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1 Summary 

The first part of this dissertation focused on the different RNA 

degradation pathways in the yeast Saccharomyces cerevisiae (S. cerevisiae). 

We used the method photoactivatable ribonucleoside-enhanced crosslinking 

and immunoprecipitation (PAR-CLIP) to systematically generate transcriptome-

wide protein binding profiles for 30 general RNA degradation factors. In-depth 

bioinformatic analysis and comparison with previously reported PAR-CLIP data 

provided factor enrichment on different RNA classes and the binding behavior 

for mRNAs and their associated antisense transcripts. The results also gave 

insights into how the various degradation complexes, and different subunits in 

these complexes, may be involved in the processing and degradation of 

different RNA species. Several conclusions were drawn with respect to 

degradation pathway selection, new functions for known factors were 

proposed, and several hypotheses have emerged that may be tested in the 

future. The generated datasets provide a rich resource for future studies of 

eukaryotic RNA degradation pathways, mechanisms, and the integration of 

mRNA metabolism. 

The second part of this dissertation addressed the finding of a novel 

mRNA modification within the emerging field of epitranscriptomics. We 

performed PAR-CLIP experiments of the N3-methylcytidine (m3C) tRNA 

methyltransferase Trm140 to investigate its mRNA binding in the yeast S. 

cerevisiae. Using this approach in combination with a newly developed method 

applying anti-m3C antibodies for RNA immunoprecipitation (m3C-CLIP), we 

were able to call novel m3C modification sites. Next generation sequencing 

methods and biochemical verification assays showed the m3C modification in 

tRNA Arginine with anticodon CCU in addition to the established modification 

sites in tRNA Serine and Threonine in yeast. Our genome wide datasets also 

provided the first evidence that the m3C modification is present in yeast mRNAs 

and we mapped the modification on nucleotide resolution. Functional analyses 

suggested an effect of m3C mRNA modification on RNA degradation mediated 

by translation efficiency changes. Mapping of the m3C modification sites in 

human RNA revealed a similar localization compared to yeast over the entire 
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mRNA with higher occupancy towards the end of protein coding transcripts and 

within CG rich sequences. 
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2 Introduction 

2.1 The central dogma of molecular biology  

Genetic information in eukaryotic cells is stored in the nucleus as 

deoxyribonucleic acid (DNA). The replication and decoding of DNA, one of the 

most important processes in living cells, is also known as the “central dogma of 

molecular biology” (Crick, 1970). The conversion of genetic information into 

proteins is crucial for nearly all cellular functions. This conversion is sub-divided 

into two steps: transcription and translation. Transcription is the generation of 

ribonucleic acid (RNA) complementary to a given DNA sequence in the 

nucleus. During translation, the RNA serves as a template for protein synthesis 

in the cytoplasm.  

 

 

2.1.1 Transcription  

Transcription is performed by large multi-subunit complexes, which are 

called DNA dependent RNA polymerases (Pol). In eukaryotes, three distinct 

multi-subunit enzymes are necessary to transcribe all genes into various RNA 

molecules. Pol I transcribes the 18S, 5.8S and 23S ribosomal RNA (rRNA). 

Pol II transcribes many protein-coding messenger RNAs (mRNA) as well as a 

variety of non-coding RNAs (ncRNA), such as small nuclear RNAs (snRNA), 

long intergenic non-coding RNAs (lincRNA), and cryptic unstable transcripts 

(CUT). Pol III transcribes mostly transfer RNAs (tRNA), 5S rRNA and other 

small RNAs.  

The synthesis of mRNAs by Pol II, which are later translated into proteins 

is completed in a cyclic process. This can be divided into three major steps: 

initiation, elongation, and termination (reviewed in Hantsche and Cramer, 

2016).  

The formation of the transcription competent pre-initiation complex (PIC) 

on the promoter sequence is the first crucial step of Pol II transcription initiation. 

The PIC contains, in addition to Pol II, the general transcription factors (GTFs) 

(Sainsbury et al., 2015). Conformational changes of Pol II regulate the 
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transition from initiation to elongation (Proudfoot et al., 2002). Rpb1, the largest 

subunit of Pol II, contains a C-terminal domain (CTD) consisting of multiple 

tyrosine-serine-proline-threonine-serine-proline-serine (YSPTSPS) hepta-

peptide repeats (26 in yeast, 52 in mammals) (Corden et al., 1985). These 

provide a scaffold for co-transcriptional RNA processing factors (Hirose and 

Manley, 2000; McCracken et al., 1997b). All amino acids of the CTD can be 

phosphorylated, except proline. The phosphorylation status of the CTD 

changes dynamically during the transcription cycle (‘CTD code’) (Buratowski, 

2003; Hahn, 2004; Nechaev and Adelman, 2011; Proudfoot et al., 2002), which 

influences the maturation steps of pre-mRNAs (Fong and Bentley, 2001). A 7-

methyl-guanosine cap is added to the 5´ end of the nascent RNA when it 

reaches a length of 20-30 nucleotides (nt) (Rasmussen and Lis, 1993). This 

process is catalyzed by capping enzymes, which are recruited to the CTD by 

phosphorylation of the serine 5 (S5) residues (Cho et al., 1997; McCracken et 

al., 1997a). The 5´ cap is important for RNA stability, nuclear export, and 

translation initiation (Proudfoot et al., 2002).  

Transcription termination is induced by the recruitment of 3´ end 

processing factors to Pol II via hyper-phosphorylation of the CTD at serine 2 

(S2) residues (Ahn et al., 2004; McCracken et al., 1997b). 3´ end processing 

and transcription termination are tightly coupled for eukaryotic protein-coding 

genes (Whitelaw and Proudfoot, 1986). After the polyadenylation (pA) signal 

has been transcribed, the nascent transcript gets cleaved directly after the pA 

site in order to release it from Pol II (Gilmartin and Nevins, 1989). A 

polyadenylated (polyA) tail is added to the newly generated 3´ end of the mRNA 

by the poly-adenosine polymerase (PAP) (Colgan and Manley, 1997; Moore 

and Sharp, 1985). The polyA tail is required to export the mRNA to the 

cytoplasm for subsequent translation (Huang and Carmichael, 1996). The 

released Pol II becomes dephosphorylated and may enter a new transcription 

cycle. Efficient recycling and reinitiation of Pol II on the same template are 

facilitated by gene looping and the promoter binding GTFs forming a ‘reinitiation 

platform (Ansari and Hampsey, 2005; Dieci and Sentenac, 1996; Yudkovsky et 

al., 2000). 
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Thus, a full transcription cycle of Pol II produces an mRNA with a 5´ cap 

and 3´ polyA tail, which among other criteria renders the mRNA competent for 

subsequent translation. 

 

 

2.1.2 Translation 

 
During translation, the mRNA directs the synthesis of a polypeptide 

chain, which folds into a protein (reviewed in Green and Noller, 1997). This 

process is catalyzed by a large ribonucleoprotein particle, called the ribosome. 

The ribosome consists of two subunits, the small 40S and large 60S, together 

making up the 80S ribosome in eukaryotes. Both subunits harbor three binding 

sites for tRNA as shown in Figure 1: the acceptor (A’) site for the incoming 

aminoacylated tRNA, the peptidyl (P) site for peptide bond formation, and the 

exit (E) site for holding the deacylated tRNA before leaving the ribosome. The 

small ribosomal subunit binds the mRNA and the complementary tRNA 

anticodon stem loop. The open reading frame of mRNA consists of codons, 

which are made up of three consecutive nucleotides. One codon of the mRNA 

matches the nucleotide triplet of the tRNA’s anticodon loop. Translation is like 

transcription a cyclic process consisting of initiation, elongation, and termination 

(reviewed in Green and Noller, 1997).  

For translation initiation, the scanning ribosome first has to localize a 

start codon AUG within the mRNA strand, from which translation can begin. For 

scanning, the small ribosomal subunit and many auxiliary initiation factors bind 

to the mRNA in the 5´ untranslated region (5´ UTR) between the 5´ cap and the 

start codon. After start codon recognition, the large ribosomal subunit joins the 

small ribosomal subunit and the mRNA to form a translation competent 80S 

ribosome (Pestova et al., 2001). 
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Figure 1: Translation by the ribosome. 
The mRNA sequence shown in red serves as a template for protein production via the 
ribosome shown in green. The codons of the mRNA are complementary to the 
anticodon of the tRNA loaded with one specific amino acid. During translation the 
peptide bond formation between the amino acids takes place between the A’ site and 
P site of the ribosome thereby forming the polypeptide sequence. (modified from 
http://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/27-dna-replication-
transcri/translation.html, 18.02.2019) 
 

 

For translation elongation, the small ribosomal subunit, together with the 

mRNA identifies the correct anticodon stem loop of the tRNA (Schmeing et al., 

2011, 2009). Thereby, it contributes to the fidelity of translation via monitoring 

the decoding process of highly regulated RNA-RNA interactions of codon and 

anticodon base pairing (Demeshkina et al., 2010). The large ribosomal subunit 

can bind the acceptor arm of the tRNA and then peptide bond formation 

between the nascent polypeptide chain in the P site and the aminoacylated 

tRNA in the A’ site is catalyzed in the peptidyl transferase center. Both 

ribosomal subunits and auxiliary elongation factors contribute to translocation, 

which is the precise movement of tRNA and mRNA through the ribosome one 

codon at a time (Gao et al., 2009).  

Translation termination is the process after stop codon (UAA, UGA, and 

UAG) recognition in the A’ site and separation of the polypeptide chain from the 

ribosome. Release of the protein requires two release factors binding to the A’ 

site in complex with GTP and subsequent GTP hydrolysis to trigger hydrolysis 

of the polypeptidyl-tRNA. This results in the free protein product with the 
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ribosome still bound to mRNA, the deacylated tRNA in the P site, and the 

release factors in the A’ site. For further rounds of translation, the ribosome 

needs to be recycled by disassembling of termination factors and mRNA 

release (reviewed in Hellen, 2018; Jackson et al., 2012). 

In order to get a genome-wide picture of translating ribosomes and an 

estimation of translation rates and translation efficiency, a method called 

ribosome-profiling has been developed (Ingolia et al., 2009). By sequencing 

ribosome protected mRNA fragments, this method allowed monitoring of the 

ribosome position on the mRNA with single-codon resolution. Comparing 

translation efficiency with mRNA levels showed its substantial contribution to 

the dynamic nature of gene expression, which was invisible to measurements 

of mRNA levels alone. Thus, regulation of transcription and translation 

contributes to variable production of mRNAs and polypeptide chains. 
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2.2  The RNA degradation pathways 

 

An active RNA degradation mechanism is implied by comparing RNA 

production with RNA steady-state levels, which showed more RNA transcription 

than RNA accumulation in the cell (reviewed in Houseley and Tollervey, 2009). 

In general, in order to maintain RNA homeostasis each RNA molecule is 

degraded after a certain lifespan, which can be long for rRNAs or very short for 

introns or regulatory elements and is precisely controlled for most mRNA 

transcripts (Miller et al., 2011; Turowski and Tollervey, 2015). Defective RNA 

molecules in regard to processing, folding, or assembling with proteins are 

identified and rapidly degraded by the surveillance machinery in order to 

prevent aberrant protein production (reviewed in Houseley and Tollervey, 

2009). Since RNA decay is omnipresent in all cells, it implies a highly accurate 

controlling mechanism to recognize target RNAs. In addition, upon 

environmental stimuli such as temperature change or nutrient deprivation, the 

cell adjusts gene expression by regulating RNA abundance either by changing 

transcription output or degradation rate (Gasch et al., 2000; Gasch and Werner-

Washburne, 2002; Jelinsky and Samson, 1999). In principal, RNA degradation 

can occur from both ends of the transcripts (Parker, 2012), however, the 

characteristics of a transcript that determine the selection of one or the other 

decay pathway is a highly studied question in the field.  

 

 

2.2.1 Nuclear surveillance of aberrant non-coding RNAs 

 

Transcription initiation by Pol II exhibits a poor directionality, which leads 

to pervasive transcription (Core et al., 2008; Neil et al., 2009; Seila et al., 2008; 

Xu et al., 2009). In yeast, the phenomenon of bi-directional transcription has 

been observed by the formation of two adjacent PICs within nucleosome-

depleted regions (NDRs) (Murray et al., 2012; Rhee and Pugh, 2012).  

Two mechanisms have been shown to restrict the amount of pervasive 

transcription in eukaryotes: First, gene looping and preferred formation of PICs 

in one orientation can influence transcription directionality and thereby restrict 

initiation of divergent ncRNA transcription (Rhee and Pugh, 2012; Tan-Wong 
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et al., 2012). Second, nuclear 3´à5´ RNA degradation by the exosome and its 

catalytically active subunit Rrp6 removes excessive transcription products 

instantly after targeting of the ncRNAs by the Nrd1-Nab3-Sen1 complex (Neil 

et al., 2009; Schulz et al., 2013; Steinmetz et al., 2001; Xu et al., 2009). The 

Nrd1-Nab3-Sen1 complex also interacts with the cap binding complex as well 

as the TRAMP complex (see section 2.2.2.3) (Vasiljeva and Buratowski, 2006). 

In addition to degradation from the 3´ end, the exonuclease Xrn1 degrades 

ncRNAs from the 5´ end (van Dijk et al., 2011).  

 

 

2.2.2 Cytoplasmic RNA degradation 

2.2.2.1 Deadenylation 

 

RNA degradation is initiated by shortening of the polyA tail by two major 

deadenylation machineries: the multi-subunit Ccr4-Not complex (Ccr4, Not1, 

Pop2, Caf40) and the Pan2-Pan3 complex as shown in Figure 2A (Wolf and 

Passmore, 2014). Deadenylation is one of the rate-limiting steps for mRNA 

decay, thus, the enzymatic activities of the two mRNA deadenylase complexes 

make up an important target for the control of mRNA decay (Wolf and 

Passmore, 2014). Previous investigations regarding decay mechanisms of 

specific mRNAs showed that selective recruitment of deadenylating enzymes 

to the substrate mRNA is involved (Finoux and Seraphin, 2006; Goldstrohm et 

al., 2006; Semotok et al., 2005). Nevertheless, the exact mechanism leading to 

mRNA deadenylation has not been fully elucidated. A direct link between 

translation termination and mRNA decay has been revealed by several studies 

(reviewed in Huch and Nissan, 2014), in particular deadenylation, which is 

dependent on the poly-adenylate binding protein 1 (Pab1) and Ccr4 (Webster 

et al., 2018). It has also been shown that translation elongation and mRNA 

decay are coupled, which depends on the net effect of different cognate tRNA 

expression termed “codon optimality” (Presnyak et al., 2015). mRNA 

degradation is enhanced in the presence of rare codons, also non-optimal 

codons, which are encoded by tRNAs of relatively low abundance (Caponigro 

et al., 1993).  
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Upon translational termination, a stepwise model was proposed for 

deadenylation by first reducing the average polyA tail length of 90 nt to 50 nt 

via the Pan2-Pan3 complex, which is then further shortened by the Ccr4-Not 

complex (Beilharz and Preiss, 2007; Brown and Sachs, 1998; Tucker et al., 

2001). The mRNA with an oligo A tail of 10-12 nt can then become a substrate 

for decapping (Chowdhury et al., 2007; Tharun and Parker, 2001), or it is 

subjected to exosome catalyzed decay (Bonneau et al., 2009). 

 

 

 
 

Figure 2: Schematic overview of RNA degradation 
A) RNA decay starts with the rate-limiting step of deadenylation via Pan2-Pan3 and 
Ccr4-Not complexes, followed by decapping via Dcp1 and Dcp2 and exonucleolytic 
degradation of the transcript by Xrn1 from the 5´ end and the exosome from the 3´ 
end. B) Quality control decay pathways in particular nonsense mediated decay (NMD) 
factors such as the Upf1 and Smg6 recognize aberrant mRNAs during translation, 
mostly in the presence of premature termination codons (PTC), and induce 
endonucleolytic cleavage, whereupon the fragments are degraded by exonucleases 
from the 5´ end (Xrn1) or 3´ end (exosome) (adapted from Abernathy and Glaunsinger, 
2015). 
 

 

2.2.2.2 Decapping and exonucleolytic 5´à3´ RNA degradation 

 

The second step in mRNA degradation after deadenylation is removal of 

the 5´ cap, which protects the RNA from 5´à3´ degradation by the exonuclease 

Xrn1 (Stevens and Poole, 1995). In order to remove the cap, a three-step model 

is proposed: First, the 5´ cap structure needs to be unprotected by loss of the 
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cap-binding complex. Second, recruitment of the decapping enzyme to the 

mRNA needs to take place, which seems to be regulated by the assembly of a 

larger decapping complex. Third, catalysis by Dcp2 occurs together with Dcp1, 

inducing rapid 5´à3´ decay of the mRNA by the exonuclease Xrn1 (Hsu et al., 

2017; Muhlrad and Parker, 1994). Decapping is highly regulated by decapping 

enhancers like Dhh1, Edc2 and Edc3. Different mechanisms may trigger 

decapping by binding RNA and providing a platform for assembly of the 

decapping machinery, by interfering with translation initiation factors or by 

stimulating Dcp2 catalytic function. Assembly of the decapping machinery 

occurs mostly after shortening of the polyA tail, which prevents binding of the 

protective Pab1, opens the mRNA closed-loop structure, and allows decapping 

complex formation on the 3´ end of deadenylated mRNA (Caponigro and 

Parker, 1995; Gallie, 1991; Morrissey et al., 1999). Opening of the mRNA 

closed-loop structure disrupts the proximity of the 5´ and 3´ ends of the mRNA. 

This prevents complex formation of translation initiation factors binding to the 

5´ cap and Pab1 at the 3´ end, thereby contributing to mRNA expression 

regulation (Gallie, 1991; Wells et al., 1998). 

 

 

2.2.2.3 Exosomal 3´à5´ RNA degradation 

 

Upon deadenylation, 3´à5´ degradation of the mRNA is performed by 

the exosome and many auxiliary factors (Anderson and Parker, 1998). The 

exosome is a multi-subunit complex consisting of 10 main subunits. Three small 

RNA-binding proteins and six members of the RNase PH protein family form a 

ring structure similar to bacterial PNPase as shown in Figure 3 (Liu et al., 2006). 

The Rrp44/Dis3 protein is the catalytically active subunit possessing both an 

exonuclease and endonuclease domain (Lebreton and Seraphin, 2008; 

Schaeffer et al., 2009). The exosome complex takes part in many nuclear RNA 

processing and degradation processes in addition to its functions within the 

cytoplasm (reviewed in Lykke-Andersen et al., 2009). In order to fulfill its 

functions in the nucleus, the exosome is additionally bound by the 3´à5´ 

exonuclease Rrp6 as well as RNA binding proteins Rrp47 and Mpp6 (Milligan 

et al., 2008; Mitchell et al., 2003; Synowsky et al., 2009). 
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One of the various co-factors for nuclear exosomal RNA maturation and 

degradation in eukaryotes is the TRAMP polyadenylation complex (reviewed in 

Houseley and Tollervey, 2009). This complex consists of two sub-complexes: 

TRAMP4 (Trf4, Air2 and Mtr4) and TRAMP5 (Trf5, Air1 and Mtr4). The TRAMP 

complexes harbor a poly-adenosine polymerase (Trf4 or Trf5), a zinc-knuckle 

putative RNA-binding protein (Air1 or Air2), and an RNA helicase (Mtr4) (Falk 

et al., 2014). Defective nuclear RNAs can be tagged with a short polyA tail and 

bound proteins can be detached by the TRAMP complex. This renders the 

defective RNA a more suitable target for exosomal degradation by the sterically 

restricted exosome core (Schmidt and Butler, 2013).  

The Ski complex is required for cytoplasmic 3´à5´ exosomal 

degradation to feed the RNA into the exosome. The Ski7 protein is stably 

associated with the cytoplasmic exosome by the Csl4 adapter protein (van Hoof 

et al., 2002). The Ski2, Ski3, and Ski8 proteins assemble in a discrete protein 

complex (Brown et al., 2000; Wang et al., 2005) interacting with the Ski7 subunit 

(Araki et al., 2001; Wang et al., 2005). This interaction is required for 3´à5´ 

degradation of mRNAs by the exosome. The Ski2 subunit is an ATPase, which 

belongs to the RNA helicase family. It provides energy by ATP hydrolysis to 

unwind RNA secondary structures and dissociate attached proteins to pass the 

RNA to the exosome (Johnson and Jackson, 2013).  

 

 
Figure 3: Model of the exosome complex. 
Schematic overview of the exosome complex assembly including the nuclear Rrp6 in 
red and cytoplasmic Dis3 (Rrp44) subunit in violet. The exosome core consists of the 
cap (Rrp4, Csl4 and Rrp40) depicted in green and the ring domain (Rrp43, Rrp45, 
Rrp42, Mtr3, Rrp41 and Rrp46) in blue forming a central channel (adapted from 
Kilchert et al., 2016). 
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2.2.2.4 Quality control mechanism for defective mRNA 

 

Aberrant mRNAs need to be determined from the pool of normal mRNAs 

by adapter proteins. This can be accomplished by interactions of specific 

adapter proteins with the translation machinery. The aberrant mRNA can then 

be subjected to one of the RNA decay pathways (Doma and Parker, 2007). 

mRNAs with aberrant translation termination due to premature translation 

termination codons are degraded by an mRNA quality control system called 

nonsense mediated decay (NMD) as depicted in Figure 2B (Losson and 

Lacroute, 1979). Substrates for NMD are distinguished by the Upf1 protein 

interacting with the translation termination complex. Subsequently the proteins 

Upf2 and Upf3 bind to Upf1 thereby enhancing its helicase activity (reviewed in 

Baker and Parker, 2004; Chakrabarti et al., 2011). Binding of the NMD 

machinery to an aberrant mRNA has several effects on the fate of the transcript: 

the polyA tail of the mRNA is subjected to enhanced deadenylation (Cao and 

Parker, 2003; Mitchell and Tollervey, 2003; Muhlrad and Parker, 1994), rapid 

deadenylation-independent decapping of the 5´ end (Muhlrad and Parker, 

1994), slightly accelerated rates of 3´à5´ degradation by the exosome complex 

after deadenylation (Cao and Parker, 2003; Mitchell and Tollervey, 2003), and 

inhibition of translation (Muhlrad and Parker, 1999). In addition to its role in 

degrading aberrant mRNAs, the NMD machinery is involved in the regulation 

of many biological processes such as stress responses, cell survival and 

differentiation by controlling the steady state level of normal mRNAs (Goetz and 

Wilkinson, 2017; Karam et al., 2015; T. Li et al., 2015; Lou et al., 2016; Lykke-

Andersen and Jensen, 2015; Nelson et al., 2016). It has been shown that the 

expression regulation of normal mRNAs is achieved by fine tuning of the NMD 

activity (Huang and Wilkinson, 2012; Karam et al., 2013). 
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2.3 The emerging field of epitranscriptomics 

2.3.1 Biogenesis of eukaryotic tRNAs and their function in translation 

 

In S. cerevisiae, Pol III transcribes a total of 275 tRNA genes (Chan and 

Lowe, 2009). The pre-tRNA transcripts contain a 5´ leader sequence, a 3´ trailer 

sequence and can harbor an intronic sequence, which need to be removed 

during biogenesis. After removal of the 5´ leader sequence by RNase P, RNase 

Z can remove the 3´ trailer sequence at nucleotide 73 and a nucleotidyl-

transferase is able to add a CCA sequence to the 3´ end of the tRNA (Aebi et 

al., 1990). Correctly folded and end-processed tRNAs are exported from the 

nucleus into the cytoplasm using the export factor Los1 (Arts et al., 1998; Lund 

and Dahlberg, 1998; Sarkar and Hopper, 1998). The conserved family of Sen 

proteins removes intronic sequences from 61 tRNAs in a process called tRNA 

splicing in the cytoplasm (Melton et al., 1980; Yoshihisa et al., 2003). The final 

step of tRNA maturation is aminoacylation by aminoacyl-synthetases 

(Grosshans et al., 2000; Lund and Dahlberg, 1998; Steiner-Mosonyi and 

Mangroo, 2004). The correctly loaded tRNAs can then serve as adapter 

molecules during translation of the mRNA into the amino acid sequence of the 

protein catalyzed by the ribosome.  

 

 

2.3.2 tRNA modifications and their function 

 

In ncRNAs like rRNA, tRNA and snRNA, more than 100 chemical 

modifications have been characterized. tRNAs can be highly modified on 

numerous nucleotides as shown in Figure 4, which is crucial for their specific 

function in translation (Phizicky and Hopper, 2010). The correct folding of 

tRNAs into the clover leaf structure (Figure 4) including the acceptor stem, the 

D-loop, the TΨC-loop, the anticodon-loop, and the variable loop is ensured by 

the different RNA modifications installed in the nucleus and cytoplasm 

depending on the specific modification (reviewed in Hopper, 2013). The tRNA’s 

secondary structure is folded into an inverted L-shaped tertiary structure 

containing the CCA-acceptor stem at the top and the anticodon-loop at the 

bottom (Shi and Moore, 2000). The most variably and extensively modified 
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nucleotides are in the anticodon loop (ACL) at the wobble position (34) and in 

the extended anticodon (37) of tRNAs. These modifications may play important 

roles in decoding precision, efficiency and reading frame maintenance during 

translation (Björk et al., 2001; Chen C, Huang B, Eliasson M, Ryde´n P, 2011; 

Esberg et al., 2006; Gerber et al., 1998; Johansson et al., 2008; Murphy and 

Ramakrishnan, 2004; Urbonavičius et al., 2001; Waas et al., 2007; 

Weixlbaumer et al., 2007; Yacoubi et al., 2011). Effects on tRNA structure 

stability are mainly influenced by modifications in the body of the tRNA leading 

to more rigid or loose parts (reviewed in Lorenz et al., 2017).Incorrectly modified 

tRNAs or the loss of tRNA modifying enzymes have been implicated in a 

number of human diseases such as neurological and metabolic diseases as 

well as several kinds of cancer (reviewed in Torres et al., 2014). A perturbed 

protein synthesis in response to incorrect codon recognition is considered to be 

the molecular reason for those diseases (Torres et al., 2014). 
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Figure 4: Modified nucleosides in the clover-leaf structure of the eukaryotic tRNA. 
Each circle represents a nucleotide, numbered from 5´- to 3´- end. The clover-leaf 
structure is divided into the acceptor stem, the D stem, the anticodon stem, the 
variable stem and the TΨC stem loop. Modified nucleosides found at different 
positions are shown (adapted from Chen et al., 2010). 

 

 

2.3.3 mRNA modifications 

 

In the last ten years a lot of effort has been made to detect RNA 

modifications in mRNA leading to the emerging field of epitranscriptomics 



Introduction 

 - 17 - 

(Saletore et al., 2012). The epitranscriptome is defined as a functional change 

in the mRNA that does not involve changes to the ribonucleotide sequence. 

The epitranscriptome is analogous to the epigenome, which describes the 

chemical modifications on DNA and histones. The first modifications described 

in mRNA were N6-methyladenosine (m6A) and 5-methylcytidine (m5C) in the 

1970s (Dubin and Taylor, 1975; Schibler et al., 1977). The currently known 

base modifications in protein-coding transcripts are m6A, m5C, inosine (I), 

pseudouridine (Ψ), N1-methyladenosine (m1A), 5-hydroxylmethylcytidine 

(hm5C), and N4-acetylcytidine (ac4C) (see Figure 5). Different RNA editing 

events within the mRNA can change the encoded protein sequence and 

thereby eventually generate premature stop codons or alter the differential 

expression levels of micro RNAs (Chawla and Sokol, 2014; Powell et al., 1987). 

The localization of the different mRNA modifications in eukaryotic protein-

coding transcripts is shown in Figure 5. Epitranscriptomic modifications can 

also influence mRNA stability, structure, splicing, translation and degradation 

(reviewed in Frye et al., 2016).   

 

 

 
 
Figure 5: Schematic representation of known chemical modifications mapped in 
eukaryotic mRNA transcripts. 
The protein coding region is highlighted in bold. The to date known base modifications 
within the mRNA are N6-methyladenosine (m6A), 5-methylcytidine (m5C), inosine (I), 
pseudouridine (Ψ), N1-methyladenosine (m1A), and N4-acetylcytidine (ac4C). 
Structure of the nucleoside including the chemical modification in color is shown at the 
position within the transcript, where the modification has been localized. In addition to 
the base modifications, also the 2’-O-methylation of ribose sugars (Nm) is also shown 
close to the 5´ cap (adapted from He and He, 2019).  
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2.3.3.1 N6-methyladenosine modification 

 

Development of next-generation sequencing (NGS) techniques enabled 

a more accurate analysis of the m6A modification and revealed its extent over 

the transcriptome after its identification in the 1970s (Dubin and Taylor, 1975). 

The m6A modification is generally found in mRNAs of nearly all eukaryotes 

from yeast to fruit fly and mouse up to human (Dominissini et al., 2012; Hongay 

and Orr-weaver, 2011; Schwartz et al., 2013). Antibodies were used to 

specifically detect the m6A modification in cellular mRNAs (Chen et al., 2015; 

Dominissini et al., 2012) and by using cross-linking methods coupled to specific 

mutational signatures, the modification was mapped at single-nucleotide 

resolution (Linder et al., 2015). These studies revealed over 12,000 possible 

m6A modification sites in mRNAs and ncRNAs of more than 7,000 human 

transcripts. However, in yeast the presence of the m6A modifications is reduced 

to about 1,000 mRNAs and limited to meiosis suggesting a function in 

translation of certain mRNAs (Schwartz et al., 2013). Mapping of the 

modification on the mRNA transcript has revealed its localization in humans 

around stop-codons, long internal exons and in the 3´ UTRs (Chen et al., 2015; 

Dominissini et al., 2012; Saletore et al., 2012). The consensus motif RRACH, 

which was already proposed in the 1970s, was confirmed by the highly enriched 

GGACU motif within the sequencing data (Chen et al., 2015; Dominissini et al., 

2012; Saletore et al., 2012; Schibler et al., 1977).  

