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Phages: History and Description

Bacteriophages, viruses infecting prokaryotes, are one of the most abundant entities on earth.
The amount of existing particles is estimated to be around 10%(Whitman et al. 1998). They are
ubiquitous and can be isolated from any ecological niche where their host is present (McNair et
al. 2012; Brussow & Hendrix 2002; Roux et al. 2016).

Frederick Twort(Frederick & Twort 1931) and Felix Hubert d’Herelle(Summers 2017)They
were the first to independently describe phages in the early 1900s. While F.W. Twort failed to
interpret his observation in 1915, d’Herelle published his discovery in 1917, where he
described the bacteriophage as an obligate intracellular bacterial parasite (Summers 2017).
Besides, d’Herelle examined the potential use of bacteriophages as therapeutic agents. He first
discovered that phages clear dysentery in diseased patients (Salmond & Fineran 2015).
Consequently, phages were widely used, in former Soviet countries up until the fall of the
Soviet Union, in clinical studies and applications as antibacterial agents especially at the Eliava
institute in Thilisi, Georgia (Abedon et al. 2011).

Additionally, phages have enormously contributed to the field of molecular biology (Salmond
& Fineran 2015). They led to the discovery of i) restriction-modification (RM) systems
(Roberts 2005) and ii) the “clustered regularly interspaced short palindromic repeats”
(CRISPR)-associated protein (cas) systems, which are defense systems used by the bacteria

against phages (Sorek et al. 2013).

The interest in phage research was revived approximately in the year 2000, as a result of the
genomic and metagenomic revolution, which highlighted phage diversity and abundance (Ofir
& Sorek 2018).

Phages are termed as obligate intracellular parasites since they need their host's cellular
machinery for their replication. They are known to have two life cycles once they infect a
bacterial host: i) lytic or ii) lysogenic. A lytic phage replicates within the host and then lyses
the cell at the end of the cycle for release to the environment. It has been estimated that over
20% of bacteria are lysed daily through bacteriophages infection in the ocean (Pan et al. 2018).
On the other hand, a lysogenic phage, infects its host and can, either remain as an extra-

chromosomal element or integrate its DNA into the host genome, replicating passively with the
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replicating host. The latter is termed prophages (Fortier & Sekulovic 2013; Akhter et al. 2012;
McNair et al. 2012). Under certain circumstances, a temperate phage can enter a lytic lifestyle
after DNA damage caused by diverse stress factors (Fortier & Sekulovic 2013). Recently,
Sorek et al.(2017) described that phages interact using a communication peptide, found in
various versions in different phages, and trigger the switch between lytic and lysogenic life
cycles(Sorek et al. 2017).

Moreover, phages were extensively explored for their potential to encode and confer virulence
factors to their bacterial host. Accordingly, they convert their bacterial host into a pathogenic
strain through lysogenic conversion. This further emphasized the interest in phage research
(Fidelma Boyd & Brussow 2002). As a result, phages are an essential entity co-evolving with

their bacterial host ever since the beginning of time (Iranzo, Krupovic, et al. 2016).

Taxonomy: Reasons and Importance

Virus taxonomy aims to describe viral evolutionary relationships and illustrate their remarkable
genetic and structural diversity. Further interest is placed on their virulent lifestyle which has
applications towards phage therapy (Aiewsakun et al. 2018; Housby & Mann 2009; McNair et
al. 2012). Historically, phages have been characterized based on their morphology including
shape, size, presence/absence of capsid, and on their genomic size and nature (whether they are
ss/ds, DNA or RNA phages). Other criteria include the host genus and sequence similarities
(Hans-W Ackermann 2011). The viral diversity is much more extreme than any other organism
(Aiewsakun & Simmonds 2018),and their genomes can range from less than 2Kbp to more
than 2,000 Kbp(Chow & Suttle 2015).

The International Committee on Taxonomy of Viruses (ICTV;https://talk.ictvonline.org/) is
responsible for assigning viruses into hierarchical taxa, based on visualizing and resolving the
phage morphology by electron microscopy. As of 2016, it consists of 8 orders, 122 families, 35
subfamilies, 735 genera and 4,404 species (Lefkowitz et al. 2018). Most known phages are
classified into the order of Caudovirales, so-called the tailed phages. The order includes three
phage families: The Myo-, Podo- and Siphoviridae; these three families describe the long

contractile phages, the long non-contractile phages,and the short-tailed phages, respectively.
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Viruses infecting archaea are classified into 13 families; those include Ampullaviridae,
Fuselloviridae, and Bicaudaviridae which comprise bottle-shaped phages, spindle-shaped

phages,and two-tailed-shaped phages, respectively (Aiewsakun et al. 2018).

Experimental identification and classification of bacteriophages remain a tedious and time
consuming process, which fuels the demand for sequence-based computational methods to do

SO.

Number of complete phage genomes extracted from Genbank (2017-18)
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Figure 1: Number of complete phage nucleotide sequences deposited in public databases in the years 2017-2018.
This figure is downloaded from the Millard lab webpage accessed on 03/14/2019

(http://millardlab.org/bicinformatics/bacteriophage-genomes/).

With the booming advances in High-Throughput Sequencing (HTS) technologies,
metagenomic approaches, and the exploding amounts of sequenced data, the rate at which
phage genomes are being sequenced (Figurel) surpasses that of isolation and culturing by order
of magnitudes (Simmonds et al. 2017; McNair et al. 2012). Additionally, genome data from
various environmental samples and human gut microbiome has unveiled the ubiquity of
prophages, the sequences of which do not match any known sequences deposited in public
databases (Aiewsakun & Simmonds 2018). As a result, a gap exists between bacteriophages

sequences deposited in GenBank which are not classified by the ICTV according to their
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classification procedure (Rohwer & Edwards 2002; Bolduc, Jang, Doulcier, Z. You, et al.
2017; Simmonds et al. 2017). This gap is envisaged to increase even more in the future
(Manavalan & Lee 2017; Rohwer & Edwards 2002). Hence, there is a need that the ICTV
expands their classification to include those more massive viral datasets (Aiewsakun &
Simmonds 2018). Moreover, sequence data provides a reliable means of representing viral

evolutionary relationships at high resolutions (Simmonds et al. 2017).

Sequence-based Taxonomy

To expand what is a morphology-based viral classification imposed by the ICTV, to viral
sequences where phenotypic data cannot be obtained, scientists can profit from the relationship
between phenotypic features used for family assignment and the corresponding genomic

features (Aiewsakun & Simmonds 2018).

In the last decade, we have seen significant shifts towards sequence-based taxonomy of
bacteriophages, and multiple approaches have been proposed, which proved robust as a guide
for divergent and highly mosaic viruses (Aiewsakun & Simmonds 2018). Contrary to bacteria
which have conserved genes and a 16S rRNA gene traditionally used for taxonomy, viruses
lack such a marker gene to place them on the tree of life (Rohwer & Edwards 2002). As a
result, different genes were used in an attempt to create viral phylogenies, such as the DNA
polymerase, the major capsid proteins,and the ribonucleotide reductase; which are estimated to
be found in over 90% of dsDNA viruses (Reyes & Gruber 2017). However, the mentioned

proteins don’t share conserved sites explaining the limitation of their use (Novik et al. 2017).

Early on, the genetic complexity of viruses was recognized. Phages in the same taxonomic
group might not have a similar nucleotide sequence, but share gene functionality (Lawrence et
al. 2002). As a result, Rohwer and Edwards (2002) (Rohwer & Edwards 2002) described the
Phage Proteomic Tree. The proposed method used translated genomes and showed high
classification specificity for the viral dataset used. The techniquewas generated with a
smalldataset and hence is not generally applicable (Bolduc, Jang, Doulcier, Z.-Q. You, et al.
2017).
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Another approach is the use of pairwise alignments techniques (Meier-Kolthoff & Goker 2017;
Merabishvili et al. 2011; Lavigne et al. 2008). However, it is only applicable to phage
sequences similar to those in a reference database. This approach makes it impossible to
classify distantly related phages without any prior knowledge (Bolduc, Jang, Doulcier, Z.-Q.
You, et al. 2017).

Lastly, protein clustering techniques enabled classification of viral sequences with no prior
knowledge (Lima-Mendez et al. 2008; Bolduc, Jang, Doulcier, Z.-Q. You, et al. 2017; Roux,
Enault, et al. 2015). Monopartite gene sharing networks, as described by Lima-Mendez et al.
(Lima-Mendez et al. 2008), correctly classified 95% of the 306 phage genomes available at that
time. Recently, the performance of the method was re-evaluated and proved to be robust as it
only failed in classifying only 1 in 4 dsDNA viruses (Bolduc, Jang, Doulcier, Z.-Q. You, et al.
2017). However, monopartite networks do not retain information about the encoded genes per
virus. Contrastingly, bipartite gene sharing networks (Corel et al. 2016), consisting of two
classes of nodes (homologous protein families and viral genomes), allow the identification of
genes shared between and across genomes which have likely been exchanged via Horizontal
Gene Transfer (HGT). As a result, they perform better for detecting mosaic genomes. Bipartite
networks were successfully implemented in multiple studies (Roux, Hallam, et al. 2015;
Iranzo, Krupovic, et al. 2016; Iranzo, Koonin, et al. 2016). Iranzo, Krupovic&Koonin(lranzo,
Krupovic, et al. 2016) revealed a module based structure of dsDNA viruses, while Iranzo,
Koonin et al. (Iranzo, Koonin, et al. 2016) extended the method to archaeal viruses and related
plasmids. Both networks showed the possibility of a genome-based viral taxonomy consistent

with the ICTV accepted phage genera.

What is accepted by the ICTV for Classification

The Bacterial and Archaeal Viruses Subcommittee (BAVS), the subcommittee of the ICTV,
have formally expressed their intention to include viruses based on their sequence information
into their taxonomy. However,because those viruses lack the standard required phenotypic
information, the sequence is used as an attribute to assist in the viral taxonomic assignment
(Aiewsakun & Simmonds 2018). The BAVS currently approves the use of BLASTN for the

comparison of closely related phages, and endorsed software such as CLANS (Asare et al.
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2015), GEGENEES (Sundstro 2012) and VISTA (Frazer et al. 2004), which are based upon
sequence similarities resulting from BLASTN. Nevertheless, little information is provided for
parameters needed to assign divergent viruses into the taxonomic divisions based on nucleotide

or protein information (Krupovic et al. 2016; Aiewsakun & Simmonds 2018).

The use of Hidden Markov Models as a basis for viral classification

Profile Hidden Markov Models (HMMs) represent a robust method for modeling viral
sequence diversity which can detect, with high sensitivity, three times more remote homologs
than conventional pairwise sequence-alignment methods (Grazziotin et al. 2017; Reyes et al.
2017; Barrett et al. 1998). Amino acids sequence divergence is, over time, much slower than
nucleotide sequence divergence. Therefore, protein profile HMMs sensitivity can detect
functionally related proteins even with low shared similarity, which enables virus detection

without previous specific information (Alves et al. 2016; Ren et al. 2017).

It has been estimated that the number of HMMs compiled in databases, such as pVOG and
vFam (http://derisilab.ucsf.edu/software/vFam/), represent less than 20% of viral protein
sequences (Skewes-cox et al. 2014). This is due to uneven taxonomic sampling, as poorly
characterized viral families with few members, especially archaeal viruses, display a low
proportion of gene coverage (Figure2)(Grazziotin et al. 2017; Iranzo, Krupovic, et al. 2016;
Reyes & Gruber 2017).
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Figure 2: Number of Orthologous Groups (Ogs) sorted by viral families available on the pVOG database. The
figure was taken from Reyes et al. (Reyes & Gruber 2017).

Nevertheless, the success of profile HMMs in dealing with divergence is proving to be an
invaluable tool for viral identification (Reyes & Gruber 2017). Profile HMMs for viral
detection and classification has been widely used in a considerable number of literature(Reyes
& Gruber 2017; Grazziotin et al. 2017; Aiewsakun & Simmonds 2018; Lopes et al. 2014; Fouts
2006).

One of the most promising applications of viral HMMs is their use as seed for viral genomes
reconstruction from metagenomic datasets along with their taxonomic assignment (Alves et al.
2016). It is worth mentioning that the combination of different profile HMMs is key since no

single match is sufficient to assess true viral sequence diversity.

Phages in Metagenomes

Metagenomic data is expanding our understanding of viral diversity, thus challenging viral
recognition, assembly and classification methods (Simmonds et al. 2017). It is proving to be

instrumental in the identification of entirely new groups of viruses, as over 750,000
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uncultivated viral genomes (UViGs) has been reported(Roux et al. 2019). UViGs make the
evaluation of viral diversity possible in addition to the over-represented dsDNA viruses, thus
addressing one of the significant issues concerning under-represented viral species in public
databases. However, methods to clone and sequence ssSDNA and RNA viruses still need further

development (Simmonds et al. 2017).

In 2016 The ICTV expressed interest to incorporate identified viral groups from metagenomic
datasets into their official taxonomy, even though they lack a direct correlation with biological
characteristics (Lefkowitz et al. 2017; Simmonds et al. 2017). On account of sequence data
providing essential information concerning evolutionary relationships, genome organization
and other genomic features (Simmonds et al. 2017). Over the years multiple species and genera
were assigned in the previously existing viral families, which were already set up based on
phenotypic properties (Adams et al. 2017). However, the ICTV provides little or no systematic
information on how divergent a virus has to be and what genomic features are to be considered

for the taxonomic divisions (Aiewsakun & Simmonds 2018).

Future of Phage Classification

A consensus statement endorsed by the ICTV outlines a framework for the incorporation of
metagenomic data into the standard ICTV taxonomy, where necessary checks for data integrity
should be performed (Simmonds et al. 2017). It was proposed that i) the classification of
UViGs into new taxa is possible, provided sequence relationships are comparable to those taxa
already existing in that family; i1) When no relationship exists a new family can be assigned
based on crucial variation in the genome organization and the inferred replication strategy; iii)
Clustering and network analysis are to be used and critically evaluated for hierarchical
taxonomic assignments; iv) Use the ICTV taxon nomenclature which is extendable to
additional species; and lastly v) Procedure development to shorten the time needed by the

ICTV to process newly submitted proposals and updating their “Master Species List”.
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Prophage Prediction

It has been reported that viruses can infect 13 prokaryotic phyla (Roux, Enault, et al. 2015).
Thus, numerous methods have been developed for recognizing integrated prophages in
bacterial genomes. Those tools include PHAST (Zhou et al. 2011), which was later extended to
PHASTER(Arndt et al. 2016) and then PHASTEST(Arndt et al. 2017); Phage_Finder(Fouts
2006), Prophinder(Lima-Mendez et al. 2008), PhiSpy(Akhter et al. 2012) and VirSorter(Roux,
Enault, et al. 2015). Generally, bacterial genomes are scanned in a sliding window approach to
finding regions with hits to known viral sequences (Ren et al. 2017). PhiSpy was the first tool
ever described to include viral sequence features, which increased prophage prediction and
outperformed the existing tools. Despite the added sequence derived features, these tools rely
on finding homologous genes to known viral sequences, representing only a fraction of viral
diversity. It has been estimated by Roux et al. (Roux, Hallam, et al. 2015)that known phage
sequences are isolated from less than 15% of bacterial hosts. As a result, a gap still exists in
generating a comprehensive reference free prophage finding tool. Lastly, VirSorter, a tool
designed to detect viral sequences in genomic datasets as well as metagenomic assemblies,
performs better for metagenomic and fragmented datasets since it does not consider additional

prophage specific characteristics (Roux, Enault, et al. 2015).
Why use Machine Learning Algorithms?

To face the challenges resulting from the growing amount and complexity of phage sequenced
data, Machine Learning (ML) algorithms and data mining techniques, have gained considerable
interest and can be applied with little computational burden (Morota et al. 2018). They are
expected to become instrumental for prediction and inference, due to their advantage in
considering a large number of features simultaneously to identify a complex genomic element
like a prophage(Manavalan, Tae H. Shin, et al. 2018; Manavalan & Lee 2017; Manavalan et al.
2014). They generally try to assign an outcome label to new samples given a list of input

features the ML algorithm was trained on (Amgarten et al. 2018).
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Phage Protein Prediction

To our knowledge, Seguritan et al. (2012) were the first to mention the use of Artificial Neural
Networks (ANN) for the successful detection of phage structural proteins (Seguritan et al.
2012). What followed was an increasing number of studies, using various ML algorithms, for
effectively predicting phage proteins (Ding et al. 2014; Manavalan, Tae H Shin, et al. 2018;
Pan et al. 2018; Feng, Ding, et al. 2013). In 2013, Feng et al. (Feng, Lin, et al. 2013) used a
Naive Bayes approach which achieved an overall accuracy of 79.15%. The same dataset was
used again in 2015, where first the analysis of variance (ANOVA) for selection of the most
informative feature was performed. Accordingly, the selected featureswere used as an input for
a support vector machine (SVM) classifier for the identification of phage proteins. This
method, PVPred, achieved an overall accuracy of 85.02% (Ding et al. 2014). PVPred was
outperformed by PVP-SVM (Manavalan, Tae H. Shin, et al. 2018), reaching an accuracy of
86.97 %, where they used a random forest (RF) algorithm for the feature selection process. Tan
et al. proposed the use of a two-step feature selection process, using ANOVA and the minimal-
redundancy-maximal-relevance (MRMR) method, reaching an accuracy of 87.95 % (Tan et al.
2018).

Recently, Pan et al.(Pan et al. 2018) generated a new method called PhagePred. It uses a g-Gap
feature selection process and then feeding the most informative features to a Naive Bayes
classifier. PhagePred reached an exceptional 98.37% accuracy, outperforming the existing
methods. Interestingly, all these methods use similar approaches, sometimes the same dataset
for prediction-method development, a feature selection process, and two machine learning
algorithms (Naive Bayes and SVM), and finally showed promising results for phage proteins

prediction.

All in all, the above mentioned tools focus on the identification and classification of single

phage proteins, rather than the identification of complete phage genomes.
Phage Prediction in Metagenomic Bins

Amgarten et al. (2018) introduced a tool called MARVEL. It predicts phages in metagenomic

bins using an RF algorithm and subsequently classifies Caudovirales phage families (Amgarten
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et al. 2018). MARVEL achieved a much higher sensitivity when benchmarked against two
state-of-the-art tools, VirSorter and VirFinder. They showed that three features were the most
informative for bacteriophage prediction, (i) gene density, (ii) strand shifts and (iii) genes with
significant hits against HMMs downloaded from the pVVOG database.

In summary, MARVEL and VirSorter enabled the sorting of metagenomic assembled bins
whether they belong to phages or not and subsequently classify the sorted sequences into
taxonomic phage families. These approaches further reinforce the advantage of using ML
algorithms as frameworks for solving pressing problems arising from the ever-increasing

number of data and phage sequence diversity.
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General Project Aims

Due to high viral diversity and the ever-increasing number of sequenced viral datasets, we
aimed to describe a general approach that would still be pertinent whenever i) more phages are
sequenced; ii) more phage families are represented and iii) regardless of how many bacterial
genomes are sequenced. This study aimed to generate a method for complete prophage genome
identification and subsequent taxonomical classification into the correct ICTV family. |
intended to create phage models, when possible, for every phage family to taxonomically
classify phage genome sequences on the family level. For confirmation, | tested the generated
models, on a set of experimentally investigated and classified set of prophages. And lastly, |
examined sequence derived features, to identify integrated prophages within bacterial genomes

and potentially classify them using the generated models.
To generate a positive dataset for benchmarking purposes, | investigated:

< Temperate phage-bacteria interaction and Inoviridae as a driving force for Vibrio host

evolution (Chapter 11.1).
< Comparative genomics of experimentally proven Inoviridae prophages (Chapter 11.2).

Regardless of the advances made for phage classification, no method exists that classifies
phages based on whole genomes information. Therefore, the first aim of this project was to

generate a phage classification method. I investigated:

< The use of HMM as a basis for phage classification, using vibriophages as a pilot

project (Chapter 11.3), a method we call ClassiPhage.

< The generation of specific profile HMMs per phage family of all available published
phage genomes, and the generation of an input matrix that can be used to classify
phages into phage families, using ANN (Chapter 11.4), a method we call ClassiPhage
2.0.

Prophage identification has long been a topic of interest, and currently being dominated by
software such as PHASTER and PhiSpy. PHASTER is based on gene annotations, and
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BLASTDp hits to a phage database while PhiSpy is based on different sequence features.
However, it was constructed using a small dataset of closely related genomes. Therefore, the
second aim of this project was to broadly identify integrated prophage regions in bacterial

genomes based on sequence-derived features. | investigated and applied:

< DNA derived features and their use for prophage regions identification in bacterial
genomes as input for a Deep Neural Network (DNN) classifier (Chapter 11.5), a method

we call IdentiPhage.
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11.1 Tripartite species interaction: eukaryotic hosts
suffer more from phage susceptible than from phage
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Abstract

two levels when studying host-parasite evolution.

Background: Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance
temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can
contribute accessary genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion).
Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite
studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and
bacterial harm to eukaryotic hosts is linked using a natural tri-partite systern with bacteria of the genus Vibrio, temperate
vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a
three-fold replicated, fully reciprocal 75 X 75 phage-bacteria infection matrix.

Results: According to their resistance to phages, bacteria could be grouped into three distinct categories: highly
susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged
pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable
Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio
counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between
pipefish infected with phage susceptible and phage resistant bacteria.

Conclusion: These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a
eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than

Keywords: Temperate phages, Prophages, Bacteria-phage infection network, Vibrio, Tripartite interaction

Background

Infection of parasites by other parasites (i.e. hyperpara-
sitism) plays an important role in the evolution of hosts
and parasites, Micro-hyperparasites, for instance bacte-
riophages, are fundamental in determining the outcome
of bacterial diseases [1]. To understand the ecology and
evolution of bacterial diseases, it is necessary to extend
the view of dual species interactions to tripartite interac-
tions where the phage, its bacterial carrier and a eukaryotic
host are involved. Such tripartite interactions have been
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well studied in systems using lytic phages, of which many
demonstrate a trade-off between phage resistance and
bacterial virulence (for a recent review see [2]). However,
patterns of resistance and virulence between temperate
phages, their bacterial carriers and the eukaryotic hosts are
largely unexplored.

In contrast to lytic phages, temperate phages have two
transmission modes. After infecting a bacterium they
can either be transmitted horizontally through cell lysis
(lytic cycle), or vertically as prophages, whereby the phage
genome is integrated into the bacterial chromosome (lyso-
genic cycle). Indeed, prophages constitute up to 20% of
the bacterial genome and are major contributors to the
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large genomic and phenotypic variation among bacterial
strains of the same species [3].

During lysogeny the fitness of the prophage and its
bacterial carrier is aligned, which explains instances
where prophages protect their hosts against superinfec-
tion [4] or provide them with genes that increase bacter-
ial proliferation [3]. However, prophages have also been
described as molecular time bombs [5] that, either spon-
taneously or in response to specific environmental con-
ditions, kill their carriers through cell lysis and switch
back to the lytic cycle [3, 5].

While bacteria are in constant coevolutionary inter-
action with their eukaryotic host, they simultaneously face
selection by their micro-hyperparasites, ie. lytic phages.
For instance, evolution of resistance in Pseudomonas
aeruginosa to lytic ®PP/and ME79 resulted in an upregu-
lation of virulence genes, which ultimately increased viru-
lence against mammalian cells [6]. In contrast, resistance
against lytic phages in Flavobacterium columnare reduced
bacteria gliding motility and thus virulence against its
eukaryotic host [7].

We here aimed to extend the existing knowledge of
micro-hyperparasitism in phage — bacteria — eukaryotic
host interactions using temperate phages. Specifically,
the objective of the present study is to investigate resist-
ance patterns to temperate phages in a natural temper-
ate phage — bacterial interaction and its relationship to
bacterial harm in an animal host. By using bacteria of
the genus Vibrio, their derived prophages, and one of
their eukaryotic hosts, the broad-nosed pipefish Syng-
nathus typhle as a model system, we addressed the ques-
tion if bacterial resistance to temperate phages and
bacterial harm to eukaryotic hosts can be linked.

While in a variety of human pathogenic strains, Vibrio
virulence can be directly linked to the presence of pro-
phage [8-10], we lack insight that goes beyond the
knowledge about human pathogenic strains and ad-
dresses Vibrio-phage interactions covering a broader
range of environmental isolates. Here, we present ex-
perimental data on the interaction between 75 environ-
mental Vibrio isolates and their associated prophages as
well as on the impact of a subset of these bacterial iso-
lates to the natural eukaryotic host, the pipefish. We
conducted fully reciprocal cross-infections between all
bacteria and their derived phage lysates, and experi-
mentally challenged pipefish with nine of the isolates
that differed in phage resistance. Based on the relative
gene expression of pipefish immune genes, we observed
that phage resistant bacteria are less harmful than phage
susceptible bacteria. Our results indicate that bacteria
with a phage-susceptible phenotype are more virulent
against their eukaryotic host and suggest that temperate
phages are important in shaping bacterial virulence in the
marine realm.
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Methods

All Vibrio strains used in the present study had been iso-
lated from nine healthy broad-nosed pipefish Syngnathus
typhle collected in the Kiel Fjord during a previous study
[11]. Labels were given according to the sampling area
(first letter 'K’ refers to the study site: Kiel), the fish indi-
vidual (first number), the organ (second letter: ‘E’ refer-
ring to eggs, 'K’ referring to gills, and ‘M’ referring to the
whole intestines) and Vibrio colony number (second
number). Healthy pipefish harbour a highly diverse com-
munity of bacteria of the genus Vibrio spp. that show a
strong spatial diversification across Europe [11]. While
most Vibrio are harmless, some are responsible for
major disease outbreaks. For instance, several members
of the V. alginolyticus and V. splendidus clade have been
isolated from seahorses with signs of infections [12],
while V. harveyi causes almost 90% mass mortalities in
captive bred seahorses [13].

Vibrio phylogeny

To determine the genetic affiliation of each Vibrio iso-
late we used a multi locus sequence analysis (MLSA)
approach based on partial DNA sequences of 3 different
genes (16S rRNA, recA and pyrH). Bacterial DNA was
isolated from cell pellets of overnight cultures using the
DNeasy 96 Blood & Tissue Kit (Qiagen) according to the
manufacturers protocol. Amplification followed previ-
ously established protocols [14]. Primer details are listed
in supporting information (Additional file 1. Table S1).
PCR products were purified using ExoSAP (Fermentas)
with 0.4 pl FastAP, 0.2 pl Exol and 1.4 pl HyO per 2 pl
PCR Product. Sequences were obtained on an ABI
3130xl Genetic Analyser (Applied Biosystems) using
standard Sanger sequencing with ABI BigDye Termin-
ator v3.1 Cycle Sequencing kit (Applied Biosystems). The
thermal program consisted of an initial denaturation
step (60 s at 96 °C) followed by 25 cycles (10 s at 96 °C,
5sat 55 °C, 5 min at 60 °C).

