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Phages: History and Description 

Bacteriophages, viruses infecting prokaryotes, are one of the most abundant entities on earth. 

The amount of existing particles is estimated to be around 1031(Whitman et al. 1998). They are 

ubiquitous and can be isolated from any ecological niche where their host is present (McNair et 

al. 2012; Brüssow & Hendrix 2002; Roux et al. 2016).  

Frederick Twort(Frederick & Twort 1931) and Felix Hubert d’Herelle(Summers 2017)They 

were the first to independently describe phages in the early 1900s. While F.W. Twort failed to 

interpret his observation in 1915, d’Herelle published his discovery in 1917, where he 

described the bacteriophage as an obligate intracellular bacterial parasite (Summers 2017). 

Besides, d’Herelle examined the potential use of bacteriophages as therapeutic agents. He first 

discovered that phages clear dysentery in diseased patients (Salmond & Fineran 2015). 

Consequently, phages were widely used, in former Soviet countries up until the fall of the 

Soviet Union, in clinical studies and applications as antibacterial agents especially at the Eliava 

institute in Tbilisi, Georgia (Abedon et al. 2011).  

Additionally, phages have enormously contributed to the field of molecular biology (Salmond 

& Fineran 2015). They led to the discovery of i) restriction-modification (RM) systems 

(Roberts 2005) and ii) the “clustered regularly interspaced short palindromic repeats” 

(CRISPR)-associated protein (cas) systems, which are defense systems used by the bacteria 

against phages (Sorek et al. 2013).  

The interest in phage research was revived approximately in the year 2000, as a result of the 

genomic and metagenomic revolution, which highlighted phage diversity and abundance (Ofir 

& Sorek 2018).  

Phages are termed as obligate intracellular parasites since they need their host's cellular 

machinery for their replication. They are known to have two life cycles once they infect a 

bacterial host: i) lytic or ii) lysogenic. A lytic phage replicates within the host and then lyses 

the cell at the end of the cycle for release to the environment. It has been estimated that over 

20% of bacteria are lysed daily through bacteriophages infection in the ocean (Pan et al. 2018). 

On the other hand, a lysogenic phage, infects its host and can, either remain as an extra-

chromosomal element or integrate its DNA into the host genome, replicating passively with the 
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replicating host. The latter is termed prophages (Fortier & Sekulovic 2013; Akhter et al. 2012; 

McNair et al. 2012). Under certain circumstances, a temperate phage can enter a lytic lifestyle 

after DNA damage caused by diverse stress factors (Fortier & Sekulovic 2013). Recently, 

Sorek et al.(2017) described that phages interact using a communication peptide, found in 

various versions in different phages, and trigger the switch between lytic and lysogenic life 

cycles(Sorek et al. 2017). 

Moreover, phages were extensively explored for their potential to encode and confer virulence 

factors to their bacterial host. Accordingly, they convert their bacterial host into a pathogenic 

strain through lysogenic conversion. This further emphasized the interest in phage research 

(Fidelma Boyd & Brussow 2002). As a result, phages are an essential entity co-evolving with 

their bacterial host ever since the beginning of time (Iranzo, Krupovic, et al. 2016). 

Taxonomy: Reasons and Importance 

Virus taxonomy aims to describe viral evolutionary relationships and illustrate their remarkable 

genetic and structural diversity. Further interest is placed on their virulent lifestyle which has 

applications towards phage therapy (Aiewsakun et al. 2018; Housby & Mann 2009; McNair et 

al. 2012). Historically, phages have been characterized based on their morphology including 

shape, size, presence/absence of capsid, and on their genomic size and nature (whether they are 

ss/ds, DNA or RNA phages). Other criteria include the host genus and sequence similarities 

(Hans-W Ackermann 2011). The viral diversity is much more extreme than any other organism 

(Aiewsakun & Simmonds 2018),and their genomes can range from less than 2Kbp to more 

than 2,000 Kbp(Chow & Suttle 2015).  

The International Committee on Taxonomy of Viruses (ICTV;https://talk.ictvonline.org/) is 

responsible for assigning viruses into hierarchical taxa, based on visualizing and resolving the 

phage morphology by electron microscopy. As of 2016, it consists of 8 orders, 122 families, 35 

subfamilies, 735 genera and 4,404 species (Lefkowitz et al. 2018). Most known phages are 

classified into the order of Caudovirales, so-called the tailed phages. The order includes three 

phage families: The Myo-, Podo- and Siphoviridae; these three families describe the long 

contractile phages, the long non-contractile phages,and the short-tailed phages, respectively. 

https://talk.ictvonline.org/
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Viruses infecting archaea are classified into 13 families; those include Ampullaviridae, 

Fuselloviridae, and Bicaudaviridae which comprise bottle-shaped phages, spindle-shaped 

phages,and two-tailed-shaped phages, respectively (Aiewsakun et al. 2018). 

Experimental identification and classification of bacteriophages remain a tedious and time 

consuming process, which fuels the demand for sequence-based computational methods to do 

so.  

 

Figure 1: Number of complete phage nucleotide sequences deposited in public databases in the years 2017-2018. 

This figure is downloaded from the Millard lab webpage accessed on 03/14/2019 

(http://millardlab.org/bioinformatics/bacteriophage-genomes/). 

 

With the booming advances in High-Throughput Sequencing (HTS) technologies, 

metagenomic approaches, and the exploding amounts of sequenced data, the rate at which 

phage genomes are being sequenced (Figure1) surpasses that of isolation and culturing by order 

of magnitudes (Simmonds et al. 2017; McNair et al. 2012). Additionally, genome data from 

various environmental samples and human gut microbiome has unveiled the ubiquity of 

prophages, the sequences of which do not match any known sequences deposited in public 

databases (Aiewsakun & Simmonds 2018). As a result, a gap exists between bacteriophages 

sequences deposited in GenBank which are not classified by the ICTV according to their 

http://millardlab.org/bioinformatics/bacteriophage-genomes/
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classification procedure (Rohwer & Edwards 2002; Bolduc, Jang, Doulcier, Z. You, et al. 

2017; Simmonds et al. 2017). This gap is envisaged to increase even more in the future 

(Manavalan & Lee 2017; Rohwer & Edwards 2002). Hence, there is a need that the ICTV 

expands their classification to include those more massive viral datasets (Aiewsakun & 

Simmonds 2018). Moreover, sequence data provides a reliable means of representing viral 

evolutionary relationships at high resolutions (Simmonds et al. 2017). 

Sequence-based Taxonomy 

To expand what is a morphology-based viral classification imposed by the ICTV, to viral 

sequences where phenotypic data cannot be obtained, scientists can profit from the relationship 

between phenotypic features used for family assignment and the corresponding genomic 

features (Aiewsakun & Simmonds 2018). 

In the last decade, we have seen significant shifts towards sequence-based taxonomy of 

bacteriophages, and multiple approaches have been proposed, which proved robust as a guide 

for divergent and highly mosaic viruses (Aiewsakun & Simmonds 2018). Contrary to bacteria 

which have conserved genes and a 16S rRNA gene traditionally used for taxonomy, viruses 

lack such a marker gene to place them on the tree of life (Rohwer & Edwards 2002). As a 

result, different genes were used in an attempt to create viral phylogenies, such as the DNA 

polymerase, the major capsid proteins,and the ribonucleotide reductase; which are estimated to 

be found in over 90% of dsDNA viruses (Reyes & Gruber 2017). However, the mentioned 

proteins don’t share conserved sites explaining the limitation of their use (Novik et al. 2017). 

Early on, the genetic complexity of viruses was recognized. Phages in the same taxonomic 

group might not have a similar nucleotide sequence, but share gene functionality (Lawrence et 

al. 2002). As a result, Rohwer and Edwards (2002) (Rohwer & Edwards 2002) described the 

Phage Proteomic Tree. The proposed method used translated genomes and showed high 

classification specificity for the viral dataset used. The techniquewas generated with a 

smalldataset and hence is not generally applicable (Bolduc, Jang, Doulcier, Z.-Q. You, et al. 

2017).  
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Another approach is the use of pairwise alignments techniques (Meier-Kolthoff & Göker 2017; 

Merabishvili et al. 2011; Lavigne et al. 2008). However, it is only applicable to phage 

sequences similar to those in a reference database. This approach makes it impossible to 

classify distantly related phages without any prior knowledge (Bolduc, Jang, Doulcier, Z.-Q. 

You, et al. 2017). 

Lastly, protein clustering techniques enabled classification of viral sequences with no prior 

knowledge (Lima-Mendez et al. 2008; Bolduc, Jang, Doulcier, Z.-Q. You, et al. 2017; Roux, 

Enault, et al. 2015). Monopartite gene sharing networks, as described by Lima-Mendez et al. 

(Lima-Mendez et al. 2008), correctly classified 95% of the 306 phage genomes available at that 

time. Recently, the performance of the method was re-evaluated and proved to be robust as it 

only failed in classifying only 1 in 4 dsDNA viruses (Bolduc, Jang, Doulcier, Z.-Q. You, et al. 

2017). However, monopartite networks do not retain information about the encoded genes per 

virus. Contrastingly, bipartite gene sharing networks (Corel et al. 2016), consisting of two 

classes of nodes (homologous protein families and viral genomes), allow the identification of 

genes shared between and across genomes which have likely been exchanged via Horizontal 

Gene Transfer (HGT). As a result, they perform better for detecting mosaic genomes. Bipartite 

networks were successfully implemented in multiple studies (Roux, Hallam, et al. 2015; 

Iranzo, Krupovic, et al. 2016; Iranzo, Koonin, et al. 2016). Iranzo, Krupovic&Koonin(Iranzo, 

Krupovic, et al. 2016) revealed a module based structure of dsDNA viruses, while Iranzo, 

Koonin et al. (Iranzo, Koonin, et al. 2016) extended the method to archaeal viruses and related 

plasmids. Both networks showed the possibility of a genome-based viral taxonomy consistent 

with the ICTV accepted phage genera. 

What is accepted by the ICTV for Classification 

The Bacterial and Archaeal Viruses Subcommittee (BAVS), the subcommittee of the ICTV, 

have formally expressed their intention to include viruses based on their sequence information 

into their taxonomy. However,because those viruses lack the standard required phenotypic 

information, the sequence is used as an attribute to assist in the viral taxonomic assignment 

(Aiewsakun & Simmonds 2018). The BAVS currently approves the use of BLASTN for the 

comparison of closely related phages, and endorsed software such as CLANS (Asare et al. 
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2015), GEGENEES (Sundstro 2012) and VISTA (Frazer et al. 2004), which are based upon 

sequence similarities resulting from BLASTN. Nevertheless, little information is provided for 

parameters needed to assign divergent viruses into the taxonomic divisions based on nucleotide 

or protein information (Krupovic et al. 2016; Aiewsakun & Simmonds 2018).  

The use of Hidden Markov Models as a basis for viral classification 

Profile Hidden Markov Models (HMMs) represent a robust method for modeling viral 

sequence diversity which can detect, with high sensitivity, three times more remote homologs 

than conventional pairwise sequence-alignment methods (Grazziotin et al. 2017; Reyes et al. 

2017; Barrett et al. 1998). Amino acids sequence divergence is, over time, much slower than 

nucleotide sequence divergence. Therefore, protein profile HMMs sensitivity can detect 

functionally related proteins even with low shared similarity, which enables virus detection 

without previous specific information (Alves et al. 2016; Ren et al. 2017).  

It has been estimated that the number of HMMs compiled in databases, such as pVOG and 

vFam (http://derisilab.ucsf.edu/software/vFam/), represent less than 20% of viral protein 

sequences (Skewes-cox et al. 2014). This is due to uneven taxonomic sampling, as poorly 

characterized viral families with few members, especially archaeal viruses, display a low 

proportion of gene coverage (Figure2)(Grazziotin et al. 2017; Iranzo, Krupovic, et al. 2016; 

Reyes & Gruber 2017). 

http://derisilab.ucsf.edu/software/vFam/
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Figure 2: Number of Orthologous Groups (Ogs) sorted by viral families available on the pVOG database. The 

figure was taken from Reyes et al. (Reyes & Gruber 2017). 

Nevertheless, the success of profile HMMs in dealing with divergence is proving to be an 

invaluable tool for viral identification (Reyes & Gruber 2017). Profile HMMs for viral 

detection and classification has been widely used in a considerable number of literature(Reyes 

& Gruber 2017; Grazziotin et al. 2017; Aiewsakun & Simmonds 2018; Lopes et al. 2014; Fouts 

2006). 

One of the most promising applications of viral HMMs is their use as seed for viral genomes 

reconstruction from metagenomic datasets along with their taxonomic assignment (Alves et al. 

2016). It is worth mentioning that the combination of different profile HMMs is key since no 

single match is sufficient to assess true viral sequence diversity. 

Phages in Metagenomes 

Metagenomic data is expanding our understanding of viral diversity, thus challenging viral 

recognition, assembly and classification methods (Simmonds et al. 2017). It is proving to be 

instrumental in the identification of entirely new groups of viruses, as over 750,000 
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uncultivated viral genomes (UViGs) has been reported(Roux et al. 2019). UViGs make the 

evaluation of viral diversity possible in addition to the over-represented dsDNA viruses, thus 

addressing one of the significant issues concerning under-represented viral species in public 

databases. However, methods to clone and sequence ssDNA and RNA viruses still need further 

development (Simmonds et al. 2017). 

In 2016 The ICTV expressed interest to incorporate identified viral groups from metagenomic 

datasets into their official taxonomy, even though they lack a direct correlation with biological 

characteristics (Lefkowitz et al. 2017; Simmonds et al. 2017). On account of sequence data 

providing essential information concerning evolutionary relationships, genome organization 

and other genomic features (Simmonds et al. 2017). Over the years multiple species and genera 

were assigned in the previously existing viral families, which were already set up based on 

phenotypic properties (Adams et al. 2017). However, the ICTV provides little or no systematic 

information on how divergent a virus has to be and what genomic features are to be considered 

for the taxonomic divisions (Aiewsakun & Simmonds 2018). 