The m6A modification is installed by a methylation complex consisting 

of the methyltransferase METTL3, the putative methyltransferase METTL14, 

and the regulatory proteins WTAP and KIAA1429 (Liu and Jia, 2014; Ping et 

al., 2014; Schwartz et al., 2014b). Other m6A methyltransferases seem to be 

involved in introducing such modifications, as knockdown of the 

METTL3/METTL14 complex does not completely abolish m6A modification. 

Furthermore, the known m6A modification sites just overlap partially with the 

binding sites of METTL3/METTL14 on cellular RNAs indicating the presence of 

other m6A methyltransferases (Chen et al., 2015; Liu and Jia, 2014; Schwartz 

et al., 2014b). Indeed, METTL16 was identified to modify pre-mRNAs and 

various ncRNAs with m6A (Pendleton et al., 2017; Warda et al., 2017). 

Interestingly, METTL16-dependent m6A modification sites do not have the 
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RRACH sequence motif and they occur within introns and at intron-exon 

boundaries (Pendleton et al., 2017; Warda et al., 2017).  

Functional analyses of the m6A modification have revealed that the 

modification may change the secondary structure of the RNA by acting as a 

molecular switch. This can lead to the display of RNA binding structures or 

motifs for specific RNA binding proteins (Liu et al., 2015). On a cellular level the 

m6A modification is suggested to be involved in stress response, cap-

independent translation and regulation of the circadian rhythm of cells (Engel 

et al., 2018; Fustin et al., 2013; Meyer et al., 2015). In mouse, the m6A 

modification was observed to keep the omnipotence of the cells thereby 

regulating embryonic stem cells and was also shown to be involved in the cell 

cycle regulation of human cells (Dominissini et al., 2012; Y. Wang et al., 2014). 

Recently, a study revealed a crosstalk between histone modifications and m6A 

modifications to regulate gene expression (Huang et al., 2019). Hereby, 

METTL14 recognizes the trimethylation of histone H3 at Lys 36, which is an 

established marker for transcription elongation, and facilitates binding of the 

methyltransferase complex in the vicinity of Pol II to deposit the m6A 

modification co-transcriptionally (Huang et al., 2019; Kizer et al., 2005).  

The m6A modification has been identified to be reversible via the 

ALKBH5/FTO protein, which erases the mark, thereby allowing for the dynamic 

nature of the m6A modification associated with different functions in mice and 

humans (Jia et al., 2011; Zheng et al., 2013). However, not only writer and 

eraser proteins for m6A modification have been identified, but also reader 

proteins. Those reader proteins specifically bind to the m6A mark thereby 

influencing the fate of the transcript. The first identified m6A binding proteins 

share a specific domain, the YT521-B homology (YTH) domain (Zhang et al., 

2010). In humans, five YTH domain containing proteins are known, namely 

YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2. These proteins are 

associated with different functions in cellular processes upon m6A recognition 

in mRNA such as splicing, stability and translation (Kretschmer et al., 2018; 

Theler et al., 2014; Wang et al., 2015; X. Wang et al., 2014; Xiao et al., 2016). 

Increased translation of specific m6A containing transcripts has been observed 

to control anti-tumor immunity in dendritic cells (Han et al., 2019). In Drosophila, 
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the m6A reader protein YT521B has been shown to control neurogenesis and 

sex determination (Lence et al., 2016).  

 

 

2.3.3.2 5-methylcytidine modification 

  

In addition to its occurrence in tRNA, rRNA, and the well characterized 

function in transcription regulation on DNA, the m5C modification was also 

observed in human and archaeal mRNA (Edelheit et al., 2013; Squires et al., 

2012). Bisulfite treatment coupled with NGS enabled mapping of m5C and its 

oxidation products 5-hydroxymethylcytidine (hm5C) and 5-formylcytidine (f5C) 

on a transcriptome-wide level (Booth et al., 2014; Edelheit et al., 2013; Lee and 

Kim, 2016). In ncRNAs and mRNAs of HeLa cells over 10,000 m5C 

modification sites were discovered (Squires et al., 2012). Global positional 

analysis of the m5C modification revealed an overall distribution in mRNAs with 

an increased occupancy in 5´ and 3´ UTRs (Squires et al., 2012). This 

localization of the modifications implies a function in protein translation 

regulation (Squires et al., 2012). Two additional experiments in fruit flies 

support this hypothesis (Delatte et al., 2016). The m5C content can also be 

regulated in human cells by oxidation to hm5C and f5C, indicating a similar 

mechanism being present in mammals (Huber et al., 2015).  

 

 

2.3.3.3 N1-methyladenosine modification 

 

Specific chemical properties of the m1A modification in mRNA allowed 

its discovery by using an antibody-based approach to enrich transcripts 

containing an m1A modification. These were later on sequenced to map the 

modified nucleoside within the transcripts (Dominissini et al., 2016; Li et al., 

2016a; Li and Xiong, 2017; Safra et al., 2017b). The number of reported m1A 

marks in mRNAs varies between each study, ranging from very few (Safra et 

al., 2017b), to around 800 (Li et al., 2016a), and up to over 4,000 (Dominissini 

et al., 2016). m1A is reported to occur at low stoichiometry and in invariable 

tRNA TΨC-loop structures (Safra et al., 2017b). Whereas another study 



Introduction 

 - 21 - 

reported the average methylation level of an m1A containing transcript of 

approximately 20% within one mRNA (Dominissini et al., 2016). This study also 

observed a positional distribution of the m1A marks in the 5´ UTR and the 5´ 

end of mRNAs (Dominissini et al., 2016). In addition to its presence in the 5´ 

UTR, others reported occurrence of the m1A modification also in the 3´ UTR (Li 

et al., 2016a). The last two studies indicated a functional role of the m1A mark 

in translation regulation as they observed changed methylation patterns in 

response to different physiological conditions and external stress (Dominissini 

et al., 2016; Li et al., 2016a). Furthermore, the alpha-ketoglutarate dependent 

dioxygenase ALKBH3 was identified to erase the m1A modification, thus, 

making it a reversible modification with a dynamic function (Li et al., 2016a). 

 

 

2.3.3.4 Pseudouridine modification 

 

Pseudouridine modifications have also been mapped by transcriptome-

wide sequencing. A chemical labeling approach by using the reactivity of the 

molecule N3-[N-cyclohexyl-N’-β-(4-methylmorpholinium)ethylcarbodiimide 

(CMC) and pseudouridine introduces a bulky modification (CMC-Ψ), which 

causes a reverse transcription stop and therefore allows mapping of the 

modified nucleotide (Bakin and Ofengand, 1993; Zaringhalam and 

Papavasiliou, 2016). By using this method, different studies reported the 

modification to be present in yeast and human mRNAs and ncRNAs (Carlile et 

al., 2014; X. Li et al., 2015; Lovejoy et al., 2014; Safra et al., 2017a; Schwartz 

et al., 2014a). Conserved pseudouridine synthases of the Pus family and 

TRUB1 catalyze isomerization from uridine to pseudouridine with a conversion 

rate of 0.2 – 0.6% identified via mass spectrometry analysis (Carlile et al., 2014; 

Lovejoy et al., 2014; Safra et al., 2017a; Schwartz et al., 2014a). The high 

abundance of the pseudouridine mark enables a high regulatory potential, 

which was observed by altered modification patterns and abundance caused 

by starvation induced stress response in yeast and human cells (Carlile et al., 

2014; X. Li et al., 2015; Schwartz et al., 2014a). Pseudouridylation of nonsense 

stop codons UAA, UAG or UGA can change their effect and makes it impossible 

for the ribosome to recognize the stop codon, hence translation continues with 
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incorporation of the corresponding tRNA (Hoernes et al., 2016; Karijolich and 

Yu, 2011). An alternative way to regulate translation was shown by in vitro and 

in vivo assays in which the pseudouridylated mRNA had an increased 

translation capacity as well as higher biological stability in mice and humans 

(Kariko et al., 2008). Altered pseudouridylation levels in humans have been 

shown to cause intellectual disability and microcephaly (Shaheen et al., 2019). 

 

 

2.3.3.5 N4-acetylcytidine modification 

 

Very recently, the ac4C modification has been identified in yeast and has 

also been mapped in human mRNAs (Arango et al., 2018; Tardu et al., 2018). 

The ac4C modification is installed by NAT10 in a broad range of human mRNAs 

in addition to 18S rRNA, Serine and Leucine tRNAs (Arango et al., 2018; 

Chimnaronk et al., 2009; Ito et al., 2014; Sharma et al., 2015). Over 4,000 ac4C 

marks were identified within human mRNAs with usually one or two ac4C 

modified nucleosides per modified transcript. Positional analysis of ac4C 

revealed a uniform distribution all over the mRNAs with a general bias towards 

the 5´ UTR close to translation start sites (Arango et al., 2018). Depletion of 

NAT10 caused downregulated expression levels of ac4C containing mRNA 

indicating a positive effect of the ac4C modification on translation efficiency 

(Arango et al., 2018). Additionally, the mRNA stability of ac4C containing 

transcripts was significantly prolonged compared to mRNAs in NAT10 deficient 

cells (Arango et al., 2018). Moreover, mRNA decay and translation are 

intricately linked. Thus, decreased mRNA stability results in a reduced 

translation, what decreases mRNA stability reciprocally (Hanson and Coller, 

2018). In addition to the elevated translation efficiency of ac4C containing 

mRNAs, ac4C in the wobble position of tRNAs also stimulates translation 

(Arango et al., 2018). 
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2.3.4 N3-methylcytidine modification  

 

The presence of a N3-methylcytidine (m3C) (Figure 6) modification was 

observed in tRNAs Serine and Threonine at position C32 in the model organism 

S. cerevisiae (D’Silva et al., 2011; Noma et al., 2011) and humans (Clark et al., 

2016). The variable arm of tRNA Serine and C32 in tRNA Arginine with 

anticodon CCU and UCU also contain m3C in higher eukaryotes (Arimbasseri 

et al., 2015; Capone et al., 1985; Cribbs et al., 1987; Keith, 1984; Partial et al., 

1971).  

 

 
 
Figure 6: Structure of the N3-methylcytosine (m3C) modification. 
The additional methyl group is added to the N-3 of cytidine by the methyltransferase 
Trm140 in yeast and METTL2, 6 or 8 in humans and S-adenosylmethionine (SAM). 
 

 

2.3.4.1 N3-methylcytidine methyltransferase in S. cerevisiae 

 

The methyltransferase for m3C is Trm140 in S. cerevisiae (D’Silva et al., 

2011; Noma et al., 2011). Trm140 was first identified as an actin binding protein 

(Abp140) (Asakura et al., 1998) with its N-terminal part binding to actin 

filaments and thereby localizing to actin patches and cables. The C-terminal 

part is responsible for m3C modification and contains the S-

adenosylmethionine (SAM) binding motif. Trm140 is encoded on two separate 

open reading frames (ORFs) that are translated into one protein by a +1 frame 

shift (Farabaugh et al., 2006). It seems likely that the m3C modification on 

position C32 of tRNA is important for cells, as residue 32 interacts with residue 

38 of the anticodon loop to maintain its structure (Auffinger and Westhof, 2001, 
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1999). A Trm140 knockout (KO) does not have a significant phenotype, 

whereas the Trm140 and Trm1 double knockout strain, which lacks m3C and 

N2-N2-dimethylguanine (m22G), is sensitive to cycloheximide, indicating 

impaired translocation on the ribosome (D’Silva et al., 2011). N6-isopentenyl 

adenosine (i6A37), N6-threonylcarbamoyl adenosine (t6A37) or their 

derivatives at position 37 are necessary for m3C modification at position 32 

(Han et al., 2017). However, the t6A37 is not a sufficient mark for m3C 

modification as shown for several tRNAs (Met, Ile, Asn Lys) (Thiaville et al., 

2016). It has been shown that Trm140 recognizes its tRNA substrates in two 

different ways. It can either recognize the sequence G35-U36-t6A37 of the 

anticodon loop of tRNA Threonine or t6A37 and i6A37 of tRNA Serine, since 

the anticodons of tRNA Serine do not have G35–U36 and no other nucleotides 

in common. Additionally, seryl-tRNA synthetase and the distinctive tRNA Serine 

variable loop are important to achieve Trm140 specificity on tRNA Serine (Han 

et al., 2017). 

 

 

2.3.4.2 N3-methylcytidine methyltransferases in higher eukaryotes 

 

In mammals, several methyltransferase-like (METTL) proteins have 

been well characterized and a high sequence similarity of the human and 

mouse METTL2, METTL6 and METTL8 to the yeast Trm140 was shown (Xu et 

al., 2017). METTL2 and METTL6 contribute to specific tRNA modification, 

whereas METTL8 forms m3C in mRNAs (Xu et al., 2017). A knockout of 

METTL8 in two different human cell lines drastically reduced the m3C level in 

mRNAs, suggesting that METTL8 is the only methyltransferase for m3C in 

mRNAs (Xu et al., 2017). The overall presence of m3C in mRNAs has been 

shown by HPLC-coupled triple quadrupole mass spectrometry (LC-MS/MS). 

Thereby, a similar abundance of m3C (5 per 105 C) as m1A (7 per 105 A) and 

m5C (9 per 105 C) and lower levels than m6A (1-2 per 103 A) have been found 

(Xu et al., 2017). However, NGS sequencing and thus genome wide information 

about its localization on transcripts is still missing. Localization on mRNA 

transcripts in the 5´ UTR, the coding region or the 3´ UTR may shed light on 

the functional implication of the m3C modification.  
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2.4 Aims of this thesis 

2.4.1 Transcriptome maps of general eukaryotic RNA degradation factors 

 

A large variety of different RNA degradation factors poses the question 

how RNA degradation pathways are selected and how the RNA sequence 

encodes or influences this selection. Answering this question requires a 

systematic analysis of the RNA-binding profiles of the involved protein factors. 

Although several transcriptome profiles of the RNA degradation factors 5´à3´ 
exonuclease Xrn1, exosome subunits (Rrp44, Csl4, Rrp41, and Rrp6), TRAMP 

subunits (Mtr4, Trf4, and Air2) and Ski complex subunit Ski2 have been 

reported (Delan-Forino et al., 2017; Milligan et al., 2016; Schneider et al., 2012; 

Tuck and Tollervey, 2013), there is a lack of transcriptome-wide binding profiles 

for components of the deadenylation, decapping, and NMD machineries, as 

well as subunits of the exosome complex and exosome associated factors. 

Thus, the task of systematically analyzing the binding of subunits from many 

known factors involved in RNA degradation to a eukaryotic transcriptome 

(‘transcriptome mapping’) has not been accomplished yet. I will use the 

established method photoactivatable ribonucleoside-enhanced crosslinking 

and immunoprecipitation (PAR-CLIP) for 30 general RNA degradation factors 

to systematically generate transcriptome-wide protein binding profiles in the 

yeast S. cerevisiae. In combination with thorough bioinformatic analyses we will 

draw conclusions regarding protein complex interactions within degradation 

pathways.  

 

 

2.4.2 Identification and functional characterization of the novel mRNA 

modification N3-methylcytidine 

 

The m3C modification has so far only been observed in tRNAs of yeast 

and human cells and in human mRNAs (D’Silva et al., 2011; Noma et al., 2011; 

Xu et al., 2017). However, the presence in yeast mRNA and the positional 

information regarding the localization within human mRNA transcripts is still 

lacking. To investigate and localize the m3C modification in mRNAs of 

S. cerevisiae, I will perform PAR-CLIP experiments of Trm140 to analyze its 
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mRNA binding ability. Protein binding to mRNA suggests a modification in 

proximity to the binding site. I will use this approach in combination with a newly 

developed method using anti-m3C antibodies for RNA immunoprecipitation, 

called m3C-CLIP. Functional analyses by metabolic labeling and sequencing 

and analyses of ribosome profiling data in yeast will be used to elucidate a 

potential function of the m3C modification regarding RNA stability and 

translational fidelity. In addition to the work in yeast, I will perform PAR-CLIP 

experiments of METTL8 and m3C-CLIP in human HEK293 cells to elucidate 

the localization of the m3C modification on protein coding transcripts. 
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3 Materials and Methodology 

3.1 Materials 

3.1.1 Bacterial strains 

 
Table 1: Bacterial strains used in this study. 

Strain Genotype Source 

BL21-Codon 
Plus(DE3)-RIL  
 

recA1 endA1 gyrA96 thi-1 hsdR17 
Stratagene supE44 relA1 lac [F’ 
proAB lacIq ZΔM15 Tn10 (Tetr)]  

Stratagene 

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 
Stratagene supE44 relA1 lac [F’ 
proAB lacIq ZΔM15 Tn10 (Tetr)]  

Stratagene 

 

 

3.1.2 Yeast strains 

 
Table 2: Yeast strains used in this study. 

Strain Genotype Source 

BY4741 (Wildtype) 
 

MATa; his3Δ1; leu2Δ0; met15Δ0; 
ura3Δ0  

Euroscarf 

Air1-TAP BY4741; AIR1-TAP::HIS3MX6 Euroscarf 
Air2-TAP BY4741; AIR2-TAP::HIS3MX6 Euroscarf 
Caf40-TAP BY4741; CAF40-TAP::HIS3MX6 Euroscarf 
Ccr4-TAP BY4741; CCR4-TAP::HIS3MX6 Euroscarf 
Csl4-TAP BY4741; CSL4-TAP::HIS3MX6 Euroscarf 
Dcp1-TAP BY4741; DCP1-TAP::HIS3MX6 Euroscarf 
Dcp2-TAP BY4741; DCP2-TAP::HIS3MX6 Euroscarf 
Dhh1-TAP BY4741; DHH1-TAP::HIS3MX6 Euroscarf 
Edc2-TAP BY4741; EDC2-TAP::HIS3MX6 Euroscarf 
Edc3-TAP BY4741; EDC3-TAP::HIS3MX6 Euroscarf 
Mtr4-TAP BY4741; MTR4-TAP::HIS3MX6 Euroscarf 
Nmd4-TAP BY4741; NMD4-TAP::HIS3MX6 Euroscarf 
Not1-TAP BY4741; NOT1-TAP::HIS3MX6 Euroscarf 
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Pan2-TAP BY4741; PAN2-TAP::HIS3MX6 Euroscarf 
Pan3-TAP BY4741; PAN3-TAP::HIS3MX6 Euroscarf 
Pop2-TAP BY4741; POP2-TAP::HIS3MX6 Euroscarf 
Rrp4-TAP BY4741; RRP4-TAP::HIS3MX6 Euroscarf 
Rrp6-TAP BY4741; RRP6-TAP::HIS3MX6 Euroscarf 
Rrp40-TAP BY4741; RRP40-TAP::HIS3MX6 Euroscarf 
Rrp44-TAP BY4741; RRP44-TAP::HIS3MX6 Euroscarf 
Ski2-TAP BY4741; SKI2-TAP::HIS3MX6 Euroscarf 
Ski3-TAP BY4741; SKI3-TAP::HIS3MX6 Euroscarf 
Ski7-TAP BY4741; SKI7-TAP::HIS3MX6 Euroscarf 
Ski8-TAP BY4741; SKI8-TAP::HIS3MX6 Euroscarf 
Trf4-TAp BY4741; TRF4-TAP::HIS3MX6 Euroscarf 
Trf5-TAP BY4741; TRF5-TAP::HIS3MX6 Euroscarf 
Trm140-TAP BY4741; BUR1-TAP::HIS3MX6  Euroscarf 
Trm140 knockout BY4741; MATa; ura3Δ0; leu2Δ0; 

his3Δ1; met15Δ0; 
YOR239w::kanMX4 

Euroscarf 

Upf1-TAP BY4741; UPF1-TAP::HIS3MX6 Euroscarf 
Upf2-TAP BY4741; UPF2-TAP::HIS3MX6 Euroscarf 
Upf3-TAP BY4741; UPF3-TAP::HIS3MX6 Euroscarf 
Xrn1-TAP BY4741; XRN1-TAP::HIS3MX6 Euroscarf 

 

 

3.1.3 Human cell lines 

 
Table 3: Human cell lines used in this study. 

Cell line Description 

Flp-In™ T-REx™ 293 Cell Line 
(Thermo Fisher Scientific) 

Modified HEK293 cell line used for 
generation of a stable cell line of 
METTL8-3xFLAG from a Flp-In™ 
expression vector by homologous 
recombination. 
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3.1.4 Media and supplement 

 
Table 4: Growth media used in this study. 

Name Description/ source Species 

Lysogeny Broth (LB) 1% (w/v) tryptone; 0.5% 
(w/v) yeast extract; 0.5% 
(w/v) NaCl; (+1.5% (w/v) 
agar for solid media plates) 

E. coli 

Yeast extract peptone 
dextrose (YPD) 

2% (w/v) peptone; 2% (w/v) 
glucose; 1.5% (w/v) yeast 
extract (+1.8% (w/v) agar for 
solid media plates) 

S. cerevisiae 

Synthetic complete 
medium (SCM) 

0.69% (w/v) yeast nitrogen 
base without amino acids; 
0.04% (w/v) complete 
supplement mixture; 0.04% 
(w/v) complete supplement 
mixture without uracil 
(Formedium) 

S. cerevisiae 

Dulbecco’s Modified 
Eagle Medium 
(DMEM) 

Growth and maintenance 
medium from Thermo Fisher 
Scientific 

H. sapiens 

 

 
Table 5: Media supplements used in this study. 

Name Description/ source  Working 
concentation 

4-thiouracil Labeling of nascent RNA (S. 
cerevisiae) from Sigma 

1 mM 

4-thiouridine Labeling of nascent RNA 
(human) from Carbosynth 

500 µM 

Blasticidin HCl  Antibiotic from Thermo 
Fisher Scientific  

15 µg/mL 

FBS Fetal bovine serum as 
supplement for DMEM from 
Thermo Fisher Scientific 

1:10 

GlutaMAX (200 mM) Supplement for DMEM from 
Thermo Fisher Scientific  

1:100 

Hygromycin Antibiotic from Invitrogen 50 µg/mL 
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Isopropyl-β- D-

thiogalactopyranosid 

(IPTG) 

Gene experession induction 
in E. coli from Carl Roth 

1 mM 

Kanamycin Antibiotic from Carl Roth 50 μg/mL  
 

Tetracycline Gene of interest expression 
induction in the Flp-In™ T-
REx™ 293 Cell Line from 
Thermo Fisher Scientific. 

1 µM 

Zeocin Antibiotic from Invitrogen 100 µg/mL 

 

 

3.1.5 Spike-ins 

 
Table 6: Spike-ins used in this study provided by Dr. Kristina Zumer. 

Spike-in ERCC-ID length 
 

Number 
of U 

GC content 
(%) 

4sU 
labeled 

Spike 2 Derived from 
ERCC-00043 

985 297 33.9 yes 

Spike 4  Derived from 
ERCC-00136  

1014  268 42.6 yes  

Spike 5  Derived from 
ERCC-00145  

1015  264 42.8 no  

Spike 8  Derived from 
ERCC-00092  

1079  287 51.8 yes  

Spike 9  Derived from 
ERCC-00002  

1037  263 52.8 no  

Spike 12  Derived from 
ERCC-00170  

949  296 34.8  no  

 

 

3.1.6 Primers and oligonucleotides 

 
Table 7: Primers and oligonucleotides used in this study were purchased from IDT. 

Name Sequence 

3´ adapter /5rApp/TGGAA TTCTCGGGTGCCAAGG/3ddC/  

5´ adapter /5InvddT/rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCr
CrGrArCrGrArUrCrNrNrNrNrN  

RT primer CCTTGGCACCCGAGAATTCCA  
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NEXTflex barcode 
primer 

CAAGCAGAAGACGGCATACGAGA-Barcode-
GTGACTGGAGTTC CTTGGCACCCGAGAA TTCCA  

Barcode 1 ATCACG 
Barcode 2 CGATGT 
Barcode 3 TTAGGC 
Barcode 4 TGACCA 
Barcode 5 ACAGTG 
Barcode 6 GCCAAT 
Barcode 7 CAGATC 
Barcode 8 ACTTGA 
Barcode 9 GATCAG 
Barcode 10 TAGCTT 
Universal primer AATGATACGGCGACCACCGAGATCTACACGTTC

AGAGTTCTACAGTCCGA  
Nextera primer 1 AATGATACGGCGACCACCGA  
Nextera primer 2 CAAGCAGAAGACGGCATACGA  
RT primer Serine FAM-CGACACCAGCAGGATTTGAA 
RT primer Arginine FAM-CGTTCCGTACGGGACT 

 

 

3.1.7 Thermal cycler programs 

 
Table 8: List of thermal cycler programs used in this study. 

Program Step Temperature /°C Time /sec Repeat 

Fusion PCR 1 98 120  
2 98 20  
3 60 30  
4 72 30 Repeat steps  

2-4 29 times 
5 72 300  

One-step PCR 1 95 300  
2 98 80  
3 55 30  
4 72 60  
5 72 180  
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3.1.8 Plasmids 

 
Table 9: List of plasmids used in this study. 

Vector Description Source 

438-C   
 

N-terminal His 6× tag, MBP tag, N10 
linker and a TEV protease cleavage site  

UC Berkeley  

pcDNATM5/FRT  
 

Expression vector into which the gene of 
interest was cloned  

Thermo Fisher 
Scientific 

pOG44  Flp recombinase expression plasmid 
under the control of the human CMV 
promoter. 

Thermo Fisher 
Scientific  

 

 

3.1.9 Buffers and solutions 

 
Table 10: List of buffers and solutions used in this study. 

Name Ingredients 

Lysis buffer 
(yeast) 

50 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.1% SDS, 0.5% 
NP-40, 0.5% Na-deoxycholate 

Lysis buffer 
(human) 

50 mM HEPES-KOH pH 7.5, 150 mM KCl, 2 mM EDTA-
NaOH, pH 8.0, 1 mM NaF, 0.5% (v/v) NP40 substitute, 
0.5 mM DTT, complete EDTA-free protease inhibitor 
cocktail 

Wash buffer 
(yeast) 

50 mM Tris-HCl pH 7.5, 1 M NaCl, 0.1% SDS, 0.5% NP-40, 
0.5% Na-deoxycholate 

T1 buffer 50 mM Tris-HCl pH 7.5, 2 mM EDTA 

High salt wash 
buffer 

50 mM HEPES-KOH pH 7.5, 500 mM KCl, 0.05% (v/v), 
NP40 substitute, 0.5 mM DTT, complete EDTA-free 
protease inhibitor cocktail 

Phosphatase 
buffer 

50 mM Tris-HCl pH 7.0, 1 mM MgCl2, 0.1 mM ZnCl2 

Phosphatase 
wash buffer 

50 mM Tris-HCl pH 7.5, 20 mM EGTA, 0.5% (v/v) NP40 
substitute 

PNK buffer 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM MgCl2 

Proteinase K 
buffer 

50 mM Tris-HCl pH 7.5, 6.25 mM EDTA, 75 mM NaCl, 1% 
(v/v) SDS 

Buffer A 300 mM NaCl, 20 mM Na-HEPES pH 7.4, 30 mM imidazole, 
1 mM DTT, 10% glycerol, 0.284 mg/mL leupeptin, 
1.37 mg/mL pepstatin A, 0.17 mg/mL PMSF, 0.33 mg/mL 
benzamidine 
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Buffer B 1 M NaCl, 20 mM Na-HEPES pH 7.4, 30 mM imidazole, 
1 mM DTT, 10% (v/v) glycerol, 0.284 mg/mL leupeptin, 
1.37 mg/mL pepstatin A, 0.17 mg/mL PMSF, 0.33 mg/ mL 
benzamidine 

Buffer C 300 mM NaCl, 20 mM Na-HEPES pH 7.4, 500 mM 
imidazole, 1 mM DTT, 10% (v/v) glycerol, 0.284 mg/mL 
leupeptin, 1.37 mg/mL pepstatin A, 0.17 mg/mL PMSF, 
0.33 mg/mL benzamidine 

Buffer D 300 mM NaCl, 20 mM Na-HEPES pH 7.4, 30 mM imidazole, 
1 mM DTT, 10% (v/v) glycerol 

Buffer E 300 mM NaCl, 20 mM Na-HEPES pH 7.4, 1 mM DTT, 10% 
(v/v) glycerol 

 

 

3.1.10 Antibodies 

 
Table 11: List of antibodies used in this study. 

Name Dilution Application Source 

Anti-m3C 30 µL per IP m3C-CLIP Active Motif 

Anti-FLAG M2 magnetic 
beads 

100 µL per 
IP 

PAR-CLIP Sigma Aldrich 

Anti-FLAG M2 1:1000 WB Sigma Aldrich 

Anti-METTL8 1:1000 WB Thermo Fisher 
Scientific 

Anti-mouse-HRP 1:3000 WB Abcam 

Anti-rabbit-HRP 1:5000 WB GE Healthcare 

Anti-rat-HRP 1:5000 WB Sigma Aldrich 

IgG from rabbit serum 
 

100 µg per 
IP 

PAR-CLIP Sigma 
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3.2 Experimental methodology 

3.2.1 Yeast culture 

 

S. cerevisiae cells expressing the TAP-tagged protein were cultured 

from OD600 ~0.1 to OD600 ~0.5 in SCM minimal medium (Formedium) 

supplemented with 89 µM uracil, 100 µM 4-thiouracil (4tU), and 2% glucose at 

30 °C. After reaching OD600 ~0.5, 4tU was added to a final concentration of 1 

mM, and cells were cultured further for 4 h (final OD600 ~1.3–1.6).  

 

 

3.2.2 S. cerevisiae strain validation by SDS-PAGE and Western Blot 

 

S. cerevisiae BY4741 strains containing tagged genes were tested for 

expression of the specific C-terminally tandem affinity purification (TAP)-tagged 

(Euroscarf) protein by Western blotting. Cells were lysed and the diluted lysate 

was subjected to a precast 4–12% NuPAGE Bis-Tris gel (Invitrogen) for gel 

electrophoresis. Following SDS-PAGE, samples were transferred onto a PVDF 

membrane (Bio-Rad). Subsequently, the membrane was incubated with a 

primary antibody coupled to horseradish peroxidase (HRP) against the TAP tag 

(PAP; Sigma-Aldrich). The antibody was detected using Pierce enhanced 

chemiluminescence (ECL) Western blotting substrate (Thermo Fisher 

Scientific) and a ChemoCam imager (Intas).  