Whole genome sequencing

DNA for sequencing was isolated from cultures grown
in Mediuml101l (Mediuml101: 0.5% (w/v) peptone, 0.3%
(w/v) meat extract, 3.0% (w/v) NaCl in MilliQ water).
The cultures were grown 16 h at 25 °C 250 rpm. High
molecular weight DNA was prepared using Qiagen
Genomic Tip/100 G from Qiagen, Hilden, Germany.
SMRTbell” template library was prepared according
to the instructions from PacificBiosciences, Menlo Park,
CA, USA, following the Procedure & Checklist - 10 kb
Template Preparation Using BluePippin™ Size-Selection
System. Briefly, for preparation of 15 kb libraries 8 pg gen-
omic DNA was sheared using g-tubes™ from Covaris,
Woburn, MA, USA. DNA was end-repaired and ligated
overnight to hairpin adapters applying components from
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the DNA/Polymerase Binding Kit P6 from Pacific Biosci-
ences, Menlo Park, CA, USA. Reactions and BluePippin™
Size-Selection to 7 kb were performed according to the
instructions of the manufacturer (Sage Science, Beverly,
MA, USA). Conditions for annealing of sequencing
primers and binding of polymerase to purified SMRTbell”
template were assessed with the Calculator in RS Remote,
Pacific Biosciences, Menlo Park, CA, USA. SMRT sequen-
cing was carried out on the PacBio RSII (Pacific Biosci-
ences, Menlo Park, CA, USA) taking one 240-min movie
for each SMRT cell using P6 chemistry. In total one SMRT
cell per strain was run for eight selected Vibrio alginolyti-
cus strains. Genome assembly was performed with the
RS_HGAP_Assembly.3 protocol included in SMRT Portal
version 2.3.0. The number of postfiltered reads and the
average read length of the reads is summarized in
Additional file 2: Table S5, as well as the number of con-
tigs obtained after primary assembly. Each contig was
trimmed and circularized to obtain the two typical Vibrio
chromosomes as well as additional plasmids and artificial
contigs were removed. Automated genome annotation
was carried out using Prokka [15].

Phage-bacteria cross infection assay

We used standard spot-assays to construct a three-fold
replicated, fully reciprocal phage-bacteria infection
matrix [16].

Prophage induction

All Vibrio isolates were induced with mitomycin C
(Sigma) as described in [4] with some modifications:
bacteria were grown in liquid Medium101 (Medium101:
0.5% (w/v) peptone, 0.3% (w/v) meat extract, 3.0% (w/v)
NaCl in MilliQ water) at 250 rpm and 25 °C overnight.
Cultures were diluted 1:100 in fresh medium and grown
for another 2.5 h at 250 rpm and 25 °C to bring cultures
into exponential growth before adding mitomycin C at a
final concentration of 0.5 pg/ml. Samples were incubated
in an automated plate reader (TECAN infinite M200)
for 4 h at 25 °C and mixed periodically. Bacterial lysis
upon prophage induction was monitored via optical
density at 600 nm (measured every other minute), We
determined bacterial lysis time at induction as the time
at which turbidity of the culture peaks (for details see
[4]). After 4 h, lysates were centrifuged at 6000g for
15 min and the supernatant was ten-fold diluted in TM
buffer (modified from [17]): 50% (v/v) 20 mM MgCl,,
50% (v/v) 50 mM Tris-HCl, pH 7.5).

Spot assay

To determine bacterial susceptibility to the different
phage lysates we used standard spot assays, in which a
lawn of host bacteria is grown in a medium overlaid on
agar plates [16]. Phage lysates are spotted on the overlaid
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medium and may infect bacteria. Phage infection is
visible as plaques, i.e, circular clear or turbid zones
where a lytic infection has spread through the bacterial
lawn. Overnight cultures of bacterial strains were diluted
1:10 in fresh medium and grown for 2 h before they
were mixed with the overlay medium as follows: 200 ul
of exponentially growing cells were added to 4 ml
Medium101 soft agar (0.4%) at 41 °C. The medium was
poured onto Petri dishes containing 20 ml Medium101
agar (1.5% (w/v)). After 30 min, 2 pl of each phage lysate
were spotted onto the plates. Controls on every plate
were 2 pl uninduced bacterial culture, Medium 101,
Medium 101 with 0.5 pg/ml mitomycin C, and TM buf-
fer. Plates were dried for 30 min before incubation at
25 °C for 20 h. Each bacterial strain was scored as either
susceptible (plaque formation) or resistant (no plaque
formation) to each of the phage lysates. Similarly, each
phage lysate was scored as either infective (plaque
formation) or non-infective (no plaque formation).

We are aware that plaque formation may be misinter-
preted by thinning of the bacterial lawn, which can be
associated with defective prophages [18], colicins [19] or
other toxic components in the supernatant of mitomycin
C treated cultures. To support that the supernatants do
indeed contain phage particles, we used a serial dilution
on a susceptible host ranging from 10 ' to 10 * and only
scored those isolates, where individual plaques were ob-
served. In addition, we isolated viral DNA (MasterPure
DNA Purification Kit, Epicentre) from the supernatants to
perform a standard agarose gel electrophoresis with 0.8%
agarose and a 1 kb GeneRuler (Fermentas) as marker.
Based on these two approaches we could confirm that all
mitomycin C treated culture supernatants contained viral
particles, which have ssSDNA genomes of ~6 kb,

Infection experiment

As the majority of our bacterial isolates (71 out of 75)
could be assigned to the Vibrio alginolyticus clade, all
subsequent analyses as well as the infection experiment
are based on the V. alginolyticus isolates only.

Experimental procedure

Out of the 71 Vibrio alginolyticus strains we selected
three strains that were highly susceptible to prophages
(further named HS-bacteria), three strains that were
intermediate susceptible to prophages (further named
[S-bacteria) and three strains that were resistant to
prophage infection (further named R-bacteria).

Pregnant male pipefish were randomly caught from
the Kiel Fjord in July 2014 and transported to our la-
boratory facility in Kiel, Germany. Male pipefish were
kept separately in 80-L aquaria and fed twice a day with
live and frozen mysids. Immediately after birth, fathers
were removed from the aquaria and juveniles were fed
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twice a day with Artemia salina naupliae for another
3 weeks.

Selected bacteria were grown under agitation at 25 °C
as described in [20]. After 24 h we adjusted the concen-
tration of each strain to 5 x 10® cells/ml according to
[14]. Prior to the start of the infection experiment we
pooled 36 fish from nine different pregnant males and
injured the skin of each fish with a sterile needle. After-
wards fish were kept separately in small 50-ml beakers,
which either contained 10° cells/ml of each respective
Vibrio isolate diluted in PBS or only PBS, which served
as a control treatment. We infected nine fish per strain
resulting in 108 fish in total. After 2 days all fish were
killed with a lethal dose of MS222, immersed in RNA-later
and stored at 4 °C until RNA-extraction. We considered
2 days as an optimal time point to end the experiment for
two reasons: a) we wanted to give the immune system time
to react to the infection, and b) we observed in previous
studies that fish mortality during a controlled infection
experiment starts on average 3 days after infection.

Gene expression
Expression of 44 target genes relative to two housekeep-
ing genes was analysed using a Fluidigm BioMark™ as
described in Beemelmanns and Roth [21]. Briefly, we
used 22 target genes assigned to the innate immune sys-
tem, three to the complement component system, seven
target genes assigned to the adaptive immune system
and 15 target genes assigned to gene silencing or activa-
tion through DNA and histone methylation/demethyla-
tion and histone acetylation/deacetylation. Details about
function of genes, sequences and primer design can be
found in [21] and are listed in Additional file 3: Table $2.
We extracted RNA from whole juvenile fish using an
RNeasy 96 Universal Tissue Kit (Qiagen) according to
the manufacturer’s protocol. RNA concentration was
adjusted to a total of 800 ng/ul per sample and subse-
quently transcribed into ¢cDNA using the Quanti Tect
Reverse Transcription Kit (Qiagen), which includes a gen-
omic DNA (gDNA) digestion. After pre-amplification (for
details see [21], samples and primers (two technical repli-
cates per gene) were filled into specific inlets into the
96.96 dynamic array IFC (GE-chip) and measured in the
BioMark™ system applying the GE fast 96,96 PCR protocol
according to Fluidigm instructions. We included non-
template controls (NTC), controls for gDNA contamin-
ation (-RT) and standard samples for inter-run calibration.

infection intensity

To estimate the amount of viable Vibrio counts within
infected pipefish we determined infection intensity, ie.
colony forming units (CFU) by plating 2 pl of the whole
fish-suspension (which has been produced for total RNA
extraction) on Vibrio selective Thiosulfate Citrate Bile
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Sucrose Agar (TCBS) plates (Fluka Analytica). Plates
were incubated at 25 °C for 24 h. Afterwards CFU were
counted for each fish.

Bacterial properties

Growth rate

We generated 24 h growth curves of all selected strains,
to identify potential differences in growth rates between
bacterial groups (HS, IS, R) that might result from
increasing costs of phage resistance.

Twitching motility

We further determined bacterial twitching motility based
on a standard motility assay to determine if resistance to
phages can be assigned to pilus mutations. In brief,
aliquots of equal number of cells were stab inoculated on
petri dishes containing TCBS agar (Fluka Analytica) and
incubated at 25 °C for 48 h. After incubation a hazy zone
of growth at the interface between the agar and the poly-
styrene surface was observed and its surface area quanti-
fied using Image]. The surface area was calculated as
follows: if the surface area is circular in shape, we used the
formula 2rim, where r=1/2 the diameter. If the surface
area is oval in shape, measures of the shortest and longest
diameter were taken and the surface area calculated
according to the formula, m x a x b, where a =1/2 the
longest and b = 1/2 the shortest diameter.

Statistical analysis

All statistics were performed in the R 3.1.2 statistical
environment (R Foundation for statistical computing)
unless otherwise stated.

Phylogenetic analysis

MLSA was performed as described in [14] with the
following modifications: All sequences were manually
edited and automatically assembled using CodonCode
Aligner v3.7.1.2. Edited gene sequences were compared
against published sequences in NCBI GenBank using
BLASTN algorithm with default settings based on 99%
sequence identity to assign Vibrio isolates to putative
close phylogenetic relatives. After assembly and align-
ment of concatenated (2507 bp) using
MUSCLE [22], we constructed a phylogenetic tree using
the Bayesian Markov chain Monte Carlo (MCMC) method
as implemented in MrBayes version 3.2.5 [23, 24]. The
generalised time reversible model plus invariant sites
(GTR +1I), as suggested by the Akaike information criter-
ion (AIC) given by jModelTest [25], was used as statistical
model for nucleotide substitution. The MCMC process
was repeated for 10° generations and sampled every 5000
generations. The first 2000 trees were deleted as burn-in
processes and the consensus tree was constructed from
the remaining trees. Convergence was assured via the

sequences
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standard deviation of split frequencies (<0.01) and the po-
tential scale reduction factor (PSRF~1). The resulting
phylogenetic tree and associated posterior probabilities
were illustrated using FigTree version 1.4.2 (http://tree.
bio.ed.ac.uk/software/figtree/.

Whole genome analysis

We calculated the phylogenetic relationship between the
eight fully sequenced Vibrio strains using a whole genome
alignment phylogeny-based approach. The alignment was
calculated using Mugsy [26], and only the relevant LCBs
(local collinear blocks) aligned regions present in all ana-
lyzed strains were extracted using Phylomark. These
regions were concatenated and positions with gaps re-
moved [27]. A heuristic maximum-likelihood phylogenetic
tree was calculated from the resulting core alignment
(528,197 bp) using FastTree2 [28] and visualized using
Interactive tree of life (iTOL) v3 [29]. We screened the
sequenced genomes for selected common virulence
factors, such as virulence islands and type 2 toxin-
antitoxin system as wells as the presence of a CRISPR/Cas
system and differences in methylation patterns. In detail,
Vibrio Genomic islands were predicted using IslandViewer
(30]. Type II TA modules were screened using TAfinder
[31], a web-based tool to identify type II toxin-antitoxin
(TA) loci in bacterial genomes. Potential toxin-like candi-
dates were predicted using ClanTox [32]. SMRT sequen-
cing data of all strains was mapped to the eight assembled
genome sequences of V. alginolyticus, using the BLASR
algorithm (Pubmed-ID 22988817) as implemented in
Pacific Biosciences’ SMRT Portal 2.3.0 within the
“RS_Modification_and_Motif_Analysis.1” protocol apply-
ing default parameter settings.

Network analysis

After confirmation that the three infection matrices were
not significantly different from each other (Mantel test;
Monte-Carlo test observation based on 9999 permuta-
tions > 0.085; p<0.001) we calculated a consensus
matrix, in which we considered an infection to be posi-
tive if plaque formation was visible in at least two of the
three replicates. Subsequent network analysis was per-
formed on the consensus matrix using the bipartite
package [33] and the Falcon interactive Mode for R [34].
Nestedness was calculated using the NODF index,
which estimates nestedness based on overlap and
decreasing fill. We used the SS null model to test for
significance of the nestedness score.

Gene expression

A detailed description of our gene expression analysis is
given in [21]. In short, we calculated the mean cycle
time (ct) for each of the two replicates. We used gbase”
(version 2.6.1 [35]) to calculate the optimal number of
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housekeeping genes and found that the combination of
the two housekeeping genes ubiquitin (Ubi) and ribo-
some protein (Ribop) showed the highest stability (aver-
age geNorm M <0.5). After removal of samples with a
coefficient of variation larger than 4% we calculated the
geomean Ct of the two housekeeping genes to quantify
the relative gene expression of each target gene by calcu-
lating - ACt. We used a multivariate analysis of variance
(MANQOVA) using the Pillai’s trace statistics with - ACt
values as dependent variable and bacterial group as well
as strain nested within bacterial group as the independ-
ent variable. MANOVA was followed up by univariate
analyses of the single genes. We further conducted a
principal component analysis (PCA) using the aded
package [36] to assess clustering according to the bacter-
ial groups based on differences in expression patterns.

Viable Vibrio counts
We analysed the amount of CFU using a Kruskal-Wallis
test for non-parametric data.

Bacterial growth rate

We used a linear mixed effect model with a Max-
imum likelihood error distribution using lme (package
nlme) with bacterial group (HS, IS, R}, time as well
as their interaction as fixed effect and strains as ran-
dom effect.

Twitching motility

We used a linear model to estimate differences in
twitching motility based on differences in surface areas
using bacterial group as fixed variable.

Lysis time

We defined lysis time as the time at which turbidity of
the culture peaks [4]. According to the infectivity pattern
of the derived prophages we grouped bacterial strains
into three categories (HI: High infectivity, IL: Intermedi-
ate infectivity, NI: No infectivity). We estimated the ef-
fect of these three bacterial groups on lysis time using a
linear model (function: Im) followed by Tukeys HSD
posthoc test (R-package lsmeans).

Results

Vibrio phylogeny

Vibrio phylogeny was constructed based on three
concatenated housekeeping loci (16 s rRNA, recA and
pyrH) representing 2,507 total nucleotides using the
Bayesian Markov chain Monte Carlo (MCMC) method.
The 75 isolates were separated into three major clusters,
of which we could assign 71 strains to the Alginolyticus
clade, three strains to the Splendidus clade and one
strain to the Vulnificus clade (Fig. 1a). All strains be-
longing to the Alginolyticus clade had a 100% sequence
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Alginolyticus derived phages

Splendidus derived phages

Vulnificus derived phage

Fig. 1 a Collapsed Vibrio phylogeny of the 75 isolates based on three concatenated housekeeping loci (165 rRNA recA and pyrH, 2507 bp)
using the Bayesian Markov chain Monte Carlo (MCMC) method. The 75 isolates were separated Into three major clades, l.e. Alginolyticus clade,
Splendidus clade and Vulnificus clade. Nodes are labelled with posterior probabilities. b vibrio/phage cross-infection matrix. Rows and columns
represent bacteria and phage lysates. Black celfs indicate infection success. Framed cells depict cross-inoculation between a lysogen and its
derived phage lysate. Strains used in the infection experiment are highlighted in orange (HS-bacteria), blue (I5-bacteria) and grey {R-bacteria)

identity based on the concatenated alignment and were
therefore grouped by collapsing the internal branches
within the Alginolyticus clade. However, based on a
whole genome alignment of the selected eight strains,
we could show that the isolates represent different
strains (Additional file 4: Table S3 and Fig. 2b). These
differences are mainly caused by different integrated
prophages at different insertion sites, which might ex-
plain the observed distinct phenotypes.

Vibrio-phage cross infection network

We found inducible prophages in all Vibrio isolates. In
64 out of the 71 Alginolyticus isolates single plaques
were visible at dilutions of 107 to 107%, however, they
had fringed edges and were often overlapping and thus
not clearly discernable making it impossible to count
single PFUs. In addition, we could confirm the presence
of prophages in the supernatants by DNA extraction and
subsequent gel-electrophoresis, showing products of

around ~6 kb, for all 71 isolates. A screening of the
genomes of the complete sequenced strains confirmed
the presence of several prophage loci within each of the
genomes (Fig. 2a). The prophages include two that are
shared by all strains (i.e. @1 and @2, Fig. 2a) as well as
prophages which are unique within their encoding
genome. On average less than half of all integrated pro-
phages per strains are active of which the majority could
be identified as Inoviridae. We found that R bacteria
contain only one active prophage, while IS and HS bac-
teria contain on average two and three active prophages.

Based on all Vibrio strains and their induced pro-
phages we generated a three-fold replicated 75 x 75
cross-infection matrix resulting in 16,875 inoculations,
Among the 75 tested lysogens, 74 were homoimmune,
i.e. immune to lytic infection by their own phage-lysates.
The observed phage bacteria infection network (PBIN) is
significantly nested: NODF nestedness score = 80.88;
z-score = 126.63; p < 0.001 (Fig. 1b, for single matrices
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see Additional file 5: Figure S1). Overall, 15.98% of the
phage-bacteria combinations resulted in lytic infection
success, which corresponds to a network connectance
of 0.16. We observed that infections occurred only
within the strains of the Alginolyticus clade, while the
non-alginolyticus isolates could not get infected by
any of the phage lysates nor could their phage sus-
pensions infect any of the V. alginolyticus strains.
Therefore we excluded non-alginolyticus bacteria from
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Fig. 3 Relative proportion of high infective (HI; black), intermediate
infective (I, dark grey) and non-infective (NI; light grey) phage lysates
per bacterial group (HS highly susceptible, IS: intermediate susceptible
and R: resistant)

the rest of the analysis and the infection experiment
on juvenile pipefish.

Most of the bacteria (82%) were susceptible to 13% of
the phage lysates (thereafter called intermediate-
susceptible (IS) bacteria), while 13% of the bacteria were
highly susceptible to the majority (77%) of the phage ly-
sates (thereafter called HS-bacteria). Approximately 5% of
the bacteria were resistant against all phage lysates (there-
after called R-bacteria) whereas 10% of the phage lysates
were not able to cause a visible lytic infection using a
standard spot assay. Bacteria from these three phenotypic
groups do not cluster based on their genotype (Fig. 2b).
All three bacterial groups contained bacteria from diverse
organs of different fish. Infection patterns could therefore
not directly be linked to within population differentiation.

Within bacteria and phage lysates from the Alginolyticus
clade we detected a significant infection pattern: five out
of nine phage lysates from HS-bacteria were non-
infectious, while the remaining four could infect other
strains, which themselves were exclusively highly suscep-
tible. In contrast, most phage lysates derived from R
bacteria (3 out of 4) could infect the majority of the 71 V.
alginolyticus strains, while only one phage lysate could not
cause a lytic infection on any of the tested strains (Fig. 3).

Infection experiment

We used a controlled infection experiment on juvenile
pipefish to directly test whether bacterial resistance
to phages and bacterial harm to eukaryotic hosts can
be linked. To control for clade effects all strains used
in the infection experiment belonged to the Alginoly-
ticus clade.
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Viable Vibrio counts

Overall, the amount of CFU differed significantly be-
tween fish treated with PBS compared to fish infected
with bacteria groups (Kruskal-Wallis test for non-
parametric data: H=11.96, p < 0.001, Additional file 6:
Figure S2). However, there was no difference in CFU
between all three bacterial groups (Kruskal-Wallis test
for non-parametric data: H=1.67, p < 0.43).

Gene expression

Bacterial group (HS, IS, R or control) significantly
affected gene expression of infected juvenile pipefish,
MANOQOVA (Pillai’s trace = 2.2, Approx. F; = 1.62, p =0.01).
There was no difference in gene expression between
sham-injected controls and pipefish infected with Vibrio
strains resistant to phage infection (Fig. 4). However, gene
expression differed significantly when pipefish were
infected with Vibrio strains susceptible to phages.
These observed differences in immune gene expres-
sion suggest that virulence on a eukaryotic host varies
significantly between bacteria that have different phage-
resistance phenotypes. Univariate ANOVAs revealed
eleven genes that contribute to the observed significant
group effect. Among these eleven genes, four genes belong
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to the innate and three to the adaptive immune system,
while one gene belongs to the complement system and
three genes are involved in gene silencing or deactivation
(Additional file 7: Table S4).

Genome screening

We found no differences in the structure of the CRISPR/
Cas system among the complete sequenced V. alginolyti-
cus strains. A comprehensive screening for virulence fac-
tors revealed the presence of a gene that encodes a zona
occludens toxin (ZOT) like protein in each genome. No
other virulence factors were found in the genomes. All V.
alginolyticus strains display nearly complete modification
of the GATC motif (m6A, underlined is the methylated
base) as of 99%. Around 20% of all CCAGCANY (m4C)
motifs were modified additionally. Low methylation frac-
tions of strain K05K4 cannot be taken into account as the
coverage requirements of 50% were not met,

Bacterial properties

Growth rate

There was no difference in bacterial growth rate in
Medium 101 over a 24 h period, linear mixed effect
model, F, ¢ =3.81, p=0.09.

i
i
'
1

----------- [TSBadera |- -~~~

PC2-1244%

PC1- 44.51%

Fig. 4 Ordination of differentially expressed immune-genes between four different infection treatments. Juvenile pipefish were either sham
injected with PBS (black), infected with bacteria resistant to phage infection (grey), intermediate susceptible bacteria (bfue), or highly susceptible
bacteria (orange). Note: all experiments have been performed with strains of Vibrio alginolyticus
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Lysis time

Lysis time varied significantly between bacteria, which
contain prophages that differ in their infection profile,
linear model, Fy = 7.5, p=0.001. ‘Highly-infective’ phage
lysates lysed their bacterial hosts on average after
81 min, while 'intermediate-infective’ and ‘non-infective’
phage lysates took on average 105 and 100 min, respect-
ively. Follow-up analysis revealed a significant difference
in lysis time between bacteria that contain ‘highly-infective’
phage lysates and bacteria that contain ‘non-infective’
phage lysates tg =-2.68, p=0.025 as well as between
‘highly-infective’ phage lysates and ‘intermediate-infective’
phage lysates tg, = -3.86, p < 0.001. There was no significant
difference in mean lysis time between ‘intermediate-infect-
ive’ and ‘non-infective’ phage lysates te = 0.21, p = 0.98,

Twitching motility

There was no significant difference in twitching motility
between resistant and susceptible bacteria F, o3 = 0.098,
p =091, indicating that pilus mutations, which could
lead to reduced motility, were not the primary form of
resistance against phages.

Discussion

Virulence shifts through a hyperparasite can change dual
species interactions with profound implications on eco-
system dynamics and human health [37]. We empirically
investigated a tripartite host-parasite interaction focusing
on two players each, namely phage infectivity against
bacteria as well as bacterial virulence against a eukaryotic
host and found evidence that both two-way interactions
are linked. We could induce prophages from all bacterial
isolates indicating that lysogeny is common in the genus
Vibrio. We then determined Vibrio resistance to each of
the phage lysates and tested the virulence of nine selected
Vibrio strains against their final eukaryotic hosts. Our re-
sults suggest that phage-resistant strains are less harmful
to their eukaryotic host than phage-susceptible strains.
These findings indicate that bacteria with a phage suscep-
tible phenotype are associated with higher virulence
against eukaryotic hosts.

Infectivity of phage lysates can be linked to bacterial
resistance against superinfecting phages

The structure of phage-bacteria infection networks
(PBINS) can range from random matrices over nearly di-
agonal matrices and nested structures to block-like
matrices that exhibit high degrees of modularity [38, 39].
By generating a replicated 75 x 75 cross-infection matrix
of Vibrio bacteria and phage lysates that were obtained
from these bacteria by prophage induction, we found a
clear-cut pattern between phage infection success and
genetic distance of the host: V. alginolyticus genotypes
were susceptible to phages from the same clade, but
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resistant to phages isolated from the Splendidus and the
Vulnificus clade and vice versa. We are aware that the
present PBIN comprises three different Vibrio clades
with unequal sample sizes between clades and thus con-
strain the following discussion to the observed patterns
within the Aiginolyticus clade only.

Within the Alginolyticus clade we found a significantly
nested structure (Fig. 1b). Nestedness results from se-
quences of gene-for-gene (GFG) coevolutionary adapta-
tions and is the most common pattern in PBINs of
natural communities [38, 39] but also in evolution ex-
periments [40-42]. A nested structure results from cu-
mulative GFG adaptations of bacterial resistance and
phage infectivity, which resistance/infectivity
against recently evolved phages/bacteria [39]. As a result,
nested PBINs contain hierarchical interactions of phages
and bacteria, which can be ordered according to the

confer

number of host genotypes/phage genotypes they can in-
fect/resist. Likewise, according to their susceptibility to
phages, bacteria from the present study can be grouped
into three distinct categories: highly susceptible (HS),
intermediate susceptible (IS) and resistant (R). This ob-
served hierarchy indicates strong bacteria genotype by
phage genotype interactions (GxG) and underlying
GFG-like coevolutionary processes that characterize the
present PBIN.

We found that 74 out of 75 bacterial isolates were im-
mune to infection by their own lysate, indicating that
homoimmunity is common for temperate filamentous
Vibriophages. Indeed, most prophages immunize their
host against their own kind and against phages of the
same immunity group (4] for exceptions see [43]. We
assume that a lytic infection in our spot assay is not
possible if the superinfecting phage is homoimmune, ie.
it belongs to the same immunity group than the inte-
grated prophage.