Future of Phage Classification 

A consensus statement endorsed by the ICTV outlines a framework for the incorporation of 

metagenomic data into the standard ICTV taxonomy, where necessary checks for data integrity 

should be performed (Simmonds et al. 2017). It was proposed that i) the classification of 

UViGs into new taxa is possible, provided sequence relationships are comparable to those taxa 

already existing in that family; ii) When no relationship exists a new family can be assigned 

based on crucial variation in the genome organization and the inferred replication strategy; iii) 

Clustering and network analysis are to be used and critically evaluated for hierarchical 

taxonomic assignments; iv) Use the ICTV taxon nomenclature which is extendable to 

additional species; and lastly v) Procedure development to shorten the time needed by the 

ICTV to process newly submitted proposals and updating their “Master Species List”. 
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Prophage Prediction 

It has been reported that viruses can infect 13 prokaryotic phyla (Roux, Enault, et al. 2015). 

Thus, numerous methods have been developed for recognizing integrated prophages in 

bacterial genomes. Those tools include PHAST (Zhou et al. 2011), which was later extended to 

PHASTER(Arndt et al. 2016) and then PHASTEST(Arndt et al. 2017); Phage_Finder(Fouts 

2006), Prophinder(Lima-Mendez et al. 2008), PhiSpy(Akhter et al. 2012) and VirSorter(Roux, 

Enault, et al. 2015). Generally, bacterial genomes are scanned in a sliding window approach to 

finding regions with hits to known viral sequences (Ren et al. 2017). PhiSpy was the first tool 

ever described to include viral sequence features, which increased prophage prediction and 

outperformed the existing tools. Despite the added sequence derived features, these tools rely 

on finding homologous genes to known viral sequences, representing only a fraction of viral 

diversity. It has been estimated by Roux et al. (Roux, Hallam, et al. 2015)that known phage 

sequences are isolated from less than 15% of bacterial hosts. As a result, a gap still exists in 

generating a comprehensive reference free prophage finding tool. Lastly, VirSorter, a tool 

designed to detect viral sequences in genomic datasets as well as metagenomic assemblies, 

performs better for metagenomic and fragmented datasets since it does not consider additional 

prophage specific characteristics (Roux, Enault, et al. 2015). 

Why use Machine Learning Algorithms? 

To face the challenges resulting from the growing amount and complexity of phage sequenced 

data, Machine Learning (ML) algorithms and data mining techniques, have gained considerable 

interest and can be applied with little computational burden (Morota et al. 2018). They are 

expected to become instrumental for prediction and inference, due to their advantage in 

considering a large number of features simultaneously to identify a complex genomic element 

like a prophage(Manavalan, Tae H. Shin, et al. 2018; Manavalan & Lee 2017; Manavalan et al. 

2014). They generally try to assign an outcome label to new samples given a list of input 

features the ML algorithm was trained on (Amgarten et al. 2018). 
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Phage Protein Prediction 

To our knowledge, Seguritan et al. (2012) were the first to mention the use of Artificial Neural 

Networks (ANN) for the successful detection of phage structural proteins (Seguritan et al. 

2012). What followed was an increasing number of studies, using various ML algorithms, for 

effectively predicting phage proteins (Ding et al. 2014; Manavalan, Tae H Shin, et al. 2018; 

Pan et al. 2018; Feng, Ding, et al. 2013). In 2013, Feng et al. (Feng, Lin, et al. 2013) used a 

Naïve Bayes approach which achieved an overall accuracy of 79.15%. The same dataset was 

used again in 2015, where first the analysis of variance (ANOVA) for selection of the most 

informative feature was performed. Accordingly, the selected featureswere used as an input for 

a support vector machine (SVM) classifier for the identification of phage proteins. This 

method, PVPred, achieved an overall accuracy of 85.02% (Ding et al. 2014). PVPred was 

outperformed by PVP-SVM (Manavalan, Tae H. Shin, et al. 2018), reaching an accuracy of 

86.97 %, where they used a random forest (RF) algorithm for the feature selection process. Tan 

et al. proposed the use of a two-step feature selection process, using ANOVA and the minimal-

redundancy-maximal-relevance (mRMR) method, reaching an accuracy of 87.95 % (Tan et al. 

2018). 

Recently, Pan et al.(Pan et al. 2018) generated a new method called PhagePred. It uses a g-Gap 

feature selection process and then feeding the most informative features to a Naïve Bayes 

classifier. PhagePred reached an exceptional 98.37% accuracy, outperforming the existing 

methods. Interestingly, all these methods use similar approaches, sometimes the same dataset 

for prediction-method development, a feature selection process, and two machine learning 

algorithms (Naïve Bayes and SVM), and finally showed promising results for phage proteins 

prediction. 

All in all, the above mentioned tools focus on the identification and classification of single 

phage proteins, rather than the identification of complete phage genomes. 

Phage Prediction in Metagenomic Bins 

Amgarten et al. (2018) introduced a tool called MARVEL. It predicts phages in metagenomic 

bins using an RF algorithm and subsequently classifies Caudovirales phage families (Amgarten 
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et al. 2018). MARVEL achieved a much higher sensitivity when benchmarked against two 

state-of-the-art tools, VirSorter and VirFinder. They showed that three features were the most 

informative for bacteriophage prediction, (i) gene density, (ii) strand shifts and (iii) genes with 

significant hits against HMMs downloaded from the pVOG database. 

In summary, MARVEL and VirSorter enabled the sorting of metagenomic assembled bins 

whether they belong to phages or not and subsequently classify the sorted sequences into 

taxonomic phage families. These approaches further reinforce the advantage of using ML 

algorithms as frameworks for solving pressing problems arising from the ever-increasing 

number of data and phage sequence diversity. 
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General Project Aims 

Due to high viral diversity and the ever-increasing number of sequenced viral datasets, we 

aimed to describe a general approach that would still be pertinent whenever i) more phages are 

sequenced; ii) more phage families are represented and iii) regardless of how many bacterial 

genomes are sequenced. This study aimed to generate a method for complete prophage genome 

identification and subsequent taxonomical classification into the correct ICTV family. I 

intended to create phage models, when possible, for every phage family to taxonomically 

classify phage genome sequences on the family level. For confirmation, I tested the generated 

models, on a set of experimentally investigated and classified set of prophages. And lastly, I 

examined sequence derived features, to identify integrated prophages within bacterial genomes 

and potentially classify them using the generated models. 

To generate a positive dataset for benchmarking purposes, I investigated: 

 Temperate phage-bacteria interaction and Inoviridae as a driving force for Vibrio host 

evolution (Chapter II.1). 

 Comparative genomics of experimentally proven Inoviridae prophages (Chapter II.2). 

Regardless of the advances made for phage classification, no method exists that classifies 

phages based on whole genomes information. Therefore, the first aim of this project was to 

generate a phage classification method. I investigated: 

 The use of HMM as a basis for phage classification, using vibriophages as a pilot 

project (Chapter II.3), a method we call ClassiPhage. 

 The generation of specific profile HMMs per phage family of all available published 

phage genomes, and the generation of an input matrix that can be used to classify 

phages into phage families, using ANN (Chapter II.4), a method we call ClassiPhage 

2.0. 

Prophage identification has long been a topic of interest, and currently being dominated by 

software such as PHASTER and PhiSpy. PHASTER is based on gene annotations, and 
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BLASTp hits to a phage database while PhiSpy is based on different sequence features. 

However, it was constructed using a small dataset of closely related genomes. Therefore, the 

second aim of this project was to broadly identify integrated prophage regions in bacterial 

genomes based on sequence-derived features. I investigated and applied: 

 DNA derived features and their use for prophage regions identification in bacterial 

genomes as input for a Deep Neural Network (DNN) classifier (Chapter II.5), a method 

we call IdentiPhage. 
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Abstract 

Vibrio alginolyticus is a ubiquitous Gram-negative halophilic opportunistic pathogen, causing 

mass mortalities in shellfish, shrimps,and fish resulting in worldwide economic losses. The 

organism is considered as an independent species since 1980 and is closely related to the 

Harveyiclade, a group of seven species within the genus Vibrio. V. alginolyticus, as a species, 

comprise strains that are adapted to live as commensal as well as pathogenic bacteria within 
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habitats provided by a host organism. Considering the closely related species within the 

harveyi clade, this study targets the question of what genetic elements contribute to making V. 

alginolyticus a species. This study was performed to especially elucidate the contribution of 

mobile genetic elements, i.e., phages and plasmids, to the adaptation of V. alginolyticus strains 

to their host, their niche as well as to the switch between a commensal and a pathogenic 

lifestyle. 

Here we present a comparative genomic analysis of nine sequenced Vibrio alginolyticus 

isolates with a focus on infecting Inoviridae phages. We show that those infecting phages 

encode a toxin similar to the closely related CTX-phage known to infect various V. cholera 

strains. Altogether, our analysis revealed that genomic fluidity reflected by the presence of 

extra-chromosomal phages, prophages,and plasmids specific for the habitat facilitates the 

understanding of the phylogenetic diversity as well as the emergence of virulence of the 

various studied strains. 

Keywords 

Vibrio alginolyticus- comparative genomics - mobile genetic elements - mega-plasmids - 

Inoviridae- ssDNA phages - vibriophage - bacteriophages - phage activity - pathogenicity. 

1. Introduction 

Vibrio alginolyticus is a ubiquitous marine opportunistic pathogen can cause mass mortalities 

in shellfish, shrimp, and fish, resulting in severe economic losses worldwide (Zhang et al., 

2014; González-Escalona, Blackstone, & DePaola, 2006; Lee, Yu, Yang, Liu, & Chen, 1996). 

Additionally, wound infections and fatal septicemia in immunocompromised patients caused 

by V. alginolyticus have been reported in humans (Hörmansdorfer, Wentges, Neugebaur-

büchler, & Bauer, 2000). Vibrio pathogenicity is a complex interaction of abiotic and biotic 
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factors (Defoirdt, 2014), including high temperatures (Harvell, Altizer, Cattadory, Harrington, 

& Weil, 2009), low salinities, host and bacterial genotypes (Le Roux et al., 2015) and the 

presence of virulence encoding prophages, termed ‘vibriophages’ (Lan et al., 2009; Wagner & 

Waldor, 2002). The contribution of vibriophages to Vibrio virulence is a well-studied 

phenomenon and best described for V. cholera and the filamentous phage CTX, which encodes 

the cholera toxin (CT). Upon integration into the V. cholera chromosome, the CTX phage can 

transform an avirulentV. cholera strain into a deadly pathogen (Sarkar, Chakrabarti, Sarkar, & 

Dutta, 2016; Waldor & Mekalanos, 1996).  

Vibriophages are generally specific for a single Vibrio species or even specific to a single strain 

within a species (Maxwell, 2019). The CTX-phages, as well as the observed filamentous 

phages infecting other Vibrionaceae, have been classified as Inoviridae encoding genomes 

with a size from 4.5 Kbp to 12.4 Kbp (International Committee on Taxonomy of Viruses & 

King, 2012). Inoviridae can enter a lysogenic cycle by integrating their entire genome into their 

host genome followed by a passive replication by the host replication apparatus during cell 

division. Alternatively, they can have a lytic cycle where the virus genome replicates 

independently by a rolling-circle mechanism and hijacks the bacterial resources to produce the 

phage proteins and assemble new phage particles (Mai-Prochnow et al., 2015). In contrast to 

other lytic phages, who kill their host to release the free phage particles, the filamentous phage 

replication process results in a constant production of phage particles without killing the host 

cell, which is a distinct characteristic of filamentous phages (Mai-Prochnow et al., 2015). Most 

Inoviridae carry genes, which encode toxins, change their host’s phenotype using lysogenic 

conversion (Waldor & Mekalanos, 1996). This process enables their host bacterium to exploit a 

eukaryotic host and ultimately, to adapt to and colonize new habitats (Wendling et al., 2017). 
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Turner et al. (2018) underline in their analysis that Vibriosrelated to the Harveyi clade are 

highly similar concerning the chromosomes (Turner et al., 2018). Thisis reflected by a shared 

core-genome consisting of ~ 4,800 chromosomally encoded genes, which is approximately 

80% of the gene content of an average V. alginolyticus genome. The most significant share of 

strain-specific chromosomally encoded genes are located within mobile genetic elements such 

as plasmids and prophages. These prophages include Inoviridae to which the CTX infecting 

phage belongs to and other members of the Caudoviralesphage family (Castillo et al., 2018).  

In this study, we investigate the genomic sequences of nine different V. alginolyticus genomes, 

which have been isolated from the pipefish Syngnathus typhle at the Kiel Fjord (Wendling et 

al., 2017; Roth, Keller, Landis, Salzburger, & Reusch, 2012). We focus on the habitat-specific 

genes encoded on plasmids exclusively found in strains isolated in the Kiel Fjord and on 

prophages. We show that from the identified prophages solely the Inoviridae closely related to 

the CTX-phage concerning genome size, gene order and the presence of a toxin gene have been 

found actively producing phage particles.  

2. Materials and Methods 

Bacterial genome data 

We compared all replicons from nine V. alginolyticus strains to 159 closed Vibrio replicons 

sequences downloaded from NCBI nucleotide database; date of accession 12.06.2018 (Table 

S7). The nine strains were described in an earlier study and were phylogenetically previously 

with multi-locus sequence analysis (MLSA) based on partial DNA of 3 different genes (16S 

rRNA, recA and pyrH) (Wendling et al., 2017). 

DNA isolation, whole genome sequencing, assembly, and annotation 
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Using a combination of PacBio and Illumina sequencing, we generated eight closed V. 

alginolyticus genomes and one permanent draft as described in the following sections. 