 

 

3.2.3 Generation of the METTL8-3xFLAG Flp-In™ T-REx™ 293 Cell Line 

 

For the generation of a stable cell line expression METTL8 C-terminally 

3xFLAG tagged, the coding sequence was cloned into a pcDNA5 vector 

including the 3xFLAG sequence (DYKDDDDK). HEK293 stable cell lines 

expressing METTL8-3xFlag were generated using the Flp-In™ T-REx™ 

system (Thermo Fisher Scientific) according to the manufacturer's instructions. 

HEK293 Flp-In™ T-REx™ cells were cultured in Dulbecco's modified Eagle's 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1X 

GlutaMAX (Thermo Fisher Scientific) at 37 °C with 5% CO2. 



Materials and Methodology 

 - 35 - 

3.2.4 PAR-CLIP 

3.2.4.1 S. cerevisiae 

 

PAR-CLIP and data acquisition were performed as described (Baejen et 

al., 2017, 2014; Battaglia et al., 2017; Schulz et al., 2013) with minor 

modifications. Yeast cells harboring the TAP-tagged protein were grown in 

minimal medium (CSM mixture, Formedium) containing 89 µM uracil, 100 µM 4-

thiouracil (4tU) and 2% glucose from OD600 ~0.1 to ~0.5 at 30 °C. After addition 

of 4tU to a final concentration of 1 mM, cells were grown further for 4 h. 4tU-

labeled yeast cells were collected and resuspended in 10 mL PBS for UV-

irradiation with an energy dose of 12 J/cm2 at 365 nm on ice and constant 

shaking. Harvested cells were resuspend in lysis buffer and lysed by bead 

beating (FastPrep−24 Instrument, MP Biomedicals) with 1 mL silica-zirconium 

beads (Roth) with 8 x 40 sec repeats at 4 m/s and with 1 min incubation on ice 

between each step. Immunoprecipitation was performed on a rotating wheel 

over night at 4 °C with rabbit IgG-conjugated protein G magnetic Dynabeads 

(Invitrogen) using 330 µL beads and 100 µg antibody. Beads were washed 

twice in 1 mL wash buffer and twice in 1 mL T1 buffer. A partial digest of the 

crosslinked RNA was performed with 20 U RNase T1 in 400 µL T1 buffer for 

25 min at 25°C. To stop the RNase reaction, the sample was immediately 

cooled on ice for 5 min. To remove spare RNase T1, beads were washed twice 

in T1 buffer and phosphatase buffer. Dephosphorylation was performed with 

antarctic phosohatase (NEB) and 1 U/µL RNase OUT (Invitrogen) for 30 min at 

37 °C. Beads were washed once in phosphatase wash buffer and twice in 

polynucleotide kinase (PNK) buffer. Phosphorylation was performed in T4 PNK 

reaction buffer A (Fermentas) with final concentration of 1 U/µL T4 PNK, 1 U/µL 

RNase OUT and 1 mM ATP (cold labeling) or 0.1 µCi gamma-32-P-ATP (Perkin 

Elmer) (radioactive labeling) for Trm140 PAR-CLIP. The reaction was 

incubated at 37 °C for 1 h. For the radioactive labeling reaction mix, the sample 

was subsequently spiked with 1 mM ATP final concentration for 5 min at 37 °C. 

Beads were washed 5 times with PNK buffer and prepared for cDNA library 

generation. For 3´ adapter ligation to the RNA, beads were incubated in T4 

RNA ligase buffer (NEB) containing 10 U/µL T4 RNA ligase 2 (KQ) (NEB, 

M0373), 10 μM 3′ adapter (5rApp-TGGAATTCTCGGGTGCCAAGG-3ddC 
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(IDT)), 1 U/µL RNase OUT, and 15% (w/v) PEG 8000. The reaction was 

incubated for 18 – 20 h at 16 °C. Beads were washed 5 times with PNK buffer 

to remove not ligated adapter. For 5´ adapter ligation to the RNA, beads were 

resuspended in T4 RNA ligase buffer (NEB) final concentration of 6 U/µL T4 

RNA ligase 1 (NEB), 10 μM 5′ adapter (5InvddT-

GUUCAGAGUUCUACAGUCCGACGAUCN NNNN, IDT), 1 mM ATP, 1 U/µL 

RNase OUT, 5% (v/v) DMSO, and 10% (w/v) PEG 8000. The reaction was 

incubated for 4 h at 24 °C and 1 h at 37 °C. Beads were washed 5 times in PNK 

buffer. For radioactive labeling, the sample was resuspended in 25 µL 2X 

NuPAGE LDS Sample Buffer (Thermo Fisher Scientific) and released from the 

beads by incubation at 95 °C for 5 min. The sample was subjected to SDS-

PAGE on NuPAGE 4 – 12% Bis-Tris Polyacrylamide gel electrophoresis 

(Thermo Fisher Scientific) for 1 h at 160 V in 1X MOPS buffer (Thermo Fisher 

Scientific). Radioactive RNA-protein bands were detected with the Typhoon 

FLA 9500 instrument (GE Healthcare Life Sciences). Electro-elution of the 

protein-RNA complex of interest was performed with D-Tube™ Dialyzer Midi 

(Merck) according to manufacturer instructions with 800 µL 1X MOPS buffer 

and 100 V for 2 h. For cold labeling samples, the beads were incubated twice 

at 95 °C for 5 min in proteinase K buffer. RNA-protein complexes were 

subjected to protein digest using 1.5 mg/mL proteinase K (NEB) for 2 h at 

55 °C. Acidic phenol/chloroform extraction followed by ethanol precipitation 

was performed in presence of 1 µL GlycoBlue (Invitrogen) to recover the RNA. 

Reverse transcription was done for 1 h at 44 °C and 1 h at 55 °C using 

SuperScript III RTase (Invitrogen). Fusion PCR amplification was performed 

using the NEXTflex barcode primer kit (Bio Scientific), universal primer and 

Phusion HF master mix (NEB).  Generated cDNA was size selected using 4% 

E-Gel Agarose Gel (Invitrogen) and purified by MinElute gel extraction 

(Qiagen). Purified cDNA was amplified in a one-step PCR using the Nextera 

primers and the KAPA Library preparation kit (Roche). The library was purified 

using AMPure XP beads (Beckman Coulter) in a ratio of 1:1.8, subsequently 

quantified using TapeStation 2200 (Agilent Technologies) and Qubit (Qiagen). 

Samples were sequenced on an Illumina machine (HiSeq 2500 or 4000, 

NextSeq550). The number of independent biological replicates used for 

analysis is shown in Table 12. I performed 49 out of the 75 PAR-CLIP 



Materials and Methodology 

 - 37 - 

experiments for the degradation project. In addition, Andrea Boltendahl and I 

generated further 20 PAR-CLIP experiments together. Single PAR-CLIP 

experiments of Mtr4 and Xrn1 were generated by Saskia Gressel and PAR-

CLIP experiments of Air2, Dcp1, Dcp2, and Edc3 were generated by Dr. Carlo 

Baejen, who originally started this project. 

 

 
Table 12: Biological replicates for yeast PAR-CLIP experiments. 

Experiment Number of replicates in the analysis 
Air1-TAP 4 
Air2-TAP 4 
Caf40-TAP 2 
Ccr4-TAP 3 
Csl4-TAP 2 
Dcp1-TAP 2 
Dcp2-TAP 3 
Dhh1-TAP 2 
Edc2-TAP 2 
Edc3-TAP 2 
Mtr4-TAP 3 
Nmd4-TAP 2 
Not1-TAP 2 
Pan2-TAP 3 
Pan3-TAP 3 
Pop2-TAP 2 
Rrp4-TAP 2 
Rrp6-TAP 2 
Rrp40-TAP 2   
Rrp44-TAP 4 
Ski2-TAP 2 
Ski3-TAP 3 
Ski7-TAP 3 
Ski8-TAP 2 
Trf4-TAp 3 
Trf5-TAP 3 
Trm140-TAP 3 
Upf1-TAP 2 
Upf2-TAP 2 
Upf3-TAP 2  
Xrn1-TAP 2 
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3.2.4.2 Human 

 

PAR-CLIP of METTL8 was performed with the Flp-In T-Rex cell line 

expressing METTL8 with a C-terminal 3xFLAG tag. Cells were cultured 

according to the manufacturer’s instruction. Gene expression was induced with 

1 µg/ml tetracycline for 24 h. After 23 h, cells were labeled with 500 µM 4-

thiouridine (Carbosynth) for 1 h at 37 °C. For UV-crosslinking, medium was 

removed and cells were washed with PBS. UV-crosslinking was performed with 

the culture plate on ice and irradiated with 0.9 J/cm2 at a wavelength of 365 nm. 

Cells were resuspended in PBS and collected by centrifugation. Cell lysis was 

performed in 3 volumes (of the cell pellet) lysis buffer on ice for 10 min. For 

efficient cell lysis, the lysate was passed through a 27H needle syringe for 10 

times. For RNase digest, RNase I (Ambion 100 U/µL) was added to a final 

concentration of 200 U and incubated at 37 °C for 5 min. Immediately after 

incubation, lysate was incubated on ice for 5 min.  RNase digest was finally 

stopped by adding 20 µL SUPERase-In RNase inhibitor (20 U/µL, Thermo 

Fisher Scientific). Lysate was cleared by centrifugation at 13.000 g for 10 min 

at 4 °C. The supernatant was transferred to 5 mL Eppendorf tube. Protein 

concentration was quantified by Bradford assay and input was taken to test IP 

efficiency. For immunoprecipitation, 100 µL Anti-FLAG® M2 Magnetic Beads 

(Sigma) were washed twice in PBS and lysis buffer per sample. 

Immunoprecipitation was performed with 25 mg lysate and 100 µL beads over 

night at 4 °C on a rotating wheel. After IP, beads were collected and washed 3 

times with 1 mL high salt buffer and 1 time with 1 mL phosphatase buffer. 

Dephosphorylation of the 5´ RNA end was performed with Antarctic 

Phosphatase (NEB, M0289S) for 30 min at 37 °C, shaking at 800 rpm. Beads 

were washed once with Phosphatase wash buffer and twice with PNK buffer. 

10% of IP samples were taken as a control and compared to the input sample 

by Western Blot. Phosphorylation was performed with 1x T4 PNK reaction Mix 

with 1 U/µL T4 PNK (Thermo Fisher Scientific) and 0.1 µCi gamma-32P-ATP 

(Perkin Elmer) for 1 h at 37 °C, shaking at 800 rpm. To ensure all RNAs are 

fully phosphorylated, ATP (Fermentas) was added to a final concentration of 

100 mM for 5 min at 37 °C, 800 rpm. Subsequently, beads were washed 5 times 

with 1 mL PNK buffer. 3´ adapter ligation was performed in 40 µL of 3´ adapter 
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ligation mix (4 µL of 100 mM 3´ adapter, 20 U/µL T4 RNA Ligase 2 (KQ) (NEB, 

M0373) over night at 16 °C and 1 h at 25 °C, shaking at 600 rpm. Beads were 

then washed 5 times with 1 mL PNK buffer. For 5´ adapter ligation, beads were 

resuspended in 40 µL 5´ adapter mix including 4 µL 100 mM 5´ adapter and 

6 U/µL RNA ligase I (NEB, M0437M) and incubated for 4 h at 25 °C and 1 h at 

37 °C, shaking at 600 rpm. Beads were washed 5 times with 1 mL PNK buffer 

and resuspend in 25 µL 2X NuPAGE LDS Sample Buffer (Thermo Fisher 

Scientific). Protein-RNA complexes were released from the beads by boiling for 

10 min at 95°C. Supernatant was run on a NuPAGE 4 – 12% Bis-Tris 

Polyacrylamide gel (Thermo Fisher Scientific) in MOPS buffer (Thermo Fisher 

Scientific) in order to separate protein complexes. The phosphor-screen was 

incubated with the gel and the gel image was visualized using a Typhoon 

FLA9500 (GE Healthcare Life Sciences). Printout was aligned to the gel and 

the band corresponding to the protein of interested bound to RNA was excised. 

Protein bound RNA was eluted from the gel by electro-elution using D-Tube 

Dialyzer Midi MWCO 35 kDa (EMD Millipore) according to the manufacturer’s 

instructions with 100 V for 2 h. For proteinase K digest, the electro-eluate was 

incubated with 40 µL proteinase K (800 U/µL, NEB) for 1 h at 55 °C. RNA was 

purified by Phenol-Chloroform extraction and ethanol precipitation. Purified 

RNA was reverse transcribed using Superscript III (Invitrogen, 18080-044). 

Library generation was performed by PCR amplification using the NEXTflex 

barcode primer kit (Bio Scientific). 4% E-Gel Agarose Gel (Invitrogen) was used 

to size select the cDNA, which was then purified by MinElute gel extraction 

(Qiagen). cDNA was amplified in a one-step PCR using the Nextera primers 

and the KAPA Library preparation kit (Roche, Germany). AMPure XP beads 

(Beckman Coulter) in a ratio of 1:1.8 were used to purify the cDNA library, which 

was subsequently quantified using TapeStation 2200 (Agilent Technologies) 

and Qubit (Qiagen). An Illumina machine (HiSeq2500, HiSeq4000 or 

NextSeq550) was used for sequencing. The experiment was performed in three 

independent biological experiments. 
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3.2.5 m3C-CLIP 

3.2.5.1 S. cerevisiae 
 

S. cerevisiae wildtype and Trm140 knockout cells were cultured to 

OD600 ~1.5 in SCM minimal medium (Formedium) supplemented with 10 mg/L 

uracil, 100 mM 4-thiouracil (4tU), and 2% glucose. Cells were lysed by bead 

beating and RNA was recovered by acidic phenol/chloroform extraction.  

500 µg of RNA were immunoprecipitated with 30 µL anti-m3C antibody 

(Active Motif) for 2 h at 4 °C. Antibody-RNA complexes were UV-irradiated with 

an energy dose of 0.45 J/cm2 at a wavelength of 365 nm. Antibody-RNA 

complexes were captured using protein G magnetic Dynabeads (Invitrogen) for 

2 h at 4 °C. Crosslinked RNA was partially digested with RNase T1 and used 

for cDNA library preparation. RNA was recovered by Proteinase K digestion for 

2 h at 55 °C and subsequent acidic phenol/chloroform extraction and ethanol 

precipitation. Reverse transcription was performed using SuperScript III RTase 

(Invitrogen). PCR amplification was done using the NEXTflex barcode primer 

kit (Bio Scientific). Generated cDNA was purified, size-selected, and quantified 

using TapeStation (Agilent Technologies). Samples were sequenced on an 

Illumina machine (HiSeq2500, HiSeq4000 or NextSeq550). 

 

 

3.2.5.2 Human 

 

m3C-CLIP of human cells was performed with the Flp-In T-Rex cell line 

expressing METTL8 with a C-terminal 3xFLAG tag. Cells were cultured as 

described. Gene expression was induced with 1 µg/mL tetracycline for 24 h. 

After 23 h, cells were labeled with 500 µM 4-thiouridine (Carbosynth) for 1 h at 

37 °C. Cells were washed in PBS, collected by centrifugation, and resuspended 

in QIAzol (Qiagen) according to the manufacturer’s instruction. RNA was 

purified using ethanol precipitation and a fraction of it was demethylated with 

AlkB (see section 3.2.8) as control. The subsequent protocol starting with RNA 

immunoprecipitation was performed as described in yeast in section 3.2.5.1. 
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3.2.6 4tU-seq in S. cerevisiae 

 

WT and Trm140 KO strains were grown in yeast extract peptone 

dextrose (YPD) overnight at 30 °C. Cultures were diluted to OD600 ~0.1 and 

cultured to OD600 ~0.6. 4tU labeling was subsequently performed as described 

(Sun et al., 2012). Labeled RNA was purified from extracted total RNA. The 

Ovation Universal RNA-Seq System Library Kit (NuGen) was used according 

to the manufacturer’s instructions with an input of 100 ng of labeled RNA. The 

Fragment Analyzer and Qubit (Invitrogen) were used to check the quality and 

quantity of the libraries. Libraries were pooled and sequenced on an Illumina 

Sequencer (NextSeq550). 

 

 

3.2.7 Protein purification of AlkB and Trm140 

 

Geneblocks coding for the respective protein were purchased from IDT 

and cloned into His6-TEV-tag containing LIC expression vectors in XL1 Blue 

cells supplemented with Kanamycin. Positive plasmids were transformed into 

BL21DE3RIL cells. Cells were grown in LB medium at 37 °C until OD600 ~0.6 

and protein expression was induced by the addition of IPTG with final 

concentration of 1 mM for 3 h. All purification steps were performed at 4 °C. 

Cells were resuspended and lysed in buffer A using a sonicator for 5 min at 

60% output. The lysate was applied to a HisTrap column and washed with 

buffer B. Protein was eluted with buffer C. Fractions containing His6-TEV-

protein were collected, TEV was added and dialyzed against buffer D. Sample 

was applied to a HisTrap column and flow through was collected. Gel filtration 

was performed on a HiLoad 16/600 Superdex 75 pg using buffer E. For Trm140 

an additional Q column after His6-tag removal was applied and protein was 

eluted with buffer B. 
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3.2.8 RNA demethylation using AlkB 

 

RNA demethylation was performed as described (D’Silva et al., 2011). 

Briefly, purified RNA (50-1000 µg) isolated from yeast was incubated with 

purified AlkB from E. coli (see Methods section 2.2.7) in buffer containing 50 mM 

Hepes KOH (pH 8), 75 mM Fe(NH4)2(SO4)2·6H2O, 1 mM α-ketoglutarate, 2 mM 

Na-ascorbate, and 50 mg/mL BSA for 1 h at 37 °C.  The reaction was stopped 

using a final concentration of 11 mM EDTA (Trewick et al., 2002), followed by 

phenol/chloroform extraction and ethanol precipitation to recover the RNA.  

 

 

3.2.9 RNA re-methylation using Trm140 and SAM 

 

Re-methylation assay was performed as described (D’Silva et al., 2011). 

Briefly, demethylated or Trm140 KO RNA was treated with 50 mM Tris-HCl pH 

8.0, 1 mM DTT, 0.1 mM EDTA, 1 mM spermidine, 0.5 mM SAM, and purified 

Trm140 for 1 h at 30 °C, followed by phenol extraction and ethanol precipitation 

for recovery of the RNA.  

 

 

3.2.10 Reverse transcription assay and denaturing PAGE 

 

S. cerevisiae wildtype and Trm140 knockout cells were grown to 

OD600 ~1.5 in YPD. Cells were lysed by bead beating and RNA was recovered 

by acidic phenol/chloroform extraction. 20 to 80 µg of RNA were used for 

reverse transcription for 1 h at 44 °C and 1 h at 55 °C using SuperScript III 

RTase (Invitrogen). Products were separated on a 15% 8 M Urea gel at 300 V. 

Products were visualized on a Typhoon FLA 8500 using 5´ FAM labeled RT 

primers for tRNA Serine (5´- CGACACCAGCAGGATTTGAA-3´) and (Arginine 

(5´-CGTTCCGTACGGGACT-3´). 
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3.3 Data analysis 

3.3.1 PAR-CLIP data pre-processing 

 

 This analysis was performed by Salma Sohrabi-Jahromi. “Reads from 

PAR-CLIP experiments with replicates were merged after making sure that all 

samples showed high Spearman correlation values comparing binding 

occupancies of replicates on different genes (Figure 7B). Mapping and 

statistical evaluation of PAR-CLIP experiments was performed using our in-

house software mockinbird (Roth and Torkler, 2018). In summary, the UMI is 

removed from the 5´ end with UMI-tools (T. Smith et al., 2017), and the 3´ 

adapter is trimmed with Skewer (Jiang et al., 2014). Reads with traces of the 5´ 
adapter are discarded. The preprocessed reads are then mapped to the S. 

cerevisiae genome (sacCer3, version 64.2.1). After mapping PCR duplicates 

are removed with UMI-tools.  

We used two alternative approaches for mapping reads using Bowtie 

(Langmead et al., 2009): For all analyses except the ‘transcript class 

enrichment analysis’ in Figure 8, reads are uniquely mapped with up to one 

mismatch. We discard alignments shorter than 20 nt. This stringent mapping 

ensures that our high confidence PAR-CLIP cross-link sites are originating from 

correctly mapped reads on the reference genome. For Figure 8, unique 

mapping would cause the loss of most reads that fall into rRNAs and tRNAs 

because of duplicated rRNA genes and tRNA isodecoders. For Figure 8, we 

therefore allowed Bowtie multi-mapping in two regions with –best, –starra 

options and discarded reads shorter than 30 nt.  

TàC transitions directly at the edge of the reads or with a Phred quality 

score lower than 20 are not considered as signature of protein binding as they 

suffer from higher technical noise. To obtain high confidence cross-link sites, 

we set a stringent cutoff of 0.005 for the p-value of cross-link sites and require 

a minimum coverage of 2 per site. Moreover, if we see the same transition in at 

least 75% of reads in the input library control (SRA: SRX532381) (Baejen et al., 

2014), we annotate it as a single nucleotide polymorphism of our lab strain with 

respect to the genomic reference and remove such sites from our analysis. 

Finally, the occupancy of a factor on a verified cross-link site is defined as the 
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number of transitions obtained from our PAR-CLIP experiments divided by the 

concentration of RNAs covering the cross-linked site according to the input 

library control. This control coverage is measured under comparable conditions 

to PAR-CLIP experiments (Baejen et al., 2014). Occupancy values are capped 

at the 95th percentile. Subsequent analyses were performed using in-house 

python scripts. Mockinbird configuration files as well as the analysis scripts can 

be found at https://github.com/soedinglab/Degradation_scripts.” 

 

 

3.3.2 Transcript class enrichment 

 

The following analysis was performed by Salma Sohrabi-Jahromi. “We 

analyzed the distribution of reads from high-confidence cross-link sites over the 

genome (Figure 8A). We presented the sum of reads from 5´ and 3´ UTRs, 

coding sequences, and introns as the value for mRNAs. Reads that fall within 

genomic regions not annotated as categories analyzed here are shown with 

grey. These annotated transcript classes have comparable U-content, making 

the comparison between fractions of cross-link sites in each category possible 

(Appendix Figure 28). 

For each factor studied here, we defined enrichment scores that 

represent their preferences for binding to various transcript classes c, in 

comparison to all other factors. We use annotations for rRNA, tRNA, snoRNA, 

snRNA, coding sequences (CDS), from S. cerevisiae genome sacCer3, version 

64.2.1. Untranslated regions around coding boundaries (5´ and 3´ UTRs) were 

annotated based on TIF-seq experiment (Pelechano et al., 2013). We selected 

the most strongly expressed isoform for each gene. We then assigned 

boundaries to 3´ and 5´ UTRs based on annotated CDS of the same gene. We 

furthermore used annotations for stable, unannotated transcripts (SUTs), 

cryptic unstable transcripts (CUTs), and Nrd1- unterminated transcripts (NUTs) 

(Neil et al., 2009; Pelechano et al., 2013; Schulz et al., 2013). We removed 

overlapping annotations with the following priority list: rRNA, tRNA, snRNA, 

snoRNA, intron, CDS, UTR, SUT, CUT, NUT. For each factor, we counted the 

number of high-confidence reads falling in each transcript class. We then used 

the log2-transformed matrix and normalized it in the following way for both rows 
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and columns to get log enrichment values that sum to zero in both rows and 

columns. The row- and sum-normalized enrichment score is defined as follows, 

where 𝑋",$  is the number of high-confidence reads for factor f that fall into 

transcript class c, and 𝑋′",$ = log* 𝑋",$	 (Figure 8B): 

 

 
(1) 

 

We defined the row and sum averages of 𝑋",$  , 

    

, 
(2) 

 

, 
(3) 

    

 
(4) 

    

F is the number of factors and C is the number of transcript classes (Figure 8B). 

The normalization can be interpreted as subtracting from the log enrichment 

matrix X’ the first singular component of its singular-value decomposition.” 

 

 

3.3.3 Metagene analysis 

 

This analysis was performed by Salma Sohrabi-Jahromi. “We used the 

most abundant TIF-annotated isoform for mRNAs (Pelechano et al., 2013) as 

a reference. Transcripts longer than 1500 bases are chosen and aligned at their 

TSS or pA sites. The average occupancy per nucleotide is then calculated 

based on high-confidence cross-link sites of each PAR-CLIP experiment. The 

profiles are smoothed by a moving average in a 41 nt window and the 95% 
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confidence interval is estimated by 1500 bootstrap sampling iterations over the 

transcripts. To further denoise the profiles, the cross-link sites falling in 

snRNAs, rRNAs, and tRNAs are removed. Furthermore, to avoid ambiguous 

results, we made sure that the profile comes solely from the central gene. To 

do so, we performed the metagene analysis around the TSS on the sense 

strand on TIF-annotated mRNAs that have no other mRNA up to 700 bp 

upstream of their TSS (3193 transcripts in total). Analogously, for sense-strand 

pA site profiles we used mRNAs that have no nearby genes downstream of 

their pA site up to 700 bases on the same strand (3193 transcripts in total). For 

the antisense strand profiles, we applied the same criteria on the opposite 

strand which left us with 3076 and 3193 transcripts filtered around TSS and pA 

sites respectively. This ensures that the observed antisense binding does not 

originate from neighboring or overlapping transcripts on the antisense strand. 

In both cases we looked at the average occupancy in a window of [± 700 nt] 

around TSS and around pA sites. Occupancies were normalized to the 

maximum value, which is the background binding level for antisense profiles 

with no significant cross-linking to the antisense strand (Figure 9 and Figure 

10). The same procedure was followed to plot metagene occupancies centered 

around protein-coding regions and snoRNAs from S. cerevisiae genome 

sacCer3, version 64.2.1 (Appendix Figure 29 and Figure 39).”  

 

 

3.3.4 Co-occupancy 

 
Salma Sohrabi-Jahromi performed the following analysis. “Co-

occupancy measures the tendency of two factors to bind to the same 

transcripts. Occupancy of a factor on a transcript is defined as the sum of 

occupancies for all high-confidence cross-link sites falling within this transcript. 

Co-occupancy of two factors is defined as the Pearson correlation over all 

transcripts between the occupancies of these factors (Figure 11A). We used 

these correlation values between all pairs of RNA processing factors to assign 

distances to each pair and used tSNE (Van Der Maaten and Hinton, 2008) to 

visualize the two-dimensional nonlinear embedding of co-occupancies for all 

RNA-binding proteins in our dataset (Figure 11C).“ 
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3.3.5 Co-localization 

 

 This analysis was performed by Salma Sohrabi-Jahromi. “Co-

localization measures how likely two factors are to bind near each other in the 

transcriptome. More precisely, we first calculate the occupancy of a factor f 

∈{1,…,F} around the cross-link sites of another factor f´ ([- 40 nt, + 40 nt] 

excluding the centered T). We then normalize according to the total occupancy 

values,  

 

 
 

(5) 

 

 
(6) 

 

Where, nf is the number of cross-link sites for factor f, and Occff´,i,j is the 

occupancy of f at position j around the ith cross-link site from factor f´ (Occff´,i,j  = 

0 if no verified cross-link sites exist). To improve signal-to-noise, we compute 

from the resulting matrix of co-localizations between all RNA-processing factors 

Cf,f´, the matrix of Pearson correlations between the rows of Cf,f´,  (Figure 11B, 

Figure 21, Appendix Figure 41).“ 

 

 

3.3.6 Codon-enrichment analysis 

 

The following analysis was performed by Salma Sohrabi-Jahromi. “To 

search for possible links between translation efficiency and RNA degradation, 

we checked if some degradation factors preferentially bind to translationally 

efficient/non-efficient transcripts. To do so we adapted the proposed 

normalized translation efficiency scale (Pechmann and Frydman, 2013). The 

authors generate a normalized optimality score for codons that incorporates the 

competition between supply and demand of tRNAs. The coding region for each 

transcript was extracted according to ORFs annotated by SGD. The codon 

zff 0 =
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optimality score was averaged over the whole reading frame (Figure 12A, more 

detailed explanation in the next section). 

We then checked whether mRNAs that bind to each factor are enriched 

or depleted in some codons compared to all mRNAs. To achieve this, we 

defined the following score for codon enrichment that represents deviations 

from average frequencies in all mRNAs, 

 

 

(7) 

 

Here T is the number of mRNA transcripts, 𝐹$,. is the fraction of the codon c in 

transcript t, and	𝑜𝑐𝑐(𝑡)	is the total occupancy of the factor on transcript t. 90% 

confidence intervals were generated by bootstrapping: we sampled with 

replacement 1000 times the same number of mRNAs from the total set as in 

total, and for each set we recalculated the codon enrichment score. We colored 

the bars based on the previously ranked optimality of codons (Pechmann and 

Frydman, 2013)  (Figure 12B, Appendix Figure 31-Figure 37).” 

 

 

3.3.7 Relating occupancies to various transcript features 

 

This analysis was performed by Salma Sohrabi-Jahromi. “We analyzed 

the correlation of the occupancy of all factors with transcript length, codon 

enrichment of the transcript, expression level, transcript stability, and polyA tail 

length. For expression, we used an RNA-seq experiment of wild-type yeast 

(SRA: SRX532381) (Baejen et al., 2017) and mapped the reads to mRNAs. We 

present the average number of reads per base as an estimate for gene 

expression. For half-life calculations, we used published yeast 4tU-seq (GEO: 

GSM2199309) and RNA-seq experiments (SRA: SRX532381) (Baejen et al., 

2017). Transcript half-life is estimated with an optimized method that will be 

published elsewhere (Hofmann et al., unpublished). 

codon enrichment =
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Since there are only few transcripts with very low or very high half-life, 

codon optimality, and expression (Appendix Figure 30), we performed the 

analysis on a subset of mRNAs where the transcript property lies between the 

5% and 95% quantiles. We then compared the total occupancy of degradation 

factors on each mRNA relative to such transcript features (Figure 12A, Figure 

13B, and Appendix Figure 31-Figure 37).  We show 95% confidence intervals 

generated by bootstrapping mRNAs in grey shade. 

