorem 6. The proofs of the lower bounds in the regimes q < pd+2s+2β
d+2β (dense

case) and q ≥ pd+2s+2β
d+2β and s > d/p (sparse case) are well-known, and can be found e.g. in

Chapter 10 of Härdle et al. (2012) for d = 1 and T = id, so we do not reproduce them here.
Indeed, the generalization from d = 1 to d ≥ 2 is trivial. Concerning the generalization to inverse
problems, we show below how to adapt the construction of the alternatives in the "multiscale"
regime s < d/p, which indicates how to proceed in the other regimes (see e.g. Theorem 3
in Cavalier (2011) for a different strategy for computing the minimax risk in inverse problems
for the L2-risk).

On the other hand, the regime q ≥ pd+2s
d and s ≤ d/p is far less popular, so we give the complete

proof of the lower bound here. The proof follows the same idea as in the other regimes: we
reduce the estimation problem to a testing problem, and construct a set of alternatives that cannot
be perfectly distinguished by any statistical procedure. As in the dense regime, our construction
is based on Assouad’s cube (Assouad, 1983).

Proof of Theorem 6. Our proof follows the proof of Theorem 10.3 in Härdle et al. (2012) closely.
We structure it in several steps. For conceptual simplicity we first give the proof for T = id, and
then consider general T .

Construction of alternatives: Let g0 ∈ Bs
p,t ∩ L∞ satisfy

‖g0‖Bs
p,t
≤ L/2, and ‖g0‖L∞ ≤ L/2.

Let ψ j,k,e be a basis of Daubechies wavelets with S continuous partial derivatives, where
S > max{s, d/2}. For j ≥ 0 to be fixed later, let R j ⊆ {0, . . . , 2 j − 1}d × E j denote a subset of
wavelet indices such that

supp ψ j,k,e ∩ supp ψ j,k′,e′ = ∅ for (k, e) , (k′, e′) ∈ R j.

Since Daubechies wavelets are compactly supported, we have #R j ≤ c2 jd for a constant c > 0.
Let further S j = #R j = b2 j∆c for a real number ∆ ∈ [0, d] to be chosen later. Consider now
vectors ε ∈ {−1,+1}S j with components indexed by (k, e) ∈ R j. Our alternatives will have the
form

gε := g0 + γ
∑

(k,e)∈R j

εk,eψ j,k,e

for γ > 0 to be chosen later. Define the set G := {gε | ε ∈ {−1,+1}S j}. Notice that all functions in
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this set satisfy
‖gε‖Bs

p,t
≤ L and ‖gε‖L∞ ≤ L

provided that

γ ≤
L
2

2− j(s+d( 1
2−

1
p )+ ∆

p ) and γ ≤
L

2 ‖ψ‖L∞
2− jd/2, (7.7)

respectively. In the following we choose ∆ in order to balance these two terms, i.e., ∆ = d − ps.
Notice that in the sparse regime one chooses ∆ = 0, while in the dense regime it is enough to
choose ∆ = d. The regime we consider here is a middle ground in which the difficulty of the
problem is encoded by signals gε that have many spikes at each scale, but are not dense.

In this setting, the Lq-separation between these alternatives is

δ := inf
ε,ε′
‖gε − gε

′

‖Lq = 2‖γψ j,k,e‖Lq = 2γ 2 jd( 1
2−

1
q )
‖ψ‖Lq , (7.8)

where the first equality follows from the disjoint supports of the wavelets.

Lower bound: We use now Assouad’s lemma for lower bounding the Lq-risk over (Bs
p,t∩L∞)L.

We reproduce the claim (Lemma 10.2 in Härdle et al. (2012)) for completeness.

Lemma 2. For ε ∈ {−1,+1}S j and (k, e) ∈ R j, define ε∗k,e := (ε′(k1,e1), . . . , ε
′
(kS j ,eS j )

), where

ε′(k′e′) =

ε(k,e) if (k′, e′) , (k, e),

−ε(k,e) if (k′, e′) = (k, e).

Assume there exist constants λ, p0 > 0 such that

Pgε
(
LR(gε∗k,e , gε) > e−λ

)
≥ p0, ∀ε, ∀n, (7.9)

where Pgε denotes the probability with respect to observations drawn from gε in the white noise
model, and LR(gε∗k,e , gε) denotes the likelihood ratio between the observations associated to gε∗k,e

and gε . Then any estimator f̂ satisfies

sup
gε∈G
Egε‖ f̂ − gε‖Lq ≥

e−λ p0
2

δ S 1/q
j ,

where δ is defined in (7.8).