Prophage induction and sequencing 

Prophages were induced from all nine V. alginolyticus strains using mitomycin C (Sigma) as 

described in Wendling et al. (2017) (Wendling et al., 2017) with minor modifications: bacteria 

were grown in liquid Medium101 (Medium101: 0.5% (w/v) peptone, 0.3% (w/v) meat extract, 

3.0% (w/v) NaCl in MilliQ water) at 250 rpm and 25 °C overnight. Cultures were diluted 1:100 

in fresh medium and grown for another 2.5 h at 250 rpm and 25 °C to bring cultures into 

exponential growth before adding mitomycin C at a final concentration of 0.5 μg/ml. Samples 

were incubated in an automated plate reader (TECAN infinite M200) for 4 h at 25 °C and 

mixed periodically. Bacterial lysis upon prophage induction was monitored via optical density 

at 600 nm (measured every other minute). We determined bacterial lysis time at induction as 

the time at which turbidity of the culture peaks.After 4 h, lysates were centrifuged at 6000 g for 

15 min. The supernatant was sterile filtered using 0.45 µm pore size filter (Sarstedt, 

Nümbrecht, Germany) and consequently supplemented with lysozyme from chicken egg white 

(10µg/ml, SERVA Heidelberg, Germany) was added to the filtered supernatant to disrupt the 

cell walls of potentially remaining host cells. RNAse A (Quiagen, Hilden, Germany) and 

DNAse I (Roche Diagnostics, Mannheim, Germany) were added to a final concentration of 

10µg/ ml each incubated at 25ºC for overnight (16 hours) to remove free nucleic acids and 

remaining host cells as described in Hertel et al.(Hertel et al., 2015). The supernatant was 

subsequently used for phage precipitation. 

 

 



Comparative genomic analysis of Vibrio alginolyticus reveals that the dynamics lie within the mobilome

 

56 

 

Ultracentrifugation 

After the enzymatic removal of free nucleic acids, the phage particles were sedimented by 

ultracentrifugation using a Sorvall Ultracentrifuge OTD50B with a 60Ti rotor applying 

200,000 g for 2 hours. The supernatant was discarded, and the pellet was solved in 200 µl 

TMK buffer, and stored at 4ºC or directly used for DNA isolation. 

DNA Extraction 

The DNA isolation was performed using a MasterPure DNA Purification kit from Epicenter 

(Madison, WI, USA). 200 µl 2x T&C-Lysis solution containing 1µl Proteinase K was added to 

the phage suspensions and incubated for 10 min at 10,000 g. The supernatant was transferred to 

a new tube, mixed with 670 µl cold isopropanol and incubated for 10 min at – 20ºC. DNA 

precipitation was performed by centrifugation for 10 min at 17,000 g and 4ºC. The DNA pellet 

was washed with twice with 150 µl 75% Ethanol, air-dried and re-suspended in DNase free 

water. 

Next-generation sequencing 

dsDNA for library construction was generated from viral ssDNA in a 50 µl reaction. The 

reaction was supplemented with 250 ng viral ssDNA dissolved in water, 1μM final 

concentration random hexamer primer (#SO142, Thermo Scientific), 10 units Klenow 

Fragment (#EP0051, Thermo Scientific) and 200 μM dNTPs final concentration each (#R0181, 

Thermo Scientific) and incubated for 37ºC for 2 hours. The reaction was stopped by adding 

1µlof a 0.5M EDTA pH 8 solution. The generated DNA was precipitated by adding 5 µl of a 

3M NaAcetate pH 5.2 and 50 µl100% Isopropanol to the DNA solution, gently mixing and 

chilling for 20 min at -70ºC. DNA was pelleted by centrifugation at 17,000 g, 4ºCand 10 

min.  Pellet was washed twice with 70% Ethanol and re-solved in 40ºCof pure water. 
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Remaining primers and viral ssDNA were removed in a 50 µl reaction using 10 units S1 

nuclease (#EN0321, Thermo Scientific) for 30 min at 25ºC. S1 nuclease was inactivated 

through adding 1µM 0.5M EDTA  pH 8 and incubated for 10 min at 70ºC. Consequently, 

dsDNA was precipitated as described above and resolved in pure water. Presence of dsDNA 

was verified via TAE gel electrophoresis in combination with an ethidium bromide staining 

and visualization via UV-light. NGXS phage DNA libraries were generated with the 

NexteraXT DNA Sample Preparation Kit (Illumina, San Diego, USA), and the sequencing was 

performed on an Illumina Gaii sequencer (Illumina, San Diego, USA). 

Transmission electron microscopy 

Electron microscopy was carried out on a Jeol 1011 electron microscope (Peabody, USA). 

Negative staining and transmission electron microscopy (TEM) were performed as described 

previously (Willms et al. 2017). Phosphotungstic acid dissolved in pure water (3%; pH 7) 

served as staining solution. 

Average nucleotide identity and orthologous proteins 

Average nucleotide identity (ANI) analysis of the different 159 Vibrio replicons was performed 

in ANIm mode which uses MUMmer (https://github.com/widdowquinn/pyani). Briefly, 

nucleotide sequences were extracted from each GenBank file using Biopython 

(https://biopython.org/) and subsequently used as input for pyani for genome sequence 

alignment.  

To identify orthologous genes between the closest selected genomes from the pyani analysis 

and the nine sequenced V. alginolyticus strains, Proteinortho(Lechner et al., 2011)was used. 

Proteinortho cutoffs parameters used were an E-value of 1e-10 and protein sequence of 80% 

coverage and 50% identity. The nine sequenced strains and closest selected Vibrio genomes 

https://github.com/widdowquinn/pyani
https://biopython.org/
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were scanned with PATRIC (https://patricbrc.org/) for the detection of potential virulence 

factors (Wattam et al., 2014). 

Determination of active phages 

Resulting PacBio reads were de novo assembled using the HGAP 2.0 assembly pipeline (Chin 

et al., 2013) with further analysis using SMRT Portal (v2.3.0) to generate V. alginolyticus 

references genomes (https://www.pacb.com/support/software-downloads/). Resulting Illumina 

sequence reads from i) whole genome sequencing and ii) induced phage sequencing were 

mapped using Bowtie2 (Langmead & Salzberg, 2012) to the corresponding reference V. 

alginolyticus genome.  

The generated mapping files were analyzed using TraV(Dietrich, Wiegand, & Liesegang, 

2014) to identify the genomic location and context of the phage particle provided DNA. Peaks 

of coverage that mapped to genome region encoding phage genes were used as an indication 

for active prophages. 

Prediction of phage loci and comparative analysis 

All genomes were scanned with PHASTER (http://phaster.ca/) (Arndt et al., 2016) to identify 

additional non-induced prophages. Easyfig(Sullivan, Petty, & Beatson, 2011) with the 

BLASTn mode was used for pairwise phage sequence comparisons and synteny comparisons 

with an E-value cutoff of 1e−10. 

Statistical analysis and visualization graphs 

All statistics and visualization graphs were performed using ggplot2 (Wickham, 2011) library 

in R 3.1.2 unless otherwise stated. 

 

https://patricbrc.org/
https://www.pacb.com/support/software-downloads/
http://phaster.ca/
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3. Results and discussion 

Genome sequencing 

Nine strains of Vibrio alginolyticus isolated from pipefish at the Kiel Fjord(Roth et al., 2012) 

have been genome sequenced using PacBio long and Illumina short read technology. The 

assembly resulted in eight closed genome sequences of the nine V. alginolyticusstrains. All V. 

alginolyticus genomes contain a ~3.47 Mbp chromosome 1 and a ~ 1.88 Mbp chromosome 2 

(Table 1) as has been found previously for the genus Vibrio as well as for the species V. 

alginolyticus (Wang, Wen, Li, Zeng, & Wang, 2016; Okada, Iida, Kita-Tsukamoto, & Honda, 

2005).  

Table 1: Vibrio alginolyticus genomes used in this study 

Strain GC% Replicon Size[bp] CDS Ref Genbank 

K01M1 44.60 chromosome 1 3,468,303 3,206 This study CP017889.1 

  chromosome 2 1,883,748 1,668 This study CP017890.1 

  pL9064 9,064 8 This study CP028135.1 

K04M1 44.31 chromosome 1 3,473,127 3,213 This study CP017891.1 

  chromosome 2 1,870,775 1,660 This study CP017892.1 

  pL19 19,690 28 This study CP017893.1 

  pL280 280,614 305 This study CP017894.1 

  vK04M1* 7,079 11 This study CP017895.1 
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K04M3 44.31 chromosome 1 3,476,174 3,219 This study CP017896.1 

  chromosome 2 1,903,830 1,708 This study CP017897.1 

  pL294 294,086 325 This study CP017898.1 

K04M5 44.31 chromosome 1 3,470,916 3,211 This study CP017899.1 

  chromosome 2 1,900,618 1,688 This study CP017900.1 

  pL294 294,721 320 This study CP017901.1 

K05K4 44.34 chromosome 1 3,473,579 3,218 This study CP017902.1 

  chromosome 2 1,875,554 1,670 This study CP017903.1 

  pL289 289,065 315 This study CP017904.1 

  vK05K4_1* 21,012 34 This study CP017905.1 

  vK05K4_2* 13,327 23 This study CP017906.1 

K06K5 44.31 chromosome 1 3,471,297 3,213 This study CP017907.1 

  chromosome 2 1,879,729 1,662 This study CP017908.1 

  pL29 29,688 20 This study CP017909.1 

  pL291 291,285 322 This study CP017910.1 

K08M3 44.32 chromosome 1 3,468,139 3,214 This study CP017913.1 
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  chromosome 2 1,886,577 1,675 This study CP017914.1 

  pL300 300,425 331 This study CP017915.1 

K09K1 44.61 chromosome 1 1,897,210 3,209 This study CP017918.1 

  chromosome 2 3,465,619 1,704 This study CP017919.1 

K10K4 44.60 chromosome 1 3,494,647 3,231 This study CP017911.1 

  chromosome 2 1,894,531 1,682 This study CP017912.1 

ATCC 

33787 

44.48 chromosome 1 3,362,673 3,190 (Wang et al., 

2016) 

CP013484.1 

  chromosome 2 1,851,538 1,674 (Wang et al., 

2016) 

CP013485.1 

  pMBL128 128,112 144 (Wang et al., 

2016) 

CP013486.1 

  pMBL287 286,750 301 (Wang et al., 

2016) 

CP013487.1 

  pMBL96 95,866 109 (Wang et al., 

2016) 

CP013488.1 

ZJ-T 44.67 chromosome 1 3,535,128 3,301 (Deng, 

YiqinChen, 

Zhao, Huang, 

Ding, & Yang, 

2016) 

CP016224.1 

  chromosome 2 1,870,966 1,657 (Deng, 

YiqinChen, 

Zhao, Huang, 

Ding, & Yang, 

2016) 

CP016225.1 
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NBRC 

15630 

44.70 chromosome 1 3,334,467 3,128 (Liu, Cao, 

Zhang, Chen, & 

Hu, 2015) 

CP006718.1 

  chromosome 2 1,812,170 1,640 (Liu, Cao, 

Zhang, Chen, & 

Hu, 2015) 

CP006719.1 

*circular phage replicons 

Seven isolates contain extra-chromosomal replicons including plasmids as has been found for 

strain ATCC33787 (Wang et al., 2016). The isolates K04M1 and K04K5 contain circular 

replicons encoding Inoviridae phages which fits to the observation that Inoviridae can replicate 

as extra-chromosomal circular molecules in a rolling circle replication mode (Wawrzyniak, 

Plucienniczak, & Bartosik, 2017; Székely & Breitbart, 2016; Mai-Prochnow et al., 2015) 

without killing their hosts by switching into the lytic lifestyle. In case of strain K09K1, the 

chromosomes 1 and 2 have been assembled into a single contig due to a multiple repeats that 

contained as several copies of integrated Inoviridae prophages. The replicon boundaries could 

not be resolved experimentally based on PCR; thus the V. alginolyticus K09K1 genome has 

been assigned “permanent draft” status. 

Species definition and phylogenetic relationships 

To elucidate the taxonomy of the nine genomes and 150 Vibrio replicons from closed 

sequenced genomes available at the time of analysis (for details see Table S7), the average 

nucleotide identity was performed using pyani with the ANIm option 

(https://github.com/widdowquinn/pyani) (Figure 1).  

https://github.com/widdowquinn/pyani
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Figure 1: Average nucleotide identity percentage analysis (ranging from 0 to 50% colored in blue, and higher 

than 50% ANI in red, up to 100% ANI dark red) of closed Vibrio genomes.  

ANI analysis based on MUMmer alignment of the genome sequences was performed and visualized using 

PYANI. All V. alginolyticus cluster with V. diabolicusand V. antiquaries(green box) on ANI similarity values 
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below the species level, the latter two form a subcluster (white box). The extended Harveyi group (black box) 

forms a cluster of four distinct species groups including (i) the Harveyi clade sensustricto (blue box), (ii) the 

parahaemolyticus group (light blue box), the (iii) natriegens group (yellow box) and the alginolyticus group (green 

box). 

The species V. alginolyticus, V. diabolicusand V. antiquaries exhibited ANIm values between 

96 to 100% (dark red color), which is above species threshold (Yoon, Ha, Lim, Kwon, & Chun, 

2017; Goris et al., 2007). However, a distinct block within the alginolyticus/diabolicus group 

that contains V. diabolicus exclusivelyand V. antiquaries strains to indicate that they are more 

similar to each other than to V. alginolyticus. The analysis of the ANI clustering shows that 

members of the Harveyi clade (Ke et al., 2018) of the genus Vibrio, consisting of the species V. 

harveyi, V. campbellii, V. hyugaensis, and V. owensii, forms a close group with V. jasidica, V. 

natriegens, V. rotiferianus. This group can be clearly separated from V. diabolicus/V. 

alginolyticus cluster (Turner et al., 2018) and the V. parahaemolyticus cluster (Ghenem, 

Elhadi, Alzahrni, & Nishibuchi, 2017). Our data confirm the close taxonomic proximity of 

these species (Turner et al., 2018). The analysis confirms that the nine new genomes belong to 

the species V. alginolyticus and form with V. diabolicus andV. antiquaries a distinct species 

group. It is a species group that is related but distinct to the harveyi-clade and V. 

parahaemolyticus.  