According to their infection pattern the 71 alginolyticus
lysates could be grouped into 37 distinct groups, out of
which 30 isolates had a unique infection profile. We
further observed that most phage lysates isolated from
HS-bacteria were non-infectious, while most phage lysates
isolated from resistant bacteria could infect the majority
of the tested bacteria isolates (Fig. 3). In addition, lysis
time differed significantly between highly infective and
non-infective as well as intermediate-infective phage ly-
sates. Based on all these observed phenotypic properties
we thus conclude that phage lysates of closely related host
strains are different from each other.

Nevertheless, these phenotypic properties as well as
the observed nestedness in the present infection matrix
needs to be interpreted carefully by taking the potential
multi-phage nature of the lysates into account. Whole
genome sequencing of eight selected Vibrio strains indi-
cates that resistant bacteria have more active prophages
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than susceptible bacteria (Fig. 2a). We could not detect a
clear-cut pattern between bacterial-resistance pheno-
types and the presence of particular phages, which are
shared across genomes (Fig. 2a) nor across Vibrio phyl-
ogeny (Fig. 2b). It is thus tempting to speculate that re-
sistance to phages and infectivity of the lysate correlates
with the number of active prophages. In the first case we
assume that more phages protect the bacterium from
infection by additional phages, for instance by actively
eliminating the infecting phage. In the latter case we
predict that the probability to infect any given strain is
higher the more active phages a lysate contains. If this
holds true, the observed nested structure of the present
PBIN may not be exclusively the result of classical GFG
evolution between bacterial genotypes and phage ge-
notypes (GxG) but rather a complex combination of
underlying coevolutionary processes between lysogens
(bacterial genomes plus integrated phage genomes) and
phages [(G + G)xG].

The number of integrated prophages is not the sole
factor that can influence bacterial resistance. Such an
infection pattern could additionally be impacted by the
presence of bacteriocins, e.g. colicin, which can also con-
fer homoimmunity [44], the restriction modification sys-
tem [45] or the involvement of the CRISPR/Cas system,
which provides acquired immunity against mobile gen-
etic elements by targeting invasive DNA in a sequence
specific manner [46]. Based on the eight fully sequenced
genomes we could not detect any differences in viru-
lence factors, neither in the CRISPR/Cas system nor in
the methylome of those strains. Mutations on specific
cell surface components were assigned as an alternative
mechanism explaining resistance to phages, for instance
pili, which represent the main entry site for filamentous
phages [47]. However, follow up experiments detected
no difference in twitching motility between IS, HS and R
bacteria, rejecting the hypothesis that R bacteria are
resistant to superinfecting phages due to a pilus deficient
mutant.

Phage susceptible bacterial phenotypes may be

associated with higher virulence against eukaryotic hosts
While it is acknowledged that prophages play an import-
ant role in bacterial virulence and evolution [48], the
coupling between bacterial virulence against eukaryotic
hosts and bacterial resistance against temperate phages
has received little attention. Using a controlled infection
experiment with selected strains that vary in their resist-
ance to temperate phages, we tested whether bacterial
resistance to phages and bacterial harm to eukaryotic
hosts can be linked. While the amount of CFU in infected
pipefish did not differ among treatment groups, host tran-
scriptional response, notably expression of immune genes
differed significantly between phage resistant and phage
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susceptible bacteria. We suggest that this observed dif-
ference in immune gene expression is linked to differ-
ences in virulence between phage resistant and phage
susceptible strains. This indicates that the harm to the
eukaryotic host and thus the virulence of a phage-
resistant strain is significantly lower compared to the
harm by a phage-susceptible strain.

The observed resistance-virulence trade-off has been
frequently observed with lytic phages [6, 49, 50], for a
recent review see [2] but has to our knowledge never
been described for temperate phages. Common mecha-
nisms/theories from studies using lytic phages explaining
this trade-off in gram-negative bacteria are modifications
of cell wall receptors, such as outer membrane proteins
(OMPs) and Lipopolysaccharides (LPS) or bacterial ap-
pendices, such as flagellae or pili [2]. As known, fila-
mentous phages enter the bacterium via the pilus [51],
and no difference in twitching motility between phage
susceptible and phage resistant strains could be detected,
which would have suggested pilus-deficient mutants, the
above mentioned mechanisms cannot explain the ob-
served pattern. So far, we lack insight into the exact
mechanism that couples virulence against eukaryotic
hosts and resistance to temperate phages. The major dif-
ference between those closely related isolates is due to
different prophages at different insertion sites, which
can explain the distinct phenotypes. Thus we assume,
that temperate phages are involved in mediating bacter-
ial virulence and resistance.

There are different ways how prophages can contrib-
ute to the success of their bacterial hosts during infec-
tion. On the one side, prophages, and in particular
filamentous phages are capable of influencing the viru-
lence and evolution of their host by lysogenic conversion
(for a recent review see [52]), with the most prominent
example being the Vibrio cholerae CTX® phage carrying
the cholera toxin gene [10]. However, in the case of pro-
phages that do not contribute a clear phenotype such as
virulence genes [53], their contribution to the fitness of
the bacterial host is still unknown. In this context, we
found that virulent strains (HS- and IS- bacteria) contain
on average less active prophages than non-virulent
strains (R-bacteria). In addition, the harm of selected
strains did not depend on the presence of specific active
prophages. Thus, our results suggest that (1) filamentous
vibriophages do not always increase bacterial virulence
but can also have opposite effects and (2) prophages
may have more subtle effects on bacterial virulence apart
from providing specific virulence toxins.

Conclusion

Based on an empirical approach that goes beyond a
classical dual host-parasite interaction, we show that
phage-resistant bacteria strains harm their eukaryotic
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host less than phage-susceptible bacteria strains. These
results illustrate the importance of hyperparasitism and
that dual host-parasite interactions should not be studied
in isolation. Ecological and evolutionary outcomes pre-
dicted by classical pairwise interactions differ profoundly,
if we take additional players into account [54—56]. How-
ever, multiplayer interactions are only beginning to be
explored [55], and are mostly limited to host-plant inter-
actions as reviewed in [56], while studies using animal
hosts are rare.

Phages are the most abundant entity in aquatic systems
[57, 58] and their ecological importance in the marine en-
vironment has gained much attention in the last decade;
for detailed reviews see [59-62]. Especially prophages have
become recognized as important components of the
marine environment through their ability to manipulate
bacterial properties, such as pathogenicity. Our experi-
mental results demonstrate that if we are to understand
the spread and evolution of prophage-mediated diseases,
it is paramount to take an integrative view across more
than two levels by considering the interaction between all
species involved.
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Abstract

Vibrio alginolyticus is a ubiquitous Gram-negative halophilic opportunistic pathogen, causing
mass mortalities in shellfish, shrimps,and fish resulting in worldwide economic losses. The
organism is considered as an independent species since 1980 and is closely related to the
Harveyiclade, a group of seven species within the genus Vibrio. V. alginolyticus, as a species,

comprise strains that are adapted to live as commensal as well as pathogenic bacteria within
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habitats provided by a host organism. Considering the closely related species within the
harveyi clade, this study targets the question of what genetic elements contribute to making V.
alginolyticus a species. This study was performed to especially elucidate the contribution of
mobile genetic elements, i.e., phages and plasmids, to the adaptation of V. alginolyticus strains
to their host, their niche as well as to the switch between a commensal and a pathogenic

lifestyle.

Here we present a comparative genomic analysis of nine sequenced Vibrio alginolyticus
isolates with a focus on infecting Inoviridae phages. We show that those infecting phages
encode a toxin similar to the closely related CTX-phage known to infect various V. cholera
strains. Altogether, our analysis revealed that genomic fluidity reflected by the presence of
extra-chromosomal phages, prophages,and plasmids specific for the habitat facilitates the
understanding of the phylogenetic diversity as well as the emergence of virulence of the

various studied strains.

Keywords

Vibrio alginolyticus- comparative genomics - mobile genetic elements - mega-plasmids -
Inoviridae- sSDNA phages - vibriophage - bacteriophages - phage activity - pathogenicity.

1. Introduction
Vibrio alginolyticus is a ubiquitous marine opportunistic pathogen can cause mass mortalities
in shellfish, shrimp, and fish, resulting in severe economic losses worldwide (Zhang et al.,
2014; Gonzéalez-Escalona, Blackstone, & DePaola, 2006; Lee, Yu, Yang, Liu, & Chen, 1996).
Additionally, wound infections and fatal septicemia in immunocompromised patients caused
by V. alginolyticus have been reported in humans (Hérmansdorfer, Wentges, Neugebaur-

bichler, & Bauer, 2000). Vibrio pathogenicity is a complex interaction of abiotic and biotic
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factors (Defoirdt, 2014), including high temperatures (Harvell, Altizer, Cattadory, Harrington,
& Weil, 2009), low salinities, host and bacterial genotypes (Le Roux et al., 2015) and the
presence of virulence encoding prophages, termed ‘vibriophages’ (Lan et al., 2009; Wagner &
Waldor, 2002). The contribution of vibriophages to Vibrio virulence is a well-studied
phenomenon and best described for V. cholera and the filamentous phage CTX, which encodes
the cholera toxin (CT). Upon integration into the V. cholera chromosome, the CTX phage can
transform an avirulentV. cholera strain into a deadly pathogen (Sarkar, Chakrabarti, Sarkar, &

Dutta, 2016; Waldor & Mekalanos, 1996).

Vibriophages are generally specific for a single Vibrio species or even specific to a single strain
within a species (Maxwell, 2019). The CTX-phages, as well as the observed filamentous
phages infecting other Vibrionaceae, have been classified as Inoviridae encoding genomes
with a size from 4.5 Kbp to 12.4 Kbp (International Committee on Taxonomy of Viruses &
King, 2012). Inoviridae can enter a lysogenic cycle by integrating their entire genome into their
host genome followed by a passive replication by the host replication apparatus during cell
division. Alternatively, they can have a lytic cycle where the virus genome replicates
independently by a rolling-circle mechanism and hijacks the bacterial resources to produce the
phage proteins and assemble new phage particles (Mai-Prochnow et al., 2015). In contrast to
other lytic phages, who Kill their host to release the free phage particles, the filamentous phage
replication process results in a constant production of phage particles without killing the host
cell, which is a distinct characteristic of filamentous phages (Mai-Prochnow et al., 2015). Most
Inoviridae carry genes, which encode toxins, change their host’s phenotype using lysogenic
conversion (Waldor & Mekalanos, 1996). This process enables their host bacterium to exploit a

eukaryotic host and ultimately, to adapt to and colonize new habitats (Wendling et al., 2017).
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Turner et al. (2018) underline in their analysis that Vibriosrelated to the Harveyi clade are
highly similar concerning the chromosomes (Turner et al., 2018). Thisis reflected by a shared
core-genome consisting of ~ 4,800 chromosomally encoded genes, which is approximately
80% of the gene content of an average V. alginolyticus genome. The most significant share of
strain-specific chromosomally encoded genes are located within mobile genetic elements such
as plasmids and prophages. These prophages include Inoviridae to which the CTX infecting

phage belongs to and other members of the Caudoviralesphage family (Castillo et al., 2018).

In this study, we investigate the genomic sequences of nine different V. alginolyticus genomes,
which have been isolated from the pipefish Syngnathus typhle at the Kiel Fjord (Wendling et
al., 2017; Roth, Keller, Landis, Salzburger, & Reusch, 2012). We focus on the habitat-specific
genes encoded on plasmids exclusively found in strains isolated in the Kiel Fjord and on
prophages. We show that from the identified prophages solely the Inoviridae closely related to
the CTX-phage concerning genome size, gene order and the presence of a toxin gene have been

found actively producing phage particles.

2. Materials and Methods

Bacterial genome data

We compared all replicons from nine V. alginolyticus strains to 159 closed Vibrio replicons
sequences downloaded from NCBI nucleotide database; date of accession 12.06.2018 (Table
S7). The nine strains were described in an earlier study and were phylogenetically previously
with multi-locus sequence analysis (MLSA) based on partial DNA of 3 different genes (16S
rRNA, recA and pyrH) (Wendling et al., 2017).

DNA isolation, whole genome sequencing, assembly, and annotation
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Using a combination of PacBio and Illumina sequencing, we generated eight closed V.

alginolyticus genomes and one permanent draft as described in the following sections.

Prophage induction and sequencing

Prophages were induced from all nine V. alginolyticus strains using mitomycin C (Sigma) as
described in Wendling et al. (2017) (Wendling et al., 2017) with minor modifications: bacteria
were grown in liquid Medium101 (Medium101: 0.5% (w/v) peptone, 0.3% (w/v) meat extract,
3.0% (w/v) NaCl in MilliQ water) at 250 rpm and 25 °C overnight. Cultures were diluted 1:100
in fresh medium and grown for another 2.5 h at 250 rpm and 25 °C to bring cultures into
exponential growth before adding mitomycin C at a final concentration of 0.5 pg/ml. Samples
were incubated in an automated plate reader (TECAN infinite M200) for 4 h at 25 °C and
mixed periodically. Bacterial lysis upon prophage induction was monitored via optical density
at 600 nm (measured every other minute). We determined bacterial lysis time at induction as
the time at which turbidity of the culture peaks.After 4 h, lysates were centrifuged at 6000 g for
15 min. The supernatant was sterile filtered using 0.45 um pore size filter (Sarstedt,
Nimbrecht, Germany) and consequently supplemented with lysozyme from chicken egg white
(10pg/ml, SERVA Heidelberg, Germany) was added to the filtered supernatant to disrupt the
cell walls of potentially remaining host cells. RNAse A (Quiagen, Hilden, Germany) and
DNAse | (Roche Diagnostics, Mannheim, Germany) were added to a final concentration of
10pg/ ml each incubated at 25°C for overnight (16 hours) to remove free nucleic acids and
remaining host cells as described in Hertel et al.(Hertel et al., 2015). The supernatant was

subsequently used for phage precipitation.
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Ultracentrifugation

After the enzymatic removal of free nucleic acids, the phage particles were sedimented by
ultracentrifugation using a Sorvall Ultracentrifuge OTD50B with a 60Ti rotor applying
200,000 g for 2 hours. The supernatant was discarded, and the pellet was solved in 200 pl

TMK buffer, and stored at 4°C or directly used for DNA isolation.

DNA Extraction

The DNA isolation was performed using a MasterPure DNA Purification kit from Epicenter
(Madison, W1, USA). 200 ul 2x T&C-Lysis solution containing 1ul Proteinase K was added to
the phage suspensions and incubated for 10 min at 10,000 g. The supernatant was transferred to
a new tube, mixed with 670 pl cold isopropanol and incubated for 10 min at — 20°C. DNA
precipitation was performed by centrifugation for 10 min at 17,000 g and 4°C. The DNA pellet
was washed with twice with 150 ul 75% Ethanol, air-dried and re-suspended in DNase free

water.

Next-generation sequencing

dsDNA for library construction was generated from viral ssDNA in a 50 pl reaction. The
reaction was supplemented with 250 ng viral sSSDNA dissolved in water, 1uM final
concentration random hexamer primer (#50142, Thermo Scientific), 10 units Klenow
Fragment (#EP0051, Thermo Scientific) and 200 uM dNTPs final concentration each (#R0181,
Thermo Scientific) and incubated for 37°C for 2 hours. The reaction was stopped by adding
lulof a 0.5M EDTA pH 8 solution. The generated DNA was precipitated by adding 5 pl of a
3M NaAcetate pH 5.2 and 50 u1100% Isopropanol to the DNA solution, gently mixing and
chilling for 20 min at -70°C. DNA was pelleted by centrifugation at 17,000 g, 4°Cand 10

min. Pellet was washed twice with 70% Ethanol and re-solved in 40°Cof pure water.

56



Comparative genomic analysis of Vibrio alginolyticus reveals that the dynamics lie within the mobilome

Remaining primers and viral sSDNA were removed in a 50 pl reaction using 10 units S1
nuclease (#EN0321, Thermo Scientific) for 30 min at 25°C. S1 nuclease was inactivated
through adding 1uM 0.5M EDTA pH 8 and incubated for 10 min at 70°C. Consequently,
dsDNA was precipitated as described above and resolved in pure water. Presence of dsSDNA
was verified via TAE gel electrophoresis in combination with an ethidium bromide staining
and visualization via UV-light. NGXS phage DNA libraries were generated with the
NexteraXT DNA Sample Preparation Kit (Illumina, San Diego, USA), and the sequencing was

performed on an Illumina Gaii sequencer (Illumina, San Diego, USA).

Transmission electron microscopy

Electron microscopy was carried out on a Jeol 1011 electron microscope (Peabody, USA).
Negative staining and transmission electron microscopy (TEM) were performed as described
previously (Willms et al. 2017). Phosphotungstic acid dissolved in pure water (3%; pH 7)

served as staining solution.

Average nucleotide identity and orthologous proteins

Average nucleotide identity (ANI) analysis of the different 159 Vibrio replicons was performed
in ANIm mode which uses MUMmer (https://github.com/widdowquinn/pyani). Briefly,
nucleotide sequences were extracted from each GenBank file using Biopython
(https://biopython.org/) and subsequently used as input for pyani for genome sequence

alignment.

To identify orthologous genes between the closest selected genomes from the pyani analysis
and the nine sequenced V. alginolyticus strains, Proteinortho(Lechner et al., 2011)was used.
Proteinortho cutoffs parameters used were an E-value of 1e-10 and protein sequence of 80%

coverage and 50% identity. The nine sequenced strains and closest selected Vibrio genomes
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were scanned with PATRIC (https://patricbrc.org/) for the detection of potential virulence

factors (Wattam et al., 2014).

Determination of active phages

Resulting PacBio reads were de novo assembled using the HGAP 2.0 assembly pipeline (Chin
et al., 2013) with further analysis using SMRT Portal (v2.3.0) to generate V. alginolyticus
references genomes (https://www.pach.com/support/software-downloads/). Resulting Illumina
sequence reads from i) whole genome sequencing and ii) induced phage sequencing were
mapped using Bowtie2 (Langmead & Salzberg, 2012) to the corresponding reference V.

alginolyticus genome.

The generated mapping files were analyzed using TraV(Dietrich, Wiegand, & Liesegang,
2014) to identify the genomic location and context of the phage particle provided DNA. Peaks
of coverage that mapped to genome region encoding phage genes were used as an indication

for active prophages.

Prediction of phage loci and comparative analysis

All genomes were scanned with PHASTER (http://phaster.ca/) (Arndt et al., 2016) to identify
additional non-induced prophages. Easyfig(Sullivan, Petty, & Beatson, 2011) with the
BLASTn mode was used for pairwise phage sequence comparisons and synteny comparisons

with an E-value cutoff of 1e—10.

Statistical analysis and visualization graphs

All statistics and visualization graphs were performed using ggplot2 (Wickham, 2011) library

in R 3.1.2 unless otherwise stated.
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3. Results and discussion

Genome sequencing

Nine strains of Vibrio alginolyticus isolated from pipefish at the Kiel Fjord(Roth et al., 2012)

have been genome sequenced using PacBio long and Illumina short read technology. The

assembly resulted in eight closed genome sequences of the nine V. alginolyticusstrains. All V.

alginolyticus genomes contain a ~3.47 Mbp chromosome 1 and a ~ 1.88 Mbp chromosome 2

(Table 1) as has been found previously for the genus Vibrio as well as for the species V.

alginolyticus (Wang, Wen, Li, Zeng, & Wang, 2016; Okada, lida, Kita-Tsukamoto, & Honda,

2005).

Table 1: Vibrio alginolyticus genomes used in this study

Strain GC% Replicon Size[bp] CDSs Ref Genbank

K01M1 44.60 chromosome 1 3,468,303 3,206 This study CP017889.1
chromosome 2 1,883,748 1,668 This study CP017890.1

pL9064 9,064 8 This study CP028135.1

K04M1 4431 chromosome 1 3,473,127 3,213 This study CP017891.1
chromosome 2 1,870,775 1,660 This study CP017892.1
pL19 19,690 28 This study CP017893.1
pL280 280,614 305 This study CP017894.1
vK04M1* 7,079 11 This study CP017895.1
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44.31

4431

44.34

4431

44.32

chromosome 1

chromosome 2

pL294

chromosome 1

chromosome 2

pL294

chromosome 1

chromosome 2

pL289

vKO05K4_1*

VKO5K4_2*

chromosome 1

chromosome 2

pL29

pL291

chromosome 1

3,476,174

1,903,830

294,086

3,470,916

1,900,618

294,721

3,473,579

1,875,554

289,065

21,012

13,327

3,471,297

1,879,729

29,688

291,285

3,468,139

3,219

1,708

325

3,211

1,688

320

3,218

1,670

315

34

23

3,213

1,662

20

322

3,214

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

CP017896.1

CP017897.1

CP017898.1

CP017899.1

CP017900.1

CP017901.1

CP017902.1

CP017903.1

CP017904.1

CP017905.1

CP017906.1

CP017907.1

CP017908.1

CP017909.1

CP017910.1

CP017913.1
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44.61

44.60

44.48

44.67

chromosome 2

pL300

chromosome 1

chromosome 2

chromosome 1

chromosome 2

chromosome 1

chromosome 2

pMBL128

pPMBL287

pPMBL96

chromosome 1

chromosome 2

1,886,577

300,425

1,897,210

3,465,619

3,494,647

1,894,531

3,362,673

1,851,538

128,112

286,750

95,866

3,535,128

1,870,966

1,675

331

3,209

1,704

3,231

1,682

3,190

1,674

144

301

109

3,301

1,657

This study

This study

This study

This study

This study

This study

(Wang et al.,
2016)

(Wang et al.,
2016)

(Wang et al.,
2016)

(Wang et al.,
2016)

(Wang et al.,
2016)

(Deng,
YiginChen,
Zhao, Huang,

Ding, & Yang,

2016)

(Deng,
YiqinChen,
Zhao, Huang,

Ding, & Yang,

2016)

CP017914.1

CP017915.1

CP017918.1

CP017919.1

CP017911.1

CP017912.1

CP013484.1

CP013485.1

CP013486.1

CP013487.1

CP013488.1

CP016224.1

CP016225.1
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NBRC 44.70 chromosome 1 3,334,467 3,128 (Liu, Cao, CP006718.1
15630 Zhang, Chen, &
Hu, 2015)

chromosome 2 1,812,170 1,640 (Liu, Cao, CP006719.1
Zhang, Chen, &
Hu, 2015)

*circular phage replicons

Seven isolates contain extra-chromosomal replicons including plasmids as has been found for
strain ATCC33787 (Wang et al., 2016). The isolates KO4M1 and K04KS5 contain circular
replicons encoding Inoviridae phages which fits to the observation that Inoviridae can replicate
as extra-chromosomal circular molecules in a rolling circle replication mode (Wawrzyniak,
Plucienniczak, & Bartosik, 2017; Székely & Breitbart, 2016; Mai-Prochnow et al., 2015)
without Kkilling their hosts by switching into the lytic lifestyle. In case of strain KO9K1, the
chromosomes 1 and 2 have been assembled into a single contig due to a multiple repeats that
contained as several copies of integrated Inoviridae prophages. The replicon boundaries could
not be resolved experimentally based on PCR; thus the V. alginolyticus KO9K1 genome has

been assigned “permanent draft” status.

Species definition and phylogenetic relationships

To elucidate the taxonomy of the nine genomes and 150 Vibrio replicons from closed
sequenced genomes available at the time of analysis (for details see Table S7), the average
nucleotide identity was performed using pyani with the ANIm option

(https://github.com/widdowquinn/pyani) (Figure 1).
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o

——

V

Figure 1: Average nucleotide identity percentage analysis (ranging from 0 to 50% colored in blue, and higher

than 50% ANI in red, up to 100% ANI dark red) of closed Vibrio genomes.

ANI analysis based on MUMmer alignment of the genome sequences was performed and visualized using

PYANI. All V. alginolyticus cluster with V. diabolicusand V. antiquaries(green box) on ANI similarity values
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below the species level, the latter two form a subcluster (white box). The extended Harveyi group (black box)
forms a cluster of four distinct species groups including (i) the Harveyi clade sensustricto (blue box), (ii) the
parahaemolyticus group (light blue box), the (iii) natriegens group (yellow box) and the alginolyticus group (green
box).

The species V. alginolyticus, V. diabolicusand V. antiquaries exhibited ANIm values between
96 to 100% (dark red color), which is above species threshold (Yoon, Ha, Lim, Kwon, & Chun,
2017; Goris et al., 2007). However, a distinct block within the alginolyticus/diabolicus group
that contains V. diabolicus exclusivelyand V. antiquaries strains to indicate that they are more
similar to each other than to V. alginolyticus. The analysis of the ANI clustering shows that
members of the Harveyi clade (Ke et al., 2018) of the genus Vibrio, consisting of the species V.
harveyi, V. campbellii, V. hyugaensis, and V. owensii, forms a close group with V. jasidica, V.
natriegens, V. rotiferianus. This group can be clearly separated from V. diabolicus/V.
alginolyticus cluster (Turner et al., 2018) and the V. parahaemolyticus cluster (Ghenem,
Elhadi, Alzahrni, & Nishibuchi, 2017). Our data confirm the close taxonomic proximity of
these species (Turner et al., 2018). The analysis confirms that the nine new genomes belong to
the species V. alginolyticus and form with V. diabolicus andV. antiquaries a distinct species
group. It is a species group that is related but distinct to the harveyi-clade and V.

parahaemolyticus.

Pan/core genomes Vibrio alginolyticus

To elucidate how the nine genomes from V. alginolyticus strain from the Kiel Fjord are related
to V. alginolyticus strains isolated from other habitats we determined the pan/core genomes
(Land et al., 2015) of the new genomes with the V. alginolyticus type strain NBRCC15630
(isolated in Japan, (Liu et al., 2015)) and the strain ZJ-T (isolated in Zhanjiang, Guangdong
Province, China(Deng, YiqinChen et al., 2016)) and ATCC33787 (isolated from sea-water near

Oahu, USA (Wang et al., 2016)). The analysis included in total 53,893 proteins sequences
64



Comparative genomic analysis of Vibrio alginolyticus reveals that the dynamics lie within the mobilome

encoded in chromosomes, plasmids, extra-chromosomal phage replicons as well as in
integrated prophages. The core genome calculate based on these 12 strains comprises 3,861

orthologous groups (Figure 2, for details, see Table Figure 2 and Table S6).