Verification of (7.9): The condition (7.9) is easily verified in our setting with Gaussian
observations under the condition that nγ2 ≤ c for n large enough (see Section 10.5 in Härdle
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et al. (2012)). Indeed, by Markov’s inequality we have

Pgε
(
LR(gε∗k,e , gε) > e−λ

)
≥ 1 −

1
log eλ

Egε
∣∣∣∣∣ log LR(gε∗k,e , gε)

∣∣∣∣∣,
and using Proposition 6.1.7 in Giné and Nickl (2015) to bound the expectation by the Kullback-
Leibler divergence we get

Pgε
(
LR(gε∗k,e , gε) > e−λ

)
≥ 1 −

1
λ

(
K(dPgε∗k,e , dPgε ) +

√
2K(dPgε∗k,e , dPgε )

)
.

Using the Cameron-Martin Theorem to interpret the Gaussian probability measures (see Theorem
2.6.13 in Giné and Nickl (2015)), the Kullback-Leibler divergence between Gaussian measures
is easily computed and gives

K(dPgε∗k,e , dPgε ) =
n

2σ2 ‖g
ε∗k,e − gε‖2L2 =

nγ2

2σ2 ‖ψ j,k,e‖
2
L2 =

nγ2

2σ2 .

Hence, choosing γ = t0 n−1/2 for a small enough constant t0 > 0 gives (7.9).

Application of Lemma 2: The conclusion of the lemma applies, and we can lower bound the
Lq-risk over the class (Bs

p,t ∩ L∞)L by the risk over G, i.e.,

sup
f∈(Bs

p,t∩L∞)L

E f ‖ f̂ − f ‖Lq ≥ sup
gε∈G
Egε‖ f̂ − gε‖Lq ≥

e−λ p0
2

δ 2 j∆/q (7.10)

for any estimator f̂ . It remains to choose the scale parameter j ≥ 0. Recall that we have chosen
γ = t0 n−1/2. Further, by (7.7) we also need γ ≤ c 2− j(s+d( 1

2−
1
p )+ ∆

p )
= c 2− jd/2, for the choice

∆ = d − sp. We choose j such that

2− jd/2 = c n−1/2,

which using the definition (7.8) for δ gives the bound in (7.10)

δ 2 j∆/q = c γ 2 jd( 1
2−

1
q ) 2 j∆/q = c

(1
n

) 1
2−

(
1
2−

1
q

)
− ∆

dq
= c n−

ps
dq .

This completes the proof for T = id.

Modification for general T : For general T we construct the alternatives as above, using a
wavelet basis for which (3.11) is satisfied. The first difference occurs for the application of the
lower bound from Assouad’s lemma: here we need to ensure condition (7.9) for the transformed
alternatives Tgε∗k,e and Tgε , since our observations arise from those functions. Proceeding
as above, we reduce the problem to bounding the Kullback-Leibler divergence between the
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associated Gaussian measures. The final condition that we need to ensure is that

K(dPTgε∗k,e , dPTgε ) =
nγ2

2σ2 ‖Tψ j,k,e‖
2
L2 ≤ c0

for some small constant c0 > 0. Since our operator T satisfies (3.11), this condition holds if

γ2 � 2− jd � n−
d

d+2β .

Plugging this in gives the claim for β ≥ 0. �

7.3 Proofs of auxiliary results

7.3.1 Proof of existence of a minimizer

In this section we prove Propositions 1 and 6, which guaranty the existence of the multiscale TV
estimators in the regression and inverse problems settings. In fact, we prove a slightly stronger
result. Let X denote a finite set, and let K : L∞ → `∞(X) be a linear, bounded operator. Let
further Y ∈ `∞(X), γ > 0 and L > 0 be given. Consider the optimization problem

argmin
g∈BV

|g|BV such that ‖Kg − Y‖`∞ ≤ γ, ‖g‖L∞ ≤ L, supp g ⊆ [0, 1]d. (7.11)

Proposition 10 below shows that (7.11) admits a minimizer in BV ∩ L∞. In order to prove
Proposition 1, choose X = Ωn and let K denote the operator that maps a function g ∈ L∞ to its
coefficients 〈φω, g〉 for ω ∈ Ωn, which is linear and bounded. Since the observations Yω, ω ∈ Ωn

are almost surely finite, we conclude that there exists almost always a minimizer f̂Φ ∈ BV ∩ L∞

of (2.5), so Proposition 1 is proven.
Proposition 6 is proven analogously: the only difference being that we choose (Kg) j,θ = 〈u j,θ,Tg〉

for the vaguelette system u j,θ. Such K is a bounded operator from L∞ to `∞, so by the same
argument we conclude that the minimizer f̂Φ,T exists almost always.
It remains to prove the existence of minimizers of (7.11).