Pan/core genomes Vibrio alginolyticus 

To elucidate how the nine genomes from V. alginolyticus strain from the Kiel Fjord are related 

to V. alginolyticus strains isolated from other habitats we determined the pan/core genomes 

(Land et al., 2015) of  the new genomes with the V. alginolyticus type strain NBRCC15630 

(isolated in Japan, (Liu et al., 2015)) and the strain ZJ-T (isolated in Zhanjiang, Guangdong 

Province, China(Deng, YiqinChen et al., 2016)) and ATCC33787 (isolated from sea-water near 

Oahu, USA (Wang et al., 2016)). The analysis included in total 53,893 proteins sequences 
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encoded in chromosomes, plasmids, extra-chromosomal phage replicons as well as in 

integrated prophages. The core genome calculate based on these 12 strains comprises 3,861 

orthologous groups (Figure 2, for details, see Table Figure 2 and Table S6).  

 

Figure 2: Pan/Core genome analysis of V. alginolyticus strains isolated from four different habitats. Note the Kiel 

habitat represents all genes shared by all 9 strains isolated from the Kiel Fjord. The other habitats are represented 

by strains ZJ-T (isolated from Epinepheluscoioides in Zhanjiang, Guangdong Province, China), ATCC337 (sea 

water near Oahu 20.3N 157.3 W) and NBRCC15630 by single isolates. Matches to a group of paralogs have been 

counted once per orthologous group. Notably, the number of genes shared by the different habitats is low 

compared to the number of habitat-specific genes. 

The Proteinortho analysis indicates that the species defining core genome of V. alginolyticus 

includes approximately 79% of the genes in each sequenced genome, which is close to the 77% 
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of the core genome identified in V. parahaemolyticus (Gonzalez-Escalona, Jolley, Reed, & 

Martinez-Urtaza, 2017). The number of specific genes is varying between 171 and 422, which 

represent the adaption of strains to their particular habitat. The Venn diagram indicates what is 

shared between the Vibrio genus while the singletons indicate what is particular to the source 

of the strain isolation and related to the niche adaptation. Singletons, here defined as genes that 

are exclusively found in one habitat, have been checked for their genomic location (Figure 3, 

for details, see Table Figure 3).  
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Figure 3: Singletons per habitat displayed in a stacked bar plot resulting from Core/Pan genome analysis of 12 

Vibrio alginolyticus strains. The number of genome-specific singletons is depicted per replicon. 

Orthologs/Paralogs/Singletons detection was done with blastp and the Proteinortho software with a similarity 

cutoff of 50% and an E-value of 1e−10. 

This analysis revealed that i) chromosome 1 of V. alginolyticus genomes has between ~190 to 

~270 depending on the habitat while Kiel specific genomes share the same orthologous habitat 
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specific genes (422 Ogs including plasmid and prophage singletons) which are not visible by 

this analysis; However ii) the vast majority of the singletons are encoded on plasmids or 

episomal phages. 

PATRIC analysis 

Virulence factors prediction via PATRIC of the 12 V. alginolyticus genomes did not reveal a 

discernible niche specific pattern. However the highest number of potential virulence factors 

for NBRC 15630 strain were corroborated by Turner et al.’s investigation (Turner et al., 

2018)(Figure 4, for details, see Table Figure 4).  

 

Figure 4: Virulence factors predictions displayed in a stacked bar plot resulting from the PATRIC analysis of 12 

Vibrio alginolyticus strains. 
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The Kiel Fjord adaptations 

The isolates of the Kieler Fjord share 422 genes that are exclusively present in these strains. 

The majority of these genes are located within mobile genetic elements including plasmids, 

prophages and genomics islands. Interestingly six of the nine Kiel isolates contain closely 

related plasmids ranging between 291 and 300 Kb in size and sharing over 90% nucleotide 

identity. A plasmid pan/core analysis revealed that the closely related plasmids encode 297 

orthologous genes (Figure 5, for details, see Table Figure 5 and Table S1), which represent the 

main part of the 422 genes exclusively found in this habitat.  

 

Figure 5: Analysis of orthologous genes (Ogs) on six plasmids found in six V. alginolyticus strains. The number 

of genome-specific Ogsis depicted in the respective ellipse. Ortholog detection was done with the Proteinortho 

software setting a similarity cutoff of 50% and an E-value of 1e−10. 

V. alginolyticus ATCC 33787 contains as well three plasmids including the 287 Kb plasmid 

pMBL287 (Wang et al., 2016). However, a comparison of ATCC 33787 plasmids revealed no 

sequence similarity to any of the plasmids from the Kiel strains. In addition to the six related 

plasmids, three smaller plasmids (ranging between 9 -19 kb) without any similarity to the 

bigger plasmids or the plasmids from ATCC 33787 and three extra-chromosomal Inoviridae 
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phage replicons VK05K4_1, VK04K5_2 both from strain K05K4 and VK04M1_1 from strain 

K04M1 have been identified (See section Induced phages). 

Induced phages 

In many organisms integrated prophages can be induced by mitomycin C (Hertel et al., 2015), 

a stress-inducing compound. Liquid cultures of all nine V. alginolyticus strains were treated 

with mitomycin C in a phage induction experiment. A cell-free supernatant was investigated 

with transmission electron micrograph (TEM) and revealed filamentous structures in all strain 

derived supernatants. The TEM image from one shown isolate enabled us to classify the 

induced phages as Inoviridae (Figure 6).  

 

Figure 6: TEM image of the induced Inoviridae phages. 
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The TEM result indicates that we have filamentous particles in all samples we did not find any 

Caudovirales-like particles. Even with a series of mitomycin C induction experiments we never 

found any Caudovirales-like phage particles. 

Identification of active phage loci 

To locate the exact positions of the induced prophages, we performed a PHAGE-seq 

experiment (Hertel et al., 2015). In control experiments, the complete procedure has been 

applied without mitomycin C where the reference genomes were sequenced using Illumina 

technology. Both experiments revealed an increased coverage at Inoviridae loci (Figure 7). 

This indicates that induced and non-induced cultures produce comparable amounts of particles 

encoded by the same Inoviridae prophage.  

a)

 

b)

 

Figure 7: Phage-seq results of induced and non-induced V. alginolyticus K10K4 strain culture. a) Visualization of 

phage particle protected DNA to the corresponding reference genome. b) Visualization of complete bacterial 

genomic DNA. 
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The position of the mapped prophage DNA prophage, indicative for phage activity, enabled us 

to locate the exact positions of the integrated Inoviridae prophages (Table S4). Interestingly 

both samples generated mappings to the same loci with comparable coverage. This indicates 

that the Inoviridae phages derived from the nine V. alginolyticus are constitutively active with 

and without mitomycin C induction. As a further control, total DNA without DNase A 

treatment resulted in a coverage increased by the factor of 100 at the phage loci compared to 

the average chromosomal coverage (Figure 7b). The cultures produced a permanent amount of 

phage particle protected DNA. Within the nine sequenced V. alginolyticus isolates we found 

exclusively 19 active Inoviridae. None of the Caudovirales resulted in phage particle protected 

DNA. In case of the active Inoviridae, 16 were integrated on chromosome 2,and three exist as 

extra-chromosomal replicating replicons. 

Prophages 

PHASTER was used to investigate whether predicted phage loci correlates to the DNA within 

phage particles of the different cultures and to search for the complete set of predictable 

prophages. All replicons of the nine V. alginolyticus genomes were scanned with PHASTER 

where in total 45 prophages were predicted (Table2, for details, see Table S2), including at 

least one Inoviridae per genome. The presence of Inoviridae in each genome, each of them 

encoding a version of the ZOT-toxin confirms the importance of temperate members of this 

phage family for V. alginolyticus as a member of the genus Vibrio (Castillo et al., 2018; 

Kalatzis et al., 2017; Naser et al., 2017; Mai-Prochnow et al., 2015). 
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Table 2: Prophages predicted in V. alginolyticus strains 

Genome Phages 

K01M1 2 Caudovirales, 1 Inoviridae 

K04M1 3 Caudovirales, 2 Inoviridae 

K04M3 3 Caudovirales, 2 Inoviridae 

K05M5 3 Caudovirales, 2 Inoviridae 

K05K4 3 Caudovirales, 6 Inoviridae 

K06K5 3 Caudovirales, 1 Inoviridae 

K08M3 3 Caudovirales, 1 Inoviridae 

K09K1* 2 Caudovirales, 4 Inoviridae 

K10K4 2 Caudovirales, 3 Inoviridae 

*Due to the draft status of the genome the number of Inoviridae prophages is preliminary. 

In addition to the expected Inoviridae prophages, 24 prophages containing key genes of the 

Caudoviralesphage families have been predicted. Integrated prophages are in a lysogenic state, 

thus replicating via the hosting replicon. An in-depth analysis of the Caudoviralesto one of the 

three subfamilies Myo-, Podo- or Siphoviridaewas not possible due to the lack of the required 

morphological data.  
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Extra-chromosomal phages 

Within the assembly of K04M1 and K05K4 strains, three closed circular contigs have been 

identified that consist of complete Inoviridae genomes. This indicates the presence of free 

phage replicons in two out of nine V. alginolyticus genomes. A sequence comparison of the 

three extra-chromosomal contigs to one another and the prophages integrated into chromosome 

2 of both strains (Figure 7) confirmed that all of these phages are related. The i) annotation, the 

ii) TEM (Figure 8) vizualisation of the induced phages and the iii) genome comparison to 

published Inoviridae phages (for details see Figure S2 and Table S3) identified them as 

Inoviridae (Mai-Prochnow et al., 2015; International Committee on Taxonomy of Viruses & 

King, 2012).  
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Figure 8: Genome comparison of extra-chromosomal phage genomes and prophages from V. alginolyticus strains 

K04M1 and K05K4. Annotated genes are color-coded. Visualization was done with the program Easyfig with an 

E-value cutoff of 1e−10. 

The two extra-chromosomal phages VK05K4_1 and VK05K4_2 were compared to the 

integrated Inoviridae prophage located at 1,717,000-1,725,000 bp on chromosome 2 of the V. 

alginolyticusK05K4 strain. This comparison unveils that VK05K4_2 consists of two K05K4 

prophages and that VK05K4_1 consists of three K05K4 prophages. An additional comparison 

reveals that VK04M1 is syntenic to K05K4 prophage; however K04M1 prophage located at 

930,000-990,000 of chromosome 2 shares no sequence similarities with VK04M1 but shares 

gene functionalities. A Proteinortho analysis of the three extra-chromosomal phages (Table S5) 

revealed the shared orthologs between these phages. Considering the observation that 

Inoviridae of the genus Vibrio can multiply by the rolling circle replication (RCR) 

(Wawrzyniak et al., 2017; Mai-Prochnow et al., 2015; International Committee on Taxonomy 

of Viruses & King, 2012) suggests the hypothesis that the two extra-chromosomal circular 

contigs represent RCR intermediates of the phage. However, to confirm or falsify this 

hypothesis experiments have to be performed that are beyond the scope of this project. In 

contrast, the comparison of VK04M1 to the integrated K04M1 Inoviridae prophage confirms 

that the extra-chromosomal phage that distinct from the strains own prophage but very close to 

the phages of strain K05K4.  

 



Comparative genomic analysis of Vibrio alginolyticus reveals that the dynamics lie within the mobilome

 

76 

 

4. Conclusions 

We performed a comparative genome analysis of nine isolated V. alginolyticus strains and 

could show that the strains of the habitat share 422 genes specific for their shared habitat. The 

majority of 297 genes are encoded by a set of six closely plasmids whereas, the remaining Kiel 

habitat specific genes are encoded by prophages. These results show the importance of these 

mobile functions in shaping the V. alginolyticus genome. 

A bioinformatic scan for prophages predicts Inoviridae and Caudovirales prophages. 

Surprisingly induction experiments with and without mitomycin C exclusively induced 

Inoviridae prophages to produce particles. This confirms the dominance of ssDNA Inoviridae 

in the isolates. Our experiments show that the ability to produce Inoviridae particles is not 

dependent on the induction with mitomycin C. All predicted prophages encode genes for the 

Ace protein and the ZOT assembly proteins which are orthologous to pathogenicity factors of 

related fish pathogenic Vibrio species.  
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Abstract 

Background: 

Prophages are known to have a tremendous impact on their bacterial host. However, accurately 

identifying integrated prophage regions within bacterial genomes remains a problem. The 

majority of existing tools rely on hits to known phage sequences, which limits the identification 

of distantly related prophage regions. 

Results: 

In this study, we present IdentiPhage, a method for the prediction of integrated bacteriophage 

sequences within bacterial genomes. IdentiPhage uses a deep neural network machine learning 

approach. We trained IdentiPhage on a set of genomic features generated from a dataset of 

11,373 bacterial and 8,721 phage genomes. We show that features such as GC%, GC content 

deviation, dinucleotide skew, number of CDS per window, overlapping CDS per window and 

an average gene size were sufficient to locate integrated prophages. These features canidentify 

prophages without any sequence similarities to known phages. Our positive phage label, for the 

supervised machine learning approach, was a BLAST hit of over 1 kb of the phage sequence to 

the bacterial sequence database. IdentiPhage achieved a specificity of 80.14 % during hold-out 

cross-validation. We compared the performance of IdentiPhage to PHASTER and phiSpy 

which are popular tools used for phage prophage identification. 
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Conclusions: 

Our results show that IdentiPhage can be used as a complementary tool to existing tools. In a 

simple test with real data, where prophages in 9 Vibrio alginolyticus genomes were 

experimentally confirmed, IdentiPhage identified all known prophages. IdentiPhageis a tool 

under active development, to be made available as a publicly accessible easy-to-use web 

service. 