ATCC337

NBRCC15630

Figure 2: Pan/Core genome analysis of V. alginolyticus strains isolated from four different habitats. Note the Kiel
habitat represents all genes shared by all 9 strains isolated from the Kiel Fjord. The other habitats are represented
by strains ZJ-T (isolated from Epinepheluscoioides in Zhanjiang, Guangdong Province, China), ATCC337 (sea
water near Oahu 20.3N 157.3 W) and NBRCC15630 by single isolates. Matches to a group of paralogs have been
counted once per orthologous group. Notably, the number of genes shared by the different habitats is low

compared to the number of habitat-specific genes.

The Proteinortho analysis indicates that the species defining core genome of V. alginolyticus

includes approximately 79% of the genes in each sequenced genome, which is close to the 77%
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of the core genome identified in V. parahaemolyticus (Gonzalez-Escalona, Jolley, Reed, &
Martinez-Urtaza, 2017). The number of specific genes is varying between 171 and 422, which
represent the adaption of strains to their particular habitat. The Venn diagram indicates what is
shared between the Vibrio genus while the singletons indicate what is particular to the source
of the strain isolation and related to the niche adaptation. Singletons, here defined as genes that
are exclusively found in one habitat, have been checked for their genomic location (Figure 3,

for details, see Table Figure 3).
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Singletons

Singletons of pan/core analysis of different Vibrio alginolyticus strains
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Figure 3: Singletons per habitat displayed in a stacked bar plot resulting from Core/Pan genome analysis of 12
Vibrio alginolyticus strains. The number of genome-specific singletons is depicted per replicon.

Orthologs/Paralogs/Singletons detection was done with blastp and the Proteinortho software with a similarity

cutoff of 50% and an E-value of 1e—10.

This analysis revealed that i) chromosome 1 of V. alginolyticus genomes has between ~190 to

~270 depending on the habitat while Kiel specific genomes share the same orthologous habitat
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specific genes (422 Ogs including plasmid and prophage singletons) which are not visible by
this analysis; However ii) the vast majority of the singletons are encoded on plasmids or

episomal phages.

PATRIC analysis

Virulence factors prediction via PATRIC of the 12 V. alginolyticus genomes did not reveal a
discernible niche specific pattern. However the highest number of potential virulence factors
for NBRC 15630 strain were corroborated by Turner et al.’s investigation (Turner et al.,

2018)(Figure 4, for details, see Table Figure 4).
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Figure 4: Virulence factors predictions displayed in a stacked bar plot resulting from the PATRIC analysis of 12

Vibrio alginolyticus strains.
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The Kiel Fjord adaptations

The isolates of the Kieler Fjord share 422 genes that are exclusively present in these strains.
The majority of these genes are located within mobile genetic elements including plasmids,
prophages and genomics islands. Interestingly six of the nine Kiel isolates contain closely
related plasmids ranging between 291 and 300 Kb in size and sharing over 90% nucleotide
identity. A plasmid pan/core analysis revealed that the closely related plasmids encode 297
orthologous genes (Figure 5, for details, see Table Figure 5 and Table S1), which represent the
main part of the 422 genes exclusively found in this habitat.

K04M1_pl280
(280,614 bp)

6

KO8M3_pL300 £ =~ 5y K04M3_pL29a
(300,425 bp) - (294,086 bp)

- U/ e
KO6K5_pL291 b - 11 KO4MS5_pl294

(291,285 bp) 7 - - (294,721 bp)
11

KO5K4_plL289
(289,065 bp)

Figure 5: Analysis of orthologous genes (Ogs) on six plasmids found in six V. alginolyticus strains. The number
of genome-specific Ogsis depicted in the respective ellipse. Ortholog detection was done with the Proteinortho

software setting a similarity cutoff of 50% and an E-value of 1e—10.

V. alginolyticus ATCC 33787 contains as well three plasmids including the 287 Kb plasmid
pMBL287 (Wang et al., 2016). However, a comparison of ATCC 33787 plasmids revealed no
sequence similarity to any of the plasmids from the Kiel strains. In addition to the six related
plasmids, three smaller plasmids (ranging between 9 -19 kb) without any similarity to the

bigger plasmids or the plasmids from ATCC 33787 and three extra-chromosomal Inoviridae
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phage replicons VK05K4 1, VK04K5_2 both from strain KO5K4 and VK04M1_1 from strain

K04M1 have been identified (See section Induced phages).

Induced phages

In many organisms integrated prophages can be induced by mitomycin C (Hertel et al., 2015),
a stress-inducing compound. Liquid cultures of all nine V. alginolyticus strains were treated
with mitomycin C in a phage induction experiment. A cell-free supernatant was investigated
with transmission electron micrograph (TEM) and revealed filamentous structures in all strain
derived supernatants. The TEM image from one shown isolate enabled us to classify the

induced phages as Inoviridae (Figure 6).

2005 nm

Figure 6: TEM image of the induced Inoviridae phages.
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The TEM result indicates that we have filamentous particles in all samples we did not find any
Caudovirales-like particles. Even with a series of mitomycin C induction experiments we never

found any Caudovirales-like phage particles.

Identification of active phage loci

To locate the exact positions of the induced prophages, we performed a PHAGE-seq
experiment (Hertel et al., 2015). In control experiments, the complete procedure has been
applied without mitomycin C where the reference genomes were sequenced using lllumina
technology. Both experiments revealed an increased coverage at Inoviridae loci (Figure 7).
This indicates that induced and non-induced cultures produce comparable amounts of particles

encoded by the same Inoviridae prophage.
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Figure 7: Phage-seq results of induced and non-induced V. alginolyticus K10K4 strain culture. a) Visualization of
phage particle protected DNA to the corresponding reference genome. b) Visualization of complete bacterial

genomic DNA.
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The position of the mapped prophage DNA prophage, indicative for phage activity, enabled us
to locate the exact positions of the integrated Inoviridae prophages (Table S4). Interestingly
both samples generated mappings to the same loci with comparable coverage. This indicates
that the Inoviridae phages derived from the nine V. alginolyticus are constitutively active with
and without mitomycin C induction. As a further control, total DNA without DNase A
treatment resulted in a coverage increased by the factor of 100 at the phage loci compared to
the average chromosomal coverage (Figure 7b). The cultures produced a permanent amount of
phage particle protected DNA. Within the nine sequenced V. alginolyticus isolates we found
exclusively 19 active Inoviridae. None of the Caudovirales resulted in phage particle protected
DNA. In case of the active Inoviridae, 16 were integrated on chromosome 2,and three exist as

extra-chromosomal replicating replicons.

Prophages

PHASTER was used to investigate whether predicted phage loci correlates to the DNA within
phage particles of the different cultures and to search for the complete set of predictable
prophages. All replicons of the nine V. alginolyticus genomes were scanned with PHASTER
where in total 45 prophages were predicted (Table2, for details, see Table S2), including at
least one Inoviridae per genome. The presence of Inoviridae in each genome, each of them
encoding a version of the ZOT-toxin confirms the importance of temperate members of this
phage family for V. alginolyticus as a member of the genus Vibrio (Castillo et al., 2018;

Kalatzis et al., 2017; Naser et al., 2017; Mai-Prochnow et al., 2015).
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Table 2: Prophages predicted in V. alginolyticus strains

Genome Phages

K01M1 2 Caudovirales, 1 Inoviridae
K04M1 3 Caudovirales, 2 Inoviridae
K04M3 3 Caudovirales, 2 Inoviridae
KO5M5 3 Caudovirales, 2 Inoviridae
K05K4 3 Caudovirales, 6 Inoviridae
K06K5 3 Caudovirales, 1 Inoviridae
K08M3 3 Caudovirales, 1 Inoviridae
KO9K1* 2 Caudovirales, 4 Inoviridae
K10K4 2 Caudovirales, 3 Inoviridae

*Due to the draft status of the genome the number of Inoviridae prophages is preliminary.

In addition to the expected Inoviridae prophages, 24 prophages containing key genes of the
Caudoviralesphage families have been predicted. Integrated prophages are in a lysogenic state,
thus replicating via the hosting replicon. An in-depth analysis of the Caudoviralesto one of the
three subfamilies Myo-, Podo- or Siphoviridaewas not possible due to the lack of the required

morphological data.
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Extra-chromosomal phages

Within the assembly of KO4M1 and KO5K4 strains, three closed circular contigs have been
identified that consist of complete Inoviridae genomes. This indicates the presence of free
phage replicons in two out of nine V. alginolyticus genomes. A sequence comparison of the
three extra-chromosomal contigs to one another and the prophages integrated into chromosome
2 of both strains (Figure 7) confirmed that all of these phages are related. The i) annotation, the
i) TEM (Figure 8) vizualisation of the induced phages and the iii) genome comparison to
published Inoviridae phages (for details see Figure S2 and Table S3) identified them as
Inoviridae (Mai-Prochnow et al., 2015; International Committee on Taxonomy of Viruses &

King, 2012).
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Figure 8: Genome comparison of extra-chromosomal phage genomes and prophages from V. alginolyticus strains
K04M1 and KO5K4. Annotated genes are color-coded. Visualization was done with the program Easyfig with an

E-value cutoff of 1e—10.

The two extra-chromosomal phages VK05K4 1 and VK05K4_2 were compared to the
integrated Inoviridae prophage located at 1,717,000-1,725,000 bp on chromosome 2 of the V.
alginolyticusK05K4 strain. This comparison unveils that VKO5K4_2 consists of two KO5K4
prophages and that VKO05K4_1 consists of three KO5K4 prophages. An additional comparison
reveals that VK04ML1 is syntenic to KO5K4 prophage; however KO4M1 prophage located at
930,000-990,000 of chromosome 2 shares no sequence similarities with VK04M1 but shares
gene functionalities. A Proteinortho analysis of the three extra-chromosomal phages (Table S5)
revealed the shared orthologs between these phages. Considering the observation that
Inoviridae of the genus Vibrio can multiply by the rolling circle replication (RCR)
(Wawrzyniak et al., 2017; Mai-Prochnow et al., 2015; International Committee on Taxonomy
of Viruses & King, 2012) suggests the hypothesis that the two extra-chromosomal circular
contigs represent RCR intermediates of the phage. However, to confirm or falsify this
hypothesis experiments have to be performed that are beyond the scope of this project. In
contrast, the comparison of VK04ML1 to the integrated KO4M1 Inoviridae prophage confirms
that the extra-chromosomal phage that distinct from the strains own prophage but very close to

the phages of strain KO5K4.
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4. Conclusions
We performed a comparative genome analysis of nine isolated V. alginolyticus strains and
could show that the strains of the habitat share 422 genes specific for their shared habitat. The
majority of 297 genes are encoded by a set of six closely plasmids whereas, the remaining Kiel
habitat specific genes are encoded by prophages. These results show the importance of these

mobile functions in shaping the V. alginolyticus genome.

A bioinformatic scan for prophages predicts Inoviridae and Caudovirales prophages.
Surprisingly induction experiments with and without mitomycin C exclusively induced
Inoviridae prophages to produce particles. This confirms the dominance of ssDNA Inoviridae
in the isolates. Our experiments show that the ability to produce Inoviridae particles is not
dependent on the induction with mitomycin C. All predicted prophages encode genes for the
Ace protein and the ZOT assembly proteins which are orthologous to pathogenicity factors of

related fish pathogenic Vibrio species.
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Abstract: This work reports the method ClassiPhage to classify phage genomes using sequence
derived taxonomic features. Classil’hage uses a set of phage specific Hidden Markov Models (HMMs)
generated from clusters of related proteins. The method was validated on all publicly available
genomes of phages that are known to infect Vibrionaceae. The phages belong to the well-described
phage families of Myoviridae, Podoviridae, Siphoviridae, and Inoviridae. The achieved classification is
consistent with the assignments of the International Committee on Taxonomy of Viruses (ICTV),
all tested phages were assigned to the corresponding group of the ICTV-database. In addition, 44 out
of 58 genomes of Vibrio phages not yet classified could be assigned to a phage family. The remaining
14 genomes may represent phages of new families or subfamilies. Comparative genomics indicates
that the ability of the approach to identify and classify phages is correlated to the conserved genomic
organization. ClassiPhage classifies phages exclusively based on genome sequence data and can be
applied on distinct phage genomes as well as on prophage regions within host genomes. Possible
applications include (a) classifying phages from assembled metagenomes; and (b) the identification
and classification of integrated prophages and the splitting of phage families into subfamilies.

Keywords: Hidden Markov Models; Vibrionacene; vibriophages; Inoviridae; Myoviridae; Podoviridae;
Siphoviridae; phages; classification; protein coding sequences

1. Introduction

Phages, defined as viruses that infect bacteria, are the most abundant biological entities known
so far [1,2]. The taxonomic classification of viruses and naming of virus taxa is maintained by
the International Committee on Taxonomy of Viruses (ICTV) [3] and the Bacterial and Archaecal
Subcommittee (BAVS) within the ICTV that focuses on phages. The system is based on the evaluation
of a variety of phage properties including the molecular composition of the virus genome (ss/ds,
DNA, or RNA), the structure of the virus capsid and whether or not it is enveloped, the host range,
pathogenicity, and sequence similarity [4,5]. Based upon these different properties the ICTV established
a highly valuable and widely accepted Virus taxonomy. Considering the complexity of features that
contribute to the taxonomy of a phage a comprehensive guideline has been published by Adriaenssens
and Brister [6]. However, due to the availability of Next Generation Sequencing (NGS)-technologies
an increasing amount of genomic and metagenomic sequence data is available that include complete
as well as fragments of so far unknown phage genomes [7,8]. Unfortunately, a systematic classification
of these genomes into the ICTV scheme is impossible due to the lack of corresponding biological
and experimental data [4,9,10]. So for that matter, a taxonomic characterization based on the phages
genome sequence information has become indispensable [5].

Viruses 2019, 11, 195; doi:10.3390/+11020195 www.mdpi.com/journal / viruses
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Many attempts at creating viral phylogenetic trees have failed due to the lack of a universal marker
gene and the high mosaic structure of phages [11]. Sequence-based phylogenetic analysis procedures
like 165 and multi locus sequence typing (MLST) [12-14] are based on the existence of an orthologous
marker molecule shared among monophyletic entities. The finding that phages are a polyphyletic
group of biological entities results in the finding that orthologous markers are available only within
the monophyletic subgroups of phages [15]. Consequently, sequence alignment and similarities based
approaches using single selected marker molecules have been designed for phage classifications
restricted to closely related phage taxa [16]. Clustering techniques for viral classification have been

applied by several authors and confirmed that comparative sequence analysis is effective [11,17-19].

Deschavanne et al. [20] demonstrated that genomic signatures based on oligomer composition are
effective to determine the phylogenetic distance of closely-related phages and their hosts, as well as
within the phages preying on related hosts. The investigation revealed that in the case of temperate
phages, the amelioration process [21] interferes with the calculation of phylogenetic distances between
phages. Rohwer and Edwards used the presence and the similarity of shared proteins to generate a
phage proteomic tree using 105 complete sequenced genomes [22]. This approach is robust towards
dynamic changes in the nucleotide composition. However, proteomic trees are limited in cases where

the BLASTP based similarity determination is challenged by distantly related protein sequences.

Bolduc et al. [23] introduced vConTACT, a tool that uses protein clusters and bipartite network-based
distances to assign a given dsDNA phage genome to a taxon.Aiewsakun et al. [24] demonstrated
that the Genome Relationship Applied to Virus Taxonomy (GRAViTy) software platform, which is
designed for eukaryotic virus genomes, performs well on monophyletic subfamilies of viruses that
infect bacteria and archaea. GRAViTy uses composite generalized Jaccard (CGJ) distances based on
shared genomic features to determine the genetic relatedness of a given set of virus genomes.

The development of bioinformatics methods to recognize and characterize genomics elements is
strongly supported if a well-described sample dataset is available. In the case of our project, we selected
vibriophages, i.e., phages that infect Vibrionaceae, as a training dataset. Vibriophages are known as
an important driving force of the evolution of Vibrionaceae, contributing to the emergence of virulence
and the ecological success of this genus [25]. In the case of Vibrio cholera, the causative of the pandemic
disease cholera (WHO newsletter 2018), the virulence of the bacterium is encoded by viral genes of the
phage. Due to its medical importance, it is a well investigated example of how phages contribute to
the evolution and the virulence of bacterial hosts [26-28]. Vibrionaceae include in addition a number of
important fish pathogens, where integrated prophages have been shown to contribute to the virulence
of the strains, and thus leading to great economic losses [29]. Inoviridae, which comprises the CTX-phage
of V. cholera [30], as well as the filamentous M13 phage [31], are among the best-investigated phages that
have been studied for more than VI decades [28]. Due to the medical and economic importance and
the in detail molecular biological knowledge on Ioviridae, a substantial amount of sequencing data on
Vibrionaceae and Vibriophages is available. Castillo et al. [21] have recently estimated that there exist 5674
prophage-like elements within 1874 published Vibrio genome sequences, and that 45% of the strains harbor
prophages of the family Inoviridae, that contribute by lysogenic conversion, with the Zonaoccludens toxin
(Zot), to the virulence of Vibrionaceae. Multiple studies have shown the presence of Caudovirales in addition
to Inoviridae phages in Vibrio species [32-34]. This makes this group an excellent test case for a sequence
based characterization method and a potential identification of phages.

Hidden Markov Model (HMM) based search and clustering methods proved to be efficient for
the characterization of protein families, as well for the taxonomic characterization of corresponding
genes [15,35]. Here, we present a case study that investigates profiles of combined HMMs derived
from related dsDNA and ssDNAphage genomes, and their efficiency characterize and potentially
identify members of four well-described families of vibriophages. We demonstrate that a method
based exclusively on genome sequences achieves a classification of phages that is consistent with the
ICTV standards. Furthermore, a genomic analysis of the profile HMM characterized genomes, reveals
details and relation of phages corresponding to their phylogenetic distance and their host range.
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2. Materials and Methods
2.1. Data Sources

2.1.1. Phages

Various phage datasets have been used in this study. Firstly, publicly available Vibriophages
sequence datasets were downloaded from NCBI nucleotide database by keyword search; date of
accession 13 February 2018. In total numbers, 159 phage genomes out of which 58 were unclassified,
19 Inoviridae, 37 Myoviridae, 42 Podoviridae, and 15 Siphoviridae genomes infecting Vibrio genomes were
downloaded (Table S1). This dataset was split into a classified for the generation of HMM models and
an unclassified dataset to which the HMMSs were applied for classification purposes.

Secondly, a set of 19 experimentally proven and sequenced Inoviridae phages derived from a
genome sequencing project on 9 V. alginolyticus strains and 1 V.typhli strain isolated from Pipefish [29],
was used for validation of the Inoviridae generated HMMs.

Lastly, in order to test the limitations of the method, sequence datasets of the four phage families
were downloaded from the Millard lab database (http:/ /millardlab.org/bioinformatics /bacteriophage-
genomes/); date of accession March 2018. In total numbers, 119 Ino-, 1766 Myo-,1066 Podo- and 3466
Siphoviridae were downloaded (Table S2).

2.1.2. Host Genomes

In order to test the generated HMMs for phage identification, 154 closed Vibrio genomes publicly
available (Table S3) were downloaded from NCBI by keyword search; date of accession 18.06.2018.
In total numbers, 154 Vibrio genomes out of which 39 were V. cholerae, 22 V. parahaemolyticus,
15 V. wulnificus, 13 V. alginolyticus, 13 V. anguillarum, 9 V. campbellii, 5 V. natriegens, 4 V. harveyi,
4 V. coralliilyticus, and other Vibrio species were downloaded.

2.2. Data Preparation

For each genbank file, a multi-FASTA file containing all annotated coding sequences was created.
The collected protein sequences were concatenated and clustered with the Markov clustering algorithm
(MCL) [36]. CD-hit [37] (V4.5.4) was used to remove redundant proteins. In addition, information on
classification, host, phage size, isolation source was extracted from each genbank file.

2.3. Profile HMM Construction

Produced multi-sequence alignment files were used to build profile HMMs [38], using the
“hmmbuild” command available as part of the HMMER (v3.1b1) package. Subsequently, sensitive
profile HMMs were created out of a minimum of five clustered proteins. Removed proteins were
stored for later refinement steps. The command “hmmpress” was used to create binary compressed
data files (.h3m, .h3i, .h3f, and .h3p) from a profile HMM. These binary files were used to look for
orthologous protein hits in the scanned dataset. The scanned input dataset was used to map hit to
the phage family proteins they were derived from. The function “"hmmemit” was used to create a
consensus sequence from a generated profile HMM. This consensus sequence is closest in similarity to
the majority of sequences used to create the respective HMM.

2.4. Profile HMM Refinement

Using “BLASTP” to align each protein of a cluster against the consensus sequence, and by
specifying the output table to feature the coverage of each sequence compared to the consensus,
the coverage was compared with the user-specified threshold(standard <50%). Proteins not reaching
the threshold were removed. Created profile HMMSs were used to scan the original master-FASTA.
Proteins were refined according to hits of (a) proteins removed due to redundancies, (b) proteins used
to create the HMMs themselves, and (c) not yet assigned proteins. Proteins which are hit and have not
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yet been assigned were added to the profile HMM. Proteins that were used to create the HMM and
were not hit were removed from the profile HMM. Proteins that are hit but were removed previously
due to redundancies were not added. Whenever multiple HMMs hit the same sets of proteins as well
as their inputs, they were merged. Otherwise, HMMs were not merged. Refined HMMs were used
to rescan the input master-FASTA and if needed refinement steps of merging were repeated until no
changes occured.

2.5. CDS Prediction and Additional HMM Refinement

Nucleotide sequences between predicted coding sequences (CDS) were extracted from each
genbank file and were translated into an amino acid sequence. Generated refined HMMs were used
to scan the translated regions. A 50% alignment coverage, a negative bit-score value and an E-value
over 1.5 x 1078 were used as cut-offs to filter the generated hmmscan output. Hits passing the filtered
cut-offs were integrated in the multiple sequence alignment (MSA) input per HMM and HMMs
were rebuilt with the updated MSA. The regenerated HMMs were used to rescan the input phage
master-FASTA files in order to compare HMMs performance when generated based on the original
genbank files and the HMMs generated based on improved genomes. The generated HMMs can be
downloaded at http://appmibio.uni-goettingen.de /index.php?sec=sw.

2.6. Software Tools

PHASTER was used to scan all 154 Vibrio gbk files (Table S3) for the identification of integrated
phages. Visualization was performed using R version 3.2.3 in Rstudio version 1.1.383 and using the R
package “ggplot2” version 3.0.0 unless stated otherwise.

3. Results and Discussion

3.1. Phage Protein Families and Profile HMMs

To generate the initial set of HMMs, the protein sequences of all 110 available genomes known to
infect Vibrionaceae were extracted. The data consists of the proteins from 19 Ino-, 35 Myo-, 42 Podo-, and
14 Siphoviridae phages. To ensure the internal model diversity, redundant sequences were removed and
the remaining protein sequences were clustered with the Markov cluster algorithm (MCL) [37]. Models
generated from clusters of five or more diverse sequences per protein family were evaluated for their
taxonomic specificity (Table 1). In cases where models generated significant better hits against proteins
of the phage taxon from which they have been encoded, the HMMs were considered as taxonomic
indicators of the phage family.

Table 1. Phage family specific HMMs *.

No of Genomes No of Proteins HMMS with  Positive Evaluated
(Size in Kbp) Proteins after MCL >5 Proteins HMMs
Siphoviridae 14 (37.3-128.6) 1497 414 94 54
Podoviridae 42 (38.4-112.1) 2641 490 233 96
Myoviridae 35 (33.1-250) 5915 921 634 242
Inoviridae 19 (6.3-21) 241 39 12 9
Total 110 10,294 1864 973 401

* Details on the complete calculation of the models are in supplementary Table S1.

The procedure resulted in 401 HMMs representing taxonomic indicative profile HMMs. In total
9 HMMs specific for Ino-, 242 for Myo-, 96 for Podo-, and 54 for Siphoviridae were identified as taxonomic
indicators. The proteins used to generate refined HMMs per phage family are summarized in
Supplemental Tables S5-S8. Note that, due to the lack of a sufficient number of diverse protein
sequences, for some protein families no profile HMMs has been generated.
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3.2. Taxon Specificity of the Protein Family Models

To evaluate the discriminative power of a protein family based taxonomy, the profile HMMs were
applied on three different data sets. (I) HMM scan to classify genomes of bacteriophages, known to
prey on Vibrionaceae, into taxonomic groups consistent to the rules defined by the ICTV. (II) A scan of
all proteins encoded by host genomes to investigate the, performance of the method to classify as well
as potentially identify integrated prophages. In this test, host genomes with known biologically active
vibriophages were used as proof of principle. (III) Scan of proteins of all known phage genomes from
the taxa Ino-, Myo-, Podo-, and Siphoviridae.

3.3. Consistency of Taxon-Specific HMMs
The refined profile HMMs, derived out of the four phages families, were used in scans against all

4630 proteins encoded by the 110 phage genomes (Figure 1).

Cross scan of HMMs derived from the four different phage families

_Inoviridae Myoviridae _ Podoviridae Siphoviridae
[ === Inoviridae

- = Normalized bit_score_fs
i3 I 25
eET 20
15
10

0s
.o

HMM cluster

{
i

|

Phages

Figure 1. Markov Models (HMM) scan of phage family derived models own input “CDS” and coding
sequences of other families. The scan of the protein sequences derived from Ino-, Myo-, Podo-, and
Siphoviridae, was conducted by the profile HMMs. The names of all phages grouped into phage-families
are marked at the bottom of heatmap. The bit-score of the HMM matches was normalized by the size
(in bp) of the HMM's consensus sequence (data see Table S9). The results are color-coded from blue
(low-score) to red (high-score).

An application of the HMM profiles on the input phage proteome sequences revealed that the vast
majority of the proteins (83.45%) match exclusively the taxon specific HMMs from the corresponding
phage family. However, there was a number of 16.37% cross matches between the different families
within the Caudovirales models, which indicates that the investigated phage genomes might represent
a monophyletic group within the Caudovirales [39]. In contrast, 0.17% cross-matches occurred between
Caudovirales and Inoviridae and thus support the hypothesis that there is gene exchange between these
not monophyletic taxa [39].
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3.3.1. Inoviridae

In the case of the Inoviridae HMMSs scanning Caudovirales proteomes, all HMMs match exclusively
proteins encoded in Inoviridae genomes, except of one case which has an e-value of 2.9 x 107 to a
protein annotated as “putative streptomycin biosynthesis operon regulatory protein (YP_009021749.1)".
While Caudovirales HMMs scanning Inoviridae proteomes, all HMMs match exclusively proteins
encoded in Caudovirales except in seven cases where the e-value ranged between 1.5 x 1078 and
7.8 x 1072 to proteins annotated as “hypothetical protein” and “RstR” (Table S10). The low number
of cross matches between Inoviridae and Caudoviridae is due to the phenotypical unique features of
filamentous phages in contrast to tailed phages [40,41]. However, cross match hits may as well reflect
genes that have been exchanged between Inoviridae and Caudovirales by a horizontal gene transfer
(HGT) event [11]. Under this condition, the lower quality of the match score would reflect the time
that the proteins evolved after the HGT-event within their separate viral host genomes.