We checked whether such correlations originate from the feature of 

interest or merely shows up due to correlations between this feature and others 

(Appendix Figure 30). We used a multivariate linear regression to model total 

occupancy as a linear function of these four features: 

 

 (8) 

 

In cases where the correlation is a direct effect from our feature of 

interest, we expect to lose significantly on our prediction when this variable is 

taken out of the equation. Therefore, we use p-values representing the 

importance of each feature in this linear regression as a score representing the 

significance of its contribution in explaining the final occupancies. Occupancy 

correlated strongly with transcript length, which dominated as explanatory 

variable in this regression, trivially because most factors bind along the entire 

transcript. To eliminate this trivial dependency, we used occupancy per 

nucleotide, denoted 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦′, as the target variable in our regression (Figure 

12C).” 

 

 

3.3.8 Motif enrichment analysis 

 

Salma Sohrabi-Jahromi performed the following analysis. “To find 

sequence preferences for binding events of degradation factors, we counted 4-

mers in a window of [± 5 nt] intervals around high-confidence cross-link sites of 

PAR-CLIP experiments. Based on this count table, the enrichment score for 

each 4-mer was calculated using the following formula, 

occupancy0(t) ⇠ length+ optimality + expression+ halflife
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(9) 

 

Here N is the number of cross-link sites below the cut-off p-value (we used a 

maximum of 5000 cross link sites), 𝑛9:;<,	= is the number of observed 4-mers 

at position i in the set of binding sequences aligned at their cross-link site i=0, 

4-mer[j] is the base at the j’th position of the 4-mer, and Pb is the probability of 

observing base b. We used the probabilities: PA = PT = 0.31 and PC = PG = 0.19 

based on frequencies in yeast genome and corrected for the T bias at the cross-

link site (Figure 13C).” 

 

 

3.3.9 Trm140 PAR-CLIP and m3C-CLIP analysis 

 

This analysis was performed by Gabriel J. Villamil. Sequencing reads of 

independent biological replicates from Trm140 PAR-CLIP and m3C-CLIP 

sequencing experiments were merged. Single-end 50 nt and 75 nt reads were 

mapped to the R64-2-1 S. cerevisiae reference genome (Engel et al., 2013) 

using STAR 2.5.3a (Dobin and Gingeras, 2015) with a maximum of two 

mismatches allowed per alignment. In cases of multi-mapped reads, the single 

best alignment was taken. Trm140 and anti-m3C antibody binding was 

determined from chemical cross-links indicated by TàC transitions called using 

a statistical model as described (Baejen et al., 2017, 2014) with a maximum p-

value threshold of 0.005 and a minimum coverage of 2. The Phred score of 

sequencing quality at the transition base was set to 20. RNA-seq data obtained 

under similar conditions to PAR-CLIP experiments was used to remove 

potential transition miscalls caused by SNPs. Briefly, transitions in PAR-CLIP 

reads that are also observed in at least 75% of RNA-seq reads covering the 

same base were considered as SNPs and removed from the analysis. 

Accumulation of binding sites are depicted metagene-wide aligned at the 

transcription start site (TSS) and polyadenylation site (pA) of designated loci. 

 

 

4-mer enrichment =
n4-mer,i + 1

N ⇥
Q4

j=1 P4-mer[j]
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3.3.10 Calling of m3C modification sites 

 

Sites of m3C modification were determined from CàT transitions in 

PAR-CLIP reads. CàT transitions were called with a transition rate of a least 

4%, a minimum coverage of 40, and a minimum sequencing quality of 20 at the 

transition base resulting in the high confidence list of m3C sites shown in 

Appendix Table 14. 

 

 

3.3.11 Calculation of ribosome P site occupancy 

 

This analysis was performed by Gabriel J. Villamil. We calculated the 

ribosome P site occupancy based on the data from WT and Trm140 KO 

ribosome profiling experiments (Chou et al., 2017). Briefly, global codon 

occupancy analysis was calculated (Nedialkova and Leidel, 2015) with minor 

modifications. Examination of the cumulative distribution of 28-31 nt reads 

aligned at the start codons using Plastid (online package) revealed the P site 

offset. The respective offset was applied to reads of each size and off frame 

sequencing reads were discarded. We removed the first 15 and last 5 codons 

of each transcript from the reference. The quotient of frequency of each codon 

in ribosomal A, P and E site to the average frequency of the same codon in the 

three downstream codons from the A site was used for normalization. 

  

 

3.3.12 Calculation of translational efficiency on m3C containing codons 

 

Translation efficiency (TE) was calculated by using the averaged 

sequencing reads of ribosome protected fragments from two independent 

biological replicates of WT and Trm140 KO ribosome profiling experiments at 

m3C containing codons and divided by the number of RNA-seq reads from two 

independent biological replicates of WT and Trm140 KO cells at the same 

codon (Chou et al., 2017). The following m3C containing transcripts were 

selected based on the mutational signature in the Trm140 PAR-CLIP 

experiments: YHR099W (at position chrVIII:303,572), YDR341C (at position 
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chrIV:1,153,577), YPR148C (at position chrXVI:827,581), YEL060C (at 

position chrV:41,712), YML058W (at position chrVIII:159,468), and YOR361C 

(at position chrXV:1,017,134). The change in TE was plotted using Microsoft® 

Excel (Microsoft Office 2017) for each codon in Figure 20B. 

 

 

3.3.13 4tU-seq data pre-processing and normalization 

 

Gabriel J. Villamil performed the following analysis. Paired-end 50 nt 

sequencing reads were mapped to the R64-2-1 S. cerevisiae reference 

genome assembly (Engel et al., 2013) using STAR 2.5.2b (Dobin and Gingeras, 

2015) with a maximum of two mismatches allowed per alignment and maximum 

intron length set to 500,000. In cases of multi-mapped reads, the single best 

alignment was taken. Sequences of labelled and unlabelled RNA spike-ins 

were included as additional chromosomes in the reference sequence to map 

reads from spike-ins. SAMtools 1.3.1 (Li et al., 2009) was used to remove 

alignments with MAPQ scores lower than 7 and to sort and index BAM files. 

Piled-up reads on transcription units were counted using HTSeq 0.6.1p1 

(Anders et al., 2015). Antisense bias correction was performed as described 

(Gressel et al., 2017). Briefly, counts of reads mapping antisense to spike-in 

sequences were used to measure the extent of antisense bias and correct 

counts for all reads. 

Real read counts in labelled RNA samples L or in total cellular RNA 

samples T for transcription unit i in sample j were calculated as: 

 

𝐿=? =
𝑘=?A

𝑙=𝜎?A
 (10) 

𝑇=? =
𝑘=?E

𝑙=𝜎?E
 (11) 

 

Here, kij is the raw read count of a transcription unit in a labelled or total sample, 

li is the length of the transcription unit, and sj is a scaling factor that accounts 

for variations in sequencing depth determined from spike-in counts. 
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3.3.14 Estimation of RNA synthesis and degradation rates 

 

The following analysis was performed by Gabriel J. Villamil. Estimates 

of gene-specific amounts of labelled RNA aij and unlabelled RNA bij in a tuple 

of labelled and total sample were modelled as: 

 

𝛼=? =
𝐿=? − 𝜖?A𝑇=?
1 − 𝜖?A

 (12) 

𝛽=? =
𝑇=? − 𝐿=?
1 − 𝜖?A

 (13) 

 

Here, 𝜖? is a cross-contamination rate that models the proportion of unlabelled 

reads purified in the labelled sample. 

We extend the statistical model to estimate gene-specific synthesis rates µij and 

degradation rates lij, assuming first-order kinetics using the following 

equations: 

 

𝛼=? =
𝜇=?

𝛾? + 𝜆=?
∙ P1 − 𝑒R.(STUVWT)X (14) 

𝛼=? + 𝛽=? =
𝜇=?

𝛾? + 𝜆=?
 (15) 

 

Here, t is the labelling duration of 6 minutes, and therefore: 

 

𝜆=?(𝑡) = −𝛾? −
1
t ∙ 𝑙𝑜𝑔 [

𝛽=?
𝛼=? + 𝛽=?

\ (16) 

𝜇=?(𝑡) = (𝛼=? + 𝛽=?) ∙ (𝛾? + 𝜆=?(𝑡)) (17) 

 

gj is the dilution rate of RNA due to cell growth, it is calculated as: 

 

𝛾? =
log	(2)
𝐶𝐶𝐿?

 (18) 

 

where CCLj is the length of one cell cycle in minutes. 
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In order to maximize the number of successfully calculated decay rate 

values, labelled read counts Lij were optimized across all samples with a 

common scaling factor that minimizes the occurrence of logarithms of negative 

values and negative decay rate values, both of which were excluded from 

further analysis (Figure 23). The inclusion of this factor does not affect the 

relative observations made in this study. 
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4 Transcriptome maps of general eukaryotic RNA 
degradation factors 

4.1 Results 

 

“In order to get a better understanding of RNA processing and 

degradation in a eukaryotic cell, we measured transcriptome-wide binding 

locations of 30 RNA degradation factors involved in mRNA deadenylation, 

decapping, exosome-mediated degradation, and in RNA surveillance pathways 

including nuclear RNA surveillance and cytoplasmic nonsense-mediated decay 

(NMD) (Table 12). We performed PAR-CLIP in S. cerevisiae using our 

published protocol (Battaglia et al., 2017), with minor modifications (Methods). 

The high reproducibility of these PAR-CLIP experiments is revealed by a 

comparison of two independent biological replicates that we collected for all 30 

degradation factors (Figure 7B), with Spearman correlations between 0.87 and 

1.00 (mean: 0.94). We typically obtained tens of thousands of verified factor-

RNA cross-link sites with p-values ≤ 0.005 (Figure 7A). These transcriptome 

maps represent an extensive, high-confidence dataset of in vivo RNA-binding 

sites for factors involved in RNA degradation.” 
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Figure 7: Number of PAR-CLIP cross-link sites and replicate correlation. 
A) The number of high-confidence PAR-CLIP cross-link sites for each factor after 
merging of sequencing files of independent biological replicates is shown as a bar plot. 
The factors are sorted according to the complex they are residing in and colored in red 
(deadenylation), green (decapping), orange (exonuclease), dark blue (exosome), 
middle blue (TRAMP), light blue (Ski), and ocherous (NMD). B) Total transcript 
occupancy of all 30 factors in replicate experiments are plotted in log2 space and 
Spearman correlation values are shown for each pair. Perfectly correlating pairs are 
located on the diagonal of the plotting area. 
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4.1.1 Degradation factors exhibit transcript class specificity 

 

“We first compared degradation factor binding over different RNA 

classes. These included protein-coding messenger RNA (mRNA), where we 

distinguished the 5´ untranslated region (5´ UTR), the coding sequence (CDS), 

introns, and the 3´ untranslated region (3´ UTR). We also included several 

classes of ncRNAs:  ribosomal (r), transfer (t), small nucleolar (sno), and small 

nuclear (sn) RNAs, as well as stable unannotated transcripts (SUTs), cryptic 

unstable transcripts (CUTs), and Nrd1- unterminated transcripts (NUTs) (Neil 

et al., 2009; Pelechano et al., 2013; Schulz et al., 2013) (Figure 8). 

A first analysis revealed that most PAR-CLIP sequencing reads fall into 

the mRNA transcript class, although many of the factors also show a 

considerable number of sequencing reads in ncRNAs, in particular rRNAs 

(Figure 8A). To obtain a more quantitative comparison, we defined log 

enrichment scores that reflect the preferences of factors in binding to a specific 

transcript class in comparison to other factors and classes. To correct for the 

different sizes of classes and different numbers of measured factor binding 

sites, we normalized the log enrichment scores by subtracting class- and factor-

specific offsets, such that the mean for each class and each factor vanishes 

(Figure 8B, Methods). This analysis highlights differences between degradation 

factors with respect to binding to various transcript classes, as will be discussed 

in detail below.“ 

 

 

4.1.1.1 RNA end- processing complexes differ in their targets 

 

“The catalytic subunit Pop2 and the core subunits Not1 and Caf40 of the 

deadenylase complex Ccr4/Not have similar binding preferences for the 5´ 

UTR, the CDS and 3´ UTR of mRNAs, for rRNAs, tRNAs, snoRNAs, and 

snRNAs (Figure 8B, highlighted in red). Compared to other deadenylation 

factors of the Ccr4/Not complex, the catalytically active subunit Ccr4 has 

different binding preferences, and is strongly enriched at mRNA introns. The 

second deadenylation complex, Pan2/Pan3, shows a similar binding 

preference as the Ccr4/Not complex (except for the Ccr4 subunit), consistent 
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with its dominant role in yeast mRNA deadenylation (Boeck et al., 1996). Pan3 

shows a strong binding preference for rRNAs and tRNAs. 

For all decapping-related factors we observed similar binding 

preferences among each other (Figure 8B, highlighted in green). They show 

the strongest enrichment at SUTs and at mRNAs compared to the other 

transcript classes. Decapping factors bind preferentially to CDS and 3´ UTR, 

as well as to SUTs. This is consistent with previous findings that SUTs are 

degraded via Dcp2-dependent pathways in the cytoplasm (Marquardt et al., 

2011; Smith et al., 2014; Thompson and Parker, 2007). Dcp2, which harbors 

the hydrolase activity that removes the 5´ cap, and the decapping activator 

Edc3, additionally bind to NUTs. The 5´ exonuclease Xrn1 shows a similar 

binding preference as the decapping factors (Figure 8B, highlighted in orange). 

Taken together, complexes and enzymes that are known to target mRNA ends 

for 3´ deadenylation and 5´ decapping and degradation show remarkably 

distinct binding specificities to different transcript classes.” 

 

 

4.1.1.2 The exosome and surveillance factors 

 

“For the exosome we also observed binding to different RNA classes 

(Figure 8B, highlighted in royal blue). The core exosome subunits Csl4 and 

Rrp40 showed similar cross-linking to rRNAs, tRNAs, snoRNAs, and snRNAs. 

The catalytic exosome subunit Rrp44 and the core subunit Rrp4 binds to introns 

of mRNAs, but preferentially to the short-lived, nuclear CUTs and NUTs. Rrp6, 

a subunit that is exclusively present in the nuclear exosome complex, shows 

binding to rRNAs, snoRNAs, snRNAs, CUTs and NUTs. This is consistent with 

the suggestion that the factor is needed for nuclear processing of such non-

coding transcripts and degradation of short-lived nuclear transcripts (Heo et al., 

2013; Vasiljeva and Buratowski, 2006). This complex distribution of cross-links 

for different exosome subunits to different RNA classes reflects the distinct 

functions of the exosome in nuclear RNA surveillance, processing of stable 

ncRNAs, and cytoplasmic mRNA degradation (Zinder and Lima, 2017). 

The two TRAMP complexes TRAMP4 and TRAMP5 show clearly distinct 

cross-linking patterns (Figure 8B, highlighted in light blue). TRAMP4 subunits 
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(Mtr4, Air2, Trf4) are enriched in introns, consistent with a function on mRNAs, 

and on SUTs, CUTs, and NUTs. The TRAMP5 complex (Mtr4, Air1, Trf5) shows 

binding enrichment for introns, rRNAs, tRNAs, snRNAs, and snoRNAs. This is 

in agreement with previous data, which showed rRNA binding for Mtr4 and 

exosome subunits (Delan-Forino et al., 2017; Schneider and Tollervey, 2013). 

Moreover, the TRAMP complex cooperates with the Nrd1/Nab3 complex and 

the nuclear exosome complex during the maturation and 3´ pre-processing of 

snoRNAs (Grzechnik and Kufel, 2008). To distinguish binding upon 

degradation and binding in order to pre-process snoRNAs, we investigated 

metagene profiles of TRAMP subunits along snoRNA genes (Appendix Figure 

39). Air1/Trf5 bind almost exclusively to the gene body whereas Air2/Trf4 bind 

downstream of the 3´ end. This suggests that TRAMP5 is mainly involved in 

snoRNA degradation, whereas TRAMP4 may work together with the 

Nrd1/Nab3 machinery to pre-process snoRNAs (Appendix Figure 39) and to 

target NUTs, SUTs, and CUTs for degradation (Figure 8B). 

The cross-linking preferences of subunits of the Ski complex differ only 

slightly from each other (Figure 8B, highlighted in cyan). All Ski complex 

subunits bind the 5´ UTR, CDS, and 3´ UTR of mRNAs, rRNAs, tRNAs, 

snoRNAs, and snRNAs. The Ski2 subunit preferentially binds to the CDS of 

mRNAs, consistent with its function as a helicase to detach bound proteins from 

the mRNAs (Houseley and Tollervey, 2009; Lebreton and Seraphin, 2008). The 

exosome adaptor subunit Ski7 preferentially binds rRNAs and tRNAs. These 

patterns are consistent with the model that the exosome cooperates with 

distinct accessory complexes and factors to target different transcript classes. 

Finally, we observed similar cross-linking patterns for all NMD factors with 

strong binding to SUTs and NUTs (Figure 8B, highlighted in yellow). Upf2 

shows a binding preference to introns and CUTs. Upf3 also binds to the 5´ UTR, 

CDS, and 3´ UTR of mRNAs, and Nmd4 binds to introns and 3´ UTRs of 

mRNAs.” 
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Figure 8: Distribution of degradation factor cross-link sites over the yeast 
transcriptome. 
A) Fractions of high-confidence PAR-CLIP sequencing reads of 30 yeast degradation 
factors fall into various transcript classes. Depicted classes are the following: 
messenger RNA (mRNA) in turquoise (n=4,928), ribosomal RNA (rRNA) in antique 
pink (n=24), transfer RNA (tRNA) in dark blue (n=299), small nucleolar RNA (snoRNA) 
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in yellow (n=77), small nuclear RNA (snRNA) in green (n=6), stable unannotated 
transcripts (SUTs) in red (n=357), cryptic unstable transcripts (CUTs) in light brown 
(n=750), Nrd1-dependent unterminated transcripts (NUTs) in dark brown (n=317).  
B) Enrichment z-scores of high-confidence PAR-CLIP cross-link sites of 30 yeast 
degradation factors (rows) in various segments of mRNA transcripts (left columns; 
UTR: untranslated region; intron; CDS: coding sequence), or other transcript classes 
as in A (other columns). The color-coded z-score is the fraction of binding sites of the 
factor x in the transcript class c minus the mean fraction for that transcript class c 
divided by the standard deviation of fractions for class c (color encoded, -0.8 in blue to 
2.4 in red). The coefficient of variation on top is the standard deviation divided by the 
mean for each transcript class. Factors are grouped according to their functional role; 
from top to bottom: deadenylation machinery (Ccr4, Pop2, Not1, Caf40, Pan2, Pan3), 
decapping (Dcp2, Dcp1, Edc2, Edc3, Dhh1), Xrn1, exosome (Rrp6, Csl4, Rrp40, Rrp4, 
Rrp44), TRAMP polyadenylation complex (Trf5, Air1, Mtr4, Air2, Trf4), Ski complex 
(Ski2, Ski3, Ski7, Ski8), nonsense mediated decay (NMD) (Upf1, Upf2, Upf3, Nmd4). 
 

 

4.1.2 Distinct factor distribution along mRNA 

 

“We next focused on degradation factor distribution on mRNAs. We 

prepared metagene profiles showing the average occupancy of each factor 

around the mRNA transcription start sites (TSS) and poly-adenylation (pA) 

sites, respectively (Figure 9). The Pan2/Pan3 deadenylase complex and the 

Ccr4/Not subunits Pop2, Not1, and Caf40 all cross-link upstream of the 3´ end 

of mRNA with the highest enrichment at the pA site, as expected from their 

function in shortening the polyA tail. The catalytic subunit Ccr4 binds strongly 

in the 5´ region of mRNAs. All 5´ decapping factors bind upstream of the pA 

site, and all but the catalytically active subunit Dcp2 show increasing occupancy 

towards the 3´ end of mRNAs. These patterns can be explained if decapping 

factors are pre-bound to mRNAs that form a closed loop that holds the RNA 

ends in proximity. In contrast, Dcp2 binds almost exclusively at the pA site, 

suggesting that it might be recruited only upon active mRNA degradation. The 

cytoplasmic 5´ exonuclease Xrn1 has the highest occupancy towards the 3´ 

end, similar to the previously published crosslinking and cDNA analysis (CRAC) 

data (Tuck and Tollervey, 2013), thereby resembling the binding profiles of the 

decapping factors. Comparison of the binding profiles aligned at the pA site or 

alternatively with profiles aligned at the translation stop codon shows that the 

binding preference indeed lies at the end of the 3´ UTR independent of the stop 

codon position (Appendix Figure 29). 
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The exosome core subunits (Csl4, Rrp40, and Rrp4) and the catalytically 

active subunits (nuclear: Rrp6, cytoplasmic: Rrp44) cross-link to the 5´ end of 

the transcript (Figure 9), possibly because the exosome binds to the 5´ end 

while digesting the 3´ end, or more likely because the exosome slows down 

towards the remaining 5´ end of mRNAs after rapid degradation from the 3´ 

end. Both TRAMP complexes bind mainly in the 5´ region of mRNAs near the 

TSS, as previously observed for Mtr4 and Trf4 (Tuck and Tollervey, 2013). 

The Ski complex components Ski7 and Ski8 occupy the entire mRNA 

with increasing occupancy towards the pA site, whereas Ski2 and Ski3 show 

more discrete binding towards the polyA tail (Figure 9). The NMD factors Upf1 

and Upf3 show binding over the entire mRNA with highest occupancy at the pA 

site, consistent with their role in scanning for premature stop codons in mRNAs 

and remodeling of the 3´ end of protein-RNA complexes and completion of 

mRNA decay (Franks et al., 2010). In addition, Upf2 and Nmd4 show strongest 

binding near the 3´ ends of mRNAs. Taken together, the distribution of cross-

links along mRNA transcripts differs between degradation complexes and in 

some cases also between their subunits.” 
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Figure 9: Metagene analysis of degradation factor binding on protein-coding mRNAs. 
Averaged occupancy profiles of degradation factors over mRNAs aligned around their 
transcription start site (TSS) (n=3,193, left) and around their poly(A) (pA) site (n=3,193, 
right) in a window of [±700nt]. Regions that have neighboring transcripts on the same 
strand were removed to avoid contaminating profiles (Methods). Factors are grouped 
according to their functional role; from top to bottom: deadenylation, decapping, Xrn1, 
exosome, TRAMP complex, Ski complex, and NMD. The color code shows the 
average occupancy normalized between the minimum and maximum values per profile 
(with high occupancy shown as dark red, and low occupancy shown in dark blue). 
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4.1.3 Surveillance of aberrant nuclear ncRNA 

 

“Pervasive transcription of the genome leads to many short-lived 

aberrant RNAs that must be rapidly detected and degraded in the nucleus. We 

previously reported that the RNA surveillance factors Nrd1 and Nab3 strongly 

cross-link to aberrant upstream antisense RNA that stems from bidirectional 

transcription (Schulz et al., 2013). In order to find factors cross-linking to 

aberrant ncRNAs, we plotted the occupancy of all 30 investigated factors on 

the antisense strand of known mRNAs (Figure 10). For comparison, we plotted 

the published Nrd1 and Nab3 profiles in the first two lanes of Figure 10. The 

factors involved in processing and degradation of Nrd1-unterminated 

transcripts, or NUTs (Schulz et al., 2013) are expected to show similar binding 

to upstream antisense RNA as Nrd1 and Nab3. Indeed, we observed a similar 

binding pattern for all exosome subunits (Rrp6, Csl4, Rrp40, Rrp4, Rrp44) and 

subunits of the TRAMP4 complex (Mtr4, Air2, Trf4). Consistent with this, these 

factors also bind strongly to previously annotated NUTs and CUTs (Figure 8). 

It has been shown that Nrd1 is involved in terminating transcripts upstream of 

the TSS. We also observe a strong signal for binding upstream of the TSS on 

the sense strand for Air2 and Mtr4 (Figure 9). This suggests that the TRAMP4 

complex is involved in degradation of those Nrd1-regulated upstream sense 

transcripts. To investigate this hypothesis, we compared the binding profiles 

around the TSS of 459 protein coding genes, previously annotated as having 

upstream Nrd1-unterminated transcripts, or NUTs (Schulz et al., 2013), with the 

profiles obtained for all mRNAs (Appendix Figure 40). TRAMP4 and the 

exosome subunits show a strong preference for binding to the upstream 

promoter region of the genes that are controlled by the Nrd1/Nab3 complex 

(Appendix Figure 40).” 

“These results are consistent with the idea that the nuclear RNA surveillance 

machinery involves, in addition to Nrd1 and Nab3, the TRAMP4 complex and 

the nuclear exosome. Indeed, it was reported that TRAMP4 can add a short 

polyA tail on aberrant RNAs (Wyers et al., 2005), which may trigger degradation 

by the nuclear exosome. It was also recently shown that Nrd1 and Trf4 interact, 

providing a basis for coupling surveillance-mediated termination to RNA 

degradation (Tudek et al., 2014).” 
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Figure 10: Surveillance of aberrant nuclear antisense RNAs by the exosome and the 
TRAMP4 complex. 
Averaged occupancy profiles of degradation factors binding to transcripts antisense 
of mRNAs aligned around transcription start site (TSS) (n=3,076, left) and around 
their polyadenylation (pA) site (n=2,705, right) in a window of [±700nt]. Regions with 
annotated genes on the antisense strand are removed to avoid contaminating the 
profiles (Methods). The color code shows the average occupancy normalized 
between the minimum and maximum values per profile (with high occupancy shown 
with yellow, and low occupancy in dark blue). On top, previously published PAR-
CLIP profiles for Nrd1 and Nab3 are included for comparison (Schulz et al., 2013). 
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4.1.4 Interactions between RNA processing machineries 

 
“To find out which groups of factors can work together in degrading 

transcripts, we analyzed their tendency to co-occupy the same transcripts by 

calculating the Pearson correlation of their occupancy across all transcripts 

(Figure 11A). We also analyzed their co-localization, that is, the tendency of a 

factor to bind near to another factor’s binding sites, using a range of ± 40 nt 

from each cross-link site (Figure 11B). To relate these profiles to those of other 

factors, we included previously published PAR-CLIP profiles from our lab 

(Appendix Table 13). Profiles were available for factors that function in nuclear 

RNA surveillance (Nrd1, Nab3), cap binding (Cbc2), mRNA transcript 

elongation (Bur1, Bur2, Ctk1, Ctk2, Cdc73, Ctr9, Leo1, Paf1, Rtf1, Set1, Set2, 

Dot1, Spt5, Spt6, Rpb1), pre-mRNA splicing (Ist3, Nam8, Mud1, Snp1, Luc7, 

Mud2, Msl5), pre-mRNA 3´ processing (Pab1, Pub1, Rna15, Mpe1, Cft2; Yth1), 

transcription termination (Rat1, Rai1, Rtt103, Pcf11), and mRNA export (Hrp1, 

Tho2, Gbp2, Hrb1, Mex67, Sub2, Yra1, Nab2, Npl3) (Baejen et al., 2017, 2014; 

Battaglia et al., 2017; Schulz et al., 2013). 

A two-dimensional embedding of co-occupancy profiles between all 

these processing factors is shown in Figure 11C. It represents the degree of 

similarities between co-occupancy of transcripts (Figure 11A) in terms of the 

distance in two dimensions. The two-dimensional embedding of the co-

localization matrix in Figure 11B shows a similar clustering. This extensive 

global analysis suggests which factors reside in functional complexes and 

which functional complexes may interact during RNA processing and 

degradation. The analysis recovers several established interactions between 

subunits of known complexes and between different complexes, providing a 

positive control. For example, all factors of the decapping complex show very 

high co-occupancy and co-localization, as do Air2 and Mtr4, which reside in the 

TRAMP4 complex.  

The analysis contains a lot of new information, forcing us to focus here 

on a few interesting, novel findings (Figure 11C). First, the largest cluster is 

formed by the previously analyzed factors involved in transcription elongation 

by RNA polymerase II (cluster 1) and in co-transcriptional pre-mRNA 

processing, including cap-binding complex (Cbc2), 3´processing, transcription 
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termination, and RNA export. The degradation factors Ccr4 and Air1 also reside 

in this cluster, maybe reflecting the role of Ccr4 in transcription elongation (Kruk 

et al., 2011). A second cluster is formed by splicing factors (cluster 2). Factors 

involved in nuclear and cytoplasmic exosomal degradation (Rrp6, Csl4, Rrp4, 

Rrp40 and Rrp44) form a third cluster (cluster 3). Close to cluster 3, we find the 

TRAMP4 complex subunit Trf4, the elongation factors Dot1, Paf1, Leo1, and 

the termination factors Pcf11 and Rai1. Rai1 has been shown to detect and 

remove incomplete 5´ cap structures, to subject aberrant pre-mRNAs to nuclear 

degradation (Jiao et al., 2010).  

A forth cluster is formed by mRNA deadenylation factors together with 

pA tail binding proteins (Pab1 and Pub1), Ski7, Ski8, Trf5, and the export factor 

Yra1 (cluster 4). This is consistent with coupled mRNA deadenylation and 

subsequent degradation from its 3´ end by the exosome with the Ski or TRAMP 

complex as adaptors. The fifth cluster is formed by mRNA decapping factors, 

which cluster together with Xrn1, suggesting a coupling of mRNA decapping 

with degradation from the 5´ end by Xrn1 (cluster 5). The NMD-involved factors 

Upf1, Upf2, Upf3 and Nmd4, and Ski2 and Ski3 are also found in cluster 5. The 

high correlation between Xrn1 and Ski2 has been reported in a CRAC 

experiment (Tuck and Tollervey, 2013). The elongation factor Ctr9, the 

3´processing factor Mpe1 and the export factors Tho2, Mex67 and Nab2 are 

also found in cluster 5. A last cluster (cluster 6) is formed by factors involved in 

nuclear RNA surveillance, including Air2, Mtr4 and the Nrd1/Nab3 complex. 