Keywords: 

Prophage, integrated phages, genomic features, machine learning, artificial neural networks 

1. Introduction 

Bacteriophages, viruses infecting bacteria, are estimated to be one of the most biological 

entities on earth (Amgarten et al. 2018; Arndt et al. 2017; Jurtz et al. 2016; Roux et al. 2014). 

They are recognized as the major driving forces of i) virulence of facultative pathogens (Roux 

et al. 2016; Roux et al. 2015; Busby et al. 2013), ii) microbial evolution and adaptation to new 

ecological niches (Arndt et al. 2017; Howard-Varona et al. 2017), and iii) marine carbon and 

nutrient cycling, such as nitrogen, phosphate and sulfur (Howard-Varona et al. 2017; Jurtz et 

al. 2016; Roux et al. 2016; Roux et al. 2015). 

Bacteriophages are known to, either use the replication machinery of the host for replication 

and lyse the host, and thus have a lytic life cycle, or can integrate into the host genomes and 

replicate with the replicating host and therefore has a temperate lifestyle (Howard-Varona et al. 

2017; Wendling et al. 2017; Akhter et al. 2012;Zhou et al. 2011). The latter, termed prophages, 

were identified in over 50% of bacterial genomes (Touchon et al. 2016), and moreover, 

bacterial genomes can contain over 20% of prophages and cryptic prophages (Arndt et al. 

2017; Casjens 2003). The computational identification of prophages still poses a challenge due 

to the extensive genetic exchange between phages and their hosts, which increases the 

complexity of phage identification (Hurwitz et al. 2018). Multiple tools exist for the 

identification of integrated prophages within bacterial genomes. Tools such as PHAST (Zhou 

et al. 2011), PHASTER (Arndt et al. 2016), PHASTEST (Arndt et al. 2017), 

Phage_Finder(Fouts 2006) and Prophinder (Lima-Mendez et al. 2008)are based on annotated 
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genes and codingsequencesorsimilaritiestoknownreferencephagegenomes. The downside is that 

identification by sequence comparison to a database of known phages limits the possibility of 

identifying new phages to those similar to the phages within those databases (Zhao et al. 2017). 

Moreover, prophage identification relying on phage specific annotations can be biased, 

depending on the software used to generate those annotations due to the high number of poorly 

or incorrectly annotated proteins (de Crécy-Lagard 2016), for instance, due to the fact that most 

automated annotation pipelines are not refined for the detection of small phage ORFs (Linial 

2003). PhiSpy, a tool introduced in 2012, combines multiple phage sequence characteristics, 

including some non-similarity based features, thus increased the accuracy of prophage 

predictions (Hurwitz et al. 2018). Yet, it additionally relies on identifying viral genes based on 

homology to known viral genes that represent only a small portion of viral diversity. To this 

end, a plethora of tools are available and additionally being developed for mining viral 

sequences in large metagenomic datasets but are not suitable to identify prophages integrated 

within bacterial genomes (Hurwitz et al. 2018) 

Here, we present IdentiPhage a tool for the prediction of integrated prophages within bacterial 

genomes. IdentiPhage applies a machine learning approach that evaluates 12 non-similarity 

based genomic features by applying a set of thresholds to select optimal parameters for the 

prediction. The use of machine learning algorithms have been successfully applied to several 

biological problems, such as the prediction of antibiotic resistance genes from metagenomic 

data (Arango-Argoty et al. 2018), the prediction of prokaryotic hosts from metagenomic phage 

contigs (Galiez et al. 2017), the taxonomic classification of phages (Chibani et al. 2019), the 

prediction of phage sequences in metagenomic bins (Amgarten et al. 2018), and the prediction 

of phage proteins (Manavalan, Tae H. Shin, et al. 2018; Ding et al. 2014; Feng et al. 2013). The 

resulting predicted regions were benchmarked against the prediction of popular prophage 

prediction tools phiSpy and PHASTER. 
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2. Material and Methods 

We follow the 5 step guideline endorsed in a series of publications, for the development of a 

sequence-based predictor for a biological system (Manavalan, Tae H. Shin, et al. 2018 (a); 

Manavalan, Tae Hwan Shin, et al. 2018 (b); Manavalan et al. 2017). 

Training and Testing Datasets 

To build and test IdentiPhage, bacterial GenBank files were downloaded from NCBI on 04 

June 2018. The accession numbers of the phage dataset used in this research were retrieved 

from the millardlab database (http://millardlab.org/bioinformatics/bacteriophage-genomes/) 

and downloaded from NCBI. As of 20 March 2018, the database contained 8,721 number of 

phage genomes (Chibani et al. 2019).  A blastn search was done by aligning phage nucleotide 

sequences against nucleotide sequences of the downloaded bacterial genomes. The BLASTn 

results were used to extract positive sample data from the bacterial genomes. Every hit with a 

size of ≥1 Kbpwas used as the resulting range of positive phage samples.  

Feature Extraction 

Seeking robust phage descriptive features, we computed 12 prophage descriptivesequence-

derived features. Feature data were generated per window, in a sliding window approach, for a 

specific window size on the bacterial host replicons. Window size was arbitrarily set to 500 bp 

(which is approximately half of the size of an average gene). Shifts per nucleotide usage, 

reflected in local changes or distortion in the cumulative skew distribution could be a result of 

the integration of foreign DNA (Akhter et al. 2012). Thus we considered GC%, GC skews (i), 

AT skews (ii) and GC content deviation (iii) which were calculated as follow:  

(i) GCskew = (G-C)/(G+C) 

(ii) ATskew = (A-T)/(A+T) 

(iii) GCdeviation = GCwindow/GCreplicon 

(iv) Slope = Δvalue/Δposition 

http://millardlab.org/bioinformatics/bacteriophage-genomes/
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Additionally, we computed slope values (iv) for dinucleotide skews and the GC% deviation 

and GC-deviation switch to indicate a sudden deviation of the GC% deviation from below 1 to 

above 1 or vice versa. This switch was used to mark hotspots by searching for a steep GC%-

deviation slope (the highest 3% slopes) within 300 bp. 

Furthermore, phages are known to encode shorter genes (Akhter et al. 2012), thus we 

considered features such gene density (Amgarten et al. 2018), the average gene length per 

window (Akhter et al. 2012; Amgarten et al. 2018), and overlapping CDSs (Brandes & Linial 

2016). Gene density per window was calculated as the total number of CDS per window 

divided by window length measured in bp. The average gene length per window was calculated 

by adding up the length of all predicted CDSs in a window divided by the total number 

predicted CDS per window. All estimated values were generated based on the predicted CDSs 

which were extracted from the downloaded bacterial GenBank files and were calculated using 

a window size of 500 bp, and an overlap of 400 bp. The generated feature data files were 

processed, adding positive phage information as a label where 0 stands for no phage hit per 

window or 1 for phage hit per window. Note that all the above-mentioned features were 

normalized to the range of [0,1] as input for the DNN. 

Data Normalization 

To be able to use the data set in machine learning algorithms, its data has been normalized 

using the StandardScaler from sklearn.preprocessing, normalizing all data to values between -1 

and 1. The normalized data set was, as well as the StandardScaler -object, dumped to a binary 

file for faster access using the pickle module, calling pickle.dump. Due to the vast imbalance of 

positive and negative samples (5,501,976 of 349,024,443 samples were positive), a smaller 

subset was created using a 50/50-ratio for positive and negative samples, collected randomly 

from the entire data set. This dataset contained ~5 million positive and 5 million negative 

samples. 
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Classifier Development 

Using Python Scikit Learn Libraries and the Keras module configured to use TensorFlow as its 

back-end; we developed and trained a Deep Neural Network (DNN). We experimented with 

various DNN architectures as follow: a first hidden dense layer with twice the nodes than the 

input dimension as an inputlayer and three additional hidden dense layers with triple the nodes 

than the input dimension. After every hidden layer, starting with the second one, a “Dropout 

layer” was used, set to 25% dropout rate which is capable of better generalization of the model 

and avoiding overfitting (Srivastava 2014). Lastly, the output layer of the deep neural network 

consists of 2 units that correspond to whether a window belongs to a phage region or not. The 

DNN uses a rectified linear unit (relu) activation function (Arora et al. 2016) that computes the 

probability of the input window sequence against one of the two possible outcomes; window 

belonging to phage or not. The training data was split into two subsets at an 80-20% division 

where we refer to 80% of the data as the training dataset and the 20% of the data as the 

validation dataset. The training dataset was used to train and generate a model for the 

prediction of phage windows while the testing dataset was used to provide an evaluation of the 

final fit IdentiPhage model what is referred to as the hold-out cross-validation method. Heavy 

computation is required only once to obtain the deep learning model, and the prediction 

routines do not need such computational resources.  

Metrics Measurement 

To assess IdentiPhage’s performance and robustness, we repeat the process of random selection 

of the training and testing datasets, model-building and model-evaluating using 3 parameters: 

overall prediction v) sensitivity (Sn), vi) specificity (Sp) and vii) accuracy (Acc). These 

measured metrics would help us determine how the model would perform on new datasets(Pan 

et al. 2018). The parameters are defined as follows: 

(v) Sn = TP/(TP+FN) 

0<Sn<1 

(vi) Sp = TN/(TN+FP) 

0<Sp<1 
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(vii) Acc = (TP+TN)/(TP+FP+TN+FN) 

0<Acc<1 

Where TP (true positives) is the number of predicted phage windows; TN (true negatives) is 

the number of nonphage predicted windows; FP (false positives) is the number of bacterial 

window sequences predicted as phage windows, and FN (false negatives) is the number of 

phage windows predicted as bacterial window sequences. In our experiment, the Sn is the 

proportion of bacteriophage sequences that were correctly identified. The Sp measures the 

proportion of non-bacteriophage sequences that were correctly identified. The Acc is the 

proportion of true results (the percentage of correctly identified bacteriophage sequences and 

non-bacteriophage sequences) among the total number of samples. 

To further evaluate the performance of IdentiPhage and to determine suitable thresholds for the 

prediction values of the different windows, we generated receiver operating curves (ROC), 

where we plotted the FP rate as the x-axis and the TP rate as the y-axis.  ROC curves depict the 

tradeoff between sensitivity and specificity (any increase in sensitivity is coupled with a 

decrease in specificity) (Pan et al. 2018). The area under the curve (AUC), which is a measure 

of discrimination, was used for IdentiPhages evaluation, with higher AUC values 

corresponding to the better performance of the model. The value of AUC score ranges from 0 

to 1, with a score 0.5 corresponding to a random guess and a score of 1.0 indicating a perfect 

separation. The AUC is a measure of the ability of the model to correctly classify a sequence 

window into belonging to a bacteriophage or not. Based on determining a model’s final 

predictions a confusion matrix of the true and predicted phage labels with the number of TP 

was created and plotted. 

Pipeline Implementation 

IdentiPhage was coded in the Python 3 programming language in version 3.5.3, using the 

scientific Python distribution Anaconda. As input, IdentiPhage requires a directory with 

GenBank or fasta files. It generates a result directory with an extracted multi-CDS file per 

predicted phage region. 
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Prophage prediction 

Once sequences are classified, the maximum distance between two positively predicted 

positions is calculated to evaluate the size of the predicted region. The minimum distance is 

measured as well to validate the range, and if it is smaller than the smallest considered phage 

genome, then it is dropped (Campylobacter phage C10, GenBank accession number 

MG065651.1, size 1.4kb). 

Test with Vibrio alginolyticus independent dataset 

An external dataset of 9 sequenced Vibrio alginolyticus genomes, where the location of active 

integrated prophages was experimentally proven (Wendling et al. 2017), was used to test 

IdentiPhage’s performance. The feature matrix of the V. alginolyticus genomes was generated 

and normalized as previously described. The matrixwas used as an independent dataset input 

for the model to classify sequences whether they are of a prophage or not. The predicted phage 

regions were compared to the positions of the known integrated prophages. 

Performance Comparison of IdentiPhage to other tools 

The same set of Vibrio alginolyticus genomes, used as an independent dataset for IdentiPhage, 

was used as input for phiSpy and PHASTER. PhiSpy was benchmarked against phage_finder 

and prophinder, and the authors proved that phiSpy outperformed the mentioned tools (Akhter 

et al. 2012) and thus were not considered in this analysis. The average values of the true 

positive rate of the tools were compared based on the tools abilities to predict the known 

phages correctly. 

3. Results 

Framework of the Proposed Predictor 

Firstly, we constructed the benchmark dataset; then we extracted the various described features 

from the primary sequences, including GC%, GC%-deviation, dinucleotide skew, gene density, 

overlapping CDS and the average number of CDS per the size of a specified window in bp. 

These different features were used as an input for a DNN to develop a prediction model. The 

described metrics were evaluated for the generated model. Finally, IdentiPhage was tested with 



IdentiPhage: Integrated Phage Identification using DNN

 

148 

 

an external dataset, and its performance was benchmarked against two popular phage 

prediction tools. 

Data Construction and Input Features Variance 

To show the percentage of variances explained by each principal component, the eigenvalues 

were computed and ordered from the largest to smallest to generate a scree plot (Figure 1). 

Eigenvalues (Table S1) are used to determine the number of principal components, which show 

an interesting pattern in the data, to keep after PCA (principal component analysis) (Figure S1). 

In our study, the first three principal components explain 38 % of the variation which is a 

largely acceptable percentage.  

 

Figure 1: Scree plot of the total variance associated with each input factor. 