3.3.2. Caudovirales

In case of Caudovirales, scans of HMMs against their encoded proteins lead to a considerable
number of cross matches (16.37%, 758 out of 4630). The proteins are related to basic phage functionality
that are expected to be encoded by genomes of tailed phage like DNA polymerase, DNA replication
initiation protein, ribonucleases, helicases, endonucleases, ligases, terminase, and phage tail proteins,
as well as hypothetical proteins (Table $10). However, the taxon derived models scored better against
taxon encoded proteins. The type of the proteins and the correlation of HMM scores indicate that the
matches are due to the shared genes with a common phylogenetic history of the tailed phages [11] and
not to false positive recognition event of the HMMs.

To further explore vibriophages of the three Caudovirales groups, genome alignments were
performed revealing that the virus genomes have a host specific diversity (Figure 2).
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Figure 2. Alignment of Caudovirales genomes. (A) Myoviridae, (B) Podoviridae, and (C) Siphoviridae.
Genomes of phages that have not yet been assigned by ICTV are marked in pink. Four phages JSF9,
JSF10, JSF12, and JSF15 are boxed in red. JSF12 has been assigned to Podoviridae based on transmission
electron micrographs (TEM) the complete genome alignment indicates a close relation to the Siphoviridae
phage JSF10. The data has been visualized with Easyfig.
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Genome alignments of the three Caudovirales in most of the cases revealed extended sequence
similarities according to the BLAST algorithm within members of the taxonomic groups. Note that the
BLAST algorithm is considerably less sensitive to identify distant similar sequences in comparison
to the profile HMM [15]. This reduced sensitivity is the reason why BLAST based algorithms miss
the taxonomic proximity of the Myoviridae phages 54-7, 11895-B1, and helene 12B3 as well as between
the Myoviridae Eugene 12A10, RYC, and ICP1_2004_A (Figure 2). However, in most of the cases of
Myo- and Siphoviridae, all members exhibit different degrees of similarities over the complete genome
sequences and thus support the statement that the families are monophyletic [24,42]. However, within
the Podoviridae, the comparison revealed four subgroups that did not show pronounced sequence.

3.4. Classification of Unclassified Phages

To examine the generated profile HMMs with regard to their application as a means of
genome sequence based classification of bacteriophages, HMMs derived out of the four different
bacteriophage families were used on to scan the proteomes of 58 published but taxonomically
unclassified Vibrio-phages (Figure 3, Table S1). The details of the HMM scan are summarized in
Table S11.

Classifying the unclassified Vibrio infecting phages
Tt Inoviridae

_= Myoviridae

bit_score_fs_Normalized

N

50

25

.ﬂD

HMM cluster

Podoviridae

Phage

Figure 3. Taxonomic classification of vibriophages. This heatmap shows a profile HMM scan on
the proteins of 58 unclassified bacteriophages genomes. Forty-one unclassified genomes generated
sufficient with enough hits to be assigned to a taxonomic group. The HMMs have been integrated
in the heatmap (x-axis). The HMMs are grouped (on the y-axis) into the respective phage families.
The indicator for the quality of a hit is color coded to the normalized bit-score assigned for the respective

match by hmmscan.
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Taxonomic Assignments of Tailed Phages

For some of the investigated phage genomes, a taxonomic assignment based on experimental data
is available. Zahid et al. [43] classified the vibriophages JSF9, JSF12 and JSF15 as Podo- and vibriophage
JSF10 as Siphoviridae. Our data supports the assignment of phages JSF9, JSF15, and JSF 10. However,
JSF12 according to the profile HMM hits should be classified as Siphoviridae (Figure 2A,B).

Whole genome alignments revealed that all phages that have been assigned by the ClassilPhage
method to an ICTV taxon comprise large genome regions that can be aligned to corresponding classified
reference genomes. However, in some cases, the overall coverage of the alignable parts of the phage
genomes to reference genomes is sparse. In the case of phage JSF12, experimental data indicates an
assignment to Podoviridae while the alignment reveals a higher similarity to reference genomes from
the Siphoviridae. The latter result is in accordance with the results of the profile HMM scan. Both
sequences have been aligned and closely inspected using ACT where no missing ORF was observed.

The application of the method on the unclassified vibriophages dataset explored the capabilities
of ClassiPhage, where transmission electron micrographs (TEM) images confirm the generated
classification. The HMMSs of the different families demonstrated a high specificity, meaning that
when a phage genome is specifically targeted by HMMs of one family, the HMMs of other families
show only insignificant numbers of HMM/ protein matches. This specificity further supports the idea
that it is possible to use the generated HMMs as a means of classification as discussed by [15].

The generated Vibrio derived profiles scanning the proteomes of the phages of the four families
gave us the unique opportunity for a Markov based classification, and sometimes subclassification of
distantly related phages, independently of shared molecular markers or pairwise alignment, but still
in accordance with the ICTV classification scheme.

3.5. Inoviridae Taxonony Phages and Profile HMMs

The nine HMMIs specific for Inoviridae infecting Vibrionaceae were used to scan proteins encoded
by all known Inoviridae. Profile HMMs scan resulted in a number of positive matches (Table $12)
reflecting that the Inoviridac phages infecting Ralstonia, Enterobacteria, Pseudomonas, Xanthomonas, and
Stenotrophomonas encode proteins of the same families as the Inoviridae infecting Vibrionaceae (Figure 4).

Four out of the nine vibriophage generated HMMSs had hits only to Inoviridae infecting Vibrio
hosts proteomes. The rest matched to proteins from non-Vibrielnoviridae. Although all investigated
Inoviridae genome encodes more than one vibrio [noviridae like protein, not a single protein family was
present in all phages. The most commonly shared protein family members are zot-like proteins, which
have been found in 95% of all phages [28]. According to Mai-Prochnow et al. [28] the genomes of
Inowiridee range within a size of 4 Kbp to 12 Kbp which gives spaces to encode up to 11 genes. The
Inoviridae profile HMMs generated within this work contain 19 protein families which explains why
not each HMM finds a protein in each Inoviridae genome supporting the contribution to virulence of
the phage class [44]. However, what is indicative for a member of Inoviridae is the set of proteins that
are found exclusively in members of this phage family [28].

The generated Inoviridae Vibrio derived profiles scanning the proteomes of all Inoviridae phages
gave us the unique opportunity to explore the extent to which proteins are shared between [noviridae
infecting different bacterial hosts.
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Profile HMMs out of Vibrio Inoviridae infecting phages scanned against all Inoviridae
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Figure 4. HMM scan results of all Inoviridae phages.This heatmap shows an Inoviridae derived profile
HMM (y-axis) scan on the proteins of 119 Inoviridae genomes grouped by host genome (x-axis). HMMs
ranged from hits specific to Inoviridae infecting Vibrionaecea to general hits for Inoviridae infecting other
hosts. The indicator for the quality of a hit is color coded to the normalized bit-score assigned for the

respective match by hmmscan.
3.6. Taxonomy of Podoviridae
To elucidate the taxonomic relation of Podoviridae identified by profile HMMs, an extended scan

with the Vibrio Podoviridae models were performed against a set of Podoviridae that infect other bacterial
hosts (Figure 5).

Heatmap of bitscore values of HMM scanning Podoviridae phage proteome

) LitL virus | G7c virus | Vs
. Luz 24 likevirus N4 N4 iRiE
7 virus virus virus

(Sp6likevirus/ phikMV-like)
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HMM score value
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Figure 5. Profile HMM scan of Podoviridae HMMs from Vibrionaceae versus genomes from Podoviridae
phages infecting non-vibrio hosts. This heatmap shows a profile HMM scan on the proteome of 1066
Podoviridae genomes. Sufficient hits were generated to discriminate four groupings of Podoviridae.
The HMMs have been integrated in the heatmap (y-axis). The HMMs are grouped (on the x-axis)
into general Podoviridae subclassifications. The indicator for the quality of a hit is color coded to
thenormalized bit-score assigned for the respective match by hmmscan. The generated hmmscan
output was visualized using matplotlib library in Python 3.5.
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The Podoviridae profile HMMs from vibriophages exhibited, as in the case of the Inoviridae, hits
to multiple proteins out of all published Podoviridae phages (Table S13). Podoviridae represent a much
more complex and diverse class of phages compared to Inoviridae. The genomes of Podoviridae from
Vibrionaceae comprise 96 distinct protein families. However, when grouped by shared HMM hits
and hosts the results of the scan display a degree of specificity and sensitivity that may be useful

to subclassify the taxon. It is no surprise that phages that prey on the same host share proteins.
However, the scores of the HMM hits reflect the degree of similarity shared by the single proteins.

Thus, the heatmap shows the diversity of the different protein classes and thus gives us an idea of the
phylogenetic history of the proteins.

3.7. CDS Prediction and Additional HMM Refinement

The genome annotation of public available phages is the product of gene prediction programs

with different sensitivity [45-48]. This results in genomes where some CDS have not been annotated.

To examine the value of HMMs to identify such missing phage CDS, the intergenic regions of each
phage genbank file used in this study was scanned using the profile HMMs. In total, 234 nucleotide
regions were identified encoding gene products that align to one of the protein families modelled by
the HHMs (Table S14). Indeed, profile HMMs can be used to identify missing CDS.

To investigate whether these new proteins may improve the profile HMMs, we generated refined
HMMs using the original proteins plus the new identified CDS as described in the material and
methods section. An evaluation of the refined HMMs identified exactly the same proteins per HMM
with slightly moderated hit scores. The test revealed that the refinement of the HMMSs did not yield
better performing HMMs. The sensitivity of HMMs is correlated much stronger to the diversity than
to the number of the proteins used in the initial alignment step. We concluded that our original profile
HMMs already contain sufficient diverse proteins to model the protein families and thus the model’s
predictive power is already close to saturation.

3.8. Identification and Classification of Prophages within Bacterial Genomes

Scan of Positive Dataset of Vibrio Genomes

Apart from phage genomes generated from phage particles that have been experimentally
confirmed to infect bacteria, host genomes themselves contain in many cases integrated prophages
derived from old infection events [49]. To examine the reliability of the profile HMMs with regards
to their ability to identify and support the classification of bacteriophages integrated within a
bacterial genome, a scan of 10 sequenced Vibrio strains with experimentally proven active Inoviridae
prophages [29] was performed. The bacteriophage family specific HMMs were used to search for

matches within the complete protein sets of nine Vibrio alginolyticus and one Vibrio typhli genome.

The same strains have been scanned using PHASTER for phage identification. Whenever HMM hits
co-localized and matched a prophage region predicted by PHASTER, they were represented in a
separate facet (Figure 6).

In each of the genomes, the profile HMMs hits indicate the presence of genes encoding putative
phage proteins. In the case of the strains V. alginolyticus K04M1 and K05K4 two complete replicons
are present as extra-chromosomal phages [29] where the nine refined HMMs had matches. In all nine
V. alginolyticus strains, Inoviridae derived profile HMMs match to a single locus on chromosome 2 of
eight strains, and two other loci on the K09K1 strain.In some instances we could identify two distinct
prophages that integrated in close proximity within the host chromosome [29] and was reflected by
multiple hits of the same HMM in the same region. While strains KO6K5 and K10K4 had an additional
Inoviridae integrated at the same locus on chromosome 1. For the V. alginolyticus strains it has been
shown by the Phage-seq method [50] that the corresponding genome regions express biological active
Inoviridae particles encoding the protein sequences that match the profile HMM.
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The scan of a positive data set of 9 V. alginolyticus and 1 V. typhli genome confirmed several hits
for Inoviridae proteins, where the integrated prophages were located and experimentally confirmed as
well as on three extra-chromosomal Inoviridae phages supporting the reliability of the method.
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Figure 6. HMM search for prophages in Vibrio genomes with proven phage activities.Family specific
HMMs constructed for Ino-, Myo-, Podo-, andSiphoviridae (grouped on x-axis) were used to scan all
proteins derived from the genome of nine V. alginolyticus and one V. typhli genomes (x-axis per phage
family grouping). In all of the V. alginolyticus genomes, regions encoding proteins matching to the
profile HMMs were found (plotted per position and grouped per replicon on the y-axis). In cases where
a region with consecutive HMM hits predicted as well by PHASTER was separately faceted.

3.9. PHASTER and ClassiPhage Scan of Published VibrioGenomes, Commonly and Additional Identified
Phage Regions

PHASTER scan of 158 published closed Vibrio genomes resulted in the prediction of 458 prophages,
out of which 143 were confirmed by the ClassiPhage scan (Table S15). Additionally, 64 regions where
more than three consecutive HMM hits have been predicted by ClassiPhage that indicate protein genes
of phage origin (Table S16). In addition to locus identification, ClassiPhage enabled us to taxonomically
classify the prophages into Ino-, Myo-, Podo-, or Siphoviridae (Table S16, Figure S2). Most phages (>90%)
could be classified into Inoviridae and some as Podoviridae. Our results further support the findings that
Inoviridae are the most frequent phages infecting Vibrio species [21]. For Myoviridae and Siphoviridae
HMM hits of one hypothetical protein it is not enough to classify.

On the other hand, the ClassiPhage method failed in identifying a set of 315 regions predicted
by PHASTER. This set of genome regions encode proteins that match to proteins of phages infecting
Salmonella, E. coli, Bacilli (Table S15, Figure S1) such as integrases, recombinase as well as proteins of
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unknown functions. Note that phages share these kinds of proteins with other types of mobile genetic
elements and that PHASTER characterized the vast majority of these loci as incomplete. However,
in the case of a vibriophage reference in 61 cases, no HMM generation was possible due to the low
number of proteins clustered during the HMM generation steps (vibriophage 12A4, vibriophage 12B12,
Vibrio 8, Vibrio K139, Vibrio kappa, Vibrio N4, Vibrio pYD38, VfO3K6, V33, VfO4K68, VHML, VP4,
VP882, VvAW1, X29).

Future developments, to overcome this limitation, would include using starting data sets not
limited to vibriophages, rather using all available phages, generating HMMs and scanning diverse
bacterial genomes. The possibility to generate more diverse and inclusive HMMs increases when more
clusters generated out of closely related yet diverse phages are used, which reinforces the need to
develop a method including more phage sequences, not limited to a host.

Additionally, the HMM scan resulted in hits that could not be assigned to a reference phage family.
This might be evidence for vibriophages of so far unknown phage taxa or indicate false positive hits
of the ClassiPhage method reflected by a low bit-score value, or due to HGT whenever the bit-score
value was high. The scan of published Vibrio genomes generates much more hits than to a phage
region, the reason why the combination of consecutive hits located in a certain region, size of the
identified ORFs, annotation, E-value and bit scores are key to identify which hits belong to a phage
and which do not. Hits not belonging to a prophage generally have low scores. In the case of a high
score, proteins are annotated as “polymerases” or “flagellum” or “Transposon area”, whereas phage
related annotations are explained by being remnants of phages or by HGT.

The use of a combination of profile HMM hits for phage classification is a relatively new approach
for the characterization of bacteriophages and thus further steps must be considered to better exploit
the method [15].

4. Conclusions

In this work, we describe ClassiPhage, a method for phage classification independent of a shared
molecular marker, based on combination of multiple profile HMM hits generated from a set of classified
phage proteomes, and thus generating a Markov-based classification fitting the ICTV classification.
We discussed the generation and refinement of profile HMMs, their validation across four different viral
taxa and their application for viral taxonomic classification, focusing on vibriophages. Additionally,
we used the generated HMMs to scan whole genomes and benchmarked the identified regions to
PHASTER predicted prophage regions, to attempt viral identification prior to classification using the
ClassiPhage method. We were able to show that the ClassiPhage method was able to reliably classify,
by scanning the protein coding sequences of (i) a set of unclassified vibriophages; (ii) experimentally
proven Inoviridae; and (iii) integrated phages in a set of closed and published Vibrio genomes, into one
of the four phage families. We were also able to show that the method is not limited to vibriophages but
the potential of the method extends towards phage subclassification, especially in the case of Podoviridae.
This analysis supports the correlation of the generated HMMs per vibriophage family to the bacterial
host. Lastly, we were able to show the potential of the method to be used as a phage identification and
classification tool by scanning bacterial genomes using the refined HMMSs and analyzing the protein
sequence hits with regards to their consecutive location in the host genome. This method showed
limitations for the case when scanned unclassified phages had one ambiguous hit to the refined HMMs
and when phages identified by PHASTER which were missed by the ClassiPhage method. Phage
identification must be coupled with sequence features for correct phage boundary identification. This
limitation is a consequence of the quality and the constraints of the HMMSs generation step, which
makes it clear that fundamental steps must be considered to generate better and more comprehensive
viral derived refined HMMs. We foresee that, with an ever-increasing amount of viral sequences and
with the generation of robust and comprehensive viral HMMs, this method has the ability to classify
phages into their taxonomic family in accordance with the ICTV scheme. The generated scans can
subsequently be used in machine learning approaches to automatically classify viral sequences.
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Abstract:

Background/ Motivation:

In the era of affordable next generation sequencing technologies we are facing an exploding amount
of new phage genome sequences. This requests high throughput phage classification tools that meet
the standards of the International Committee on Taxonomy of Viruses ICTV). However, an
accurate prediction of phage taxonomic classification derived from phage sequences still poses a
challenge due to the lack of performant taxonomic markers. Since machine learning methods have
proved to be efficient for the classification of biological data we investigated how artificial neural

networks perform on the task of phage taxonomy.

Results:

In this work, 5,920 constructed and refined profile Hidden Markov Models (HMMs), derived from
8,721 phage sequences classified into 12 well known phage families, were used to scan phage
proteome datasets. The resulting Phage Family-proteome to Phage-derived-HMMs scoring matrix
was used to develop and train an Artificial Neural Network (ANN) to find patterns for phage
classification into one of the phage families. Results show that using the 100 fold cross-validation
test, the proposed method achieved an overall accuracy of 84.18 %. The ANN was tested on a set of
unclassified phages and resulted in a taxonomic prediction. The ANN prediction was benchmarked
against the prediction resulting of multi-HMM hits, and showed that the ANN performance is

dependent on the quality of the input matrix.

Conclusions:

We believe that, as long as some phage families on public databases are
underrepresented, multi-HMM hits can be used as a classification method to populate
those phage families, which in turn will improve the performance and accuracy of the
ANN. We believe that the proposed method is an effective and promising method for
phage classification. The good performance of the ANN and HMM based predictor
indicates the efficiency of the method for phage classification, where we foresee its

improvement with an increasing number of sequenced viral genomes.

Keywords:
Phage; Classification; HMM; Machine Learning; Artificial Neural Networks
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Introduction:

Bacteriophages, bacterial viruses infecting bacteria, are of utmost importance due to the role they
play in bacterial evolution (Roux et al. 2016). Virus classification is based on the idea of an
evolutionary relationship between viruses and groups of viruses having more ability to exchange
genetic material (Hans-W Ackermann 2011). Virus taxonomy is currently the responsibility of the
International Committee on the Taxonomy of Viruses (ICTV). As of March 2017, there exist 4,404
approved Species, 735 Genera, 35 Subfamilies, 122 Families and 8 Orders (Lefkowitz et al. 2017).

The traditional method for the classification of phages is based on deciphering the type of nucleic
acid and virion morphology using Transmission Electron Microscopy (TEM)(Rohwer & Edwards
2002). Experimental identification and classification of phages is based on physiological data and
needs time to perform the experiments and expertise on the culture conditions of the corresponding
host and phage system. However, within the explosive growth of phage sequences in the era of next
generation sequencing technologies, there is an increasing amount of phage derived sequences that
lack physiological data and knowledge on the host of the phages, especially in the case of
metagenome data. This poses challenges to the successful implementation of a method which
correctly classifies phages(Skewes-cox et al. 2014). Therefore, the development of a sequence
based computational method, with the flexibility to integrate newly sequence derived phage

descriptors, is necessary to allow rapid and accurate classification.

It is a known fact that phages do not have a ribosomal gene to place them on the tree of life
(Rohwer & Edwards 2002).Phage classification based nucleotide pairwise comparison limits the
process to similarities to phages found within reference databases (Bolduc et al. 2017). This poses a
challenge to phage sequences identified from metagenomic datasets, where in one study by Paez-
Espino et al (Paez-Espino et al. 2016), they identified over 125,000 contigs which revealed no

sequence similarity to known viruses.

To that extent, taxonomic systems based on phage proteomes were suggested; however they come
with their limitations (Meier-Kolthoff & Goker 2017). Clustering techniques optimized for viral
classification were applied by Lima-Mendez et al. (Lima-Mendez et al. 2008)and Roux et al. (Roux

et al. 2015), which showed the efficiency of the use of phage clustering as a basis of classification.

Profile HMMs proved to be a powerful method to model the sequence diversity of a set of
orthologs, and thus are sensitive and more effective than pairwise alignment methods in detecting
divergent viral sequences (Skewes-cox et al. 2014; Reyes et al. 2017). Additionally, Chibani et al.
2019 (accepted) showed that the use of a combination of phage derived profile HMM hits proved to

be efficient to classify previously unclassified phage genomes into different phage families.
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The emerging fields and use of machine learning and data mining in different biological fields are
proving to be instrumental in answering challenging questions by looking into millions of biological
data produced in the last decade. Because of their success with big data, ANNs and other machine
learning models have gained a considerable amount of interest as a promising framework for
biology. When combined with genomic information, novel machine learning and data mining
techniques can advance the extraction of critical information and predict future observations from
big data. Considerable progress has been made in the application of Support Vector Machines
(SVM) (Manavalan, Tae H. Shin, et al. 2018; Tan et al. 2018) and Naive Bayes (Feng et al. 2013)
machine learning algorithms to identify phage virion proteins and in the application of ANN to
classify tailed phages (currently deprecated) (Lopes et al. 2014). However, the use of machine
learning for phage taxonomic classification has not been reported so far. Therefore, it is necessary
to apply meaningful feature extraction and selection methods to investigate the classification

method.

In order to address the limitations of current phage taxonomic classification software, we focused
on the question of how profile HMMs (Chibani et al 2019 (accepted)) perform within a machine
learning approach for the automated classification of phage genome sequences. We designed and
developed an ANN, a well known supervised Machine Learning (ML) algorithm, which has been
applied to several biological problems (Arango-Argoty et al. 2018; Seguritan et al. 2012). The ANN
takes protein hits scores to phage derived profile HMMs per phage family as input, by applying a
set of thresholds to select optimal features for a phage classification method. The performance of
supervised prediction algorithms depends on the quality of the training data set. We therefore
generated a training data set to train an ANN to classify new phage genomes and whether the public
available phage genomes are sufficient. To our knowledge, this is the first ever reported use of
ANN for the classification of phages into phage families with a trusted performance to accuracy

ratio for the predictions.
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Materials and Methods:

A five-step guideline has increasingly been endorsed (Manavalan, Tae Hwan Shin, et al. 2018) in a

series of recent publications, to develop a sequence-based predictor for a biological system that can

easily be used, which goes as follow:

(i) generating a solid benchmarking dataset to train and test the prediction model; (ii) formulate the

biological sequence samples with an effective mathematical expression that can truly reflect their

intrinsic correlation with the target to be predicted; (iii) develop a powerful algorithm to generate a

prediction; (iv) implement cross-validation tests to objectively evaluate the performance of the

predictor; and finally, (v) establish a user-friendly web-server for the predictor that is accessible to

the public. Below, we describe the achieved steps.

Data Collection

The raw phage dataset used in this research were retrieved from millardlab database

(http://millardlab.org/bioinformatics/bacteriophage-genomes/).

As of 20 March 2018, the database contained in total 8,721 phage genomes (Table S1) belonging to
21 phage families summarized in Table 1.

Table 1: Summary table of the phage families and number of phages belonging to each phage
family found in the millardlab database as of 20 March 2018

ds/ss DNA/RNA  Phage Family Number
Classified Phages

ds DNA Ampullaviridae 6
ds DNA Bicaudaviridae 10
ds DNA Myoviridae 1,766
ds DNA Podoviridae 1,066
ds DNA Siphoviridae 3,466
ds DNA Corticoviridae 2
ds RNA Cystoviridae 15
ds DNA Fuselloviridae 22
ds DNA Globuloviridae 4
ds DNA Guttaviridae 1
ds DNA Haloviruses 30
ss DNA Inoviridae 119
ss RNA Leviviridae 40
ds DNA Ligamenvirales (Lipothrixviridae and Rudiviridae) 49
ss DNA Microviridae 734
ds DNA Plasmaviridae 2
ds/ss unclassified  Pleolipoviridae 16
ds DNA Salteproviridae 2
ss DNA Spiraviridae 1
ds DNA Tectiviridae 19
ds DNA Turriviridae 4
Unclassified Phages

- - Generally unclassified phages 1,175
ds DNA unclassified phages 105
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ds DNA Caudovirales unclassified phages 67

The first two columns represent the nucleic acid structure of the phage family. The third column represents the phage
family and the fourth column represents the number of phages belonging to every phage family. ds: double stranded, ss:
single-stranded, DNA: Deoxyribonucleic acid, RNA: Ribonucleic acid.

Data Construction

For the purpose of obtaining a reliable benchmark dataset, the following steps were considered.
Phage families which had less than 15 phage genomes were excluded, in order to ensure diverse
phages with diverse proteins for HMM generation. This step is crucial in order to differentiate
between the highly biased number of Siphoviridae phages and least abundant ones. This resulted in
12 of the 21 phages families (Cystoviridae, Fuselloviridae, Haloviruses, Inoviridae, Leviviridae,
Ligamenvirales, Microviridae, Myoviridae, Pleolipoviridae, Podoviridae, Siphoviridae and

Tectiviridae) used for the benchmark dataset construction.