Taken together, these findings are consistent with known functional 

associations and physical interactions between factors and suggest intriguing 

new associations to be investigated in future work.” 
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Figure 11: Global co-occupancy and co-localization analysis reveals unexpected 
cooperation between factors from different complexes and pathways. 
A) Matrix of pairwise correlation coefficients of factor occupancies evaluated over all 
transcripts. B) Matrix of co-localization based on the enrichment of factor x binding 
within 40 nt upstream and downstream of the cross-link site of factor x´. C) Two-
dimensional embedding of the co-occupancies in A) analyzed for 74 RNA processing 
factors with tSNE, including 30 factors from this study (highlighted in bold), and 44 
factors from previous studies (Baejen et al., 2014, 2017; Battaglia et al., 2017; Schulz 
et al., 2013). Factors that are plotted in close proximity show a preference for binding 
to the same transcripts. Clusters present factors involved in RNA synthesis (1), splicing 
(2), 3´ processing (3), deadenylation (4), decapping (5), and surveillance (6). 
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4.1.5 5´ degradation machinery senses translation efficiency 

 

“To study the link between cytosolic mRNA translation and degradation, 

we compared the occupancy of degradation factors on mRNAs to their average 

codon-optimality score (‘transcript optimality’) (Figure 12A, Appendix Figure 31-

Figure 37). We found that the 5´ decapping machinery and Xrn1 preferentially 

bind transcripts with low transcript optimality. In contrast, the 3´ deadenylation 

machinery and the exosome bind more strongly to optimal transcripts. We 

asked whether this correlation with codon optimality is introduced by only a few 

differentially bound codons or by global enrichment/depletion of optimal 

codons. For this purpose, we introduced a ‘codon enrichment score’, which 

measures a codon’s enrichment in the set of transcripts bound by the factor 

relative to the yeast mRNA pool. For Dcp2 this enrichment score is high on non-

optimal codons, and low on optimal codons, whereas the opposite trend is 

observed for Ccr4 and most degradation factors (Figure 12B, Appendix Figure 

31-Figure 37).  This is consistent with a model that ribosome stalling on 

translationally inefficient codons can lead to recruitment of Dcp2 and Xrn1 and 

subsequent 5´ degradation of the transcript (Heck and Wilusz, 2018). 

To investigate the significance of the correlation between transcript 

optimality and binding of the 5´ degradation machinery, we compared the 

contribution of several mRNA features in explaining the occupancy patterns 

retrieved from PAR-CLIP experiments. Since mRNA expression, half-life, and 

translation optimality are inter-correlated (Appendix Figure 30), a causative 

effect of one of these features on binding strength may lead to correlations with 

all three features. To better distinguish correlation from causation, we used 

linear regression analysis to explore whether correlations between factor 

binding and optimality are better explained with other mRNA features 

(Appendix Figure 38). We assessed the significance of features via the 

likelihood ratio test on the multi-variate linear regression model for occupancy. 

The likelihood ratio test calculates the significance of a feature from the change 

of the likelihood (quantifying the prediction quality) upon removal of that feature 

from the regression model. For decapping enhancers (Edc2, Edc3, and Dhh1) 

and Xrn1, low codon optimality is the most determining feature for binding 

(Figure 12C). The same is true for NMD factors Upf1 and Upf3, which are  
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Figure 12: Binding preferences reveal a link between decapping-mediated 
degradation and translation. 
A) Total occupancy per mRNA (according to TIF-seq annotation) for six factors as a 
function of the average mRNA codon optimality (transcript optimality). The occupancy 
of factors from the 5´à3´ degradation machinery (decapping and Xrn1, left) decreases 
with increasing transcript optimality, whereas the occupancy of factors from the 3´à5´ 
degradation machinery (Ccr4, Caf40 and exosome subunit Rrp44) increases with 
increasing average codon optimality. (Grey shading: 95% confidence intervals 
generated by bootstrapping mRNAs). B) Codon enrichment in transcripts bound by 
Dcp2 and Ccr4 compared to the average frequency over all mRNAs. The bar colors 
represent codon optimality, with highly optimal codons shown in dark red. (Thin grey 
lines: 90% confidence intervals generated by bootstrapping coding sequences.) C) 
Significance of correlations between the binding strength of degradation factors and 
transcript length, transcript optimality (Pechmann and Frydman, 2013), expression 
level (Baejen et al., 2017), and half-life derived by multivariate linear regression 
analysis (Methods). Bars are separated according to the direction of correlation with 
positive correlation marked by a red background and negative correlation marked by 
a blue background. 
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known to bind non-optimal transcripts (Celik et al., 2017). This result confirms 

the importance of the translation efficiency for the stability of cytosolic mRNAs 

and strengthens our finding that transcripts with low average codon optimality 

are preferentially targeted by the decapping machinery and degraded from the 

5´ end.” 

 

 

4.1.6 Decapping factors are enriched upon RNA degradation 

 

 “Although decapping occurs at the 5´ end of mRNAs, decapping factors 

show a strong occupancy near the 3´ end (Figure 9). To investigate this further, 

we compared metagene profiles of decapping factors between stable (top 25%) 

and unstable (bottom 25%) transcripts, using mRNA half-life estimates (Figure 

13A, Methods). On both stable and unstable mRNAs, Dcp1, Edc2, Edc3, and 

Dhh1 show increased binding near the 3´ end, but unstable RNAs show a 

higher occupancy in the transcript body. The catalytically active subunit Dcp2 

binds almost exclusively at the 3´ end and has a higher occupancy on unstable 

transcripts. Moreover, A-rich 4-mers are abundant around the proximity (8 nt) 

of Dcp2-cross-link sites (Figure 13C), indicating a binding preference of Dcp2 

for A-rich RNA sequences. Overall, these binding patterns suggest that 

decapping factors are bound in transcript bodies and near the 3´ end of 

transcripts, and that through closed-loop formation of the mRNA they are in 

close proximity to the 5´ end. Decapping factors might also travel with the 5´→3´ 

exonuclease Xrn1 upon RNA degradation. 

Decapping factors may bind to complete mRNAs or to transcripts that 

are in the process of being degraded. To quantify these two behaviors, we 

combined our PAR-CLIP occupancy data with RNA half-life estimates 

(Methods). We modeled the occupancy of factors on mRNA as the sum of 

binding to all transcripts (b) and surplus binding to transcripts that are in the 

process of degradation ( `
ab/d
). Therefore, we can model occupancy as a function 

of half-life with a linear equation (occupancy = 	 `
ab/d

+ b). In cases where there  
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Figure 13: Location and recruitment of the decapping complex Dcp1/Dcp2 and 
decapping enhancers Edc3, Dhh1, and Edc2. 
A) Smoothed, transcript-averaged PAR-CLIP occupancy profiles aligned at TSS and 
pA sites [±750 nt] of unstable and stable transcripts (first and fourth quantile of half-life 
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distribution, respectively). B) Dependence of total occupancy of factors on the 
transcripts half-life. The fitting function is plotted in red and the fitted value for b is 
marked with a dashed gray line. (Grey shade: 95% confidence intervals generated by 
bootstrapping transcripts). C) Sequence binding preference for the catalytically active 
subunit of decapping complex (Dcp2), illustrated with the 5 most enriched and the 3 
most depleted 4-mers. The color code shows the log2 enrichment factor of 4-mers 
around PAR-CLIP cross-link sites [±5 nt]. Dark red represents strong enrichment and 
dark blue shows strong depletion of a 4-mer. Infeasible combinations are shown with 
grey. The most highly enriched field is binding AAAAU with the cross-link at the U, 
which is enriched over random expectation approximately 23 = 8-fold.  
 

 

is no surplus binding upon active degradation, i.e., the occupancy is the same 

as in intact RNAs, ‘a’ will be zero. For 5´ decapping factors, this model closely 

fits the occupancy patterns retrieved from our experiments (Figure 13B), other 

degradation factors also follow this pattern to varying degrees (Appendix Figure 

31-Figure 37).  In particular, Dcp2 shows a very high a/b ratio, revealing that it 

cross-links preferentially to transcripts that are being degraded. This analysis 

strongly suggests that the 5´ decapping machinery, although present to some 

extent on complete mRNAs, is enriched when mRNAs are degraded.” 
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4.2 Discussion and Outlook 

4.2.1 Occupancy profiles of general eukaryotic degradation factors give 

new insights into RNA degradation processes 

 

In this work we generated transcriptome-wide binding maps for 30 RNA 

degradation factors in the yeast S. cerevisiae. A detailed bioinformatics 

analysis of the NGS data revealed how degradation factors vary in their binding 

specificities for different classes of RNAs (Figure 8) and with respect to their 

preferred locations on RNA transcripts (Figure 9 and Figure 10). Global 

comparisons of the degradation factor profiles with previously published 

transcriptome-wide binding maps of other RNA-binding factors (Baejen et al., 

2017, 2014; Battaglia et al., 2017; Schulz et al., 2013) revealed factors that co-

occupy RNAs or co-localize on RNAs thereby forming clusters (Figure 11). Our 

data are consistent with published literature as discussed below and extend 

these findings on mostly single genes to a genome-wide scale. In addition, our 

analysis revealed several unexpected, novel insights, which we also discuss 

here. Although our data reflect factor binding signal and measure occupancy 

on transcripts, and do not directly reveal the function of factors, the correlations 

of occupancies between factors and with transcript properties indicate 

functional aspects and suggest functional associations between factors. We 

provide speculations on possible functional implications of our findings that can 

guide future studies. 

 

 

4.2.2 Initial step of RNA decay - mRNA deadenylation 

 

The first step of cytoplasmic mRNA decay is deadenylation of the polyA 

tail (Cao and Parker, 2003; Parker and Song, 2004). We have analyzed binding 

of Ccr4-Not and Pan2-Pan3 deadenylation complexes to RNAs by PAR-CLIP 

and observed similar binding patterns regarding RNA specificity (Figure 8). For 

the Pan2 subunit we observed cross-link sites throughout the mRNA (Figure 9) 

suggesting a function of Pan2 over the entire transcript such as scanning for 

degradation marks. For both subunits of the Pan2-Pan3 complex the 

occupancy is at the maximum close to the pA site (Figure 9). For the Ccr4-Not 
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complex we observed RNA binding more towards the 3´ end of transcripts, 

except for Ccr4, which shows stronger cross-linking to the 5´ end (Figure 9). It 

has been proposed that the Pan2-Pan3 complex initiates deadenylation of the 

polyA tail followed by the Ccr4-Not complex, which acts on the shortened tail 

(Beilharz and Preiss, 2007; Brown and Sachs, 1998; Tucker et al., 2001). In 

agreement with this hypothesis, we observed binding of deadenylation 

complexes at the pA site (Figure 9). One limitation of the PAR-CLIP technique 

is that factor binding to the polyA tail cannot be resolved. This is due to the 

inability to map the polyA tail as it is not encoded in the reference genome. 

Therefore, we are not able to detect binding of the deadenylation factors within 

the polyA tail directly. Our method only allows for mapping of factors located 

close to the pA site. With this information we cannot elucidate the order of 

events during deadenylation.  

In addition to the pA site binding of deadenylation factors, we observed 

binding of the deadenylase Ccr4 to the 5´ end of mRNAs (Figure 9), which 

indicates a different or additional function of this protein as previously 

suggested (Miller and Reese, 2012). This specific binding pattern and its co-

localization with transcription elongation factors (Figure 11) can also reflect its 

function in transcription elongation by RNA Pol II (Kruk et al., 2011). During 

deadenylation, it has been shown that Pab1 interacts with the Ccr4-Not 

complex, thereby stimulating deadenylation activity and differentiating the roles 

of the nuclease enzymes Ccr4 and Pop2 (Webster et al., 2018). By using a fully 

reconstituted biochemical system with proteins from the fission yeast 

Schizosaccharomyces pombe, the authors showed that Pab1 release depends 

on Ccr4 activity. In vivo experiments in S. cerevisiae showed that Ccr4 acts on 

all mRNAs and thus, is a general deadenylase. Our PAR-CLIP data revealed 

Ccr4 occupancy at the 5´ end of mRNAs (Figure 9) indicating that its binding to 

mRNAs is independent of the polyA tail and Pab1. In addition, we observed 

enriched binding of Ccr4 within introns (Figure 8). This leads us to the 

speculation that Ccr4 could be recruited to the mRNA 5´ end or intronic 

sequences to release Pab1 from the polyA tail and further its deadenylation. In 

contrast to Ccr4, Pop2 has been found to just trim the polyA tail, which is not 

protected by Pab1 (Webster et al., 2018). In agreement with this, we were able 
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to detect Pop2 binding at the pA site (Figure 9) probably due to the absence of 

Pab1. 

The authors concluded based on their data that Pop2 is a specialized 

enzyme deadenylating selected transcripts characterized by reduced Pab1 

occupancy and lower translation elongation rates (Webster et al., 2018). Lower 

translation elongation rate indicates Pop2 binding to transcripts with non-

optimal codons. In contrast, we observed a minor binding preference of Pop2 

on mRNA with optimal codons (Appendix Figure 31). This inconsistency of data 

may be explained by the usage of two different experimental settings: a whole 

cell approach for our PAR-CLIP experiments, while the other experiment was 

performed in an isolated and biochemically reconstituted system. In contrast to 

Pop2, Ccr4 is bound preferentially to codons with high optimality (Figure 12) 

suggesting that deadenylation and degradation initiation of the mRNA are 

independent of a high translational efficiency.  

 

 

4.2.3 Decapping as first step for RNA degradation from the 5´ end 

 

Following deadenylation, decapping is the next step in cytosolic mRNA 

degradation (Franks and Lykke-Andersen, 2008; Tharun and Parker, 2001). In 

our study, we observed binding of decapping factors primarily towards the 

polyA tail (Figure 9), and enriched cross-link sites on mRNAs and non-coding 

SUTs (Figure 8). The preferred localization of 5´ decapping factors near the 3´ 

end and 3´ degradation factors close to the 5´ end seems counterintuitive. 

Gallie et al. explained this phenomenon by the model of an mRNA closed-loop 

structure due to messenger ribonucleoprotein (mRNP) formation, in which the 

5´ cap is in close proximity to the polyA tail (Gallie, 1991). The decapping 

factors can be deposited near the 3´ end of transcripts and upon polyA tail 

shortening, the decapping complex is activated. This leads to decapping and 

subsequent rapid degradation of the transcript by the 5´à3´ exonuclease Xrn1. 

In this model, decapping opens the RNA closed-loop structure, allowing access 

for Xrn1 and thereby enabling RNA degradation. Supporting this model, we 

determined that the catalytically active subunit Dcp2 shows the highest activity 
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on unstable transcripts compared to decapping activators (Figure 13). Our data 

suggest that decapping enhancers can be pre-bound to stable mRNAs waiting 

for the recruitment of the catalytic subunit (Figure 13).  

Furthermore, we observed higher enrichment of decapping factors on 

translationally inefficient codons (Figure 12). This agrees with previous findings 

that suggested a link between RNA decay and translation (reviewed in Huch 

and Nissan, 2014). This link is thought to be established by the decapping 

enhancer Dhh1 sensing ribosome velocity. Ribosomes are slowed down on 

non-optimal codons, which reduces the translation rate and this can lead to 

activation of deadenylation and decapping (Radhakrishnan et al. 2016).  

We observed further cross-link sites for Xrn1 throughout the transcript 

with higher occupancy towards the 3´ end (Figure 9). Binding at the pA site has 

been observed for Xrn1 before using a similar approach (Tuck and Tollervey, 

2013). This binding pattern may be explained by slower decay towards the 

transcript 3´end allowing for higher detection.  

 

 

4.2.4 Nuclear RNA surveillance mechanism 

 

Genomes of eukaryotic cells are pervasively transcribed with about 85% 

of the yeast genome giving rise to RNA transcripts, although only a few percent 

correspond to protein-coding mRNAs (David et al. 2006). In yeast, pervasive 

transcription stems from bidirectional Pol II transcription initiation of two 

opposing pre-initiation complexes within a nucleosome free region over the 

promoter region (Murray et al., 2012; Rhee and Pugh, 2012). The work from 

our laboratory has previously shown that the Nrd1-Nab3 surveillance 

machinery selectively terminates ncRNA synthesis, including transcripts 

synthesized in antisense direction to annotated genes and divergent 

transcription from bidirectional promoters (Schulz et al. 2013). With global 

mapping of degradation factors and in comparison to the metagene profiles of 

Nrd1-Nab3 (Schulz et al., 2013), we are able to propose a mechanism on how 

the surveillance machinery degrades antisense RNA in order to protect the cell 

from aberrant ncRNAs after early transcription termination. Several lines of 

evidence such as enrichment of these complexes on NUTs (Figure 8), similar 
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binding profiles (Figure 10), as well as transcript co-occupancy analysis (Figure 

11) suggested that after recognition through the sequence specific Nrd1-Nab3 

complex, the ncRNA is polyadenylated by the TRAMP4 complex. The 

interaction of the Nrd1-Nab3 complex and Trf4 subunit of the TRAMP4 complex 

has previously been shown by our group and colleagues (Tudek et al., 2014). 

The short polyA tail can then mark the RNA for degradation by the nuclear 

exosome. This mechanism is likely to be the same for regulation of introns and 

ncRNAs upstream of mRNAs on the same strand, which were annotated as 

NUTs and CUTs, for which we see similar occupancy of the same degradation 

factors (Figure 8 and Figure 40). Our results indicate that the degradation 

machinery for all short-lived ncRNAs in the nucleus requires the same 

degradation factors such as Nrd1-Nab3, TRAMP4 and the nuclear exosome. 

 

 

4.2.5 RNA degradation by the exosome complex and auxiliary factors 

 

The second major cytoplasmic mRNA degradation pathway in the 3´à5´ 
direction of transcripts involves the exosome complex (Zinder and Lima, 2017). 

In addition to mRNA decay, the exosome also targets long-lived transcripts 

such as tRNAs, rRNAs, snoRNAs, and snRNAs for processing and decay 

(Zinder and Lima, 2017). Our observations regarding the different binding 

patterns of the exosomal subunits and co-factors (Figure 8 and Figure 9) 

support the hypothesis that these factors are needed for RNA processing and 

degradation specificity (Delan-Forino et al., 2017). It has been proposed that 

exosome subunit localization regulates RNA degradation targets (Vanacova 

and Stefl, 2007). The RNA transcript can be channeled through the exosome 

core (Rrp4, Rrp40 and Csl4) towards the catalytic subunit Rrp44 (Kowalinski et 

al., 2016). This suggests that all factors have direct RNA contacts, which we 

were able to support by observing extensive crosslinking to mRNAs and many 

other non-coding transcripts (Figure 8). All exosome subunits cross-link 

towards the 5´ end of mRNAs (Figure 9). This unexpected observation might 

be caused by the exosome moving rapidly from the 3´ to the 5´ end and then 
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residing at the 5´ end for a longer time, enabling for extensive cross-linking and 

thus detection.  

The exosome co-factor Ski2 and the other subunits of the Ski complex 

show strong cross-linking at the pA site of mRNA (Figure 9). This indicates that 

the Ski complex is necessary during initial steps of RNA degradation. This can 

be explained by the helicase activity of Ski2, which dissolves RNA secondary 

structures and detaches proteins from the RNA allowing the exosome to 

degrade the transcript from the 3´ end (Schneider and Tollervey, 2013).  

The TRAMP complexes are additional exosome co-factors and show 

binding to mRNAs towards the 5´ end of transcripts similar to the core and 

catalytic subunits of the exosome (Figure 9). This indicates that TRAMP 

complex mediated targeting of defective nuclear mRNAs and aborted 

transcription products for exosomal degradation might be similar to the Ski 

complex in the cytoplasm. The helicase Mtr4 may have a similar function as the 

Ski2 helicase in dissolving the secondary structure of the RNA and 

disassembling protein complexes bound to RNA (Falk et al., 2014). 

Additionally, TRAMP4 binding extended upstream of the TSS (Figure 9). This 

suggests targeting of non-coding transcripts emerging upstream of promoters 

for degradation. We have shown that this signal stems from previously 

annotated transcripts under attenuation control by Nrd1-Nab3 (Schulz et al., 

2013), the TRAMP complex and the nuclear exosome (Appendix Figure 40). 

Moreover, it has been shown for the TRAMP complexes that they function in 3´ 

end processing and degradation of snoRNAs (Grzechnik and Kufel, 2008; Losh 

et al., 2015). However, it has not been fully elucidated whether the complexes 

share the functions or distinguish between them. Using metagene profiles on 

snoRNAs, we were able to distinguish the functions of the TRAMP complexes 

(Appendix Figure 39). We propose that the TRAMP4 complex due to its binding 

downstream of the 3´ end of snoRNAs functions mainly in 3´ end processing. 

Binding of the TRAMP5 complex within the gene body of snoRNAs suggest a 

function mainly in its degradation.  
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4.2.6 Cytoplasmic RNA surveillance by NMD factors 

 
The NMD factors have a function in scanning for premature stop codons 

in mRNAs, remodeling of the 3´ end of protein-RNA complexes and completion 

of mRNA decay (Franks et al., 2010). This is consistent with our observation 

that Upf1 and Upf3 bind to the entire length of the mRNAs and with highest 

occupancy at the pA site (Figure 9). Moreover, Upf2 and Nmd4 showed the 

strongest binding near the 3´ ends of mRNAs close to endogenous stop 

codons. This indicates an additional role for NMD factors in recognition of the 

translation termination site. 

The NMD-involved factors Upf1, Upf2, Upf3 and Nmd4 reside in a cluster 

together with mRNA decapping factors and the 5´à3´ exonuclease Xrn1 

(Figure 11C). This indicates that recognition of premature stop codons by the 

NMD machinery is coupled with initiation of decapping and degradation from 

the 5´ end by Xrn1. It has been shown that the NMD machinery is directly linked 

to the decapping complex via an adapter protein (Cho et al., 2009; Lai et al., 

2012). Furthermore, we showed binding for the NMD factors Upf1 and Upf3 to 

non-optimal codons (Figure 12C). This is consistent with previous findings that 

NMD factors bind to non-optimal transcripts (Celik et al., 2017). This result 

confirms the importance of NMD factor binding for the stability of cytosolic 

mRNAs. 

Furthermore, unannotated transcripts, which were predicted to lack 

protein-coding capacity in yeast, have been shown to be translated and 

targeted for degradation by the NMD pathway (Smith et al., 2014). Consistently 

with this observation, we observed binding of the NMD factors on SUTs (Figure 

8). In addition to cross-linking sites in SUTs, we detected binding of the NMD 

machinery to unstable ncRNAs such as NUTs (Figure 8). This unexpected 

finding indicates that some NUTs escape degradation in the nucleus by the 

Nrd1-Nab3, TRAMP and exosome complex using an unknown mechanism. 

After export of the NUTs to the cytoplasm they might be targeted for translation-

dependent degradation via the NMD pathway. 
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4.2.7 Perspectives of mechanistic insights into the RNA degradation 

process by complementation of the transcriptome maps with 

functional studies 

 

We provide binding profiles of 30 RNA processing and degradation 

factors as an extensive resource that gives novel insights into eukaryotic RNA 

metabolism. The findings of this study provide a better understanding of nuclear 

degradation of short-lived ncRNAs. In addition to regulation of mRNA 

degradation by decapping and Xrn1-mediated 5´à3´ decay mainly on 

translation inefficient codons. Several questions remain to be answered. 

Further biochemical experiments are required to study and prove the 

indications of functional interactions of short-lived ncRNAs and the involved 

degradation machinery. The proposed slowing down of the different 

degradation machineries (exosome complex and Xrn1) towards either end of 

the transcript needs to be investigated with kinetic measurements in vivo using 

single molecule techniques or in vitro with a fully reconstituted system to 

confirm our hypotheses. Further research needs to be undertaken to get a more 

detailed understanding of how the different long-lived ncRNAs such as tRNAs, 

rRNAs, snoRNAs, and snRNAs can be processed and finally degraded by the 

same exosome complex with different nuclear and cytoplasmic accessory 

factors. Structural analysis of the different exosome components and accessory 

proteins with their target RNAs might help to answer this question as the 

structures of the exosome and accessory factors alone cannot answer all 

questions (Falk et al., 2014; Halbach et al., 2013; Schmidt et al., 2016). In 

conclusion, the findings of this study provide several important insights and 

establish a basis for future research. 

 

 

4.2.8 Protein-RNA binding studies of eukaryotic degradation factors in 

response to stress conditions will allow for better functional 

characterization of the RNA degradation machinery 

 

Yeast cells undergo major metabolic adaption processes when they 

encounter stress situations, such as changes of the nutrient environment. To 
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conserve energy, cells shut down gene expression of growth-related genes 

rapidly. At the same time, they increase expression levels of stress response 

and other metabolic genes. This leads to genome-wide changes in transcription 

and translation. Transcription levels are drastically reduced and translation is 

almost abolished in starved yeast cells (Ashe et al., 2000; Jona et al., 2000). At 

the same time, cytoplasmic degradation levels are also reduced and mRNAs 

are stabilized at a stage previous to polyA tail shortening (Jona et al., 2000). 

Down-regulation of growth-related genes in the nucleus is controlled by the 

Nrd1-Nab3-Sen1 and the TRAMP complexes targeting these genes for 

exosomal degradation (Bresson et al., 2017). Other genes like stress response 

genes escape degradation by decreased binding of Nrd1-Nab3 and TRAMP 

complexes, thereby resulting in upregulation of transcription. These findings 

have been obtained by genome-wide binding profiles of the Nab3 and Mtr4 

proteins (Bresson et al., 2017). In addition, it has been observed that 

deadenylation by Ccr4 and Pan2 is inhibited in order to retain the majority of 

the cytoplasmic mRNA pool for later reuse after stress recovery (Hilgers et al., 

2006). Nevertheless, how cytoplasmic degradation factors respond to nutrient 

changes has not been shown genome-wide. RNA binding studies using PAR-

CLIP, in response to different stress conditions and in combination with RNA-

seq measurements are required to study the feedback of various cytoplasmic 

degradation factors. Although inhibited, the degradation factors might show 

differential RNA binding behavior during stress response (Jona et al., 2000). 

The activity of Dcp2 is particularly interesting to analyze after stress induction 

as it showed the strongest binding to unstable transcripts in our study (Figure 

13).  

 

 

4.2.9 Conservation of general RNA degradation factors in human cells 

 

Many RNA degradation proteins like the decapping and deadenylation 

factors, the TRAMP complex, the core exosome complex and associated 

factors are conserved amongst eukaryotes (Houseley and Tollervey, 2009). 

However, the RNA degradation mechanism in human is far less understood 

than in yeast. In order to compare different eukaryotic RNA degradation 
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pathways, it would be useful to perform PAR-CLIP of key players in RNA decay 

like the 5´à3´ exonuclease Xrn1, the exosome catalytic subunits Rrp6 and 

Rrp44, as well as the NMD factor Upf1 in human cells. This would allow for a 

similar analysis as in yeast, regarding binding preference of specific RNA 

classes, preferred binding sites on mRNAs and antisense transcripts using 

metagene profiles. Additionally, the comparison with other published RNA 

binding profiles of human protein complexes could be helpful to further 

understand the different RNA decay pathways in human cells. In human cells, 

many more factors are involved in RNA degradation, which makes the 

understanding and experimental set-up to study RNA decay much more difficult 

when compared to yeast. In addition, some factors with homologous function 

have not even been discovered in human cells. For example the factors, which 

harbor homologues activities like Nrd1-Nab3 for nuclear surveillance in yeast, 

are assumed for human, but have not been uncovered yet, despite much effort 

(Arigo et al., 2006; Thiebaut et al., 2006). Systematic analysis of RNA binding 

factors and their mapping on transcripts might help to identify proteins with 

Nrd1-Nab3 homologous activities by studying the binding profiles on antisense 

transcripts. Improved methods such as enhanced crosslinking and 

immunoprecipitation (eCLIP) may provide a suitable set-up for large-scale and 

robust profiling of RNA binding proteins (Van Nostrand et al., 2016).  
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5 Identification and functional characterization of the 
novel mRNA modification N3-methylcytidine (m3C) 

5.1 Results 

5.1.1 Experimental set-up for Trm140 PAR-CLIP and m3C-CLIP  

 

 
Figure 14: Schematic overview of PAR-CLIP and m3C-CLIP protocol. 
A) PAR-CLIP was performed using S. cerevisiae or human cells cultured in the 
presence of 4tU or 4sU, respectively. The proteins were cross-linked to RNA by UV 
light at a wavelength of 365 nm. After cell lysis, the protein of interest was 
immunoprecipitated with antibody-coupled beads. The crosslinked RNA was 
fragmented and labeled radioactively using 32P-ATP. Adapter ligation was performed 
on the beads. The protein bound to RNA was purified via SDS-PAGE and the protein-
RNA complex corresponding to the predicted size was electro-eluted from the gel. The 
protein was digested and RNA was converted into cDNA for NGS. B) The protocol for 
m3C-CLIP was performed with purified and 4tU/4sU-labelled RNA from yeast or 
human cells. The antibody used for immunoprecipitation against the m3C modification 
was crosslinked to the RNA by UV light at the wavelength of 365 nm. The RNA not 
protected by the antibody was digested and sequencing adapter was ligated to the 
RNA on the beads. The antibody was digested and recovered RNA was subjected to 
NGS library generation. 
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14 in the yeast S. cerevisiae. The PAR-CLIP experiment was performed as 
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Battaglia et al., 2017; Creamer et al., 2011). I have adapted the published 
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supplemented with 4-thiouracil (4tU), UV crosslinking at 365 nm, and the same 

library preparation and sequencing strategy. Differences in the mentioned 

techniques are that immunoprecipitation (IP) was performed against the TAP-

tag of a protein crosslinked to RNA in the PAR-CLIP experiment compared to 

m3C-CLIP, where previously purified RNA was directly immunoprecipitated 

with an anti-m3C antibody and afterwards the antibody-RNA complex was UV-

crosslinked. For PAR-CLIP, I performed an additional radioactive RNA labeling 

and purification step via SDS-PAGE as visualized in Figure 15, which is not 

needed for the m3C-CLIP protocol. The radioactive signal of the RNA bound to 

the Trm140 protein appears at the predicted size as verified by Western Blot. 