Scree plot of the normalized input dataset.The x-axis shows the number of principal components. The scree plot 

showed that the first three principal components explained the maximum variation (38 %) in the dataset. 
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Subsequently, Principal Component Analysis (PCA) and correlation plots were performed to 

highlight the most contributing variables for each dimension and to determine the most 

informative features in the generated dataset. The analysiswas first created for all input features 

(Figure S2, Figure S4), and then for the 3 most descriptiveelements (Figure S1, Figure S3, and 

Figure S5).  

Model performance and Metrics 

The DNN was tested by using either 3 or 4 hidden layers, either 12 or 24 number of nodes in 

the first layer and either 36 or 48 as the number of nodes in the hidden layers. The main output 

of the DNN is the label of the testing set and predictions of the model for each entry recorded 

at any training epoch. Using this information, the performance of IdentiPhage can be assessed 

in detail for different stages of training. The labels of testing data are compared to the model's 

assignments of the last recorded prediction, by taking the maximum value of the 

model'sassignments. Here we present the metrics measured for IdentiPhage (Table 1), where 

the Acc of the selected model was 72.88 %. 

Table 1: Sensitivity and specificity of the different architectures of the DNNs 

Hidden 

Layers 1st node 2nd node Sensitivity Specificity 

3 12 36 94.52 37.71 

3 12 48 71.16 74.19 

3 24 36 71.97 75.49 

3 24 48 80.14 71.05 

4 12 36 94.17 39.12 
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4 12 48 70.57 73.43 

4 24 36 68.52 74.8 

4 24 48 70.95 75.97 

*The values marked in bold were further represented in a confusion matrix and ROC curve. 

The true positive and false positive rate on the test data at different thresholds for the classifiers 

using the top 12 features are displayed as a confusion matrix and as a ROC curve (Figure 2). 

 

Figure 2: Confusion matrix a) and ROC curve (b) for predicted prophage regions.  

The confusion matrix (a) shows the true value on the y-axis, meaning the samples which were 0 are in the upper, 

and the ones which were 1 are in the lower half of the matrix. Resulting values are from left to right, top to 

bottom: true negatives (3,552,722), false positives (1,447,278), false negatives (993,133) and true positives 

(4,006,867). 

The ROC curve (b) for the prediction of phage region. The diagonal dot line denotes a random 

guess with the auROC of 0.5. An AUC of 0.76 was obtained in a hold-out cross-validation test. 
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Independent dataset testing 

We evaluated the performance of IdentiPhage using an independent dataset. 15 out of 16 

prophage regions were hit at least partially (Table 2). Generally, all hits had a delayed start and 

always hit the end of the phage regions with a precision within 1Kbp. 

 

Table 2: Coverage of phage hits in V. alginolyticus 

V. 

alginolyticus 

Phage Region Coverage* [bp] Relative Coverage [%] 

 Start Stop Fragmen

t 

Joined Size Fragment Joined 

K01M1_2 965,930 975,241 2,500 7,200 9,311 26.85 77.33 

K04M1_2 945,046 953,135 1,035 6,235 8,089 12.80 77.08 

K04M3_2 945,065 969,721 5,400 23,300 24,656 21.90 94.50 

 979,135 994,596 7,000 11,600 15,461 45.28 75.03 

K04M5_2 975,221 991,351 4,851 14,521 16,130 30.07 88.35 

K05K4_2 957,739 959,718 0 0 1,979 0.00 0.00 

 964,327 965,822 222 222 1,495 14.85 14.85 

K06K5_2 945,036 953,638 1,532 6,738 8,602 17.88 78.33 

K08M3_2 945,048 953,650 1,550 6,750 8,602 18.02 78.47 
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K09K1_1 1 22,357 6,700 19,000 22,356 29.97 84.99 

 1,876,616 1,897,209 9,100 17,300 20,593 44.19 84.01 

K09K1_2 1 11,467 5,100 9,800 11,466 44.48 85.47 

 3,460,762 3,465,618 700 100 4,856 14.41 14.41 

K10K4_1 1,701,803 1,709,837 1,937 5,337 8,034 24.11 66.43 

K10K4_2 945,030 953,121 1,521 6,211 8,091 18.81 76.89 

 977,741 985,316 2,200 2,200 7,575 29.04 29.04 

*Coverage is defined as the number of phage bp identified out of the known phage regions. 

Shown in this table are the V. alginolyticus strains, starting and stopping position of known 

phage regions, and the coverage predicted for phage regions. For the values in the fragmented 

columns, only the regions which were explicitly predicted were used, whereas, for the ’Joined‘ 

values, the entire region spans were considered. The joined coverage averages to 64.07%. 

Comparison with other methods 

The comparison was made by comparing the prediction power of the different considered tools, 

PHASTER, and phiSpy, of active Inoviridae prophages, integrated into 9 V. alginolyticus 

genomes. The inactive phages were not considered for this analysis since the number, and the 

correct boundaries of those phages can’t be quantified. 

PHASTER prediction using the independent dataset 

PHASTER identified 15 of 16 (93.75) known prophages. Generally, PHASTER determined 

boundaries were either greater or smaller than the curated prophage boundaries. PHASTER 
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was able to predict the prophage IdentiPhage missed, while on the other hand one prophage 

was missed entirely (Table 3). 

Table 3: PHASTER prophage predictions of the independent dataset 

V. 

alginolyticus Phage Region PHASTER 

Relative 

coverage 

Additional Predicted 

Phages 

 Start [bp] Stop [bp] Start [bp] Stop [bp] [%]  

K01M1_2 965,930 975,241 954,239 974,702 219.77 1 

K04M1_2 945,046 953,135 933,351 953,814 252.97 1 

K04M3_2 945,065 969,721 933,352 969,913 148.28 1 

 979,135 994,596 982,291 994,621 79.75  

K04M5_2 975,221 991,351 963,526 991,566 173.84 1 

K05K4_2 957,739 959,718 946,048 966,511 1,034.01 1 

 964,327 965,822 - -   

K06K5_2 945,036 953,638 933,345 953,808 237.89 1 

K08M3_2 945,048 953,650 658 11,534 126.44 1 

K09K1_1 1 22,357 1,701,790 1,709,314 33.66 1 

 1,876,616 1,897,209 933,339 953,802 99.37  
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K09K1_2 1 11,467 977,819 985,329 65.50 1 

 3,460,762 3,465,618 3,461,560 3,465,606 83.32  

K10K4_1 1,701,803 1,709,837 1,701,790 1,709,314 93.65 1 

K10K4_2 945,030 953,121 933,339 953,802 252.91 1 

 977,741 985,316 977,819 985,329 99.14  

* The Last column shows the number of phage regions predicted by PHASTER in addition to 

the ones which were experimentally proven. 

PhiSpy prediction using the independent dataset 

PhiSpy identified 14 of 16 (87.5%) known prophages. PhiSpy predicted a surplus of ~ 20 kps 

upstream of every phage region, as well as additional ~ 2–30 Kbp downstream. It was able to 

identify the ≤2Kbp region that was missed by IdentiPhage. On the other hand, two areas were 

missed completely (Table 4). 

Table 4:PhiSpy prophage predictions of the independent dataset 

V. 

alginolyticus Phage Region phiSpy 

Relative 

coverage 

Additional Predicted 

Phages 

 Start [bp] Stop [bp] Start [bp] Stop [bp] [%]  

K01M1_2 965,930 975,241 946,652 976,544 321.0 2 

K04M1_2 945,046 953,135 926,071 955,131 359.3 2 

K04M3_2 945,065 969,721 931,711 995,530 258.8 1 
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 979,135 994,596 931,711 995,530 412.8  

K04M5_2 975,221 991,351 955,939 986,758 191.1 2 

K05K4_2 957,739 959,718 938,768 967,629 1458.4 1 

 964,327 965,822 938,768 967,629 1930.5  

K06K5_2 945,036 953,638 925,758 955,125 341.4 2 

K08M3_2 945,048 953,650 937,804 954,938 199.2 3 

K09K1_1 1 22,357 1 24,369 109.0 2 

 1,876,616 1,897,209 1,857,653 1,897,209 192.1  

K09K1_2 1 11,467 1 18,754 163.6 9 

 3,460,762 3,465,618 - -   

K10K4_1 1,701,803 1,709,837 - -  7 

K10K4_2 945,030 953,121 926,859 982,436 686.9 1 

 977,741 985,316 926,859 982,436 733.7  

* The Last column shows the number of phage regions predicted by PHASTER in addition to 

the ones which were experimentally proven. 
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These results indicate that prophage prediction is far from adequate and no tool can precisely 

prophages. Additionally, we can state that IdentiPhage can play a complementary role to 

existing tools for prophage prediction. 

4. Discussion 

In this project, we evaluated 12 genomic features concerning their usability for prophage 

detection within host genomes. In addition to the features used in phiSpy (GC%, GC skews, 

AT skews, GC content deviation) (Akhter et al. 2012) we used gene density, average gene 

length, and overlapping CDSs, which proved to be extremely informative for prophage 

prediction. To investigate which combinations of individually weighted features perform best 

we designed and applied a deep neural network (DNN). 

For IdentiPhage, we considered a much more elaborate benchmark dataset compared to 

phiSpy. The features used, were the GC%, GC skews, AT skews, GC content deviation and 

additional dependent features, which were shown to work better for related organisms and 

organisms with extreme AT and GC deviations (Akhter et al. 2012). Additionally, we used 

gene density, average gene length, and overlapping CDSs, which proved to be extremely 

informative for prophage prediction. We considered a window size of 500 bp which might have 

affected feature calculation, while in phiSpy a window of 40 genes was considered. We 

computed gene density and average gene length per window size, contrary to phiSpy where 

those features were calculated by replicon size. The PCA analysis showed that the three most 

important featureswere i) slopes, ii) hotspots size and iii) GCD switch. Thus for the future 

development of IdentiPhage, we will consider replacing the insignificant features by 

descriptive features such as the transcription strand directionality, the average spacing between 

genes, the median of all protein lengths. Using an input feature such as HMM hits, could limit 

the identification of new phages; thus we will include HMM hits in a secondary step, after 

initial identification of genomic hallmarks. We additionally will consider adjusting the window 

size and the computation of the gene density per replicon. 

We briefly mention PCA, however, we proceeded by using the whole dataset as input for the 

DNN since PCA is known to alter the original representation of the variables (Pan et al. 2018). 
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Thus for the future development of IdentiPhage, we will consider a less expensive approach to 

dimensionality reduction for feature selection. Feature selection processes proved effective in 

reducing the dimensionality of the data and improving the performance of the predictors 

(Manavalan, Tae H. Shin, et al. 2018 (a); Manavalan, Tae Hwan Shin, et al. 2018 (b); Pan et al. 

2018; Manavalan et al. 2017; Feng et al. 2013). This is an important step to exclude redundant, 

irrelevant and noisy information found in high dimensional features, and thus to find a 

minimum set of features that achieve maximum classification performance. 

Random Forest algorithms were used in MARVEL, where they selected three features as the 

most informative: gene density, strand shifts, and significant matches to the pVOG database. In 

other methods, Analysis of variance (ANOVA) was used as a feature selection process (Pan et 

al. 2018; Ding et al. 2014), while Tan et al. (2018) used Minimal-Redundancy-Maximal-

Relevance (mRMR) in addition to ANOVA as the second step in their process. ANOVA 

method calculates the variance among groups and thus gives a clear understanding of each 

feature capabilities for the model; while mRMR filters out the most informative features to 

minimize information redundancy and gather the most concise feature subset with no loss of 

useful information(Tan et al. 2018). Feature redundancy may be an issue since some of the 

considered descriptors may be derived from each other, for instance, GC% and GC% deviation 

and the corresponding slopes. Thus, we will consider exploring different feature selection 

methods to achieve a maximum variance with minimal redundancy in our input dataset. 

Generally, it is crucial to explore various ML-methods on the same dataset, and then to select 

the best method, since ML-based predictors are problem-specific (Amgarten et al. 2018). 

Moreover, IdentiPhage uses the hold-out cross-validation method to evaluate the predictive 

ability of our predictor. However, the K-fold cross-validation method and the jackknife test are 

more rigorous (Amgarten et al. 2018; Tan et al. 2018). The five-fold cross-validation is widely 

used by scientiststo save computation time (Tan et al. 2018). Thus for the future development 

of IdentiPhage, we will consider exploring Support Vector Machines (SVM) and RF 

algorithms, as well as the different cross-validation tests. 
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Lastly, the prediction model tends to over-optimize to attain higher accuracy. Therefore, it is 

always necessary to evaluate the prediction model using an independent dataset, to evaluate the 

generalizability and the transferability of the method (Manavalan, Tae Hwan Shin, et al. 2018; 

Manavalan et al. 2017). Hence, we evaluated our prediction model on an independent dataset, 

which harbors a manually curated set of prophages (Wendling et al. 2017), and benchmarked 

the prediction of prophage prediction populartools against this dataset. Our study demonstrated 

that IdentiPhage can play a complementary role for the prediction of prophages overseen by the 

existing tools. 

To support the scientific community, we are working on a user-friendly web interface is to be 

made available to allow researchers access to the prediction method on our servers. The 

IdentiPhage method represents a powerful and cost-effective approach for prophage prediction 

suitable for high throughput analysis of genomic data. Therefore, IdentiPhage might be useful 

for prophage prediction, facilitating hypothesis-driven experimental design. 

5. Conclusion 

In this study, we introduced a novel method which we call IdentiPhage. The method predicts 

prophage regions in bacterial genomes using a combined set of 12 sequence-derived features. 