Figure 1: Overall framework of Phage_input_matrix construction.
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Non-redundant CDS, extracted from classified phage gbk files, were used as input for the Markov
Clustering algorithm (MCL-edge). Clusters including more than 5 proteins were used to generate
profile HMMs. Profile HMMs were subjected to refinement steps after rescanning the input
extracted CDS. Refinement included 1) proteins not reaching the coverage threshold of 50% of the
HMM consensus sequence were removed, and if were hit again, added to the model; 2) proteins
removed due to redundancies were not added to the model; 3) proteins used to create the HMMs
themselves if were hit were kept, if not hit thus were removed from the model; 4) not yet assigned
proteins were added to the model. Rescanning the input and refinement steps were repeated until no
change was observed. Resulting HMM scan bit-scores were normalized, and a set of input features
were extracted, using the generated HMMs scanning the input data set, resulting in a cross-scan
matrix of HMM-Phage-Family correlation to Protein-Phage correlation, we call

Phage_input_matrix.

HMM profiles from the 12 phage families were generated as described by Chibani et al. 2019
(accepted) (see Figure 1 for an overview of the methodology). In summary, protein coding
sequences were extracted from the phage Gbk files, and sequences containing non-standard amino
acid residues were excluded, as their meanings are ambiguous. To avoid biases and over-fitting,
redundant proteins defined by CD-HIT (v.4.5.4)(Li & Godzik 2006) program by applying a 100%
sequence identity cut-off, were removed during HMM generation steps. It should be noted that
redundant proteins were removed only from the dataset used for HMM construction and not for the
testing dataset. MCL-edge (v12-068) (Enright 2002) was used to generate protein clusters out of a
BLASTp scan of all-against-all input protein sequences. For the clusters which had more than 5
proteins, multi-sequence alignment (MSA) files were generated. Profile HMMs were generated, per
MSA file, using “hmmbuild” from HMMER (v3.1b1) (Finn et al. 2011) with default parameters.
Removed proteins were stored for later refinement.

The initially generated HMMs were then refined considering the following steps:

Firstly, the function "hmmemit" was used to create a consensus sequence from a generated profile
HMM. This consensus sequence is closest in similarity to the majority of sequences used to create
the respective HMM. Using "BLASTP" to align each protein of a cluster against the consensus
sequence, proteins not reaching the coverage threshold of 50% were removed and stored for later
refinement as well.

Secondly, the command "hmmpress" was used to create binary compressed data files ((h3m, .h3i,
.h3f and .h3p) from a "profile HMM". With "hmmscan" the binary files were used to look for
orthologous protein hits in the scanned dataset. Created profile HMMs were used to scan the input
fasta files where protein hits could be mapped to a) proteins removed due to redundancies b)

proteins used to create the HMMs themselves ¢) not yet assigned proteins.
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Lastly, proteins which are hit and have not yet been assigned were added to the profile HMM.
Proteins that were used to create the HMM and were not hit, were removed from the profile HMM.
Proteins that are hit but were previously removed due to redundancies were not added. Whenever
multiple HMM s hit the same sets of proteins as well as their inputs, they were merged. Refined
HMMs were used to rescan the input fasta and, if needed, refinement steps of merging were
repeated until no changes occur. Resulting HMM scan bit-scores were lastly normalized (see Data

normalization section) for further analysis.

Feature extraction

The aim of this experiment was to train ANN Machine Learning (ML)-based model to accurately
map input features generated from HMM scans, to predict the phage family a phage sequence
belongs to, which is considered a multiclass classification problem. The key is to extract a set of
informative features. We generated a set of input features for the ANN predictor, by scanning the
proteomes of the 7,342 phages, of the remaining 12 phage families, using the generated 5,920
refined profile HMMs, which resulted in a cross-scan matrix of HMM-Phage-Family correlation to
Protein-Phage correlation. The resulting bit-scores per HMM were extracted to generate input

feature vectors for the training dataset with the phage family as the label.

For each individual phage of the phage family, one row is set up in the matrix, with the first two
columns containing the bacteriophages name, which was later dropped, and phage family, which
was used as the label. All other columns contain the bit-score value of the 5,920 HMM profiles scan
of this phage protein sequences, or a default value of zero for no hit of that profile. We name our

input matrix Phage_input_matrix.

Data normalization

The bit-score values were normalized by dividing the resulting HMM scan bit-score by the number
of amino acids of the consensus sequence of every HMM cluster. Hits of insufficient quality were
filtered (e-score value <le-10,(Amgarten et al. 2018; Arango-Argoty et al. 2018)). Additionally, if
the bias of a hit was larger than the bit-score it produced, or if the bit-score was below zero in the
first place, the corresponding HMM profile hit was omitted. If negative bit-score values were
allowed, this would increase the value of empty hit cells in the final input matrix to a value greater
than zero, creating values of HMM profile hits in the training dataset where there are none in the

input.

After the creation of the matrix is completed and prior to the training of the ANN, its values are
normalized to range from of [0,1], by employing “Minmax” formula described in (Manavalan et al.
2014):
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b = a —min (a)/max (a) — min(a) — min(a)

that can be used to reduce a k-dimensional array with any range to an array of the same shape

covering a range from O to 1.

Artificial Neural Network

We employed ANN as our algorithm, the objective of which is to learn to recognize patterns in a
given dataset. Once it has been trained on samples of your data, it can make predictions by
detecting similar patterns in future data(Schmidhuber 2015)). The “softMax™ function (Manavalan,
Tae H. Shin, et al. 2018), which is defined as b = exp (ai)/Z exp(zj)(Andrew Skabar, Dennis
Wollersheim 2006), with a being a k-dimensional array. The resulting array, b, of the same shape
as a, holds values ranging from O to 1 where all values in b add up to 1. Softmax was implemented
as the activation function of the ANN’s output layers.

Based on the difference between the model’s predictions and the correct values, an error rate is
calculated and the weights in each layer of the network are adjusted to reduce the error of the
prediction. This procedure is performed from the output layer through the entire network to the
input layer, hence the term back-propagation. The extent to which weights are adjusted is controlled
by a learning rate. While linear and exponential decay functions did result in an increase of
accuracy, the decay had to be gradual for the model to reach good prediction accuracy. This was
achieved with high numbers of training epochs. We adapted the cosine decay, as discussed by
(Loshchilov & Hutter 2016), proved to be the most efficient approach to decay the learning rate in

our tested ANN architecture. In this study, we used the TensorFlow 1.10 package.

Cross-Validation and Independent Testing

Usually, the benchmark dataset comprises a training dataset for training and a testing dataset for
testing the model. Here, we performed 100-fold cross-validation on the training dataset and the
trained model was tested on the independent dataset to confirm the generality of the developed
method. For that, the benchmark dataset is split into 100 subsets, where 1/ 100™ of the initial data
used for each of the testing subsets and the remainder used for training and cross-validation is
performed using each of these 100 subsets as the testing dataset. The model trains for 100
individual sessions, once for each subset, as it must not have trained on any entry it later classifies

in a testing set.

Here, all entries of the initial set are classified after the classification has ended, but the results can

still vary due to the random distribution of entries in each training/testing subset. It should be noted

118



ClassiPhage 2.0: Sequence-based classification of phages using Artificial Neural Networks

bioRxiv preprint first posted online Feb. 22, 2019; doi: http://dx.doi.org/10.1101/558171. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.

216  that we performed 5 independent 100-fold cross-validations to confirm the robustness of the ML

217  parameters.
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Performance Evaluation Criteria

To provide a simple method to measure the prediction quality, the following three metrics,
sensitivity (Sn), specificity (Sp) and accuracy (Acc) were used and expressed as:
(i)Sn=TP/(TP + FN)
0<Sn<1
(i) Sp = TN /(TP + FP)
0<Sp<1
@iii) Acc = (TP + TN)/(TP + FP + TN + FN)
0<Acc<1
where TP is the number of phage correctly predicted to be of their corresponding phage families;
TN is number of non-classified phages predicted to be not belonging to any phage family; FP in the
number of is the number of non-classified phages predicted to belong to a phage family; and FN in
the number of classified phages predicted not to belong to any phage family.
To further evaluate the performance of the ANN and determine suitable thresholds for the
prediction values of the different families, we employed receiver operating characteristic (ROC)
curves for the classification of each family. The ROC curve was plotted with the specificity as the
x-axis and sensitivity as the y-axis by varying threshold. The area under the curve (AUC) was used
for model evaluation, with higher AUC values corresponding to better performance of the classifier.

The quality of the proposed method can be objectively evaluated by measuring the AUC.

Results

Data Construction

This method resulted in 5,920 refined profile HMMs, derived from 7,342 phages classified into 12
phage families (Table 2).

Table 2: Summary table of the number of refined HMM:s resulting per phage family

Phage Family Refined HMMs

Cystoviridae 2
Fuselloviridae 21
Haloviruses 48
Inoviridae 21
Leviviridae 4
Ligamenvirales 70
Microviridae 11
Myoviridae 2,851
Pleolipoviridae 3
Podoviridae 701
Siphoviridae 2,170
Tectiviridae 18
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The first represents the phage family. The second column represents the number of refined HMMs generated per phage
family.

The cross scan matrix resulting from the scan of HMMs derived from one phage family against the

proteome of the 11 other phages families resulted in 60,560 protein hits by input HMM (Table S2).

Neural Network Training and Classifications

The accuracy of the model during training was monitored using a scatter plot, which records the
models performance on the testing set at every 10™ epoch of model training. Further collected
metrics, the accuracy of the classification of the training and the testing data, as well as the learning
rate at the given training epoch, were collected and plotted when training was complete (Figure 2).
An overall prediction accuracy of 84.18 % was achieved by adopting ANN with a 100-fold cross-

validation method on all phages in the dataset.

T e —

ﬁ
—
—

Figure 2: ANN performance on input matrix over training epochs.

The plot displays the trends of the learning rate, training set accuracy and testing set accuracy over
500 epochs. The high learning rate in early epochs shows the high fluctuation of accuracies between
epochs, as the adjustment of the model’s weights modifies it heavily. In the final epochs, the

accuracy of the testing data classification reached 84.18%.
The scatter plot shows that the chosen batch size of 100 yielded the best result. We do not see

information about possible issues with over- or under-fitting data. The model does not performs
poorly on the testing set compared to the training set and thus did not result in over-fitting. Over-

fitting results in a fluctuating training performance and low testing performance. Additionally, the
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model did not result in a poorer performance on both the training and the testing set. Under-fitting
of the model to the training set results in a training performance curve that is constantly higher than
the testing curve. The learning rate displays a decrease with an increasing number of epochs, to
reach 0, when the accuracy of the testing reaches its high of 84.18%. We conclude there is no

reason to assume issues with an over- or under-fitting model.

Model performance and Metrics

The main output of the neural network is the label of the testing set and predictions of the model for
each entry recorded at any training epoch. Using this information, the performance of the neural
network can be accessed in detail for different stages of training. The labels of testing data are
compared to the models assignments of the last recorded prediction by taking the maximum value

of the models assignments.

As shown in Table 3, the TP, TN, FP, FEN, Sp, Sn and Acc were calculated for the classification
into the different phage families by using all 5,920 features.

Table 3: Predictive performance of the ANN per phage family

Phage Family TP TN FP FN Sensitivity  Specificity  Accuracy
Cystoviridae 0 7,790 0 22 0 1 0.9971838
Fuselloviridae 0 7,782 0 15 0 1 0.9980762
Haloviruses 4 7,782 0 25 0.137931 1 0.9967994
Inoviridae 88 7,633 0 91 0.4916201 1 0.9883513
Leviviridae 25 7,776 0 11 0.6944444 1 0.9985919
Ligamenvirales 8 7,742 0 35 0.1860465 1 0.9955042
Microviridae 59 7,057 13 173 0.2543103 0.9981612 0.9745275
Myoviridae 577 6,548 40 647 0.4714052  0.9939284  0.9120584
Pleolipoviridae 0 7,796 0 16 0 1 0.9979519
Podoviridae 605 7,001 21 185 0.7658228 0.9970094 0.9736303
Siphoviridae 3,693 2,691 214 944 0.7964201  0.9325984  0.8517665
Tectiviridae 3 7,776 0 25 0.1071429 1 0.9967965

True or wrong phage classification prediction was assumed when the taxonomic prediction matched
or did not match respectively the taxon that was given by the authors of the genome sequence. The
number of correctly predicted phages (TP) of Siphoviridae (79.6%), Podoviridae (76.6%),
Leviviridae (69.4 %), Inoviridae (49.1%), Myoviridae (45,5%), Microviridae (25.4%), Haloviruses
(13.79%), Ligamenvirales (18.6%) and Tectiviridae (10.71%). Neither Cystoviridae, nor

Fuselloviridae, or Pleolipoviridae were correctly predicted (TP = 0).

On the other hand, phage families where FP was predicted were Microviridae, Myoviridae,
Podoviridae and Siphoviridae. All four phage families are known to infect bacterial hosts, however
Microviridae are sssDNA phages, whereas Myo-, Podo- and Sipho- are ds/DNA tailed phages

belonging to the order of Caudovirales.
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The clearest trend is the misclassification of entries to the Siphoviridae family. This occurs in
families that are closely related to Siphoviridae (Myoviridae, Podoviridae), but also in structurally
very distinct families such as Fuselloviridae and Inoviridae. This could indicate unexpected gene

flux between unrelated phage species (Shapiro & Putonti 2018).

ROC curves and thresholds

It is important to note that the confidence values in the final output of the model are not a
percentage of likelihood for the corresponding entry. For example, a value of 0.7 as the highest
value for an entry does not mean that the classification has a probability of 70% to be true.
However, it makes it possible to set a threshold value to distinguish between more and less
significant predictions. A higher threshold can improve the specificity of classification while a
lower threshold results in highly sensitive classification. One threshold may have different effects
on families, as the prediction scores are not calibrated between them. Thus, one score may be suited
to distinguish true positives from false positives in one family but inappropriate to do this in another
(Fawcett 2006). To determine suitable thresholds for the prediction values of different families,

ROC curves for the classification of each family were created and plotted using the R package

1.0

08
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]

Sensitiity

] —— Cystoviridae. 0.719
I— Fuselloviridae. 0.765

r Haloviruses. 0.682
1 == |noviridae. 0.921

J Leviviridae. 0,952
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Ligamenvirales. 0.934
Microviridae. 0.931
Myoviridae. 0,935
— Pleolipoviridae. 0.829
Podoviridae. 0.945
(’ Siphoviridae. 0.95
—— Tectiviridae. 0.88
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0 0.
Specificity

pROC (Figure 3).

Figure 3: ROC curve resulting from the ANN classification.
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ROC curves out of the input matrix dataset prediction. The performance of the neural network
ranges from near perfect prediction (AUC of 0.97 for the Leviviridae family) to almost random
(AUC of 0.682 for the Pleolipoviridae family). The varying trends of the individual curves reflect

that classifications of different families benefit from thresholds that are unique to them

From the ROC curves, AUC (Area Under the Curve) values were calculated, which provided
insight into the prediction performance without a specific threshold. As the area in a ROC plot is
always 1, the area under the curve can range from 0 to 1, with 0.5 representing no predictive power
and 1 perfect prediction. It can be interpreted as an average performance metric for the classifier.
All calculated AUCs for were displayed in the legend of the ROC curves (AUC of 0.719 for
Cystoviridae, 0.765 for Fuselloviridae, 0.682 for Haloviruses, 0.921 for Inoviridae, 0.952 for
Leviviridae, 0.934 for Ligamenvirales, 0.931 for Microviridae, 0.935 for Myoviridae, 0.829 for
Pleolipoviridae, 0.945 for Podoviridae, 0.95 for Siphoviridae and 0.88 for Tectiviridae).

External dataset test

The proteomes of (~1,347) unclassified phages (Generally unclassified phages, ds/DNA
unclassified phages and ds/DNA/Caudovirales unclassified phages) were scanned using the set of
5,920 refined profile HMMs. A matrix using the resulting bit-scores per HMM was generated,
where the bit-scores were normalized as was described previously. We used the generated ANN to
test the ability of the ClassiPhage 2.0 model to predict the phage family classification of the
unclassified phages. Out of 1,175 generally unclassified phages, predicted phage families were
Inoviridae, Microviridae, Myoviridae, Pleolipoviridae, Podoviridae, Siphoviridae and Tectiviridae.
Out of 105 ds/DNA unclassified phages, predicted phage families were Microviridae, Myoviridae,
Podoviridae, Siphoviridae and Tectiviridae. Finally, out of 67 ds/DNA/Caudovirales unclassified
phages, predicted phage families were Halovirus, Microviridae, Myoviridae, Podoviridae and
Siphoviridae (Table S8). Haloviruses and Microviridae can’t be a classification for
ds/DNA/Caudovirales, which shows that ClassiPhage 2.0 misclassifies phages where cross hits
occur and enough family specific HMM hits,

We generate a heatmap of the prediction of the same set of unclassified vibriophages classified by

Chibani et al 2019 (accepted) (Figure 4).
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Heatmap of predicted phage taxonomic classification
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Figure 4: Heatmap of ClassiPhage 2.0 prediction of unclassified vibriophages.

A heatmap based on a phage family prediction of a set of unclassified vibriophages by the ClassiPhage 2.0
model, displaying the phage labels (y-axis) and phage family prediction (x-axis).

22 classified phages were consistent with the classification resulting in Chibani et al. 2019
(accepted). 23 phages which had an unclear classification were classified as Siphoviridae by
ClassiPhage 2.0. Lastly, out of 17 phages which were not consistent between the two methods, the

clearest trend was the misclassification of entries to the Siphoviridae phage family (Table S9).

Comparison to other methods

To the best of our knowledge, there exists no theoretical method for phage classification into phage
families. Therefore, we cannot provide the comparison to analysis with published results to confirm
that the model proposed here is superior to other methods. However, we generated a matrix out of

the expected phage classification, as described in Chibani et al 2019 (accepted), to which we
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compare the prediction of ClassiPhage 2.0 of the unclassified dataset. We display phage predictions

resulting from ClassiPhage and ClassiPhage 2.0 (Figure 5).

Unclassified phages classification prediction based on 1) ClassiPhage 2.0 and 2) ClassiPhage
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Figure 5: Barplot representing the classification of the unclassified phage dataset based on
ClassiPhage 2.0 and ClassiPhage.

A bar plot summarizing phage classification prediction of 1) dsyDNA/Caudovirales, 2) dsfDNA unclassified
phages and 3) generally unclassified phages based on ClassiPhage 2.0 (yellow bars) and ClassiPhage (blue

bars). Displaying the count number (y-axis), and the grouped phage family prediction (x-axis).

HMM based phage classification, resulted in the classification of 835 out of 1,175 generally
unclassified phages into 5 of the 12 phage families (3 Fuselloviridae, 3 Haloviruses, 261
Mpyoviridae, 307 Podoviridae and 261 Siphoviridae), and resulted in the classification of 67 out of
105 ds/DNA (1 Halovirus,10 Myoviridae,16 Podoviridae and 40 Siphoviridae) and 48 out of 67
ds/DNA/Caudovirales (26 Myoviridae, 20 Podoviridae and 2 Siphoviridae) (Tables S5 and S9).The

performance of ClassiPhage 2.0 prediction in comparison to HMM based phage classification was
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skewed towards Siphoviridae prediction, which is a consequence of the skewed input matrix of the

ANN.

Discussion:

Phage classification based on phage sequencing data has long been a challenge, since phages have
no conserved gene to place them on the tree of life (Rohwer & Edwards 2002). Although many
pipelines exist for classification of prophages, these methods are based on the assumption that
phages are monophyletic in origin and thus based on pairwise-alignment hits (Meier-kolthoff & Go
2018). This makes the classification of newly sequenced phages biased towards phage sequences
available in the databases (Bolduc et al. 2017) and which is mostly skewed towards Caudovirales
(Skewes-cox et al. 2014). Therefore it is necessary to develop comprehensive computational
methods for phage classification.

As stated by (Reyes & Gruber 2016), profile HMMs have an advantage over pairwise alignment in
detecting remote homologs that are not part of the original MSA file used for the model’s
generation. Thus profiles HMMs are more sensitive when dealing with the highly complex and
diverse phages and have the potential to increase the spectrum of detectable entities. On the other
hand, since HMMs rely, to some degree, on the similarity to already known sequences available in
the database, and since they represent a few sequences for a few over represented viral families,
means that characterizing a greater number of viral sequences and regularly updating sequence
databases are crucial for this method to be effective in the future (Skewes-cox et al. 2014; Reyes et
al. 2017; Reyes & Gruber 2016).Although no HMMs exist for all phage proteins, the high scoring
hits to a number of HMMs derived from a phage family were enough to classify a phage based on
sequence information (Chibani et al. 2019, accepted). This means that combining multiple HMM
hits is crucial since no single profile HMM can assess the true viral diversity of any sequenced
dataset.

To this end, we developed and applied a novel ML approach called ClassiPhage 2.0, which allows
the classification of phages based on their hits into one of 12 phage families. We demonstrate that
by using multiple profiles HMM as input features, derived from phage proteins out of 12 phage
families, we were able to predict the phage’s taxonomic classification. Overall, we found that the
method proved to be quite robust, within a range of reasonable parameter values, for the
classification of the testing phage dataset, and for the assignment of a taxonomic classification of
the unclassified phage dataset. However, supervised learning algorithms highly depend on the
amount and quality of input data (Schmidhuber 2015). As it has been shown, phage information
available in public databases is heavily biased with sequenced Caudovirales (Skewes-cox et al.

2014; Reyes et al. 2017; Grazziotin et al. 2017) and a large proportion of phage families are
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underrepresented. This further emphasizes the importance of better and more comprehensive viral
databases, enriching sequence representation of each of the viral taxa, which in turn will lead to
robust models constructions and thus more sensitive and comprehensive input for ML classifiers
(Manavalan, Tae H. Shin, et al. 2018; Arango-Argoty et al. 2018; Amgarten et al. 2018). A
misclassification resulting from this approach is due to the random split nature of k-fold cross-
validation. This creates the risk for the model to predict an entry of a family that was entirely absent
from its training data, due to the presence of phage families with low number of HMMs associated.
As our method’s accuracy is highly dependent on the quality and accuracy of the input data, the
better and more diverse the HMM models are, the better the neural network performs. That is to say
that 1) whenever HMM hits are generally shared between multiple phage families such as
“polymerases* or 2) if no HMM score was generated when scanning a phage proteome with the
profile HMM models, then predictions are ambiguous in the first or cannot be made in the latter
case. When scan outputs are not generated, the cause is that the phage belongs to a new phage
family or is distant from the known phages (Roux et al. 2015). Finally, we expect the population of
phage families with low abundant phages, from viral metagenomic datasets analysis. Since ANNs
are known to perform better with an increasing size of a benchmark dataset (Morota et al. 2018), we

foresee the improvement of ClassiPhage 2.0.

Conclusion:

In this study, we introduced a novel method which we call ClassiPhage 2.0. The method predicts a
taxonomic phage family classification, resulting from multi-HMM hits of phages proteomes. We
constructed ClassiPhage 2.0 using 5,920 refined profile HMMs as input features, derived from

7,342 phages classified into 12 phage families.

The results indicated that ClassiPhage 2.0 can be applied to predict a phage taxonomic classification
at the family level with high accuracy. While these results are promising when observing the
classification performance of one family on its own, it has proven challenging to accurately
represent them in the context of all investigated families. To further elevate the performance of the
neural network, as more phage data becomes available, more specific profile HMMs could be
generated, improving the input datasets. In addition, the model could also be extended to include
more features than HMM profile hits. This method can be further applied, for the prediction of well-
delimited taxonomic groups such as subfamilies or families when profiles HMMs per subfamilies
become well defined. Furthermore, the spectrum of potential applications of this approach is a
general one and doesn’t have to be limited to viral classification, rather could be applied to many

other classification problems in bioinformatics.
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This is a tool under active development to be made available as a publicly accessible easy-to-use

web service, and we envisage its growing application on a variety of forthcoming projects.

Supplementary Data:

Supplemental Figure 1:

General unclassified hits ds DNA unclassified hits Caudovirales unclassified hits

bit_score_fs_Normalized

!30

HMM cluster

Phages

Figure S 1: Heatmap of phage family prediction of Caudovirales unclassified phages
depending on combination of HMM hits.

The scan of the protein sequences derived from unclassified phages, was conducted by the profile
HMMs of 12 phage families. The heatmap is split into 3 subplots (Generally unclassified phages,
ds/DNA unclassified phages and ds/DNA/Caudovirales) where the phage family prediction is

presented on the y-axis. The bit-score of the HMM matches was normalized by the size (in bp) of
the HMM’s consensus sequence (data see Table S5). The results are color-coded from blue (low-

score) to red (high-score).

Supplemental Table S1: All phage dataset information
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Phages test dataset downloaded from the millardlab database. The table contains information for the
phage, its classification and subclassification, size and accession number.

Supplemental Table S2: InputFamily generated HMMs scanning TargetFamily CDS

Refined HMMs derived from classified phages scanning all downloaded classified phage
proteomes. This table contains information for the cluster and its length, protein hit information,
which phage the protein is extracted from, the phages host, the input phages classification, the
scanned CDS phage classification and hmmscan information.

Supplemental Table S3: ClassiPhage 2.0 input matrix

Input matrix generated used as input to train and test ClassiPhage 2.0. This table contains
information of the phage, its classification and bit-score values resulting from refined HMMs scan
of the phage derived CDS.

Supplemental S4: Prediction layout of the ANN performed on the input matrix

ClassiPhage 2.0 predicted classification of classified phages. This table contains information about
the phage, it's published classification and ClassiPhage's 2.0 classification value ranging from [0,1].
An output close to 1 is ClassiPhage's 2.0 best predicted taxonomic classification.

Supplemental Table S5: InputFamily generated HMMs scanning unclassified phage CDS

Refined HMMs derived from classified phages scanning all downloaded classified phage
proteomes. This table contains information for the cluster and its length, protein hit information,
which phage the protein is extracted from, the phages host, the input phages classification and
hmmscan information.

Supplemental Table S6: Unclassified phage dataset matrix input for ClassiPhage 2.0

Input matrix generated used as an external dataset for classification using ClassiPhage 2.0 model.
This table contains information of the phage, unknown classification tag classification and bit-score
values resulting from refined HMMs scan of the phage derived CDS.

Supplemental Table S7: Prediction layout of the ANN for the unclassified phages dataset
ClassiPhage 2.0 predicted classification of unclassified phages. This table contains information
about the phage, 0 values for published classification and ClassiPhage's 2.0 classification values

ranging from [0,1]. An output close to 1 is ClassiPhage's best predicted taxonomic classification.
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Supplemental Table S8: Unclassified phage dataset predicted taxonomic classification via
ClassiPhage 2.0 and ClassiPhages methods.