Additional radioactive signals were observed for the antibody heavy and light 

chains. The gel fragment (1 cm x 0.5 cm) with the highest radioactive intensity 

including the RNA bound to Trm140 was used for further experimental 

procedure. 

 

 
Figure 15: PAR-CLIP of Trm140 analyzed by Western Blot and phosphor imaging. 
PAR-CLIP of Trm140-TAP was verified by Western Blot as a size marker. SDS-PAGE 
was performed with NuPAGE 4-12% Bis-Tris gels in MOPS buffer. The size separated 
proteins were transferred onto a PVDF membrane. The protein of interest was 
visualized using anti-TAP (PAP) antibody coupled to HRP and chemiluminescence 
reaction. The radioactively labeled RNA bound to the protein of interest was visualized 
by phosphor imaging after gel electrophoresis (shown for two independent biological 
replicates). 
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5.1.2 Sequencing coverage of Trm140 PAR-CLIP and m3C-CLIP at 

established m3C modification sites 

 

In order to cross validate the Trm140 PAR-CLIP and m3C-CLIP 

experiments, I compared the sequencing read coverage at the established 

modification site in tRNA Serine and Threonine by using the integrated 

genomics viewer (IGV) tool (Broad Institute) in Figure 16. I detected typical UV 

cross-linking induced thymine (T) to cytosine (C) transitions in the variable stem 

loop for Serine and in the TΨC-loop for both analyzed tRNAs in our 

experiments. The TàC transition is shown in the IGV tool as blue bar for C 

compared to the encoded T (red) in the reverence genome. The height of the 

colored bar represents the ratio of the mismatch compared to the encoded 

base. The UV induced cross-linking sites observed in the Trm140 PAR-CLIP 

experiment indicate binding of Trm140 to both tRNAs. The UV induced cross-

linking sites observed in the m3C-CLIP experiment are caused by m3C 

antibody binding to the tRNAs. 

Interestingly, at position 32 (black line), where tRNA Serine and 

Threonine carry the m3C modification, a high CàT conversion of 4% and 24% 

was observed for tRNA Serine and 46% and 36% for tRNA Threonine in 

Trm140 PAR-CLIP and m3C-CLIP experiments, respectively. The m3C 

modification either induces CàT mutational signature or reverse transcription 

(RT) block as previously published (Arimbasseri et al., 2015; D’Silva et al., 

2011). These observations showed enrichment of m3C containing transcripts 

by Trm140 PAR-CLIP and ability of the m3C antibody to immunoprecipitate 

transcripts harboring the m3C modification. 
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Figure 16: Identification of mutational signature of N3-methylcytidine (m3C) 
modification. 
A) Comparison of Trm140 PAR-CLIP and m3C-CLIP sequencing reads visualized 
using the IGV tool (Broad Institute) on position C32 of tRNA Serine (CGA) known to 
be m3C modified by Trm140. C(blue)àT(red) conversion at position 32 indicates m3C 
presence. Additional conversions (TàC) show PAR-CLIP typical UV induced cross-
linking transitions. The DNA coding for the tRNA is located on the Watson strand and 
highlighted in blue, with the 5´ end at the left and the 3´ end on the right. The 
A(green)àT transition is caused by m1A modification on the respective position shown 
before (Arimbasseri et al., 2015) B) Trm140 PAR-CLIP and m3C sequencing reads 
over tRNA Threonine (CGU) (located on the Crick strand: 5´ end on the right, 3´ end 
on the left) show CàT conversion induced by m3C on C32. The TàC mutational 
signatures are caused by UV induced cross-linking. tRNA Threonine also harbors the 
m1A modification at A58 represented by the typical AàT transition (Arimbasseri et al., 
2016). 
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5.1.3 Reverse transcription signature of m3C modification 
 

The m3C mutational signature has been shown previously as a CàT 

transition or reverse transcription (RT) block (Arimbasseri et al., 2015; D’Silva 

et al., 2011). An RT block can be explained as a drop of the reverse 

transcriptase activity during cDNA synthesis due to a bulky RNA structure or 

the presence of a modified nucleoside. The drop of read coverage next to the 

modification site in our sequencing data for Trm140 PAR-CLIP and m3C-CLIP 

(Figure 16) also suggests RT block at the site of the m3C modification. In order 

to confirm that the RT block is caused by the m3C modification, I performed 

primer extension assay using a gene specific FAM-labeled primer for tRNA 

Serine (CGA) and different RNA samples. The products were visualized by 

denaturing PAGE and fluorescent imaging (Figure 17A). An RT block due to 

m3C modification results in a shorter fragment, which was observed with S. 

cerevisiae WT RNA. The shorter fragment was absent in the sample using RNA 

from a Trm140 KO strain lacking the m3C modification. The same RT products 

as with the Trm140 KO RNA were observed for the in vitro demethylated WT 

sample by AlkB. The AlkB enzyme is a demethylase specific for m1A and m3C 

modification derived and purified from E. coli (Aas et al., 2003). The shorter 

fragment caused by m3C RT block was again present in the in vitro AlkB 

demethylated and subsequently in vitro Trm140 re-methylated sample. As a 

negative control, no RT product was present in the primer alone condition.  

The alignment of the RT primer on the sequence and structure of tRNA 

Serine (CGA) is shown in Figure 17B. The RT block can be explained by the 

additional methyl group on N-3 of the cytidine as shown in Figure 6 interfering 

with Watson-Crick base pairing. Additionally, I observed an RT block upstream 

of the m3C modification site (Figure 17A). This second RT block is most likely 

due to the N-2-N-2-dimethylguanosine (m22G) modification at G26 (Arimbasseri 

et al., 2016; Chan and Lowe, 2009). The full-length cDNA product is present 

above the m22G RT block for all conditions, except the negative control. 
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Figure 17: m3C modification causes reverse transcription block shown by primer 
extension assay on tRNA Serine. 
A) Reverse transcription assay was performed with a FAM labeled RT primer 
complementary to the tRNA Serine (CGA) with different templates: without RNA as 
negative control (CTRL), WT RNA, Trm140 KO RNA, demethylated and re-methylated 
RNA. The RT product for each sample was separated on a denaturing 15% Urea gel 
for 1 h at 300 V. At the expected size, I observed a band in the WT and remethylated 
sample showing m3C dependent RT block. The RT block of the established 
modification site of N-2-N-2 dimethylguanosine (m2

2G) at G26 (above m3C band) does 
not change among tested samples. B) Schematic overview of tRNA Serine and RT 
primer binding (FAM-labeled) and location of the m3C modification at position C32 in 
the anticodon loop close to the anticodon (34-36). 
 

 

5.1.4 Identification of m3C modification in tRNA Arginine (CCU)  

 

In addition to the established modification sites, I observed many UV 

induced cross-link transitions on all three uridine residues in the TΨC-loop of 

tRNA Arginine with anticodon CCU in the Trm140 PAR-CLIP experiment 

(Figure 18). This was also shown on established m3C modification sites in 

tRNA Serine and Threonine. A high number of UV induced cross-link transitions 

at the same position suggest strong binding of Trm140 to tRNA Arginine. 
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Additionally, I observed m3C-CLIP sequencing reads on tRNA Arginine with 

anticodon CCU in both wildtype (WT) replicates. Interestingly, C at position 32 

had a high transition rate to T of about 12% in the Trm140 PAR-CLIP 

experiment. This mutational signature has been described for the m3C 

modification (Arimbasseri et al., 2015). Furthermore, I observed a high CàT 

transition rate in the m3C-CLIP experiment with WT RNA of 20% and 42% for 

the two replicates. The control m3C-CLIP experiments performed in two 

replicates with RNA from a Trm140 KO strain showed only 1% and 3% of CàT 

transition frequencies. This demonstrates that the mutational signature on C32 

of tRNA Arginine with anticodon CCU was significantly reduced in the Trm140 

KO condition. In the PAR-CLIP experiments of Trm140 we also observe that 

the read coverage drops next to the m3C modification site due to a potential 

RT block. These findings indicate that tRNA Arginine is bound by Trm140 and 

therefore m3C modified on position C32 in S. cerevisiae, in addition to the 

established m3C modified tRNA Arginine in higher eukaryotes (Arimbasseri et 

al., 2015). In order to verify the m3C modification on tRNA Arginine with 

anticodon CCU in vitro, I performed a primer extension assay using a FAM-

labeled RT primer for this particular tRNA. Alignment of the RT primer to the 

structure and sequence of tRNA Arginine is shown in Figure 18C. The RT assay 

products were subjected to denaturing PAGE and revealed an RT product 

corresponding to a shorter fragment in the WT sample in Figure 18B, which 

was absent in the Trm140 KO condition. Furthermore, it was also absent in the 

in vitro AlkB demethylated sample and present in the in vitro Trm140 re-

methylated sample (previously demethylated by AlkB). No RT product was 

present in the primer alone and no RNA control conditions. The fragment 

caused by RT block due to m22G26 modification did not change among other 

tested samples. Taken together, these results show that the RT block is most 

likely due to the presence of the m3C modification at position C32 in tRNA 

Arginine (CCU). 
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Figure 18: tRNA Arginine (CCU) contains m3C at C32 in S. cerevisiae. 
A) Trm140 PAR-CLIP showed a high CàT conversion rate on C32 of tRNA Arginine 
(CCU). Binding of Trm140 to the T rich TΨC-loop of tRNA Arginine is represented as 
UV-induced TàC conversions was visualized using the IGV tool (Broad Institute). The 
replicates for m3C-CLIP performed with WT RNA showed high CàT conversion, 
whereas the experiment with RNA from the Trm140 KO strain had lower levels of 
conversion. B) Reverse transcription assay with FAM-labeled primer specific for tRNA 
Arginine showed a fragment caused by RT block with WT RNA and remethylated RNA, 
which was absent in Trm140 knockout RNA and demethylated RNA indicating Trm140 
dependent m3C modification on tRNA Arginine. C) Structure and sequence of tRNA 
Arginine. m3C modification is indicated with black arrow. FAM-labeled RT primer 
binding is shown with black arrow starting from the first nucleotide of the 3´ end. 
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5.1.5 Mapping of m3C modification sites in mRNA 

 

To evaluate Trm40 binding on mRNA and m3C modification enriched 

sequencing reads in mRNA, we performed metagene analysis on mRNA 

aligned at the TSS and pA site for Trm140 PAR-CLIP and m3C-CLIP. UV 

induced cross-linking sites in mRNAs indicate binding of Trm140 within mRNAs 

and potential m3C sites. Metagene analysis of Trm140 PAR-CLIP and m3C-

CLIP (Figure 19A) showed binding of the methyltransferase to mRNA and m3C-

CLIP signal over the protein coding region. Comparing m3C-CLIP to Trm140 

PAR-CLIP, we could see binding to the gene body for the first 250 nt of genes 

and at the end of genes the m3C-CLIP and the Trm140 PAR-CLIP signal is at 

its maximum.  

 We analyzed the mutational signatures of CàT transitions caused by 

m3C on a genome wide level. This approach identified potential modification 

sites within mRNA. A list of high-confidence m3C modification sites is shown in 

Appendix Table 14. Figure 19B shows an example of CàT transition at the 

same position present in Trm140 PAR-CLIP and m3C-CLIP experiments on 

mRNA Tra1 (genomic position chrVIII:303572). The transition rate was 22% in 

PAR-CLIP and 33% for m3C-CLIP. Another example of high CàT transition at 

the same position for both experimental set-ups is shown in  Figure 19C for the 

mRNA Rrs1 (genomic position chrIV:1153577) close to the translation start 

codon. In this case the conversion rate for Trm140 PAR-CLIP and m3C-CLIP 

is 69% and 50%, respectively. In Figure 19D the third example of typical m3C 

mutational signature is shown on mRNA YCR024C-B (genomic position 

chrIII:162694) in both experiments close to the stop codon of the transcript. The 

transition rate is 86% for the Trm140 PAR-CLIP and 80% for the m3C-CLIP 

experiment. In summary, these results indicate the presence of m3C 

modification all over the protein coding transcripts. However, metagene 

analysis of Trm140 PAR-CLIP and m3C-CLIP suggest higher occupancy of the 

m3C modification at the end of mRNA transcripts. 
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Figure 19: Presence of N3-methylcytidine modification in mRNA 
A) Metagene analysis of Trm140 PAR-CLIP and m3C-CLIP on mRNAs. PAR-CLIP 
signal over protein coding transcripts with peaks close to TSS and pA site. m3C-CLIP 
showed signal over the protein coding genes with its maximum at ~75 bp upstream of 
the pA site similar to the Trm140 PAR-CLIP. Mutational signature of m3C of Trm140 
PAR-CLIP and m3C-CLIP in mRNAs at position chrVIII:303572 in B), chrIV:1153577 
in C) and chrIII:162694 in D) visualized using the IGV tool (Broad Institute). 
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Serine, Threonine and Arginine after Trm140 KO. The P-site of the ribosome 

shows higher occupancy compared to the WT strain on the mentioned tRNAs 

(Figure 20). This indicates a slower movement of the tRNA from P to E site 

within the ribosome and therefore slower translation on those codons in 

general. This suggests an effect on translation due to the absence of the m3C 

modification on tRNAs Serine, Threonine, and Arginine.  

In addition to the effect of m3C modification on tRNAs, I analyzed the 

effect on mRNAs in response to the depletion of Trm140. For this, I used the 

translational efficiency, which is calculated as the ratio between translation 

(derived from counts of footprints per mRNA in ribosome profiling experiments) 

over transcription (derived from RNA-seq mRNA levels) of a particular mRNA 

(Chou et al., 2017). I calculated the translational efficiency for six m3C modified 

mRNA transcripts on the m3C containing codons of two independent biological 

replicates for Trm140 KO and WT cells (Figure 20B). For this, I used the ratio 

of read counts of ribosome footprints per codon and counts of RNA per codon 

(Chou et al., 2017). I selected six candidate transcripts based on their m3C 

modification status showing CàT transition in Trm140 PAR-CLIP and m3C-

CLIP experiments (Methods Section 3.3.12). The translational efficiency at the 

selected codons is increased in the case of Trm140 KO compared to WT 

condition for all six tested transcripts. This suggests more efficient translation 

of the respective mRNA codon in the absence of the m3C modification. This 

leads to the hypothesis that the m3C modification in mRNA can a roadblock for 

the ribosome and stalls translation thereby decreasing the translational 

efficiency. 
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Figure 20: m3C modification loss changes ribosome dynamics. 
A) Ribosome profiling of Trm140 KO compared to WT strain showed increased P-site 
occupancy for the established m3C containing tRNAs. This indicates prolonged 
residing time of the respective tRNAs inside the ribosome due to missing m3C 
modification on the tRNAs. B) Translational efficiency changes of m3C containing 
codons shown for six different mRNA transcripts. Translational efficiency is increased 
in Trm140 KO cells compared to the WT cells for the m3C containing codon.  
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5.1.7 Co-localization of Trm140 with RNA degradation factors 

 

To evaluate a function of the m3C mRNA and tRNA modification in 

various processes, we compared Trm140 PAR-CLIP with experiments from 

general RNA processing and degradation factors comprising nuclear and 

cytoplasmic processes. Briefly, these factors function in nuclear RNA 

surveillance (Nrd1, Nab3), 5´ cap binding (Cbc2), mRNA transcript elongation 

(Bur1, Bur2, Ctk1, Ctk2, Cdc73, Ctr9, Leo1, Paf1, Rtf1, Set1, Set2, Dot1, Spt5, 

Spt6, Rpb1), pre-mRNA splicing (Ist3, Nam8, Mud1, Snp1, Luc7, Mud2, Msl5), 

pre-mRNA 3´ processing (Pab1, Pub1, Rna15, Mpe1, Cft2; Yth1), transcription 

termination (Rat1, Rai1, Rtt103, Pcf11), mRNA export (Hrp1, Tho2, Gbp2, 

Hrb1, Mex67, Sub2, Yra1, Nab2, Npl3) (Baejen et al., 2017, 2014; Battaglia et 

al., 2017; Schulz et al., 2013), deadenylation (Ccr4, Pop2, Not1, Caf40), 

decapping (Dcp1, Dcp2, Edc2, Edc3, Dhh1), 5´à3´ exonuclease (Xrn1)  

exosome (Rrp6, Rrp40, Csl4, Rrp4, Rrp44), TRAMP complex (Trf4/5, Air1/2, 

Mtr4), Ski  complex (Ski2, Ski3, Ski7, Ski8), and NMD (Upf1, Upf2, Upf3, 

Nmd4). Clustered co-localization analysis in a range of 40 nt around the 

crosslink site of each factor is shown in Appendix Figure 41. We observed co-

localization of Trm140 mostly with cytoplasmic RNA degradation factors. 

Detailed co-localization analysis with degradation factors in Figure 21 revealed 

binding sites of Trm140 close to cross-link sites of the deadenylation machinery 

(Ccr4, Pop2, Not1, Caf40, Pan2, and Pan3), the exosome (Rrp6, Csl4, and 

Rrp40), as well as the exosome associated complexes TRAMP (via Trf5) and 

Ski (via Ski7) complex. Assuming Trm140 binding leads to deposition of a m3C 

modification, this observation suggests a cytoplasmic function of the m3C 

modification on RNA degradation.  

 



Identification and functional characterization of the 
novel mRNA modification N3-methylcytinde (m3C) 

 - 98 - 

 
Figure 21: Trm140 co-localizes with various RNA degradation factors. 
A) Co-localization analysis 40 nt around the crosslink site of each factor performed 
with PAR-CLIP data from the deadenylation machinery, decapping factors, 5´à3´ 
exonuclease, exosome and exosome associated complexes TRAMP and Ski as well 
as NMD compared to Trm140. This revealed high correlation (>0.6) of Trm140 with 
RNA degradation factors of the deadenylation and exosome machinery, in particular 
Ccr4, Pop2, Not1, Caf40, Pan2, Pan3, Rrp6, Csl4, Rrp40, Trf5, and Ski7. 
 

 

5.1.8 Depletion of m3C modification alters RNA synthesis rate and half-life 

 

Metabolic labeling and sequencing of newly synthesized RNA (4tU-seq) 

can be used to measure RNA synthesis and degradation rates in cells (Schulz 

et al., 2013; Sun et al., 2012). To study the effect of Trm140 KO and therefore 

lack of m3C modification on tRNAs and mRNAs, we performed 4tU-seq of 

Trm140 KO and WT cells. The two biological replicates showed a high 

correlation for labeled (nascent) and total (steady state) RNA replicates (Figure 

22).  
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Figure 22: Spearman correlation of 4tU-seq data for Trm140 KO and WT cells. 
A) The 4tU-seq replicates of Trm140 KO labeled (L) RNA replicate1 and replicate 2 
showed a Spearman correlation of 0.99. B) The replicate correlation of WT L RNA was 
0.99. C) The Trm140 KO total (T) RNA replicates showed a correlation of 0.98. D) The 
correlation of WT T replicates showed a Spearman correlation of 1. 
 

 

The 4tU-seq datasets (WT and Trm140KO) revealed a globally 

decreased synthesis rate (Wilcoxon, p = 1.83e-60) (Figure 23A) and a slightly 

increased half-life (Wilcoxon, p = 0.407) of all protein coding transcripts (Figure 

23B) in the Trm140 KO condition compared to WT.  Overall decreased 

translational efficiency revealed by ribosome profiling (Chou et al., 2017) in the 

context of Trm140 KO cells can result in a reduced protein synthesis. This might 

explain the reduced RNA synthesis rate due to a feedback loop of less available 

RNA synthesis machinery.  
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Figure 23: Functional characterization of m3C modification loss by using metabolic 
RNA labeling and sequencing in S. cerevisiae. 
4tU-seq of WT versus Trm140 KO cells revealed significantly decreased synthesis rate 
in (in min-1) for mRNA in A) and slightly increased half-life (in min) of mRNA in B) in 
the absence of m3C modification.  

 

 

5.1.9 Experimental set-up for PAR-CLIP of METTL8 

 

In order to elucidate the localization of the m3C modification in human 

cells, I used the inducible Hek293 Flp-In™ T-REx™ Cell line (Invitrogen) to 

generate a C-terminally 3xFLAG tagged METTL8. In this system, protein 

expression is under the control of a tetracycline inducible promoter. Using this 

cell line, I performed PAR-CLIP of METTL8 to map its binding sites over the 

whole transcriptome. For the experiment, different conditions regarding 

tetracycline induction and crosslinking at the wavelength of 365 nm in the input 

and IP samples were tested and examined by Western Blot analysis as shown 

in Figure 24A. The non-induced sample only showed endogenous level of 

METTL8 and no signal with the FLAG antibody in the input. Thus, gene 

expression of METTL8-3xFLAG in the Flp-In™ T-REx™ 293 cells is only very 

weak if at all present in the cultured cells under standard conditions. After 

tetracycline induction, the METTL8 expression level stays constant as shown 

with the anti-METTL8 antibody and a signal for the FLAG-tagged METTL8 was 

observed with the anti-FLAG antibody. The Western Blot for the IP samples 

using the anti-FLAG M2 magnetic beads showed signal only for the tetracycline 
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induced samples in both blotting conditions (anti-FLAG and anti-METTL8). The 

double band in the non-induced IP sample blotted with the anti-FLAG antibody 

is caused by the heavy chain of the antibody and cross reactivity of the 

antibodies used for the Western Blot. Radioactive labeling (32P) of the RNA 

crosslinked to the enriched protein of interest showed lower signal in the 

phosphor image for the control samples without tetracycline induction and 

without crosslinking compared to the two replicates with induction and 

crosslinking as depicted in Figure 24B. The area of the gel highlighted with 

black rectangles was used for further experimental procedure. 

 

 
Figure 24: PAR-CLIP of METTL8-3xFLAG in Flp-In™ T-REx™ 293 cells. 
A) Western Blot of different conditions varying Tetracycline induction and UV-
crosslinking at 365 nm of Input and IP samples blotted with anti-FLAG and anti-
METTL8 antibodies. B) Phosphor image of 32P-labeled RNA immuno-precipitated with 
METTL8-3xFLAG using the same conditions as in the Western Blot. The area cut for 
further experimental steps is marked on the gel with black rectangles.  
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5.1.10 Mapping of the m3C modification in human mRNA  

 

The sequencing data of three independent biological replicates of the 

3xFLAG-METTL8 PAR-CLIP experiments were merged for analysis and 

resulted in 148,781 UV-induced crosslink sites. The UV induced crosslink sites 

were aligned to protein coding genes at the TSS and pA site and resulted in a 

metagene plot depicted in Figure 25A. The metagene plot shows binding of 

METTL8 over the entire length of the mRNAs with higher signal towards the 

end of transcripts. This indicates a distribution of m3C modifications over the 

protein coding transcripts with higher occurrence towards the 3´ end. The 

search for m3C mutational signatures (CàT transition) in the METTL8 PAR-

CLIP experiments resulted in 6144 sites (coverage > 2, pval > 0.005). XXmotif 

analysis (Luehr et al., 2012) of those sites revealed binding preference of 

METTL8 to CG rich elements (Figure 25B). The best two hits showed an 

occurrence of 48.13% and 20.4% with E-Values of 3.3e-24 and 1.08e-9, 

respectively.  
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Figure 25: METTL8 PAR-CLIP reveals localization of m3C modification in mRNA. 
A) Metagene analysis of METTL8 PAR-CLIP replicates on exons scaled and aligned 
at the first annotated TSS. METTL8 cross-link sites are distributed over the entire 
mRNA. B) XXmotif analysis of the CàT mutational signature of m3C modification 
reveals a CG rich binding element for METTL8.  
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5.2 Discussion and Outlook 

5.2.1 Identification of the m3C modification in tRNA Arginine 

 

To study the m3C modification in the yeast S. cerevisiae, I performed 

PAR-CLIP of the m3C methyltransferase Trm140. The currently established 

targets of Trm140 are tRNA Serine and Threonine (D’Silva et al., 2011; Noma 

et al., 2011). I also developed a method called m3C-CLIP, using an anti-m3C 

antibody for RNA immunoprecipitation analogous to PA-m6A-seq (Chen et al., 

2015). I showed that both methods enriched for sequencing reads containing 

mutational signatures typical for m3C modification on established targets tRNA 

Serine and Threonine (Figure 16). I observed that the m3C modification 

changes the base paring properties of C during RT. The mutational signature 

appears mainly as CàT conversions as shown in Figure 16 and described 

before (Arimbasseri et al., 2015). Additionally, the m3C modification induced a 

RT block close to the modified nucleotide, which has been also observed by 

others (Arimbasseri et al., 2015; D’Silva et al., 2011). Using these mutational 

signatures, we were able to map m3C at single nucleotide resolution in the 

yeast transcriptome and identify tRNA Arginine with anticodon CCU as a new 

tRNA target (Figure 18A). The modification was detected at position C32, which 

is established for tRNA Serine and Threonine (D’Silva et al., 2011; Noma et al., 

2011). I also applied a RT assay for tRNA Arginine to confirm m3C presence 

by RT block (Figure 18B). In order to demonstrate Trm140 dependency of the 

m3C modification as shown for tRNA Serine and Threonine (D’Silva et al., 

2011; Noma et al., 2011), I also demethylated RNA with AlkB (Aas et al., 2003), 

derived and purified from E. coli. The demethylated RNA was subsequently re-

methylated with purified yeast Trm140, which showed Trm140 methylation 

dependent RT block in the RT assay (Figure 18B). Using the combined 

approach of PAR-CLIP, m3C-CLIP and RT assay, I demonstrated the presence 

of Trm140-dependent m3C modification on tRNA Arginine (CCU) in the 

anticodon loop at C32. Trm140 has been shown to recognize the sequence 

G35-U36-t6A37 of the anticodon loop of tRNA Threonine or t6A37 and i6A37 

of tRNA Serine (Han et al., 2017). The anticodon loop of tRNA Arginine (CCU) 

also contains U36 and the i6A37 modification (Chan and Lowe, 2009), which 

can be the recognition signal for Trm140 to modify this tRNA.  
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5.2.2 Effect of m3C loss on other tRNA modifications 

 

The m3C-CLIP experiments using RNA from a Trm140 KO strain, as 

shown in Figure 18A, showed an increased mutational signature for G26 with 

GàA and GàT transitions on tRNA Arginine with anticodon CCU using the 

IGV tool (Broad Institute). This suggest a higher modification level of the 

nucleotide, which is known to be modified with m22G (Chan and Lowe, 2009). 

A similar mutational signature was observed before for this modification on G26 

of tRNA Serine (Arimbasseri et al., 2016). Higher levels of m22G in the Trm140 

KO strain compared to WT at tRNA Arginine could indicate a compensatory 

mechanism of the cells in response to the loss of m3C32. The need for a 

compensatory mechanism could be caused by a destabilized tRNA Arginine 

structure in the absence of the m3C modification. In line with this hypothesis, it 

has been shown before that tRNA modifications at position 32 are important to 

stabilize the structure of the anticodon loop (Auffinger and Westhof, 2001, 

1999). Increased m22G modification levels might stabilize the tRNA structure 

(Steinberg and Cedergren, 1995), in particular the anticodon loop in the context 

of the Trm140 KO cells. An increased m22G level has only been observed for 

tRNA Arginine and not for tRNA Serine and Threonine in our experimental set-

up. This suggests a more important function of the m3C modification on tRNA 

Arginine in the metabolism of the cell. This is also reflected in the P site 

occupancy analysis of the ribosome (Figure 20), where tRNA Arginine showed 

a strong increase compared to most other tRNAs.  

 

 

5.2.3 Functional relevance of the m3C modification 

 

For functional analysis, it has previously been shown in experiments with 

human cells that the ratio of ribosomes associated in polysomes to monosomes 

is slightly decreased in METTL8 KO compared to WT conditions (Xu et al., 

2017). This suggests increased ribosome stalling when METTL8 and thus the 

m3C modification was absent. In addition to that, ribosome profiling analysis in 

yeast WT and Trm140 KO strains (Chou et al., 2017) showed increased P site 

ribosome occupancy on those codons, which are complementary to the tRNAs 
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lacking the m3C modification in the Trm140 KO strain (Figure 20A). The slower 

translation rate in absence of the m3C modification could be explained by 

incorrect modified tRNAs (Chou et al., 2017). However, our analysis revealed 

enhanced translational efficiency on m3C harboring codons (Figure 20B). 

Furthermore, 4tU-seq of the Trm140 KO in comparison to WT strain revealed 

an impact of the m3C modification on mRNA stability (Figure 23). Our analysis 

showed a decreased synthesis rate and a slightly increased half-life for mRNAs 

in the Trm140 KO compared to WT strain (Figure 23).   

In the light of existing literature, our findings suggest that there are two 

contradictory effects: the role of m3C modification in tRNA versus in mRNA. 

The lack of m3C modification in tRNAs might destabilize the structure of the 

anticodon loop (Auffinger and Westhof, 2001, 1999). This may lead to an 

inefficient accommodation in the active center of the ribosome and therefore 

ribosome stalling. On the other hand, the m3C modification in mRNA can hinder 

Watson Crick base pairing (Figure 26) of the mRNA codon with the tRNA 

anticodon within the actively translating ribosome. The impaired Watson Crick 

base pairing is explained by H-H repulsion of the N3-methyl group of m3C with 

the N1-H proton of G. This impeded Watson Crick base pairing of m3C with G 

has been observed also in our RT assay by RT block (Figure 17A and Figure 

18B). The hindered Watson Crick base pairing between m3C and G suggests 

that the m3C modification in mRNAs stalls the ribosome like a roadblock and 

can thereby lead to recruitment of degradation factors (Radhakrishnan et al., 

2016). Indeed, comparison of Trm140 PAR-CLIP data with genome wide RNA 

binding data of general processing factors in yeast revealed strong co-

localization coefficients of Trm140 binding sites on transcripts with crosslink-

site of degradation factors, particularly deadenylation factors (Ccr4, Pop2, Pan2 

and Pan3), several exosome components (Rrp6, Csl4, and Rrp40) and an 

exosome associated factor (Ski7) (Figure 21). Co-localization with general 

cytoplasmic RNA degradation factors indicates a function of the m3C 

modification in mRNAs in the cytoplasm. Localization of Trm140 to the actin 

cytoskeleton has been shown before, supporting further a cytoplasmic 

deposition of the m3C modification (Kilchert and Spang, 2011). Our data 

analysis on translational efficiency suggests ribosome stalling upon translation 

of codons harboring the m3C modification (Figure 20) and this can lead to 
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Figure 26: Schematic drawing of Watson Crick base pairing between unmodified C 
and G (A) as well as H-H repulsion of m3C and G (B). 