Proposition 10. Assume that Y ∈ `∞(X), γ > 0 and L > 0. Then there exists a minimizer
f̂ ∈ BV ∩ L∞ of (7.11).

Proof. Note that we are minimizing a convex functional bounded from below subject to convex
constraints. Let {gk}k∈N be a minimizing sequence of | · |BV satisfying

‖gk‖L∞ ≤ L, ‖Kgk − Y‖`∞(X) ≤ γ, supp gk ⊆ [0, 1]d, for all k ∈ N.
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Then {gk}k∈N is bounded in L∞, which means that we can take a subsequence (still denoted
by gk) that converges weakly, i.e. gk ⇀ f̂ ∈ L∞. Moreover, this sequence is bounded in BV ,
so again we can conclude that, taking a subsequence, ∇gk ⇀ ∇ f̂ , where here we mean weak
convergence of Radon measures. Finally, we can take another subsequence such that the bounded
sequence Kgk converges weakly in `∞(X), in which case it converges to K f̂ (by linearity and
boundedness of the mapping K).
The lower-semicontinuity of | · |BV , ‖ · ‖L∞ and ‖ · ‖`∞ , together with the weak convergence stated
above, implies that

| f̂ |BV ≤ liminf
k→∞

|gk|BV ,

‖ f̂ ‖L∞ ≤ liminf
k→∞

‖gk‖L∞ ≤ L,

‖K f̂ − Y‖`∞(X) ≤ liminf
k→∞

‖Kgk − Y‖`∞(X) ≤ γ.

Finally, it is clear that f̂ satisfies supp f̂ ⊆ [0, 1]d, since it is the limit of functions supported
there. This implies that f̂ ∈ BV ∩ L∞ is a minimizer of (7.11). �

7.3.2 Tail bound for the noise

We prove an elementary tail bound for the dictionary coefficients of white noise.

Proposition 11 (Tail bounds on the coefficients of white noise). Let Φ = {φω |ω ∈ Ω} ⊂ L2(M)
be a family of functions defined on an open domainM ⊆ Rd and satisfying supω∈Ω ‖φω‖L2 ≤ c

for a constant c > 0. Then for any n ∈ N we have

P
(

max
ω∈Ωn

∣∣∣∣∣ ∫
M
φω(x) dW(x)

∣∣∣∣∣ ≥ c t
)
≤ #Ωn e−t2/2 for any t ≥ 0.

Proof. By the union bound we have

P
(

max
ω∈Ωn

|εω| ≥ t
)
≤

∑
ω∈Ωn

P(|εω| ≥ t)

for any t ≥ 0. The random variables εω := c−1
∫
M
φω(x) dW(x) are normal with variance smaller

than 1, since ‖φω‖L2(M) ≤ c. They are therefore stochastically dominated by standard normal
random variables, so the probabilities in the right-hand side can be bounded as

P(|εω| ≥ t) ≤ 2
∫ ∞

t
e−x2/2 dx

√
2π

= 2 e−t2
∫ ∞

t
e−x2/2+t2 dx

√
2π

≤ 2 e−t2
∫ ∞

t
e−x2/2+xt dx

√
2π

= e−t2/2. �
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7.3.3 Proofs for Section 2

Proof of Proposition 2

Proof of Proposition 2. We begin with the inequality in Assumption 1. Recall from Section 2.1
that the Besov norm of a function can be represented in terms of its wavelet coefficients with
respect to a smooth enough wavelet basis. In particular, for a function g with supp g ⊆ [0, 1]d we
have

‖g‖B−d/2
∞,∞ (Rd) � sup

j≥0
max
k∈Zd

max
e∈E j
|〈ψ j,k,e, g〉| ≤ max

0≤ j<J
max
k∈Zd

max
e∈E j
|〈ψ j,k,e, g〉| + sup

j≥J
max
k∈Zd

max
e∈E j
|〈ψ j,k,e, g〉|.

Note that the first term is precisely max( j,k,e)∈Ωn |〈ψ j,k,e, g〉| for J =
⌊1

d log2 n
⌋

and Ωn as in
equation (2.3). Indeed, since g is supported in the unit cube, only the coefficients with ( j, k, e)
such that supp ψ j,k,e ∩ (0, 1)d , ∅ are nonzero.