Supplemental Table S9: ANN prediction of unclassified Vibriophage dataset classified in Chibani et
al. 2019(accepted).
Excerpt out of Table S7, which contains information about ClassiPhage 2.0 output of the same set

of unclassified vibriophages classified by Chibani et al. 2019(accepted).
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Abstract
Background:

Prophages are known to have a tremendous impact on their bacterial host. However, accurately
identifying integrated prophage regions within bacterial genomes remains a problem. The
majority of existing tools rely on hits to known phage sequences, which limits the identification

of distantly related prophage regions.

Results:

In this study, we present IdentiPhage, a method for the prediction of integrated bacteriophage
sequences within bacterial genomes. IdentiPhage uses a deep neural network machine learning
approach. We trained IdentiPhage on a set of genomic features generated from a dataset of
11,373 bacterial and 8,721 phage genomes. We show that features such as GC%, GC content
deviation, dinucleotide skew, number of CDS per window, overlapping CDS per window and
an average gene size were sufficient to locate integrated prophages. These features canidentify
prophages without any sequence similarities to known phages. Our positive phage label, for the
supervised machine learning approach, was a BLAST hit of over 1 kb of the phage sequence to
the bacterial sequence database. IdentiPhage achieved a specificity of 80.14 % during hold-out
cross-validation. We compared the performance of IdentiPhage to PHASTER and phiSpy

which are popular tools used for phage prophage identification.
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Conclusions:

Our results show that IdentiPhage can be used as a complementary tool to existing tools. In a
simple test with real data, where prophages in 9 Vibrio alginolyticus genomes were
experimentally confirmed, IdentiPhage identified all known prophages. IdentiPhageis a tool
under active development, to be made available as a publicly accessible easy-to-use web

service.

Keywords:
Prophage, integrated phages, genomic features, machine learning, artificial neural networks
1. Introduction

Bacteriophages, viruses infecting bacteria, are estimated to be one of the most biological
entities on earth (Amgarten et al. 2018; Arndt et al. 2017; Jurtz et al. 2016; Roux et al. 2014).
They are recognized as the major driving forces of i) virulence of facultative pathogens (Roux
et al. 2016; Roux et al. 2015; Busby et al. 2013), ii) microbial evolution and adaptation to new
ecological niches (Arndt et al. 2017; Howard-Varona et al. 2017), and iii) marine carbon and
nutrient cycling, such as nitrogen, phosphate and sulfur (Howard-Varona et al. 2017; Jurtz et
al. 2016; Roux et al. 2016; Roux et al. 2015).

Bacteriophages are known to, either use the replication machinery of the host for replication
and lyse the host, and thus have a lytic life cycle, or can integrate into the host genomes and
replicate with the replicating host and therefore has a temperate lifestyle (Howard-Varona et al.
2017; Wendling et al. 2017; Akhter et al. 2012;Zhou et al. 2011). The latter, termed prophages,
were identified in over 50% of bacterial genomes (Touchon et al. 2016), and moreover,
bacterial genomes can contain over 20% of prophages and cryptic prophages (Arndt et al.
2017; Casjens 2003). The computational identification of prophages still poses a challenge due
to the extensive genetic exchange between phages and their hosts, which increases the
complexity of phage identification (Hurwitz et al. 2018). Multiple tools exist for the
identification of integrated prophages within bacterial genomes. Tools such as PHAST (Zhou
etal. 2011), PHASTER (Arndt et al. 2016), PHASTEST (Arndt et al. 2017),
Phage_Finder(Fouts 2006) and Prophinder (Lima-Mendez et al. 2008)are based on annotated
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genes and codingsequencesorsimilaritiestoknownreferencephagegenomes. The downside is that
identification by sequence comparison to a database of known phages limits the possibility of

identifying new phages to those similar to the phages within those databases (Zhao et al. 2017).

Moreover, prophage identification relying on phage specific annotations can be biased,
depending on the software used to generate those annotations due to the high number of poorly
or incorrectly annotated proteins (de Crécy-Lagard 2016), for instance, due to the fact that most
automated annotation pipelines are not refined for the detection of small phage ORFs (Linial
2003). PhiSpy, a tool introduced in 2012, combines multiple phage sequence characteristics,
including some non-similarity based features, thus increased the accuracy of prophage
predictions (Hurwitz et al. 2018). Yet, it additionally relies on identifying viral genes based on
homology to known viral genes that represent only a small portion of viral diversity. To this
end, a plethora of tools are available and additionally being developed for mining viral
sequences in large metagenomic datasets but are not suitable to identify prophages integrated

within bacterial genomes (Hurwitz et al. 2018)

Here, we present IdentiPhage a tool for the prediction of integrated prophages within bacterial
genomes. IdentiPhage applies a machine learning approach that evaluates 12 non-similarity
based genomic features by applying a set of thresholds to select optimal parameters for the
prediction. The use of machine learning algorithms have been successfully applied to several
biological problems, such as the prediction of antibiotic resistance genes from metagenomic
data (Arango-Argoty et al. 2018), the prediction of prokaryotic hosts from metagenomic phage
contigs (Galiez et al. 2017), the taxonomic classification of phages (Chibani et al. 2019), the
prediction of phage sequences in metagenomic bins (Amgarten et al. 2018), and the prediction
of phage proteins (Manavalan, Tae H. Shin, et al. 2018; Ding et al. 2014; Feng et al. 2013). The
resulting predicted regions were benchmarked against the prediction of popular prophage
prediction tools phiSpy and PHASTER.
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2. Material and Methods

We follow the 5 step guideline endorsed in a series of publications, for the development of a
sequence-based predictor for a biological system (Manavalan, Tae H. Shin, et al. 2018 (a);
Manavalan, Tae Hwan Shin, et al. 2018 (b); Manavalan et al. 2017).

Training and Testing Datasets

To build and test IdentiPhage, bacterial GenBank files were downloaded from NCBI on 04
June 2018. The accession numbers of the phage dataset used in this research were retrieved
from the millardlab database (http://millardlab.org/bioinformatics/bacteriophage-genomes/)
and downloaded from NCBI. As of 20 March 2018, the database contained 8,721 number of
phage genomes (Chibani et al. 2019). A blastn search was done by aligning phage nucleotide
sequences against nucleotide sequences of the downloaded bacterial genomes. The BLASTn
results were used to extract positive sample data from the bacterial genomes. Every hit with a

size of >1 Kbpwas used as the resulting range of positive phage samples.

Feature Extraction

Seeking robust phage descriptive features, we computed 12 prophage descriptivesequence-
derived features. Feature data were generated per window, in a sliding window approach, for a
specific window size on the bacterial host replicons. Window size was arbitrarily set to 500 bp
(which is approximately half of the size of an average gene). Shifts per nucleotide usage,
reflected in local changes or distortion in the cumulative skew distribution could be a result of
the integration of foreign DNA (Akhter et al. 2012). Thus we considered GC%, GC skews (i),
AT skews (ii) and GC content deviation (iii) which were calculated as follow:

(i) GCskew = (G-C)/(G+C)
(if) ATskew = (A-T)/(A+T)
(iii) GCdeviation = GCwindow/GCreplicon

(iv) Slope = Avalue/Aposition
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Additionally, we computed slope values (iv) for dinucleotide skews and the GC% deviation
and GC-deviation switch to indicate a sudden deviation of the GC% deviation from below 1 to
above 1 or vice versa. This switch was used to mark hotspots by searching for a steep GC%-
deviation slope (the highest 3% slopes) within 300 bp.

Furthermore, phages are known to encode shorter genes (Akhter et al. 2012), thus we
considered features such gene density (Amgarten et al. 2018), the average gene length per
window (Akhter et al. 2012; Amgarten et al. 2018), and overlapping CDSs (Brandes & Linial
2016). Gene density per window was calculated as the total number of CDS per window
divided by window length measured in bp. The average gene length per window was calculated
by adding up the length of all predicted CDSs in a window divided by the total number
predicted CDS per window. All estimated values were generated based on the predicted CDSs
which were extracted from the downloaded bacterial GenBank files and were calculated using
a window size of 500 bp, and an overlap of 400 bp. The generated feature data files were
processed, adding positive phage information as a label where 0 stands for no phage hit per
window or 1 for phage hit per window. Note that all the above-mentioned features were
normalized to the range of [0,1] as input for the DNN.

Data Normalization

To be able to use the data set in machine learning algorithms, its data has been normalized
using the StandardScaler from sklearn.preprocessing, normalizing all data to values between -1
and 1. The normalized data set was, as well as the StandardScaler -object, dumped to a binary
file for faster access using the pickle module, calling pickle.dump. Due to the vast imbalance of
positive and negative samples (5,501,976 of 349,024,443 samples were positive), a smaller
subset was created using a 50/50-ratio for positive and negative samples, collected randomly
from the entire data set. This dataset contained ~5 million positive and 5 million negative

samples.
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Classifier Development

Using Python Scikit Learn Libraries and the Keras module configured to use TensorFlow as its
back-end; we developed and trained a Deep Neural Network (DNN). We experimented with
various DNN architectures as follow: a first hidden dense layer with twice the nodes than the
input dimension as an inputlayer and three additional hidden dense layers with triple the nodes
than the input dimension. After every hidden layer, starting with the second one, a “Dropout
layer” was used, set to 25% dropout rate which is capable of better generalization of the model
and avoiding overfitting (Srivastava 2014). Lastly, the output layer of the deep neural network
consists of 2 units that correspond to whether a window belongs to a phage region or not. The
DNN uses a rectified linear unit (relu) activation function (Arora et al. 2016) that computes the
probability of the input window sequence against one of the two possible outcomes; window
belonging to phage or not. The training data was split into two subsets at an 80-20% division
where we refer to 80% of the data as the training dataset and the 20% of the data as the
validation dataset. The training dataset was used to train and generate a model for the
prediction of phage windows while the testing dataset was used to provide an evaluation of the
final fit IdentiPhage model what is referred to as the hold-out cross-validation method. Heavy
computation is required only once to obtain the deep learning model, and the prediction

routines do not need such computational resources.

Metrics Measurement

To assess IdentiPhage’s performance and robustness, we repeat the process of random selection
of the training and testing datasets, model-building and model-evaluating using 3 parameters:
overall prediction v) sensitivity (Sn), vi) specificity (Sp) and vii) accuracy (Acc). These
measured metrics would help us determine how the model would perform on new datasets(Pan

et al. 2018). The parameters are defined as follows:

(v) Sn = TP/(TP+FN)
0<Sn<1

(vi) Sp = TN/(TN+FP)
0<Sp<1

145



IdentiPhage: Integrated Phage Identification using DNN

(vii) Acc = (TP+TN)/(TP+FP+TN+FN)
O<Acc<1

Where TP (true positives) is the number of predicted phage windows; TN (true negatives) is
the number of nonphage predicted windows; FP (false positives) is the number of bacterial
window sequences predicted as phage windows, and FN (false negatives) is the number of
phage windows predicted as bacterial window sequences. In our experiment, the Sn is the
proportion of bacteriophage sequences that were correctly identified. The Sp measures the
proportion of non-bacteriophage sequences that were correctly identified. The Acc is the
proportion of true results (the percentage of correctly identified bacteriophage sequences and

non-bacteriophage sequences) among the total number of samples.

To further evaluate the performance of IdentiPhage and to determine suitable thresholds for the
prediction values of the different windows, we generated receiver operating curves (ROC),
where we plotted the FP rate as the x-axis and the TP rate as the y-axis. ROC curves depict the
tradeoff between sensitivity and specificity (any increase in sensitivity is coupled with a
decrease in specificity) (Pan et al. 2018). The area under the curve (AUC), which is a measure
of discrimination, was used for IdentiPhages evaluation, with higher AUC values
corresponding to the better performance of the model. The value of AUC score ranges from 0
to 1, with a score 0.5 corresponding to a random guess and a score of 1.0 indicating a perfect
separation. The AUC is a measure of the ability of the model to correctly classify a sequence
window into belonging to a bacteriophage or not. Based on determining a model’s final
predictions a confusion matrix of the true and predicted phage labels with the number of TP

was created and plotted.

Pipeline Implementation

IdentiPhage was coded in the Python 3 programming language in version 3.5.3, using the
scientific Python distribution Anaconda. As input, IdentiPhage requires a directory with
GenBank or fasta files. It generates a result directory with an extracted multi-CDS file per

predicted phage region.
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Prophage prediction

Once sequences are classified, the maximum distance between two positively predicted
positions is calculated to evaluate the size of the predicted region. The minimum distance is
measured as well to validate the range, and if it is smaller than the smallest considered phage
genome, then it is dropped (Campylobacter phage C10, GenBank accession number
MG065651.1, size 1.4kb).

Test with Vibrio alginolyticus independent dataset

An external dataset of 9 sequenced Vibrio alginolyticus genomes, where the location of active
integrated prophages was experimentally proven (Wendling et al. 2017), was used to test
IdentiPhage’s performance. The feature matrix of the V. alginolyticus genomes was generated
and normalized as previously described. The matrixwas used as an independent dataset input
for the model to classify sequences whether they are of a prophage or not. The predicted phage

regions were compared to the positions of the known integrated prophages.

Performance Comparison of IdentiPhage to other tools

The same set of Vibrio alginolyticus genomes, used as an independent dataset for IdentiPhage,
was used as input for phiSpy and PHASTER. PhiSpy was benchmarked against phage_finder
and prophinder, and the authors proved that phiSpy outperformed the mentioned tools (Akhter
et al. 2012) and thus were not considered in this analysis. The average values of the true
positive rate of the tools were compared based on the tools abilities to predict the known

phages correctly.

3. Results
Framework of the Proposed Predictor

Firstly, we constructed the benchmark dataset; then we extracted the various described features
from the primary sequences, including GC%, GC%-deviation, dinucleotide skew, gene density,
overlapping CDS and the average number of CDS per the size of a specified window in bp.
These different features were used as an input for a DNN to develop a prediction model. The
described metrics were evaluated for the generated model. Finally, IdentiPhage was tested with
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an external dataset, and its performance was benchmarked against two popular phage

prediction tools.

Data Construction and Input Features Variance

To show the percentage of variances explained by each principal component, the eigenvalues
were computed and ordered from the largest to smallest to generate a scree plot (Figure 1).
Eigenvalues (Table S1) are used to determine the number of principal components, which show
an interesting pattern in the data, to keep after PCA (principal component analysis) (Figure S1).
In our study, the first three principal components explain 38 % of the variation which is a

largely acceptable percentage.

Screw plot

Crimarmicns

Figure 1: Scree plot of the total variance associated with each input factor.

Scree plot of the normalized input dataset. The x-axis shows the number of principal components. The scree plot

showed that the first three principal components explained the maximum variation (38 %) in the dataset.
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Subsequently, Principal Component Analysis (PCA) and correlation plots were performed to
highlight the most contributing variables for each dimension and to determine the most
informative features in the generated dataset. The analysiswas first created for all input features
(Figure S2, Figure S4), and then for the 3 most descriptiveelements (Figure S1, Figure S3, and
Figure S5).

Model performance and Metrics

The DNN was tested by using either 3 or 4 hidden layers, either 12 or 24 number of nodes in
the first layer and either 36 or 48 as the number of nodes in the hidden layers. The main output
of the DNN is the label of the testing set and predictions of the model for each entry recorded
at any training epoch. Using this information, the performance of IdentiPhage can be assessed
in detail for different stages of training. The labels of testing data are compared to the model's
assignments of the last recorded prediction, by taking the maximum value of the
model'sassignments. Here we present the metrics measured for IdentiPhage (Table 1), where
the Acc of the selected model was 72.88 %.

Table 1: Sensitivity and specificity of the different architectures of the DNNs

Hidden
Layers 1stnode 2ndnode Sensitivity Specificity

3 12 36 94.52 37.71
3 12 48 71.16 74.19
3 24 36 71.97 75.49
3 24 48 80.14 71.05
4 12 36 94.17 39.12
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4 12 48 70.57 73.43
4 24 36 68.52 74.8
4 24 48 70.95 75.97

*The values marked in bold were further represented in a confusion matrix and ROC curve.

The true positive and false positive rate on the test data at different thresholds for the classifiers

using the top 12 features are displayed as a confusion matrix and as a ROC curve (Figure 2).

a) b) Receiver Operating Characteristic

True Positive Rate

w ROC curve (area =0.76)

False Positive Rate
Figure 2: Confusion matrix a) and ROC curve (b) for predicted prophage regions.
The confusion matrix (a) shows the true value on the y-axis, meaning the samples which were 0 are in the upper,
and the ones which were 1 are in the lower half of the matrix. Resulting values are from left to right, top to

bottom: true negatives (3,552,722), false positives (1,447,278), false negatives (993,133) and true positives
(4,006,867).

The ROC curve (b) for the prediction of phage region. The diagonal dot line denotes a random
guess with the auROC of 0.5. An AUC of 0.76 was obtained in a hold-out cross-validation test.
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Independent dataset testing

We evaluated the performance of IdentiPhage using an independent dataset. 15 out of 16
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prophage regions were hit at least partially (Table 2). Generally, all hits had a delayed start and

always hit the end of the phage regions with a precision within 1Kbp.

Table 2: Coverage of phage hits in V. alginolyticus

V. Phage Region Coverage™ [bp] Relative Coverage [%0]
alginolyticus
Start Stop Fragmen Joined  Size Fragment Joined
t

KO1M1_2 965,930 975,241 2,500 7,200 9,311 26.85 77.33
K04M1_2 945,046 953,135 1,035 6,235 8,089 12.80 77.08
K04M3_2 945,065 969,721 5,400 23,300 24,656 21.90 94.50
979,135 994,596 7,000 11,600 15,461 45.28 75.03

K04M5_2 975,221 991,351 4,851 14,521 16,130 30.07 88.35

KO05K4_2 957,739 959,718 0 0 1,979 0.00 0.00
964,327 965,822 222 222 1,495 14.85 14.85

KO06K5_2 945,036 953,638 1,532 6,738 8,602 17.88 78.33
K08M3_2 945,048 953,650 1,550 6,750 8,602 18.02 78.47
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KO9K1 1 1 22,357 6,700 19,000 22,356 29.97 84.99
1,876,616 1,897,209 9,100 17,300 20,593 44.19 84.01

KO9K1 2 1 11,467 5,100 9,800 11,466 44.48 85.47
3,460,762 3,465,618 700 100 4,856 14.41 14.41

K10K4_1 1,701,803 1,709,837 1,937 5337 8,034 24.11 66.43
K10K4_2 945,030 953,121 1,521 6,211 8,091 18.81 76.89
977,741 985,316 2,200 2,200 7,575 29.04 29.04

*Coverage is defined as the number of phage bp identified out of the known phage regions.

Shown in this table are the V. alginolyticus strains, starting and stopping position of known
phage regions, and the coverage predicted for phage regions. For the values in the fragmented
columns, only the regions which were explicitly predicted were used, whereas, for the ’Joined"

values, the entire region spans were considered. The joined coverage averages to 64.07%.
Comparison with other methods

The comparison was made by comparing the prediction power of the different considered tools,
PHASTER, and phiSpy, of active Inoviridae prophages, integrated into 9 V. alginolyticus
genomes. The inactive phages were not considered for this analysis since the number, and the

correct boundaries of those phages can’t be quantified.
PHASTER prediction using the independent dataset

PHASTER identified 15 of 16 (93.75) known prophages. Generally, PHASTER determined

boundaries were either greater or smaller than the curated prophage boundaries. PHASTER
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was able to predict the prophage IdentiPhage missed, while on the other hand one prophage

was missed entirely (Table 3).

Table 3: PHASTER prophage predictions of the independent dataset

IdentiPhage: Integrated Phage Identification using DNN

V. Relative Additional Predicted
alginolyticus Phage Region PHASTER coverage Phages
Start [op] Stop [bp] Start[bp] Stop [bp] [%]
KO01M1 2 965,930 975,241 954,239 974,702 219.77 1
K04M1_2 945,046 953,135 933,351 953,814 252.97 1
K04M3_2 945,065 969,721 933,352 969,913 148.28 1
979,135 994,596 982,291 994,621 79.75
K04M5_2 975,221 991,351 963,526 991,566 173.84 1
KO05K4_2 957,739 959,718 946,048 966,511 1,034.01 1
964,327 965,822 - -
KO06K5_2 945,036 953,638 933,345 953,808 237.89 1
K08M3_2 945,048 953,650 658 11,534 126.44 1
KO09K1_1 1 22,357 1,701,790 1,709,314 33.66 1
1,876,616 1,897,209 933,339 953,802 99.37
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1 11,467 977,819 985,329

3,460,762 3,465,618 3,461,560 3,465,606

1,701,803 1,709,837 1,701,790 1,709,314

945,030 953,121 933,339 953,802

977,741 985316 977,819 985,329

65.50 1
83.32

93.65 1
25291 1
99.14

* The Last column shows the number of phage regions predicted by PHASTER in addition to

the ones which were experimentally proven.

PhiSpy prediction using the independent dataset

PhiSpy identified 14 of 16 (87.5%) known prophages. PhiSpy predicted a surplus of ~ 20 kps

upstream of every phage region, as well as additional ~ 2-30 Kbp downstream. It was able to

identify the <2Kbp region that was missed by IdentiPhage. On the other hand, two areas were

missed completely (Table 4).

Table 4:PhiSpy prophage predictions of the independent dataset

V. Relative Additional Predicted
alginolyticus Phage Region phiSpy coverage Phages
Start [bp] Stop [bp] Start [bp] Stop [bp] [%0]
KO1M1_2 965,930 975,241 946,652 976,544 321.0 2
K04M1_2 945,046 953,135 926,071 955,131 359.3 2
K04M3_2 945,065 969,721 931,711 995,530 258.8 1
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979,135 994,596 931,711 995,530 412.8
K04M5_2 975,221 991,351 955,939 986,758 1911 2
KO05K4_2 957,739 959,718 938,768 967,629 1458.4 1
964,327 965,822 938,768 967,629 1930.5
KO6K5_2 945,036 953,638 925,758 955,125 341.4 2
K08M3_2 945,048 953,650 937,804 954,938 199.2 3
KO09K1_1 1 22,357 1 24,369 109.0 2
1,876,616 1,897,209 1,857,653 1,897,209 1921
KO09K1_2 1 11,467 1 18,754 163.6 9

3,460,762 3,465,618 - -

K10K4_ 1 1,701,803 1,709,837 - - 7
K10K4_2 945,030 953,121 926,859 982,436 686.9 1
977,741 985316 926,859 982,436 733.7

* The Last column shows the number of phage regions predicted by PHASTER in addition to

the ones which were experimentally proven.
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These results indicate that prophage prediction is far from adequate and no tool can precisely
prophages. Additionally, we can state that IdentiPhage can play a complementary role to

existing tools for prophage prediction.

4. Discussion

In this project, we evaluated 12 genomic features concerning their usability for prophage
detection within host genomes. In addition to the features used in phiSpy (GC%, GC skews,
AT skews, GC content deviation) (Akhter et al. 2012) we used gene density, average gene
length, and overlapping CDSs, which proved to be extremely informative for prophage
prediction. To investigate which combinations of individually weighted features perform best

we designed and applied a deep neural network (DNN).

For IdentiPhage, we considered a much more elaborate benchmark dataset compared to
phiSpy. The features used, were the GC%, GC skews, AT skews, GC content deviation and
additional dependent features, which were shown to work better for related organisms and
organisms with extreme AT and GC deviations (Akhter et al. 2012). Additionally, we used
gene density, average gene length, and overlapping CDSs, which proved to be extremely
informative for prophage prediction. We considered a window size of 500 bp which might have
affected feature calculation, while in phiSpy a window of 40 genes was considered. We
computed gene density and average gene length per window size, contrary to phiSpy where
those features were calculated by replicon size. The PCA analysis showed that the three most
important featureswere i) slopes, ii) hotspots size and iii) GCD switch. Thus for the future
development of IdentiPhage, we will consider replacing the insignificant features by
descriptive features such as the transcription strand directionality, the average spacing between
genes, the median of all protein lengths. Using an input feature such as HMM hits, could limit
the identification of new phages; thus we will include HMM hits in a secondary step, after
initial identification of genomic hallmarks. We additionally will consider adjusting the window

size and the computation of the gene density per replicon.

We briefly mention PCA, however, we proceeded by using the whole dataset as input for the

DNN since PCA is known to alter the original representation of the variables (Pan et al. 2018).
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Thus for the future development of IdentiPhage, we will consider a less expensive approach to
dimensionality reduction for feature selection. Feature selection processes proved effective in
reducing the dimensionality of the data and improving the performance of the predictors
(Manavalan, Tae H. Shin, et al. 2018 (a); Manavalan, Tae Hwan Shin, et al. 2018 (b); Pan et al.
2018; Manavalan et al. 2017; Feng et al. 2013). This is an important step to exclude redundant,
irrelevant and noisy information found in high dimensional features, and thus to find a

minimum set of features that achieve maximum classification performance.

Random Forest algorithms were used in MARVEL, where they selected three features as the
most informative: gene density, strand shifts, and significant matches to the pVVOG database. In
other methods, Analysis of variance (ANOVA) was used as a feature selection process (Pan et
al. 2018; Ding et al. 2014), while Tan et al. (2018) used Minimal-Redundancy-Maximal-
Relevance (MRMR) in addition to ANOVA as the second step in their process. ANOVA
method calculates the variance among groups and thus gives a clear understanding of each
feature capabilities for the model; while mMRMR filters out the most informative features to
minimize information redundancy and gather the most concise feature subset with no loss of
useful information(Tan et al. 2018). Feature redundancy may be an issue since some of the
considered descriptors may be derived from each other, for instance, GC% and GC% deviation
and the corresponding slopes. Thus, we will consider exploring different feature selection

methods to achieve a maximum variance with minimal redundancy in our input dataset.

Generally, it is crucial to explore various ML-methods on the same dataset, and then to select
the best method, since ML-based predictors are problem-specific (Amgarten et al. 2018).
Moreover, IdentiPhage uses the hold-out cross-validation method to evaluate the predictive
ability of our predictor. However, the K-fold cross-validation method and the jackknife test are
more rigorous (Amgarten et al. 2018; Tan et al. 2018). The five-fold cross-validation is widely
used by scientiststo save computation time (Tan et al. 2018). Thus for the future development
of IdentiPhage, we will consider exploring Support Vector Machines (SVM) and RF

algorithms, as well as the different cross-validation tests.
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Lastly, the prediction model tends to over-optimize to attain higher accuracy. Therefore, it is
always necessary to evaluate the prediction model using an independent dataset, to evaluate the
generalizability and the transferability of the method (Manavalan, Tae Hwan Shin, et al. 2018;
Manavalan et al. 2017). Hence, we evaluated our prediction model on an independent dataset,
which harbors a manually curated set of prophages (Wendling et al. 2017), and benchmarked
the prediction of prophage prediction populartools against this dataset. Our study demonstrated
that IdentiPhage can play a complementary role for the prediction of prophages overseen by the

existing tools.