The results indicated that IdentiPhage could be applied to predict prophages on high quality 

closed genomes. While these results are promising on well-characterized prophage classes, it 

has proven challenging to choose the best features for accurate prediction. It is shown that an 

effective generic viral prediction pipeline using the 12 investigated features in this study can be 

hard to achieve. However, given the heterogeneity of viral types and genome structures, we 

believe that we can elevate the performance of the method on so far unknown phages by 

integrating additional descriptive features. We intend to expand IdentiPhage’s scope to include 

additional phage specific features, feature selection protocol and to test additional ML 

algorithms; the program was designed with this objective in mind. Furthermore, the spectrum 

of potential applications of this approach is a general one and doesn’t have to be limited for 

prophage identification, rather could be applied to many other classification problems in 

bioinformatics. This is a tool under active development to be made available as a publicly 
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accessible easy-to-use we service, and we envisage its growing application on a variety of 

forthcoming projects. 
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Supplemental Figure S1: Scree plot of the total variance associated with the most relevant 

input factors. 

Supplemental Figure S2: PCA analysis plot of the different input variables, based on their 

contribution. These results are color coded from blue (low-score) to orange (high-score). 

Figure S3: PCA analysis plot of the three most relevant input variables, based on their 

contribution. These results are color coded from blue (low-score) to orange (high-score). 

Supplemental Figure S4: Correlation plot highlighting the most contributing variables for 

each dimension. 

Supplemental Figure S5: Correlation plot highlighting the three most contributing variables 

for each dimension. 

Supplemental Table S1: Eigenvalues measuring the amount of variance retained by each 

principal component. 

Supplemental Table S2: PHASTER all prophages prediction in an independent dataset. 

Supplemental Table S3: phiSpy all prophages prediction in an independent dataset. 
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Supplementary information 

Additionally, supplementary figures and tables are provided along with the electronic version 

of this thesis (on DVD), under the following paths: 

Additional Figures: 

Figure S1: SupplementaryMaterial/ChapterII/ChapterII.5/Figure S1.png 

Figure S2: SupplementaryMaterial/ChapterII/ChapterII.5/Figure S2.png 

Figure S3: SupplementaryMaterial/ChapterII/ChapterII.5/Figure S3.png 

Figure S4: SupplementaryMaterial/ChapterII/ChapterII.5/Figure S4.png 

Figure S5: SupplementaryMaterial/ChapterII/ChapterII.5/Figure S5.png 

Additional Tables: 

Table S1: SupplementaryMaterial/ChapterII/ChapterII.5/Table_S1.xlsx 

Table S2: SupplementaryMaterial/ChapterII/ChapterII.5/Table_S2.xlsx 

Table S3: SupplementaryMaterial/ChapterII/ChapterII.5/Table_S3.xlsx 

Scripts: 

SupplementaryMaterial/ChapterII/ChapterII.5/Scripts/ 

SupplementaryMaterial/ChapterII/ChapterII.5/Scripts/ReadME.txt 
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III.1 General Discussion 

The access to viral genomes at unprecedented rates, using continuously improving Next-

Generation Sequencing (NGS) techniques, aggravates the existing gap of viral classification 

based on sequence information (Bolduc et al. 2017). This gap remains in consequence of the 

lengthy procedure required by the International Committee on Taxonomy of Viruses (ICTV) 

for the deposition of new viral genomes into their maintained database (Fauquet & Fargette 

2005). Nonetheless, the advancements in NGS technologies permitted scientists to investigate 

the enormous number of uncharacterized viral sequences termed “Viral Dark Matter”(Reyes et 

al. 2017; Roux, Hallam, et al. 2015; Youle et al. 2012). The “Viral Dark Matter” extends 

beyond the three most common viral families available in public databases (Roux, Enault, et al. 

2015) and often shares no similarities to known viral sequences (Roux, Hallam, et al. 2015). As 

an example, the Alpavirinae phage family was identified from the analysis of viral 

metagenomic datasets and was otherwise unidentifiable through classical phage culturing 

techniques (Alves et al. 2016). 

For the modeling of viral sequence diversity, one proposed method of analysis is using Hidden 

Markov Models (HMM) of shared proteins of phage genomes. This proved to be successful in 

reconstructing distant homologs of the Alpavirinae phage family (Reyes et al. 2017; 

Aiewsakun et al. 2018). Thus HMMs can be used, to some extent, for the characterization of 

viral sequences within the “Viral Dark Matter” (Bolduc et al. 2017). However, this remains an 

iterative process, as the characterization of more diverse viral sequences remains instrumental 

in improving the sensitivity of HMMs (Reyes et al. 2017; Grazziotin et al. 2017). 

An additional source of viral sequences can be retrieved by exploring microbial genomes, 

where it was estimated that over 62% harbor at least one prophage (Casjens 2003). Moreover, 

Roux et al. (Roux, Hallam, et al. 2015) used VirSorter(Roux, Enault, et al. 2015) to identify 

12,498 viral sequences from 14,977 microbial and archaeal genomes. Prophages were 

predicted in novel bacterial hosts where further experiments are needed to confirm the 

identification of an entirely new viral order (Roux, Hallam, et al. 2015). Thus, Roux et al. 

(2015) further endorse the importance of exploring prophage diversity within sequenced 

bacterial genomes deposited in public databases. 
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The first aim of this Ph.D. thesis was to generate a scalable method for the taxonomic 

classification of phages based on their sequence information into the existing phage families 

defined by the ICTV. An in-depth analysis was performed for the classification of phages by 

creating robust protein profile HMMs for homology searches as seed (Chapter II.3). To address 

the limitation of current best-hit approaches, we evaluated the use of artificial neural networks 

(ANN) for phage multiclass classification based on various HMM hits combination (Chapter 

II.4). 

The second aim of this thesis was to identify lysogens within bacterial host genomes. 

Therefore, we computed and rigorously assessed a set of descriptive sequence properties 

combined as features in a deep learning approach to allow an accurate prophage prediction 

(Chapter II.5).  

Lastly, the valuable knowledge of prophage identification and classification using traditional 

microbiology and molecular biology methods compared to computational methods can’t be 

disregarded. On that account, a set of phages infecting different Vibrio alginolyticus strains 

were experimentally characterized,and their integration sites were empirically verified (Chapter 

II.1andChapter II.2). These experiments provided valuable information for interpreting the 

resulting predictions out of the IdentiPhage and ClassiPhage approaches. 

III.1.1 Experimentally verified Inoviridae 

In this thesis, ten bacterial isolates, including nine strains of Vibrio alginolyticus as well as one 

strain of a new Vibrio species arbitrarily names Vibrio typhli were sequenced, assembled and 

analyzed with a specific focus on prophage content. The isolated strains resulted from a study 

initiated by Dr. Carolin Wendling and Dr. Olivia Roth (Wendling et al. 2017). The study is 

based on a tripartite interaction system where a phage infects a Vibrio host which in turn 

infects the pipefish Syngnathus typhle (Chapter II.1). To understand the dynamic relationship 

between phages and their hosts, prophages were induced from 75 Vibrio isolates, and cross-

infection experiments were carried out. Thus a 75 x 75 phage-bacteria infection matrix was 

generated where bacteria were grouped according to their resistance to phage containing 

supernatant of the 75 isolates. Out of the three different phage resistant groups, 10 strains were 

chosen for downstream in-depth analysis. The induced phages out of the 10isolates were 
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sequenced and classified as Inoviridae based on phage morphology (TEM) and sequence 

similarity. In total, the ten isolates comprised a set of nineteen Inoviridae prophages which 

were used for an extensive analysis. Therefore, the prophages were compared to published 

Inoviridae vibriophages which revealed a highly specific genome organization of the phage 

family as is corroborated by Mai-Prochnow et al. (Mai-Prochnow et al. 2015) (Chapter II.2). 

Generally, Inoviridae are filamentous phages with a circular ssDNA genome. Their sizes 

usually range between 4 to 12 Kbp. Their genomes encode 10 core proteins which are grouped 

by functional units into a “Replication” unit, a “Structural” unit and an “Assembly and 

Secretion” unit (Mai-Prochnow et al. 2015). The nineteen identified Inoviridae phages unveiled 

suitable genome sizes and functional units (Chapter II.2). The advantages given by this study 

made it feasible to generate a highly reliable external dataset for evaluating the methods 

reported (Chapter II.3, Chapter II.4,andChapter II.5). On the one hand, the benefit of having 

mappable induced prophages (Hertel et al. 2015) onto reference V. alginolyticus replicons gave 

us the unique advantage of evaluating the identification prophages using i) HMMs as seed in 

the “ClassiPhage” method and ii) sequence derived characteristics in the “IdentiPhage” 

method. On the other hand, the benefit of having Transmission Electron Microscopy (TEM) 

images of the induced phages gave us the unique advantage to investigate the morphology of 

phages and classify them according to the ICTV scheme. Moreover, those results were used for 

evaluating the phage classification methods “ClassiPhage” and “ClassiPhage 2.0”. 

III.1.2 ClassiPhage and ClassiPhage 2.0 

Phage classification is instrumental for inferring ecological and evolutionary relationships 

(Roux, Hallam, et al. 2015). As new virus genomes are expected to be sequenced, new 

challenges for taxonomy are expected to arise (Bolduc et al. 2017). Considerable efforts are 

being made to shift towards a comprehensive automated viral taxonomy (Bolduc et al. 2017; 

Roux, Enault, et al. 2015; Aiewsakun et al. 2018). Recently, the ICTV issued a consensus 

statement endorsing this shift which is a critical step given the growing number of 

metagenome-derived viral sequences (Simmonds et al. 2017). 

Studies based on genome pairwise comparison (Rohwer & Edwards 2002) were extremely 

valuable, however, became widely unpopular since they failed to capture the diversity 
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represented by viral metagenomic datasets (Simmonds et al. 2017). VICTOR (Meier-Kolthoff 

& Göker 2017), a recently developed tool, fails in classifying environmental viruses that do not 

share any similar gene to known reference genomes (Jang et al. 2019). Due to growing 

evidence of high mosaicism in viral genomes, gene sharing networks were first introduced by 

Lima-Mendez et al. (2008) and later widely adopted. Gene sharing networks permitted phage 

classification without prior knowledge and were largely consistent with ICTV proposed taxa 

(Lima-Mendez et al. 2008; Iranzo, Krupovic, et al. 2016; Iranzo, Koonin, et al. 2016; Shapiro 

& Putonti 2018; Bolduc et al. 2017). Prophinder was generated using a monopartite-network 

based on 306 phages known at that time and showed a high accuracy of ~92% (Lima-Mendez 

et al. 2008). Thereafter, a bipartite-network approach was used to analyze the dsDNA 

virosphere and addressed viral subfamilies (Iranzo, Krupovic, et al. 2016) and further extended 

to analyze archaeal viruses (Iranzo, Koonin, et al. 2016). Both approaches allow the 

investigation of gene sharing across viral genomes. However bipartite-networks can be more 

accurate in comparison to monopartite-networks due to the additional knowledge from the 

representation of gene families and genomes (Iranzo, Krupovic, et al. 2016). 

Bolduc et al. (2017) were able to generate viral clusters that are 75% consistent with ICTV 

taxa,however; the monopartite gene-sharing network-based method creates artifact clusters for 

undersampled genomes and for highly overlapping genomes (Bolduc et al. 2017). Thus an 

accurate approach that is scalable with the growing amount of data appears to be still missing. 

II.1.2.1 HMM-based classification 

For this thesis, we explored the possibility of the use of HMMs derived from classified phages 

for accurately classifying sets of unclassified phages (Chapter II.3 and Chapter II.4). The use of 

HMMs for classification has been reported in multiple studies (Grazziotin et al. 2017; Fouts 

2006; Aiewsakun et al. 2018; Skewes-cox et al. 2014). HMMs were the method of choice for 

the comparison of protein families since they are powerful for the efficient representation of 

variation and have the potential to detect three times more remote homologs than conventional 

pairwise methods (Barrett et al. 1998). Even though profile HMMs are a powerful tool, pitfalls 

and challenges exist that need to be considered to generate the best possible model. The quality 

of the Multiple Sequence Alignment (MSA) will be reflected in accuracy and the detection 

potential of the HMM. An MSA should contain a correct balance of sequences to represent the 
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diversity of an orthologous group while avoiding oversampling biases (Reyes et al. 2017). 

Multidomain proteins are negligible in phages; thus full-length protein MSA is used for HMM 

generation (Grazziotin et al. 2017). For protein profile HMM generation for ClassiPhage and 

ClassiPhage 2.0, i) excluding redundant proteins from the training dataset to avoid over-fitting 

(Manavalan et al. 2017), ii) the use of a Markov clustering algorithm MCL (Enright A.J., Van 

Dongen, S. and Ouzounis 2002), and finally ii) an iterative process of HMM refinement 

resulted in diversity representation per model. 

It should be noted that similar peptides were removed only from the training dataset and not 

from the benchmarking dataset (Manavalan et al. 2017). For ClassiPhage, we additionally 

investigated missing ORFs for phage nucleotide sequences and included them in the input 

MSA for HMM generation and showed that the initial iterative process captured MSA 

diversity. Thiswas reflected in the negligible improvements resulting from an hmmscan with 

the additionally refined HMMs. 

pVOG is a maintained online database with phage specific HMMs readily available for 

download and use (Grazziotin et al. 2017). However pVOG HMMs were generated by pooling 

all phage CDS together without distinguishing which phages belong to which phage family and 

thus an hmm scan displays the same bit-score value across different phage family for a protein 

hit. Contrary to pVOG, for the ClassiPhage approach, phages are initially grouped per phage 

family priorto the protein cluster and HMM generation. The hmmscan displays a variable bit-

score value discriminating between different phage families. We additionally demonstrated that 

HMMs couldbe used for phage classification of phages on the genera, family and subfamily 

levels (Chapter II.3). 

Lastly, an important aspect to consider is that HMM-based methods rely to some extent on 

similarities to already known viruses. Consequently, it is essential to regularly update sequence 

databases for the future effectiveness of such methods (Skewes-cox et al. 2014).  