 

 

indirect recruitment of general degradation factors in the cytoplasm. This 

hypothesis is supported by previous findings regarding the response of 

ribosome stalling on premature termination codons during NMD (Celik et al., 

2017). During this process, the ribosome is blocked on premature stop codons 

and factors that initiate mRNA degradation by endonucleolytic cleavage, 

deadenylation (by the Ccr4-Not and Pan2/Pan3 deadenylation complexes) 

and/or decapping (by the decapping complex) are recruited (Lykke-Andersen 

and Jensen, 2015). It is also known that the Ski complex interacts with stalled 

ribosomes in case of NMD and links mRNAs to deadenylation and exosomal 

degradation (Mitchell and Tollervey, 2003). From the work of Pelechano et al., 

it is known that ribosome stalling increases degradation of the transcript from 

the 5´ end (Pelechano et al., 2015). This is also in agreement with studies from 

Radhakrishnan et al. that the degradation machinery is recruited upon 

ribosome stalling. Ribosome stalling can be monitored by Dhh1, a decapping 

enhancer, which travels with the ribosome and senses translational efficiency 

(Radhakrishnan et al., 2016). In our co-localization analysis we observed also 

medium enrichment of Dhh1 crosslink-sites in proximity to Trm140 binding sites 

(Figure 21). Thus, our observations regarding co-localization of Trm140 with 

RNA degradation factors can be placed into context with existing literature 

mentioned above. Moreover, the lack of the m3C mRNA modification acting as 

a roadblock or “degradation signal” might explain the slightly prolonged half-life 

of mRNAs in the Trm140 KO cells as shown in Figure 23. However, the exact 
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mechanism how the m3C modification in mRNA can stall the ribosome or recruit 

degradation factors directly needs to be further analyzed. 

 

 

5.2.4 Future directions for studies on the identification of m3C binding 

proteins in different eukaryotic cells  

 

Epigenomic marks such as 5-methylcytosine in DNA can be recognized 

by specific binding proteins, thereby mediating its repressive effects (Klose and 

Bird, 2006). In addition to selective DNA modification binding proteins, 

methylation of RNA at specific positions can also affect interacting proteins 

(Dominissini et al., 2012). Novel m6A binding proteins were identified using 

methylated and negative control RNA baits in an RNA affinity chromatography 

approach accompanied with mass spectrometry analysis (Dominissini et al., 

2012). Identification of m6A reader proteins was additionally performed by in 

vitro assays and binding experiments with a recombinantly expressed YTH 

domain. These studies showed RNA binding of the YTH domain in an m6A-

dependent manner, although with different binding affinities, some in the nM 

range (Li et al., 2014; Luo and Tong, 2014; Zhu et al., 2014) and others with µM 

affinity (Theler et al., 2014; Xu et al., 2015). Identification of different m6A 

binding proteins revealed additional implications of the m6A modification in 

various processes during the life-time of an RNA molecule (Han et al., 2019; 

Kretschmer et al., 2018; Lence et al., 2016; Theler et al., 2014; Wang et al., 

2015; Y. Wang et al., 2014; Xiao et al., 2016). Identification of m3C binding 

proteins is required in the future to study the role of the modification in detail. 

This may be pursued in a similar way to the identification of m6A binding 

proteins (Dominissini et al., 2012): Using RNA affinity chromatography of m3C 

modified and control RNA with yeast and human cellular extract in combination 

with mass spectrometry analysis. These experiments can reveal the m3C 

interactome of yeast and human cells. Identification of specific binding proteins 

may uncover novel functions of the m3C mRNA modification. Identification of 

potential eraser proteins with homologous function to AlkB from E. coli (Trewick 

et al., 2002) can additionally reveal a dynamic nature of the m3C modification. 

A potential candidate to reverse the m3C modification in human cells is the 
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ALKBH3 protein, which has been shown to repair methylation damage in DNA 

and RNA (Aas et al., 2003; Duncan et al., 2002; Lee et al., 2005; Zhao et al., 

2015). 

 

 

5.2.5 Functional implication of the m3C modification in the context of the 

epitranscriptome 

 

In this dissertation, the localization of the m3C modification was 

analyzed by metagene binding profiles on mRNA for the methyltransferases 

Trm140 and METTL8 in yeast and human cells. The analyses revealed a 

binding preference for both enzymes over the protein coding sequence with 

higher occupancy at the pA site (Figure 19A, Figure 25A). A similar localization 

of the m6A modification (see Figure 5) has been shown before in mouse and 

human mRNAs (Dominissini et al., 2012). Due to a similar localization of the 

m6A and m3C modifications, they may have similar functional implications. 

Epitranscriptomic marks may decorate the RNA and thereby influence cis-

regulatory elements within the protein coding transcript. Various cis-regulatory 

elements within the RNA are highly enriched in the 5´ and 3´ UTRs regulating 

RNA localization, stability, and translation (Mignone et al., 2002). Reader 

proteins of the m6A modification are associated with mRNA stability and 

translation (Theler et al., 2014; Wang et al., 2015; X. Wang et al., 2014; Xiao et 

al., 2016). According to the analysis of a reduced translational efficiency for 

m3C harboring codons in yeast (Figure 19B), the m3C modification might also 

have specific binding proteins to influence ribosome stalling. Our co-localization 

analysis (Figure 21) revealed several potential binding partners or interacting 

partners of these complexes not included in the analysis here. In order to get a 

better understanding of the m3C modification, its function and to compare it 

with other epitranscriptomic marks, one needs to identify and study the m3C 

interactome. 

It has been shown for the m6A modification to act as a switch for the 

mRNA secondary structure to expose cis-regulatory elements and to regulate 

protein-RNA interactions as shown in Figure 27 (Liu et al., 2015). Due to its 

ability to hinder Watson Crick base pairing of the m3C modification with G 
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(Figure 26), this epitranscriptomic mark harbors the potential to change RNA 

secondary structures. This might in turn allow access for RNA binding proteins 

to the single stranded RNA analogous to the m6A mark as shown in Figure 27. 

 

 

 
 
Figure 27: Illustration of the m6A switch model. 
Reversible m6A methylation changes the secondary structure of mRNA to regulate 
RNA-protein interactions (from Liu et al., 2015). 
 

 

5.2.6 Dissecting functional implications of the m3C modification in tRNA 

and mRNA in the future 

 
In the context of Trm140 KO strain, we observed increased P site 

occupancy for m3C modified tRNAs (Figure 20A) implying reduced translational 

efficiency. In contrast, we observed higher translational efficiency in the 

absence of m3C on mRNA codons (Figure 20B). Global ribosome profiling 

(Chou et al., 2017) and 4tU-seq were not able to reveal the contradictory effects 

of the m3C modification in tRNAs and mRNAs independently. In order to 

distinguish the effect of the m3C modification on the level of tRNA and mRNA 

separately, different experimental set-ups need to be used.  

One idea is to use the Trm140 KO strain but complementing the cells 

with purified tRNAs from WT strains to ensure proper tRNA modifications. Using 

this approach, the measured effects by ribosome profiling and 4tU-seq should 

just be caused by the missing m3C modification in mRNAs. On the other hand, 

this approach has various disadvantages. For one, uptake of the tRNAs into 
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the cytoplasm cannot be guaranteed. For two, the concentration of tRNA pool 

would be changed, which would influence the availability of all tRNAs during 

translation and thereby artificially perturb translational efficiency. It has been 

shown that yeast cells use differential expression of tRNAs to selectively adjust 

protein synthesis under stress conditions (Torrent et al., 2018). Inducing a 

stress situation by altered tRNA availability might additionally perturb gene 

expression. 

An alternative approach could be the application of a fast degradation 

system for the methyltransferase Trm140. A fast degradation system was 

developed recently, using the dTAG mechanism (Nabet et al., 2018). This 

enables the immediate and selective control of single protein abundance by 

using the novel degrader FKBP12F36V and in frame expression of FKBP12F36V, 

fused to the protein of interest. This technology provides kinetic resolution to 

biological analyses such as RNA modifications (Nabet et al., 2018). Rapid 

degradation of Trm140 would lead to loss of the m3C modification on short-

lived mRNAs, while the m3C modification would in theory still be present on 

long-lived tRNAs. This may enable us to distinguish the effect of the m3C 

modification on mRNAs and tRNAs. Changes in translational efficiency and 

RNA metabolism should now be only caused by the m3C mRNA modification. 

 

 

5.2.7 Functional characterization of the m3C modification in human cells in 

the future 

 

METTL8 PAR-CLIP has revealed the presence of the m3C modification 

in mRNAs and its localization within mRNAs (Figure 25A). However, functional 

studies such as ribosome profiling and RNA-seq are complementarily required 

to gain a better understanding of the function of the m3C modification in human 

cells. To study the effect of the m3C modification on mRNA, depletion of 

METTL8 is necessary to compare the effect of the m3C modification loss to 

wildtype cells. It has been shown that cells having a KO of METTL8 are viable 

(Xu et al., 2017). However, permanent KO of METTL8 could lead to secondary 

effects on long-lived RNAs. Depletion of METTL8 in a short regime of time, can 

help to study the functional implications of the m3C modification in mRNAs. For 
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rapid depletion of METTL8, the application of the dTAG system in human cells 

is possible as well (Nabet et al., 2018). Subsequent to METTL8 depletion, 

transient-transcriptome sequencing (TT-seq) similar to 4tU-seq is applicable to 

study the effect of m3C loss on RNA metabolism (Schwalb et al., 2016). It is 

now possible to calculate RNA synthesis and degradation rates from the 

sequencing data analogous to the analysis in yeast (Figure 23, Methods). In 

addition to the RNA metabolism, the effect of m3C loss in mRNAs on translation 

efficiency may be studied by ribosome profiling (Ingolia et al., 2009). Using both 

methods, TT-seq and ribosome profiling, in combination with the dTAG system, 

may give detailed insights on potential effects of the m3C modification in 

mRNAs of human cells. 

 

 

5.2.8 Technical challenges in the field of epitranscriptomics and future 

perspectives 

 

Our understanding of the localization, function and regulation of the 

currently known dynamic RNA modifications relies on sequencing technologies 

(Li et al., 2016b). However, RNA modifications cannot be detected directly so 

far on a high throughput level, since sequencing technologies depend on 

reverse transcription of RNA into cDNA. This process erases in many cases 

the information about RNA modifications, which do not change the base pairing 

properties of the modified bases. In addition, mRNA is of low abundance 

compared to tRNA and rRNA and this increases the challenge to detect specific 

base modifications. Thus, new experimental approaches are required to identify 

novel mRNA modifications and map them with nucleotide resolution. Potential 

techniques to study mRNA modifications in more detail may involve specific 

antibodies against the modification of interest or direct RNA sequencing 

approaches (Arango et al., 2018; Chen et al., 2015; Dominissini et al., 2016, 

2012; Liu et al., 2019; A. M. Smith et al., 2017). A very promising technique to 

study RNA modifications using direct RNA sequencing was developed by 

Oxford Nanopore Technologies to overcome current limitations of the available 

techniques (Hussain, 2018; Liu et al., 2019; A. M. Smith et al., 2017). Hereby, 

a synthetic, electrically resistant membrane is interspersed with large 
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nanopores. A voltage is applied across this membrane providing an ionic 

current across the pores. RNA molecules fused to a tether protein are directed 

to nanopores and a motor protein pulls individual RNA strands through the 

biological nanopores at a controlled rate. Each RNA base shows a specific 

current profile across the nanopores and this allows calling of the nucleotide 

composition of the RNA sequence. However, this method possesses a 

sequencing accuracy of only around 85% (experience from our laboratory and 

personal communication) compared to 99% standard Illumina DNA sequencing 

(Fox et al., 2014). Thus, the accuracy of Oxford Nanopore Technologies direct 

RNA sequencing does currently not allow to distinguish between mutational 

signatures caused by an RNA modification or pure sequencing error. With an 

improved sequencing accuracy, this direct RNA sequencing technique may be 

able to distinguish modified nucleosides within an RNA stretch. A very recent 

study proposed that the presence of RNA modifications causes current intensity 

changes leading to decreased qualities and increased “errors” in the output of 

base-calling algorithms. Using this model and a machine learning approach, 

the authors showed that base-calling “errors” mapped m6A modifications in 

native RNA sequences with an overall accuracy of ~90% (Liu et al., 2019). In 

order to identify the m3C modification in native RNAs, the current intensity 

change due to the modification needs to be determined upon comparison with 

the raw current intensities. 

 It is important to note that not only experimental and technical 

improvements need to be introduced to improve the quality of the identification 

and calling of modifications, but also data analyses. It has been observed 

before that next-generation sequencing data has to be handled carefully to not 

draw false conclusions from it (Schwartz, 2018). Sequencing reads have to be 

mapped to the reference genome with high accuracy in order to call mutational 

signatures and reverse transcription blocks caused by modified nucleosides 

(Schwartz, 2018). Reverse transcription blocks occur only at the end of 

sequencing reads and thus, soft clipping of their ends during mapping may 

change the resulting read end and its localization (Schwartz, 2018). In addition, 

a sufficient sequencing depth is required to be able to call low abundant mRNA 

modification sites (Xiong et al., 2018). Thus, experimental and technical 

improvements to overcome current limitations are the most promising approach 
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to advance studies in the field of epitranscriptomics in the future (Jantsch and 

Schaefer, 2019). 
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7 Appendix 

7.1 Supplementary Information 

7.1.1 Figures 
 
 
 

 
 
Figure 28: Different transcript classes have comparable U-content. 
Fraction of U over all bases in transcript classes studied in Figure 8 (untranslated 
region (UTR); intron; coding sequence (CDS), ribosomal RNA (rRNA), transfer RNA 
(tRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), stable 
unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), Nrd1- 
unterminated transcripts (NUTs)). 
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Figure 29: Metagene profiles of yeast RNA degradation factors centered on translation 
start and stop sites in comparison to TIF-annotated TSS and pA sites. 
Transcript-averaged PAR-CLIP occupancy profiles is shown for RNA degradation 
factors involved in A) deadenylation, B) decapping, C) 5´à3´ exonuclease Xrn1, D) 
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exosome, E) TRAMP, F) Ski, and G) NMD. Transcripts are aligned either at transcript 
start site (TSS) and poly-adenylation (pA) site (marked with blue) or at their start and 
stop codons (marked with green). TIF-seq based annotation is shown in blue (n=3,193 
for TSS and pA site profiles) (Pelechano et al., 2013). Open reading frames (ORF) 
annotated in the SGD (version 64.2.1) are shown in green (n=4,012 for TSS, and 
n=3,965 for pA site selected transcripts). To avoid contaminating signals from 
neighboring genes, we filtered out regions that had annotations upstream and 
downstream of the centered gene (up to 700 nt) (Methods). Shaded areas (in blue TIF-
seq annotation, or in green for ORF annotation) depict 95% confidence intervals 
derived from bootstrapping genes. Comparison between these two profiles highlights 
preferences for end binding degradation factors in binding to untranslated regions at 
the two sides of the transcript. 
 
 
 

 
 
Figure 30: Distributions of transcript length, half-life, expression level and transcript 
optimality for yeast mRNAs. 
Histograms on the diagonal show distributions of length, half-life (Methods), 
expression level (Baejen et al., 2017) and transcript optimality (Pechmann and 
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Frydman, 2013). Pairwise comparisons of features are shown as scatter plots (top 
right) and kernel density estimates (KDEs) of bivariate densities are shown in the 
bottom with Pearson correlation values (r) (Methods). 
 

 
Figure 31: Occupancies of deadenylation factors (Ccr4, Pop2, Not1, Caf40, Pan2, 
and Pan3) compared to transcript length, optimality, expression level, and half-life. 
A) To understand binding specificity of deadenylation factors, the total occupancy of 
each factor on a transcript is plotted against various transcript features (Grey shading: 
95% confidence intervals generated by bootstrapping transcripts). B) Same analysis 
as in Figure 12B: Codon enrichment shows deviations in codon frequencies of 
transcripts bound by a degradation factor compared to each codon’s frequency on all 
coding sequences. Each bar is colored according to its codon-optimality with highly 
optimal codons in dark red and highly non-optimal codons in dark blue. (Grey lines: 
90% confidence intervals generated by bootstrapping coding sequences). 
 
 
 
 

 
Figure 32: Occupancies of decapping factors (Dcp2, Dcp1, Edc2, Edc3, and Dhh1) 
compared to transcript length, optimality, expression level, and half-life. 
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A) To understand binding specificity of decapping factors, the total occupancy of each 
factor on a transcript is plotted against various transcript features (Grey shading: 95% 
confidence intervals generated by bootstrapping transcripts). B) Same analysis as in 
Figure 12B: Codon enrichment shows deviations in codon frequencies of transcripts 
bound by a degradation factor compared to each codon’s frequency on all coding 
sequences. Each bar is colored according to its codon-optimality with highly optimal 
codons in dark red and highly non-optimal codons in dark blue. (Grey lines: 90% 
confidence intervals generated by bootstrapping coding sequences). 
 
 

 
 

Figure 33: Occupancy of Xrn1 compared to transcript length, optimality, expression 
level, and half-life. 
A) To understand binding specificity of Xrn1 on various mRNAs, the total occupancy 
of Xrn1 on a transcript is plotted against various transcript features (Grey shading: 95% 
confidence intervals generated by bootstrapping transcripts). B) Same analysis as in 
Figure 12B: Codon enrichment shows deviations in codon frequencies of transcripts 
bound by a degradation factor compared to each codon’s frequency on all coding 
sequences. Each bar is colored according to its codon-optimality with highly optimal 
codons in dark red and highly non-optimal codons in dark blue. (Grey lines: 90% 
confidence intervals generated by bootstrapping coding sequences). 
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Figure 34: Occupancies of exosome components (Rrp6, Csl4, Rrp40, Rrp4, and 
Rrp44) compared to transcript length, optimality, expression level, and half-life. 
A) To understand binding specificity of exosome components, the total occupancy of 
each factor on a transcript is plotted against various transcript features (Grey shading: 
95% confidence intervals generated by bootstrapping transcripts). B) Same analysis 
as in Figure 12B: Codon enrichment shows deviations in codon frequencies of 
transcripts bound by a degradation factor compared to each codon’s frequency on all 
coding sequences. Each bar is colored according to its codon-optimality with highly 
optimal codons in dark red and highly non-optimal codons in dark blue. (Grey lines: 
90% confidence intervals generated by bootstrapping coding sequences). 
 
 
 

 
Figure 35: Occupancies for components of the TRAMP complex (Air1, Trf5, Mtr4, 
Air2, and Trf4) compared to transcript length, optimality, expression level, and half-
life. 
A) To understand binding specificity of TRAMP components, the total occupancy of 
each factor on a transcript is plotted against various transcript features (Grey shading: 
95% confidence intervals generated by bootstrapping transcripts). B) Same analysis 
as in Figure 5B: Codon enrichment shows deviations in codon frequencies of 
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transcripts bound by a degradation factor compared to each codon’s frequency on all 
coding sequences. Each bar is colored according to its codon-optimality with highly 
optimal codons in dark red and highly non-optimal codons in dark blue. (Grey lines: 
90% confidence intervals generated by bootstrapping coding sequences). 
 
 
 

 
 
Figure 36: Occupancies for components of the Ski complex (Ski2, Ski3, Ski7, and 
Ski8) compared to transcript length, optimality, expression level, and half-life. 
A) To understand binding specificity of factors in the Ski complex, the total occupancy 
of each factor on a transcript is plotted against various transcript features (Grey 
shading: 95% confidence intervals generated by bootstrapping transcripts). B) Same 
analysis as in Figure 12B: Codon enrichment shows deviations in codon frequencies 
of transcripts bound by a degradation factor compared to each codon’s frequency on 
all coding sequences. Each bar is colored according to its codon-optimality with highly 
optimal codons in dark red and highly non-optimal codons in dark blue. (Grey lines: 
90% confidence intervals generated by bootstrapping coding sequences). 
 
 
 

 
Figure 37: Occupancies for components of the NMD pathway (Upf1, Upf2, Upf3, and 
Nmd4) compared to transcript length, optimality, expression level, and half-life. 
(A) To understand binding specificity of factors in the NMD pathway, the total 
occupancy of each factor on a transcript is plotted against various transcript features 
(Grey shading: 95% confidence intervals generated by bootstrapping transcripts). (B) 
Same analysis as in Figure 12B: Codon enrichment shows deviations in codon 
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frequencies of transcripts bound by a degradation factor compared to each codon’s 
frequency on all coding sequences. Each bar is colored according to its codon-
optimality with highly optimal codons in dark red and highly non-optimal codons in dark 
blue. (Grey lines: 90% confidence intervals generated by bootstrapping coding 
sequences). 
 
 
 

 
 
Figure 38: Correlation between binding to degradation factors and transcript length, 
codon-optimality, expression, and half-life. 
Pearson correlation values between the binding strength of degradation factors (total 
occupancy over each transcript) and transcript length, transcript optimality (Pechmann 
and Frydman, 2013), expression level (Baejen et al., 2017), and half-life derived by 
multivariate linear regression analysis (Methods). 
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Figure 39: Metagene profiles for subunits of the TRAMP complex on snoRNA genes. 
Transcript averaged PAR-CLIP occupancy profiles are shown for Air1, Trf5, Mtr4, Air2, 
and Trf4. snoRNA genes are aligned either at their 5´ end or at their 3´ end (n=77). 
Occupancy profiles are shown over the range of ±35 nt. 
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Figure 40: Comparison of binding profiles on genes containing annotated upstream 
sense NUTs with all mRNAs. 
A) Binding enrichment of degradation factors around the TSS of genes with an 
upstream sense NUT. Enrichment is defined as the ratio of the average occupancy in 
the interval [±300 nt] of the TSS on these genes that contain an upstream NUT (n=459) 
(Schulz et al., 2013) divided by the average occupancy on all genes. B) Transcript-
averaged PAR-CLIP occupancy profiles for all mRNAs (black) is compared to patterns 
derived from genes with upstream sense NUTs (blue). Transcripts were aligned at their 
TSS and averaged over the interval of [±600 nt]. We compared Nrd1 and Nab3 profiles, 
known to process NUTs, with subunits of the TRAMP complex. 95% confidence 
intervals obtained from bootstrapping genes are shown with grey and blue shades.  
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Figure 41: Co-localization coefficients for 75 RNA binding factors. 
Pairwise correlation between normalized co-localization profiles of factors in a window 
of 40 nt centered at PAR-CLIP cross-link sites is shown here. Analysis for 75 RNA 
binding factors, including Trm140, 30 factors from the RNA degradation study, and 44 
factors from previous studies (Baejen et al., 2017, 2014; Battaglia et al., 2017; Schulz 
et al., 2013). High co-localization represents binding to the same position on transcripts 
(marked with dark red). Factors are clustered and color coded (left and upper border) 
according to their general function. Trm140 is colored in black and can be found in the 
central cluster together with deadenylation factors. 
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7.1.2 Tables 
 
 
Table 13: Overview of RNA processing factors and their respective published PAR-
CLIP experiments. 

 

 

Pathway Factor Details
High confidence 
cross-link sites

Source Accession number

Nrd1 187164 Schulz et al., 2013
﻿ArrayExpress: 
E-MTAB-1766

Nab3 91762 Schulz et al., 2013
﻿ArrayExpress: 
E-MTAB-1766

Cap binding 
complex

Cbc2 95530 Baejen et al., 2014 GEO: ﻿GSE59676

Bur1 232237 Battaglia et al., 2017 GEO: GSE81822
Bur2 169544 Battaglia et al., 2017 GEO: GSE81822
Ctk1 257668 Battaglia et al., 2017 GEO: GSE81822
Ctk2 209835 Battaglia et al., 2017 GEO: GSE81822

Cdc73 234224 Battaglia et al., 2017 GEO: GSE81822
Ctr9 5361 Battaglia et al., 2017 GEO: GSE81822
Leo1 87202 Battaglia et al., 2017 GEO: GSE81822
Paf1 72871 Battaglia et al., 2017 GEO: GSE81822
Rtf1 52570 Battaglia et al., 2017 GEO: GSE81822
Set1 321575 Battaglia et al., 2017 GEO: GSE81822
Set2 90276 Battaglia et al., 2017 GEO: GSE81822
Dot1 88966 Battaglia et al., 2017 GEO: GSE81822
Spt5 DSIF 193823 Baejen et al. ,2017 GEO: GSE79222
Spt6 Nucleosome remodeling 204781 Battaglia et al., 2017 GEO: GSE81822
Rpb1 RNA polymerase 153593 Baejen et al. ,2017 GEO: GSE79222
Ist3 U2 snRNP 3899 Baejen et al., 2014 GEO: ﻿GSE59676

Nam8 7097 Baejen et al., 2014 GEO: ﻿GSE59676
Mud1 8512 Baejen et al., 2014 GEO: ﻿GSE59676
Snp1 6773 Baejen et al., 2014 GEO: ﻿GSE59676
Luc7 33471 Baejen et al., 2014 GEO: ﻿GSE59676

Mud2 76190 Baejen et al., 2014 GEO: ﻿GSE59676
Msl5 81742 Baejen et al., 2014 GEO: ﻿GSE59676
Pab1 Poly(A) 33422 Baejen et al., 2014 GEO: ﻿GSE59676
Pub1 Poly(U) 72015 Baejen et al., 2014 GEO: ﻿GSE59676

Rna15 CFIA 92792 Baejen et al., 2014 GEO: ﻿GSE59676
Mpe1 3743 Baejen et al., 2014 GEO: ﻿GSE59676
Cft2 32758 Baejen et al., 2014 GEO: ﻿GSE59676
Yth1 6506 Baejen et al., 2014 GEO: ﻿GSE59676
Rat1 Exoribonuclease 122259 Baejen et al. ,2017 GEO: GSE79222
Rai1 23092 Baejen et al. ,2017 GEO: GSE79222

Rtt103 51954 Baejen et al. ,2017 GEO: GSE79222
Pcf11 1432 Baejen et al. ,2017 GEO: GSE79222
Hpr1 24616 Baejen et al., 2014 GEO: ﻿GSE59676
Tho2 3282 Baejen et al., 2014 GEO: ﻿GSE59676
Gbp2 151941 Baejen et al., 2014 GEO: ﻿GSE59676
Hrb1 132503 Baejen et al., 2014 GEO: ﻿GSE59676

Mex67 10917 Baejen et al., 2014 GEO: ﻿GSE59676
Sub2 39981 Baejen et al., 2014 GEO: ﻿GSE59676
Yra1 46438 Baejen et al., 2014 GEO: ﻿GSE59676
Nab2 99934 Baejen et al., 2014 GEO: ﻿GSE59676
Npl3 131428 Baejen et al., 2014 GEO: ﻿GSE59676

Export

THO

TREX

Adaptors

Splicing
U1 snRNP

BBP/ U2AF65

3' processing

CPF

Termination

Surveillance Nrd1/Nab3 complex

Elongation

BUR kinase complex

CTDK-I coomplex

PAF1 complex

Histone methyl 
transferase
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Table 14: High confidence m3C modification sites. 
The m3C modification sites including position (chr and position), number of CàT 
reads, unchanged reads (reference), the ratio (of transitions and reference reads), the 
assigned feature and gene name if annotated are shown. The m3C modification sites 
were called using the Trm140 PAR-CLIP sequencing data containing CàT transitions 
aligned to the reference genome (sacCer3, version 64.2.1). A potential m3C site was 
only called with a transition rate of 4% and read coverage of at least 40. 
 