To support the scientific community, we are working on a user-friendly web interface is to be
made available to allow researchers access to the prediction method on our servers. The
IdentiPhage method represents a powerful and cost-effective approach for prophage prediction
suitable for high throughput analysis of genomic data. Therefore, IdentiPhage might be useful
for prophage prediction, facilitating hypothesis-driven experimental design.

5. Conclusion

In this study, we introduced a novel method which we call IdentiPhage. The method predicts
prophage regions in bacterial genomes using a combined set of 12 sequence-derived features.
The results indicated that IdentiPhage could be applied to predict prophages on high quality
closed genomes. While these results are promising on well-characterized prophage classes, it
has proven challenging to choose the best features for accurate prediction. It is shown that an
effective generic viral prediction pipeline using the 12 investigated features in this study can be
hard to achieve. However, given the heterogeneity of viral types and genome structures, we
believe that we can elevate the performance of the method on so far unknown phages by
integrating additional descriptive features. We intend to expand IdentiPhage’s scope to include
additional phage specific features, feature selection protocol and to test additional ML
algorithms; the program was designed with this objective in mind. Furthermore, the spectrum
of potential applications of this approach is a general one and doesn’t have to be limited for
prophage identification, rather could be applied to many other classification problems in

bioinformatics. This is a tool under active development to be made available as a publicly

158



IdentiPhage: Integrated Phage Identification using DNN

accessible easy-to-use we service, and we envisage its growing application on a variety of

forthcoming projects.
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Supplementary Material

Supplemental Figure S1: Scree plot of the total variance associated with the most relevant
input factors.

Supplemental Figure S2: PCA analysis plot of the different input variables, based on their
contribution. These results are color coded from blue (low-score) to orange (high-score).

Figure S3: PCA analysis plot of the three most relevant input variables, based on their
contribution. These results are color coded from blue (low-score) to orange (high-score).

Supplemental Figure S4: Correlation plot highlighting the most contributing variables for
each dimension.

Supplemental Figure S5: Correlation plot highlighting the three most contributing variables
for each dimension.

Supplemental Table S1: Eigenvalues measuring the amount of variance retained by each
principal component.

Supplemental Table S2: PHASTER all prophages prediction in an independent dataset.

Supplemental Table S3: phiSpy all prophages prediction in an independent dataset.
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Scripts:
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SupplementaryMaterial/Chapterll/Chapterll.5/Scripts/ReadME.txt
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I11.1 General Discussion

The access to viral genomes at unprecedented rates, using continuously improving Next-
Generation Sequencing (NGS) techniques, aggravates the existing gap of viral classification
based on sequence information (Bolduc et al. 2017). This gap remains in consequence of the
lengthy procedure required by the International Committee on Taxonomy of Viruses (ICTV)
for the deposition of new viral genomes into their maintained database (Fauquet & Fargette
2005). Nonetheless, the advancements in NGS technologies permitted scientists to investigate
the enormous number of uncharacterized viral sequences termed “Viral Dark Matter”(Reyes et
al. 2017; Roux, Hallam, et al. 2015; Youle et al. 2012). The “Viral Dark Matter” extends
beyond the three most common viral families available in public databases (Roux, Enault, et al.
2015) and often shares no similarities to known viral sequences (Roux, Hallam, et al. 2015). As
an example, the Alpavirinae phage family was identified from the analysis of viral
metagenomic datasets and was otherwise unidentifiable through classical phage culturing
techniques (Alves et al. 2016).

For the modeling of viral sequence diversity, one proposed method of analysis is using Hidden
Markov Models (HMM) of shared proteins of phage genomes. This proved to be successful in
reconstructing distant homologs of the Alpavirinae phage family (Reyes et al. 2017,
Aiewsakun et al. 2018). Thus HMMs can be used, to some extent, for the characterization of
viral sequences within the “Viral Dark Matter” (Bolduc et al. 2017). However, this remains an
iterative process, as the characterization of more diverse viral sequences remains instrumental

in improving the sensitivity of HMMs (Reyes et al. 2017; Grazziotin et al. 2017).

An additional source of viral sequences can be retrieved by exploring microbial genomes,
where it was estimated that over 62% harbor at least one prophage (Casjens 2003). Moreover,
Roux et al. (Roux, Hallam, et al. 2015) used VirSorter(Roux, Enault, et al. 2015) to identify
12,498 viral sequences from 14,977 microbial and archaeal genomes. Prophages were
predicted in novel bacterial hosts where further experiments are needed to confirm the
identification of an entirely new viral order (Roux, Hallam, et al. 2015). Thus, Roux et al.
(2015) further endorse the importance of exploring prophage diversity within sequenced

bacterial genomes deposited in public databases.

167



Cynthia Maria Chibani Ph.D. Thesis Discussion

The first aim of this Ph.D. thesis was to generate a scalable method for the taxonomic
classification of phages based on their sequence information into the existing phage families
defined by the ICTV. An in-depth analysis was performed for the classification of phages by
creating robust protein profile HMMs for homology searches as seed (Chapter 11.3). To address
the limitation of current best-hit approaches, we evaluated the use of artificial neural networks
(ANN) for phage multiclass classification based on various HMM hits combination (Chapter
11.4).

The second aim of this thesis was to identify lysogens within bacterial host genomes.
Therefore, we computed and rigorously assessed a set of descriptive sequence properties
combined as features in a deep learning approach to allow an accurate prophage prediction
(Chapter 11.5).

Lastly, the valuable knowledge of prophage identification and classification using traditional
microbiology and molecular biology methods compared to computational methods can’t be
disregarded. On that account, a set of phages infecting different Vibrio alginolyticus strains
were experimentally characterized,and their integration sites were empirically verified (Chapter
I1.1andChapter 11.2). These experiments provided valuable information for interpreting the

resulting predictions out of the IdentiPhage and ClassiPhage approaches.

111.1.1 Experimentally verified Inoviridae

In this thesis, ten bacterial isolates, including nine strains of Vibrio alginolyticus as well as one
strain of a new Vibrio species arbitrarily names Vibrio typhli were sequenced, assembled and
analyzed with a specific focus on prophage content. The isolated strains resulted from a study
initiated by Dr. Carolin Wendling and Dr. Olivia Roth (Wendling et al. 2017). The study is
based on a tripartite interaction system where a phage infects a Vibrio host which in turn
infects the pipefish Syngnathus typhle (Chapter 11.1). To understand the dynamic relationship
between phages and their hosts, prophages were induced from 75 Vibrio isolates, and cross-
infection experiments were carried out. Thus a 75 x 75 phage-bacteria infection matrix was
generated where bacteria were grouped according to their resistance to phage containing
supernatant of the 75 isolates. Out of the three different phage resistant groups, 10 strains were

chosen for downstream in-depth analysis. The induced phages out of the 10isolates were
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sequenced and classified as Inoviridae based on phage morphology (TEM) and sequence
similarity. In total, the ten isolates comprised a set of nineteen Inoviridae prophages which
were used for an extensive analysis. Therefore, the prophages were compared to published
Inoviridae vibriophages which revealed a highly specific genome organization of the phage
family as is corroborated by Mai-Prochnow et al. (Mai-Prochnow et al. 2015) (Chapter 11.2).
Generally, Inoviridae are filamentous phages with a circular ssDNA genome. Their sizes
usually range between 4 to 12 Kbp. Their genomes encode 10 core proteins which are grouped
by functional units into a “Replication” unit, a “Structural” unit and an “Assembly and
Secretion” unit (Mai-Prochnow et al. 2015). The nineteen identified Inoviridae phages unveiled
suitable genome sizes and functional units (Chapter 11.2). The advantages given by this study
made it feasible to generate a highly reliable external dataset for evaluating the methods
reported (Chapter 11.3, Chapter 11.4,andChapter 11.5). On the one hand, the benefit of having
mappable induced prophages (Hertel et al. 2015) onto reference V. alginolyticus replicons gave
us the unique advantage of evaluating the identification prophages using i) HMMs as seed in
the “ClassiPhage” method and ii) sequence derived characteristics in the “IdentiPhage”
method. On the other hand, the benefit of having Transmission Electron Microscopy (TEM)
images of the induced phages gave us the unique advantage to investigate the morphology of
phages and classify them according to the ICTV scheme. Moreover, those results were used for

evaluating the phage classification methods “ClassiPhage” and “ClassiPhage 2.0”.

111.1.2 ClassiPhage and ClassiPhage 2.0

Phage classification is instrumental for inferring ecological and evolutionary relationships
(Roux, Hallam, et al. 2015). As new virus genomes are expected to be sequenced, new
challenges for taxonomy are expected to arise (Bolduc et al. 2017). Considerable efforts are
being made to shift towards a comprehensive automated viral taxonomy (Bolduc et al. 2017,
Roux, Enault, et al. 2015; Aiewsakun et al. 2018). Recently, the ICTV issued a consensus
statement endorsing this shift which is a critical step given the growing number of

metagenome-derived viral sequences (Simmonds et al. 2017).

Studies based on genome pairwise comparison (Rohwer & Edwards 2002) were extremely

valuable, however, became widely unpopular since they failed to capture the diversity
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represented by viral metagenomic datasets (Simmonds et al. 2017). VICTOR (Meier-Kolthoff
& Goker 2017), a recently developed tool, fails in classifying environmental viruses that do not
share any similar gene to known reference genomes (Jang et al. 2019). Due to growing
evidence of high mosaicism in viral genomes, gene sharing networks were first introduced by
Lima-Mendez et al. (2008) and later widely adopted. Gene sharing networks permitted phage
classification without prior knowledge and were largely consistent with ICTV proposed taxa
(Lima-Mendez et al. 2008; Iranzo, Krupovic, et al. 2016; Iranzo, Koonin, et al. 2016; Shapiro
& Putonti 2018; Bolduc et al. 2017). Prophinder was generated using a monopartite-network
based on 306 phages known at that time and showed a high accuracy of ~92% (Lima-Mendez
et al. 2008). Thereafter, a bipartite-network approach was used to analyze the dsDNA
virosphere and addressed viral subfamilies (Iranzo, Krupovic, et al. 2016) and further extended
to analyze archaeal viruses (Iranzo, Koonin, et al. 2016). Both approaches allow the
investigation of gene sharing across viral genomes. However bipartite-networks can be more
accurate in comparison to monopartite-networks due to the additional knowledge from the

representation of gene families and genomes (Iranzo, Krupovic, et al. 2016).

Bolduc et al. (2017) were able to generate viral clusters that are 75% consistent with ICTV
taxa,however; the monopartite gene-sharing network-based method creates artifact clusters for
undersampled genomes and for highly overlapping genomes (Bolduc et al. 2017). Thus an
accurate approach that is scalable with the growing amount of data appears to be still missing.
11.1.2.1 HMM-based classification

For this thesis, we explored the possibility of the use of HMMs derived from classified phages
for accurately classifying sets of unclassified phages (Chapter 11.3 and Chapter 11.4). The use of
HMM s for classification has been reported in multiple studies (Grazziotin et al. 2017; Fouts
2006; Aiewsakun et al. 2018; Skewes-cox et al. 2014). HMMs were the method of choice for
the comparison of protein families since they are powerful for the efficient representation of
variation and have the potential to detect three times more remote homologs than conventional
pairwise methods (Barrett et al. 1998). Even though profile HMMs are a powerful tool, pitfalls
and challenges exist that need to be considered to generate the best possible model. The quality
of the Multiple Sequence Alignment (MSA) will be reflected in accuracy and the detection
potential of the HMM. An MSA should contain a correct balance of sequences to represent the
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diversity of an orthologous group while avoiding oversampling biases (Reyes et al. 2017).
Multidomain proteins are negligible in phages; thus full-length protein MSA is used for HMM
generation (Grazziotin et al. 2017). For protein profile HMM generation for ClassiPhage and
ClassiPhage 2.0, i) excluding redundant proteins from the training dataset to avoid over-fitting
(Manavalan et al. 2017), ii) the use of a Markov clustering algorithm MCL (Enright A.J., Van
Dongen, S. and Ouzounis 2002), and finally ii) an iterative process of HMM refinement

resulted in diversity representation per model.

It should be noted that similar peptides were removed only from the training dataset and not
from the benchmarking dataset (Manavalan et al. 2017). For ClassiPhage, we additionally
investigated missing ORFs for phage nucleotide sequences and included them in the input
MSA for HMM generation and showed that the initial iterative process captured MSA
diversity. Thiswas reflected in the negligible improvements resulting from an hmmscan with
the additionally refined HMMs.

pVOG is a maintained online database with phage specific HMMs readily available for
download and use (Grazziotin et al. 2017). However pVOG HMMs were generated by pooling
all phage CDS together without distinguishing which phages belong to which phage family and
thus an hmm scan displays the same bit-score value across different phage family for a protein
hit. Contrary to pVOG, for the ClassiPhage approach, phages are initially grouped per phage
family priorto the protein cluster and HMM generation. The hmmscan displays a variable bit-
score value discriminating between different phage families. We additionally demonstrated that
HMMs couldbe used for phage classification of phages on the genera, family and subfamily
levels (Chapter 11.3).

Lastly, an important aspect to consider is that HMM-based methods rely to some extent on
similarities to already known viruses. Consequently, it is essential to regularly update sequence

databases for the future effectiveness of such methods (Skewes-cox et al. 2014).
11.1.2.2 HMMs as input for an ANN classifier

For ClassiPhage 2.0 (Chapter 11.4), we explored the use of phage family specific constructed
HMMs scanning phage proteomes as an input matrix for an artificial neural network (ANN)

classifier to group phages into the existing phage families. One of the significant advantages of
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ANN is their ability to discern relationships between the relevant features with no human
interference (Min et al. 2017; Arango-Argoty et al. 2018). Additionally, ANN can be used for
multi-label classification problems contrary to other machine learning algorithms (Boutell et al.
2004).

The similarity indicator selected for the chosen classifier was the bit-score. Unlike E-values,
bit-scores take into account the degree of identity between sequences and is independent of the
database size (Pearson 2013; Arango-Argoty et al. 2018). ClassiPhage 2.0 reached an accuracy
of 84.18% and when tested on a benchmark dataset, showed the potential application of the
method for accurate classification of phage consistently with ICTV classification. However,
ClassiPhage 2.0 suffers from over-representation of Caudovirales derived HMMSs and thus
affecting the ANN input nodes weights. This is an inherent problem since Caudovirales
represent over 86% of phage sequences in public databases (Bolduc et al. 2017). We expect an
improved accuracy of ANN prediction as currently underrepresented taxa get populated. Thus
additional sources of viral sequences, such bacterial genomes explored for the prophage
content and viral metagenomic datasets, must be examined for enriching low abundant phage
families (Bolduc et al. 2017; Roux, Enault, et al. 2015; Simmonds et al. 2017).

Lastly, an important aspect to consider is the need for validating the benchmarking dataset
against the ICTV master species list (https://talk.ictvonline.org/files/master-species-lists/). The
classification assigned in GenBank files is not yet confirmed. Therefore the examination of the
designated classification in GenBank files against the ICTV’s golden standard classified
phages is to be verified in an initial step. At a second step classification of the unclassified

phage datasets can be considered.

111.1.3 IdentiPhage

Prophages identification is instrumental for the understanding of the dynamic relationship
between phages and their host in addition to the understanding of the ecology and evolution of
bacteria (Hans-W Ackermann 2011). On the one hand, multiple tools are available for
prophage prediction from their sequence information. Existing tools such as PHASTER,
Phage_finder, and profinder are based on sequence comparison to a phage

database. Thereforeprophage identification is highly dependent on similarities to already known
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phages, existing in those databases (Arndt et al. 2016; Fouts 2006; Lima-Mendez et al. 2008).
On the other hand, the identification of prophages based on a sequence derived features, is key
to identify prophages without any sequence similarities to known prophages (Akhter et al.
2012). To date, phiSpy is the only existing tool, which was developed based on 7 different
prophage characteristics (Akhter et al. 2012). Thus, phiSpy proved to predict much more

unknown phages compared to those tools.

Additionally, distinctive prophage features are widely used for the identification of phage bins
from metagenomic datasets (Amgarten et al. 2018). VirSorter was developed for prophage
identification but performs better for viral sequence identification from metagenomic bins
(Roux, Enault, et al. 2015). Recently, MARVEL was developed for the identification of viral
sequences from metagenomic bins as well, using three phage characteristics as an input for a
Random Forest (RF) classifier. MARVEL showed higher sensitivity in comparison to
VirSorter(Roux, Enault, et al. 2015).

Aforementioned distinctive and prophage features include the gene density and strand shifts
which are considered in multiple studies (Amgarten et al. 2018; Akhter et al. 2012). Increased
gene density has been suspectedof being a direct outcome of the limited phage capsid size
(Chirico et al. 2010; Roux, Enault, et al. 2015; Mahmoudabadi & Phillips 2018; Amgarten et
al. 2018). Lower strand-shift rates can be a result of the co-regulated transcriptional and

translational unit to ensure competitive superiority (Amgarten et al. 2018; Akhter et al. 2012).

Additional explored features include K-mer(Pan et al. 2018) and GC content which tend to
have weak performance since it is known that phages try to adapt to their host (Amgarten et al.
2018). AT and GC skews, as well as the abundance of phage words based on their
oligonucleotide composition was shown to perform better for closely related genomes (Akhter
et al. 2012). Features such as protein lengths (Amgarten et al. 2018; Akhter et al. 2012), the
average spacing between genes (Amgarten et al. 2018), gene density (Amgarten et al. 2018),
transcription strand directionality (Amgarten et al. 2018; Akhter et al. 2012) and ATG relative
frequency (Amgarten et al. 2018) have the ability to locate prophages without any sequence
similarities to known phages. However, Akhter et al (2012) showed that the median of all

protein lengths displays a sharp change at the beginning of a phage region, contrary to the
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average protein length used by Amgarten et al. (2018), which revealed a gradual change. All
these features are a consequence of groups of small peptides encoded by closely collocated

ORFs in phage genomes.

Additionally, features such as the insertion points of phages (Arndt et al. 2016;Arndt et al.
2017; Akhter et al. 2012; Zhou et al. 2011) and the phage proteins homology search (Amgarten
et al. 2018; Akhter et al. 2012)are dependent on similarities to already known phages.
However, contrary to phiSpy, MARVEL uses hits to known phage HMMs from the pVOG
database, which are known to locate distantly related homologous protein and thus, the
combination of matches lead to the identification of distantly related phages (Amgarten et al.
2018).

Even though those tools exist, their performance can still be enhanced. Amgarten et al.
(Amgarten et al. 2018) stated that even with the additional considered features, the developed
MARVEL tool could only effectively predict Caudovirales phages. Thus, we utilized the
available bacterial GenBank files and available phage sequences to develop a novel
computational method we call IdentiPhage(Chapter 11.5). We use a combination of sequence
derived features as an input for a Deep Neural Network (DNN) classifier to predict prophage
regions. Also, we used genes overlap as a feature which was not considered in any of the
available tools although it has been long known as a phage specific feature (Chirico et al. 2010;
Brandes & Linial 2016). IdentiPhage was able to identify numerous genomic hallmarks in
bacterial genomes. When compared to existing tools using the V. alginolyticus benchmarking
dataset (Chapter 11.2), IdentiPhage was able to identify one additional phage missed by
PHASTER and PhiSpy, however, missed one region predicted by both tools — thus concluding
that with its current status, the method can be used to complement the existing tools for phage
prediction.

A DNN can use tens of thousands of parameters. As such, it can overfit easily with a small
sample set and often requires convenient regularization, such as including a dropout layer, for
successful performance (Srivastava 2014). However, other Machine Learning (ML) algorithms,
such as recurrent neural networks (Morota et al. 2018) or support vector machines (Manavalan,

Tae H. Shin, et al. 2018), should be explored in combination with rigorous cross-validation
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methods and their performance should be compared on the same dataset for selecting the best
predictor (Amgarten et al. 2018; Tan et al. 2018). To further elevate the performance of the
classifier, a feature selection process such as ANOVA or RF can be employed to select the
most informative input features from noisy datasets (Pan et al. 2018; Tan et al. 2018; Ding et
al. 2014).
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111.2 How does everything come together

Given that more microbial and viral genomes are expected to be discovered(Roux, Hallam, et
al. 2015), IdentiPhage and ClassiPhage approaches were flexibly designed to adapt to the
anticipated changes. For both methods, the described five-steps guidelines to develop
prediction models were followed (Manavalan, Tae Hwan Shin, et al. 2018; Manavalan et al.
2017; Feng et al. 2013).ClassiPhage can be applied to taxonomically classify prophage regions
predicted via IdentiPhage(Figure 3). Future considerations for the development of IdentiPhage
include i) the use of phage features such as strand shifts (Amgarten et al. 2018), oligomer bias
(Jurtz et al. 2016) and integration repeats (Arndt et al. 2016) and ii) the use of a feature
selection process for the evaluation of the sequence derived feature. Future considerations for
IdentiPhage include i) the consideration of an iterative process for the proteins not used for
HMM generation using BLASTp to eventually generate a set of diverse homologues adequate
for a HMM and ii) the use of input features such as the order of identified hits and the average
distance between the identified hits (Amgarten et al. 2018; Akhter et al. 2012) as additional
input features for the ANN. Lastly, to overcome biases introduced when different qualities of
annotations are combined (de Crécy-Lagard 2016), open reading frame (ORF) prediction for

phage nucleotide sequences is to be performed using the generated refined HMMs as seed.
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Figure 3: Comprehensive workflow summary of the investigated projects for prophage identification and

classification.

The workflow consists of two major pipelines. The workflow described on the right is outlining ClassiPhage and

ClassiPhage 2.0. Phage CDS sequences were extracted and clustered for HMM generation and refinement. The

refined protein profile HMMs are used to scan the initial phage CDS results. The resulting matrix, with additional

features, is used as an input for an ANN for phage sequence taxonomic classification. The workflow described on

the left is describing IdentiPhage. It outlines sequence derived features computed out of GenBank and fasta files,

and additional ones to be considered in future work. The resulting matrix is used as an input for a DNN for the

identification of putative prophage regions. The two pipelines are to be linked, by classifying prophage regions

predicted by the IdentiPhage pipeline. To overcome different qualities of annotation, improving phage CDS

prediction is outlined. Future work plans are colored in green.
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V.1 Summary

This work reports the potential of a fully automated genome based phage prediction and
classification method with ever-increasing amounts of sequencing data. Firstly, we present an
approach we call ClassiPhage and ClassiPhages 2.0 which was established describing phage
taxonomical classification. ClassiPhagewas generated as a proof of principle on a defined set of
phage families infecting Vibrio species while ClassiPhage 2.0 was broadly applied to include
all phage families available. The method is based on generating and refining protein profile
Hidden Markov Models (HMM) for every group of 12 phage families in total. To test
sensitivity and specificity, 5,920 HMMs were used to scan the initial phage protein-coding
sequences from 8,721 phages. Thus a cross-scan scoring matrix was generated. We profited
from machine learning techniques which are proving to be valuable for extracting critical
information and outcome prediction from big data. Thus the cross-scan matrix was used as an
input for an artificial neural network (ANN) for phage classification. The accuracy of the ANN
reached 84.18 % indicating the efficiency of the method. The method was tested on a set of
vibriophages classified via multiple HMM hits results. Our results emphasize the need for more

comprehensive and representative phage sequencing data in public databases.

Secondly, a method we call IdentiPhagewas established describing the prediction of integrated
prophages in bacterial genome hosts. The method uses a set of 12 sequence derived features
generated from a dataset of 11,373 bacterial using a sliding window approach. To assign a
positive phage label to the matrix, we employed 8,721 phage genomes as a reference database
for a BLASTn approach. The generated matrix was used as an input for a Deep Neural
Network (DNN) for the prediction of potential prophage regions and achieved a specificity of
80.14%. We show that IdentiPhagecan locate prophages without any sequence similarities to
known phages by testing the method on a set of experimentally identified Inoviridae phages
infecting various Vibrio alginolyticus species. Our results indicate that IdentiPhage plays a
complementary role to existing tools. However it would benefit from a feature selection

process to select the most informative sequence features for future developments.
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V.1 Conclusion

In conclusion, an ever-increasing amount of phage genome sequence data is being generated
and deposited into existing databases with no taxonomic assignment. Even though multiple
computational methods exist which show encouraging results, a broad phage classification
method is far from complete as long as there exist under-sampled phage families. The numbers
demonstrate how distant we are from an accurate representation of viral diversity in public
databases. To make such databases more comprehensive and useful, it is of paramount
importance to characterize a more significant amount of viral sequences from a broader

taxonomic range.

For the first research topic, we designed a flexible method to accommodate advances and

changes over time.

%+ We generated and refined phage family specific protein profile HMMs.

* We demonstrated the potential of combined protein profile HMMs for phage taxonomic
classification.

s+ We classified a set of published but preliminary unclassified vibriophages.

%+ We demonstrated that our classification is in accordance with experimentally

characterized phages proved to belong to the Inoviridae phage family.

Automation is necessary to routinely classify sequenced phages using features ensuring

accuracy.

s We demonstrated the potential of the use of artificial neural networks for phage

characterization based on the combination of HMM hits.

The comparatively low cost and minimal time required for the computational identification of
prophages in comparison to the labor-intensive and expensive experimental approaches make

these tools indispensable among scientists.

% For the second research topic, we demonstrated the potential of identifying prophages

based on sequence information using a Deep Neural Network.
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% We computed 12 sequence-derived features singling out genomic hallmarks in bacterial
hosts.

« We demonstrated the potential of the application of a DNN together with the sequence-
derived features for prophage identification.
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1VV.3 Outlook

In this work we presented two methods based on sequence information, one to identify phages
we call “IdentiPhage” and one to classify phages we call “ClassiPhage”. We show that both
methods achieved the intended purposes but would greatly benefit from an increasing number

of low populated phage families in public databases.

For future considerations, the ICTV would need to have a decisive framework for the
integration of sequenced phages into their current taxonomic scheme. Scientists would need to
combine their efforts in populating the under-representing viral families by exploring various
metagenomic datasets. Subsequently, HMMs generation for under-represented phage families

would be achievable, andClassiPhage’s performance would improve.

The further development of IdentiPhage together with informative sequence-derived features
can effectively identify and characterize putative boundaries todetermine true phages. The
putative prophages would then be subjected to taxonomic classification using the generated
HMMs and the ClassiPhage 2.0 model.

In the future, it will be of great value to create a publicly accessible web server for prophage

identification and classification from sequence data based on the described methods.
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