It remains to show that the second term is dominated by C‖g‖L∞(Rd) n−1/2. For that, Hölder’s
inequality yields

sup
j≥J

max
k∈Zd

max
e∈E j
|〈ψ j,k,e, g〉| ≤ sup

j≥J
max
k∈Zd

max
e∈E j

‖ψ j,k,e‖L1(Rd)‖g‖L∞(Rd) ≤ C 2−Jd/2‖g‖L∞(Rd), (7.12)

where we used that the wavelets are of the form ψ j,k,e(x) = 2 jd/2ψe
(
2 jx−k

)
, compactly supported

and normed in L2. Using now that 2−Jd/2 ≤ 2d/2 n−1/2, the inequality follows. Moreover, since
the index sets Ωn satisfy 2−dn ≤ #Ωn/(12 S + 1)d ≤ n, we can choose Q(x) = c x and Γ = 1 in
Assumption 1. This completes the proof. �

Proof of Proposition 3

In order to prove Proposition 3 we rely on the characterization of Besov spaces in terms of local
means.

Proposition 12 (Norm equivalence). Let ψ ∈ C∞(Rd) satisfy supp ψ ⊆ [0, 1]d and |F [ψ](ξ)| > 0
for |ξ| ≤ 2. Then the norm equivalence

‖g‖B−d/2
∞,∞ (Rd) � sup

j≥0
2 jd/2 sup

x∈Rd

∣∣∣∣∣ ∫
Rd
ψ
(
2 j(x − y)

)
g(y) dy

∣∣∣∣∣
holds for any function g ∈ B−d/2

∞,∞ (Rd).

Proposition 12 is a consequence of Theorem 3 in Triebel (1988). We refer to Section A.3 of the
Appendix for the proof.



112 Proofs

Proof of Proposition 3. Note that by part b) of Remark 5, we have nmax{1,d/2} ≤ #Ωn ≤

nmax{1,d/2}+1 for all n ∈ N, so we have Γ = max{1, d/2} in Assumption 1.
For the inequality in Assumption 1, we have to show that there is a constant C > 0 such that for
any n ∈ N we have

‖g‖B−d/2
∞,∞ (Rd) ≤

C
√

n
‖g‖L∞(Rd) + C max

( j,k)∈Ωn

∣∣∣∣∣ ∫
[0,1]d

ψ j,k(z)g(z) dz
∣∣∣∣∣

for any g ∈ L∞(Rd) with supp g ⊆ [0, 1]d. By Proposition 12 we have the bound

‖g‖B−d/2
∞,∞ (Rd) ≤ C sup

j≥J
2 jd/2 sup

x∈Rd

∣∣∣∣∣ ∫
Rd
ψ
(
2 j(x − y)

)
g(y) dy

∣∣∣∣∣
+ C sup

j<J
2 jd/2 sup

x∈Rd

∣∣∣∣∣ ∫
Rd
ψ
(
2 j(x − y)

)
g(y) dy

∣∣∣∣∣ (7.13)

for any J > 0, to be fixed later. The first term in the right-hand side can be bounded as

sup
j≥J

2 jd/2 sup
x∈Rd

∣∣∣∣∣ ∫
Rd
ψ
(
2 j(x − y)

)
g(y) dy

∣∣∣∣∣ = sup
j≥J

2− jd/2 sup
x∈Rd

∣∣∣∣∣ ∫
Rd
ψ
(
z
)

g
(
x − 2− jz

)
dz

∣∣∣∣∣
≤ sup

j≥J
2− jd/2 sup

x∈Rd
‖ψ‖L1(Rd) ‖g‖L∞(Rd)

≤ 2−Jd/2‖ψ‖L1‖g‖L∞ ,

and the right-hand side is bounded, since ψ is a compactly supported smooth function, so it is
integrable in particular. It remains to bound the second term in the right-hand side of (7.13). For
j ∈ N and x ∈ Rd, define the integral

I j,x =

∫
Rd
ψ
(
2 j(x − y)

)
g(y) dy =

∫
[0,1]d

ψ
(
2 j(x − y)

)
g(y) dy,

which can be restricted to integration over [0, 1]d, since we assume that g is supported in the
unit cube. Moreover notice that, since supp ψ ⊆ [0, 1]d, if x is such that |x − y|∞ > 2− j for all
y ∈ [0, 1]d, then I j,x = 0. Here, |z|∞ := maxi=1,...,d |zi| denotes the `∞ norm of z ∈ Rd. With this
observations, we can write the second term in the right-hand side of (7.13) as

sup
j<J

2 jd/2 sup
x∈[−2− j,1+2− j]d

∣∣∣∣∣ ∫
[0,1]d

ψ
(
2 j(x − y)

)
g(y) dy

∣∣∣∣∣.
We take the supremum over x ∈ [−2− j, 1 + 2− j]d because the integral vanishes for x outside of
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that cube. We now approximate this expression by proving the following:

∀ j = 0, . . . , J − 1, ∀x ∈ [−2− j, 1 + 2− j]d, ∃( j, k) ∈ Ωn

such that |I j,x − I j,k| ≤ C ‖g‖L∞ 2−R− jd+ j, (7.14)

for a certain R > 0, i.e., for each j, the integrals I j,x can be approximated uniformly in x by the
integrals {I j,k | ( j, k) ∈ Ωn}. Before we prove (7.14), let us see what it implies. With it, we can
bound the second term in the right-hand side of (7.13) as

max
j<J

2 jd/2 sup
x∈[−2− j,1+2− j]d

|I j,x| ≤ max
j<J

2 jd/2 sup
x∈[−2− j,1+2− j]d

min
k s.t. ( j,k)∈Ωn

|I j,x − I j,k| + |I j,k|

≤ max
j<J

2 jd/2 max
k s.t. ( j,k)∈Ωn

C ‖g‖L∞ 2−R− jd+ j + |I j,k|

≤ C ‖g‖L∞ 2−R max
j<J

2 j− jd/2 + max
j≤J

2 jd/2 max
k s.t. ( j,k)∈Ωn

|I j,k|.

This equation with R = J max{1, d/2} and J = d1d log2 ne yields the claim. It just remains to
prove (7.14).

Proof of (7.14):
Recall from Assumption 2 that for each n ∈ N we have

Ωn =
{
( j, k)

∣∣∣ j = 0, . . . , J − 1, k ∈ D j
}
,

D j =
{
k =

(
k1, · · · , kd

) ∣∣∣ ki = −2− j + li 2−R(1 + 21− j), li = 0, . . . , 2R − 1, i = 1, . . . , d
}
,

where J = d1d log2 ne and R = J max{1, d/2}. Consequently, for each x ∈ [−2− j, 1 + 2− j]d we
can find k ∈ DR such that |x − k| ≤

√
d 2−R (1 + 21− j). With this in mind, we can bound

I j,x − I j,k =

∫
[0,1]d

g(z)
(
ψ
(
2 j(x − z)

)
− ψ

(
2 j(k − z)

))
dz

≤ ‖g‖L∞
∫

[0,1]d

∣∣∣∣∣ψ(2 j(x − z)
)
− ψ

(
2 j(k − z)

)∣∣∣∣∣ dz

= ‖g‖L∞ 2− jd
∫

2 jx−[0,2 j]d

∣∣∣∣∣ψ(y) − ψ
(
y + 2 j(k − x)

)∣∣∣∣∣ dy

≤ ‖g‖L∞ 2− jd
∫

2 jx−[0,2 j]d
|∇ψ(y)|

∣∣∣2 j(k − x)
∣∣∣ dy

≤ ‖g‖L∞ 2− jd ‖∇ψ‖L1

∣∣∣2 j(k − x)
∣∣∣

≤
√

d (1 + 21− j) ‖g‖L∞ ‖∇ψ‖L1 2− jd+ j−R.

This proves (7.14) and finishes the proof. �
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Proof of Proposition 4

Proof of Proposition 4. The inequality in Assumption 1 follows in both cases (curvelet and
shearlet) from the inequality (7.12) for the wavelet basis (see the proof of Proposition 2 above).
Indeed, denoting the elements of Φ by

φω =

ψ j,k,e if ω = ( j, k, e) ∈ ΘW (wavelets),

ϕ j,θ̃ if ω = ( j, θ̃) ∈ Θ (curvelets or shearlets),

we have

‖g‖B−d/2
∞,∞ (Rd) ≤ C max

( j,k,e)∈ΘW
n

|〈g, ψ j,k,e〉| + C
‖g‖L∞(Rd)
√

n

≤ C max
ω∈ΘW

n ∪Θn

|〈g, φω〉| + C
‖g‖L∞(Rd)
√

n
,

for any function g supported on the unit cube, where we just enlarge the right-hand side by taking
the maximum over a larger index set. Concerning the cardinality of Ωn ∪ Θn, by Assumption 3
we have

#(Ωn ∪ Θn) = 2db 1
d log2 nc + 2db 1

d log2 nc,

and hence we have Assumption 1 with Q(x) = 2x and Γ = 1. �

7.3.4 Error bound in the discretized model

In this section we prove Proposition 5 from Section 2.5.

Proof of Proposition 5 . Plug in the definition of φn
ω = n−1/2 φω(xi) into δn. Using that one of

the functions φω is the indicator function of the unit cube, this gives

δn ≥

∣∣∣∣∣ ∑
xi∈Γn

∫
xi+[0,n−1/d)d

(
h(xi) − h(y)

)
dy

∣∣∣∣∣. (7.15)

Fix an irrational number α ∈ (0, 1), and consider the function

h(x) =

0 if x(1) ≤ α

1 else.