Chr  Position  CàT  Reference  Ratio  Feature  Gene  

chrV  86519  104  5  0,95  mRNA  MTC7  
chrIII  162694  94  16  0,85  mRNA  YCR024C-B  
chrIV  1402305  71  13  0,85  mRNA  RPL27B  
chrIV  1153577  82  36  0,69  mRNA  YDR341C  
chrII  323668  27  18  0,60  mRNA  QDR3  
chrXIII  139652  23  19  0,55  mRNA  ERV41  
chrXI  46776  2538  2395  0,51  tRNA  T(CGU)  
chrXVI  827581  66  76  0,46  mRNA  YPR148C  
chrV  41712  83  96  0,46  mRNA  PRB1  
chrXIII  159468  82  149  0,35  mRNA  SML1  
chrVII  978952  19  65  0,23  mRNA  LSC2  
chrVIII  303572  27  94  0,22  mRNA  TRA1  
chrII  685511  9  37  0,20  mRNA  ARC40  
chrXV  1017134  17  73  0,19  mRNA  PRT1  
chrXV  796725  8  44  0,15  mRNA  ENV9  
chrXV  829817  8  46  0,15  mRNA  VPH1  
chrXII  1004572  9  54  0,14  mRNA  CNA1  
chrX  538585  223  1588  0,12  tRNA  R(CCU)  
chrXIV  349743  12  109  0,10  mRNA  PGA2  
chrV  81963  5  52  0,09  mRNA  RAD23  
chrVI  75912  6  74  0,08  mRNA  HAC1  
chrXIV  654597  3  37  0,08  mRNA  ACC1  
chrXIV  661501  22  273  0,07  mRNA  ACC1  
chrIX  369738  4  52  0,07  mRNA  PAN1  
chrVIII  292455  3  45  0,06  mRNA  HXT1  
chrVIII  467020  17  266  0,06  tRNA  T(UGU)  
chrV  138519  3  54  0,05  CUT/XUT   

chrXV  282163  4  76  0,05  tRNA  G(GGC)  
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chrVII  519348  3  58  0,05  mRNA  MSB2  
chrXI  464423  6  120  0,05  mRNA  PRY2  
chrXIII  887067  5  100  0,05  mRNA  GAS1  
chrVII  111292  5  106  0,05  mRNA  YGL204C  
chrIII  227973  45  1015  0,04  tRNA  S(CGA)  
chrVII  866510  3  72  0,04  mRNA  TYS1  
chrX  519511  3  72  0,04  mRNA  SSC1  
chrXII  818154  13  351  0,04  XUT   
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7.1.3 Spike-in sequences 
7.1.3.1 Spike-in 2 

 
 
GGGUGCUUUAACAAGAGGAAAUUGUGUUUUUGCCAAUUUAAGACCUAA
UUUAAUAGUUAAACCAUUAACCUUAGUUGUUCCAAGGCAUAAUAUAGA
GAGUGAGAUACAGGAUGAGCUAUUUCAGGGAGUUAUUCAGUAUGCAG
UUGCCAAGGCAGUUGCUGAUUUAGAUUUAGAUGAAGAUUUAAAGGUU
GUUGUCUCUGUUAAUGUCCCAGAGGUUCCAAUAACCAAUUUAAAUAAA
AGAAAACUCUUCCAAUACUUCUAUGCCUCAGCAAAGUUAGCUAUAAAC
AGAGCUUUAAAUGAAUAUCCUUCAAAAGAGAAGGUAAAGAAAGAGAAAU
AUAGAGCUUUGCAUCCAUUAGUUGGAUUUAGGGAUGUUAGAUUGGAG
UAUCCUCCAUAUCUACAAAUUGCUUUGGAUGUCCCAACUAUGGAGAAU
UUGGAAUUUUUGUUACAAACAAUUCCAAAUAGCGACCACAUCAUCUUA
GAGGCUGGAACACCACUAAUUAAAAAGUUUGGUUUAGAGGUUAUUGAA
AUAAUGAGAGAAUAUUUUGAUGGCUUUAUUGUUGCUGAUUUAAAAACC
UUAGACACUGGAAGGGUUGAGGUAAGAUUGGCAUUUGAAGCAACAGC
UAAUGCAGUGGCAAUAAGUGGAGUAGCACCAAAAUCAACAAUAAUUAA
AGCUAUCCACGAAUGUCAAAAAUGUGGUUUAAUCAGCUAUUUGGAUAU
GAUGAACGUCUCUGAACCUCAAAAAUUAUAUGAUUCAUUAAAAUUAAAG
CCAGAUGUUGUUAUCUUGCAUAGAGGGAUUGAUGAGGAGACAUUUGG
AAUUAAAAAGGAAUGGAAAUUUAAGGAAAACUGCUUAUUAGCAAUUGC
UGGAGGAGUUGGUGUGGAGAAUGUUGAAGAGCUUUUAAAAGAAUAUC
AAAUAUUAAUCGUUGGUAGAGCAAUUACAAAAUCAAAAGACCCAGGAA
GAGUAAUUAGGAUUUUAUAAACAAGAUGG 
 

 
7.1.3.2 Spike-in 4 

 

GGGUUUCGACGUUUUGAAGGAGGGUUUUAAGUAAUGAUCGAGAUUGA
AAAACCAAAAAUCGAAACGGUUGAAAUCAGCGACGAUGCCGAAUUUGG
UAAGUUUGUCGUAGAGCCACUUGAGCGUGGAUAUGGUACAACUCUGG
GUAACUCCUUACGUCGUAUCCUCUUAUCCUCACUCCCUGGUGCCGCU
GUAACAUCAAUCCAGAUAGAUGGUGUACUGCACGAAUUCUCGACAAUU
GAAGGCGUUGUGGAAGAUGUUACAACGAUUAUCUUACACAUUAAAAAG
CUUGCAUUGAAAAUCUACUCUGAUGAAGAGAAGACGCUAGAAAUUGAU
GUACAGGGUGAAGGAACUGUAACGGCAGCUGAUAUUACACACGAUAGU
GAUGUAGAGAUCUUAAAUCCUGAUCUUCAUAUCGCGACUCUUGGUGA
GAAUGCGAGUUUCCGAGUUCGCCUUACUGCUCAAAGAGGACGUGGGU
AUACGCCUGCUGACGCAAACAAGAGAGGCGAUCAGCCAAUCGGCGUG
AUUCCGAUCGAUUCUAUCUAUACGCCAGUUUCCCGUGUAUCUUAUCAG
GUAGAGAACACUCGUGUAGGCCAAGUUGCAAACUAUGAUAAACUUACA
CUUGAUGUUUGGACUGAUGGAAGCACUGGACCGAAAGAAGCAAUUGC
GCUUGGUUCAAAGAUUUUAACUGAACACCUUAAUAUAUUCGCUGGUUU
AACUGACGAAGCUCAACAUGCUGAAAUCAUGGUUGAAGAAGAAGAAGA
UCAAAAAGAGAAAGUUCUUGAAAUGACAAUUGAAGAAUUGGAUCUUUC
UGUUCGUUCUUACAACUGCUUAAAGCGUGCGGGUAUUAACACGGUUC
AAGAGCUUGCGAACAAGACGGAAGAAGAUAUGAUGAAAGUUCGAAAUC
UAGGACGCAAAUCACUUGAAGAAGUGAAAGCGAGACUAGAAGAACUUG
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GACUCGGACUUCGCAAAGACGAUUGACUAGUUUCCCUUGUGAACUAG
GAUUU UCCCGGGUAC 
 

 
7.1.3.3 Spike-in 5   

 

GGGACUGUCCUUUCAUCCAUAAGCGGAGAAAGAGGGAAUGACAUUGU
UCUUACACGGCACAAGCAGACAAAAUCAACAUGGUCAUUUAGAAAUCG
GAGGUGUGGAUGCUCUCUAUUUAGCGGAGAAAUAUGGUACACCUCUU
UACGUAUAUGAUGUGGCUUUAAUACGUGAGCGUGCUAAAAGCUUUAAG
CAGGCGUUUAUUUCUGCAGGGCUGAAAGCACAGGUGGCAUAUGCGAG
CAAAGCAUUCUCAUCAGUCGCAAUGAUUCAGCUCGCUGAGGAAGAGG
GACUUUCUUUAGAUGUCGUAUCCGGAGGAGAGCUAUAUACGGCUGUU
GCAGCAGGCUUUCCGGCAGAACGCAUCCACUUUCAUGGAAACAAUAAG
AGCAGGGAAGAACUGCGGAUGGCGCUUGAGCACCGCAUCGGCUGCAU
UGUGGUGGAUAAUUUCUAUGAAAUCGCGCUUCUUGAAGACCUAUGUAA
AGAAACGGGUCACUCCAUCGAUGUUCUUCUUCGGAUCACGCCCGGAG
UAGAAGCGCAUACGCAUGACUACAUUACAACGGGCCAGGAAGAUUCAA
AGUUUGGUUUCGAUCUUCAUAACGGACAAACUGAACGGGCCAUUGAAC
AAGUAUUACAAUCGGAACACAUUCAGCUGCUGGGUGUCCAUUGCCAUA
UCGGCUCGCAAAUCUUUGAUACGGCCGGUUUUGUGUUAGCAGCGGAA
AAAAUCUUCAAAAAACUAGACGAAUGGAGAGAUUCAUAUUCAUUUGUA
UCCAAGGUGCUGAAUCUUGGAGGAGGUUUCGGCAUUCGUUAUACGGA
AGAUGAUGAACCGCUUCAUGCCACUGAAUACGUUGAAAAAAUUAUCGA
AGCUGUGAAAGAAAAUGCUUCCCGUUACGGUUUUGACAUUCCGGAAAU
UUGGAUCGAACCGGGCCGUUCUCUCGUGGGAGACGCAGGCACAACUC
UUUAUACGGUUGGCUCUCAAAAAGAAGUGGAUAAGCUGUACAAUCGUU
UCAUC AUUCGGCGUGCG 
 

 
7.1.3.4 Spike-in 8 

 

GGGGAUGUCCUUGGACGGGGUGGCGCAGUAUUACUGCAAGAGAGCG
GACAGAUUAGUGUGUUGGAGCCGACACAUCAAAGGUUCGUCCGGGGA
CCGAUCUGCAGCCUACGGGACAUUUAUCCGUAAAAGCAUGGCGCUGU
UUCGUACUUAUCGGAGGCCAGGUAUCGUCGCGGCGAGUCUCCCCGAC
GACGGAGAUGGGCGUUACUAUCUGGGCCGUCUCGUACUCUGUUACUU
GGCACAGAUGCGAGCCCUCGUAAUGUGCAUCAGCUAAGGGCGAUAUU
AUAAUGCGACGUUUGUACGGAUUCGUUACUAACGUGUUGGACGCUAG
UGGAAUAUGUGUCGUUGGUUAGCCUACCCAUGGCUUUCGCGGCGACA
CAUGCUUAGACUCUUUCAAAACUUCGGUGAAGUUCACUCAAGCCGCGG
AGCGCCGUCGUAAUUCACUAGGGAUGGCGGUACCCGUGCCCGUCCGA
UUCGUAGCAACCUGCAUCACGAUUUUGUCUUCGGGCGACUUAUCAGA
UACGGUAAUGUAAAUACCUGGCAUUUGGGCACUUCUUGCGUUUAAGC
GGGAAAGAUCGCGAGGGCCCGCUAUUUGCGAUACUUCCCAUGUCGGU
GCCGUCGCCUCUAUGUACUCGGAGACGUUAAUGCAGAGGCUAAGGAC
AAUUUACCAUGACUCGGUAAUCCGUUCGUCAAGCAGGUAGCUCGAGU
CUCCCCACGGACACGUAGUGGGUUUGUAACGAUCGAUACCGAGUCUU
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UUUGUCUAGUAGAACCAACCAACCAUUAAGGAGUUCACUAGCACAUCU
UUGCGACCCGAUCGUCCGUGUGUCGCGUAAUACUUUUGUUAUGACGA
GACAUACGCUCAAGCCCUGGGUAGCUAGUCGCGGAGGCACGUUACCG
CGCACAACCCCUAUUCGUUUACAUGUACAUCGCAUCUGAGGUAGUACA
CUUCCGGCGUACGUGAGUAUUUGCGCGUAAUAAGCGCGUGUUUAGCU
GAUCCCCUCUCGUAUCGAGGUUAAGGCAGAUUAGUGCCCAGUAAUUG
CGUUUUUUUGUCGUUGUCGCAGAACGCGAUUUGCUCCGAAAGC 
 

 
7.1.3.5 Spike-in 9 

 

GGGCCAGAUUACUUCCAUUUCCGCCCAAGCUGCUCACAGUAUACGGG
CGUCGGCAUCCAGACCGUCGGCUGAUCGUGGUUUUACUAGGCUAGAC
UAGCGUACGAGCACUAUGGUCAGUAAUUCCUGGAGGAAUAGGUACCAA
GAAAAAAACGAACCUUUGGGUUCCAGAGCUGUACGGUCGCACUGAACU
CGGAUAGGUCUCAGAAAAACGAAAUAUAGGCUUACGGUAGGUCCGAAU
GGCACAAAGCUUGUUCCGUUAGCUGGCAUAAGAUUCCAUGCCUAGAU
GUGAUACACGUUUCUGGAAACUGCCUCGUCAUGCGACUGUUCCCCGG
GGUCAGGGCCGCUGGUAUUUGCUGUAAAGAGGGGCGUUGAGUCCGU
CCGACUUCACUGCCCCCUUUCAGCCUUUUGGGUCCUGUAUCCCAAUU
CUCAGAGGUCCCGCCGUACGCUGAGGACCACCUGAAACGGGCAUCGU
CGCUCUUCGUUGUUCGUCGACUUCUAGUGUGGAGACGAAUUGCCAGA
AUUAUUAACUGCGCAGUUAGGGCAGCGUCUGAGGAAGUUUGCUGCGG
UUUCGCCUUGACCGCGGGAAGGAGACAUAACGAUAGCGACUCUGUCU
CAGGGGAUCUGCAUAUGUUUGCAGCAUACUUUAGGUGGGCCUUGGCU
UCCUUCCGCAGUCAAAACCGCGCAAUUAUCCCCGUCCUGAUUUACUGG
ACUCGCAACGUGGGUCCAUCAGUUGUCCGUAUACCAAGACGUCUAAG
GGCGGUGUACACCCUUUUGAGCAAUGAUUGCACAACCUGCGAUCACC
UUAUACAGAAUUAUCAAUCAAGCUCCCCGAGGAGCGGACUUGUAAGGA
CCGCCGCUUUCGCUCGGGUCUGCGGGUUAUAGCUUUUCAGUCUCGAC
GGGCUAGCACACAUCUGGUUGACUAGGCGCAUAGUCGCCAUUCACAG
AUUUGCUCGGCAAUCAGUACUGGUAGGCGUUAGACCCCGUGACUCGU
GGCUGAACGGCCGUACAA CUCGACAGCCGGUGCUUGCGUUUUACCC 
 

 

7.1.3.6 Spike-in 12 
 

GGGGCACAAGUUGCUGAAGUUGCGAGAGGGGCGAUAAGUGAGGCAGA
CAGGCAUAAUAUAAGAGGGGAGAGAAUUAGCGUAGAUACUCUUCCAAU
AGUUGGUGAAGAAAAUUUAUAUGAGGCUGUUAAAGCUGUAGCAACUCU
UCCACGAGUAGGAAUUUUAGUUUUAGCUGGCUCUUUAAUGGGAGGGA
AGAUAACUGAAGCAGUUAAAGAAUUAAAGGAAAAGACUGGCAUUCCCG
UGAUAAGCUUAAAGAUGUUUGGCUCUGUUCCUAAGGUUGCUGAUUUG
GUUGUUGGAGACCCAUUGCAGGCAGGGGUUUUAGCUGUUAUGGCUAU
UGCUGAAACAGCAAAAUUUGAUAUAAAUAAGGUUAAAGGUAGGGUGCU
AUAAAGAUAAUUUAAUAAUUUUUGAUGAAACCGAAGCGUUAGCUUUGG
GUUAUGAAACUCCAUGAUUUUCAUUUAAUUUUUUCCUAUUAAUUUUCU
CCUAAAAAGUUUCUUUAACAUAAAUAAGGUUAAAGGGAGAGCUCUAUG
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AUUGUCUUCAAAAAUACAAAGAUUAUUGAUGUAUAUACUGGAGAGGUU
GUUAAAGGAAAUGUUGCAGUUGAGAGGGAUAAAAUAUCCUUUGUGGAU
UUAAAUGAUGAAAUUGAUAAGAUAAUUGAAAAAAUAAAGGAGGAUGUUA
AAGUUAUUGACUUAAAAGGAAAAUAUUUAUCUCCAACAUUUAUAGAUG
GGCAUAUACAUAUAGAAUCUUCCCAUCUCAUCCCAUCAGAGUUUGAGA
AAUUUGUAUUAAAAAGCGGAGUUAGCAAAGUAGUUAUAGACCCGCAUG
AAAUAGCAAAUAUUGCUGGAAAAGAAGGAAUUUUGUUUAUGUUGAAUG
AUGCCAAAAUUUUAGAUGUCUAUGUUAUGCUUCCUUCCUGUGUUCCAG
CUACAAACUUAGAAACAAGUGGAGCUGAGAUUACAGCAGA 
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7.2 Abbreviations 

 
3´ UTR    3´ untranslated region 

4tU    4-thiouracil 

4sU    4-thiouridine 

5´ UTR    5´ untranslated region 

4tU    4-thiouracil 

A    Adenine 

A’    acceptor 

Abp140   actin binding protein 140 

ac4C    N4-acetylcytidine 

ACL    anticodon loop 

Air Arginine methyltransferase-interacting RING finger 

protein 

ALKBH alkylation repair homolog  

Arg    Arginine 

Asn    Asparagine 

ATP    Adenosine triphosphate 

bp    base pair 

BSA    bovine serum albumin  

Bur    bypass UAS requirement 
C    Cytosine 

C32    C at position 32 

Caf40    Ccr4 associated factor 

Cbc2    cap binding complex 2 

Ccr4    carbon catabolite repressor 4 

Cdc    cell division cycle 

cDNA    complementary DNA 

CDS    coding sequence 

Cft2    cleavage factor 2 

chr    chromosome 

Csl4    Cep1 synthetic lethal 

CMC N3-[N-cyclohexyl-N’-β-(4-methylmorpholinium) 

ethylcarbodiimide 
CMV cytomegalovirus 

CRAC Crosslinking and cDNA analysis 
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CTD    C-terminal domain 

Ctk    Carboxy-terminal domain kinase 

Ctr9    Cln three requiring 

CUT    Cryptic unstable transcripts 

Dcp    mRNA decapping 

Dhh1    DEAD box helicase homolog 

Dis3    chromosome disjunction 

DMEM    Dulbecco's Modified Eagle's Medium 

DMSO    Dimethylsulfoxide  

DNA    Deoxyribonucleic acid 

Dot1    disruptor of telomeric silencing 

DTT    dithiothreitol 

E    exit 

E. coli    Escherichia coli 

eCLIP    enhanced crosslinking and immunoprecipitation 

ECL    enhances chemiluminescence  

EDTA    ethylenediaminetetraacetic acid 

Edc    enhancer of mRNA decapping 

EGTA    ethyleneglycoltetraacetic acid 

ERCC    external RNA control consortium 

f5C    5-formylcytidine 

FAM    fluorescein amidite  

FBS    Fetal bovine serum 

FTP    fat mass and obesity associated protein 

FLP    flippase 

G    Guanine 

Gbp2    G-strand binding protein 

GTF    General transcription factor 

h    hour 

HEK    human embryonic kidney 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hm5C    5-hydroxymethylcytidine 

Hrb1    Hypothetical RNA binding protein 

HRP    Horseradish peroxidase  

Hrp1    heterogenous nuclear ribonucleoprotein 

I    Inosine 

i6A37    N6-isopentnyladenosine at position 37 
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IgG    immunoglobulin G 

IPTG    Isopropyl-β- D-thiogalactopyranosid 

Ile    Isoleucine 

Ist3    increased sodium tolerance 3 

hm5C 5-hydroxymethylcytidine 

k kilo  

kDa kilo Dalton 

KO knockout 

L liter 

LB Lysogeny Broth 

LC-MS/MS High-performance liquid chromatography-coupled triple 

quadrupole mass spectrometry 

LDS sample loading buffer 

Leo1 left open reading frame 

LIC ligase independent cloning 

lincRNA long intergenic non-coding RNA 

Luc7 Lethal unless cap-binding complex is produced 

Lys Lysine 

m milli 

M moles per liter 

µ micro 

m1A N1-methyladenosine 

m2
2G    N2-N2-dimethylguanosine 

m3C    N3-methylcytidine 

m5C    5-methylcytidine 

m6A    N6-methyladenosine 

MBP    maltose binding protein 

Met    Methionine 

METTL   Methyltransferase-like 

Mex67    mRNA export factor of 67 kDa 

min    minute 

mRNA    messenger RNA 

miRNA    micro RNA 

MOPS    3-(N-morpholino)propanesulfonic acid 

Mpe1    mutant Pcf11 extragenic suppressor 

Mtr4    mRNA transport 

Mud    Mutant U1 die 
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Msl5    Mud synthetic lethal 

Nab    Nuclear polyadenylated RNA binding 

Nam8    Nuclear accommodation of mitochondria 8 

NAT10    N-acetyltransferase 10 

ncRNA    non-coding RNA 

NDR    nucleosome depleted region 

NGS    Next-generation sequencing 

NMD    Nonsense mediated decay 

Not1    negative on TATA 

Nrd1    Nuclear pre-mRNA Down-regulation 

Npl3    nuclear protein localization 

NUT    Nrd1-unterminated transcript 

nt    nucleotide 

OD    optical density 

ORF    open reading frame 

P    peptidyl 

pA    poly adenylation 

Pab1    pA binding protein 1 

Paf1    RNA Pol II associated factor 

PAGE    Polyacrylamide gel electrophoresis 

Pan2/3    pA nuclease 2/3 

PAP    pA polymerase 

PAR-CLIP Photoactivatable ribonucleoside enhanced crosslinking 

and immunoprecipitation 

PBS    Phosphate buffered saline 

Pcf11    protein 1 of cleavage and polyadenylation factor 1 

PCR    polymerase chain reaction 

PEG    Polyethylene glycol  

PIC    Pre-initiation complex 

PMSF    Phenylmethylsulfonylfluoride 

PNK    polynucleotide kinase buffer 

POI    Protein of interest 

Pol     RNA-dependent Polymerase  

Pop2    PGK promoter directed overproduction 

Pub1    poly uridine binding 

Pus    Pseudouridine synthase 

PVDF    Polyvinylidene difluoride 
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Rai1    Rat1 interacting protein 

Rat1    ribonucleic acid trafficking 

RNA    ribonucleic acid   

Rna15    pA mRNA metabolism 

rRNA    ribosomal RNA 

Rpb1    RNA polymerase 

rpm    rounds per minute 

RRACH   R is A or G; H is A,C or U 

Rrp    Ribosomal RNA Processing  

RT    reverse transcription 

Rtf1    restores TBP function 

Rtt103    Regulator of Ty1 transposition 

Sen1    Splicing endonuclease  

S    Sedimentation coefficient 

S2P    Serine-2 phosphorylation 

S5P    Serine-5 Phosphorylation 

S. cerevisiae   Saccharomyces cerevisiae 

SAM    S-adenosylmethionine 

SCM    Synthetic complete medium 

SDS    Sodium dodecyl sulfate 

Set    SET domain containing 

SGD    Saccharomyces genome database 

Smg6    suppressor of morphological defects  

Ski    super killer 

SNP    single nucleotide polymorphism 

Snp1    U1 small nuclear ribonucleoprotein 

snRNA    small nuclear RNA 

snoRNA   small nucleolar RNA 

Spt    suppressor of Ty’s 

Sub2    suppressor of Brr1-1     

SUT    stable unannotated transcript 

t6A37    N6-threonyladenosine at position 37 

T    Thymine 

TAP    Tandem affinity purification 

TBP    TATA box binding protein 

TE    Translational efficiency 

TEV    Tobacco etch virus 
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Tho2 suppressor of the transcriptional defect of Hpr1 by 

overexpression 

Thr    Threonine 

TRAMP   Trf4/5-Air1/2-Mtr4 polyadenylation complex 

Trf    topoisomerase one-related function 

Tris    tris(hydroxymethyl)aminomethane 

tRNA    transfer RNA 

Trm140   tRNA-methyltransferase 140 

TRUB1   tRNA pseudouridine synthase B 

tSNE    t-Distributed Stochastic Neighbor Embedding 

TSS    transcription start site 

TTS    transcription termination site 

TT-seq    Transient transcriptome sequencing 

Ψ    Pseudouridine 

U    Unit 

UMI    unique molecular identifier  

Upf    UP frameshift 

UV    Ultra violet  

V    Volt 

v/v    volume per volume 

w/v    weight per volume 

WT    wildtype 

WTAP    Wilms tumor suppressor gene 

YSPSTPS Tyrosine-Serine-Proline-Serine-Threonine-Proline-

Serine 

YPD Yeast extract peptone dextrose 

Yra1 Yeast RNA annealing protein 

YTH    YT521-B homology 

Yth1    Yeast thirty kDa homolog 

YTHDC   YTH domain containing 

YTHDF   YTH domain family 

Xrn1    exoribonuclease 1 

XUT    Xrn1-unterminated transcripts 

 

 
  



Appendix 

 - 165 - 

7.3 List of Figures 

 

Figure 1: Translation by the ribosome. ....................................................... - 6 - 
Figure 2: Schematic overview of RNA degradation .................................. - 10 - 
Figure 3: Model of the exosome complex. ................................................ - 12 - 
Figure 4: Modified nucleosides in the clover-leaf structure of the 

eukaryotic tRNA. ................................................................... - 16 - 
Figure 5: Schematic representation of known chemical 

modifications mapped in eukaryotic mRNA transcripts. ........ - 17 - 
Figure 6: Structure of the N3-methylcytosine (m3C) modification. ............ - 23 - 
Figure 7: Number of PAR-CLIP cross-link sites and replicate 

correlation. ............................................................................ - 56 - 
Figure 8: Distribution of degradation factor cross-link sites over the 

yeast transcriptome. .............................................................. - 60 - 
Figure 9: Metagene analysis of degradation factor binding on 

protein-coding mRNAs. ......................................................... - 63 - 
Figure 10: Surveillance of aberrant nuclear non-coding RNA by 

components of the exosome and the TRAMP4 complex....... - 65 - 
Figure 11: Global co-occupancy and co-localization analysis reveals 

unexpected cooperation between factors from different 
complexes and pathways. ..................................................... - 68 - 

Figure 12: Binding preferences reveal a link between decapping-
mediated degradation and translation. .................................. - 70 - 

Figure 13: Location and recruitment of the decapping complex 
Dcp1/Dcp2 and decapping enhancers Edc3, Dhh1, and 
Edc2. ..................................................................................... - 72 - 

Figure 14: Schematic overview of PAR-CLIP and m3C-CLIP 
protocol. ................................................................................ - 85 - 

Figure 15: PAR-CLIP of Trm140 analyzed by Western Blot and 
phosphor imaging. ................................................................. - 86 - 

Figure 16: Identification of mutational signature of N3-methylcytidine 
(m3C) modification. ............................................................... - 88 - 

Figure 17: m3C modification causes reverse transcription block 
shown by primer extension assay on tRNA Serine................ - 90 - 

Figure 18: tRNA Arginine (CCU) contains m3C at C32 in S. 
cerevisiae. ............................................................................. - 92 - 

Figure 19: Presence of N3-methylcytidine modification in mRNA ............. - 94 - 
Figure 20: m3C modification loss changes ribosome dynamics. .............. - 96 - 
Figure 21: Trm140 co-localizes with various RNA degradation 

factors. .................................................................................. - 98 - 
Figure 22: Spearman correlation of 4tU-seq data for Trm140 KO 

and WT cells. ........................................................................ - 99 - 
Figure 23: Functional characterization of m3C modification loss by 

using metabolic RNA labeling and sequencing in S. 
cerevisiae. ........................................................................... - 100 - 

Figure 24: PAR-CLIP of METTL8-3xFLAG in Flp-In™ T-REx™ 293 
cells. .................................................................................... - 101 - 



Appendix 

 - 166 - 

Figure 25: METTL8 PAR-CLIP reveals localization of m3C 
modification in mRNA. ......................................................... - 103 - 

Figure 26: Schematic drawing of Watson Crick base pairing 
between unmodified C and G (A) as well as H-H 
repulsion of m3C and G (B). ................................................ - 107 - 

Figure 27: Illustration of the m6A switch model. ..................................... - 110 - 
Figure 28: Different transcript classes have comparable U-content. ...... - 141 - 
Figure 29: Metagene profiles of yeast RNA degradation factors 

centered on translation start and stop sites in 
comparison to TIF-annotated TSS and pA sites. ................. - 142 - 

Figure 30: Distributions of transcript length, half-life, expression 
level and transcript optimality for yeast mRNAs. ................. - 143 - 

Figure 31: Occupancies of deadenylation factors (Ccr4, Pop2, Not1, 
Caf40, Pan2, and Pan3) compared to transcript length, 
optimality, expression level, and half-life. ............................ - 144 - 

Figure 32: Occupancies of decapping factors (Dcp2, Dcp1, Edc2, 
Edc3, and Dhh1) compared to transcript length, 
optimality, expression level, and half-life. ............................ - 144 - 

Figure 33: Occupancy of Xrn1 compared to transcript length, 
optimality, expression level, and half-life. ............................ - 145 - 

Figure 34: Occupancies of exosome components (Rrp6, Csl4, 
Rrp40, Rrp4, and Rrp44) compared to transcript length, 
optimality, expression level, and half-life. ............................ - 146 - 

Figure 35: Occupancies for components of the TRAMP complex 
(Air1, Trf5, Mtr4, Air2, and Trf4) compared to transcript 
length, optimality, expression level, and half-life. ................ - 146 - 

Figure 36: Occupancies for components of the Ski complex (Ski2, 
Ski3, Ski7, and Ski8) compared to transcript length, 
optimality, expression level, and half-life. ............................ - 147 - 

Figure 37: Occupancies for components of the NMD pathway (Upf1, 
Upf2, Upf3, and Nmd4) compared to transcript length, 
optimality, expression level, and half-life. ............................ - 147 - 

Figure 38: Correlation between binding to degradation factors and 
transcript length, codon-optimality, expression, and half-
life........................................................................................ - 148 - 

Figure 39: Metagene profiles for subunits of the TRAMP complex 
on snoRNA genes. .............................................................. - 149 - 

Figure 40: Comparison of binding profiles on genes containing 
upstream sense NUTs with all mRNAs. .............................. - 150 - 

Figure 41: Co-localization coefficients for 75 RNA binding factors. ........ - 151 - 



Appendix 

 - 167 - 

7.4 List of Tables 

 

Table 1: Bacterial strains used in this study. ............................................. - 27 - 
Table 2: Yeast strains used in this study. .................................................. - 27 - 
Table 3: Human cell lines used in this study. ............................................ - 28 - 
Table 4: Growth media used in this study. ................................................ - 29 - 
Table 5: Media supplements used in this study. ........................................ - 29 - 
Table 6: Spike-ins used in this study provided by Dr. Kristina Zumer........ - 30 - 
Table 7: Primers and oligonucleotides used in this study were 

purchased from IDT. ................................................................. - 30 - 
Table 8: List of thermal cycler programs used in this study. ...................... - 31 - 
Table 9: List of plasmids used in this study. .............................................. - 32 - 
Table 10: List of buffers and solutions used in this study. ......................... - 32 - 
Table 11: List of antibodies used in this study. .......................................... - 33 - 
Table 12: Biological replicates for yeast PAR-CLIP experiments. ............. - 37 - 
Table 13: Overview of RNA processing factors and their respective 

published PAR-CLIP experiments. ......................................... - 152 - 
Table 14: High confidence m3C modification sites. ................................. - 153 - 
 



Appendix 

 - 168 - 

 
 
  


	Table of Contents
	Summary
	Introduction
	Materials and Methodology
	Transcriptome maps of general eukaryotic RNAdegradation factors
	Identification and functional characterization of thenovel mRNA modification N3-methylcytidine (m3C)
	Bibliography
	Appendix