II.1.2.2 HMMs as input for an ANN classifier 

For ClassiPhage 2.0 (Chapter II.4), we explored the use of phage family specific constructed 

HMMs scanning phage proteomes as an input matrix for an artificial neural network (ANN) 

classifier to group phages into the existing phage families. One of the significant advantages of 
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ANN is their ability to discern relationships between the relevant features with no human 

interference (Min et al. 2017; Arango-Argoty et al. 2018). Additionally, ANN can be used for 

multi-label classification problems contrary to other machine learning algorithms (Boutell et al. 

2004).  

The similarity indicator selected for the chosen classifier was the bit-score. Unlike E-values, 

bit-scores take into account the degree of identity between sequences and is independent of the 

database size (Pearson 2013; Arango-Argoty et al. 2018). ClassiPhage 2.0 reached an accuracy 

of 84.18% and when tested on a benchmark dataset, showed the potential application of the 

method for accurate classification of phage consistently with ICTV classification. However, 

ClassiPhage 2.0 suffers from over-representation of Caudovirales derived HMMs and thus 

affecting the ANN input nodes weights. This is an inherent problem since Caudovirales 

represent over 86% of phage sequences in public databases (Bolduc et al. 2017). We expect an 

improved accuracy of ANN prediction as currently underrepresented taxa get populated. Thus 

additional sources of viral sequences, such bacterial genomes explored for the prophage 

content and viral metagenomic datasets, must be examined for enriching low abundant phage 

families (Bolduc et al. 2017; Roux, Enault, et al. 2015; Simmonds et al. 2017). 

Lastly, an important aspect to consider is the need for validating the benchmarking dataset 

against the ICTV master species list (https://talk.ictvonline.org/files/master-species-lists/). The 

classification assigned in GenBank files is not yet confirmed. Therefore the examination of the 

designated classification in GenBank files against the ICTV’s golden standard classified 

phages is to be verified in an initial step. At a second step classification of the unclassified 

phage datasets can be considered. 

III.1.3 IdentiPhage 

Prophages identification is instrumental for the understanding of the dynamic relationship 

between phages and their host in addition to the understanding of the ecology and evolution of 

bacteria (Hans-W Ackermann 2011). On the one hand, multiple tools are available for 

prophage prediction from their sequence information. Existing tools such as PHASTER, 

Phage_finder, and profinder are based on sequence comparison to a phage 

database.Thereforeprophage identification is highly dependent on similarities to already known 

https://talk.ictvonline.org/files/master-species-lists/


Cynthia Maria Chibani Ph.D. Thesis Discussion

 

173 

 

phages, existing in those databases (Arndt et al. 2016; Fouts 2006; Lima-Mendez et al. 2008). 

On the other hand, the identification of prophages based on a sequence derived features, is key 

to identify prophages without any sequence similarities to known prophages (Akhter et al. 

2012). To date, phiSpy is the only existing tool, which was developed based on 7 different 

prophage characteristics (Akhter et al. 2012). Thus, phiSpy proved to predict much more 

unknown phages compared to those tools. 

Additionally, distinctive prophage features are widely used for the identification of phage bins 

from metagenomic datasets (Amgarten et al. 2018). VirSorter was developed for prophage 

identification but performs better for viral sequence identification from metagenomic bins 

(Roux, Enault, et al. 2015). Recently, MARVEL was developed for the identification of viral 

sequences from metagenomic bins as well, using three phage characteristics as an input for a 

Random Forest (RF) classifier. MARVEL showed higher sensitivity in comparison to 

VirSorter(Roux, Enault, et al. 2015).  

Aforementioned distinctive and prophage features include the gene density and strand shifts 

which are considered in multiple studies (Amgarten et al. 2018; Akhter et al. 2012). Increased 

gene density has been suspectedof being a direct outcome of the limited phage capsid size 

(Chirico et al. 2010; Roux, Enault, et al. 2015; Mahmoudabadi & Phillips 2018; Amgarten et 

al. 2018). Lower strand-shift rates can be a result of the co-regulated transcriptional and 

translational unit to ensure competitive superiority (Amgarten et al. 2018; Akhter et al. 2012). 

Additional explored features include K-mer(Pan et al. 2018) and GC content which tend to 

have weak performance since it is known that phages try to adapt to their host (Amgarten et al. 

2018). AT and GC skews, as well as the abundance of phage words based on their 

oligonucleotide composition was shown to perform better for closely related genomes (Akhter 

et al. 2012). Features such as protein lengths (Amgarten et al. 2018; Akhter et al. 2012), the 

average spacing between genes (Amgarten et al. 2018), gene density (Amgarten et al. 2018), 

transcription strand directionality (Amgarten et al. 2018; Akhter et al. 2012) and ATG relative 

frequency (Amgarten et al. 2018) have the ability to locate prophages without any sequence 

similarities to known phages. However, Akhter et al (2012) showed that the median of all 

protein lengths displays a sharp change at the beginning of a phage region, contrary to the 
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average protein length used by Amgarten et al. (2018), which revealed a gradual change. All 

these features are a consequence of groups of small peptides encoded by closely collocated 

ORFs in phage genomes. 

Additionally, features such as the insertion points of phages (Arndt et al. 2016;Arndt et al. 

2017; Akhter et al. 2012; Zhou et al. 2011) and the phage proteins homology search (Amgarten 

et al. 2018; Akhter et al. 2012)are dependent on similarities to already known phages. 

However, contrary to phiSpy, MARVEL uses hits to known phage HMMs from the pVOG 

database, which are known to locate distantly related homologous protein and thus, the 

combination of matches lead to the identification of distantly related phages (Amgarten et al. 

2018). 

Even though those tools exist, their performance can still be enhanced. Amgarten et al. 

(Amgarten et al. 2018) stated that even with the additional considered features, the developed 

MARVEL tool could only effectively predict Caudovirales phages. Thus, we utilized the 

available bacterial GenBank files and available phage sequences to develop a novel 

computational method we call IdentiPhage(Chapter II.5). We use a combination of sequence 

derived features as an input for a Deep Neural Network (DNN) classifier to predict prophage 

regions. Also, we used genes overlap as a feature which was not considered in any of the 

available tools although it has been long known as a phage specific feature (Chirico et al. 2010; 

Brandes & Linial 2016). IdentiPhage was able to identify numerous genomic hallmarks in 

bacterial genomes. When compared to existing tools using the V. alginolyticus benchmarking 

dataset (Chapter II.2), IdentiPhage was able to identify one additional phage missed by 

PHASTER and PhiSpy, however, missed one region predicted by both tools — thus concluding 

that with its current status, the method can be used to complement the existing tools for phage 

prediction. 

A DNN can use tens of thousands of parameters. As such, it can overfit easily with a small 

sample set and often requires convenient regularization, such as including a dropout layer, for 

successful performance (Srivastava 2014). However, other Machine Learning (ML) algorithms, 

such as recurrent neural networks (Morota et al. 2018) or support vector machines (Manavalan, 

Tae H. Shin, et al. 2018), should be explored in combination with rigorous cross-validation 
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methods and their performance should be compared on the same dataset for selecting the best 

predictor (Amgarten et al. 2018; Tan et al. 2018). To further elevate the performance of the 

classifier, a feature selection process such as ANOVA or RF can be employed to select the 

most informative input features from noisy datasets (Pan et al. 2018; Tan et al. 2018; Ding et 

al. 2014). 
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III.2 How does everything come together 

Given that more microbial and viral genomes are expected to be discovered(Roux, Hallam, et 

al. 2015), IdentiPhage and ClassiPhage approaches were flexibly designed to adapt to the 

anticipated changes. For both methods, the described five-steps guidelines to develop 

prediction models were followed (Manavalan, Tae Hwan Shin, et al. 2018; Manavalan et al. 

2017; Feng et al. 2013).ClassiPhage can be applied to taxonomically classify prophage regions 

predicted via IdentiPhage(Figure 3). Future considerations for the development of IdentiPhage 

include i) the use of phage features such as strand shifts (Amgarten et al. 2018), oligomer bias 

(Jurtz et al. 2016) and integration repeats (Arndt et al. 2016) and ii) the use of a feature 

selection process for the evaluation of the sequence derived feature. Future considerations for 

IdentiPhage include i) the consideration of an iterative process for the proteins not used for 

HMM generation using BLASTp to eventually generate a set of diverse homologues adequate 

for a HMM and ii) the use of input features such as the order of identified hits and the average 

distance between the identified hits (Amgarten et al. 2018; Akhter et al. 2012) as additional 

input features for the ANN. Lastly, to overcome biases introduced when different qualities of 

annotations are combined (de Crécy-Lagard 2016), open reading frame (ORF) prediction for 

phage nucleotide sequences is to be performed using the generated refined HMMs as seed. 
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Figure 3: Comprehensive workflow summary of the investigated projects for prophage identification and 

classification. 

The workflow consists of two major pipelines. The workflow described on the right is outlining ClassiPhage and 

ClassiPhage 2.0. Phage CDS sequences were extracted and clustered for HMM generation and refinement. The 

refined protein profile HMMs are used to scan the initial phage CDS results. The resulting matrix, with additional 

features, is used as an input for an ANN for phage sequence taxonomic classification. The workflow described on 

the left is describing IdentiPhage. It outlines sequence derived features computed out of GenBank and fasta files, 

and additional ones to be considered in future work. The resulting matrix is used as an input for a DNN for the 

identification of putative prophage regions. The two pipelines are to be linked, by classifying prophage regions 

predicted by the IdentiPhage pipeline. To overcome different qualities of annotation, improving phage CDS 

prediction is outlined. Future work plans are colored in green. 
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CHAPTER IV: Summary, Conclusion,and Outlook 
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IV.1 Summary 

This work reports the potential of a fully automated genome based phage prediction and 

classification method with ever-increasing amounts of sequencing data. Firstly, we present an 

approach we call ClassiPhage and ClassiPhages 2.0 which was established describing phage 

taxonomical classification. ClassiPhagewas generated as a proof of principle on a defined set of 

phage families infecting Vibrio species while ClassiPhage 2.0 was broadly applied to include 

all phage families available. The method is based on generating and refining protein profile 

Hidden Markov Models (HMM) for every group of 12 phage families in total. To test 

sensitivity and specificity, 5,920 HMMs were used to scan the initial phage protein-coding 

sequences from 8,721 phages. Thus a cross-scan scoring matrix was generated. We profited 

from machine learning techniques which are proving to be valuable for extracting critical 

information and outcome prediction from big data. Thus the cross-scan matrix was used as an 

input for an artificial neural network (ANN) for phage classification. The accuracy of the ANN 

reached 84.18 % indicating the efficiency of the method. The method was tested on a set of 

vibriophages classified via multiple HMM hits results. Our results emphasize the need for more 

comprehensive and representative phage sequencing data in public databases. 

Secondly, a method we call IdentiPhagewas established describing the prediction of integrated 

prophages in bacterial genome hosts. The method uses a set of 12 sequence derived features 

generated from a dataset of 11,373 bacterial using a sliding window approach. To assign a 

positive phage label to the matrix, we employed 8,721 phage genomes as a reference database 

for a BLASTn approach. The generated matrix was used as an input for a Deep Neural 

Network (DNN) for the prediction of potential prophage regions and achieved a specificity of 

80.14%. We show that IdentiPhagecan locate prophages without any sequence similarities to 

known phages by testing the method on a set of experimentally identified Inoviridae phages 

infecting various Vibrio alginolyticus species. Our results indicate that IdentiPhage plays a 

complementary role to existing tools. However it would benefit from a feature selection 

process to select the most informative sequence features for future developments.
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IV.1 Conclusion 

In conclusion, an ever-increasing amount of phage genome sequence data is being generated 

and deposited into existing databases with no taxonomic assignment. Even though multiple 

computational methods exist which show encouraging results, a broad phage classification 

method is far from complete as long as there exist under-sampled phage families. The numbers 

demonstrate how distant we are from an accurate representation of viral diversity in public 

databases. To make such databases more comprehensive and useful, it is of paramount 

importance to characterize a more significant amount of viral sequences from a broader 

taxonomic range. 

For the first research topic, we designed a flexible method to accommodate advances and 

changes over time. 

 We generated and refined phage family specific protein profile HMMs. 

 We demonstrated the potential of combined protein profile HMMs for phage taxonomic 

classification. 

 We classified a set of published but preliminary unclassified vibriophages. 

 We demonstrated that our classification is in accordance with experimentally 

characterized phages proved to belong to the Inoviridae phage family. 

Automation is necessary to routinely classify sequenced phages using features ensuring 

accuracy. 

 We demonstrated the potential of the use of artificial neural networks for phage 

characterization based on the combination of HMM hits. 

The comparatively low cost and minimal time required for the computational identification of 

prophages in comparison to the labor-intensive and expensive experimental approaches make 

these tools indispensable among scientists. 

 For the second research topic, we demonstrated the potential of identifying prophages 

based on sequence information using a Deep Neural Network. 
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 We computed 12 sequence-derived features singling out genomic hallmarks in bacterial 

hosts. 

 We demonstrated the potential of the application of a DNN together with the sequence-

derived features for prophage identification. 
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IV.3 Outlook 

In this work we presented two methods based on sequence information, one to identify phages 

we call “IdentiPhage” and one to classify phages we call “ClassiPhage”. We show that both 

methods achieved the intended purposes but would greatly benefit from an increasing number 

of low populated phage families in public databases. 

For future considerations, the ICTV would need to have a decisive framework for the 

integration of sequenced phages into their current taxonomic scheme. Scientists would need to 

combine their efforts in populating the under-representing viral families by exploring various 

metagenomic datasets. Subsequently, HMMs generation for under-represented phage families 

would be achievable, andClassiPhage’s performance would improve.  

The further development of IdentiPhage together with informative sequence-derived features 

can effectively identify and characterize putative boundaries todetermine true phages. The 

putative prophages would then be subjected to taxonomic classification using the generated 

HMMs and the ClassiPhage 2.0 model. 

In the future, it will be of great value to create a publicly accessible web server for prophage 

identification and classification from sequence data based on the described methods. 
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