Here, x(1) denotes the first coordinate of the vector x = (x(1), . . . , x(d)). Due to the definition of
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h, the summands in the lower bound for δn satisfy the following:∫
xi+[0,n−1/d]d

(
h(xi) − h(y)

)
dy = 0 if α ≤ x(1)

i or x(1)
i + n−1/d ≤ α.

For x(1)
i < α < x(1)

i + n−1/d we get

∫
xi+[0,n−1/d]d

(
h(xi) − h(y)

)
dy =

∫ x(1)
i +n−1/d

x(1)
i

∫ x(2)
i +n−1/d

x(2)
i

· · ·

∫ x(d)
i +n−1/d

x(d)
i

(−h(y)) dy(1) · · · dy(d)

=

∫ x(1)
i +n−1/d

α

∫ x(2)
i +n−1/d

x(2)
i

· · ·

∫ x(d)
i +n−1/d

x(d)
i

(−1) dy(1) · · · dy(d)

= (−1)
(
x(1)

i + n−1/d − α
)(

n−1/d)d−1.

Furthermore, note that there are n1−1/d nonzero summands in the lower bound (7.15) for δn.
Indeed, there are n1−1/d elements xi ∈ Γn with x(1)

i ∈ [α − n−1/d, α). Consequently, the
discretization error δn is lower bounded by

δn ≥ x(1)
i + n−1/d − α. (7.16)

Now, since xi ∈ Γn, we have x(1)
i = k n−1/d = k/m for some k ∈ N and m = n1/d. In order to

show that the lower bound is larger that m−1/2 for infinitely many m ∈ N, we use a classical
result in irrational approximation: the sequence zm = mα is uniformly distributed modulo 1 for α
irrational (see e.g. Theorem 3.3 in Chapter 1 of Kuipers and Niederreiter (1974)). Now, the lower
bound (7.16) is exactly of the form m−1(k + 1 − mα

)
, and by the above result and the definition

of k, the sequence k + 1 − mα is uniformly distributed in [0, 1] as m varies. Consequently, there
are infinitely many m ∈ N such that k + 1 − mα > 1/2, so we conclude that

δn ≥
1
2

m−1

for infinitely many m ∈ N, which is what we wanted to prove. �

7.3.5 Proofs for Section 3

Proposition 13. In the setting of Section 3.3 we have

T ∗u j,k,e = κ j ψ j,k,e where κ j = 2− jβ,

c1 ≤ ‖u j,k,e‖L2 ≤ c2 ∀( j, k, e) ∈ Ω,

where we can choose c1 = mine∈{0,1}d ‖(−∆)β/2ψ0,0,e‖L2 and c2 = maxe∈{0,1}d ‖ψ0,0,e‖Hβ .
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Proof. Notice that the Fourier transform of the elements u j,k,e is given by

F [u j,k,e](ξ) = 2− jd/2− jβ e−iξ·k2− jF [ψ0,0,e](2− jξ)
F [K](−ξ)

. (7.17)

The first claim of the proposition follows trivially by construction of the u j,k,e: we essentially use
that T ∗ acts by convolution with K(−·), which in Fourier domain is the product with F [K](−·).
For the bounds in the L2 norm, we use Plancherel’s theorem, i.e.

‖u j,k,e‖
2
L2 = ‖F [u j,k,e]‖2L2 = 2− jd−2 jβ

∫
Rd

∣∣∣∣∣F [ψ0,0,e](2− jξ)
F [K](−ξ)

∣∣∣∣∣2 dξ
(2π)d

� 2− jd−2 jβ
∫
Rd

(
1 + |ξ|2

)β∣∣∣F [ψ0,0,e](2− jξ)
∣∣∣2 dξ

= 2−2 jβ
∫
Rd

(
1 + |2 jξ|2

)β∣∣∣F [ψ0,0,e](ξ)
∣∣∣2 dξ, (7.18)

where in the second line we used the bounds (3.14) on the Fourier transform of the kernel K.
The expression in the right-hand side can now be easily bounded from below as

2−2 jβ
∫
Rd

(
1 + |2 jξ|2

)β∣∣∣F [ψ0,0,e](ξ)
∣∣∣2 dξ ≥ 2−2 jβ

∫
Rd
|2 jξ|2β

∣∣∣F [ψ0,0,e](ξ)
∣∣∣2 dξ

=
∥∥∥|ξ|βF [ψ0,0,e]

∥∥∥2
L2 = ‖(−∆)β/2ψ0,0,e‖

2
L2 ,

again by Plancherel’s theorem. On the other hand, the right-hand side of (7.18) can be upper-
bounded as

2−2 jβ
∫
Rd

(
1 + |2 jξ|2

)β∣∣∣F [ψ0,0,e](ξ)
∣∣∣2 dξ ≤ 2−2 jβ

∫
Rd

(
2 j + |2 jξ|2

)β∣∣∣F [ψ0,0,e](ξ)
∣∣∣2 dξ

=
∥∥∥(1 + |ξ|2

)β/2
F [ψ0,0,e]

∥∥∥2
L2 = ‖ψ0,0,e‖

2
Hβ .

This yields the claim. �
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Harmonic Analysis

A.1 S -regularity of wavelet bases

We give here the definition of S -regularity for a wavelet basis of L2(R) as stated in Definition
4.2.14 of Giné and Nickl (2015). This property is extended to wavelet bases of L2(Rd) by
tensorization of one-dimensional bases.

Definition 3 (Definition 4.2.14 in Giné and Nickl (2015)). Consider a multiresolution basis of
L2(R) of the form

Φ =
{
ϕk = ϕ(· − k), ψ j,k = 2 j/2 ψ(2 j · −k)

∣∣∣ k ∈ Z, j ∈ N0
}
,

and define K(x, y) =
∑

k ϕ(x − k)ϕ(y − k). For S ∈ N, the basis Φ is said to be S -regular if the
following conditions hold:

(1)
∫
R
ϕ(x) dx = 1,

∫
R

xl ψ(x) dx = 0 for l = 0, . . . , S − 1, and∫
R

K(y, y + x) dx = 1,
∫
R

xl K(y, y + x) dx = 0 for l = 1, . . . , S − 1,∀y ∈ R;

(2)
∑

k∈Z |ϕ(· − k)| ∈ L∞(R) and
∑

k∈Z |ψ(· − k)| ∈ L∞(R);

(3) for a kernel κ(x, y) equal to either K(x, y) or
∑

k∈Z ψ(x − k)ψ(y − k), there are constants
c1, c2 > 0 such that

sup
y∈R
|κ(y, y − x)| ≤ c1 G(c2|x|) ∀x ∈ R,

where G is a real-valued, bounded and integrable function satisfying
∫
R
|x|S G(|x|) dx <

∞. ♣
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A.2 Schwartz space and temperate distributions

We denote by S(Rd) the set of all functions ϕ ∈ C∞(Rd) such that

sup
x∈Rd

∣∣∣xα∂βϕ(x)
∣∣∣ ≤ Cα,β < ∞

for all multi-indices α, β ∈ Nd
0. For each α and β, the left-hand side defines a seminorm, and

the topology induced by all these seminorms turns S(Rd) into a Fréchet space (see Chapter VII
in Hörmander (1990)). We refer to S(Rd) as Schwartz space, and to its elements as Schwartz

functions.
Continuous linear functionals on Schwartz functions are called temperate distributions. The set
of all such functionals is denoted by S∗(Rd).

A.3 Characterization of Besov spaces by local means

In this section we give the proof of Proposition 12 in Section 7.3.3, which gives a characterization
of a Besov norm in terms of local means. The proof relies on Theorem 3 of (Triebel, 1988),
which we recall here for completeness. Let h,H ∈ S(Rd) be Schwartz functions satisfying

h(x) = 1 in |x| ≤ 1, and supp h ⊆ {|x| ≤ 2},

H(x) = 1 in 1/2 ≤ |x| ≤ 2, and supp H ⊆ {1/4 ≤ |x| ≤ 4}.

Let further ϕ ∈ C∞(Rd) satisfy |ϕ(ξ)| > 0 in |ξ| < 2, as well as the bounds∫
Rd
|F −1[ϕ(ξ)h(ξ)](y)| dy < ∞,

sup
j≥1

2− js0

∫
Rd
|F −1[ϕ(2 jξ)H(ξ)](y)| dy < ∞, (A.1)

for some number s0 < −d/2.

Theorem 7 (Particular case of Theorem 3 in Triebel (1988)). For ϕ as above, define ϕ j(·) :=
ϕ(2− j·) for j ∈ N. Then the expression

sup
j≥0

2− jd/2 sup
x∈Rd
|F −1[ϕ j(ξ)F [g](ξ)](x)|

for g ∈ B−d/2
∞,∞ (Rd) is equivalent to the norm of B−d/2

∞,∞ (Rd).
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The proof of Theorem 7 consists essentially in relating the functions ψ j to the functions used in
the Paley-Littlewood decomposition. Notice that the inverse Fourier transform in the theorem
can be rewritten as

F −1[ϕ(2− j·)F [g]](x) =

∫
Rd

eiξxϕ(2− jξ)F [g](ξ) dξ/(2π)d

=

∫
Rd

eiξx
∫
Rd

e−i2− jξzF [ϕ](z) dz
∫
Rd

e−iξyg(y) dy dξ/(2π)d

=

∫
Rd

∫
Rd
F [ϕ](z) g(y)

∫
Rd

exp{iξ(x − y − 2− jz)} dξ/(2π)d dy dz

=

∫
Rd

∫
Rd
F [ϕ](z) g(y) δ(x − y − 2− jz) dy dz

=

∫
Rd
F [ϕ](z) g(x − 2− jz) dz.

Notice that inserting this in the expression of the theorem, we recover the claim of Proposition 12
with ψ(z) = F [ϕ](z). Hence, in order to prove Proposition 12, we need to show that for a function
ψ satisfying Assumption 2, its inverse Fourier transform F −1[ψ] satisfies the assumptions of
Theorem 7. Recall that Assumption 2 implies that

ψ ∈ C∞(Rd), supp ψ ⊆ [0, 1]d, |F [ψ](ξ)| > 0 in |ξ| < 2,

and ‖ψ‖L2(Rd) = 1, ‖ψ‖L∞(Rd) ≤ 2.

Since the Fourier transform of ψ does not vanish near zero, neither does its inverse Fourier
transform. This means that we just have to verify the bounds (A.1) for ϕ = F −1[ψ]. In
Proposition 14 we show that the second bound in (A.1) holds. The same strategy can be used to
show that the first bound in (A.1) holds.

Proposition 14. Let s0 ∈ R satisfy s0 < −d/2. Under the assumptions above, the inequality

sup
j∈N

2− js0

∫
Rd
|F −1[F −1[ψ](2 j·)H(·)](y)| dy < ∞ (A.2)

holds.

Proof. For simplicity of the notation, we denote the inverse Fourier transform of ψ by Ψ :=
F −1[ψ]. We prove (A.2) by taking advantage of the support properties of ψ and H. Since ψ is a
smooth function of compact support, its inverse Fourier transform Ψ is a Schwartz function, and
in particular it satisfies

sup
x∈Rd
|x|α|∂βxΨ(x)| ≤ Cα,β < ∞
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for any α ∈ N0, β ∈ N
d
0. Consequently we have

|∂
β
xΨ(2 jx)| = 2 j|β||(∂βxΨ)(2 jx)| ≤ C|β|+M,β 2− jM |x|−M−|β|

uniformly in |x| ≥ 1 for any multi-index β ∈ Nd
0 and any M ∈ N0. Hence we have∫

Rd
|∂
β
yΨ(2 jy)H(y)|2 dy ≤ 2−2 jM C2

|β|+M,β

∫
Rd
|y|−2M−2|β| |max

γ≤β
{∂
γ
y H(y)}|2 dy ≤ C C2

|β|+M,β 2−2 jM

for any M ∈ N0, where the integral is finite due to the support properties of H. Taking
|β| = 2σ ∈ N0, this equation implies that Ψ(2 j·)H(·) belongs to the Sobolev space H2σ(Rd) with
norm ‖Ψ(2 j·)H(·)‖H2σ(Rd) ≤ CM,σ 2− jM . In order to prove (A.2) we show that∫

Rd
|F −1[Ψ(2 j·)H](y)| dy ≤ C ‖Ψ(2 j·)H(·)‖H2σ(Rd) (A.3)

holds for σ > d/2, and (A.2) follows then taking M > −s0 (recall that s0 < s < 0). It remains to
show (A.3), which follows from the bounds∫

Rd
|F −1[Ψ(2 j·)H](y)| dy =

∫
Rd

(1 + |y|2)−σ(1 + |y|2)σ|F −1[Ψ(2 j·)H](y)| dy

≤ C
∫
Rd

(1 + |y|2)−σ
∣∣∣ ∑
|β|≤2σ

∫
Rd

e−2πiξy∂
β
ξ
Ψ(2 jξ)H(ξ) dξ

∣∣∣ dy

≤ C
∫
Rd

(1 + |y|2)−σ dy
∑
|β|≤2σ

∫
Rd
|∂
β
ξ
Ψ(2 jξ)H(ξ)| dξ.

Now since σ > d/2, the first integral in the right-hand side is finite. Furthermore the compact
support of H implies that the integrand in the second integral also has compact support. Since
the L1 norm of a compactly supported function can be upper bounded by its L2 norm times a
constant, and we conclude that∫

Rd
|F −1[Ψ(2 j·)H](y)| dy ≤ C

∑
|β|≤2σ

‖∂
β
yΨ(2 j·)H‖L2(Rd) ≤ C‖Ψ(2 j·)H‖H2σ(Rd),

which is what we wanted to prove. �
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